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Preface

This book is intended as required reading material for my course, Experimen-
tal Design for the Behavioral and Social Sciences, a second level statistics course
for undergraduate students in the College of Humanities and Social Sciences at
Carnegie Mellon University. This course is also cross-listed as a graduate level
course for Masters and PhD students (in fields other than Statistics), and supple-
mentary material is included for this level of study.

Over the years the course has grown to include students from dozens of majors
beyond Psychology and the Social Sciences and from all of the Colleges of the
University. This is appropriate because Experimental Design is fundamentally the
same for all fields. This book tends towards examples from behavioral and social
sciences, but includes a full range of examples.

In truth, a better title for the course is Experimental Design and Analysis,
and that is the title of this book. Experimental Design and Statistical Analysis
go hand in hand, and neither can be understood without the other. Only a small
fraction of the myriad statistical analytic methods are covered in this book, but
my rough guess is that these methods cover 60%-80% of what you will read in
the literature and what is needed for analysis of your own experiments. In other
words, I am guessing that the first 10% of all methods available are applicable to
about 80% of analyses. Of course, it is well known that 87% of statisticians make
up probabilities on the spot when they don’t know the true values. :)

Real examples are usually better than contrived ones, but real experimental
data is of limited availability. Therefore, in addition to some contrived examples
and some real examples, the majority of the examples in this book are based on
simulation of data designed to match real experiments.

I need to say a few things about the difficulties of learning about experi-
mental design and analysis. A practical working knowledge requires understanding
many concepts and their relationships. Luckily much of what you need to learn
agrees with common sense, once you sort out the terminology. On the other hand,
there is no ideal logical order for learning what you need to know, because every-
thing relates to, and in some ways depends on, everything else. So be aware: many
concepts are only loosely defined when first mentioned, then further clarified later
when you have been introduced to other related material. Please try not to get
frustrated with some incomplete knowledge as the course progresses. If you work
hard, everything should tie together by the end of the course.
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In that light, I recommend that you create your own “concept maps” as the
course progresses. A concept map is usually drawn as a set of ovals with the names
of various concepts written inside and with arrows showing relationships among
the concepts. Often it helps to label the arrows. Concept maps are a great learning
tool that help almost every student who tries them. They are particularly useful
for a course like this for which the main goal is to learn the relationships among
many concepts so that you can learn to carry out specific tasks (design and analysis
in this case). A second best alternative to making your own concept maps is to
further annotate the ones that I include in this text.

This book is on the world wide web at
http://www.stat.cmu.edu/∼hseltman/309/Book/Book.pdf and any associated data
files are at http://www.stat.cmu.edu/∼hseltman/309/Book/data/.

One key idea in this course is that you cannot really learn statistics without
doing statistics. Even if you will never analyze data again, the hands-on expe-
rience you will gain from analyzing data in labs, homework and exams will take
your understanding of and ability to read about other peoples experiments and
data analyses to a whole new level. I don’t think it makes much difference which
statistical package you use for your analyses, but for practical reasons we must
standardize on a particular package in this course, and that is SPSS, mostly be-
cause it is one of the packages most likely to be available to you in your future
schooling and work. You will find a chapter on learning to use SPSS in this book.
In addition, many of the other chapters end with “How to do it in SPSS” sections.

There are some typographical conventions you should know about. First, in a
non-standard way, I use capitalized versions of Normal and Normality because I
don’t want you to think that the Normal distribution has anything to do with the
ordinary conversational meaning of “normal”.

Another convention is that optional material has a gray background:

I have tried to use only the minimally required theory and mathematics
for a reasonable understanding of the material, but many students want
a deeper understanding of what they are doing statistically. Therefore
material in a gray box like this one should be considered optional extra
theory and/or math.

http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
http://www.stat.cmu.edu/~hseltman/309/Book/data/
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Periodically I will summarize key points (i.e., that which is roughly sufficient
to achieve a B in the course) in a box:

Key points are in boxes. They may be useful at review time to help
you decide which parts of the material you know well and which you
should re-read.

Less often I will sum up a larger topic to make sure you haven’t “lost the forest
for the trees”. These are double boxed and start with “In a nutshell”:

In a nutshell: You can make better use of the text by paying attention
to the typographical conventions.

Chapter 1 is an overview of what you should expect to learn in this course.
Chapters 2 through 4 are a review of what you should have learned in a previous
course. Depending on how much you remember, you should skim it or read through
it carefully. Chapter 5 is a quick start to SPSS. Chapter 6 presents the statisti-
cal foundations of experimental design and analysis in the case of a very simple
experiment, with emphasis on the theory that needs to be understood to use statis-
tics appropriately in practice. Chapter 7 covers experimental design principles in
terms of preventable threats to the acceptability of your experimental conclusions.
Most of the remainder of the book discusses specific experimental designs and
corresponding analyses, with continued emphasis on appropriate design, analysis
and interpretation. Special emphasis chapters include those on power, multiple
comparisons, and model selection.

You may be interested in my background. I obtained my M.D. in 1979 and prac-
ticed clinical pathology for 15 years before returning to school to obtain my PhD in
Statistics in 1999. As an undergraduate and as an academic pathologist, I carried
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out my own experiments and analyzed the results of other people’s experiments in
a wide variety of settings. My hands on experience ranges from techniques such
as cell culture, electron auto-radiography, gas chromatography-mass spectrome-
try, and determination of cellular enzyme levels to topics such as evaluating new
radioimmunoassays, determining predictors of success in in-vitro fertilization and
evaluating the quality of care in clinics vs. doctor’s offices, to name a few. Many
of my opinions and hints about the actual conduct of experiments come from these
experiences.

As an Associate Research Professor in Statistics, I continue to analyze data for
many different clients as well as trying to expand the frontiers of statistics. I have
also tried hard to understand the spectrum of causes of confusion in students as I
have taught this course repeatedly over the years. I hope that this experience will
benefit you. I know that I continue to greatly enjoy teaching, and I am continuing
to learn from my students.

Howard Seltman
August 2008
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Chapter 1

The Big Picture
Why experimental design matters.

Much of the progress in the sciences comes from performing experiments. These
may be of either an exploratory or a confirmatory nature. Experimental evidence
can be contrasted with evidence obtained from other sources such as observational
studies, anecdotal evidence, or “from authority”. This book focuses on design
and analysis of experiments. While not denigrating the roles of anecdotal and
observational evidence, the substantial benefits of experiments (discussed below)
make them one of the cornerstones of science.

Contrary to popular thought, many of the most important parts of experimental
design and analysis require little or no mathematics. In many instances this book
will present concepts that have a firm underpinning in statistical mathematics,
but the underlying details are not given here. The reader may refer to any of
the many excellent textbooks of mathematical statistics listed in the appendix for
those details.

This book presents the two main topics of experimental design and statistical
analysis of experimental results in the context of the large concept of scientific
learning. All concepts will be illustrated with realistic examples, although some-
times the general theory is explained first.

Scientific learning is always an iterative process, as represented in Figure 1.1.
If we start at Current State of Knowledge, the next step is choosing a current
theory to test or explore (or proposing a new theory). This step is often called
“Constructing a Testable Hypothesis”. Any hypothesis must allow for different

1



2 CHAPTER 1. THE BIG PICTURE

Current State of Knowledge

Construct
a Testable
Hypothesis

Design the
Experiment

Perform the Experiment

Statistical
Analysis

Interpret
and Report

Figure 1.1: The circular flow of scientific learning

possible conclusions or it is pointless. For an exploratory goal, the different possible
conclusions may be only vaguely specified. In contrast, much of statistical theory
focuses on a specific, so-called “null hypothesis” (e.g., reaction time is not affected
by background noise) which often represents “nothing interesting going on” usually
in terms of some effect being exactly equal to zero, as opposed to a more general,
“alternative hypothesis” (e.g., reaction time changes as the level of background
noise changes), which encompasses any amount of change other than zero. The
next step in the cycle is to “Design an Experiment”, followed by “Perform the
Experiment”, “Perform Informal and Formal Statistical Analyses”, and finally
“Interpret and Report”, which leads to possible modification of the “Current State
of Knowledge”.

Many parts of the “Design an Experiment” stage, as well as most parts of
the “Statistical Analysis” and “Interpret and Report” stages, are common across
many fields of science, while the other stages have many field-specific components.
The focus of this book on the common stages is in no way meant to demean the
importance of the other stages. You will learn the field-specific approaches in other
courses, and the common topics here.



1.1. THE IMPORTANCE OF CAREFUL EXPERIMENTAL DESIGN 3

1.1 The importance of careful experimental de-

sign

Experimental design is a careful balancing of several features including “power”,
generalizability, various forms of “validity”, practicality and cost. These concepts
will be defined and discussed thoroughly in the next chapter. For now, you need to
know that often an improvement in one of these features has a detrimental effect
on other features. A thoughtful balancing of these features in advance will result
in an experiment with the best chance of providing useful evidence to modify the
current state of knowledge in a particular scientific field. On the other hand, it is
unfortunate that many experiments are designed with avoidable flaws. It is only
rarely in these circumstances that statistical analysis can rescue the experimenter.
This is an example of the old maxim “an ounce of prevention is worth a pound of
cure”.

Our goal is always to actively design an experiment that has the best
chance to produce meaningful, defensible evidence, rather than hoping
that good statistical analysis may be able to correct for defects after
the fact.

1.2 Overview of statistical analysis

Statistical analysis of experiments starts with graphical and non-graphical ex-
ploratory data analysis (EDA). EDA is useful for

• detection of mistakes

• checking of assumptions

• determining relationships among the explanatory variables

• assessing the direction and rough size of relationships between explanatory
and outcome variables, and



4 CHAPTER 1. THE BIG PICTURE

• preliminary selection of appropriate models of the relationship between an
outcome variable and one or more explanatory variables.

EDA always precedes formal (confirmatory) data analysis.

Most formal (confirmatory) statistical analyses are based on models. Statis-
tical models are ideal, mathematical representations of observable characteristics.
Models are best divided into two components. The structural component of
the model (or structural model) specifies the relationships between explana-
tory variables and the mean (or other key feature) of the outcome variables. The
“random” or “error” component of the model (or error model) characterizes
the deviations of the individual observations from the mean. (Here, “error” does
not indicate “mistake”.) The two model components are also called “signal” and
“noise” respectively. Statisticians realize that no mathematical models are perfect
representations of the real world, but some are close enough to reality to be useful.
A full description of a model should include all assumptions being made because
statistical inference is impossible without assumptions, and sufficient deviation of
reality from the assumptions will invalidate any statistical inferences.

A slightly different point of view says that models describe how the distribution
of the outcome varies with changes in the explanatory variables.

Statistical models have both a structural component and a random
component which describe means and the pattern of deviation from
the mean, respectively.

A statistical test is always based on certain model assumptions about the pop-
ulation from which our sample comes. For example, a t-test includes the assump-
tions that the individual measurements are independent of each other, that the two
groups being compared each have a Gaussian distribution, and that the standard
deviations of the groups are equal. The farther the truth is from these assump-
tions, the more likely it is that the t-test will give a misleading result. We will need
to learn methods for assessing the truth of the assumptions, and we need to learn
how “robust” each test is to assumption violation, i.e., how far the assumptions
can be “bent” before misleading conclusions are likely.
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Understanding the assumptions behind every statistical analysis we
learn is critical to judging whether or not the statistical conclusions
are believable.

Statistical analyses can and should be framed and reported in different ways
in different circumstances. But all statistical statements should at least include
information about their level of uncertainty. The main reporting mechanisms you
will learn about here are confidence intervals for unknown quantities and p-values
and power estimates for specific hypotheses.

Here is an example of a situation where different ways of reporting give different
amounts of useful information. Consider three different studies of the effects of a
treatment on improvement on a memory test for which most people score between
60 and 80 points. First look at what we learn when the results are stated as 95%
confidence intervals (full details of this concept are in later chapters) of [−20, 40]
points, [−0.5,+0.5], and [5, 7] points respectively. A statement that the first study
showed a mean improvement of 10 points, the second of 0 points, and the third of
6 points (without accompanying information on uncertainty) is highly misleading!
The third study lets us know that the treatment is almost certainly beneficial by a
moderate amount, while from the first we conclude that the treatment may be quite
strongly beneficial or strongly detrimental; we don’t have enough information to
draw a valid conclusion. And from the second study, we conclude that the effect is
near zero. For these same three studies, the p-values might be, e.g., 0.35, 0.35 and
0.01 respectively. From just the p-values, we learn nothing about the magnitude
or direction of any possible effects, and we cannot distinguish between the very
different results of the first two studies. We only know that we have sufficient
evidence to draw a conclusion that the effect is different from zero in the third
study.

p-values are not the only way to express inferential conclusions, and
they are insufficient or even misleading in some cases.
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Figure 1.2: An oversimplified concept map.

1.3 What you should learn here

My expectation is that many of you, coming into the course, have a “concept-
map” similar to figure 1.2. This is typical of what students remember from a first
course in statistics.

By the end of the book and course you should learn many things. You should
be able to speak and write clearly using the appropriate technical language of
statistics and experimental design. You should know the definitions of the key
terms and understand the sometimes-subtle differences between the meanings of
these terms in the context of experimental design and analysis as opposed to their
meanings in ordinary speech. You should understand a host of concepts and their
interrelationships. These concepts form a “concept-map” such as the one in figure
1.3 that shows the relationships between many of the main concepts stressed in
this course. The concepts and their relationships are the key to the practical use
of statistics in the social and other sciences. As a bonus to the creation of your
own concept map, you will find that these maps will stick with you much longer
than individual facts.

By actively working with data, you will gain the experience that becomes “data-
sense”. This requires learning to use a specific statistical computer package. Many
excellent packages exist and are suitable for this purpose. Examples here come
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Figure 1.3: A reasonably complete concept map for this course.
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from SPSS, but this is in no way an endorsement of SPSS over other packages.

You should be able to design an experiment and discuss the choices that can
be made and their competing positive and negative effects on the quality and
feasibility of the experiment. You should know some of the pitfalls of carrying
out experiments. It is critical to learn how to perform exploratory data analysis,
assess data quality, and consider data transformations. You should also learn how
to choose and perform the most common statistical analyses. And you should be
able to assess whether the assumptions of the analysis are appropriate for the given
data. You should know how to consider and compare alternative models. Finally,
you should be able to interpret and report your results correctly so that you can
assess how your experimental results may have changed the state of knowledge in
your field.



Chapter 2

Defining and Classifying Data
Variables
The link from scientific concepts to data quantities.

A key component of design of experiments is operationalization, which is
the formal procedure that links scientific concepts to data collection. Operational-
izations define measures or variables which are quantities of interest or which
serve as the practical substitutes for the concepts of interest. For example, if you
have a theory about what affects people’s anger level, you need to operationalize
the concept of anger. You might measure anger as the loudness of a person’s voice
in decibels, or some summary feature(s) of a spectral analysis of a recording of
their voice, or where the person places a mark on a visual-analog “anger scale”, or
their total score on a brief questionnaire, etc. Each of these is an example of an
operationalization of the concept of anger.

As another example, consider the concept of manual dexterity. You could
devise a number of tests of dexterity, some of which might be “unidimensional”
(producing one number) while others might be ‘multidimensional”‘ (producing
two or more numbers). Since your goal should be to convince both yourself and
a wider audience that your final conclusions should be considered an important
contribution to the body of knowledge in your field, you will need to make the
choice carefully. Of course one of the first things you should do is investigate
whether standard, acceptable measures already exist. Alternatively you may need
to define your own measure(s) because no standard ones exist or because the

9



10 CHAPTER 2. VARIABLE CLASSIFICATION

existing ones do not meet your needs (or perhaps because they are too expensive).

One more example is cholesterol measurement. Although this seems totally
obvious and objective, there is a large literature on various factors that affect
cholesterol, and enumerating some of these may help you understand the impor-
tance of very clear and detailed operationalization. Cholesterol may be measured
as “total” cholesterol or various specific forms (e.g., HDL). It may be measured on
whole blood, serum, or plasma, each of which gives somewhat different answers. It
also varies with the time and quality of the last meal and the season of the year.
Different analytic methods may also give different answers. All of these factors
must be specified carefully to achieve the best measure.

2.1 What makes a “good” variable?

Regardless of what we are trying to measure, the qualities that make a good
measure of a scientific concept are high reliability, absence of bias, low cost, prac-
ticality, objectivity, high acceptance, and high concept validity. Reliability is
essentially the inverse of the statistical concept of variance, and a rough equivalent
is “consistency”. Statisticians also use the word “precision”.

Bias refers to the difference between the measure and some “true” value. A
difference between an individual measurement and the true value is called an “er-
ror” (which implies the practical impossibility of perfect precision, rather than the
making of mistakes). The bias is the average difference over many measurements.
Ideally the bias of a measurement process should be zero. For example, a mea-
sure of weight that is made with people wearing their street clothes and shoes
has a positive bias equal to the average weight of the shoes and clothes across all
subjects.

Precision or reliability refers to the reproducibility of repeated mea-
surements, while bias refers to how far the average of many measure-
ments is from the true value.

All other things being equal, when two measures are available, we will choose
the less expensive and easier to obtain (more practical) measures. Measures that
have a greater degree of subjectivity are generally less preferable. Although devis-
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ing your own measures may improve upon existing measures, there may be a trade
off with acceptability, resulting in reduced impact of your experiment on the field
as a whole.

Construct validity is a key criterion for variable definition. Under ideal
conditions, after completing your experiment you will be able to make a strong
claim that changing your explanatory variable(s) in a certain way (e.g., doubling
the amplitude of a background hum) causes a corresponding change in your out-
come (e.g., score on an irritability scale). But if you want to convert that to
meaningful statements about the effects of auditory environmental disturbances
on the psychological trait or construct called “irritability”, you must be able to
argue that the scales have good construct validity for the traits, namely that the
operationalization of background noise as an electronic hum has good construct
validity for auditory environmental disturbances, and that your irritability scale
really measures what people call irritability. Although construct validity is critical
to the impact of your experimentation, its detailed understanding belongs sepa-
rately to each field of study, and will not be discussed much in this book beyond
the discussion in Chapter 3.

Construct validity is the link from practical measurements to mean-
ingful concepts.

2.2 Classification by role

There are two different independent systems of classification of variables that you
must learn in order to understand the rest of this book. The first system is based
on the role of the variable in the experiment and the analysis. The general terms
used most frequently in this text are explanatory variables vs. outcome variables.
An experiment is designed to test the effects of some intervention on one or more

measures, which are therefore designated as outcome variables. Much of this
book deals with the most common type of experiment in which there is only a single
outcome variable measured on each experimental unit (person, animal, factory,
etc.) A synonym for outcome variable is dependent variable, often abbreviated
DV.
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The second main role a variable may play is that of an explanatory variable.
Explanatory variables include variables purposely manipulated in an experi-
ment and variables that are not purposely manipulated, but are thought to possibly
affect the outcome. Complete or partial synonyms include independent variable
(IV), covariate, blocking factor, and predictor variable. Clearly, classification of
the role of a variable is dependent on the specific experiment, and variables that
are outcomes in one experiment may be explanatory variables in another experi-
ment. For example, the score on a test of working memory may be the outcome
variable in a study of the effects of an herbal tea on memory, but it is a possible
explanatory factor in a study of the effects of different mnemonic techniques on
learning calculus.

Most simple experiments have a single dependent or outcome variable
plus one or more independent or explanatory variables.

In many studies, at least part of the interest is on how the effects of one
explanatory variable on the outcome depends on the level of another explanatory
variable. In statistics this phenomenon is called interaction. In some areas of
science, the term moderator variable is used to describe the role of the secondary
explanatory variable. For example, in the effects of the herbal tea on memory,
the effect may be stronger in young people than older people, so age would be
considered a moderator of the effect of tea on memory.

In more complex studies there may potentially be an intermediate variable in a
causal chain of variables. If the chain is written A⇒B⇒C, then interest may focus
on whether or not it is true that A can cause its effects on C only by changing B.
If that is true, then we define the role of B as a mediator of the effect of A on C.
An example is the effect of herbal tea on learning calculus. If this effect exists but
operates only through herbal tea improving working memory, which then allows
better learning of calculus skills, then we would call working memory a mediator
of the effect.

2.3 Classification by statistical type

A second classification of variables is by their statistical type. It is critical to un-
derstand the type of a variable for three reasons. First, it lets you know what type
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of information is being collected; second it defines (restricts) what types of statis-
tical models are appropriate; and third, via those statistical model restrictions, it
helps you choose what analysis is appropriate for your data.

Warning: SPSS uses “type” to refer to the storage mode (as in com-
puter science) of a variable. In a somewhat non-standard way it uses
“measure” for what we are calling statistical type here.

Students often have difficulty knowing “which statistical test to use”. The
answer to that question always starts with variable classification:

Classification of variables by their roles and by their statistical types
are the first two and the most important steps to choosing a correct
analysis for an experiment.

There are two main types of variables, each of which has two subtypes according
to this classification system:

Quantitative Variables
Discrete Variables
Continuous Variables

Categorical Variables
Nominal Variables
Ordinal Variables

Both categorical and quantitative variables are often recorded as numbers, so
this is not a reliable guide to the major distinction between categorical and quan-
titative variables. Quantitative variables are those for which the recorded num-
bers encode magnitude information based on a true quantitative scale. The best
way to check if a measure is quantitative is to use the subtraction test. If two
experimental units (e.g., two people) have different values for a particular measure,
then you should subtract the two values, and ask yourself about the meaning of
the difference. If the difference can be interpreted as a quantitative measure of
difference between the subjects, and if the meaning of each quantitative difference
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is the same for any pair of values with the same difference (e.g., 1 vs. 3 and 10 vs.
12), then this is a quantitative variable. Otherwise, it is a categorical variable.

For example, if the measure is age of the subjects in years, then for all of the
pairs 15 vs. 20, 27 vs. 33, 62 vs. 67, etc., the difference of 5 indicates that the
subject in the pair with the large value has lived 5 more years than the subject
with the smaller value, and this is a quantitative variable. Other examples that
meet the subtraction test for quantitative variables are age in months or seconds,
weight in pounds or ounces or grams, length of index finger, number of jelly beans
eaten in 5 minutes, number of siblings, and number of correct answers on an exam.

Examples that fail the subtraction test, and are therefore categorical, not quan-
titative, are eye color coded 1=blue, 2=brown, 3=gray, 4=green, 5=other; race
where 1=Asian, 2=Black, 3=Caucasian, 4=Other; grade on an exam coded 4=A,
3=B, 2=C, 1=D, 0=F; type of car where 1=SUV, 2=sedan, 3=compact and 4=sub-
compact; and severity of burn where 1=first degree, 2=second degree, and 3=third
degree. While the examples of eye color and race would only fool the most careless
observer into incorrectly calling them quantitative, the latter three examples are
trickier. For the coded letter grades, the average difference between an A and a
B may be 5 correct questions, while the average difference between a B and a C
may be 10 correct questions, so this is not a quantitative variable. (On the other
hand, if we call the variable quality points, as is used in determining grade point
average, it can be used as a quantitative variable.) Similar arguments apply for
the car type and burn severity examples, e.g., the size or weight difference between
SUV and sedan is not the same as between compact and subcompact. (These three
variables are discussed further below.)

Once you have determined that a variable is quantitative, it is often worthwhile
to further classify it into discrete (also called counting) vs. continuous. Here the
test is the midway test. If, for every pair of values of a quantitative variable the
value midway between them is a meaningful value, then the variable is continu-
ous, otherwise it is discrete. Typically discrete variables can only take on whole
numbers (but all whole numbered variables are not necessarily discrete). For ex-
ample, age in years is continuous because midway between 21 and 22 is 21.5 which
is a meaningful age, even if we operationalized age to be age at the last birthday
or age at the nearest birthday.

Other examples of continuous variables include weights, lengths, areas, times,
and speeds of various kinds. Other examples of discrete variables include number
of jelly beans eaten, number of siblings, number of correct questions on an exam,
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and number of incorrect turns a rat makes in a maze. For none of these does an
answer of, say, 31

2
, make sense.

There are examples of quantitative variables that are not clearly categorized
as either discrete or continuous. These generally have many possible values and
strictly fail the midpoint test, but are practically considered to be continuous
because they are well approximated by continuous probability distributions. One
fairly silly example is mass; while we know that you can’t have half of a molecule,
for all practical purposes we can have a mass half-way between any two masses
of practical size, and no one would even think of calling mass discrete. Another
example is the ratio of teeth to forelimb digits across many species; while only
certain possible values actually occur and many midpoints may not occur, it is
practical to consider this to be a continuous variable. One more example is the
total score on a questionnaire which is comprised of, say, 20 questions each with
a score of 0 to 5 as whole numbers. The total score is a whole number between 0
and 100, and technically is discrete, but it may be more practical to treat it as a
continuous variable.

It is worth noting here that as a practical matter most models and analyses do
not distinguish between discrete and continuous explanatory variables, while many
do distinguish between discrete and continuous quantitative outcome variables.

Measurements with meaningful magnitudes are called quantitative.
They may be discrete (only whole number counts are valid) or con-
tinuous (fractions are at least theoretically meaningful).

Categorical variables simply place explanatory or outcome variable char-
acteristics into (non-quantitative) categories. The different values taken on by a
categorical variable are often called levels. If the levels simply have arbitrary
names then the variable is nominal. But if there are at least three levels, and if
every reasonable person would place those levels in the same (or the exact reverse)
order, then the variable is ordinal. The above examples of eye color and race are
nominal categorical variables. Other nominal variables include car make or model,
political party, gender, and personality type. The above examples of exam grade,
car type, and burn severity are ordinal categorical variables. Other examples of
ordinal variables include liberal vs. moderate vs. conservative for voters or politi-
cal parties; severe vs. moderate vs. mild vs. no itching after application of a skin
irritant; and disagree vs. neutral vs. agree on a policy question.
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It may help to understand ordinal variables better if you realize that most ordi-
nal variables, at least theoretically, have an underlying quantitative variable. Then
the ordinal variable is created (explicitly or implicitly) by choosing “cut-points” of
the quantitative variable between which the ordinal categories are defined. Also, in
some sense, creation of ordinal variables is a kind of “super-rounding”, often with
different spans of the underlying quantitative variable for the different categories.
See Figure 2.1 for an example based on the old IQ categorizations. Note that the
categories have different widths and are quite wide (more than one would typically
create by just rounding).

IQ/Categorical Idiot Imbecile Moron DullAverageSuperior Genius

IQ/Quantitative 0 20 50 70 90 110 140 200

Figure 2.1: Old IQ categorization

It is worth noting here that the best-known statistical tests for categorical
outcomes do not take the ordering of ordinal variables into account, although there
certainly are good tests that do so. On the other hand, when used as explanatory
variables in most statistical tests, ordinal variables are usually either “demoted”
to nominal or “promoted” to quantitative.

2.4 Tricky cases

When categorizing variables, most cases are clear-cut, but some may not be. If the
data are recorded directly as categories rather than numbers, then you only need
to apply the “reasonable person’s order” test to distinguish nominal from ordinal.
If the results are recorded as numbers, apply the subtraction test to distinguish
quantitative from categorical. When trying to distinguish discrete quantitative
from continuous quantitative variables, apply the midway test and ignore the de-
gree of rounding.

An additional characteristic that is worth paying attention to for quantitative
variables is the range, i.e., the minimum and maximum possible values. Variables
that are limited to between 0 and 1 or 0% and 100% often need special considera-
tion, as do variables that have other arbitrary limits.

When a variable meets the definition of quantitative, but it is an explanatory
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variable for which only two or three levels are being used, it is usually better to
treat this variable as categorical.

Finally we should note that there is an additional type of variable called an
“order statistic” or “rank” which counts the placement of a variable in an ordered
list of all observed values, and while strictly an ordinal categorical variable, is often
treated differently in statistical procedures.



18 CHAPTER 2. VARIABLE CLASSIFICATION



Chapter 3

Review of Probability
A review of the portions of probability useful for understanding experimental design
and analysis.

The material in this section is intended as a review of the topic of probability
as covered in the prerequisite course (36-201 at CMU). The material in gray boxes
is beyond what you may have previously learned, but may help the more math-
ematically minded reader to get a deeper understanding of the topic. You need
not memorize any formulas or even have a firm understanding of this material at
the start of the class. But I do recommend that you at least skim through the
material early in the semester. Later, you can use this chapter to review concepts
that arise as the class progresses.

For the earliest course material, you should have a basic idea of what a random
variable and a probability distribution are, and how a probability distribution
defines event probabilities. You also need to have an understanding of the concepts
of parameter, population, mean, variance, standard deviation, and correlation.

3.1 Definition(s) of probability

We could choose one of several technical definitions for probability, but for our
purposes it refers to an assessment of the likelihood of the various possible outcomes
in an experiment or some other situation with a “random” outcome.

Note that in probability theory the term “outcome” is used in a more general

19
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sense than the outcome vs. explanatory variable terminology that is used in the
rest of this book. In probability theory the term “outcome” applies not only
to the “outcome variables” of experiments but also to “explanatory variables”
if their values are not fixed. For example, the dose of a drug is normally fixed
by the experimenter, so it is not an outcome in probability theory, but the age
of a randomly chosen subject, even if it serves as an explanatory variable in an
experiment, is not “fixed” by the experimenter, and thus can be an “outcome”
under probability theory.

The collection of all possible outcomes of a particular random experiment (or
other well defined random situation) is called the sample space, usually abbrevi-
ated as S or Ω (omega). The outcomes in this set (list) must be exhaustive (cover
all possible outcomes) and mutually exclusive (non-overlapping), and should be as
simple as possible.

For a simple example consider an experiment consisting of the tossing of a six
sided die. One possible outcome is that the die lands with the side with one dot
facing up. I will abbreviate this outcome as 1du (one dot up), and use similar
abbreviations for the other five possible outcomes (assuming it can’t land on an
edge or corner). Now the sample space is the set {1du, 2du, 3du, 4du, 5du, 6du}.
We use the term event to represent any subset of the sample space. For example
{1du}, {1du, 5du}, and {1du, 3du, 5du}, are three possible events, and most
people would call the third event “odd side up”. One way to think about events
is that they can be defined before the experiment is carried out, and they either
occur or do not occur when the experiment is carried out. In probability theory
we learn to compute the chance that events like “odd side up” will occur based on
assumptions about things like the probabilities of the elementary outcomes in the
sample space.

Note that the “true” outcome of most experiments is not a number, but a physi-
cal situation, e.g., “3 dots up” or “the subject chose the blue toy”. For convenience
sake, we often “map” the physical outcomes of an experiment to integers or real
numbers, e.g., instead of referring to the outcomes 1du to 6du, we can refer to the
numbers 1 to 6. Technically, this mapping is called a random variable, but more
commonly and informally we refer to the unknown numeric outcome itself (before
the experiment is run) as a “random variable”. Random variables commonly are
represented as upper case English letters towards the end of the alphabet, such as
Z, Y or X. Sometimes the lower case equivalents are used to represent the actual
outcomes after the experiment is run.
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Random variables are maps from the sample space to the real numbers, but
they need not be one-to-one maps. For example, in the die experiment we could
map all of the outcomes in the set {1du, 3du, 5du} to the number 0 and all of
the outcomes in the set {2du, 4du, 6du} to the number 1, and call this random
variable Y. If we call the random variable that maps to 1 through 6 as X, then
random variable Y could also be thought of as a map from X to Y where the
odd numbers of X map to 0 in Y and the even numbers to 1. Often the term
transformation is used when we create a new random variable out of an old one
in this way. It should now be obvious that many, many different random variables
can be defined/invented for a given experiment.

A few more basic definitions are worth learning at this point. A random variable
that takes on only the numbers 0 and 1 is commonly referred to as an indicator
(random) variable. It is usually named to match the set that corresponds to the
number 1. So in the previous example, random variable Y is an indicator for even
outcomes. For any random variable, the term support is used to refer to the set
of possible real numbers defined by the mapping from the physical experimental
outcomes to the numbers. Therefore, for random variables we use the term “event”
to represent any subset of the support.

Ignoring certain technical issues, probability theory is used to take a basic
set of assigned (or assumed) probabilities and use those probabilities (possibly
with additional assumptions about something called independence) to compute
the probabilities of various more complex events.

The core of probability theory is making predictions about the chances
of occurrence of events based on a set of assumptions about the un-
derlying probability processes.

One way to think about probability is that it quantifies how much we can
know when we cannot know something exactly. Probability theory is deductive,
in the sense that it involves making assumptions about a random (not completely
predictable) process, and then deriving valid statements about what is likely to
happen based on mathematical principles. For this course a fairly small number
of probability definitions, concepts, and skills will suffice.
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For those students who are unsatisfied with the loose definition of prob-
ability above, here is a brief descriptions of three different approaches to
probability, although it is not necessary to understand this material to
continue through the chapter. If you want even more detail, I recommend
Comparative Statistical Inference by Vic Barnett.

Valid probability statements do not claim what events will happen, but
rather which are likely to happen. The starting point is sometimes a judg-
ment that certain events are a priori equally likely. Then using only the
additional assumption that the occurrence of one event has no bearing on
the occurrence of another separate event (called the assumption of inde-
pendence), the likelihood of various complex combinations of events can
be worked out through logic and mathematics. This approach has logical
consistency, but cannot be applied to situations where it is unreasonable
to assume equally likely outcomes and independence.

A second approach to probability is to define the probability of an
outcome as the limit of the long-term fraction of times that outcome occurs
in an ever-larger number of independent trials. This allows us to work
with basic events that are not equally likely, but has a disadvantage that
probabilities are assigned through observation. Nevertheless this approach
is sufficient for our purposes, which are mostly to figure out what would
happen if certain probabilities are assigned to some events.

A third approach is subjective probability, where the probabilities of
various events are our subjective (but consistent) assignments of proba-
bility. This has the advantage that events that only occur once, such as
the next presidential election, can be studied probabilistically. Despite
the seemingly bizarre premise, this is a valid and useful approach which
may give different answers for different people who have different beliefs,
but still helps calculate your rational but personal probability of future
uncertain events, given your prior beliefs.

Regardless of which definition of probability you use, the calculations we need
are basically the same. First we need to note that probability applies to some
well-defined unknown or future situation in which some outcome will occur, the
list of possible outcomes is well defined, and the exact outcome is unknown. If the
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outcome is categorical or discrete quantitative (see section 2.3), then each possible
outcome gets a probability in the form of a number between 0 and 1 such that
the sum of all of the probabilities is 1. This indicates that impossible outcomes
are assigned probability zero, but assigning a probability zero to an event does
not necessarily mean that that outcome is impossible (see below). (Note that a
probability is technically written as a number from 0 to 1, but is often converted
to a percent from 0% to 100%. In case you have forgotten, to convert to a percent
multiply by 100, e.g., 0.25 is 25% and 0.5 is 50% and 0.975 is 97.5%.)

Every valid probability must be a number between 0 and 1 (or a
percent between 0% and 100%).

We will need to distinguish two types of random variables. Discrete random
variables correspond to the categorical variables plus the discrete quantitative vari-
ables of chapter 2. Their support is a (finite or infinite) list of numeric outcomes,
each of which has a non-zero probability. (Here we will loosely use the term “sup-
port” not only for the numeric outcomes of the random variable mapping, but also
for the sample space when we do not explicitly map an outcome to a number.) Ex-
amples of discrete random variables include the result of a coin toss (the support
using curly brace set notation is {H,T}), the number of tosses out of 5 that are
heads ({0, 1, 2, 3, 4, 5}), the color of a random person’s eyes ({blue, brown, green,
other}), and the number of coin tosses until a head is obtained ({1, 2, 3, 4, 5, . . .}).
Note that the last example has an infinite sized support.

Continuous random variables correspond to the continuous quantitative vari-
ables of chapter 2. Their support is a continuous range of real numbers (or rarely
several disconnected ranges) with no gaps. When working with continuous random
variables in probability theory we think as if there is no rounding, and each value
has an infinite number of decimal places. In practice we can only measure things to
a certain number of decimal places, actual measurement of the continuous variable
“length” might be 3.14, 3.15, etc., which does have gaps. But we approximate this
with a continuous random variable rather than a discrete random variable because
more precise measurement is possible in theory.

A strange aspect of working with continuous random variables is that each
particular outcome in the support has probability zero, while none is actually
impossible. The reason each outcome value has probability zero is that otherwise
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the probabilities of all of the events would add up to more than 1. So for continuous
random variables we usually work with intervals of outcomes to say, e.g, that the
probability that an outcome is between 3.14 and 3.15 might be 0.02 while each
real number in that range, e.g., π (exactly), has zero probability. Examples of
continuous random variables include ages, times, weights, lengths, etc. All of
these can theoretically be measured to an infinite number of decimal places.

It is also possible for a random variable to be a mixture of discrete
and continuous random variables, e.g., if an experiment is to flip a coin
and report 0 if it is heads and the time it was in the air if it is tails, then
this variable is a mixture of the discrete and continuous types because
the outcome “0” has a non-zero (positive) probability, while all positive
numbers have a zero probability (though intervals between two positive
numbers would have probability greater than zero.)

3.2 Probability mass functions and density func-

tions

.

A probability mass function (pmf) is just a full description of the possi-
ble outcomes and their probabilities for some discrete random variable. In some
situations it is written in simple list form, e.g.,

f(x) =


0.25 if x = 1
0.35 if x = 2
0.40 if x = 3

where f(x) is the probability that random variable X takes on value x, with f(x)=0
implied for all other x values. We can see that this is a valid probability distribution
because each probability is between 0 and 1 and the sum of all of the probabilities
is 1.00. In other cases we can use a formula for f(x), e.g.
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f(x) =

(
4!

(4− x)! x!

)
px(1− p)4−x for x = 0, 1, 2, 3, 4

which is the so-called binomial distribution with parameters 4 and p.

It is not necessary to understand the mathematics of this formula for this
course, but if you want to try you will need to know that the exclamation mark
symbol is pronounced “factorial” and r! represents the product of all the integers
from 1 to r. As an exception, 0! = 1.

This particular pmf represents the probability distribution for getting x “suc-
cesses” out of 4 “trials” when each trial has a success probability of p independently.
This formula is a shortcut for the five different possible outcome values. If you
prefer you can calculate out the five different probabilities and use the first form
for the pmf. Another example is the so-called geometric distribution, which repre-
sents the outcome for an experiment in which we count the number of independent
trials until the first success is seen. The pmf is:

f(x) = p(1− p)x−1 for x = 1, 2, 3, . . .

and it can be shown that this is a valid distribution with the sum of this infinitely
long series equal to 1.00 for any value of p between 0 and 1. This pmf cannot be
written in the list form. (Again the mathematical details are optional.)

By definition a random variable takes on numeric values (i.e., it maps real
experimental outcomes to numbers). Therefore it is easy and natural to think
about the pmf of any discrete continuous experimental variable, whether it is
explanatory or outcome. For categorical experimental variables, we do not need to
assign numbers to the categories, but we always can do that, and then it is easy
to consider that variable as a random variable with a finite pmf. Of course, for
nominal categorical variables the order of the assigned numbers is meaningless, and
for ordinal categorical variables it is most convenient to use consecutive integers
for the assigned numeric values.

Probability mass functions apply to discrete outcomes. A pmf is just
a list of all possible outcomes for a given experiment and the proba-
bilities for each outcome.
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For continuous random variables, we use a somewhat different method for sum-
marizing all of the information in a probability distribution. This is the proba-
bility density function (pdf), usually represented as “f(x)”, which does not
represent probabilities directly but from which the probability that the outcome
falls in a certain range can be calculated using integration from calculus. (If you
don’t remember integration from calculus, don’t worry, it is OK to skip over the
details.)

One of the simplest pdf’s is that of the uniform distribution, where all
real numbers between a and b are equally likely and numbers less than a
or greater than b are impossible. The pdf is:

f(x) = 1/(b− a) for a ≤ x ≤ b

The general probability formula for any continuous random variable is

Pr(t ≤ X ≤ u) =
∫ u

t
f(x)dx.

In this formula
∫
· dx means that we must use calculus to carry out inte-

gration.

Note that we use capital X for the random variable in the probability
statement because this refers to the potential outcome of an experiment
that has not yet been conducted, while the formulas for pdf and pmf use
lower case x because they represent calculations done for each of several
possible outcomes of the experiment. Also note that, in the pdf but not
the pmf, we could replace either or both ≤ signs with < signs because
the probability that the outcome is exactly equal to t or u (to an infinite
number of decimal places) is zero.

So for the continuous uniform distribution, for any a ≤ t ≤ u ≤ b,

Pr(t ≤ X ≤ u) =
∫ u

t

1

b− a
dx =

u− t
b− a

.

You can check that this always gives a number between 0 and 1, and
the probability of any individual outcome (where u=t) is zero, while the
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probability that the outcome is some number between a and b is 1 (u=a,
t=b). You can also see that, e.g., the probability that X is in the middle
third of the interval from a to b is 1

3
, etc.

Of course, there are many interesting and useful continuous distribu-
tions other than the continuous uniform distribution. Some other examples
are given below. Each is fully characterized by its probability density func-
tion.

3.2.1 Reading a pdf

In general, we often look at a plot of the probability density function, f(x), vs. the
possible outcome values, x. This plot is high in the regions of likely outcomes and
low in less likely regions. The well-known standard Gaussian distribution (see 3.2)
has a bell-shaped graph centered at zero with about two thirds of its area between
x = -1 and x = +1 and about 95% between x = -2 and x = +2. But a pdf can
have many different shapes.

It is worth understanding that many pdf’s come in “families” of similarly
shaped curves. These various curves are named or “indexed” by one or more num-
bers called parameters (but there are other uses of the term parameter; see section
3.5). For example that family of Gaussian (also called Normal) distributions is
indexed by the mean and variance (or standard deviation) of the distribution. The
t-distributions, which are all centered at 0, are indexed by a single parameter called
the degrees of freedom. The chi-square family of distributions is also indexed by a
single degree of freedom value. The F distributions are indexed by two degrees of
freedom numbers designated numerator and denominator degrees of freedom.

In this course we will not do any integration. We will use tables or a computer
program to calculate probabilities for continuous random variables. We don’t even
need to know the formula of the pdf because the most commonly used formulas
are known to the computer by name. Sometimes we will need to specify degrees of
freedom or other parameters so that the computer will know which pdf of a family
of pdf’s to use.

Despite our heavy reliance on the computer, getting a feel for the idea of a
probability density function is critical to the level of understanding of data analysis
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and interpretation required in this course. At a minimum you should realize that a
pdf is a curve with outcome values on the horizontal axis and the vertical height of
the curve tells which values are likely and which are not. The total area under the
curve is 1.0, and the under the curve between any two “x” values is the probability
that the outcome will fall between those values.

For continuous random variables, we calculate the probability that the
outcome falls in some interval, not that the outcome exactly equals
some value. This calculation is normally done by a computer program
which uses integral calculus on a “probability density function.”

3.3 Probability calculations

This section reviews the most basic probability calculations. It is worthwhile,
but not essential to become familiar with these calculations. For many readers,
the boxed material may be sufficient. You won’t need to memorize any of these
formulas for this course.

Remember that in probability theory we don’t worry about where probability
assignments (a pmf or pdf) come from. Instead we are concerned with how to
calculate other probabilities given the assigned probabilities. Let’s start with cal-
culation of the probability of a “complex” or “compound” event that is constructed
from the simple events of a discrete random variable.

For example, if we have a discrete random variable that is the number of cor-
rect answers that a student gets on a test of 5 questions, i.e. integers in the set
{0, 1, 2, 3, 4, 5}, then we could be interested in the probability that the student gets
an even number of questions correct, or less than 2, or more than 3, or between
3 and 4, etc. All of these probabilities are for outcomes that are subsets of the
sample space of all 6 possible “elementary” outcomes, and all of these are the union
(joining together) of some of the 6 possible “elementary” outcomes. In the case
of any complex outcome that can be written as the union of some other disjoint
(non-overlapping) outcomes, the probability of the complex outcome is the sum of
the probabilities of the disjoint outcomes. To complete this example look at Table
3.1 which shows assigned probabilities for the elementary outcomes of the random
variable we will call T (the test outcome) and for several complex events.
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Event Probability Calculation
T=0 0.10 Assigned
T=1 0.26 Assigned
T=2 0.14 Assigned
T=3 0.21 Assigned
T=4 0.24 Assigned
T=5 0.05 Assigned
T∈ {0, 2, 4} 0.48 0.10+0.14+0.24
T<2 0.36 0.10+0.26
T≤2 0.50 0.10+0.26+0.14
T≤4 0.29 0.24+0.05
T≥0 1.00 0.10+0.26+0.14+0.21+0.24+0.05

Table 3.1: Disjoint Addition Rule

You should think of the probability of a complex event such as T<2, usually
written as Pr(T<2) or P(T<2), as being the chance that, when we carry out a
random experiment (e.g., test a student), the outcome will be any one of the out-
comes in the defined set (0 or 1 in this case). Note that (implicitly) outcomes
not mentioned are impossible, e.g., Pr(T=17) = 0. Also something must happen:
Pr(T≥0) = 1.00 or Pr(T ∈ {0, 1, 2, 3, 4, 5}) = 1.00. It is also true that the prob-
ability that nothing happens is zero: Pr(T ∈ φ) = 0, where φ means the “empty
set”.

Calculate the probability that any of several non-overlapping events
occur in a single experiment by adding the probabilities of the indi-
vidual events.

The addition rule for disjoint unions is really a special case of the general rule
for the probability that the outcome of an experiment will fall in a set that is the
union of two other sets. Using the above 5-question test example, we can define
event E as the set {T : 1 ≤ T ≤ 3} read as all values of outcome T such that 1 is
less than or equal to T and T is less than or equal to 3. Of course E = {1, 2, 3}.
Now define F = {T : 2 ≤ T ≤ 4} or F = {2, 3, 4}. The union of these sets, written
E ∪ F is equal to the set of outcomes {1, 2, 3, 4}. To find Pr(E ∪ F ) we could try



30 CHAPTER 3. REVIEW OF PROBABILITY

adding Pr(E) + Pr(F), but we would be double counting the elementary events in
common to the two sets, namely {2} and {3}, so the correct solution is to add first,
and then subtract for the double counting. We define the intersection of two sets
as the elements that they have in common, and use notation like E ∩ F = {2, 3}
or, in situations where there is no chance of confusion, just EF = {2, 3}. Then
the rule for the probability of the union of two sets is:

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ).

For our example, Pr(E F) = 0.61 + 0.59 - 0.35 = 0.85, which matches the direct
calculation Pr({1, 2, 3, 4}) = 0.26 + 0.14 + 0.21 + 0.24. It is worth pointing out
again that if we get a result for a probability that is not between 0 and 1, we are
sure that we have made a mistake!

Note that it is fairly obvious that PrA ∩B = PrB ∩ A because A∩B = B∩A,
i.e., the two events are equivalent sets. Also note that there is a complicated general
formula for the probability of the union of three or more events, but you can just
apply the two event formula, above, multiple times to get the same answer.

If two events overlap, calculate the probability that either event occurs
as the sum of the individual event probabilities minus the probability
of the overlap.

Another useful rule is based on the idea that something in the sample space
must happen and on the definition of the complement of a set. The complement
of a set, say E, is written Ec and is a set made of all of the elements of the sample
space that are not in set E. Using the set E above, Ec = {0, 4, 5}. The rule is:

Pr(Ec) = 1− Pr(E).

In our example, Pr {0, 4, 5} = 1− Pr {1, 2, 3} = 1− 0.61 = 0.39.

Calculate the probability that an event will not occur as 1 minus the
probability that it will occur.
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Another important concept is conditional probability. At its core, con-
ditional probability means reducing the pertinent sample space. For instance we
might want to calculate the probability that a random student gets an odd number
of questions correct while ignoring those students who score over 4 points. This is
usually described as finding the probability of an odd number given T ≤ 4. The
notation is Pr(T is odd|T ≤ 4) , where the vertical bar is pronounced “given”.
(The word “given” in a probability statement is usually a clue that conditional
probability is being used.) For this example we are excluding the 5% of students
who score a perfect 5 on the test. Our new sample space must be “renormalized”
so that its probabilities add up to 100%. We can do this by replacing each prob-
ability by the old probability divided by the probability of the reduced sample
space, which in this case is (1-0.05)=0.95. Because the old probabilities of the
elementary outcomes in the new set of interest, {0, 1, 2, 3, 4}, add up to 0.95, if
we divide each by 0.95 (making it bigger), we get a new set of 5 (instead of 6)
probabilities that add up to 1.00. We can then use these new probabilities to find
that the probability of interest is 0.26/0.95 + 0.21/0.95 = 0.495.

Or we can use a new probability rule:

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
.

In our current example, we have

Pr (T ∈ {1, 3, 5}|T ≤ 4) =
Pr(T ∈ {1, 3, 5} ∩ T ≤ 4)

Pr(T ≤ 4)

=
Pr(T ) ∈ {1, 3}
1− Pr(T = 5)

=
0.26 + 0.21

0.95
= 0.495

If we have partial knowledge of an outcome or are only interested in
some selected outcomes, the appropriate calculations require use of
the conditional probability formulas, which are based on using a new,
smaller sample space.

The next set of probability concepts relates to independence of events. (Some-
times students confuse disjoint and independent; be sure to keep these concepts
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separate.) Two events, say E and F, are independent if the probability that event
E happens, Pr(E), is the same whether or not we condition on event F happening.
That is Pr(E) = Pr(E|F ). If this is true then it is also true that Pr(F ) = Pr(F |E).
We use the term marginal probability to distinguish a probability like Pr(E)
that is not conditional on some other probability. The marginal probability of E
is the probability of E ignoring the outcome of F (or any other event). The main
idea behind independence and its definition is that knowledge of whether or not F
occurred does not change what we know about whether or not E will occur. It is
in this sense that they are independent of each other.

Note that independence of E and F also means that Pr(E∩F) = Pr(E)Pr(F),
i.e., the probability that two independent events both occur is the product of the
individual (marginal) probabilities.

Continuing with our five-question test example, let event A be the event that
the test score, T, is greater than or equal to 3, i.e., A={3, 4, 5}, and let B be the
event that T is even. Using the union rule (for disjoint elements or sets) Pr(A)
= 0.21 + 0.24 + 0.05 = 0.50, and Pr(B) = 0.10 + 0.14 + 0.24 = 0.48. From the
conditional probability formula

Pr(A|B) =
Pr(A ∩B)

Pr(B)
=

Pr(T = 4)

Pr(B)
=

0.24

0.48
= 0.50

and

Pr(B|A) =
Pr(B ∩ A)

Pr(A)
=

Pr(T = 4)

Pr(A)
=

0.24

0.50
= 0.48.

Since Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B), events A and B are indepen-
dent. We therefore can calculate that Pr(AB) = Pr(T=4) = Pr(A) Pr(B) = 0.50
(0.48) = 0.24 (which we happened to already know in this example).

If A and B are independent events, then we can calculate the probability of
their intersection as the product of the marginal probabilities. If they are not
independent, then we can calculate the probability of the intersection from an
equation that is a rearrangement of the conditional probability formula:

Pr(A ∩B) = Pr(A|B)Pr(B) or Pr(A ∩B) = Pr(B|A)Pr(A).

For our example, one calculation we can make is
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Pr(T is even ∩ T < 2) = Pr(T is even|T < 2)Pr(T < 2)

= [0.10/(0.10 + 0.26)] · (0.10 + 0.26) = 0.10.

Although this is not the easiest way to calculate Pr(T is even|T < 2) for this prob-
lem, the small bag of tricks described in the chapter come in very handy for making
certain calculations when only certain pieces of information are conveniently ob-
tained.

A contrasting example is to define event G={0, 2, 4}, and let H={2, 3, 4}. Then
G∩H={2, 4}. We can see that Pr(G)=0.48 and Pr(H)=0.59 and Pr(G∩H)=0.38.
From the conditional probability formula

Pr(G|H) =
Pr(G ∩H)

Pr(H)
=

0.38

0.59
= 0.644.

So, if we have no knowledge of the random outcome, we should say there is a
48% chance that T is even. But if we have the partial outcome that T is between 2
and 4 inclusive, then we revise our probability estimate to a 64.4% chance that T is
even. Because these probabilities differ, we can say that event G is not independent
of event H. We can “check” our conclusion by verifying that the probability of G∩H
(0.38) is not the product of the marginal probabilities, 0.48 · 0.59 = 0.2832.

Independence also applies to random variables. Two random variables are
independent if knowledge of the outcome of one does not change the (conditional)
probability of the other. In technical terms, if Pr (X|Y = y) = Pr (X) for all
values of y, then X and Y are independent random variables. If two random
variables are independent, and if you consider any event that is a subset of the X
outcomes and any other event that is a subset of the Y outcomes, these events will
be independent.
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At an intuitive level, events are independent if knowledge that one
event has or has not occurred does not provide new information about
the probability of the other event. Random variables are independent
if knowledge of the outcome of one does not provide new information
about the probabilities of the various outcomes of the other. In most
experiments it is reasonable to assume that the outcome for any one
subject is independent of the outcome of any other subject. If two
events are independent, the probability that both occur is the product
of the individual probabilities.

3.4 Populations and samples

In the context of experiments, observational studies, and surveys, we make our
actual measurements on individual observational units . These are commonly
people (subjects, participants, etc.) in the social sciences, but can also be schools,
social groups, economic entities, archaeological sites, etc. (In some complicated
situations we may make measurements at multiple levels, e.g., school size and stu-
dents’ test scores, which makes the definition of experimental units more complex.)

We use the term population to refer to the entire set of actual or potential
observational units. So for a study of working memory, we might define the pop-
ulation as all U.S. adults, as all past present and future human adults, or we can
use some other definition. In the case of, say, the U.S. census, the population is
reasonably well defined (although there are problems, referred to in the census
literature as “undercount”) and is large, but finite. For experiments, the definition
of population is often not clearly defined, although such a definition can be very
important. See section 8.3 for more details. Often we consider such a population to
be theoretically infinite, with no practical upper limit on the number of potential
subjects we could test.

For most studies (other than a census), only a subset of all of the possible
experimental units of the population are actually selected for study, and this is
called the sample (not to be confused with sample space). An important part
of the understanding of the idea of a sample is to realize that each experiment
is conducted on a particular sample, but might have been conducted on many
other different samples. For theoretically correct inference, the sample should be
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randomly selected from the population. If this is not true, we call the sample a
convenience sample, and we lose many of the theoretical properties required for
correct inference.

Even though we must use samples in science, it is very important to remember
that we are interested in learning about populations, not samples. Inference from
samples to populations is the goal of statistical analysis.

3.5 Parameters describing distributions

As mentioned above, the probability distribution of a random variable (pmf for
a discrete random variable or pdf for a continuous random variable) completely
describes its behavior in terms of the chances that various events will occur. It
is also useful to work with certain fixed quantities that either completely char-
acterize a distribution within a family of distributions or otherwise convey useful
information about a distribution. These are called parameters. Parameters are
fixed quantities that characterize theoretical probability distributions. (I am using
the term “theoretical distribution” to focus on the fact that we are assuming a
particular mathematical form for the pmf or pdf.)

The term parameter may be somewhat confusing because it is used in several
slightly different ways. Parameters may refer to the fixed constants that appear
in a pdf or pmf. Note that these are somewhat arbitrary because the pdf or pmf
may often be rewritten (technically, re-parameterized) in several equivalent forms.
For example, the binomial distribution is most commonly written in terms of a
probability, but can just as well be written in terms of odds.

Another related use of the term parameter is for a summary measure of a
particular (theoretical) probability distribution. These are most commonly in the
form of expected values. Expected values can be thought of as long-run averages
of a random variable or some computed quantity that includes the random variable.
For discrete random variables, the expected value is just a probability weighted
average, i.e., the population mean. For example, if a random variable takes on
(only) the values 2 and 10 with probabilities 5/6 and 1/6 respectively, then the
expected value of that random variable is 2(5/6)+10(1/6)=20/6. To be a bit more
concrete, if someone throws a die each day and gives you $10 if 5 comes up and $2
otherwise, then over n days, where n is a large number, you will end up with very
close to $20·n

6
, or about $3.67(n).
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The notation for expected value is E[·] or E(·) where, e.g., E[X] is read as
“expected value of X” and represents the population mean of X. Other parameters
such as variance, skewness and kurtosis are also expected values, but of expressions
involving X rather than of X itself.

The more general formula for expected value is

E[g(X)] =
k∑
i=1

g(xi)pi =
k∑
i=1

g(xi)f(xi)

where E[·] or E(·) represents “expected value”, g(X) is any function of the
random variable X, k (which may be infinity) is the number of values of X
with non-zero probability, the xi values are the different values of X, and
the pi values (or equivalently, f(xi)) are the corresponding probabilities.
Note that it is possible to define g(X) = X, i.e., g(xi) = xi, to find E(X)
itself.

The corresponding formula for expected value of a continuous random
variable is

E[g(X)] =
∫ ∞
−∞

g(x)f(x)dx.

Of course if the support is smaller than the entire real line, the pdf is zero
outside of the support, and it is equivalent to write the integration limits
as only over the support.

To help you think about this concept, consider a discrete random vari-
able, say W , with values -2, -1, and 3 with probabilities 0.5, 0.3, 0.2 re-
spectively. E(W ) = −2(0.5) − 1(0.3) + 3(0.2) = −0.7. What is E(W 2)?
This is equivalent to letting g(W ) = W 2 and finding E(g(W )) = E(W 2).
Just calculate W 2 for each W and take the weighted average: E(W 2) =
4(0.5) + 1(0.3) + 9(0.2) = 4.1. It is also equivalent to define, say, U = W 2.
Then we can express f(U) as U has values 4, 1, and 9 with probabilities
0.5, 0.3, and 0.2 respectively. Then E(U) = 4(0.5) + 1(0.3) + 9(0.2) = 4.1,
which is the same answer.

Different parameters are generated by using different forms of g(x).
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Name Definition Symbol

mean E[X] µ

variance E[(X − µ)2] σ2

standard deviation
√
σ2 σ

skewness E[(X − µ)3]/σ3 γ1

kurtosis E[(X − µ)4]/σ4 − 3 γ2

Table 3.2: Common parameters and their definitions as expected values.

You will need to become familiar with several parameters that are used to
characterize theoretical population distributions. Technically, many of these are
defined using the expected value formula (optional material) with the expressions
shown in table 3.2. You only need to become familiar with the names and symbols
and their general meanings, not the “Definition” column. Note that the symbols
shown are the most commonly used ones, but you should not assume that these
symbol always represents the corresponding parameters or vice versa.

3.5.1 Central tendency: mean and median

The central tendency refers to ways of specifying where the “middle” of a prob-
ability distribution lies. Examples include the mean and median parameters. The
mean (expected value) of a random variable can be thought of as the “balance
point” of the distribution if the pdf is cut out of cardboard. Or if the outcome is
some monetary payout, the mean is the appropriate amount to bet to come out
even in the long term. Another interpretation of mean is the “fair distribution of
outcome” in the sense that if we sample many values and think of them as one
outcome per subject, the mean is result of a fair redistribution of whatever the
outcome represents among all of the subjects. On the other hand, the median is
the value that splits the distribution in half so that there is a 50/50 chance of a
random value from the distribution occurring above or below the median.
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The median has a more technical definition that applies even in some
less common situations such as when a distribution does not have a single
unique median. The median is any m such that P(X ≤ m) ≥ 1

2
and P(X ≥

m) ≥ 1
2
.

3.5.2 Spread: variance and standard deviation

The spread of a distribution most commonly refers to the variance or standard
deviation parameter, although other quantities such as interquartile range are also
measures of spread.

The population variance is the mean squared distance of any value from
the mean of the distribution, but you only need to think of it as a measure of
spread on a different scale from standard deviation. The standard deviation
is defined as the square root of the variance. It is not as useful in statistical
formulas and derivations as the variance, but it has several other useful properties,
so both variance and standard deviation are commonly calculated in practice. The
standard deviation is in the same units as the original measurement from which it
is derived. For each theoretical distribution, the intervals [µ−σ, µ+σ], [µ−2σ, µ+
2σ], and [µ−3σ, µ+3σ] include fixed known amounts of the probability. It is worth
memorizing that for Gaussian distributions only these fractions are 0.683, 0.954,
and 0.997 respectively. (I usually think of this as approximately 2/3, 95% and
99.7%.) Also exactly 95% of the Gaussian distribution is in [µ−1.96σ, µ+1.96σ]

When the standard deviation of repeated measurements is proportional
to the mean, then instead of using standard deviation, it often makes more
sense to measure variability in terms of the coefficient of variation,
which is the s.d. divided by the mean.
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There is a special statistical theorem (called Chebyshev’s inequality)
that applies to any shaped distribution and that states that at least(
1− 1

k2

)
× 100% of the values are within k standard deviations from the

mean. For example, the interval [µ−1.41σ, µ+1.41σ] holds at least 50% of
the values, [µ−2σ, µ+2σ] holds at least 75% of the values, and [µ−3σ, µ+3σ]
holds at least 89% of the values.

3.5.3 Skewness and kurtosis

The population skewness of a distribution is a measure of asymmetry (zero
is symmetric) and the population kurtosis is a measure of peakedness or flatness
compared to a Gaussian distribution, which has γ2 = 0. If a distribution is “pulled
out” towards higher values (to the right), then it has positive skewness. If it
is pulled out toward lower values, then it has negative skewness. A symmetric
distribution, e.g., the Gaussian distribution, has zero skewness.

The population kurtosis of a distribution measures how far away a dis-
tribution is from a Gaussian distribution in terms of peakedness vs. flatness.
Compared to a Gaussian distribution, a distribution with negative kurtosis has
“rounder shoulders” and “thin tails”, while a distribution with a positive kurtosis
has more a more sharply shaped peak and “fat tails”.

3.5.4 Miscellaneous comments on distribution parameters

Mean, variance, skewness and kurtosis are called moment estimators.
They are respectively the 1st through 4th (central) moments. Even simpler
are the non-central moments: the rth non-central moment of X is the
expected value of Xr. There are formulas for calculating central moments
from non-central moments. E.g., σ2 = E(X2)− E(X)2.

It is important to realize that for any particular distribution (but not family of
distributions) each parameter is a fixed constant. Also, you will recognize that
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these parameter names are the same as the names of statistics that can be calcu-
lated for and used as descriptions of samples rather than probability distributions
(see next chapter). The prefix “population” is sometimes used as a reminder that
we are talking about the fixed numbers for a given probability distribution rather
than the corresponding sample values.

It is worth knowing that any formula applied to one or more parameters creates
a new parameter. For example, if µ1 and µ2 are parameters for some population,
say, the mean dexterity with the subjects’ dominant and non-dominant hands,
then log(µ1), µ2

2, µ1 − µ2 and (µ1 + µ2)/2 are also parameters.

In addition to the parameters in the above table, which are the most common
descriptive parameters that can be calculated for any distribution, fixed constants
in a pmf or pdf, such as degrees of freedom (see below) or the n in the binomial
distribution are also (somewhat loosely) called parameters.

Technical note: For some distributions, parameters such as the mean
or variance may be infinite.

Parameters such as (population) mean and (population) variance are
fixed quantities that characterize a given probability distribution. The
(population) skewness characterizes symmetry, and (population) kur-
tosis characterizes symmetric deviations from Normality. Correspond-
ing sample statistics can be thought of as sample estimates of the
population quantities.

3.5.5 Examples

As a review of the concepts of theoretical population distributions (in the contin-
uous random variable case) let’s consider a few examples.

Figure 3.1 shows five different pdf’s representing the (population) probability
distributions of five different continuous random variables. By the rules of pdf’s,
the area under each of the five curves equals exactly 1.0, because that represents
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Figure 3.1: Various probability density function
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the probability that a random outcome from a distribution is between -infinity
and +infinity. (The area shown, between -2 and +5 is slightly less than 1.0 for
each distribution because there is a small chance that these variables could have an
outcome outside of the range shown.) You can see that distribution A is a unimodal
(one peak) symmetric distribution, centered around 2.0. Although you cannot see
it by eye, it has the perfect bell-shape of a Gaussian distribution. Distribution
B is also Gaussian in shape, has a different central tendency (shifted higher or
rightward), and has a smaller spread. Distribution C is bimodal (two peaks) so
it cannot be a Gaussian distribution. Distribution D has the lowest center and is
asymmetric (skewed to the right), so it cannot be Gaussian. Distribution E appears
similar to a Gaussian distribution, but while symmetric and roughly bell-shaped,
it has “tails” that are too fat to be a true bell-shaped, Gaussian distribution.

So far we have been talking about the parameters of a given, known, theoret-
ical probability distribution. A slightly different context for the use of the term
parameter is in respect to a real world population, either finite (but usually large)
or infinite. As two examples, consider the height of all people living on the earth at
3:57 AM GMT on September 10, 2007, or the birth weights of all of the Sprague-
Dawley breed of rats that could possibly be bred. The former is clearly finite,
but large. The latter is perhaps technically finite due to limited resources, but
may also be thought of as (practically) infinite. Each of these must follow some
true distribution with fixed parameters, but these are practically unknowable. The
best we can do with experimental data is to make an estimate of the fixed, true,
unknowable parameter value. For this reason, I call parameters in this context
“secrets of nature” to remind you that they are not random and they are not
practically knowable.

3.6 Multivariate distributions: joint, conditional,

and marginal

The concepts of this section are fundamentals of probability, but for the typical
user of statistical methods, only a passing knowledge is required. More detail is
given here for the interested reader.

So far we have looked at the distribution of a single random variable at a time.
Now we proceed to look at the joint distribution of two (or more) random
variables. First consider the case of two categorical random variables. As an
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example, consider the population of all cars produced in the world in 2006. (I’m
just making up the numbers here.) This is a large finite population from which we
might sample cars to do a fuel efficiency experiment. If we focus on the categorical
variable “origin” with levels “US”,”Japanese”, and “Other”, and the categorical
variable “size” with categorical variable “Small”, “Medium” and “Large”, then
table 3.3 would represent the joint distribution of origin and size in this population.

origin / size Small Medium Large Total
US 0.05 0.10 0.15
Japanese 0.20 0.10 0.05
Other 0.15 0.15 0.05

Total 1.00

Table 3.3: Joint distribution of car origin and size.

These numbers come from categorizing all cars, then dividing the total in each
combination of categories by the total cars produced in the world in 2006, so
they are “relative frequencies”. But because we are considering this the whole
population of interest, it is better to consider these numbers to be the probabilities
of a (joint) pmf. Note that the total of all of the probabilities is 1.00. Reading
this table we can see, e.g., that 20% of all 2006 cars were small Japanese cars, or
equivalently, the probability that a randomly chosen 2006 car is a small Japanese
car is 0.20.

The joint distribution of X and Y is summarized in the joint pmf, which can
be tabular or in formula form, but in either case is similar to the one variable pmf
of section 3.2 except that it defines a probability for each combination of levels of
X and Y .

This idea of a joint distribution, in which probabilities are given for the com-
bination of levels of two categorical random variables, is easily extended to three
or more categorical variables.

The joint distribution of a pair of categorical random variables repre-
sents the probabilities of combinations of levels of the two individual
random variables.
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origin / size Small Medium Large Total
US 0.05 0.10 0.15 0.30
Japanese 0.20 0.10 0.05 0.35
Other 0.15 0.15 0.05 0.35

Total 0.40 0.35 0.25 (1.00)

Table 3.4: Marginal distributions of car origin and size.

Table 3.4 adds the obvious margins to the previous table, by adding the rows
and columns and putting the sums in the margins (labeled “Total”). Note that
both the right vertical and bottom horizontal margins add to 1.00, and so they
each represent a probability distribution, in this case of origin and size respectively.
These distributions are called the marginal distributions and each represents
the pmf of one of the variable ignoring the other variable. That is, a marginal
distribution is the distribution of any particular variable when we don’t pay any
attention to the other variable(s). If we had only studied car origins, we would
have found the population distribution to be 30% US, 35% Japanese and 35%
other.

It is important to understand that every variable we measure is marginal with
respect to all of the other variables that we could measure on the same units or
subjects, and which we do not in any way control (or in other words, which we let
vary freely).

The marginal distribution of any variable with respect to any other
variable(s) is just the distribution of that variable ignoring the other
variable(s).

The third and final definition for describing distributions of multiple character-
istics of a population of units or subjects is the conditional distribution which
relates to conditional probability (see page 31). As shown in table 3.5, the condi-
tional distribution refers to fixing the level of one variable, then “re-normalizing”
to find the probability level of the other variable when we only focus on or consider
those units or subjects that meeting the condition of interest.

So if we focus on Japanese cars only (technically, we condition on cars be-
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origin / size Small Medium Large Total
US 0.167 0.333 0.400 1.000

Japanese 0.571 0.286 0.143 1.000

Other 0.429 0.429 0.142 1.000

Table 3.5: Conditional distributions of car size given its origin.

ing Japanese) we see that 57.1% of those cars are small, which is very different
from either the marginal probability of a car being small (0.40) or the joint prob-
ability of a car being small and Japanese (0.20). The formal notation here is
Pr(size=small|origin=Japanese) = 0.571, which is read “the probability of a car
being small given that the car is Japanese equals 0.571”.

It is important to realize that there is another set of conditional distributions for
this example that we have not looked at. As an exercise, try to find the conditional
distributions of “origin” given “size”, which differ from the distributions of “size”
given “origin” of table 3.5.

It is interesting and useful to note that an equivalent alternative to spec-
ifying the complete joint distribution of two categorical (or quantitative)
random variables is to specify the marginal distribution of one variable,
and the conditional distributions for the second variable at each level of
the first variable. For example, you can reconstruct the joint distribution
for the cars example from the marginal distribution of “origin” and the
three conditional distributions of “size given origin”. This leads to an-
other way to think about marginal distributions as the distribution of one
variable averaged over the distribution of the other.

The distribution of a random variable conditional on a particular level
of another random variable is the distribution of the first variable when
the second variable is fixed to the particular level.
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The concepts of joint, marginal and conditional distributions transfer directly to
two continuous distributions, or one continuous and one joint distribution, but the
details will not be given here. Suffice it to say the the joint pdf of two continuous
random variables, say X and Y is a formula with both xs and ys in it.

3.6.1 Covariance and Correlation

For two quantitative variables, the basic parameters describing the strength of their
relationship are covariance and correlation. For both, larger absolute values
indicate a stronger relationship, and positive numbers indicate a direct relationship
while negative numbers indicate an indirect relationship. For both, a value of zero
is called uncorrelated. Covariance depends on the scale of measurement, while
correlation does not. For this reason, correlation is easier to understand, and we
will focus on that here, although if you look at the gray box below, you will see
that covariance is used as in intermediate in the calculation of correlation. (Note
that here we are concerned with the “population” or “theoretical” correlation. The
sample version is covered in the EDA chapter.)

Correlation describes both the strength and direction of the (linear) relationship
between two variables. Correlations run from -1.0 to +1.0. A negative correlation
indicates an “inverse” relationship such that population units that are low for one
variable tend to be high for the other (and vice versa), while a positive correlation
indicates a “direct” relationship such that population units that are low in one
variable tend to be low in the other (also high with high). A zero correlation (also
called uncorrelated) indicates that the “best fit straight line” (see the chapter on
Regression) for a plot of X vs. Y is horizontal, suggesting no relationship between
the two random variables. Technically, independence of two variables (see above)
implies that they are uncorrelated, but the reverse is not necessarily true.

For a correlation of +1.0 or -1.0, Y can be perfectly predicted from X with no
error (and vice versa) using a linear equation. For example if X is temperature
of a rat in degrees C and Y is temperature in degrees F, then Y = 9/5 ∗ C + 32,
exactly, and the correlation is +1.0. And if X is height in feet of a person from
the floor of a room with an 8 foot ceiling and Y is distance from the top of the
head to the ceiling, then Y = 8−X, exactly, and the correlation is -1.0. For other
variables like height and weight, the correlation is positive, but less than 1.0. And
for variables like IQ and length of the index finger, the correlation is presumably
0.0.
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It should be obvious that the correlation of any variable with itself is 1.0. Let
us represent the population correlation between random variable Xi and random
variable Xj as ρi,j. Because the correlation of X with Y is the same as Y with X,
it is true that ρi,j = ρj,i. We can compactly represent the relationships between
multiple variables with a correlation matrix which shows all of the pairwise
correlations in a square table of numbers (square matrix). An example is given
in table 3.6 for the case of 4 variables. As with all correlations matrices, the
matrix is symmetric with a row of ones on the main diagonal. For some actual
population and variables, we could put numbers instead of symbols in the matrix,
and then make statements about which variables are directly vs. inversely vs. not
correlated, and something about the strengths of the correlations.

Variable X1 X2 X3 X4

X1 1 ρ1,2 ρ1,3 ρ1,4

X2 ρ2,1 1 ρ2,3 ρ2,4

X3 ρ3,1 ρ3,2 1 ρ3,4

X4 ρ4,1 ρ4,2 ρ4,3 1

Table 3.6: Population correlation matrix for four variables.

There are several ways to measure “correlation” for categorical vari-
ables and choosing among them can be a source of controversy that we
will not cover here. But for quantitative random variables covariance and
correlation are mathematically straightforward.

The population covariance of two quantitative random variables, say X
and Y , is calculated by computing the expected value (population mean)
of the quantity (X − µX)(Y − µY ) where µX is the population mean of X
and µY is the population mean of Y across all combinations of X and Y .
For continuous random variables this is the double integral

CovX,Y =
∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )f(x, y)dxdy

where f(x, y) is the joint pdf of X and Y .
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For discrete random variables we have the simpler form

CovX,Y =
∑
x∈X

∑
y∈Y

(x− µX)(y − µY )f(x, y)

where f(x, y) is the joint pmf, and X and Y are the respective supports of
X and Y .

As an example consider a population consisting of all of the chickens of
a particular breed (that only lives 4 years) belonging to a large multi-farm
poultry company in January of 2007. For each chicken in this population
we have X equal to the number of eggs laid in the first week of January
and Y equal to the age of the chicken in years. The joint pmf of X and Y
is given in table 3.7. As usual, the joint pmf gives the probabilities that a
random subject will fall into each combination of categories from the two
variables.

We can calculate the (marginal) mean number of eggs from the marginal
distribution of eggs as µX = 0(0.35) + 1(0.40) + 2(0.25) = 0.90 and the
mean age as µY = 1(0.25) + 2(0.40) + 3(0.20) + 4(0.15) = 2.25 years.

The calculation steps for the covariance are shown in table 3.8. The
population covariance of X and Y is 0.075 (exactly). The (weird) units
are “egg years”.

Population correlation can be calculated from population covariance
and the two individual standard deviations using the formula

ρX,Y =
Cov(X, Y )

σxσy
.

In this case σ2
X = (0−0.9)2(0.35)+(1−0.9)2(0.40)+(2−0.9)2(0.25) = 0.59.

Using a similar calculation for σ2
Y and taking square roots to get standard

deviation from variance, we get

ρX,Y =
0.075

0.7681 · 0.9937
= 0.0983

which indicates a weak positive correlation: older hens lay more eggs.
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Y (year) / X (eggs) 0 1 2 Margin

1 0.10 0.10 0.05 0.25
2 0.15 0.15 0.10 0.40
3 0.05 0.10 0.05 0.20
4 0.05 0.05 0.05 0.15

Margin 0.35 0.40 0.25 1.00

Table 3.7: Chicken example: joint population pmf.

X Y X-0.90 Y-2.25 Pr Pr·(X-0.90)(Y-2.25)
0 1 -0.90 -1.25 0.10 0.11250
1 1 0.10 -1.25 0.10 -0.00125
2 1 1.10 -1.25 0.05 -0.06875
0 2 -0.90 -0.25 0.15 0.03375
1 2 0.10 -0.25 0.15 -0.00375
2 2 1.10 -0.25 0.10 -0.02750
0 3 -0.90 0.75 0.05 -0.03375
1 3 0.10 0.75 0.10 0.00750
2 3 1.10 0.75 0.05 0.04125
0 4 -0.90 1.75 0.05 -0.07875
1 4 0.10 1.75 0.05 0.00875
2 4 1.10 1.75 0.05 0.09625

Total 1.00 0.07500

Table 3.8: Covariance calculation for chicken example.
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In a nutshell: When dealing with two (or more) random variables
simultaneously it is helpful to think about joint vs. marginal vs. con-
ditional distributions. This has to do with what is fixed vs. what
is free to vary, and what adds up to 100%. The parameter that de-
scribes the strength of relationship between two random variables is
the correlation, which ranges from -1 to +1.

3.7 Key application: sampling distributions

In this course we will generally be concerned with analyzing a simple random
sample of size n which indicates that we randomly and independently choose n
subjects from a large or infinite population for our experiment. (For practical
issues, see section 8.3.) Then we make one or more measurements, which are the
realizations of some random variable. Often we combine these values into one or
more statistics. A statistic is defined as any formula or “recipe” that can be
explicitly calculated from observed data. Note that the formula for a statistic
must not include unknown parameters. When thinking about a statistics always
remember that this is only one of many possible values that we could have gotten
for this statistic, based on the random nature of the sampling.

If we think about random variableX for a sample of size n it is useful to consider
this a multivariate situation, i.e., the outcome of the random trial is X1 through
Xn and there is a probability distribution for this multivariate outcome. If we have
simple random sampling, this n-fold pmf or pdf is calculable from the distribution
of the original random variable and the laws of probability with independence.
Technically we say that X1 through Xn are iid which stands for independent and
identically distributed, which indicates that distribution of the outcome for, say,
the third subject, is the same as for any other subject and is independent of (does
not depend on the outcome of) the outcome for every other subject.

An example should make this clear. Consider a simple random sample of size
n = 3 from a population of animals. The random variable we will observe is gender,
and we will call this X in general and X1, X2 and X3 in particular. Lets say that
we know the parameter that represent the true probability that an animal is male
is equal to 0.4. Then the probability that an animal is female is 0.6. We can work
out the multivariate pmf case by case as is shown in table 3.7. For example, the
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X1 X2 X3 Probability

F F F 0.216
M F F 0.144
F M F 0.144
F F M 0.144
F M M 0.096
M F M 0.096
M M F 0.096
M M M 0.064

Total

Table 3.9: Multivariate pmf for animal gender.

chance that the outcome is FMF in that order is (0.6)(0.4)(0.6)=0.144.

Using this multivariate pmf, we can easily calculate the pmf for derived random
variables (statistics) such as Y=the number of females in the sample: Pr(Y=0)=0.064,
Pr(Y=1)=0.288, Pr(Y=2)=0.432, and Pr(Y=3)=0.216.

Now think carefully about what we just did. We found the probability distri-
bution of random variable Y , the number of females in a sample of size three. This
is called the sampling distribution of Y , which refers to the fact that Y is a
random quantity which varies from sample to sample over many possible samples
(or experimental runs) that could be carried out if we had enough resources. We
can find the sampling distribution of various sample quantities constructed from
the data of a random sample. These quantities are sample statistics, and can
take many different forms. Among these are the sample versions of mean, variance,
standard deviation, etc. Quantities such as the sample mean or sample standard
deviation (see section 4.2) are often used as estimates of the corresponding pop-
ulation parameters. The sampling distribution of a sample statistic is then the
key way to evaluate how good of an estimate a sample statistic is. In addition, we
use various sample statistics and their sampling distributions to make probabilistic
conclusions about statistical hypotheses, usually in the form of statements about
population parameters.
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Much of the statistical analysis of experiments is grounded in calcu-
lation of a sample statistic, computation of its sampling distribution
(using a computer), and using the sampling distribution to draw in-
ferences about statistical hypotheses.

3.8 Central limit theorem

The Gaussian (also called bell-shaped or Normal) distribution is a very common
one. The central limit theorem (CLT) explains why many real-world variables
follow a Gaussian distribution.

It is worth reviewing here what “follows a particular distribution” really means.
A random variable follows a particular distribution if the observed probability of
each outcome for a discrete random variable or the the observed probabilities of a
reasonable set of intervals for a continuous random variable are well approximated
by the corresponding probabilities of some named distribution (see Common Dis-
tributions, below). Roughly, this means that a histogram of the actual random
outcomes is quite similar to the theoretical histogram of potential outcomes de-
fined by the pmf (if discrete) or pdf (if continuous). For example, for any Gaussian
distribution with mean µ and standard deviation σ, we expect 2.3% of values to
fall below µ−2σ, 13.6% to fall between µ−2σ and µ−σ, 34.1% between µ−σ and µ,
34.1% between µ and µ+σ, 13.6% between µ+σ and µ+2σ, and 2.3% above µ+2σ.
In practice we would check a finer set of divisions and/or compare the shapes of
the actual and theoretical distributions either using histograms or a special tool
called the quantile-quantile plot.

In non-mathematical language, the “CLT” says that whatever the pmf or pdf
of a variable is, if we randomly sample a “large” number (say k) of independent
values from that random variable, the sum or mean of those k values, if collected
repeatedly, will have a Normal distribution. It takes some extra thought to un-
derstand what is going on here. The process I am describing here takes a sample
of (independent) outcomes, e.g., the weights of all of the rats chosen for an ex-
periment, and calculates the mean weight (or sum of weights). Then we consider
the less practical process of repeating the whole experiment many, many times
(taking a new sample of rats each time). If we would do this, the CLT says that a
histogram of all of these mean weights across all of these experiments would show
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a Gaussian shape, even if the histogram of the individual weights of any one ex-
periment were not following a Gaussian distribution. By the way, the distribution
of the means across many experiments is usually called the “sampling distribution
of the mean”.

For practical purposes, a number as small as 20 (observations per experiment)
can be considered “large” when invoking the CLT if the original distribution is
not very bizarre in shape and if we only want a reasonable approximation to a
Gaussian curve. And for almost all original distributions, the larger k is, the closer
the distribution of the means or sums are to a Gaussian shape.

It is usually fairly easy to find the mean and variance of the sampling distri-
bution (see section 3.7) of a statistic of interest (mean or otherwise), but finding
the shape of this sampling distribution is more difficult. The Central Limit Theo-
rem lets us predict the (approximate) shape of the sampling distribution for sums
or means. And this additional shape information is usually all that is needed to
construct valid confidence intervals and/or p-values.

But wait, there’s more! The central limit theorem also applies to the sum
or mean of many different independent random variables as long as none of them
strongly dominates the others. So we can invoke the CLT as an explanation for why
many real-world variables happen to have a Gaussian distribution. It is because
they are the result of many small independent effects. For example, the weight
of 12-week-old rats varies around the mean weight of 12-week-old rats due to a
variety of genetic factors, differences in food availability, differences in exercise,
differences in health, and a variety of other environmental factors, each of which
adds or subtracts a little bit relative to the overall mean.

See one of the theoretical statistics texts listed in the bibliography for a proof
of the CLT.

The Central Limit Theorem is the explanation why many real-world
random variables tend to have a Gaussian distribution. It is also the
justification for assuming that if we could repeat an experiment many
times, any sample mean that we calculate once per experiment would
follow a Gaussian distribution over the many experiments.
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3.9 Common distributions

A brief description of several useful and commonly used probability distributions
is given here. The casual reader will want to just skim this material, then use it
as reference material as needed.

The two types of distributions are discrete and continuous (see above), which
are fully characterized by their pmf or pdf respectively. In the notation section of
each distribution we use “X ∼” to mean “X is distributed as”.

What does it mean for a random variable to follow a certain distribution? It
means that the pdf or pmf of that distribution fully describes the probabilities
of events for that random variable. Note that each of the named distributions
described below are a family of related individual distributions from which a spe-
cific distribution must be specified using an index or pointer into the family usually
called a parameter (or sometimes using 2 parameters). For a theoretical discussion,
where we assume a particular distribution and then investigate what properties fol-
low, the pdf or pmf is all we need.

For data analysis, we usually need to choose a theoretical distribution that we
think will well approximate our measurement for the population from which our
sample was drawn. This can be done using information about what assumptions
lead to each distribution, looking at the support and shape of the sample distri-
bution, and using prior knowledge of similar measurements. Usually we choose a
family of distributions, then use statistical techniques to estimate the parameter
that chooses the particular distribution that best matches our data. Also, after
carrying out a statistical test that assumes a particular family of distributions, we
use model checking, such as residual analysis, to verify that our choice was a good
one.

3.9.1 Binomial distribution

The binomial distribution is a discrete distribution that represents the number
of successes in n independent trials, each of which has success probability p. All of
the (infinite) different values of n and p define a whole family of different binomial
distributions. The outcome of a random variable that follows a binomial distribu-
tion is a whole number from 0 to n (i.e., n+1 different possible values). If n = 1,
the special name Bernoulli distribution may be used. If random variable X fol-
lows a Bernoulli distribution with parameter p, then stating that Pr(X = 1) = p
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and Pr(X = 0) = 1− p fully defines the distribution of X.

If we let X represent the random outcome of a binomial random variable with
parameters n and p, and let x represent any particular outcome (as a whole number
from 0 to n), then the pmf of a binomial distribution tells us the probability that
the outcome will be x:

Pr(X = x) = f(x) =

(
n!

(n− x)! x!

)
px(1− p)n−x.

As a reminder, the exclamation mark symbol is pronounced “factorial” and r!
represents the product of all the integers from 1 to r. As an exception, 0! = 1.

The true, theoretical mean of a binomial distribution is np and the variance is
np(1 − p). These refer to the ideal for an infinite population. For a sample, the
sample mean and variance will be similar to the theoretical values, and the larger
the sample, the more sure we are that the sample mean and variance will be very
close to the theoretical values.

As an example, if you buy a lottery ticket for a daily lottery choosing your lucky
number each of 5 different days in a lottery with a 1/500 chance of winning each
time, then knowing that these chances are independent, we could call the number
of times (out of 5) that you win Y , and state that Y is distributed according to a
binomial distribution with n = 5 and p = 0.002. We now know that if many people
each independently buy 5 lottery tickets they will each have an outcome between 0
and 5, and the mean of all of those outcomes will be (close to) np = 5(0.002) = 0.01
and the variance will be (close to) np(1 − p) = 5(0.002)(0.998) = 0.00998 (with
sd=
√

0.0098 = 0.0999.)

In this example we can calculate n! = 5 · 4 · 3 · 2 · 1 = 120, and for x=2,
(n− x)! = 3! = 3 · 2 · 1 = 6 and x! = 2! = 2 · 1 = 2. So

Pr(X = 2) =
(

120

6 · 2

)
0.0022(0.998)3 = 0.0000398.

Roughly 4 out of 100,000 people will win twice in 5 days.

It is sometimes useful to know that with large n a binomial random variable
with parameter p approximates a Normal distribution with mean np and variance
np(1 − p) (except that there are gaps in the binomial because it only takes on
whole numbers).

Common notation is X ∼ bin(n, p).
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3.9.2 Multinomial distribution

The multinomial distribution is a discrete distribution that can be used to
model situations where a subject has n trials each of which independently can
result in one of k different values which occur with probabilities (p1, p2, . . . , pk),
where p1 + p2 + . . . + pk=1. The outcome of a multinomial is a list of k numbers
adding up to n, each of which represents the number of times a particular value
was achieved.

For random variable X following the multinomial distribution, the outcome is
the list of values (x1, x2, . . . , xk) and the pmf is:

Pr(X1 = x1, X2 = x2, . . . , Xk = xk) =

(
n!

x1! · x2! · · · xk!

)
px1

1 px2
2 · · · p

xk
k .

For example, consider a kind of candy that comes in an opaque bag and has
three colors (red, blue, and green) in different amounts in each bag. If 30% of the
bags have red as the most common color, 20% have green, and 50% have blue,
then we could imagine an experiment consisting of opening n randomly chosen
bags and recording for each bag which color was most common. Here k = 3
and p1 = 0.30, p2 = 0.20, and p3 = 0.50. The outcome is three numbers, e.g.,
x1=number of times (out of 2) that red was most common, x2=number of times
blue is most common, and x3=number of times green is most common. If we
choose n=2, one calculation we can make is

Pr(x1 = 1, x2 = 1, x3 = 0) =

(
2!

1! · 1! · 0!

)
0.301 0.201 0.500 = 0.12

and the whole pmf can be represented in this tabular form (where “# of Reds”
means number of bags where red was most common, etc.):

x1 (# of Reds) x2 (# of Blues) x3 (# of Greens) Probability

2 0 0 0.09
0 2 0 0.04
0 0 2 0.25
1 1 0 0.12
1 0 1 0.30
0 1 1 0.20

Common notation is X ∼ MN(n, p1, . . . , pk).
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3.9.3 Poisson distribution

The Poisson distribution is a discrete distribution whose support is the non-
negative integers (0, 1, 2, . . .). Many measurements that represent counts which
have no theoretical upper limit, such as the number of times a subject clicks on a
moving target on a computer screen in one minute, follow a Poisson distribution.
A Poisson distribution is applicable when the chance of a countable event is pro-
portional to the time (or distance, etc.) available, when the chances of events in
non-overlapping intervals is independent, and when the chance of two events in a
very short interval is essentially zero.

A Poisson distribution has one parameter, usually represented as λ (lambda).
The pmf is:

Pr(X = x) = f(x) =
e−λλx

x!

The mean is λ and the variance is also λ. From the pmf, you can see that the
probability of no events, Pr(X = 0), equals e−λ.

If the data show a substantially larger variance than the mean, then a Poisson
distribution is not appropriate. A common alternative is the negative binomial
distribution which has the same support, but has two parameters often denoted
p and r. The negative binomial distribution can be thought of as the number of
trials until the rth success when the probability of success is p for each trial.

It is sometimes useful to know that with large λ a Poisson random variable ap-
proximates a Normal distribution with mean λ and standard deviation

√
λ (except

that there are gaps in the Poisson because it only takes on whole numbers).

Common notation is X ∼ Pois(λ).

3.9.4 Gaussian distribution

The Gaussian or Normal distribution is a continuous distribution with a sym-
metric, bell-shaped pdf curve as shown in Figure 3.2. The members of this family
are characterized by two parameters, the mean and the variance (or standard de-
viation) usually written as µ and σ2 (or σ). The support is all of the real numbers,
but the “tails” are very thin, so the probability that X is more than 4 or 5 standard
deviations from the mean is extremely small. The pdf of the Normal distribution
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Figure 3.2: Gaussian bell-shaped probability density function

is:

f(x) =
1√
2σ
e
−(x−µ)2

2σ2 .

Among the family of Normal distributions, the standard normal distribution,
the one with µ = 0 and σ2 = 1 is special. It is the one for which you will find
information about the probabilities of various intervals in textbooks. This is useful
because the probability that the outcome will fall in, say, the interval from minus
infinity to any arbitrary number x for a non-standard normal distribution, say, X,
with mean µ 6= 0 and standard deviation σ 6= 1 is the same as the probability that
the outcome of a standard normal random variable, usually called Z, will be less
than z = x−µ

σ
, where the formula for z is the “z-score” formula.

Of course, there is not really anything “normal” about the Normal distribution,
so I always capitalize “Normal” or use Gaussian to remind you that we are just
talking about a particular probability distribution, and not making any judgments
about normal vs. abnormal. The Normal distribution is a very commonly used
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distribution (see CLT, above). Also the Normal distribution is quite flexible in
that the center and spread can be set to any values independently. On the other
hand, every distribution that subjectively looks “bell-shaped” is not a Normal dis-
tribution. Some distributions are flatter than Normal, with “thin tails” (negative
kurtosis). Some distributions are more “peaked” than a true Normal distribution
and thus have “fatter tails” (called positive kurtosis). An example of this is the
t-distribution (see below).

Common notation is X ∼ N(µ, σ2).

3.9.5 t-distribution

The t-distribution is a continuous distribution with a symmetric, unimodal pdf
centered at zero that has a single parameter called the “degrees of freedom” (df).
In this context you can think of df as just an index or pointer which selects a
single distribution out of a family of related distributions. For other ways to
think about df see section 4.6. The support is all of the real numbers. The
t-distributions have fatter tails than the normal distribution, but approach the
shape of the normal distribution as the df increase. The t-distribution arises most
commonly when evaluating how far a sample mean is from a population mean
when the standard deviation of the sampling distribution is estimated from the
data rather than known. It is the fact that the standard deviation is an estimate
(i.e., a standard error) rather than the true value that causes the widening of the
distribution from Normal to t.

Common notation is X ∼ tdf .

3.9.6 Chi-square distribution

A chi-square distribution is a continuous distribution with support on the pos-
itive real numbers whose family is indexed by a single “degrees of freedom” pa-
rameter. A chi-square distribution with df equal to a, commonly arises from the
sum of squares of a independent N(0,1) random variables. The mean is equal to
the df and the variance is equal to twice the df.

Common notation is X ∼ χ2
df .
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3.9.7 F-distribution

The F-distribution is a continuous distribution with support on the positive real
numbers. The family encompasses a large range of unimodal, asymmetric shapes
determined by two parameters which are usually called numerator and denomina-
tor degrees of freedom. The F-distribution is very commonly used in analysis of
experiments. If X and Y are two independent chi-square random variables with
r and s df respectively, then X/r

Y/s
defines a new random variable that follows the

F-distribution with r and s df. The mean is s
s−2

and the variance is a complicated
function of r and s.

Common notation is X ∼ F(r, s).



Chapter 4

Exploratory Data Analysis
A first look at the data.

As mentioned in Chapter 1, exploratory data analysis or “EDA” is a critical
first step in analyzing the data from an experiment. Here are the main reasons we
use EDA:

• detection of mistakes

• checking of assumptions

• preliminary selection of appropriate models

• determining relationships among the explanatory variables, and

• assessing the direction and rough size of relationships between explanatory
and outcome variables.

Loosely speaking, any method of looking at data that does not include formal
statistical modeling and inference falls under the term exploratory data analysis.

4.1 Typical data format and the types of EDA

The data from an experiment are generally collected into a rectangular array (e.g.,
spreadsheet or database), most commonly with one row per experimental subject
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and one column for each subject identifier, outcome variable, and explanatory
variable. Each column contains the numeric values for a particular quantitative
variable or the levels for a categorical variable. (Some more complicated experi-
ments require a more complex data layout.)

People are not very good at looking at a column of numbers or a whole spread-
sheet and then determining important characteristics of the data. They find look-
ing at numbers to be tedious, boring, and/or overwhelming. Exploratory data
analysis techniques have been devised as an aid in this situation. Most of these
techniques work in part by hiding certain aspects of the data while making other
aspects more clear.

Exploratory data analysis is generally cross-classified in two ways. First, each
method is either non-graphical or graphical. And second, each method is either
univariate or multivariate (usually just bivariate).

Non-graphical methods generally involve calculation of summary statistics,
while graphical methods obviously summarize the data in a diagrammatic or pic-
torial way. Univariate methods look at one variable (data column) at a time,
while multivariate methods look at two or more variables at a time to explore
relationships. Usually our multivariate EDA will be bivariate (looking at exactly
two variables), but occasionally it will involve three or more variables. It is almost
always a good idea to perform univariate EDA on each of the components of a
multivariate EDA before performing the multivariate EDA.

Beyond the four categories created by the above cross-classification, each of the
categories of EDA have further divisions based on the role (outcome or explana-
tory) and type (categorical or quantitative) of the variable(s) being examined.

Although there are guidelines about which EDA techniques are useful in what
circumstances, there is an important degree of looseness and art to EDA. Com-
petence and confidence come with practice, experience, and close observation of
others. Also, EDA need not be restricted to techniques you have seen before;
sometimes you need to invent a new way of looking at your data.

The four types of EDA are univariate non-graphical, multivariate non-
graphical, univariate graphical, and multivariate graphical.

This chapter first discusses the non-graphical and graphical methods for looking



4.2. UNIVARIATE NON-GRAPHICAL EDA 63

at single variables, then moves on to looking at multiple variables at once, mostly
to investigate the relationships between the variables.

4.2 Univariate non-graphical EDA

The data that come from making a particular measurement on all of the subjects in
a sample represent our observations for a single characteristic such as age, gender,
speed at a task, or response to a stimulus. We should think of these measurements
as representing a “sample distribution” of the variable, which in turn more or
less represents the “population distribution” of the variable. The usual goal of
univariate non-graphical EDA is to better appreciate the “sample distribution”
and also to make some tentative conclusions about what population distribution(s)
is/are compatible with the sample distribution. Outlier detection is also a part of
this analysis.

4.2.1 Categorical data

The characteristics of interest for a categorical variable are simply the range of
values and the frequency (or relative frequency) of occurrence for each value. (For
ordinal variables it is sometimes appropriate to treat them as quantitative vari-
ables using the techniques in the second part of this section.) Therefore the only
useful univariate non-graphical techniques for categorical variables is some form of
tabulation of the frequencies, usually along with calculation of the fraction (or
percent) of data that falls in each category. For example if we categorize subjects
by College at Carnegie Mellon University as H&SS, MCS, SCS and “other”, then
there is a true population of all students enrolled in the 2007 Fall semester. If we
take a random sample of 20 students for the purposes of performing a memory ex-
periment, we could list the sample “measurements” as H&SS, H&SS, MCS, other,
other, SCS, MCS, other, H&SS, MCS, SCS, SCS, other, MCS, MCS, H&SS, MCS,
other, H&SS, SCS. Our EDA would look like this:

Statistic/College H&SS MCS SCS other Total

Count 5 6 4 5 20
Proportion 0.25 0.30 0.20 0.25 1.00
Percent 25% 30% 20% 25% 100%

Note that it is useful to have the total count (frequency) to verify that we
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have an observation for each subject that we recruited. (Losing data is a common
mistake, and EDA is very helpful for finding mistakes.). Also, we should expect
that the proportions add up to 1.00 (or 100%) if we are calculating them correctly
(count/total). Once you get used to it, you won’t need both proportion (relative
frequency) and percent, because they will be interchangeable in your mind.

A simple tabulation of the frequency of each category is the best
univariate non-graphical EDA for categorical data.

4.2.2 Characteristics of quantitative data

Univariate EDA for a quantitative variable is a way to make prelim-
inary assessments about the population distribution of the variable
using the data of the observed sample.

The characteristics of the population distribution of a quantitative variable are
its center, spread, modality (number of peaks in the pdf), shape (including “heav-
iness of the tails”), and outliers. (See section 3.5.) Our observed data represent
just one sample out of an infinite number of possible samples. The characteristics
of our randomly observed sample are not inherently interesting, except to the degree
that they represent the population that it came from.

What we observe in the sample of measurements for a particular variable that
we select for our particular experiment is the “sample distribution”. We need
to recognize that this would be different each time we might repeat the same
experiment, due to selection of a different random sample, a different treatment
randomization, and different random (incompletely controlled) experimental con-
ditions. In addition we can calculate “sample statistics” from the data, such as
sample mean, sample variance, sample standard deviation, sample skewness and
sample kurtosis. These again would vary for each repetition of the experiment, so
they don’t represent any deep truth, but rather represent some uncertain informa-
tion about the underlying population distribution and its parameters, which are
what we really care about.
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Many of the sample’s distributional characteristics are seen qualitatively in the
univariate graphical EDA technique of a histogram (see 4.3.1). In most situations it
is worthwhile to think of univariate non-graphical EDA as telling you about aspects
of the histogram of the distribution of the variable of interest. Again, these aspects
are quantitative, but because they refer to just one of many possible samples from
a population, they are best thought of as random (non-fixed) estimates of the
fixed, unknown parameters (see section 3.5) of the distribution of the population
of interest.

If the quantitative variable does not have too many distinct values, a tabula-
tion, as we used for categorical data, will be a worthwhile univariate, non-graphical
technique. But mostly, for quantitative variables we are concerned here with
the quantitative numeric (non-graphical) measures which are the various sam-
ple statistics. In fact, sample statistics are generally thought of as estimates of
the corresponding population parameters.

Figure 4.1 shows a histogram of a sample of size 200 from the infinite popula-
tion characterized by distribution C of figure 3.1 from section 3.5. Remember that
in that section we examined the parameters that characterize theoretical (pop-
ulation) distributions. Now we are interested in learning what we can (but not
everything, because parameters are “secrets of nature”) about these parameters
from measurements on a (random) sample of subjects out of that population.

The bi-modality is visible, as is an outlier at X=-2. There is no generally
recognized formal definition for outlier, but roughly it means values that are outside
of the areas of a distribution that would commonly occur. This can also be thought
of as sample data values which correspond to areas of the population pdf (or pmf)
with low density (or probability). The definition of “outlier” for standard boxplots
is described below (see 4.3.3). Another common definition of “outlier” consider
any point more than a fixed number of standard deviations from the mean to be
an “outlier”, but these and other definitions are arbitrary and vary from situation
to situation.

For quantitative variables (and possibly for ordinal variables) it is worthwhile
looking at the central tendency, spread, skewness, and kurtosis of the data for a
particular variable from an experiment. But for categorical variables, none of these
make any sense.
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Figure 4.1: Histogram from distribution C.
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4.2.3 Central tendency

The central tendency or “location” of a distribution has to do with typical or
middle values. The common, useful measures of central tendency are the statis-
tics called (arithmetic) mean, median, and sometimes mode. Occasionally other
means such as geometric, harmonic, truncated, or Winsorized means are used as
measures of centrality. While most authors use the term “average” as a synonym
for arithmetic mean, some use average in a broader sense to also include geometric,
harmonic, and other means.

Assuming that we have n data values labeled x1 through xn, the formula for
calculating the sample (arithmetic) mean is

x̄ =

∑n
i=1 xi
n

.

The arithmetic mean is simply the sum of all of the data values divided by the
number of values. It can be thought of as how much each subject gets in a “fair”
re-division of whatever the data are measuring. For instance, the mean amount
of money that a group of people have is the amount each would get if all of the
money were put in one “pot”, and then the money was redistributed to all people
evenly. I hope you can see that this is the same as “summing then dividing by n”.

For any symmetrically shaped distribution (i.e., one with a symmetric his-
togram or pdf or pmf) the mean is the point around which the symmetry holds.
For non-symmetric distributions, the mean is the “balance point”: if the histogram
is cut out of some homogeneous stiff material such as cardboard, it will balance on
a fulcrum placed at the mean.

For many descriptive quantities, there are both a sample and a population ver-
sion. For a fixed finite population or for a theoretic infinite population described
by a pmf or pdf, there is a single population mean which is a fixed, often unknown,
value called the mean parameter (see section 3.5). On the other hand, the “sam-
ple mean” will vary from sample to sample as different samples are taken, and so is
a random variable. The probability distribution of the sample mean is referred to
as its sampling distribution. This term expresses the idea that any experiment
could (at least theoretically, given enough resources) be repeated many times and
various statistics such as the sample mean can be calculated each time. Often
we can use probability theory to work out the exact distribution of the sample
statistic, at least under certain assumptions.

The median is another measure of central tendency. The sample median is
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the middle value after all of the values are put in an ordered list. If there are an
even number of values, take the average of the two middle values. (If there are ties
at the middle, some special adjustments are made by the statistical software we
will use. In unusual situations for discrete random variables, there may not be a
unique median.)

For symmetric distributions, the mean and the median coincide. For unimodal
skewed (asymmetric) distributions, the mean is farther in the direction of the
“pulled out tail” of the distribution than the median is. Therefore, for many
cases of skewed distributions, the median is preferred as a measure of central
tendency. For example, according to the US Census Bureau 2004 Economic Survey,
the median income of US families, which represents the income above and below
which half of families fall, was $43,318. This seems a better measure of central
tendency than the mean of $60,828, which indicates how much each family would
have if we all shared equally. And the difference between these two numbers is quite
substantial. Nevertheless, both numbers are “correct”, as long as you understand
their meanings.

The median has a very special property called robustness. A sample statistic
is “robust” if moving some data tends not to change the value of the statistic. The
median is highly robust, because you can move nearly all of the upper half and/or
lower half of the data values any distance away from the median without changing
the median. More practically, a few very high values or very low values usually
have no effect on the median.

A rarely used measure of central tendency is the mode, which is the most likely
or frequently occurring value. More commonly we simply use the term “mode”
when describing whether a distribution has a single peak (unimodal) or two or
more peaks (bimodal or multi-modal). In symmetric, unimodal distributions, the
mode equals both the mean and the median. In unimodal, skewed distributions
the mode is on the other side of the median from the mean. In multi-modal
distributions there is either no unique highest mode, or the highest mode may well
be unrepresentative of the central tendency.

The most common measure of central tendency is the mean. For
skewed distribution or when there is concern about outliers, the me-
dian may be preferred.
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4.2.4 Spread

Several statistics are commonly used as a measure of the spread of a distribu-
tion, including variance, standard deviation, and interquartile range. Spread is an
indicator of how far away from the center we are still likely to find data values.

The variance is a standard measure of spread. It is calculated for a list of
numbers, e.g., the n observations of a particular measurement labeled x1 through
xn, based on the n sample deviations (or just “deviations”). Then for any data
value, xi, the corresponding deviation is (xi − x̄), which is the signed (- for lower
and + for higher) distance of the data value from the mean of all of the n data
values. It is not hard to prove that the sum of all of the deviations of a sample is
zero.

The variance of a population is defined as the mean squared deviation (see
section 3.5.2). The sample formula for the variance of observed data conventionally
has n−1 in the denominator instead of n to achieve the property of “unbiasedness”,
which roughly means that when calculated for many different random samples
from the same population, the average should match the corresponding population
quantity (here, σ2). The most commonly used symbol for sample variance is s2,
and the formula is

s2 =

∑n
i=1(xi − x̄)2

(n− 1)

which is essentially the average of the squared deviations, except for dividing by
n− 1 instead of n. This is a measure of spread, because the bigger the deviations
from the mean, the bigger the variance gets. (In most cases, squaring is better
than taking the absolute value because it puts special emphasis on highly deviant
values.) As usual, a sample statistic like s2 is best thought of as a characteristic of
a particular sample (thus varying from sample to sample) which is used as an esti-
mate of the single, fixed, true corresponding parameter value from the population,
namely σ2.

Another (equivalent) way to write the variance formula, which is particularly
useful for thinking about ANOVA is

s2 =
SS

df

where SS is “sum of squared deviations”, often loosely called “sum of squares”,
and df is “degrees of freedom” (see section 4.6).
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Because of the square, variances are always non-negative, and they have the
somewhat unusual property of having squared units compared to the original data.
So if the random variable of interest is a temperature in degrees, the variance
has units “degrees squared”, and if the variable is area in square kilometers, the
variance is in units of “kilometers to the fourth power”.

Variances have the very important property that they are additive for any
number of different independent sources of variation. For example, the variance of
a measurement which has subject-to-subject variability, environmental variability,
and quality-of-measurement variability is equal to the sum of the three variances.
This property is not shared by the “standard deviation”.

The standard deviation is simply the square root of the variance. Therefore
it has the same units as the original data, which helps make it more interpretable.
The sample standard deviation is usually represented by the symbol s. For a
theoretical Gaussian distribution, we learned in the previous chapter that mean
plus or minus 1, 2 or 3 standard deviations holds 68.3, 95.4 and 99.7% of the
probability respectively, and this should be approximately true for real data from
a Normal distribution.

The variance and standard deviation are two useful measures of
spread. The variance is the mean of the squares of the individual
deviations. The standard deviation is the square root of the variance.
For Normally distributed data, approximately 95% of the values lie
within 2 sd of the mean.

A third measure of spread is the interquartile range. To define IQR, we
first need to define the concepts of quartiles. The quartiles of a population or
a sample are the three values which divide the distribution or observed data into
even fourths. So one quarter of the data fall below the first quartile, usually written
Q1; one half fall below the second quartile (Q2); and three fourths fall below the
third quartile (Q3). The astute reader will realize that half of the values fall above
Q2, one quarter fall above Q3, and also that Q2 is a synonym for the median.
Once the quartiles are defined, it is easy to define the IQR as IQR = Q3 − Q1.
By definition, half of the values (and specifically the middle half) fall within an
interval whose width equals the IQR. If the data are more spread out, then the
IQR tends to increase, and vice versa.
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The IQR is a more robust measure of spread than the variance or standard
deviation. Any number of values in the top or bottom quarters of the data can
be moved any distance from the median without affecting the IQR at all. More
practically, a few extreme outliers have little or no effect on the IQR.

In contrast to the IQR, the range of the data is not very robust at all. The
range of a sample is the distance from the minimum value to the maximum value:
range = maximum - minimum. If you collect repeated samples from a population,
the minimum, maximum and range tend to change drastically from sample to
sample, while the variance and standard deviation change less, and the IQR least
of all. The minimum and maximum of a sample may be useful for detecting
outliers, especially if you know something about the possible reasonable values for
your variable. They often (but certainly not always) can detect data entry errors
such as typing a digit twice or transposing digits (e.g., entering 211 instead of 21
and entering 19 instead of 91 for data that represents ages of senior citizens.)

The IQR has one more property worth knowing: for normally distributed data
only, the IQR approximately equals 4/3 times the standard deviation. This means
that for Gaussian distributions, you can approximate the sd from the IQR by
calculating 3/4 of the IQR.

The interquartile range (IQR) is a robust measure of spread.

4.2.5 Skewness and kurtosis

Two additional useful univariate descriptors are the skewness and kurtosis of a dis-
tribution. Skewness is a measure of asymmetry. Kurtosis is a measure of “peaked-
ness” relative to a Gaussian shape. Sample estimates of skewness and kurtosis are
taken as estimates of the corresponding population parameters (see section 3.5.3).
If the sample skewness and kurtosis are calculated along with their standard errors,
we can roughly make conclusions according to the following table where e is an
estimate of skewness and u is an estimate of kurtosis, and SE(e) and SE(u) are
the corresponding standard errors.
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Skewness (e) or kurtosis (u) Conclusion
−2SE(e) < e < 2SE(e) not skewed
e ≤ −2SE(e) negative skew
e ≥ 2SE(e) positive skew
−2SE(u) < u < 2SE(u) not kurtotic
u ≤ −2SE(u) negative kurtosis
u ≥ 2SE(u) positive kurtosis

For a positive skew, values far above the mode are more common than values far
below, and the reverse is true for a negative skew. When a sample (or distribution)
has positive kurtosis, then compared to a Gaussian distribution with the same
variance or standard deviation, values far from the mean (or median or mode) are
more likely, and the shape of the histogram is peaked in the middle, but with fatter
tails. For a negative kurtosis, the peak is sometimes described has having “broader
shoulders” than a Gaussian shape, and the tails are thinner, so that extreme values
are less likely.

Skewness is a measure of asymmetry. Kurtosis is a more subtle mea-
sure of peakedness compared to a Gaussian distribution.

4.3 Univariate graphical EDA

If we are focusing on data from observation of a single variable on n subjects, i.e.,
a sample of size n, then in addition to looking at the various sample statistics
discussed in the previous section, we also need to look graphically at the distribu-
tion of the sample. Non-graphical and graphical methods complement each other.
While the non-graphical methods are quantitative and objective, they do not give
a full picture of the data; therefore, graphical methods, which are more qualitative
and involve a degree of subjective analysis, are also required.

4.3.1 Histograms

The only one of these techniques that makes sense for categorical data is the
histogram (basically just a barplot of the tabulation of the data). A pie chart
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is equivalent, but not often used. The concepts of central tendency, spread and
skew have no meaning for nominal categorical data. For ordinal categorical data,
it sometimes makes sense to treat the data as quantitative for EDA purposes; you
need to use your judgment here.

The most basic graph is the histogram, which is a barplot in which each bar
represents the frequency (count) or proportion (count/total count) of cases for a
range of values. Typically the bars run vertically with the count (or proportion)
axis running vertically. To manually construct a histogram, define the range of data
for each bar (called a bin), count how many cases fall in each bin, and draw the
bars high enough to indicate the count. For the simple data set found in EDA1.dat
the histogram is shown in figure 4.2. Besides getting the general impression of the
shape of the distribution, you can read off facts like “there are two cases with data
values between 1 and 2” and “there are 9 cases with data values between 2 and
3”. Generally values that fall exactly on the boundary between two bins are put
in the lower bin, but this rule is not always followed.

Generally you will choose between about 5 and 30 bins, depending on the
amount of data and the shape of the distribution. Of course you need to see
the histogram to know the shape of the distribution, so this may be an iterative
process. It is often worthwhile to try a few different bin sizes/numbers because,
especially with small samples, there may sometimes be a different shape to the
histogram when the bin size changes. But usually the difference is small. Figure
4.3 shows three histograms of the same sample from a bimodal population using
three different bin widths (5, 2 and 1). If you want to try on your own, the
data are in EDA2.dat. The top panel appears to show a unimodal distribution.
The middle panel correctly shows the bimodality. The bottom panel incorrectly
suggests many modes. There is some art to choosing bin widths, and although
often the automatic choices of a program like SPSS are pretty good, they are
certainly not always adequate.

It is very instructive to look at multiple samples from the same population to
get a feel for the variation that will be found in histograms. Figure 4.4 shows
histograms from multiple samples of size 50 from the same population as figure
4.3, while 4.5 shows samples of size 100. Notice that the variability is quite high,
especially for the smaller sample size, and that an incorrect impression (particularly
of unimodality) is quite possible, just by the bad luck of taking a particular sample.

http://www.stat.cmu.edu/~hseltman/309/Book/data/EDA1.dat
http://www.stat.cmu.edu/~hseltman/309/Book/data/EDA2.dat
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Figure 4.2: Histogram of EDA1.dat.
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Figure 4.3: Histograms of EDA2.dat with different bin widths.
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Figure 4.4: Histograms of multiple samples of size 50.
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Figure 4.5: Histograms of multiple samples of size 100.
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With practice, histograms are one of the best ways to quickly learn
a lot about your data, including central tendency, spread, modality,
shape and outliers.

4.3.2 Stem-and-leaf plots

A simple substitute for a histogram is a stem and leaf plot. A stem and leaf
plot is sometimes easier to make by hand than a histogram, and it tends not to
hide any information. Nevertheless, a histogram is generally considered better for
appreciating the shape of a sample distribution than is the stem and leaf plot.
Here is a stem and leaf plot for the data of figure 4.2:

The decimal place is at the "|".

1|000000

2|00

3|000000000

4|000000

5|00000000000

6|000

7|0000

8|0

9|00

Because this particular stem and leaf plot has the decimal place at the stem,
each of the 0’s in the first line represent 1.0, and each zero in the second line
represents 2.0, etc. So we can see that there are six 1’s, two 2’s etc. in our data.

A stem and leaf plot shows all data values and the shape of the dis-
tribution.
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Figure 4.6: A boxplot of the data from EDA1.dat.

4.3.3 Boxplots

Another very useful univariate graphical technique is the boxplot. The boxplot
will be described here in its vertical format, which is the most common, but a
horizontal format also is possible. An example of a boxplot is shown in figure 4.6,
which again represents the data in EDA1.dat.

Boxplots are very good at presenting information about the central tendency,
symmetry and skew, as well as outliers, although they can be misleading about
aspects such as multimodality. One of the best uses of boxplots is in the form of
side-by-side boxplots (see multivariate graphical analysis below).

Figure 4.7 is an annotated version of figure 4.6. Here you can see that the
boxplot consists of a rectangular box bounded above and below by “hinges” that
represent the quartiles Q3 and Q1 respectively, and with a horizontal “median”

http://www.stat.cmu.edu/~hseltman/309/Book/data/EDA1.dat
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Figure 4.7: Annotated boxplot.
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line through it. You can also see the upper and lower “whiskers”, and a point
marking an “outlier”. The vertical axis is in the units of the quantitative variable.

Let’s assume that the subjects for this experiment are hens and the data rep-
resent the number of eggs that each hen laid during the experiment. We can read
certain information directly off of the graph. The median (not mean!) is 4 eggs,
so no more than half of the hens laid more than 4 eggs and no more than half of
the hens laid less than 4 eggs. (This is based on the technical definition of median;
we would usually claim that half of the hens lay more or half less than 4, knowing
that this may be only approximately correct.) We can also state that one quarter
of the hens lay less than 3 eggs and one quarter lay more than 5 eggs (again, this
may not be exactly correct, particularly for small samples or a small number of
different possible values). This leaves half of the hens, called the “central half”, to
lay between 3 and 5 eggs, so the interquartile range (IQR) is Q3-Q1=5-3=2.

The interpretation of the whiskers and outliers is just a bit more complicated.
Any data value more than 1.5 IQRs beyond its corresponding hinge in either
direction is considered an “outlier” and is individually plotted. Sometimes values
beyond 3.0 IQRs are considered “extreme outliers” and are plotted with a different
symbol. In this boxplot, a single outlier is plotted corresponding to 9 eggs laid,
although we know from figure 4.2 that there are actually two hens that laid 9 eggs.
This demonstrates a general problem with plotting whole number data, namely
that multiple points may be superimposed, giving a wrong impression. (Jittering,
circle plots, and starplots are examples of ways to correct this problem.) This is
one reason why, e.g., combining a tabulation and/or a histogram with a boxplot
is better than either alone.

Each whisker is drawn out to the most extreme data point that is less than 1.5
IQRs beyond the corresponding hinge. Therefore, the whisker ends correspond to
the minimum and maximum values of the data excluding the “outliers”.

Important: The term “outlier” is not well defined in statistics, and the definition
varies depending on the purpose and situation. The “outliers” identified by a
boxplot, which could be called “boxplot outliers” are defined as any points more
than 1.5 IQRs above Q3 or more than 1.5 IQRs below Q1. This does not by itself
indicate a problem with those data points. Boxplots are an exploratory technique,
and you should consider designation as a boxplot outlier as just a suggestion that
the points might be mistakes or otherwise unusual. Also, points not designated
as boxplot outliers may also be mistakes. It is also important to realize that the
number of boxplot outliers depends strongly on the size of the sample. In fact, for
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data that is perfectly Normally distributed, we expect 0.70 percent (or about 1 in
150 cases) to be “boxplot outliers”, with approximately half in either direction.

The boxplot information described above could be appreciated almost as easily
if given in non-graphical format. The boxplot is useful because, with practice, all
of the above and more can be appreciated at a quick glance. The additional things
you should notice on the plot are the symmetry of the distribution and possible
evidence of “fat tails”. Symmetry is appreciated by noticing if the median is in
the center of the box and if the whiskers are the same length as each other. For
this purpose, as usual, the smaller the dataset the more variability you will see
from sample to sample, particularly for the whiskers. In a skewed distribution we
expect to see the median pushed in the direction of the shorter whisker. If the
longer whisker is the top one, then the distribution is positively skewed (or skewed
to the right, because higher values are on the right in a histogram). If the lower
whisker is longer, the distribution is negatively skewed (or left skewed.) In cases
where the median is closer to the longer whisker it is hard to draw a conclusion.

The term fat tails is used to describe the situation where a histogram has a lot
of values far from the mean relative to a Gaussian distribution. This corresponds
to positive kurtosis. In a boxplot, many outliers (more than the 1/150 expected
for a Normal distribution) suggests fat tails (positive kurtosis), or possibly many
data entry errors. Also, short whiskers suggest negative kurtosis, at least if the
sample size is large.

Boxplots are excellent EDA plots because they rely on robust statistics like
median and IQR rather than more sensitive ones such as mean and standard devi-
ation. With boxplots it is easy to compare distributions (usually for one variable
at different levels of another; see multivariate graphical EDA, below) with a high
degree of reliability because of the use of these robust statistics.

It is worth noting that some (few) programs produce boxplots that do not
conform to the definitions given here.

Boxplots show robust measures of location and spread as well as pro-
viding information about symmetry and outliers.
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Figure 4.8: A quantile-normal plot.

4.3.4 Quantile-normal plots

The final univariate graphical EDA technique is the most complicated. It is called
the quantile-normal or QN plot or more generality the quantile-quantile
or QQ plot. It is used to see how well a particular sample follows a particular
theoretical distribution. Although it can be used for any theoretical distribution,
we will limit our attention to seeing how well a sample of data of size n matches
a Gaussian distribution with mean and variance equal to the sample mean and
variance. By examining the quantile-normal plot we can detect left or right skew,
positive or negative kurtosis, and bimodality.

The example shown in figure 4.8 shows 20 data points that are approximately
normally distributed. Do not confuse a quantile-normal plot with a simple
scatter plot of two variables. The title and axis labels are strong indicators that
this is a quantile-normal plot. For many computer programs, the word “quantile”
is also in the axis labels.

Many statistical tests have the assumption that the outcome for any fixed set
of values of the explanatory variables is approximately normally distributed, and
that is why QN plots are useful: if the assumption is grossly violated, the p-value
and confidence intervals of those tests are wrong. As we will see in the ANOVA
and regression chapters, the most important situation where we use a QN plot is
not for EDA, but for examining something called “residuals” (see section 9.4). For
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basic interpretation of the QN plot you just need to be able to distinguish the two
situations of “OK” (points fall randomly around the line) versus “non-normality”
(points follow a strong curved pattern rather than following the line).

If you are still curious, here is a description of how the QN plot is
created. Understanding this will help to understand the interpretation,
but is not required in this course. Note that some programs swap the x
and y axes from the way described here, but the interpretation is similar
for all versions of QN plots. Consider the 20 values observed in this study.
They happen to have an observed mean of 1.37 and a standard deviation of
1.36. Ideally, 20 random values drawn from a distribution that has a true
mean of 1.37 and sd of 1.36 have a perfect bell-shaped distribution and
will be spaced so that there is equal area (probability) in the area around
each value in the bell curve.

In figure 4.9 the dotted lines divide the bell curve up into 20 equally
probable zones, and the 20 points are at the probability mid-points of each
zone. These 20 points, which are more tightly packed near the middle than
in the ends, are used as the “Expected Normal Values” in the QN plot of
our actual data.

In summary, the sorted actual data values are plotted against “Ex-
pected Normal Values”, and some kind of diagonal line is added to help
direct the eye towards a perfect straight line on the quantile-normal plot
that represents a perfect bell shape for the observed data.

The interpretation of the QN plot is given here. If the axes are reversed in
the computer package you are using, you will need to correspondingly change your
interpretation. If all of the points fall on or nearly on the diagonal line (with a
random pattern), this tells us that a histogram of the variable will show a bell
shaped (Normal or Gaussian) distribution.

Figure 4.10 shows all of the points basically on the reference line, but there
are several vertical bands of points. Because the x-axis is “observed values”, these
bands indicate ties, i.e., multiple points with the same values. And all of the
observed values are at whole numbers. So either the data are rounded or we are
looking at a discrete quantitative (counting) variable. Either way, the data appear
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Figure 4.9: A way to think about QN plots.
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Figure 4.10: Quantile-normal plot with ties.

to be nearly normally distributed.

In figure 4.11 note that we have many points in a row that are on the same
side of the line (rather than just bouncing around to either side), and that suggests
that there is a real (non-random) deviation from Normality. The best way to think
about these QN plots is to look at the low and high ranges of the Expected Normal
Values. In each area, see how the observed values deviate from what is expected,
i.e., in which “x” (Observed Value) direction the points appear to have moved
relative to the “perfect normal” line. Here we observe values that are too high in
both the low and high ranges. So compared to a perfect bell shape, this distribution
is pulled asymmetrically towards higher values, which indicates positive skew.

Also note that if you just shift a distribution to the right (without disturbing
its symmetry) rather than skewing it, it will maintain its perfect bell shape, and
the points remain on the diagonal reference line of the quantile-normal curve.

Of course, we can also have a distribution that is skewed to the left, in which
case the high and low range points are shifted (in the Observed Value direction)
towards lower than expected values.

In figure 4.12 the high end points are shifted too high and the low end points
are shifted too low. These data show a positive kurtosis (fat tails). The opposite
pattern is a negative kurtosis in which the tails are too “thin” to be bell shaped.
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Figure 4.11: Quantile-normal plot showing right skew.

Figure 4.12: Quantile-normal plot showing fat tails.
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Figure 4.13: Quantile-normal plot showing a high outlier.

In figure 4.13 there is a single point that is off the reference line, i.e. shifted
to the right of where it should be. (Remember that the pattern of locations on
the Expected Normal Value axis is fixed for any sample size, and only the position
on the Observed axis varies depending on the observed data.) This pattern shows
nearly Gaussian data with one “high outlier”.

Finally, figure 4.14 looks a bit similar to the “skew left” pattern, but the most
extreme points tend to return to the reference line. This pattern is seen in bi-modal
data, e.g. this is what we would see if we would mix strength measurements from
controls and muscular dystrophy patients.

Quantile-Normal plots allow detection of non-normality and diagnosis
of skewness and kurtosis.

4.4 Multivariate non-graphical EDA

Multivariate non-graphical EDA techniques generally show the relationship be-
tween two or more variables in the form of either cross-tabulation or statistics.
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Figure 4.14: Quantile-normal plot showing bimodality.

4.4.1 Cross-tabulation

For categorical data (and quantitative data with only a few different values) an
extension of tabulation called cross-tabulation is very useful. For two variables,
cross-tabulation is performed by making a two-way table with column headings
that match the levels of one variable and row headings that match the levels of
the other variable, then filling in the counts of all subjects that share a pair of
levels. The two variables might be both explanatory, both outcome, or one of
each. Depending on the goals, row percentages (which add to 100% for each row),
column percentages (which add to 100% for each column) and/or cell percentages
(which add to 100% over all cells) are also useful.

Here is an example of a cross-tabulation. Consider the data in table 4.1. For
each subject we observe sex and age as categorical variables.

Table 4.2 shows the cross-tabulation.

We can easily see that the total number of young females is 2, and we can
calculate, e.g., the corresponding cell percentage is 2/11 × 100 = 18.2%, the row
percentage is 2/5×100 = 40.0%, and the column percentage is 2/7×100 = 28.6%.

Cross-tabulation can be extended to three (and sometimes more) variables by
making separate two-way tables for two variables at each level of a third variable.
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Subject ID Age Group Sex
GW young F
JA middle F
TJ young M
JMA young M
JMO middle F
JQA old F
AJ old F
MVB young M
WHH old F
JT young F
JKP middle M

Table 4.1: Sample Data for Cross-tabulation

Age Group / Sex Female Male Total

young 2 3 5
middle 2 1 3

old 3 0 3

Total 7 4 11

Table 4.2: Cross-tabulation of Sample Data

For example, we could make separate age by gender tables for each education level.

Cross-tabulation is the basic bivariate non-graphical EDA technique.

4.4.2 Correlation for categorical data

Another statistic that can be calculated for two categorical variables is their corre-
lation. But there are many forms of correlation for categorical variables, and that
material is currently beyond the scope of this book.
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4.4.3 Univariate statistics by category

For one categorical variable (usually explanatory) and one quantitative variable
(usually outcome), it is common to produce some of the standard univariate non-
graphical statistics for the quantitative variables separately for each level of the
categorical variable, and then compare the statistics across levels of the categorical
variable. Comparing the means is an informal version of ANOVA. Comparing
medians is a robust informal version of one-way ANOVA. Comparing measures of
spread is a good informal test of the assumption of equal variances needed for valid
analysis of variance.

Especially for a categorical explanatory variable and a quantitative
outcome variable, it is useful to produce a variety of univariate statis-
tics for the quantitative variable at each level of the categorical vari-
able.

4.4.4 Correlation and covariance

For two quantitative variables, the basic statistics of interest are the sample co-
variance and/or sample correlation, which correspond to and are estimates of the
corresponding population parameters from section 3.5. The sample covariance is
a measure of how much two variables “co-vary”, i.e., how much (and in what
direction) should we expect one variable to change when the other changes.

Sample covariance is calculated by computing (signed) deviations of
each measurement from the average of all measurements for that variable.
Then the deviations for the two measurements are multiplied together sepa-
rately for each subject. Finally these values are averaged (actually summed
and divided by n-1, to keep the statistic unbiased). Note that the units on
sample covariance are the products of the units of the two variables.

Positive covariance values suggest that when one measurement is above the
mean the other will probably also be above the mean, and vice versa. Negative
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covariances suggest that when one variable is above its mean, the other is below its
mean. And covariances near zero suggest that the two variables vary independently
of each other.

Technically, independence implies zero correlation, but the reverse is
not necessarily true.

Covariances tend to be hard to interpret, so we often use correlation instead.
The correlation has the nice property that it is always between -1 and +1, with
-1 being a “perfect” negative linear correlation, +1 being a perfect positive linear
correlation and 0 indicating that X and Y are uncorrelated. The symbol r or rx,y
is often used for sample correlations.

The general formula for sample covariance is

Cov(X, Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)

n− 1

It is worth noting that Cov(X,X) = Var(X).

If you want to see a “manual example” of calculation of sample covari-
ance and correlation consider an example using the data in table 4.3. For
each subject we observe age and a strength measure.

Table 4.4 shows the calculation of covariance. The mean age is 50 and
the mean strength is 19, so we calculate the deviation for age as age-50
and deviation for strength and strength-19. Then we find the product of
the deviations and add them up. This total is 1106, and since n=11, the
covariance of x and y is -1106/10=-110.6. The fact that the covariance is
negative indicates that as age goes up strength tends to go down (and vice
versa).

The formula for the sample correlation is

Cor(X, Y ) =
Cov(X, Y )

sxsy
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where sx is the standard deviation of X and sy is the standard deviation
of Y .

In this example, sx = 18.96, sy = 6.39, so r = −110.6
18.96·6.39

= −0.913. This
is a strong negative correlation.

Subject ID Age Strength
GW 38 20
JA 62 15
TJ 22 30
JMA 38 21
JMO 45 18
JQA 69 12
AJ 75 14
MVB 38 28
WHH 80 9
JT 32 22
JKP 51 20

Table 4.3: Covariance Sample Data

4.4.5 Covariance and correlation matrices

When we have many quantitative variables the most common non-graphical EDA
technique is to calculate all of the pairwise covariances and/or correlations and
assemble them into a matrix. Note that the covariance of X with X is the variance
of X and the correlation of X with X is 1.0. For example the covariance matrix
of table 4.5 tells us that the variances of X, Y , and Z are 5, 7, and 4 respectively,
the covariance of X and Y is 1.77, the covariance of X and Z is -2.24, and the
covariance of Y and Z is 3.17.

Similarly the correlation matrix in figure 4.6 tells us that the correlation of X
and Y is 0.3, the correlation of X and Z is -0.5. and the correlation of Y and Z
is 0.6.
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Subject ID Age Strength Age-50 Str-19 product
GW 38 20 -12 +1 -12
JA 62 15 +12 -4 -48
TJ 22 30 -28 +11 -308

JMA 38 21 -12 +2 -24
JMO 45 18 -5 -1 +5
JQA 69 12 +19 -7 -133

AJ 75 14 +25 -5 -125
MVB 38 28 -12 +9 -108
WHH 80 9 +30 -10 -300

JT 32 22 -18 +3 -54
JKP 51 20 +1 +1 +1

Total 0 0 -1106

Table 4.4: Covariance Calculation

X Y Z

X 5.00 1.77 -2.24
Y 1.77 7.0 3.17
Z -2.24 3.17 4.0

Table 4.5: A Covariance Matrix

The correlation between two random variables is a number that runs
from -1 through 0 to +1 and indicates a strong inverse relationship,
no relationship, and a strong direct relationship, respectively.

4.5 Multivariate graphical EDA

There are few useful techniques for graphical EDA of two categorical random
variables. The only one used commonly is a grouped barplot with each group rep-
resenting one level of one of the variables and each bar within a group representing
the levels of the other variable.
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X Y Z

X 1.0 0.3 -0.5
Y 0.3 1.0 0.6
Z -0.5 0.6 1.0

Table 4.6: A Correlation Matrix

4.5.1 Univariate graphs by category

When we have one categorical (usually explanatory) and one quantitative (usually
outcome) variable, graphical EDA usually takes the form of “conditioning” on
the categorical random variable. This simply indicates that we focus on all of
the subjects with a particular level of the categorical random variable, then make
plots of the quantitative variable for those subjects. We repeat this for each level
of the categorical variable, then compare the plots. The most commonly used of
these are side-by-side boxplots, as in figure 4.15. Here we see the data from
EDA3.dat, which consists of strength data for each of three age groups. You can
see the downward trend in the median as the ages increase. The spreads (IQRs)
are similar for the three groups. And all three groups are roughly symmetrical
with one high strength outlier in the youngest age group.

Side-by-side boxplots are the best graphical EDA technique for exam-
ining the relationship between a categorical variable and a quantitative
variable, as well as the distribution of the quantitative variable at each
level of the categorical variable.

4.5.2 Scatterplots

For two quantitative variables, the basic graphical EDA technique is the scatterplot
which has one variable on the x-axis, one on the y-axis and a point for each case
in your dataset. If one variable is explanatory and the other is outcome, it is a
very, very strong convention to put the outcome on the y (vertical) axis.

One or two additional categorical variables can be accommodated on the scat-
terplot by encoding the additional information in the symbol type and/or color.

http://www.stat.cmu.edu/~hseltman/309/Book/data/EDA3.dat
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Figure 4.15: Side-by-side Boxplot of EDA3.dat.
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Figure 4.16: scatterplot with two additional variables.

An example is shown in figure 4.16. Age vs. strength is shown, and different colors
and symbols are used to code political party and gender.

In a nutshell: You should always perform appropriate EDA before
further analysis of your data. Perform whatever steps are necessary
to become more familiar with your data, check for obvious mistakes,
learn about variable distributions, and learn about relationships be-
tween variables. EDA is not an exact science – it is a very important
art!
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4.6 A note on degrees of freedom

Degrees of freedom are numbers that characterize specific distributions in a family
of distributions. Often we find that a certain family of distributions is needed in
a some general situation, and then we need to calculate the degrees of freedom to
know which specific distribution within the family is appropriate.

The most common situation is when we have a particular statistic and want to
know its sampling distribution. If the sampling distribution falls in the “t” family
as when performing a t-test, or in the “F” family when performing an ANOVA,
or in several other families, we need to find the number of degrees of freedom to
figure out which particular member of the family actually represents the desired
sampling distribution. One way to think about degrees of freedom for a statistic is
that they represent the number of independent pieces of information that go into
the calculation of the statistic,

Consider 5 numbers with a mean of 10. To calculate the variance of these
numbers we need to sum the squared deviations (from the mean). It really doesn’t
matter whether the mean is 10 or any other number: as long as all five deviations
are the same, the variance will be the same. This make sense because variance is a
pure measure of spread, not affected by central tendency. But by mathematically
rearranging the definition of mean, it is not too hard to show that the sum of
the deviations (not squared) is always zero. Therefore, the first four deviations
can (freely) be any numbers, but then the last one is forced to be the number
that makes the deviations add to zero, and we are not free to choose it. It is in
this sense that five numbers used for calculating a variance or standard deviation
have only four degrees of freedom (or independent useful pieces of information).
In general, a variance or standard deviation calculated from n data values and one
mean has n− 1 df.

Another example is the “pooled” variance from k independent groups. If the
sizes of the groups are n1 through nk, then each of the k individual variance
estimates is based on deviations from a different mean, and each has one less
degree of freedom than its sample size, e.g., ni − 1 for group i. We also say that
each numerator of a variance estimate, e.g., SSi, has ni−1 df. The pooled estimate
of variance is

s2
pooled =

SS1 + · · ·+ SSk
df1 + · · ·+ dfk

and we say that both the numerator SS and the entire pooled variance has df1+· · ·+
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dfk degrees of freedom, which suggests how many independent pieces of information
are available for the calculation.



100 CHAPTER 4. EXPLORATORY DATA ANALYSIS



Chapter 5

Learning SPSS: Data and EDA
An introduction to SPSS with emphasis on EDA.

SPSS (now called PASW Statistics, but still referred to in this document as
SPSS) is a perfectly adequate tool for entering data, creating new variables, per-
forming EDA, and performing formal statistical analyses. I don’t have any special
endorsement for SPSS, other than the fact that its market dominance in the social
sciences means that there is a good chance that it will be available to you wherever
you work or study in the future. As of 2009, the current version is 17.0, and class
datasets stored in native SPSS format in version 17.0 may not be usable with older
versions of SPSS. (Some screen shots shown here are not updated from previous
versions, but all changed procedures have been updated.)

For very large datasets, SAS tends to be the best program. For creating custom
graphs and analyses R, which is free, or the commercial version, S-Plus, are best,
but R is not menu-driven. The one program I strongly advise against is Excel (or
any other spreadsheet). These programs have quite limited statistical facilities,
discourage structured storage of data, and have no facility for documenting your
work. This latter deficit is critical! For any serious analysis you must have a com-
plete record of how you created new variables and produced all of your graphical
and statistical output.

It is very common that you will find some error in your data at some point.
So it is highly likely that you will need to repeat all of your analyses, and that
is painful without exact records, but easy or automatic with most good software.
Also, because it takes a long time from analysis to publishing, you will need these

101
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records to remind yourself of exactly which steps you performed.

As hinted above, the basic steps you will take with most experimental data are:

1. Enter the data into SPSS, or load it into SPSS after entering it into another
program.

2. Create new variables from old variables, if needed.

3. Perform exploratory data analyses.

4. Perform confirmatory analyses (formal statistical procedures).

5. Perform model checking and model comparisons.

6. Go back to step 4 (or even 2), if step 5 indicates any problems.

7. Create additional graphs to communicate results.

Most people will find this chapter easier to read when SPSS is running in front
of them. There is a lot of detail on getting started and basic data management.
This is followed by a brief compilation of instructions for EDA. The details of
performing other statistical analyses are at the end of the appropriate chapters
throughout this book.

Even if you are someone who is good at jumping in to a computer program
without reading the instructions, I urge you to read this chapter because otherwise
you are likely to miss some of the important guiding principles of SPSS.

Additional SPSS resources may be found at
http://www.stat.cmu.edu/∼hseltman/SPSSTips.html.

5.1 Overview of SPSS

SPSS is a multipurpose data storage, graphical, and statistical system. At (almost)
all times there are two window types available, the Data Editor window(s) which
each hold a single data “spreadsheet”, and the Viewer window from which analyses
are carried out and results are viewed.

The Data Editor has two views, selected by tabs at the bottom of the window.
The Data View is a spreadsheet which holds the data in a rectangular format with

http://www.stat.cmu.edu/~hseltman/SPSSTips.html
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cases as rows and variables as columns. Data can be directly entered or imported
from another program using menu commands. (Cut-and-paste is possible, but not
advised.) Errors in data entry can also be directly corrected here.

You can also use menu commands in the Data View to create new variables,
such as the log of an existing variable or the ratio of two variables.

The Variable View tab of the Data Editor is used to customize the information
about each variable and the way it is displayed, such as the number of decimal
places for numeric variables, and the labels for categorical variables coded as num-
bers.

The Viewer window shows the results of EDA, including graph production, for-
mal statistical analyses, and model checking. Most data analyses can be carried
out using the menu system (starting in either window), but some uncommon anal-
yses and some options for common analyses are only accessible through “Syntax”
(native SPSS commands). Often a special option is accessed by using the Paste
button found in most main dialog boxes, and then typing in a small addition.
(More details on these variations is given under the specific analyses that require
them.)

All throughout SPSS, each time you carry out a task through a menu, the
underlying non-menu syntax of that command is stored by SPSS, and can be
examined, modified and saved for documentation or reuse. In many situations,
there is a “Paste” button which takes you to a “syntax window” where you can see
the underlying commands that would have been executed had you pressed OK.

SPSS also has a complete help system and an advanced scripting system.

You can save data, syntax, and graphical and statistical output separately, in
various formats whenever you wish. (Generally anything created in an earlier pro-
gram version is readable by later versions, but not vice versa.) Data is normally
saved in a special SPSS format which few other programs can understand, but
universal formats like “comma separated values” are also available for data inter-
change. You will be warned if you try to quit without saving changes to your data,
or if if you forget to save the output from data analyses.

As usual with large, complex programs, the huge number of menu items avail-
able can be overwhelming. For most users, you will only need to learn the basics
of interaction with the system and a small subset of the menu options.

Some commonly used menu items can be quickly accessed from a toolbar, and
learning these will make you more efficient in your use of SPSS.
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SPSS has a few quirks; most notably there are several places where you can
make selections, and then are supposed to click Change before clicking OK. If you
forget to click Change your changes are often silently forgotten. Another quirk
that is well worth remembering is this: SPSS uses the term Factor to refer to any
categorical explanatory variable. One good “quirk” is the Dialog Recall toolbar
button. It is a quick way to re-access previous data analysis dialogs instead of
going through the menu system again.

5.2 Starting SPSS

Note: SPSS runs on Windows and Mac operating systems, but the focus of these
notes is Windows. If you are unfamiliar with Windows, the link
Top 10 tips for Mac users getting started with Windows may help.

Assuming that SPSS is already installed on your computer system, just choose
it from the Windows Start menu or double click its icon to begin. The first screen
you will see is shown in figure 5.1 and gives several choices including a tutorial
and three choices that we will mainly use: “Type in data”, “Open an existing data
source”, and “Open another type of file”. “Type in data” is useful for analyzing
small data sets not available in electronic form. “Open an existing data source”
is used for opening data files created in SPSS. “Open another type of file” is used
for importing data stored in files not created by SPSS. After making your choice,
click OK. Clicking Cancel instead of OK is the same as choosing “Type in data”.

Use Exit from the File menu whenever you are ready to quit SPSS.

5.3 Typing in data

To enter your data directly into SPSS, choose “Type in data” from the opening
screen, or, if you are not at the opening screen, choose New then Data from the
File menu.

The window titled “Untitled SPSS Data Editor” is the Data Editor window
which is used to enter, view and modify data. You can also start statistical analyses
from this window. Note the tabs at the bottom of the window labeled “Data View”
and “Variable View”. In Data View (5.2), you can view, enter, and edit data for
all of your cases, while in Variable View (5.3), you can view, enter, and edit

http://sorou.sh/2006/07/17/10-tips-new-mac-users-switching-windows
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Figure 5.1: SPSS intro screen.
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Figure 5.2: Data Editor window: Data View.

Figure 5.3: Data Editor window: Variable View.
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information about the variables themselves (see below). Also note the menu and
toolbar at the top of the window. You will use these to carry out various tasks
related to data entry and analysis. There are many more choices than needed by
a typical user, so don’t get overwhelmed! You can hover the mouse pointer over
any toolbar button to get a pop-up message naming its function. This chapter
will mention useful toolbar items as we go along. (Note: Toolbar items that are
inappropriate for the current context are grayed out.)

Before manually entering data, you should tell SPSS about the individual vari-
ables, which means that you should think about variable types and coding before
entering the data. Remember that the two data types are categorical and quan-
titative and their respective subtypes are nominal and ordinal, and discrete and
continuous. These data type correspond to the Measure column in the Variable
View tab. SPSS does not distinguish between discrete and continuous, so it calls
all quantitative variables “scale”. Ordinal and nominal variables are the other
options for Measure. In many parts of SPSS, you will see a visual reminder of
the Measure of your variables in the form of icons. A small diagonal yellow rule
indicates a “scale” variable (with a superimposed calendar or clock if the data hold
dates or times). A small three level bar graph with increasing bar heights indicates
an “ordinal” variable. Three colored balls with one on top and two below indicates
nominal data (with a superimposed “a” if the data are stored as “strings” instead
of numbers).

Somewhat confusingly SPSS Variable View has a column called Type which is
the “computer science” type rather than the “statistics” data type. The choices
are basically numeric, date and string with various numeric formats. This course
does not cover time series, so we won’t use the “date” Type. Probably the only use
for the “string” Type is for alphanumeric subject identifiers (which should be as-
signed “nominal” Measure). All standard variables should be entered as numbers
(quantitative variables) or numeric codes (categorical variables). Then, for cate-
gorical variables, we always want to use the Values column to assign meaningful
labels to the numeric codes.

Note that, in general, to set or change something in the Data Editor, you first
click in the cell whose row and column correspond to what you want to change,
then type the new information. To modify, rather than fully re-type an entry, press
the key labeled “F2”.

When entering a variable name, note that periods and underscores are allowed
in variable names, but spaces and most other punctuation marks are not. The
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variable name must start with a letter, may contain digits, and must not end with
a period. Variable names can be at most 64 characters long, are not case sensitive,
and must be unique. The case that you enter is preserved, so it may be useful to
mix case, e.g., hotDogsPerHour to improve readability.

In either View of the Data Editor, you can neaten your work by dragging the
vertical bar between columns to adjust column widths.

After entering the variable name, change whichever other column(s) need to be
changed in the Variable View. For many variables this includes entering a Label,
which is a human-readable alternate name for each variable. It may be up to
255 characters long with no restrictions on what you type. The labels replace the
variable names on much of the output, but the names are still used for specifying
variables for analyses.

Figure 5.4: Values dialog box.

For categorical variables, you will almost always enter the data as numeric codes
(Type “numeric”), and then enter Labels for each code. The Value Labels dialog
box (5.4) is typical of many dialog boxes in SPSS. To enter Values for a variable,
click in the box at the intersection of the variable’s row and the Value column in
the Variable View. Then click on the “...” icon that appears. This will open the
“Value Labels” dialog box, into which you enter the words or phrases that label
each level of your categorical variable. Value labels can contain anything you like
up to 255 characters long. Enter a level code number in the Value box, press Tab,
then enter the text for that level in the Value Label box. Finally you must click
the Add button for your entry to be registered. Repeat the process as many times
as needed to code all of the levels of the variable. When you are finished, verify
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that all of the information in the large unlabeled box is correct, then click OK to
complete the process. At any time while in the Value Label box (initially or in
the future), you can add more labels; delete old labels by clicking on the variable
in the large box, then clicking the Delete button; or change level values or labels
by selecting the variable in the large box, making the change, then clicking the
Change button. Version 16 has a spell check button, too.

If your data has missing values, you should use the Missing column of the
Variable View to let SPSS know the missing value code(s) for each variable.

The only other commonly used column in Variable View is the Measure column
mentioned above. SPSS uses the information in the column sporadically. Some-
times, but certainly not always, you will not be able carry out the analysis you
want if you enter the Measure incorrectly (or forget to set it). In addition, setting
the Measure assures that you appropriately think about the type of variable you
are entering, so it is a really, really good idea to always set it.

Once you have entered all of the variable information in Variable View, you will
switch to Data View to enter the actual data. At it’s simplest, you can just click
on a cell and type the information, possibly using the “F2” key to edit previously
entered information. But there are several ways to make data entry easier and
more accurate. The tab key moves you through your data case by case, covering
all of the variables of one case before moving on to the next. Leave a cell blank (or
delete its contents) to indicate “missing data”; missing data are displayed with a
dot in the spreadsheet (but don’t type a dot).

The Value Labels setting, accessed either through its toolbar button (which
looks like a gift tag) or through the View menu, controls both whether columns
with Value Labels display the value or the label, and the behavior of those columns
during data entry. If Value Labels is turned on, a “...” button appears when you
enter a cell in the Data View spreadsheet that has Value Labels. You can click the
button to select labels for entry from a drop down box. Also, when Value Labels
is on, you can enter data either as the code or by typing out the label. (In any
case the code is what is stored.)

You should use Save (or Save as) from the File menu to save your data after
every data entry session and after any edits to your data. Note that in the “Save
Data As” dialog box (5.5) you should be careful that the “Save in:” box is set
to save your data in the location you want (so that you can find it later). Enter
a file name and click “Save” to save your data for future use. Under “Save as
type:” the default is “SPSS” with a “.sav” extension. This is a special format that
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can be read quickly by SPSS, but not at all by most other programs. For data
exchange between programs, several other export formats are allowed, with Excel
with “Comma separated values” being the most useful.

Figure 5.5: Save Data As dialog box.

5.4 Loading data

To load in data when you first start SPSS, your can select a file in one of the two
lower boxes of the “Intro Screen”. At any other time you can load data from the
File menu by selecting Open, then Data. This opens the “Open File” dialog box
(5.6).

It’s a good idea to save any changes to any open data set before opening a new
file. In the Open File dialog box, you need to find the file by making appropriate
choices for “Look in:” and “Files of type:”. If your file has a “.txt” extension and
you are looking for files of type “.dat”, you will not be able to find your file. As
a last resort, try looking for files of type “all files(*.*)”. Click Open after finding
your file.

If your file is a native SPSS “.sav” file, it will open immediately. If it is of
another type, you will have to go through some import dialogs. For example, if
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Figure 5.6: Open File dialog box.

you open an Excel file (.xls), you will see the “Opening Excel Data Source” dialog
box (5.7). Here you use a check box to tell SPSS whether or not your data has
variable names in the first row. If your Excel workbook has multiple worksheets
you must select the one you want to work with. Then, optionally enter a Range
of rows and columns if your data does not occupy the entire range of used cells in
the worksheet. Finish by clicking OK.

Figure 5.7: Open Excel Data Source dialog box.
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The other useful type of data import is one of the simple forms of human-
readable text such as space or tab delimited text (usually .dat or .txt) or comma
separated values (.csv). If you open one of these files, the “Text Import Wizard”
dialog box will open. The rest of this section describes the use of the text import
wizard.

Figure 5.8: Text Import Wizard - Step 1 of 6.

In “Step 1 of 6” (5.8) you will see a question about predefined formats which
we will skip (as being beyond the scope of this course), and below you will see
some form of the first four lines of your file (and you can scroll down or across to
see the whole file). (If you see strange characters, such as open squares, your file
probably has non-printable characters such as tab character in it.) Click Next to
continue.

In “Step 2 of 6” (5.9) you will see two very important questions that you must
answer accurately. The first is whether your file is arranged so that each data col-
umn always starts in exactly the same column for every line of data (called “Fixed
width”) or whether there are so-called delimiters between the variable columns
(also called “fields”). Delimiters are usually either commas, tab characters or one
or more spaces, but other delimiters occasionally are seen. The second question
is “Are variable names include at the top of the file?” Answer “no” if the first
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Figure 5.9: Text Import Wizard - Step 2 of 6.

line of the file is data, and “yes” if the first line is made of column headers. After
answering these questions, click Next to continue.

In “Step 3 of 6” (5.10) your first task is to input the line number of the file
that has the first real data (as opposed to header lines or blank lines). Usually
this is line 2 if there is a header line and line 1 otherwise. Next is “How are your
cases represented?” Usually the default situation of “Each line represents a case”
is true. Under “How many cases do you want to import?” you will usually use the
default of “All of the cases”, but occasionally, for very large data sets, you may
want to play around with only a subset of the data at first.

In “Step 4 of 6” (5.11) you must answer the questions in such a way as to
make the “Data preview” correctly represent your data. Often the defaults are
OK, but not always. Your main task is to set the delimiters between the data
fields. Usually you will make a single choice among “Tab”, “Space”, “Comma”,
and “Semicolon”. You may also need to specify what sets off text, e.g. there may
be quoted multi-word phrases in a space separated file.

If your file has fixed width format instead of delimiters, “Step 4 of 6” has an
alternate format (5.12). Here you set the divisions between data columns.
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Figure 5.10: Text Import Wizard - Step 3 of 6.

Figure 5.11: Text Import Wizard - Step 4 of 6.
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Figure 5.12: Text Import Wizard - Alternate Step 4 of 6.

Figure 5.13: Text Import Wizard - Step 5 of 6.
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In “Step 5 of 6” (5.13) you will have the chance to change the names of variables
and/or the data format (numeric, data or string). Ordinarily you don’t need to do
anything at this step.

Figure 5.14: Text Import Wizard - Step 6 of 6.

In “Step 6 of 6” (5.14) you will have the chance to save all of your previous
choices to simplify future loading of a similar file. We won’t use this feature in this
course, so you can just click the Finish button.

The most common error in loading data is forgetting to specify the presence of
column headers in step 2. In that case the column header (variable names) appear
as data rather than variable names.

5.5 Creating new variables

Creating new variables (data transformation) is commonly needed, and can be
somewhat complicated. Depending on what you are trying to do, one of several
menu options starts the process.

For creating of a simple data transformation, which is the result of applying a
mathematical formula to one or more existing variables, use the ComputeVariable
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Figure 5.15: Compute Variable dialog box.
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item on the Transform menu of the Data Editor. This open the Compute Variable
dialog box (5.15). First enter a new variable name in the Target Variable box
(remembering the naming rules discussed above). Usually you will want to click
the “Type & Label” box to open another dialog box which allows you to enter
a longer, more readable Label for the variable. (You will almost never want to
change the type to “String”.) Click Continue after entering the Label. Next you
will enter the “Numeric Expression” in the Compute Variable dialog box. Two
typical expressions are “log(weight)” which creates the new variable by the taking
the log of the existing variable “weight”, and “weight/height**2” which computes
the body mass index from height and weight by dividing weight by the square
(second power) of the height. (Don’t enter the quotation marks.)

To create a transformation, use whatever method you can to get the required
Numeric Expression into the box. You can either type a variable name or double
click it in the variable list to the left, or single click it and click the right arrow.
Spaces don’t matter (except within variable names), and standard order of op-
erations are used, but can be overridden with parentheses as needed. Numbers,
operators (including * for times), and function names can be entered by clicking
the mouse, but direct typing is usually faster. In addition to the help system, the
list of functions may be helpful for finding the spelling of a function, e.g., sqrt for
square root.

Comparison operators (such as =, <. and >) can be used with the under-
standing that the result of any comparison is either “true”, coded as 1, or “false”,
coded as 0. E.g., if one variable called “vfee” has numbers indicating the size
of a fee, and a variable called “surcharge” is 0 for no surcharge and 1 for a $25
surcharge, then we could create a new variable called “total” with the expression
“vfee+25*(surcharge=1)”. In that case either 25 (25*1) or 0 (25*0) is added to
“vfee” depending of the value of “surcharge”.

Advanced: To transform only some cases and leave others as “missing data”
use the “If” button to specify an expression that is true only for the cases that
need to be transformed.

Some other functions worth knowing about are ln, exp, missing, mean, min,
max, rnd, and sum. The function ln() takes the natural log, as opposed to log(),
which is common log. The function exp() is the anti-log of the natural log, as op-
posed to 10**x which is the common log’s anti-log. The function missing() returns
1 if the variable has missing data for the case in question or 0 otherwise. The func-
tions min(), max(), mean() and sum(), used with several variables separated with
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commas inside the parentheses, computes a new value for each case from several
existing variables for that case. The function rnd() rounds to a whole number.

5.5.1 Recoding

In addition to simple transformations, we often need to create a new variable that
is a recoding of an old variable. This is usually used either to “collapse” categories
in a categorical variable or to create a categorical version of a quantitative variable
by “binning”. Although it is possible to over-write the existing variable with the
new one, I strongly suggest that you always preserve the old variable (for record
keeping and in case you make an error in the encoding), and therefore you should
use the ’into Different Variables” item under “Recode” on the “Transform” menu,
which opens the “Recode into Different Variables” dialog box (5.16).

Figure 5.16: Recode into Different Variables Dialog Box.

First enter the existing variable name into the “Numeric Variable -> Output
Variable” box. If you have several variables that need the same recoding scheme,
enter each of them before proceeding. Then, for each existing variable, go to the
“Output Variable” box and enter a variable Name and Label for the new recoded
variable, and confirm the entry with the Change button.
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Figure 5.17: Recode into Different Variables: Old and New Values Dialog Box.

Then click the “Old and New Values” button to open the “Recode into Different
Variables: Old and New Values” dialog box (5.17). Your goal is to specify as many
“rules” as needed to create a new value for every possible old value so that the
“Old–>New” box is complete and correct. For each one or several old values that
will be recoded to a particular new value, enter the value or range of values on the
left side of the dialog box, then enter the new value that represents the recoding
of the old value(s) in the “New Value” box. Click Add to register each particular
recoding, and repeat until finished. Often the “All other value” choice is the last
choice for the “Old value”. You can also use the Change and Remove buttons
as needed to get a final correct “Old–>New” box. Click Continue to finalize the
coding scheme and return to the “Recode into Different Values” box. Then click
OK to create the new variable(s). If you want to go directly on to recode another
variable, I strongly suggest that you click the Reset button first to avoid confusion.

5.5.2 Automatic recoding

Automatic recode is used in SPSS when you have strings (words) as the actual data
levels and you want to convert to numbers (usually with Value labels). Among
other reasons, this conversion saves computer memory space.
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Figure 5.18: Automatic Recode Dialog Box.

From the Transform menu of the Data Editor menu, select “Automatic Recode”
to get the “Automatic Recode” dialog box as shown in figure 5.18. Choose a
variable, enter a new variable name in the “New Name” box and click “Add New
Name”. Repeat if desired for more variables. If there are missing data values
in the variable and they are coded as blanks, click “Treat blank string values as
user-missing”. Click OK to create the new variable. You will get some output in
the Output window showing the recoding scheme. A new variable will appear in
the Data Window. If you click the Value Labels toolbar button, you will see that
the new variable is really numeric with automatically created value labels.

5.5.3 Visual binning

SPSS has a option called “Visual Binning”, accessed through the Visual Binning
item on the Transformation menu, which allows you to interactively choose how
to create a categorical variable from a quantitative (scale) variable. In the “Visual
Binning” dialog box you select one or more quantitative (or ordinal) variables
to work with, then click Continue. The next dialog box is also called “Visual
Binning” and is shown in figure 5.19. Here you select a variable from the one(s)
you previously chose, then enter a new name for the categorical variable you want
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to create in the “Binned Variable” box (and optionally change its Label). A
histogram of the variable appears. Now you have several choices for creating the
“bins” that define the categories. One choice is to enter numbers in the Value
column (and optionally Labels). For the example in the figure, I entered 33 as
Value for line 1 and 50 for line 2, and the computer entered HIGH for line 3. I
also entered the labels. When I click “OK” the quantitative variable “Age” will
be recoded into a three level categorical variable based on my cutpoints.

Figure 5.19: Visual Binning dialog box: Entered interval cutpoints.

The alternative to directly entering interval cutpoints is to click “Make Cut-
points” to open the “Make Cutpoints” dialog box shown in figure 5.20. Here your
choices are to define some equal width intervals, equal percent intervals, or make
cutpoints at fixed standard deviation intervals around the mean. After defining
your cutpoints, click Apply to return to the histogram, which is now annotated
based on your definition. (If you don’t like the cutpoints edit them manually
or return to Make Cutpoints.) You should manually enter meaningful labels for
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the bins you have chosen or click “Make Labels” to get some computer generated
labels. Then click OK to make your new variable.

Figure 5.20: Visual Binning dialog box: Make cutpoints.

5.6 Non-graphical EDA

To tabulate a single categorical variable, i.e., get the numbers and percent
of cases at each level of the variable, use the Frequencies subitem under the De-
scriptive Statistics item of the Analyze menu. This is also useful for quantitative
variables with not too many unique values. When you choose your variable(s) and
click OK, the Frequency table will appear in the Output Window. The default out-
put (e.g., figure 5.21) shows each unique value, and its frequency and percent. The
“Valid Percent” column calculates percents for only the non-missing data, while
the “Percent” column only adds to 100% when you include the percent missing.
Cumulative Percent can be useful for ordinal data. It adds all of the Valid Percent
numbers for any row plus all rows above in the table, i.e. for any data value it
shows what percent of cases are less than or equal to that value.
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Figure 5.21: SPSS frequency table.

To cross-tabulate two or more categorical variables use the Crosstabs
subitem under the Descriptive Statistics item of the Analyze menu. This is also
useful for quantitative variables with not too many unique values. Enter one
variable under “Rows” and one under “Columns”. If you have a third variable,
enter it under “Layer”. (You can use the “Next” Layer button if you have more
than three variables to cross-tabulate, but that may be too hard to interpret. Click
OK to get the cross-tabulation of the variables. The default is to show only the
counts for each combination of levels of the variables. If you want percents, click
the “Cells” button before clicking OK; this gives the “Crosstabs: Cell Display”
dialog box from which you can select percentages that add to 100% across each
Row, down each “Column” or in “Total” across the whole cross-tabulation. Try to
think about which of these makes the most sense for understanding your dataset
it each particular case. Example output is shown in figure 5.22.

Figure 5.22: SPSS cross-tabulation.

For various univariate quantitative variable sample statistics use the



5.6. NON-GRAPHICAL EDA 125

Descriptives subitem under the Descriptive Statistics item of the Analyze menu.
Ordinarily you should use “Descriptives” for quantitative and possibly ordinal
variables. (It words, but rarely makes sense for nominal variables.) The default
is to calculate the sample mean, sample “Std. deviation”, sample minimum and
sample maximum. You can click on “Options” to access other sample statistics
such as sum, variance, range, kurtosis, skewness, and standard error of the mean.
Example output is show in figure 5.23. The sample size (and indication of any
missing values) is always given. Note that for skewness and kurtosis standard errors
are given. The rough rule-of-thumb for interpreting the skewness and kurtosis
statistics is to see if the absolute value of the statistic is smaller than twice the
standard error (labeled Std. Error) of the corresponding statistic. If so, there is no
good evidence of skewness (asymmetry) or kurtosis. If the absolute value is large
(compared to twice the standard error), then a positive number indicates right
skew or positive kurtosis respectively, and a negative number indicates left skew
or negative kurtosis.

Rule of thumb: Interpret skewness and kurtosis sample statistics by
comparing the absolute value of the statistic to twice the standard
error of the statistic. Small statistic value are consistent with the
zero skew and kurtosis of a Gaussian distribution.

Figure 5.23: SPSS descriptive statistics.

To get the correlation of two quantitative variables in SPSS, from the
Analyze menu item choose Correlate/Bivariate. Enter two (or more) quantitative
variables into the Variables box, then click OK. The output will show correlations
and a p-value for the test of zero correlation for each pair of variables. You may also
want to turn on calculation of means and standard deviations using the Options
button.Example output is show in figure 5.24. The “Pearson Correlation” statis-
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tic is the one that best estimates the population correlation of two quantitative
variables discussed in section 3.5.

Figure 5.24: SPSS correlation.

(To calculate the various types of correlation for categorical variables, run the
crosstabs, but click on the “Statistics” button and check “Correlations”.)

To calculate median or quartiles for a quantitative variable (or possi-
bly an ordinal variable) use Analyze/Frequencies (which is normally used just for
categorical data), click the Statistics button, and click median and/or quartiles.
Normally you would also uncheck “Display frequency tables” in the main Frequen-
cies dialog box to avoid voluminous, unenlightening output. Example output is
show in figure 5.25.

Figure 5.25: SPSS median and quantiles.
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5.7 Graphical EDA

5.7.1 Overview of SPSS Graphs

The Graphs menu item in SPSS version 16.0 has two sub-items: ChartBuilder and
LegacyDialogs. As you might guess, the legacy dialogs item access older ways to
create graphs. Here we will focus on the interactive Chart Builder approach. Note
that graph, chart, and plot are interchangeable terms.

There is a great deal of flexibility in building graphs, so only the principles are
given here.

When you select the Chart Builder menu item, it will bring up the Chart
Builder dialog box. Note the three main areas: the variable box at top left, the
chart preview area (also called the “canvas”) at top right, and the (unnamed)
lower area from which you can select a tab out of this group of tabs: Gallery, Basic
Elements, Groups/PointID, and Titles/Footnotes.

A view of the (empty) Chart Builder is shown in 5.26.

To create a graph, go to the Gallery tab, select a graph type on the left, then
choose a suitable template on the right, i.e. one that looks roughly like the graph
you want to create. Note that the templates have names that appear as pop-up
labels if you hover the mouse over them. Drag the appropriate template onto the
canvas at top right. A preview of your graph (but not based on your actual data)
will appear on the canvas.

The use of the Basic Elements tab is beyond the scope of this chapter.

The Groups/PointsID tab (5.27) serves both to add additional information
from auxiliary variables (Groups) and to aid in labeling outliers or other inter-
esting points (Point ID). After placing your template on the canvas, select the
Groups/PointID tab. Sex check boxes are present in this tab. The top five choices
refer to grouping, but only the ones appropriate for the chosen plot will be active.
Check whichever ones might be appropriate. For each checked box, a “drop zone”
will be added to the canvas, and adding an auxiliary variable into the drop zone
(see below) will, in some way that is particular to the kind of graph you are creat-
ing, cause the graphing to be split into groups based on each level of the auxiliary
variable. The “Point ID label” check box (where appropriate) adds a drop zone
which hold the name of the variable that you want to use to label outliers or other
special points. (If you don’t set this, the row number in the spreadsheet is used
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Figure 5.26: SPSS Empty Chart Builder.
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for labeling.)

Figure 5.27: SPSS Groups/Point ID tab of Chart Builder.

The Titles/Footnotes tab (5.28) has check boxes for titles and footnotes. Check
any that you need to appropriately annotate your graph. When you do so, the
Element Properties dialog box (5.29) will open. (You can also open and close this
box with the Element Properties button.) In the Element Properties box, select
each title and/or footnote, then enter the desired annotation in the “Content” box.

Figure 5.28: SPSS Titles/Footnote tab of Chart Builder.
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Figure 5.29: SPSS Element Properties dialog box.
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Next you will add all of the variables that participate in the production of your
graph to the appropriate places on the canvas. Note that when you click on any
categorical variable in the Variables box, its categories are listed below the variable
box. Drag appropriate variables into the pre-specified drop boxes (which vary with
the type of graph chosen, and may include things like the x-axis and y-axis), as
well as the drop boxes you created from the Groups/PointID tab.

You may want to revisit the Element Properties box and click through each
element of the “Edit Properties of” box to see if there are any properties you might
want to alter (e.g., the order of appearance of the levels of a categorical variable,
or the scale for a quantitative variable). Be sure to click the Apply button after
making any changes and before selecting another element or closing the Element
Properties box.

Finally click OK in the Chart Builder dialog box to create your plot. It will
appear at the end of your results in the SPSS Viewer window.

When you re-enter the Chart Builder, the old information will still be there,
and that is useful to tweak the appearance of a plot. If you want to create a new
plot unrelated to the previous plot, you will probably find it easiest to use the
Reset button to remove all of the old information.

5.7.2 Histogram

The basic univariate histogram for quantitative or categorical data is generated
by using the Simple Histogram template, which is the first one under Histogram
in the Gallery. Simply drag your variable onto the x-axis to define your histogram
(“Histogram” will appear on the y-axis.). For optionally grouping by a second
variable, check “Grouping/stacking variable” in the Groups/PointID tab, then
drag the second variable to the “Stack:set color” drop box. The latter is equivalent
to choosing the “Stacked Histogram” in the gallery.

A view of the Chart Builder after setting up a histogram is shown in 5.30.

The “Population Pyramid” template (on the right side of the set of Histogram
templates) is a nice way to display histograms of one variable at all levels of another
(categorical) variable.

To change the binning of a histogram, double click on the histogram in
the SPSS Viewer, which opens the Chart Editor (5.31), then double click on a
histogram bar in the Chart Editor to open the Properties dialog box (5.32). Be
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Figure 5.30: SPSS histogram setup.
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sure that the Binning tab is active. Under “X Axis” change from Automatic to
Custom, then enter either the desired number of intervals of the desired interval
width. Click apply to see the result. When you achieve the best result, click Close
in the Properties window, then close the Chart Editor window.

Figure 5.31: SPSS Chart Editor.

An example of a histogram produced in SPSS is shown in figure 5.33.

For histograms or any other graphs, it is a good idea to use the Titles/Footnote
tab to set an appropriate title, subtitle and/or footnote.

5.7.3 Boxplot

A boxplot for quantitative random variables is generated in SPSS by using one of
the three boxplot templates in the Gallery (called simple, clustered, and 1-D, from
left to right). The 1-D boxplot shows the distribution of a single variable. The
simple boxplot shows the distribution a one (quantitative) variable at each level
of another (categorical) variable. The clustered boxplot shows the distribution a
one (quantitative) variable at each level of two other categorical variables.
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Figure 5.32: Binning in the SPSS Chart Editor.

An example of the Chart Builder setup for a simple boxplot with ID labels is
shown in figure 5.34. The corresponding plot is in figure 5.35.

Other univariate graphs, such as pie charts and bar charts are also available
through the Chart Builder Gallery.

5.7.4 Scatterplot

A scatterplot is the best EDA for examining the relationship between two quanti-
tative variables, with a “point” on the plot for each subject. It is constructed using
templates from the Scatter/Dot section of the Chart Builder Gallery. The most
useful ones are the first two: Simple Scatter and Grouped Scatter. Grouped Scat-
ter adds the ability to show additional information from some categorical variable,
in the form of color or symbol shape.

Once you have placed the template on the canvas, drag the appropriate quan-
titative variables onto the x- and y-axes. If one variable is outcome and the other
explanatory, be sure to put the outcome on the vertical axis. A simple example is
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Figure 5.33: SPSS histogram.

shown in figure 5.36. The corresponding plot is in figure 5.37.

You can further modify a scatter plot by adding a best-fit straight line or a
“non-parametric” smooth curve. This is done using the Chart Editor rather than
the Chart Builder, so it is an addition to a scatterplot already created. Open
the Chart Editor by double clicking on the scatterplot in the SPSS Viewer win-
dow. Choose “Add Fit Line at Total” by clicking on the toolbar button that
looks like a scatterplot with a fit line through it, or by using the menu option
Elements/FitLineAtTotal. This brings up the a Properties box with a “Fit Line”
tab (5.38). The “Linear” Fit Method adds the best fit linear regression line. The
“Loess” Fit Method adds a “smoother” line to your scatterplot. The smoother line
is useful for detecting whether there is a non-linear relationship. (Technically it
is a kernel smoother.) There is a degree of subjectivity in the overall smoothness
vs. wiggliness of the smoother line, and you can adjust the “% of points to fit” to
change this. Also note that if you have groups defined with separate point colors
for each group, you can substitute “Add Fit Line at Subgroups” for “Add Fit Line
at Total” to have separate lines for each subgroup.
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Figure 5.34: SPSS boxplot setup in Chart Builder.
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Figure 5.35: SPSS boxplot.

Figure 5.36: SPSS scatterplot setup in Chart Builder.
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Figure 5.37: SPSS simple scatterplot.

Figure 5.38: SPSS Fit Line tab of Chart Editor.
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5.8 SPSS convenience item: Explore

The Analyze/DescriptiveStatistics/Explore menu item in SPSS is a convenience
menu item that performs several reasonable EDA steps, both graphical and non-
graphical for a quantitative outcome and a categorical explanatory variable (fac-
tor). “Explore” is not a standard statistical term; it is only an SPSS menu item.
So don’t use the term in any formal setting!

In the Explore dialog box you can enter one or more quantitative variables in
the “Dependent List” box and one or more categorical variables in the “Factor List”
box. For each variable in the “Factor List”, a complete section of output will be
produced. Each section of output examines each of the variables on the “Dependent
List” separately. For each outcome variable, graphical and non-graphical EDA are
produced that examine the outcome broken down into groups determined by the
levels of the “factor”. A partial example is given in figure 5.39. In addition to
the output shown in the figure, stem-and-leaf plots and side-by-side boxplots are
produced by default. The choice of plots and statistics can be changed in the
Explore dialog box.

This example has “strength” as the outcome and “sex” as the explanatory
variable (factor). The “Case Processing Summary” tells us the number of cases
and information about missing data separately for each level of the explanatory
variable. The “Descriptives” section gives a variety of statistics for the strength
outcome broken down separately for males and females. These statistics include
mean and confidence interval on the mean (i.e., the range of means for which we
are 95% confident that the true population mean parameter falls in). (The CI
is constructed using the “Std. Error” of the mean.) Most of the other statistics
should be familiar to you except for the “5% trimmed mean”; this is a “robust”
measure of central tendency equal to the mean of the data after throwing away the
highest and lowest 5% of the data. As mentioned on page 125, standard errors are
calculated for the sample skewness and kurtosis, and these can be used to judge
whether the observed values are close or far from zero (which are the expected
skewness and kurtosis values for Gaussian data).
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Figure 5.39: SPSS “Explore” output.



Chapter 6

The t-test and Basic Inference
Principles
The t-test is used as an example of the basic principles of statistical inference.

One of the simplest situations for which we might design an experiment is
the case of a nominal two-level explanatory variable and a quantitative outcome
variable. Table 6.1 shows several examples. For all of these experiments, the treat-
ments have two levels, and the treatment variable is nominal. Note in the table the
various experimental units to which the two levels of treatment are being applied
for these examples.. If we randomly assign the treatments to these units this will
be a randomized experiment rather than an observational study, so we will be able
to apply the word “causes” rather than just “is associated with” to any statisti-
cally significant result. This chapter only discusses so-called “between subjects”
explanatory variables, which means that we are assuming that each experimental
unit is exposed to only one of the two levels of treatment (even though that is not
necessarily the most obvious way to run the fMRI experiment).

This chapter shows one way to perform statistical inference for the two-group,
quantitative outcome experiment, namely the independent samples t-test. More
importantly, the t-test is used as an example for demonstrating the basic principles
of statistical inference that will be used throughout the book. The understanding
of these principles, along with some degree of theoretical underpinning, is key
to using statistical results intelligently. Among other things, you need to really
understand what a p-value and a confidence interval tell us, and when they can

141
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Experimental
units Explanatory variable Outcome variable

people placebo vs. vitamin C
time until the first cold symp-
toms

hospitals
control vs. enhanced hand
washing

number of infections in the next
six months

people math tutor A vs. math tutor B score on the final exam

people
neutral stimulus vs. fear stim-
ulus

ratio of fMRI activity in the
amygdala to activity in the hip-
pocampus

Table 6.1: Some examples of experiments with a quantitative outcome and a nom-
inal 2-level explanatory variable

and cannot be trusted.

An alternative inferential procedure is one-way ANOVA, which always gives
the same results as the t-test, and is the topic of the next chapter.

As mentioned in the preface, it is hard to find a linear path for learning exper-
imental design and analysis because so many of the important concepts are inter-
dependent. For this chapter we will assume that the subjects chosen to participate
in the experiment are representative, and that each subject is randomly assigned
to exactly one treatment. The reasons we should do these things and the conse-
quences of not doing them are postponed until the Threats chapter. For now we
will focus on the EDA and confirmatory analyses for a two-group between-subjects
experiment with a quantitative outcome. This will give you a general picture of
statistical analysis of an experiment and a good foundation in the underlying the-
ory. As usual, more advanced material, which will enhance your understanding
but is not required for a fairly good understanding of the concepts, is shaded in
gray.



6.1. CASE STUDY FROM THE FIELD OF HUMAN-COMPUTER INTERACTION (HCI)143

6.1 Case study from the field of Human-Computer

Interaction (HCI)

This (fake) experiment is designed to determine which of two background colors
for computer text is easier to read, as determined by the speed with which a
task described by the text is performed. The study randomly assigns 35 university
students to one of two versions of a computer program that presents text describing
which of several icons the user should click on. The program measures how long it
takes until the correct icon is clicked. This measurement is called “reaction time”
and is measured in milliseconds (ms). The program reports the average time for
20 trials per subject. The two versions of the program differ in the background
color for the text (yellow or cyan).

The data can be found in the file background.sav on this book’s web data site.
It is tab delimited with no header line and with columns for subject identification,
background color, and response time in milliseconds. The coding for the color
column is 0=yellow, 1=cyan. The data look like this:

Subject ID Color Time (ms)
NYP 0 859
...

...
...

MTS 1 1005

Note that in SPSS if you enter the “Values” for the two colors and turn on
“Value labels”, then the color words rather than the numbers will be seen in the
second column. Because this data set is not too large, it is possible to examine
it to see that 0 and 1 are the only two values for Color and that the time ranges
from 291 to 1005 milliseconds (or 0.291 to 1.005 seconds). Even for a dataset this
small, it is hard to get a good idea of the differences in response time across the
two colors just by looking at the numbers.

Here are some basic univariate exploratory data analyses. There is no point in
doing EDA for the subject IDs. For the categorical variable Color, the only useful
non-graphical EDA is a tabulation of the two values.

http://www.stat.cmu.edu/~hseltman/309/Book/data/background.sav
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Frequencies
Background Color

Percent Cumulative
Frequency Valid Percent Percent

Valid yellow 17 48.6 48.6 48.6
cyan 18 51.4 51.4 100.0
Total 35 100.0 100.0

The “Frequency” column gives the basic tabulation of the variable’s values.
Seventeen subjects were shown a yellow background, and 18 were shown cyan for
a total of 35 subjects. The “Percent Valid” vs. “Percent” columns in SPSS differ
only if there are missing values. The Percent Valid column always adds to 100%
across the categories given, while the Percent column will include a “Missing”
category if there are missing data. The Cumulative Percent column accounts for
each category plus all categories on prior lines of the table; this is not very useful
for nominal data.

This is non-graphical EDA. Other non-graphical exploratory analyses of Color,
such as calculation of mean, variance, etc. don’t make much sense because Color
is a categorical variable. (It is possible to interpret the mean in this case because
yellow is coded as 0 and cyan is coded as 1. The mean, 0.514, represents the
fraction of cyan backgrounds.) For graphical EDA of the color variable you could
make a pie or bar chart, but this really adds nothing to the simple 48.6 vs 51.4
percent numbers.

For the quantitative variable Reaction Time, the non-graphical EDA would
include statistics like these:

N Minimum Maximum Mean Std. Deviation
Reaction Time (ms) 35 291 1005 670.03 180.152

Here we can see that there are 35 reactions times that range from 291 to 1005
milliseconds, with a mean of 670.03 and a standard deviation of 180.152. We can
calculate that the variance is 180.1522 = 32454, but we need to look further at the
data to calculate the median or IQR. If we were to assume that the data follow a
Normal distribution, then we could conclude that about 95% of the data fall within
mean plus or minus 2 sd, which is about 310 to 1030. But such an assumption is
is most likely incorrect, because if there is a difference in reaction times between
the two colors, we would expect that the distribution of reaction times ignoring
color would be some bimodal distribution that is a mixture of the two individual
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reaction time distributions for the two colors..

A histogram and/or boxplot of reaction time will further help you get a feel for
the data and possibly find errors.

For bivariate EDA, we want graphs and descriptive statistics for the quantita-
tive outcome (dependent) variable Reaction Time broken down by the levels of the
categorical explanatory variable (factor) Background Color. A convenient way to
do this in SPSS is with the “Explore” menu option. Abbreviated results are shown
in this table and the graphical EDA (side-by-side boxplots) is shown in figure 6.1.

Background Std.Error
Color Statistics Std.Error

Reaction Yellow Mean 679.65 38.657
Time 95% Confidence Lower Bound 587.7

Interval for Mean Upper Bound 761.60
Median 683.05
Std. Deviation 159.387
Minimum 392
Maximum 906
Skewness -0.411 0.550
Kurtosis -0.875 1.063

Cyan Mean 660.94 47.621
95% Confidence Lower Bound 560.47
Interval for Mean Upper Bound 761.42
Median 662.38
Std. Deviation 202.039
Minimum 291
Maximum 1005
Skewness 0.072 0.536
Kurtosis -0.897 1.038

Very briefly, the mean reaction times for the subjects shown cyan backgrounds
is about 19 ms shorter than the mean for those shown yellow backgrounds. The
standard deviation of the reaction times is somewhat larger for the cyan group
than it is for the yellow group.
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Figure 6.1: Boxplots of reaction time by color.



6.2. HOW CLASSICAL STATISTICAL INFERENCE WORKS 147

EDA for the two-group quantitative outcome experiment should in-
clude examination of sample statistics for mean, standard deviation,
skewness, and kurtosis separately for each group, as well as boxplots
and histograms.

We should follow up on this EDA with formal statistical testing. But first we
need to explore some important concepts underlying such analyses.

6.2 How classical statistical inference works

In this section you will see ways to think about the state of the real world at a
level appropriate for scientific study, see how that plays out in experimentation, and
learn how we match up the real world to the theoretical constructs of probability
and statistics. In the next section you will see the details of how formal inference
is carried out and interpreted.

How should we think about the real world with respect to a simple two group
experiment with a continuous outcome? Obviously, if we were to repeat the entire
experiment on a new set of subjects, we would (almost surely) get different results.
The reasons that we would get different results are many, but they can be broken
down into several main groups (see section 8.5) such as measurement variability,
environmental variability, treatment application variability, and subject-to-subject
variability. The understanding of the concept that our experimental results are just
one (random) set out of many possible sets of results is the foundation of statistical
inference.

The key to standard (classical) statistical analysis is to consider what
types of results we would get if specific conditions are met and if
we were to repeat an experiment many times, and then to compare
the observed result to these hypothetical results and characterize how
“typical” the observed result is.
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6.2.1 The steps of statistical analysis

Most formal statistical analyses work like this:

1. Use your judgement to choose a model (mean and error components) that is
a reasonable match for the data from the experiment. The model is expressed
in terms of the population from which the subjects (and outcome variable)
were drawn. Also, define parameters of interest.

2. Using the parameters, define a (point) null hypothesis and a (usually com-
plex) alternative hypothesis which correspond to the scientific question of
interest.

3. Choose (or invent) a statistic which has different distributions under the null
and alternative hypotheses.

4. Calculate the null sampling distribution of the statistic.

5. Compare the observed (experimental) statistic to the null sampling distri-
bution of that statistic to calculate a p-value for a specific null hypothesis
(and/or use similar techniques to compute a confidence interval for a quantity
of interest).

6. Perform some kind of assumption checks to validate the degree of appropri-
ateness of the model assumptions.

7. Use your judgement to interpret the statistical inference in terms of the
underlying science.

Ideally there is one more step, which is the power calculation. This involves
calculating the distribution of the statistic under one or more specific (point) al-
ternative hypotheses before conducting the experiment so that we can assess the
likelihood of getting a “statistically significant” result for various “scientifically
significant” alternative hypotheses.

All of these points will now be discussed in more detail, both theoretically and
using the HCI example. Focus is on the two group, quantitative outcome case, but
the general principles apply to many other situations.
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Classical statistical inference involves multiple steps including defi-
nition of a model, definition of statistical hypotheses, selection of a
statistic, computation of the sampling distribution of that statistic,
computation of a p-value and/or confidence intervals, and interpreta-
tion.

6.2.2 Model and parameter definition

We start with definition of a model and parameters. We will assume that the
subjects are representative of some population of interest. In our two-treatment-
group example, we most commonly consider the parameters of interest to be the
population means of the outcome variable (true value without measurement error)
for the two treatments, usually designated with the Greek letter mu (µ) and two
subscripts. For now let’s use µ1 and µ2, where in the HCI example µ1 is the
population mean of reaction time for subjects shown the yellow background and µ2

is the population mean for those shown the cyan background. (A good alternative
is to use µY and µC , which are better mnemonically.)

It is helpful to think about the relationship between the treatment randomiza-
tion and the population parameters in terms of counterfactuals. Although we
have the measurement for each subject for the treatment (background color) to
which they were assigned, there is also “against the facts” a theoretical “counter-
factual” result for the treatment they did not get. A useful way to visualize this is
to draw each member of the population of interest in the shape of a person. Inside
this shape for each actual person (potential subject) are many numbers which are
their true values for various outcomes under many different possible conditions (of
treatment and environment). If we write the reaction time for a yellow background
near the right ear and the reaction time for cyan near the left ear, then the pa-
rameter µ1 is the mean of the right ear numbers over the entire population. It is
this parameter, a fixed, unknown “secret of nature” that we want to learn about,
not the corresponding (noisy) sample quantity for the random sample of subjects
randomly assigned to see a yellow background. Put another way, in essentially
every experiment that we run, the sample means of the outcomes for the treat-
ment groups differ, even if there is really no true difference between the outcome
mean parameters for the two treatments in the population, so focusing on those
differences is not very meaningful.
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Figure 6.2 shows a diagram demonstrating this way of thinking. The first two
subjects of the population are shown along with a few of their attributes. The
population mean of any attribute is a parameter that may be of interest in a par-
ticular experiment. Obviously we can define many parameters (means, variances,
etc.) for many different possible attributes, both marginally and conditionally on
other attributes, such as age, gender, etc. (see section 3.6).

It must be strongly emphasized that statistical inference is all about
learning what we can about the (unknowable) population parameters
and not about the sample statistics per se.

As mentioned in section 1.2 a statistical model has two parts, the structural
model and the error model. The structural model refers to defining the pattern
of means for groups of subjects defined by explanatory variables, but it does not
state what values these means take. In the case of the two group experiment,
simply defining the population means (without making any claims about their
equality or non-equality) defines the structural model. As we progress through the
course, we will have more complicated structural models.

The error model (noise model) defines the variability of subjects “in the same
group” around the mean for that group. (The meaning of “in the same group”
is obvious here, but is less so, e.g., in regression models.) We assume that we
cannot predict the deviation of individual measurements from the group mean
more exactly than saying that they randomly follow the probability distribution
of the error model.

For continuous outcome variables, the most commonly used error model is that
for each treatment group the distribution of outcomes in the population is nor-
mally distributed, and furthermore that the population variances of the groups are
equal. In addition, we assume that each error (deviation of an individual value
from the group population mean) is statistically independent of every other error.
The normality assumption is often approximately correct because (as stated in the
CLT) the sum of many small non-Normal random variables will be normally dis-
tributed, and most outcomes of interest can be thought of as being affected in some
additive way by many individual factors. On the other hand, it is not true that
all outcomes are normally distributed, so we need to check our assumptions before
interpreting any formal statistical inferences (step 5). Similarly, the assumption of
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Figure 6.2: A view of a population and parameters.
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equal variance is often but not always true.

The structural component of a statistical model defines the means of
groups, while the error component describes the random pattern of
deviation from those means.

6.2.3 Null and alternative hypotheses

The null and alternative hypotheses are statements about the population parame-
ters that express different possible characterizations of the population which cor-
respond to different scientific hypotheses. Almost always the null hypothesis is a
so-called point hypothesis in the sense that it defines a specific case (with an equal
sign), and the alternative is a complex hypothesis in that it covers many different
conditions with less than (<), greater than (>), or unequal (6=) signs.

In the two-treatment-group case, the usual null hypothesis is that the two
population means are equal, usually written as H0 : µ1 = µ2, where the symbol
H0, read “H zero” or “H naught” indicates the null hypothesis. Note that the null
hypothesis is usually interpretable as “nothing interesting is going on,” and that
is why the term null is used.

In the two-treatment-group case, the usual alternative hypothesis is that the
two population means are unequal, written as H1 : µ1 6= µ2 or HA : µ1 6= µ2 where
H1 or HA are interchangeable symbols for the alternative hypothesis. (Occasionally
we use an alternative hypothesis that states that one population mean is less than
the other, but in my opinion such a “one-sided hypothesis” should only be used
when the opposite direction is truly impossible.) Note that there are really an
infinite number of specific alternative hypotheses, e.g., |µ0−µ1| = 1, |µ0−µ1| = 2,
etc. It is in this sense that the alternative hypothesis is complex, and this is an
important consideration in power analysis.

The null hypothesis specifies patterns of mean parameters correspond-
ing to no interesting effects, while the alternative hypothesis usually
covers everything else.
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6.2.4 Choosing a statistic

The next step is to find (or invent) a statistic that has a different distribution
for the null and alternative hypotheses and for which we can calculate the null
sampling distribution (see below). It is important to realize that the sampling
distribution of the chosen statistic differs for each specific alternative, that there is
almost always overlap between the null and alternative distributions of the statistic,
and that the overlap is large for alternatives that reflect small effects and smaller
for alternatives that reflect large effects.

For the two-treatment-group experiment with a quantitative outcome a com-
monly used statistic is the so-called “t” statistic which is the difference between
the sample means (in either direction) divided by the (estimated) standard error
(see below) of that difference. Under certain assumptions it can be shown that
this statistic is “optimal” (in terms of power), but a valid test does not require
optimality and other statistics are possible. In fact we will encounter situations
where no one statistic is optimal, and different researchers might choose different
statistics for their formal statistical analyses.

Inference is usually based on a single statistic whose choice may or
may not be obvious or unique.

The standard error of the difference between two sample means is the
the standard deviation of the sampling distribution of the difference be-
tween the sample means. Statistical theory shows that under the assump-
tions of the t-test, the standard error of the difference is

SE(diff) = σ

√
1

n1

+
1

n2

where n1 and n2 are the group sample sizes. Note that this simplifies to√
2σ/
√
n when the sample sizes are equal.

In practice the estimate of the SE that uses an appropriate averaging
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of the observed sample variances is used.

estimated SE(diff) =

√√√√s2
1(df1) + s2

2(df2)

df1 + df2

(
1

n1

+
1

n2

)

where df1 = n1 − 1 and df2 = n2 − 1. This estimated standard error has
n1 + n2 − 2 = df1 + df2 degrees of freedom.

6.2.5 Computing the null sampling distribution

The next step in the general scheme of formal (classical) statistical analysis is
to compute the null sampling distribution of the chosen statistic. The null
sampling distribution of a statistic is the probability distribution of the statistic
calculated over repeated experiments under the conditions defined by the model
assumptions and the null hypothesis. For our HCI example, we consider what
would happen if the truth is that there is no difference in reaction times between
the two background colors, and we repeatedly sample 35 subjects and randomly
assign yellow to 17 of them and cyan to 18 of them, and then calculate the t-
statistic each time. The distribution of the t-statistics under these conditions is
the null sampling distribution of the t-statistic appropriate for this experiment.

For the HCI example, the null sampling distribution of the t-statistic can be
shown to match a well known, named continuous probability distribution called
the “t-distribution” (see section 3.9). Actually there are an infinite number of
t-distributions (a family of distributions) and these are named (indexed) by their
“degrees of freedom” (df). For the two-group quantitative outcome experiment,
the df of the t-statistic and its corresponding null sampling distribution is (n1 −
1) + (n2 − 1), so we will use the t-distribution with n1 + n2 − 2 df to make our
inferences. For the HCI experiment, this is 17+18-2=33 df.

The calculation of the mathematical form (pdf) of the null sampling distribu-
tion of any chosen statistic using the assumptions of a given model is beyond the
scope of this book, but the general idea can be seen in section 3.7.
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Probability theory (beyond the scope of this book) comes into play in
computing the null sampling distribution of the chosen statistic based
on the model assumptions.

You may notice that the null hypothesis of equal population means is
in some sense “complex” rather than “point” because the two means could
be both equal to 600, 601, etc. It turns out that the t-statistic has the same
null sampling distribution regardless of the exact value of the population
mean (and of the population variance), although it does depend on the
sample sizes, n1 and n2.

6.2.6 Finding the p-value

Once we have the null sampling distribution of a statistic, we can see whether or
not the observed statistic is “typical” of the kinds of values that we would expect
to see when the null hypothesis is true (which is the basic interpretation of the null
sampling distribution of the statistic). If we find that the observed (experimental)
statistic is typical, then we conclude that our experiment has not provided evidence
against the null hypothesis, and if we find it to be atypical, we conclude that we
do have evidence against the null hypothesis.

The formal language we use is to either “reject” the null hypothesis (in favor
of the alternative) or to “retain” the null hypothesis. The word “accept” is not
a good substitute for retain (see below). The inferential conclusion to “reject”
or “retain” the null hypothesis is simply a conjecture based on the evidence. But
whichever inference we make, there is an underlying truth (null or alternative) that
we can never know for sure, and there is always a chance that we will be wrong in
our conclusion even if we use all of our statistical tools correctly.

Classical statistical inference focuses on controlling the chance that we reject
the null hypothesis incorrectly when the underlying truth is that the null hypothesis
is correct. We call the erroneous conclusion that the null hypothesis is incorrect
when it is actually correct a Type 1 error. (But because the true state of the
null hypothesis is unknowable, we never can be sure whether or not we have made
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a Type 1 error in any specific actual situation.) A synonym for Type 1 error is
“false rejection” of the null hypothesis.

The usual way that we make a formal, objective reject vs. retain decision is to
calculate a p-value. Formally, a p-value is the probability that any given experi-
ment will produce a value of the chosen statistic equal to the observed value in our
actual experiment or something more extreme (in the sense of less compatible with
the null hypotheses), when the null hypothesis is true and the model assumptions
are correct. Be careful: the latter half of this definition is as important as the first
half.

A p-value is the probability that any given experiment will produce a
value of the chosen statistic equal to the observed value in our actual
experiment or something more extreme, when the null hypothesis is
true and the model assumptions are correct.

For the HCI example, the numerator of the t-statistic is the difference between
the observed sample means. Therefore values near zero support the null hypothesis
of equal population means, while values far from zero in either direction support
the alternative hypothesis of unequal population means. In our specific experiment
the t-statistic equals 0.30. A value of -0.30 would give exactly the same degree
of evidence for or against the null hypothesis (and the direction of subtraction is
arbitrary). Values smaller in absolute value than 0.30 are more suggestive that
the underlying truth is equal population means, while larger values support the
alternative hypothesis. So the p-value for this experiment is the probability of
getting a t-statistic greater than 0.30 or less than -0.30 based on the null sam-
pling distribution of the t-distribution with 33 df. As explained in chapter 3, this
probability is equal to the corresponding area under the curve of the pdf of the
null sampling distribution of the statistic. As shown in figure 6.3 the chance that
a random t-statistic is less than -0.30 if the null hypothesis is true is 0.382, as is
the chance that it is above +0.30. So the p-value equals 0.382+0.382=0.764, i.e.
76.4% of null experiments would give a t-value this large or larger (in absolute
value). We conclude that the observed outcome (t=0.30) is not uncommonly far
from zero when the null hypothesis is true, so we have no reason to believe that
the null hypothesis is false.

The usual convention (and it is only a convention, not anything stronger) is
to reject the null hypothesis if the p-value is less than or equal to 0.05 and retain
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Figure 6.3: Calculation of the p-value for the HCI example
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it otherwise. Under some circumstances it is more appropriate to use numbers
bigger or smaller than 0.05 for this decision rule. We call the cutoff value the
significance level of a test, and use the symbol alpha (α), with the conventional
alpha being 0.05. We use the phrase statistically significant at the 0.05 (or some
other) level, when the p-value is less than or equal to 0.05 (or some other value).
This indicates that if we have used a correct model, i.e., the model assumptions
mirror reality and if the null hypothesis happens to be correct, then a result like
ours or one even more “un-null-like” would happen at most 5% of the time. It
is reasonable to say that because our result is atypical for the null hypothesis,
then claiming that the alternative hypothesis is true is appropriate. But when we
get a p-value of less than or equal to 0.05 and we reject the null hypothesis, it is
completely incorrect to claim that there is only a 5% chance that we have made an
error. For more details see chapter 12.

You should never use the word “insignificant” to indicate a large p-value. Use
“not significant” or “non-significant” because “insignificant” implies no substantive
significance rather than no statistical significance.

The most common decision rule is to reject the null hypothesis if the
p-value is less than or equal to 0.05 and to retain it otherwise.

It is important to realize that the p-value is a random quantity. If we could
repeat our experiment (with no change in the underlying state of nature), then we
would get a different p-value. What does it mean for the p-value to be “correct”?
For one thing it means that we have made the calculation correctly, but since
the computer is doing the calculation we have no reason to doubt that. What is
more important is to ask whether the p-value that we have calculated is giving
us appropriate information. For one thing, when the null hypothesis is really true
(which we can never know for certain) an appropriate p-value will be less than
0.05 exactly 5% of the time over repeated experiments. So if the null hypothesis is
true, and if you and 99 of your friends independently conduct experiments, about
five of you will get p-values less than or equal to 0.05 causing you to incorrectly
reject the null hypothesis. Which five people this happens to has nothing to do
with the quality of their research; it just happens because of bad luck!

And if an alternative hypothesis is true, then all we know is that the p-value
will be less than or equal to 0.05 at least 5% of the time, but it might be as little
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6% of the time. So a “correct” p-value does not protect you from making a lot of
Type 2 errors which happen when you incorrectly retain the null hypothesis.

With Type 2 errors, something interesting is going on in nature, but you miss it.
See section 6.2.10 for more on this “power” problem.

We talk about an “incorrect” p-value mostly with regard to the situation where
the null hypothesis is the underlying truth. It is really the behavior of the p-value
over repeats of the experiment that is incorrect, and we want to identify what can
cause that to happen even though we will usually see only a single p-value for an
experiment. Because the p-value for an experiment is computed as an area under
the pdf of the null sampling distribution of a statistic, the main reason a p-value
is “incorrect” (and therefore misleading) is that we are not using the appropriate
null sampling distribution. That happens when the model assumptions used in
the computation of the null sampling distribution of the statistic are not close
to the reality of nature. For the t-test, this can be caused by non-normality of
the distributions (though this is not a problem if the sample size is large due
to the CLT), unequal variance of the outcome measure for the two-treatment-
groups, confounding of treatment group with important unmeasured explanatory
variables, or lack of independence of the measures (for example if some subjects are
accidentally measured in both groups). If any of these “assumption violations” are
sufficiently large, the p-value loses its meaning, and it is no longer an interpretable
quantity.

A p-value has meaning only if the correct null sampling distribution
of the statistic has been used, i.e., if the assumptions of the test are
(reasonably well) met. Computer programs generally give no warnings
when they calculate incorrect p-values.

6.2.7 Confidence intervals

Besides p-values, another way to express what the evidence of an experiment is
telling us is to compute one or more confidence intervals, often abbreviated CI.
We would like to make a statement like “we are sure that the difference between µ1

and µ2 is no more than 20 ms. That is not possible! We can only make statements
such as, “we are 95% confident that the difference between µ1 and µ2 is no more
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than 20 ms.” The choice of the percent confidence number is arbitrary; we can
choose another number like 99% or 75%, but note that when we do so, the width
of the interval changes (high confidence requires wider intervals).

The actual computations are usually done by computer, but in many instances
the idea of the calculation is simple.

If the underlying data are normally distributed, or if we are looking
at a sum or mean with a large sample size (and can therefore invoke the
CLT), then a confidence interval for a quantity (statistic) is computed as
the statistic plus or minus the appropriate “multiplier” times the estimated
standard error of the quantity. The multiplier used depends on both the
desired confidence level (e.g., 95% vs. 90%) and the degrees of freedom for
the standard error (which may or may not have a simple formula). The
multiplier is based on the t-distribution which takes into account the uncer-
tainty in the standard deviation used to estimate the standard error. We
can use a computer or table of the t-distribution to find the multiplier as
the value of the t-distribution for which plus or minus that number covers
the desired percentage of the t-distribution with the correct degrees of free-
dom. If we call the quantity 1-(confidence percentage)/100 as alpha (α),
then the multiplier is the 1-α/2 quantile of the appropriate t-distribution.

For our HCI example the 95% confidence interval for the fixed, unknown,
“secret-of-nature” that equals µ1 − µ2 is [-106.9, 144.4]. We are 95% confident
that the mean reaction time is between 106.9 ms shorter and 144.4 ms longer for
the yellow background compared to cyan. The meaning of this statement is that
if all of the assumptions are met, and if we repeat the experiment many times,
the random interval that we compute each time will contain the single, fixed, true
parameter value 95% of the time. Similar to the interpretation a p-value, if 100
competent researchers independently conduct the same experiment, by bad luck
about five of them will unknowingly be incorrect if they claim that the 95% confi-
dence interval that they correctly computed actually contains the true parameter
value.

Confidence intervals are in many ways more informative than p-values. Their
greatest strength is that they help a researcher focus on substantive significance
in addition to statistical significance. Consider a bakery that does an experiment
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to see if an additional complicated step will reduce waste due to production of
unsaleable, misshapen cupcakes. If the amount saved has a 95% CI of [0.1, 0.3]
dozen per month with a p-value of 0.02, then even though this would be statistically
significant, it would not be substantively significant.

In contrast, if we had a 95% CI of [-30, 200] dozen per month with p=0.15,
then even though this not statistically significant, the inclusion of substantively
important values like 175 dozen per month tells us that the experiment has not
provided enough information to make a good, real world conclusion.

Finally, if we had a 95% CI of [-0.1, 0.2] dozen per month with p=0.15, we
would conclude that even if a real non-zero difference exists, its magnitude is not
enough to add the complex step to our cupcake making.

Confidence intervals can add a lot of important real world informa-
tion to p-values and help us complement statistical significance with
substantive significance.

The slight downside to CIs and substantive significance is that they are hard
to interpret if you don’t know much about your subject matter. This is usually
only a problem for learning exercises, not for real experiments.

6.2.8 Assumption checking

We have seen above that the p-value can be misleading or “wrong” if the model
assumptions used to construct the statistic’s sampling distribution are not close
enough to the reality of the situation. To protect against being mislead, we usu-
ally perform some assumption checking after conducting an analysis but before
considering its conclusions.

Depending on the model, assumption checking can take several different forms.
A major role is played by examining the model residuals. Remember that our
standard model says that for each treatment group the best guess (the expected
or predicted value) for each observation is defined by the means of the structural
model. Then the observed value for each outcome observation is deviated higher
or lower than the true mean. The error component of our model describes the
distribution of these deviations, which are called errors. The residuals, which are
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defined as observed minus expected value for each outcome measurement, are our
best estimates of the unknowable, true errors for each subject. We will examine
the distribution of the residuals to allow us to make a judgment about whether or
not the distribution of the errors is consistent with the error model.

Assumption checking is needed to verify that the assumptions involved
in the initial model construction were good enough to allow us to
believe our inferences.

Defining groups among which all subjects have identical predictions may be
complicated for some models, but is simple for the 2-treatment-group model. For
this situation, all subjects in either one of the two treatment groups appear to
be identical in the model, so they must have the same prediction based on the
model. For the t-test, the observed group means are the two predicted values from
which the residuals can be computed. Then we can check if the residuals for each
group follow a Normal distribution with equal variances for the two groups (or
more commonly, we check the equality of the variances and check the normality of
the combined set of residuals).

Another important assumption is the independence of the errors. There should
be nothing about the subjects that allows us to predict the sign or the magnitude
of one subject’s error just by knowing the value of another specific subject’s error.
As a trivial example, if we have identical twins in a study, it may well be true
that their errors are not independent. This might also apply to close friends in
some studies. The worst case is to apply both treatments to each subject, and
then pretend that we used two independent samples of subjects. Usually there
is no way to check the independence assumption from the data; we just need to
think about how we conducted the experiment to consider whether the assumption
might have been violated. In some cases, because the residuals can be looked upon
as a substitute for the true unknown errors, certain residual analyses may shed
light on the independent errors assumption.

You can be sure that the underlying reality of nature is never perfectly cap-
tured by our models. This is why statisticians say “all models are wrong, but some
are useful.” It takes some experience to judge how badly the assumptions can be
bent before the inferences are broken. For now, a rough statement can be made
about the independent samples t-test: we need to worry about the reasonableness
of the inference if the normality assumption is strongly violated, if the equal vari-
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ance assumption is moderately violated, or if the independent errors assumption
is mildly violated. We say that a statistical test is robust to a particular model
violation if the p-value remains approximately “correct” even when the assumption
is moderately or severely violated.

All models are wrong, but some are useful. It takes experience and
judgement to evaluate model adequacy.

6.2.9 Subject matter conclusions

Applying subject matter knowledge to the confidence interval is one key form of
relating statistical conclusions back to the subject matter of the experiment. For
p-values, you do something similar with the reject/retain result of your decision
rule. In either case, an analysis is incomplete if you stop at reporting the p-value
and/or CI without returning to the original scientific question(s).

6.2.10 Power

The power of an experiment is defined for specific alternatives, e.g., |µ1 − µ2| =
100, rather than for the entire, complex alternative hypothesis. The power of
an experiment for a given alternative hypothesis is the chance that we will get a
statistically significant result (reject the null hypothesis) when that alternative is
true for any one realization of the experiment. Power varies from α to 1.00 (or
100α% to 100%). The concept of power is related to Type 2 error, which is the
error we make when we retain the null hypothesis when a particular alternative is
true. Usually the rate of making Type 2 errors is symbolized by beta (β). Then
power is 1-β or 100-100β%. Typically people agree that 80% power (β=20%) for
some substantively important effect size (specific magnitude of a difference as
opposed to the zero difference of the null hypothesis) is a minimal value for good
power.

It should be fairly obvious that for any given experiment you have more power
to detect a large effect than a small one.

You should use the methods of chapter 12 to estimate the power of any exper-
iment before running it. This is only an estimate or educated guess because some
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needed information is usually not known. Many, many experiments are performed
which have insufficient power, often in the 20-30% range. This is horrible! It
means that even if you are studying effective treatments, you only have a 20-30%
chance of getting a statistically significant result. Combining power analysis with
intelligent experimental design to alter the conduct of the experiment to maximize
its power is a quality of a good scientist.

Poor power is a common problem. It cannot be fixed by statistical
analysis. It must be dealt with before running your experiment.

For now, the importance of power is how it applies to inference. If you get a
small p-value, power becomes irrelevant, and you conclude that you should reject
the null hypothesis, always realizing that there is a chance that you might be
making a Type 1 error. If you get a large p-value, you “retain” the null hypothesis.
If the power of the experiment is small, you know that a true null hypothesis and
a Type 2 error are not distinguishable. But if you have good power for some
reasonably important sized effect, then a large p-value is good evidence that no
important sized effect exists, although a Type 2 error is still possible.

A non-significant p-value and a low power combine to make an exper-
iment totally uninformative.

In a nutshell: All classical statistical inference is based on the same
set of steps in which a sample statistic is compared to the kinds of
values we would expect it to have if nothing interesting is going on,
i.e., if the null hypothesis is true.

6.3 Do it in SPSS

Figure 6.4 shows the Independent Samples T-test dialog box.
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Figure 6.4: SPSS “Explore” output.

Before performing the t-test, check that your outcome variable has Measure
“scale” and that you know the numeric codes for the two levels of your categorical
(nominal) explanatory variable.

To perform an independent samples t-test in SPSS, use the menu item ”Inde-
pendent Samples T-Test” found under Analyze/CompareMeans. Enter the out-
come (dependent) variable into the Test Variables box. Enter the categorical ex-
planatory variable into the Grouping Variable box. Click “Define Groups” and
enter the numeric codes for the two levels of the explanatory variable and click
Continue. Then click OK to produce the output. (The t-statistic will be calcu-
lated in the direction that subtracts the level you enter second from the level you
enter first.)

For the HCI example, put Reaction Time in the Test Variables box, and Back-
ground Color in the Grouping Variable box. For Define Groups enter the codes 0
and 1.

6.4 Return to the HCI example

The SPSS output for the independent samples (two-sample) t-test for the HCI text
background color example is shown in figure 6.5.

The group statistics are very important. In addition to verifying that all of
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Figure 6.5: t-test for background experiment.

the subjects were included in the analysis, they let us see which group did better.
Reporting a statistically significant difference without knowing in which direction
the effect runs is a cardinal sin in statistics! Here we see that the mean reaction
time for the “yellow” group is 680 ms while the mean for the “cyan” group is 661
ms. If we find a statistically significant difference, the direction of the effect is
that those tested with a cyan background performed better (faster reaction time).
The sample standard deviation tells us about the variability of reaction times: if
the reaction times are roughly Normal in distribution, then approximately 2/3
of the people when shown a yellow background score within 159 ms of the mean
of 680 ms (i.e., between 521 and 839 ms), and approximately 95% of the people
shown a yellow background score within 2*159=318 ms of 680 ms. Other than
some uncertainty in the sample mean and standard deviation, this conclusion is
unaffected by changing the size of the sample.

The means from “group statistics” show the direction of the effect
and the standard deviations tell us about the inherent variability of
what we are measuring.
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The standard error of the mean (SEM) for a sample tells us about how well we
have “pinned down” the population mean based on the inherent variability of the
outcome and the sample size. It is worth knowing that the estimated SEM is equal
to the standard deviation of the sample divided by the square root of the sample
size. The less variable a measurement is and the bigger we make our sample, the
better we can “pin down” the population mean (what we’d like to know) using
the sample (what we can practically study). I am using “pin down the population
mean” as a way of saying that we want to quantify in a probabilistic sense in what
possible interval our evidence places the population mean and how confident we
are that it really falls into that interval. In other words we want to construct
confidence intervals for the group population means.

When the statistic of interest is the sample mean, as we are focusing on now,
we can use the central limit theorem to justify claiming that the (sampling) distri-
bution of the sample mean is normally distributed with standard deviation equal
to σ√

n
where σ is the true population standard deviation of the measurement. The

standard deviation of the sampling distribution of any statistic is called its stan-
dard error. If we happen to know the value of σ, then we are 95% confident that
the interval x̄± 1.96( σ√

n
) contains the true mean, µ. Remember that the meaning

of a confidence interval is that if we could repeat the experiment with a new sam-
ple many times, and construct a confidence interval each time, they would all be
different and 95% (or whatever percent we choose for constructing the interval) of
those intervals will contain the single true value of µ.

Technically, if the original distribution of the data is normally dis-
tributed, then the sampling distribution of the mean is normally distributed
regardless of the sample size (and without using the CLT). Using the CLT,
if certain weak technical conditions are met, as the sample size increases,
the shape of the sampling distribution of the mean approaches the Normal
distribution regardless of the shape of the data distribution. Typically,
if the data distribution is not too bizarre, a sample size of at least 20 is
enough to cause the sampling distribution of the mean to be quite close to
the Normal distribution.

Unfortunately, the value of σ is not usually known, and we must substitute
the sample estimate, s, instead of σ into the standard error formula, giving an
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estimated standard error. Commonly the word “estimated” is dropped from the
phrase “estimated standard error”, but you can tell from the context that σ is
not usually known and s is taking its place. For example, the estimated standard
deviation of the (sampling) distribution of the sample mean is called the standard
error of the mean (usually abbreviated SEM), without explicitly using the word
“estimated”.

Instead of using 1.96 (or its rounded value, 2) times the standard deviation of
the sampling distribution to calculate the “plus or minus” for a confidence interval,
we must use a different multiplier when we substitute the estimated SEM for the
true SEM. The multiplier we use is the value (quantile) of a t-distribution that
defines a central probability of 95% (or some other value we choose). This value is
calculated by the computer (or read off of a table of the t-distribution), but it does
depend on the number of degrees of freedom of the standard deviation estimate,
which in the simplest case is n−1 where n is the number of subjects in the specific
experimental group of interest. When calculating 95% confidence intervals, the
multiplier can be as large as 4.3 for a sample size of 3, but shrinks towards 1.96
as the sample size grows large. This makes sense: if we are more uncertain about
the true value of σ, we need to make a less well defined (wider) claim about where
µ is.

So practically we interpret the SEM this way: we are roughly 95% certain that
the true mean (µ) is within about 2 SEM of the sample mean (unless the sample
size is small).

The mean and standard error of the mean from “group statistics” tell
us about how well we have “pinned down” the population mean based
on the inherent variability of the measure and the sample size.

The “Independent Samples Test” box shows the actual t-test results under the
row labeled “Equal variances assumed”. The columns labeled “Levene’s Test for
Equality of Variances” are not part of the t-test; they are part of a supplementary
test of the assumption of equality of variances for the two groups. If the Levene’s
Test p-value (labeled “Sig” , for “significance”, in SPSS output) is less than or
equal to 0.05 then we would begin to worry that the equal variance assumption is
violated, thus casting doubt on the validity of the t-test’s p-value. For our example,
the Levene’s test p-value of 0.272 suggests that there is no need for worry about
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that particular assumption.

The seven columns under “t-test for Equality of Means” are the actual t-test
results. The t-statistic is given as 0.30. It is negative when the mean of the second
group entered is larger than that of the first. The degrees of freedom are given
under “df”. The p-value is given under “Sig. (2-tailed)”. The actual difference
of the means is given next. The standard error of that difference is given next.
Note that the t-statistic is computed from the difference of means and the SE of
that difference as difference/(SE of difference). Finally a 95% confidence interval
is given for the difference of means. (You can use the Options button to compute
a different sized confidence interval.)

SPSS (but not many other programs) automatically gives a second line labeled
“Equal variances not assumed”. This is from one of the adjusted formulas to cor-
rect for unequal group variances. The computation of a p-value in the unequal
variance case is quite an unsettled and contentious problem (called the Behrens-
Fisher problem) and the answer given by SPSS is reasonably good, but not gen-
erally agreed upon. So if the p-value of the Levene’s test is less than or equal to
0.05, many people would use the second line to compute an adjusted p-value (“Sig.
(2-tailed)”), SEM, and CI based on a different null sampling distribution for the
t-statistic in which the df are adjusted an appropriate amount downward. If there
is no evidence of unequal variances, the second line is just ignored.

For model assumption checking, figure 6.6 shows separate histograms of the
residuals for the two groups with overlaid Normal pdfs. With such a small sample
size, we cannot expect perfectly shaped Normal distributions, even if the Normal
error model is perfectly true. The histograms of the residuals in this figure look
reasonably consistent with Normal distributions with fairly equal standard devi-
ation, although normality is hard to judge with such a small sample. With the
limited amount of information available, we cannot expect to make definite con-
clusions about the model assumptions of normality or equal variance, but we can
at least say that we do not see evidence of the kind of gross violation of these
assumptions that would make us conclude that the p-value is likely to be highly
misleading. In more complex models, we will usually substitute a “residual vs.
fit” plot and a quantile-normal plot of the residuals for these assumption checking
plots.
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Figure 6.6: Histograms of residuals.

In a nutshell: To analyze a two-group quantitative outcome experi-
ment, first perform EDA to get a sense of the direction and size of the
effect, to assess the normality and equal variance assumptions, and
to look for mistakes. Then perform a t-test (or equivalently, a one-
way ANOVA). If the assumption checks are OK, reject or retain the
null hypothesis of equal population means based on a small or large
p-value, respectively.



Chapter 7

One-way ANOVA
One-way ANOVA examines equality of population means for a quantitative out-
come and a single categorical explanatory variable with any number of levels.

The t-test of Chapter 6 looks at quantitative outcomes with a categorical ex-
planatory variable that has only two levels. The one-way Analysis of Variance
(ANOVA) can be used for the case of a quantitative outcome with a categorical
explanatory variable that has two or more levels of treatment. The term one-
way, also called one-factor, indicates that there is a single explanatory variable
(“treatment”) with two or more levels, and only one level of treatment is applied
at any time for a given subject. In this chapter we assume that each subject is ex-
posed to only one treatment, in which case the treatment variable is being applied
“between-subjects”. For the alternative in which each subject is exposed to several
or all levels of treatment (at different times) we use the term “within-subjects”,
but that is covered Chapter 14. We use the term two-way or two-factor ANOVA,
when the levels of two different explanatory variables are being assigned, and each
subject is assigned to one level of each factor.

It is worth noting that the situation for which we can choose between one-way
ANOVA and an independent samples t-test is when the explanatory variable has
exactly two levels. In that case we always come to the same conclusions regardless
of which method we use.

The term “analysis of variance” is a bit of a misnomer. In ANOVA we use
variance-like quantities to study the equality or non-equality of population means.
So we are analyzing means, not variances. There are some unrelated methods,
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such as “variance component analysis” which have variances as the primary focus
for inference.

7.1 Moral Sentiment Example

As an example of application of one-way ANOVA consider the research reported
in “Moral sentiments and cooperation: Differential influences of shame and guilt”
by de Hooge, Zeelenberg, and M. Breugelmans (Cognition & Emotion,21(5): 1025-
1042, 2007).

As background you need to know that there is a well-established theory of Social
Value Orientations or SVO (see Wikipedia for a brief introduction and references).
SVOs represent characteristics of people with regard to their basic motivations.
In this study a questionnaire called the Triple Dominance Measure was used to
categorize subjects into “proself” and “prosocial” orientations. In this chapter we
will examine simulated data based on the results for the proself individuals.

The goal of the study was to investigate the effects of emotion on cooperation.
The study was carried out using undergraduate economics and psychology students
in the Netherlands.

The sole explanatory variable is “induced emotion”. This is a nominal cat-
egorical variable with three levels: control, guilt and shame. Each subject was
randomly assigned to one of the three levels of treatment. Guilt and shame were
induced in the subjects by asking them to write about a personal experience where
they experienced guilt or shame respectively. The control condition consisted of
having the subject write about what they did on a recent weekday. (The validity
of the emotion induction was tested by asking the subjects to rate how strongly
they were feeling a variety of emotions towards the end of the experiment.)

After inducing one of the three emotions, the experimenters had the subjects
participate in a one-round computer game that is designed to test cooperation.
Each subject initially had ten coins, with each coin worth 0.50 Euros for the
subject but 1 Euro for their “partner” who is presumably connected separately
to the computer. The subjects were told that the partners also had ten coins,
each worth 0.50 Euros for themselves but 1 Euro for the subject. The subjects
decided how many coins to give to the interaction partner, without knowing how
many coins the interaction partner would give. In this game, both participants
would earn 10 Euros when both offered all coins to the interaction partner (the

http://en.wikipedia.org/wiki/Social_Value_Orientations
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cooperative option). If a cooperator gave all 10 coins but their partner gave none,
the cooperator could end up with nothing, and the partner would end up with the
maximum of 15 Euros. Participants could avoid the possibility of earning nothing
by keeping all their coins to themselves which is worth 5 Euros plus 1 Euro for each
coin their partner gives them (the selfish option). The number of coins offered was
the measure of cooperation.

The number of coins offered (0 to 10) is the outcome variable, and is called
“cooperation”. Obviously this outcome is related to the concept of “cooperation”
and is in some senses a good measure of cooperation, but just as obviously, it is
not a complete measure of the concept.

Cooperation as defined here is a discrete quantitative variable with a limited
range of possible values. As explained below, the Analysis of Variance statistical
procedure, like the t-test, is based on the assumption of a Gaussian distribution
of the outcome at each level of the (categorical) explanatory variable. In this
case, it is judged to be a reasonable approximation to treat “cooperation” as a
continuous variable. There is no hard-and-fast rule, but 11 different values might
be considered borderline, while, e.g., 5 different values would be hard to justify as
possibly consistent with a Gaussian distribution.

Note that this is a randomized experiment. The levels of “treatment” (emotion
induced) are randomized and assigned by the experimenter. If we do see evidence
that “cooperation” differs among the groups, we can validly claim that induced
emotion causes different degrees of cooperation. If we had only measured the
subjects’ current emotion rather than manipulating it, we could only conclude
that emotion is associated with cooperation. Such an association could have other
explanations than a causal relationship. E.g., poor sleep the night before could
cause more feelings of guilt and more cooperation, without the guilt having any
direct effect on cooperation. (See section 8.1 for more on causality.)

The data can be found in MoralSent.dat. The data look like this:

emotion cooperation
Control 3
Control 0
Control 0

Typical exploratory data analyses include a tabulation of the frequencies of the
levels of a categorical explanatory variable like “emotion”. Here we see 39 controls,
42 guilt subjects, and 45 shame subjects. Some sample statistics of cooperation
broken down by each level of induced emotion are shown in table 7.1, and side-by-

http://www.stat.cmu.edu/~hseltman/309/Book/data/MoralSent.dat
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Figure 7.1: Boxplots of cooperation by induced emotion.

side boxplots shown in figure 7.1.

Our initial impression is that cooperation is higher for guilt than either shame
or the control condition. The mean cooperation for shame is slightly lower than
for the control. In terms of pre-checking model assumptions, the boxplots show
fairly symmetric distributions with fairly equal spread (as demonstrated by the
comparative IQRs). We see four high outliers for the shame group, but careful
thought suggests that this may be unimportant because they are just one unit of
measurement (coin) into the outlier region and that region may be “pulled in’ a
bit by the slightly narrower IQR of the shame group.
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Induced
emo-
tion Statistic Std.Error

Cooperation Control Mean 3.49 0.50
score 95% Confidence Lower Bound 2.48

Interval for Mean Upper Bound 4.50
Median 3.00
Std. Deviation 3.11
Minimum 0
Maximum 10
Skewness 0.57 0.38
Kurtosis -0.81 0.74

Guilt Mean 5.38 0.50
95% Confidence Lower Bound 4.37
Interval for Mean Upper Bound 6.39
Median 6.00
Std. Deviation 3.25
Minimum 0
Maximum 10
Skewness -0.19 0.36
Kurtosis -1.17 0.72

Shame Mean 3.78 0.44
95% Confidence Lower Bound 2.89
Interval for Mean Upper Bound 4.66
Median 4.00
Std. Deviation 2.95
Minimum 0
Maximum 10
Skewness 0.71 0.35
Kurtosis -0.20 0.70

Table 7.1: Group statistics for the moral sentiment experiment.
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7.2 How one-way ANOVA works

7.2.1 The model and statistical hypotheses

One-way ANOVA is appropriate when the following model holds. We have a single
“treatment” with, say, k levels. “Treatment” may be interpreted in the loosest
possible sense as any categorical explanatory variable. There is a population of
interest for which there is a true quantitative outcome for each of the k levels
of treatment. The population outcomes for each group have mean parameters
that we can label µ1 through µk with no restrictions on the pattern of means.
The population variances for the outcome for each of the k groups defined by the
levels of the explanatory variable all have the same value, usually called σ2, with
no restriction other than that σ2 > 0. For treatment i, the distribution of the
outcome is assumed to follow a Normal distribution with mean µi and variance σ2,
often written N(µi, σ

2).

Our model assumes that the true deviations of observations from their corre-
sponding group mean parameters, called the “errors”, are independent. In this
context, independence indicates that knowing one true deviation would not help
us predict any other true deviation. Because it is common that subjects who have
a high outcome when given one treatment tend to have a high outcome when given
another treatment, using the same subject twice would violate the independence
assumption.

Subjects are randomly selected from the population, and then randomly as-
signed to exactly one treatment each. The number of subjects assigned to treat-
ment i (where 1 ≤ i ≤ k) is called ni if it differs between treatments or just n if
all of the treatments have the same number of subjects. For convenience, define
N =

∑k
i=1 ni, which is the total sample size.

(In case you have forgotten, the Greek capital sigma (Σ) stands for summation,
i.e., adding. In this case, the notation says that we should consider all values of
ni where i is set to 1, 2, . . . , k, and then add them all up. For example, if
we have k = 3 levels of treatment, and the group samples sizes are 12, 11, and 14
respectively, then n1 = 12, n2 = 11, n3 = 14 and N =

∑k
i=1 ni = n1 + n2 + n3 =

12 + 11 + 14 = 37.)

Because of the random treatment assignment, the sample mean for any treat-
ment group is representative of the population mean for assignment to that group
for the entire population.
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Technically, the sample group means are unbiased estimators of the
population group means when treatment is randomly assigned. The mean-
ing of unbiased here is that the true mean of the sampling distribution of
any group sample mean equals the corresponding population mean. Fur-
ther, under the Normality, independence and equal variance assumptions
it is true that the sampling distribution of Ȳi is N(µi, σ

2/ni), exactly.

The statistical model for which one-way ANOVA is appropriate is that
the (quantitative) outcomes for each group are normally distributed
with a common variance (σ2). The errors (deviations of individual
outcomes from the population group means) are assumed to be inde-
pendent. The model places no restrictions on the population group
means.

The term assumption in statistics refers to any specific part of a statistical
model. For one-way ANOVA, the assumptions are normality, equal variance, and
independence of errors. Correct assignment of individuals to groups is sometimes
considered to be an implicit assumption.

The null hypothesis is a point hypothesis stating that “nothing interesting is
happening.” For one-way ANOVA, we use H0 : µ1 = · · · = µk, which states that all
of the population means are equal, without restricting what the common value is.
The alternative must include everything else, which can be expressed as “at least
one of the k population means differs from all of the others”. It is definitely wrong
to use HA : µ1 6= · · · 6= µk because some cases, such as µ1 = 5, µ2 = 5, µ3 = 10,
are neither covered by H0 nor this incorrect HA. You can write the alternative
hypothesis as “HA : Not µ1 = · · · = µk or “the population means are not all equal”.

One way to correctly write HA mathematically is HA : ∃ i, j : µi 6= µj.

This null hypothesis is called the “overall” null hypothesis and is the hypothesis
tested by ANOVA, per se. If we have only two levels of our categorical explanatory
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variable, then retaining or rejecting the overall null hypothesis, is all that needs to
be done in terms of hypothesis testing. But if we have 3 or more levels (k ≥ 3),
then we usually need to followup on rejection of the overall null hypothesis with
more specific hypotheses to determine for which population group means we have
evidence of a difference. This is called contrast testing and discussion of it will be
delayed until chapter 13.

The overall null hypothesis for one-way ANOVA with k groups is
H0 : µ1 = · · · = µk. The alternative hypothesis is that “the population
means are not all equal”.

7.2.2 The F statistic (ratio)

The next step in standard inference is to select a statistic for which we can compute
the null sampling distribution and that tends to fall in a different region for the
alternative than the null hypothesis. For ANOVA, we use the “F-statistic”. The
single formula for the F-statistic that is shown in most textbooks is quite complex
and hard to understand. But we can build it up in small understandable steps.

Remember that a sample variance is calculated as SS/df where SS is “sum of
squared deviations from the mean” and df is “degrees of freedom” (see page 69).
In ANOVA we work with variances and also “variance-like quantities” which are
not really the variance of anything, but are still calculated as SS/df. We will call
all of these quantities mean squares or MS. i.e., MS = SS/df , which is a key
formula that you should memorize. Note that these are not really means, because
the denominator is the df, not n.

For one-way ANOVA we will work with two different MS values called “mean
square within-groups”, MSwithin, and “mean square between-groups”, MSbetween.
We know the general formula for any MS, so we really just need to find the formulas
for SSwithin and SSbetween, and their corresponding df.

The F statistic denominator: MSwithin

MSwithin is a “pure” estimate of σ2 that is unaffected by whether the null or alter-
native hypothesis is true. Consider figure 7.2 which represents the within-group
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deviations used in the calculation of MSwithin for a simple two-group experiment
with 4 subjects in each group. The extension to more groups and/or different
numbers of subjects is straightforward.

0 20

Group 1

Group 2

Ȳ1 = 4.25

Ȳ2 = 14.00

Figure 7.2: Deviations for within-group sum of squares

The deviation for subject j of group i in figure 7.2 is mathematically
equal to Yij − Ȳi where Yij is the observed value for subject j of group i
and Ȳi is the sample mean for group i.

I hope you can see that the deviations shown (black horizontal lines extending
from the colored points to the colored group mean lines) are due to the underlying
variation of subjects within a group. The variation has standard deviation σ, so
that, e.g., about 2/3 of the times the deviation lines are shorter than σ. Regardless
of the truth of the null hypothesis, for each individual group, MSi = SSi/dfi is a
good estimate of σ2. The value of MSwithin comes from a statistically appropriate
formula for combining all of the k separate group estimates of σ2. It is important
to know that MSwithin has N − k df.

For an individual group, i, SSi =
∑ni
j=1(Yij − Ȳi)2 and dfi = ni − 1. We

can use some statistical theory beyond the scope of this course to show
that in general, MSwithin is a good (unbiased) estimate of σ2 if it is defined
as

MSwithin = SSwithin/dfwithin
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where SSwithin =
∑k
i=1 SSi, and dfwithin =

∑k
i=1 dfi =

∑k
i=1(ni−1) = N−k.

MSwithin is a good estimate of σ2 (from our model) regardless of the
truth of H0. This is due to the way SSwithin is defined. SSwithin (and
therefore MSwithin) has N-k degrees of freedom with ni − 1 coming
from each of the k groups.

The F statistic numerator: MSbetween

0 20

Group 1

Group 2

Ȳ1 = 4.25

Ȳ2 = 14.00

Ȳ = 9.125

Figure 7.3: Deviations for between-group sum of squares

Now consider figure 7.3 which represents the between-group deviations used
in the calculation of MSbetween for the same little 2-group 8-subject experiment
as shown in figure 7.2. The single vertical black line is the average of all of the
outcomes values in all of the treatment groups, usually called either the overall
mean or the grand mean. The colored vertical lines are still the group means. The
horizontal black lines are the deviations used for the between-group calculations.
For each subject we get a deviation equal to the distance (difference) from that
subject’s group mean to the overall (grand) mean. These deviations are squared
and summed to get SSbetween, which is then divided by the between-group df,
which is k − 1, to get MSbetween.

MSbetween is a good estimate of σ2 only when the null hypothesis is true. In
this case we expect the group means to be fairly close together and close to the
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grand mean. When the alternate hypothesis is true, as in our current example, the
group means are farther apart and the value of MSbetween tends to be larger than
σ2. (We sometimes write this as “MSbetween is an inflated estimate of σ2”.)

SSbetween is the sum of the N squared between-group deviations, where
the deviation is the same for all subjects in the same group. The formula
is

SSbetween =
k∑
i=1

ni(Ȳi − ¯̄Y )2

where ¯̄Y is the grand mean. Because the k unique deviations add up to
zero, we are free to choose only k − 1 of them, and then the last one is
fully determined by the others, which is why dfbetween = k−1 for one-way
ANOVA.

Because of the way SSbetween is defined, MSbetween is a good estimate
of σ2 only if H0 is true. Otherwise it tends to be larger. SSbetween
(and therefore MSbetween) has k − 1 degrees of freedom.

The F statistic ratio

It might seem that we only need MSbetween to distinguish the null from the alter-
native hypothesis, but that ignores the fact that we don’t usually know the value
of σ2. So instead we look at the ratio

F =
MSbetween
MSwithin

to evaluate the null hypothesis. Because the denominator is always (under null
and alternative hypotheses) an estimate of σ2 (i.e., tends to have a value near σ2),
and the numerator is either another estimate of σ2 (under the null hypothesis) or
is inflated (under the alternative hypothesis), it is clear that the (random) values
of the F-statistic (from experiment to experiment) tend to fall around 1.0 when
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the null hypothesis is true and are bigger when the alternative is true. So if we
can compute the sampling distribution of the F statistic under the null hypothesis,
then we will have a useful statistic for distinguishing the null from the alternative
hypotheses, where large values of F argue for rejection of H0.

The F-statistic, defined by F =
MSbetween
MSwithin

, tends to be larger if the

alternative hypothesis is true than if the null hypothesis is true.

7.2.3 Null sampling distribution of the F statistic

Using the technical condition that the quantities MSbetween and MSwithin are in-
dependent, we can apply probability and statistics techniques (beyond the scope
of this course) to show that the null sampling distribution of the F statistic is that
of the “F-distribution” (see section 3.9.7). The F-distribution is indexed by two
numbers called the numerator and denominator degrees of freedom. This indicates
that there are (infinitely) many F-distribution pdf curves, and we must specify
these two numbers to select the appropriate one for any given situation.

Not surprisingly the null sampling distribution of the F-statistic for any given
one-way ANOVA is the F-distribution with numerator degrees of freedom equal to
dfbetween = k − 1 and denominator degrees of freedom equal to dfwithin = N − k.
Note that this indicates that the kinds of F-statistic values we will see if the
null hypothesis is true depends only on the number of groups and the numbers
of subjects, and not on the values of the population variance or the population
group means. It is worth mentioning that the degrees of freedom are measures
of the “size” of the experiment, where bigger experiments (more groups or more
subjects) have bigger df.

We can quantify “large” for the F-statistic, by comparing it to its null
sampling distribution which is the specific F-distribution which has
degrees of freedom matching the numerator and denominator of the
F-statistic.
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Figure 7.4: A variety of F-distribution pdfs.

The F-distribution is a non-negative distribution in the sense that F
values, which are squares, can never be negative numbers. The distribution
is skewed to the right and continues to have some tiny probability no matter
how large F gets. The mean of the distribution is s/(s− 2), where s is the
denominator degrees of freedom. So if s is reasonably large then the mean
is near 1.00, but if s is small, then the mean is larger (e.g., k=2, n=4 per
group gives s=3+3=6, and a mean of 6/4=1.5).

Examples of F-distributions with different numerator and denominator degrees
of freedom are shown in figure 7.4. These curves are probability density functions,
so the regions on the x-axis where the curve is high are the values most likely
to occur. And the area under the curve between any two F values is equal to
the probability that a random variable following the given distribution will fall
between those values. Although very low F values are more likely for, say, the
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Figure 7.5: The F(3,10) pdf and the p-value for F=2.0.

F(1,10) distribution than the F(3,10) distribution, very high values are also more
common for the F(1,10) than the F(3,10) values, though this may be hard to
see in the figure. The bigger the numerator and/or denominator df, the more
concentrated the F values will be around 1.0.

7.2.4 Inference: hypothesis testing

There are two ways to use the null sampling distribution of F in one-way ANOVA:
to calculate a p-value or to find the “critical value” (see below).

A close up of the F-distribution with 3 and 10 degrees of freedom is shown
in figure 7.5. This is the appropriate null sampling distribution of an F-statistic
for an experiment with a quantitative outcome and one categorical explanatory
variable (factor) with k=4 levels (each subject gets one of four different possible
treatments) and with 14 subjects divided among the 4 groups. A vertical line
marks an F-statistic of 2.0 (the observed value from some experiment). The p-
value for this result is the chance of getting an F-statistic greater than or equal to
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Figure 7.6: The F(3,10) pdf and its alpha=0.05 critical value.

2.0 when the null hypothesis is true, which is the shaded area. The total area is
always 1.0, and the shaded area is 0.178 in this example, so the p-value is 0.178
(not significant at the usual 0.05 alpha level).

Figure 7.6 shows another close up of the F-distribution with 3 and 10 degrees of
freedom. We will use this figure to define and calculate the F-critical value. For
a given alpha (significance level), usually 0.05, the F-critical value is the F value
above which 100α% of the null sampling distribution occurs. For experiments with
3 and 10 df, and using α = 0.05, the figure shows that the F-critical value is 3.71.
Note that this value can be obtained from a computer before the experiment is run,
as long as we know how many subjects will be studied and how many levels the
explanatory variable has. Then when the experiment is run, we can calculate the
observed F-statistic and compare it to F-critical. If the statistic is smaller than
the critical value, we retain the null hypothesis because the p-value must be bigger
than α, and if the statistic is equal to or bigger than the critical value, we reject
the null hypothesis because the p-value must be equal to or smaller than α.
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7.2.5 Inference: confidence intervals

It is often worthwhile to express what we have learned from an experiment in
terms of confidence intervals. In one-way ANOVA it is possible to make confidence
intervals for population group means or for differences in pairs of population group
means (or other more complex comparisons). We defer discussion of the latter to
chapter 13.

Construction of a confidence interval for a population group means is
usually done as an appropriate “plus or minus” amount around a sample
group mean. We use MSwithin as an estimate of σ2, and then for group

i, the standard error of the mean is
√

MSwithin/ni. As discussed in sec-
tion 6.2.7, the multiplier for the standard error of the mean is the so called
“quantile of the t-distribution” which defines a central area equal to the de-
sired confidence level. This comes from a computer or table of t-quantiles.
For a 95% CI this is often symbolized as t0.025,df where df is the degrees of
freedom of MSwithin, (N − k). Construct the CI as the sample mean plus
or minus (SEM times the multiplier).

In a nutshell: In one-way ANOVA we calculate the F-statistic as the
ratio MSbetween/MSwithin. Then the p-value is calculated as the area
under the appropriate null sampling distribution of F that is bigger
than the observed F-statistic. We reject the null hypothesis if p ≤ α.

7.3 Do it in SPSS

To run a one-way ANOVA in SPSS, use the Analyze menu, select Compare Means,
then One-Way ANOVA. Add the quantitative outcome variable to the “Dependent
List”, and the categorical explanatory variable to the “Factor” box. Click OK to
get the output. The dialog box for One-Way ANOVA is shown in figure 7.7.

You can also use the Options button to perform descriptive statistics by group,
perform a variance homogeneity test, or make a means plot.
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Figure 7.7: One-Way ANOVA dialog box.

You can use the Contrasts button to specify particular planned contrasts among
the levels or you can use the Post-Hoc button to make unplanned contrasts (cor-
rected for multiple comparisons), usually using the Tukey procedure for all pairs or
the Dunnett procedure when comparing each level to a control level. See chapter
13 for more information.

7.4 Reading the ANOVA table

The ANOVA table is the main output of an ANOVA analysis. It always has the
“source of variation” labels in the first column, plus additional columns for “sum
of squares”, “degrees of freedom”, “means square”, F, and the p-value (labeled
“Sig.” in SPSS).

For one-way ANOVA, there are always rows for “Between Groups” variation
and “Within Groups” variation, and often a row for “Total” variation. In one-way
ANOVA there is only a single F statistic (MSbetween/MSwithin), and this is shown
on the “Between Groups” row. There is also only one p-value, because there is only
one (overall) null hypothesis, namely H0 : µ1 = · · · = µk, and because the p-value
comes from comparing the (single) F value to its null sampling distribution. The
calculation of MS for the total row is optional.

Table 7.2 shows the results for the moral sentiment experiment. There are
several important aspects to this table that you should understand. First, as
discussed above, the “Between Groups” lines refer to the variation of the group
means around the grand mean, and the “Within Groups” line refers to the variation
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Sum of Squares df Mean Square F Sig.

Between Groups 86.35 2 43.18 4.50 0.013
Within Groups 1181.43 123 9.60
Total 1267.78 125

Table 7.2: ANOVA for the moral sentiment experiment.

of the subjects around their group means. The “Total” line refers to variation of
the individual subjects around the grand mean. The Mean Square for the Total
line is exactly the same as the variance of all of the data, ignoring the group
assignments.

In any ANOVA table, the df column refers to the number of degrees of freedom
in the particular SS defined on the same line. The MS on any line is always equal
to the SS/df for that line. F-statistics are given on the line that has the MS that
is the numerator of the F-statistic (ratio). The denominator comes from the MS
of the “Within Groups” line for one-way ANOVA, but this is not always true for
other types of ANOVA. It is always true that there is a p-value for each F-statistic,
and that the p-value is the area under the null sampling distribution of that F-
statistic that is above the (observed) F value shown in the table. Also, we can
always tell which F-distribution is the appropriate null sampling distribution for
any F-statistic, by finding the numerator and denominator df in the table.

An ANOVA is a breakdown of the total variation of the data, in the form of
SS and df, into smaller independent components. For the one-way ANOVA, we
break down the deviations of individual values from the overall mean of the data
into deviations of the group means from the overall mean, and then deviations
of the individuals from their group means. The independence of these sources of
deviation results in additivity of the SS and df columns (but not the MS column).
So we note that SSTotal = SSBetween +SSWithin and dfTotal = dfBetween +dfWithin.
This fact can be used to reduce the amount of calculation, or just to check that
the calculation were done and recorded correctly.

Note that we can calculate MSTotal = 1267.78/125 = 10.14 which is the vari-
ance of all of the data (thrown together and ignoring the treatment groups). You
can see that MSTotal is certainly not equal to MSBetween + MSWithin.

Another use of the ANOVA table is to learn about an experiment when it
is not full described (or to check that the ANOVA was performed and recorded
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correctly). Just from this one-way ANOVA table, we can see that there were 3
treatment groups (because dfBetween is one less than the number of groups). Also,
we can calculate that there were 125+1=126 subjects in the experiment.

Finally, it is worth knowing that MSwithin is an estimate of σ2, the variance of
outcomes around their group mean. So we can take the square root of MSwithin
to get an estimate of σ, the standard deviation. Then we know that the majority
(about 2

3
) of the measurements for each group are within σ of the group mean and

most (about 95%) are within 2σ, assuming a Normal distribution. In this example
the estimate of the s.d. is

√
9.60 = 3.10, so individual subject cooperation values

more than 2(3.10)=6.2 coins from their group means would be uncommon.

You should understand the structure of the one-way ANOVA table
including that MS=SS/df for each line, SS and df are additive, F is
the ratio of between to within group MS, the p-value comes from the
F-statistic and its presumed (under model assumptions) null sampling
distribution, and the number of treatments and number of subjects
can be calculated from degrees of freedom.

7.5 Assumption checking

Except for the skewness of the shame group, the skewness and kurtosis statistics for
all three groups are within 2SE of zero (see Table 7.1), and that one skewness is only
slightly beyond 2SE from zero. This suggests that there is no evidence against the
Normality assumption. The close similarity of the three group standard deviations
suggests that the equal variance assumption is OK. And hopefully the subjects are
totally unrelated, so the independent errors assumption is OK. Therefore we can
accept that the F-distribution used to calculate the p-value from the F-statistic is
the correct one, and we “believe” the p-value.

7.6 Conclusion about moral sentiments

With p = 0.013 < 0.05, we reject the null hypothesis that all three of the group
population means of cooperation are equal. We therefore conclude that differences
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in mean cooperation are caused by the induced emotions, and that among control,
guilt, and shame, at least two of the population means differ. Again, we defer
looking at which groups differ to chapter 13.

(A complete analysis would also include examination of residuals for additional
evaluation of possible non-normality or unequal spread.)

The F-statistic of one-way ANOVA is easily calculated by a computer.
The p-value is calculated from the F null sampling distribution with
matching degrees of freedom. But only if we believe that the assump-
tions of the model are (approximately) correct should we believe that
the p-value was calculated from the correct sampling distribution, and
it is then valid.



Chapter 8

Threats to Your Experiment
Planning to avoid criticism.

One of the main goals of this book is to encourage you to think from the point
of view of an experimenter, because other points of view, such as that of a reader
of scientific articles or a consumer of scientific ideas, are easy to switch to after the
experimenter’s point of view is understood, but the reverse is often not true. In
other words, to enhance the usability of what you learn, you should pretend that
you are a researcher, even if that is not your ultimate goal.

As a researcher, one of the key skills you should be developing is to try, in
advance, to think of all of the possible criticisms of your experiment that may arise
from the reviewer of an article you write or the reader of an article you publish.
This chapter discusses possible complaints about internal validity, external validity,
construct validity, Type 1 error, and power.

We are using “threats” to mean things that will reduce the impact of
your study results on science, particularly those things that we have
some control over.

191
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8.1 Internal validity

In a well-constructed experiment in its simplest form we manipulate variable X
and observe the effects on variable Y. For example, outcome Y could be number
of people who purchase a particular item in a store over a certain week, and X
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could be some characteristics of the display for that item, such as use of pictures
of people of different “status” for an in-store advertisement (e.g., a celebrity vs. an
unknown model). Internal validity is the degree to which we can appropriately
conclude that the changes in X caused the changes in Y.

The study of causality goes back thousands of years, but there has been a resur-
gence of interest recently. For our purposes we can define causality as the state of
nature in which an active change in one variable directly changes the probability
distribution of another variable. It does not mean that a particular “treatment”
is always followed by a particular outcome, but rather that some probability is
changed, e.g. a higher outcome is more likely with a particular treatment com-
pared to without. A few ideas about causality are worth thinking about now.
First, association, which is equivalent to non-zero correlation (see section 3.6.1)
in statistical terms, means that we observe that when one variable changes, an-
other one tends to change. We cannot have causation without association, but just
finding an association is not enought to justify a claim of causation.

Association does not necessarily imply causation.

If variables X and Y (e.g., the number of televisions (X) in various countries
and the infant mortality rate (Y) of those countries) are found to be associated,
then there are three basic possibilities. First X could be causing Y (televisions
lead to more health awareness, which leads to better prenatal care) or Y could be
causing X (high infant mortality leads to attraction of funds from richer countries,
which leads to more televisions) or unknown factor Z could be causing both X
and Y (higher wealth in a country leads to more televisions and more prenatal
care clinics). It is worth memorizing these three cases, because they should always
be considered when association is found in an observational study as opposed to
a randomized experiment. (It is also possible that X and Y are related in more
complicated ways including in large networks of variables with feedback loops.)

Causation (“X causes Y”) can be logically claimed if X and Y are associated,
and X precedes Y, and no plausible alternative explanations can be found, par-
ticularly those of the form “X just happens to vary along with some real cause of
changes in Y” (called confounding).

Returning to the advertisement example, one stupid thing to do is to place all of
the high status pictures in only the wealthiest neighborhoods or the largest stores,
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while the low status pictures are only shown in impoverished neighborhoods or
those with smaller stores. In that case a higher average number of items purchased
for the stores with high status ads may be either due to the effect of socio-economic
status or store size or perceived status of the ad. When more than one thing is
different on average between the groups to be compared, the problem is called
confounding and confounding is a fatal threat to internal validity.

Notice that the definition of confounding mentions “different on average”. This
is because it is practically impossible to have no differences between the subjects
in different groups (beyond the differences in treatment). So our realistic goal is
to have no difference on average. For example if we are studying both males and
females, we would like the gender ratio to be the same in each treatment group.
For the store example, we want the average pre-treatment total sales to be the
same in each treatment group. And we want the distance from competitors to be
the same, and the socio-economic status (SES) of the neighborhood, and the racial
makeup, and the age distribution of the neighborhood, etc., etc. Even worse, we
want all of the unmeasured variables, both those that we thought of and those we
didn’t think of, to be similar in each treatment group.

The sine qua non of internal validity is random assignment of treatment
to experimental units (different stores in our ad example). Random treatment
assignment (also called randomization) is usually the best way to assure that all
of the potential confounding variables are equal on average (also called balanced)
among the treatment groups. Non-random assignment will usually lead to either
consciously or unconsciously unbalanced groups. If one or a few variables, such
as gender or SES, are known to be critical factors affecting outcome, a good al-
ternative is block randomization, in which randomization among treatments is
performed separately for each level of the critical (non-manipulated) explanatory
factor. This helps to assure that the level of this explanatory factor is balanced
(not confounded) across the levels of the treatment variable.

In current practice randomization is normally done using computerized random
number generators. Ideally all subjects are identified before the experiment begins
and assigned numbers from 1 to N (the total number of subjects), and then a
computer’s random number generator is used to assign treatments to the subjects
via these numbers. For block randomization this can be done separately for each
block. If all subjects cannot be identified before the experiment begins, some way
must be devised to assure that each subject has an equal chance of getting each
treatment (if equal assignment is desired). One way to do this is as follows. If
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there are k levels of treatment, then collect the subjects until k (or 2k or 3k,
etc) are available, then use the computer to randomly assign treatments among
the available subjects. It is also acceptable to have the computer individually
generate a random number from 1 to k for each subject, but it must be assured
that the subject and/or researcher cannot re-run the process if they don’t like the
assignment.

Confounding can occur because we purposefully, but stupidly, design our exper-
iment such that two or more things differ at once, or because we assign treatments
non-randomly, or because the randomization “failed”. As an example of designed
confounding, consider the treatments “drug plus psychotherapy” vs. “placebo” for
treating depression. If a difference is found, then we will not know whether the
success of the treatment is due to the drug, the psychotherapy or the combination.
If no difference is found, then that may be due to the effect of drug canceling
out the effect of the psychotherapy. If the drug and the psychotherapy are known
to individually help patients with depression and we really do want to study the
combination, it would probably better to have a study with the three treatment
arms of drug, psychotherapy, and combination (with or without the placebo), so
that we could assess the specific important questions of whether drug adds a ben-
efit to psychotherapy and vice versa. As another example, consider a test of the
effects of a mixed herbal supplement on memory. Again, a success tells us that
something in the mix helps memory, but a follow-up trial is needed to see if all of
the components are necessary. And again we have the possibility that one compo-
nent would cancel another out causing a “no effect” outcome when one component
really is helpful. But we must also consider that the mix itself is effective while
the individual components are not, so this might be a good experiment.

In terms of non-random assignment of treatment, this should only be done
when necessary, and it should be recognized that it strongly, often fatally, harms
the internal validity of the experiment. If you assign treatment in some pseudo-
random way, e.g. alternating treatment levels, you or the subjects may purposely
or inadvertently introduce confounding factors into your experiment.

Finally, it must be stated that although randomization cannot perfectly balance
all possible explanatory factors, it is the best way to attempt this, particularly
for unmeasured or unimagined factors that might affect the outcome. Although
there is always a small chance that important factors are out of balance after
random treatment assignment (i.e., failed randomization), the degree of imbalance
is generally small, and gets smaller as the sample size gets larger.
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In experiments, as opposed to observational studies, the assignment
of levels of the explanatory variable to study units is under the control
of the experimenter.

Experiments differ from observational studies in that in an experiment at
least the main explanatory variables of interest are applied to the units of obser-
vation (most commonly subjects) under the control of the experimenter. Do not
be fooled into thinking that just because a lot of careful work has gone into a
study, it must therefore be an experiment. In contrast to experiments, in obser-
vational studies the subjects choose which treatment they receive. For example,
if we perform magnetic resonance imaging (MRI) to study the effects of string
instrument playing on the size of Broca’s area of the brain, this is an observational
study because the natural proclivities of the subjects determine which “treatment”
level (control or string player) each subject has. The experimenter did not control
this variable. The main advantage of an experiment is that the experimenter can
randomly assign treatment, thus removing nearly all of the confounding. In the
absence of confounding, a statistically significant change in the outcome provides
good evidence for a causal effect of the explanatory variable(s) on the outcome.
Many people consider internal validity to be not applicable to observational stud-
ies, but I think that in light of the availability of techniques to adjust for some
confounding factors in observational studies, it is reasonable to discuss the internal
validity of observational studies.

Internal validity is the ability to make causal conclusions. The huge
advantage of randomized experiments over observational studies, is
that causal conclusions are a natural outcome of the former, but dif-
ficult or impossible to justify in the latter.

Observational studies are always open to the possibility that the effects seen are
due to confounding factors, and therefore have low internal validity. (As mentioned
above, there are a variety of statistical techniques, beyond the scope of this book,
which provide methods that attempt to “correct for” some of the confounding in
observational studies.) As another example consider the effects of vitamin C on the
common cold. A study that compares people who choose to take vitamin C versus
those who choose not to will have many confounders and low internal validity. A
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study that randomly assigns vitamin C versus a placebo will have good internal
validity, and in the presence of a statistically significant difference in the frequency
of colds, a causal effect can be claimed.

Note that confounding is a very specific term relating to the presence of a differ-
ence in the average level of any explanatory variable across the treatment groups.
It should not be used according to its general English meaning of “something
confusing”.

Blinding (also called masking) is another key factor in internal validity. Blind-
ing indicates that the subjects are prevented from knowing which (level of) treat-
ment they have received. If subjects know which treatment they are receiving and
believe that it will affect the outcome, then we may be measuring the effect of
the belief rather than the effect of the treatment. In psychology this is called the
Hawthorne effect. In medicine it is called the placebo effect. As an example,
in a test of the causal effects of acupuncture on pain relief, subjects may report
reduced pain because they believe the acupuncture should be effective. Some re-
searchers have made comparisons between acupuncture with needles placed in the
“correct” locations versus similar but “incorrect” locations. When using subjects
who are not experienced in acupuncture, this type of experiment has much bet-
ter internal validity because patient belief is not confounding the effects of the
acupuncture treatment. In general, you should attempt to prevent subjects from
knowing which treatment they are receiving, if that is possible and ethical, so that
you can avoid the placebo effect (prevent confounding of belief in effectiveness of
treatment with the treatment itself), and ultimately prevent valid criticisms about
the interval validity of your experiment. On the other hand, when blinding is not
possible, you must always be open to the possibility that any effects you see are
due to the subjects’ beliefs about the treatments.

Double blinding refers to blinding the subjects and also assuring that the
experimenter does not know which treatment the subject is receiving. For exam-
ple, if the treatment is a pill, a placebo pill can be designed such that neither the
subject nor the experimenter knows what treatment has been randomly assigned
to each subject. This prevents confounding in the form of difference in treatment
application (e.g., the experimenter could subconsciously be more encouraging to
subjects in one of the treatment groups) or in assessment (e.g, if there is some
subjectivity in assessment, the experimenter might subconsciously give better as-
sessment scores to subjects in one of the treatment groups). Of course, double
blinding is not always possible, and when it is not used you should be open to
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the possibility that that any effects you see are due to differences in treatment
application or assessment by the experimenter.

Triple blinding refers to not letting the person doing the statistical
analysis know which treatment labels correspond to which actual treat-
ments. Although rarely used, it is actually a good idea because there
are several places in most analyses where there is subjective judgment in-
volved, and a biased analyst may subconsciously make decisions that push
the results toward a desired conclusion. The label “triple blinding” is also
applied to blinding of the rater of the outcome in addition to the subjects
and the experimenters (when the rater is a separate person).

Besides lack of randomization and lack of blinding, omission of a control group
is a cause of poor internal validity. A control group is a treatment group that
represents some appropriate baseline treatment. It is hard to describe exactly what
“appropriate baseline treatment” means, and this often requires knowledge of the
subject area and good judgment. As an example, consider an experiment designed
to test the effects of “memory classes” on short-term memory performance. If
we have two treatment groups and are comparing subjects receiving two vs. five
classes, and we find a “statistically significant difference”, then we only know that
adding three classes causes a memory improvement, but not if two is better than
none. In some contexts this might not be important, but in others our critics will
claim that there are important unanswered causal questions that we foolishly did
not attempt to answer. You should always think about using a good control group,
although it is not strictly necessary to always use one.

In a nutshell: It is only in blinded, randomized experiments that we
can assure that the treatment precedes the outcome, and that there
is little chance of confounding which would allow alternative expla-
nations. It is these two conditions, along with statistically significant
association, which allow a claim of causality.
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8.2 Construct validity

Once we have made careful operational definitions of our variables and classified
their types, we still need to think about how useful they will be for testing our
hypotheses. Construct validity is a characteristic of devised measurements that
describes how well the measurement can stand in for the scientific concepts or
“constructs” that are the real targets of scientific learning and inference.

Construct validity addresses criticisms like “you have shown that changing X
causes a change in measurement Y, but I don’t think you can justify the claims
you make about the causal relationship between concept W and concept Z”, or “Y
is a biased and/or unreliable measure of concept Z”.

The classic paper on construct validity is Construct Validity in Psy-
chological Tests by Lee J. Cronbach and Paul E. Meehl, first published in
Psychological Bulletin, 52, 281-302 (1955). Construct validity in that arti-
cle is discussed in the context of four types of validity. For the first two, it is
assumed that there is a “gold standard” against which we can compare the
measure of interest. The simple correlation (see section 3.6.1) of a measure
with the gold standard for a construct is called either concurrent validity
if the gold standard is measured at the same time as the new measure to
be tested or predictive validity if the gold standard is measured at some
future time. Content validity is a bit ambiguous but basically refers to
picking a representative sample of items on a multi-item test. Here we are
mainly concerned with construct validity, and Cronbach and Meehl state
that it is pertinent whenever the attribute or quality of interest is not “op-
erationally defined”. That is, if we define happiness to be the score on our
happiness test, then the test is a valid measure of happiness by definition.
But if we are referring to a concept without a direct operational definition,
we need to consider how well our test stands in for the concept of interest.
This is the construct validity. Cronbach and Meehl discuss the theoretical
basis of construct validity for psychology, and this should be applicable to
other social sciences. They also emphasize that there is no single measure
of construct validity, because it is a complex, often judgment-laden set of
criteria.

http://psychclassics.yorku.ca/Cronbach/construct.htm
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Among other things, to assess contruct validity you should be sure that your
measure correlates with other measures for which it should correlate if it is a good
measure of the concept of interest. If there is a “gold standard”, then your measure
should have a high correlation with that test, at least in the kinds of situations
where you will be using it. And it should not be correlated with measures of other
unrelated concepts.

It is worth noting that good construct validity doesn’t mean much if
your measure is not also reliable. A good measure should not depend
strongly on who is administering the test (called high inter-rater reliabil-
ity), and repeat measurements should have a small statistical “variance”
(called test-retest reliability).

Most of what you will be learning about construct validity must be left to
reading and learning in your specific field, but a few examples are given here. In
public health studies, a measure of obesity is often desired. What is needed for a
valid definition? First it should be recognized that circular logic applies here: as
long as a measure is in some form that we would recognize as relating to obesity
(as opposed to, say, smoking), then if it is a good predictor of health outcomes
we can conclude that it is a good measure of obesity by definition. The United
States Center for Disease Control (CDC) has classifications for obesity based on the
Body Mass Index (BMI), which is a formula involving only height and weight. The
BMI is a simple substitute that has reasonably good concurrent validity for more
technical definitions of body fat such as percent total body fat which can be better
estimated by more expensive and time consuming methods such as a buoyancy
method. But even total body fat percent may be insufficient because some health
outcomes may be better predicted by information about amount of fat at specific
locations. Beyond these problems, the CDC assigns labels (underweight, health
weight, at risk of overweight, and overweight) to specific ranges of BMI values.
But the cutoff values, while partially based on scientific methods are also partly
arbitrary. Also these cutoff values and the names and number of categories have
changed with time. And surely the “best” cutoff for predicting outcomes will vary
depending on the outcome, e.g., heart attack, stroke, teasing at school, or poor
self-esteem. So although there is some degree of validity to these categories (e.g., as
shown by different levels of disease for people in different categories and correlation
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with buoyancy tests) there is also some controversy about the construct validity.

Is the Stanford-Bidet “IQ” test a good measure of “intelligence”? Many gallons
of ink have gone into discussion of this topic. Low variance for individuals tested
multiple times shows that the test has high test-retest validity, and as the test is
self-administered and objectively scored there is no issue with inter-rater reliability.
There have been numerous studies showing good correlation of IQ with various
outcomes that “should” be correlated with intelligence such as future performance
on various tests. In addition, “factor analysis” suggests a single underlying factor
(called “G” for general intelligence). On the other hand, the test has been severely
criticized for cultural and racial bias. And other critics claim there are multiple
dimensions to intelligence, not just a single “intelligence” factor. In summation,
the IQ test as a measure of the construct “intelligence” is considered by many
researchers to have low construct validity.

Construct validity is important because it makes us think carefully
whether the measures we use really stand in well for the concepts
that label them.

8.3 External validity

External validity is synonymous with generalizability. When we perform an
ideal experiment, we randomly choose subjects (in addition to randomly assigning
treatment) from a population of interest. Examples of populations of interest
are all college students, all reproductive aged women, all teenagers with type I
diabetes, all 6 month old healthy Sprague-Dawley rats, all workplaces that use
Microsoft Word, or all cities in the Northeast with populations over 50,000. If we
randomly select our experimental units from the population such that each unit
has the same chance (or with special statistical techniques, a fixed but unequal
chance) of ending up in our experiment, then we may appropriately claim that our
results apply to that population. In many experiments, we do not truly have a
random sample of the population of interest. In so-called “convenience samples”,
e.g., “as many of my classmates as I could attract with an offer of a free slice of
pizza”, the population these subjects represent may be quite limited.
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After you complete your experiment, you will need to write a discussion of
your conclusions, and one of the key features of that discussion is your set of
claims about external validity. First, you need to consider what population your
experimental units truly represent. In the pizza example, your subjects may repre-
sent Humanities upperclassmen at top northeastern universities who like free food
and don’t mind participating in experiments. Next you will want to use your judg-
ment (and powers of persuasion) to consider ever expanding “spheres” of subjects
who might be similar to your subjects. For example, you could widen the popu-
lation to all northeastern students, then to all US students, then to all US young
adults, etc. Finally you need to use your background knowledge and judgment to
make your best arguments whether or not (or to what degree) you expect your
findings to apply to these larger populations. If you cannot justify enlarging your
population, then your study is likely to have little impact on scientific knowledge.
If you enlarge too much, you may be severely criticized for over-generalization.

Three special forms of non-generalizability (poor external validity) are
worth more discussion. First is non-participation. If you randomly select
subjects, e.g., through phone records, or college e-mail, then some sub-
jects may decline to participate. You should always consider the very real
possibility that the decliners are different in one or more ways from the
participators, and thus your results do not really apply to the population
of interest.

A second problem is dropout, which is when subject who start a study
do not complete it. Dropout can affect both internal and external validity,
but the simplest form affecting external validity is when subjects who are
too busy or less committed drop out only because of the length or burden of
the experiment rather than in some way related to response to treatment.
This type of dropout reduces the population to which generalization can
be made, and in experiments such as those studying the effects of ongoing
behavioral therapy on adjustment to a chronic disease, this can be a critical
blow to external validity.

The third special form of non-generalizability relates to the terms effi-
cacy and effectiveness in the medical literature. Here the generalizability
refers to the environment and the details of treatment application rather
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than the subjects. If a well-designed clinical trial is carried out under high
controlled conditions in a tertiary medical center, and finds that drug X
cures disease Y with 80% success (i.e., it has high efficacy), then we are
still unsure whether we can generalize this to real clinical practice in a
doctor’s office (i.e, whether the treatment has high effectiveness). Even
outside the medical setting, it is important to consider expanding spheres
of environmental and treatment application variability.

External validity (generalizability) relates to the breadth of the pop-
ulation we have sampled and how well we can justify extending our
results to an even broader population.

8.4 Maintaining Type 1 error

Type 1 error is related to the statistical concept that in the real world of natural
variability we cannot be certain about our conclusions from an experiment. A
Type 1 error is a claim that a treatment is effective, i.e., we decide to reject the
null hypothesis, when that claim is actually false, i.e. the null hypothesis really is
true. Obviously in any single real situation, we cannot know whether or not we
have made a Type 1 error: if we knew the absolute truth, we would not make the
error. Equally obvious after a little thought is the idea that we cannot be making
a Type 1 error when we decide to retain the null hypothesis.

As explained in more detail in several other chapters, statistical inference is
the process of making appropriately qualified claims in the face of uncertainty.
Type 1 error deals with the probabilistic validity of those claims. When we make
a statement such as “we reject the hypothesis that the mean outcome is the same
for both the placebo and the active treatments with alpha equal to 0.05” we are
claiming that the procedure we used to arrive at our conclusion only leads to false
positive conclusions 5% of the time when the truth happens to be that there is no
difference in the effect of treatment on outcome. This is not at all the same as the
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claim that there is only a 5% chance that any “reject the null hypothesis decision”
will be the wrong decision! Another example of a statistical statement is “we are
95% confident that the true difference in mean outcome between the placebo and
active treatments is between 6.5 and 8.7 seconds”. Again, the exact meaning of
this statement is a bit tricky, but understanding that is not critical for the current
discussion (but see 6.2.7 for more details).

Due to the inherent uncertainties of nature we can never make definite, unqual-
ified claims from our experiments. The best we can do is set certain limits on how
often we will make certain false claims (but see the next section, on power, too).
The conventional (but not logically necessary) limit on the rate of false positive
results out of all experiments in which the null hypothesis really is true is 5%. The
terms Type 1 error, false positive rate, and “alpha” (α) are basically synonyms for
this limit.

Maintaining Type 1 error means doing all we can to assure that the false positive
rate really is set to whatever nominal level (usually 5%) we have chosen. This
will be discussed much more fully in future chapters, but it basically involves
choosing an appropriate statistical procedure and assuring that the assumptions
of our chosen procedure are reasonably met. Part of the latter is verifying that we
have chosen an appropriate model for our data (see section 6.2.2).

A special case of not maintaining Type 1 error is “data snooping”. E.g., if you
perform many different analyses of your data, each with a nominal Type 1 error
rate of 5%, and then report just the one(s) with p-values less than 0.05, you are
only fooling yourself and others if you think you have appropriately analyzed your
experiment. As seen in the Section 13.3, this approach to data analysis results in
a much larger chance of making false conclusions.

Using models with broken assumptions and/or data snooping tend to
result in an increased chance of making false claims in the presence of
ineffective treatments.
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8.5 Power

The power of an experiment refers to the probability that we will correctly con-
clude that the treatment caused a change in the outcome. If some particular true
non-zero difference in outcomes is caused by the active treatment, and you have
low power to detect that difference, you will probably make a Type 2 error (have a
“false negative” result) in which you conclude that the treatment was ineffective,
when it really was effective. The Type 2 error rate, often called “beta” (β), is the
fraction of the time that a conclusion of “no effect” will be made (over repeated
similar experiments) when some true non-zero effect is really present. The power
is equal to 1− β.

Before the experiment is performed, you have some control over the power of
your experiment, so you should estimate the power for various reasonable effect
sizes and, whenever possible, adjust your experiment to achieve reasonable power
(e.g., at least 80%). If you perform an experiment with low power, you are just
wasting time and money! See Chapter 12 for details on how to calculate and
increase the power of an experiment.

The power of a planned experiment is the chance of getting a statisti-
cally significant result when a particular real treatment effect exists.
Studying sufficient numbers of subjects is the most well known way
to assure sufficient power.

In addition to sample size, the main (partially) controllable experimental char-
acteristic that affects power is variability. If you can reduce variability, you can
increase power. Therefore it is worthwhile to have a mnemonic device for help-
ing you categorize and think about the sources of variation. One reasonable
categorization is this:

• Measurement

• Environmental

• Treatment application

• Subject-to-subject
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(If you are a New York baseball fan, you can remember the acronym METS.)
It is not at all important to “correctly categorize” a particular source of variation.
What is important is to be able to generate a list of the sources of variation in
your (or someone else’s) experiment so that you can think about whether you are
able (and willing) to reduce each source of variation in order to improve the power
of your experiment.

Measurement variation refers to differences in repeat measurement values when
they should be the same. (Sometimes repeat measurements should change, for
example the diameter of a balloon with a small hole in it in an experiment of air
leakage.) Measurement variability is usually quantified as the standard deviation of
many measurements of the same thing. The term precision applies here, though
technically precision is 1/variance. So a high precision implies a low variance (and
thus standard deviation). It is worth knowing that a simple and usually a cheap
way to improve measurement precision is to make repeated measurements and take
the mean; this mean is less variable than an individual measurement. Another
inexpensive way to improve precision, which should almost always be used, is to
have good explicit procedures for making the measurement and good training and
practice for whoever is making the measurements. Other than possibly increased
cost and/or experimenter time, there is no down-side to improving measurement
precision, so it is an excellent way to improve power.

Controlling environmental variation is another way to reduce the variability of
measurements, and thus increase power. For each experiment you should consider
what aspects of the environment (broadly defined) can and should be controlled
(fixed or reduced in variation) to reduce variation in the outcome measurement.
For example, if we want to look at the effects of a hormone treatment on rat
weight gain, controlling the diet, the amount of exercise, and the amount of social
interaction (such as fighting) will reduce the variation of the final weight mea-
surements, making any differences in weight gain due to the hormone easier to
see. Other examples of environmental sources of variation include temperature,
humidity, background noise, lighting conditions, etc. As opposed to reducing mea-
surement variation, there is often a down-side to reducing environmental variation.
There is usually a trade-off between reducing environmental variation which in-
creases power but may reduce external validity (see above).

The trade-off between power and external validity also applies to treatment
application variation. While some people include this in environmental variation,
I think it is worth separating out because otherwise many people forget that it
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is something that can be controlled in their experiment. Treatment application
variability is differences in the quality or quantity of treatment among subjects as-
signed to the same (nominal) treatment. A simple example is when one treatment
group gets, say 100 mg of a drug. If two drug manufacturers have different pro-
duction quality such that all of the pills from the first manufacturer have a mean
of 100 mg and s.d. of 5 mg, while the second has a mean of 100 mg and s.d. of 20
mg, the increased variability of the second manufacturer will result in decreased
power to detect any true differences between the 100 mg dose and any other doses
studied. For treatments like “behavioral therapy” decreasing variability is done
by standardizing the number of sessions and having good procedures and training.
On the other hand there may be a concern that too much control of variation in a
treatment like behavioral therapy might make the experiment unrealistic (reduce
external validity).

Finally there is subject-to-subject variability. Remember that ideally we choose
a population from which we draw our participants for our study (as opposed to us-
ing a “convenience sample”). If we choose a broad population like “all Americans”
there is a lot of variability in age, gender, height, weight, intelligence, diet, etc.
some of which are likely to affect our outcome (or even the difference in outcome
between the treatment groups). If we choose to limit our study population for one
or several of these traits, we reduce variability in the outcome measurement (for
each treatment group) and improve power, but always at the expense of generaliz-
ability. As in the case of environmental and treatment application variability, you
should make an intelligent, informed decision about trade-offs between power and
generalizability in terms of choosing your study population.

For subject-to-subject variation there is a special way to improve power without
reducing generalizability. This is the use of a within-subjects design, in which
each subject receives two or more treatments. This is often an excellent way to
improve power, although it is not applicable in all cases. See chapter 14 for more
details. Remember that you must change your analysis procedures to ones which
do not assume independent errors if you choose a within-subjects design.

Using the language of section 3.6, it is useful to think of all measure-
ments as being conditional on whatever environmental and treatment vari-
ables we choose to fix, and marginal over those that we let vary.
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Reducing variability improves power. In some circumstances this
may be at the expense of decreased generalizability. Reducing mea-
surement error and/or use of within-subjects designs usually improve
power without sacrificing generalizability.

The strength of your treatments (actually the difference in true outcomes be-
tween treatments) strongly affects power. Be sure that you are not studying very
weak treatments, e.g., the effects of one ounce of beer on driving skills, or 1 mi-
crogram of vitamin C on catching colds, or one treatment session on depression
severity.

Increasing treatment strength increases power.

Another way to improve power without reducing generalizability is to employ
blocking. Blocking involves using subject matter knowledge to select one or more
factors whose effects are not of primary importance, but whose levels define more
homogeneous groups called “blocks”. In an ANOVA, for example, the block will be
an additional factor beyond the primary treatment of interest, and inclusion of the
block factor tends to improve power if the blocks are markedly more homogeneous
than the whole. If the variability of the outcome (for each treatment group) is
smaller than the variability ignoring the factor, then a good blocking factor was
chosen. But because a wide variety of subjects with various levels of the blocking
variable are all included in the study, generalizability is not sacrificed.

Examples of blocking factors include field in an agricultural experiment, age in
many performance studies, and disease severity in medical studies. Blocking usu-
ally is performed when it is assumed that there is no differential effect of treatment
across the blocks, i.e., no interaction (see Section 10.2). Ignoring an interaction
when one is present tends to lead to misleading results, due to an incorrect struc-
tural model. Also, if there is an interaction between treatment and blocks, that
usually becomes of primary interest.

A natural extension of blocking is some form of more complicated model with
multiple control variables explicitly included in an appropriate mathematical
form in the structural model. Continuous control variables are also called covari-
ates.
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Small Stones Large Stones Combined

Treatment A 81/87 0.93 192/263 0.79 273/350 0.78
Treatment B 234/270 0.87 55/80 0.69 289/350 0.83

Table 8.1: Simpson’s paradox in medicine

Blocking and use of control variables are good ways to improve power
without sacrificing generalizability.

8.6 Missing explanatory variables

Another threat to your experiment is not including important explanatory vari-
ables. For example, if the effect of a treatment is to raise the mean outcome in
males and lower it in females, then not including gender as an explanatory vari-
able (including its interaction with treatment) will give misleading results. (See
chapters 10 and 11 for more on interaction.) In other cases, where there is no
interaction, ignoring important explanatory variables decreases power rather than
directly causing misleading results.

An extreme case of a missing variable is Simpson’s paradox. Described by
Edward H. Simpson and others, this term describes the situation where the ob-
served effect is in opposite directions for all subjects as a single group (defined based
on a variable other than treatment) vs. separately for each group. It only occurs
when the fraction of subjects in each group differs markedly between the treatment
groups. A nice medical example comes comes from the 1986 article Comparison of
treatment of renal calculi by operative surgery, percutaneous nephrolithotomy, and
extracorporeal shock wave lithotripsy by C. R. Chang, et al. (Br Med J 292 (6524):
879-882) as shown in table 8.1.

The data show the number of successes divided by the number of times the
treatment was tried for two treatments for gall stones. The “paradox” is that for
“all stones” (combined) Treatment B is the better treatment (has a higher success
rate). but if the patients gall stones are classified as either “small” or “large”,
then Treatment A is better. There is nothing artificial about this example; it is
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based on the actual data. And there is really nothing “statistical” going on (in
terms of randomness); we are just looking at the definition of “success rate”. If
stone size is omitted as an explanatory variable, then Treatment B looks to be the
better treatment, but for each stone size Treatment A was the better treatment.
Which treatment would you choose? If you have small stones or if you have
large stones (the only two kinds), you should choose treatment A. Dropping the
important explanatory variable gives a misleading (“marginal”) effect, when the
“conditional” effect is more relevant. Ignoring the confounding (also called lurking)
variable “stone size” leads to misinterpretation.

It’s worth mentioning that we can go too far in including explanatory variables.
This is both in terms of the “multiple comparisons” problem and something called
“variance vs.bias trade-off”. The former artificially raises our Type 1 error if
uncorrected, or lowers our power if corrected. The latter, in this context, can
be considered to lower power when too many relatively unimportant explanatory
variables are included.

Missing explanatory variables can decrease power and/or cause mis-
leading results.

8.7 Practicality and cost

Many attempts to improve an experiment are limited by cost and practicality.
Finding ways to reduce threats to your experiment that are practical and cost-
effective is an important part of experimental design. In addition, experimental
science is usually guided by the KISS principle, which stands for Keep It Simple,
Stupid. Many an experiment has been ruined because it was too complex to be
carried out without confusion and mistakes.

8.8 Threat summary

After you have completed and reported your experiment, your critics may complain
that some confounding factors may have destroyed the internal validity of your ex-
periment; that your experiment does not really tell us about the real world concepts
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of interest because of poor construct validity; that your experimental results are
only narrowly applicable to certain subjects or environments or treatment appli-
cation setting; that your statistical analysis did not appropriately control Type
1 error (if you report “positive” results); or that your experiment did not have
enough power (if you report “negative” results). You should consider all of these
threats before performing your experiment and make appropriate adjustments as
needed. Much of the rest of this book discusses how to deal with, and balance
solutions to, these threats.

In a nutshell: If you learn about the various categories of threat to
your experiment, you will be in a better position to make choices that
balance competing risk, and you will design a better experiment.
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Chapter 9

Simple Linear Regression
An analysis appropriate for a quantitative outcome and a single quantitative ex-
planatory variable.

9.1 The model behind linear regression

When we are examining the relationship between a quantitative outcome and a
single quantitative explanatory variable, simple linear regression is the most com-
monly considered analysis method. (The “simple” part tells us we are only con-
sidering a single explanatory variable.) In linear regression we usually have many
different values of the explanatory variable, and we usually assume that values
between the observed values of the explanatory variables are also possible values
of the explanatory variables. We postulate a linear relationship between the pop-
ulation mean of the outcome and the value of the explanatory variable. If we let
Y be some outcome, and x be some explanatory variable, then we can express the
structural model using the equation

E(Y |x) = β0 + β1x

where E(), which is read “expected value of”, indicates a population mean; Y |x,
which is read “Y given x”, indicates that we are looking at the possible values of
Y when x is restricted to some single value; β0, read “beta zero”, is the intercept
parameter; and β1, read “beta one”. is the slope parameter. A common term for
any parameter or parameter estimate used in an equation for predicting Y from
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x is coefficient. Often the “1” subscript in β1 is replaced by the name of the
explanatory variable or some abbreviation of it.

So the structural model says that for each value of x the population mean of Y
(over all of the subjects who have that particular value “x” for their explanatory
variable) can be calculated using the simple linear expression β0 + β1x. Of course
we cannot make the calculation exactly, in practice, because the two parameters
are unknown “secrets of nature”. In practice, we make estimates of the parameters
and substitute the estimates into the equation.

In real life we know that although the equation makes a prediction of the true
mean of the outcome for any fixed value of the explanatory variable, it would be
unwise to use extrapolation to make predictions outside of the range of x values
that we have available for study. On the other hand it is reasonable to interpolate,
i.e., to make predictions for unobserved x values in between the observed x values.
The structural model is essentially the assumption of “linearity”, at least within
the range of the observed explanatory data.

It is important to realize that the “linear” in “linear regression” does not imply
that only linear relationships can be studied. Technically it only says that the
beta’s must not be in a transformed form. It is OK to transform x or Y , and that
allows many non-linear relationships to be represented on a new scale that makes
the relationship linear.

The structural model underlying a linear regression analysis is that
the explanatory and outcome variables are linearly related such that
the population mean of the outcome for any x value is β0 + β1x.

The error model that we use is that for each particular x, if we have or could
collect many subjects with that x value, their distribution around the population
mean is Gaussian with a spread, say σ2, that is the same value for each value
of x (and corresponding population mean of y). Of course, the value of σ2 is
an unknown parameter, and we can make an estimate of it from the data. The
error model described so far includes not only the assumptions of “Normality” and
“equal variance”, but also the assumption of “fixed-x”. The “fixed-x” assumption
is that the explanatory variable is measured without error. Sometimes this is
possible, e.g., if it is a count, such as the number of legs on an insect, but usually
there is some error in the measurement of the explanatory variable. In practice,
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we need to be sure that the size of the error in measuring x is small compared to
the variability of Y at any given x value. For more on this topic, see the section
on robustness, below.

The error model underlying a linear regression analysis includes the
assumptions of fixed-x, Normality, equal spread, and independent er-
rors.

In addition to the three error model assumptions just discussed, we also assume
“independent errors”. This assumption comes down to the idea that the error
(deviation of the true outcome value from the population mean of the outcome for a
given x value) for one observational unit (usually a subject) is not predictable from
knowledge of the error for another observational unit. For example, in predicting
time to complete a task from the dose of a drug suspected to affect that time,
knowing that the first subject took 3 seconds longer than the mean of all possible
subjects with the same dose should not tell us anything about how far the next
subject’s time should be above or below the mean for their dose. This assumption
can be trivially violated if we happen to have a set of identical twins in the study,
in which case it seems likely that if one twin has an outcome that is below the mean
for their assigned dose, then the other twin will also have an outcome that is below
the mean for their assigned dose (whether the doses are the same or different).

A more interesting cause of correlated errors is when subjects are trained in
groups, and the different trainers have important individual differences that affect
the trainees performance. Then knowing that a particular subject does better than
average gives us reason to believe that most of the other subjects in the same group
will probably perform better than average because the trainer was probably better
than average.

Another important example of non-independent errors is serial correlation
in which the errors of adjacent observations are similar. This includes adjacency
in both time and space. For example, if we are studying the effects of fertilizer on
plant growth, then similar soil, water, and lighting conditions would tend to make
the errors of adjacent plants more similar. In many task-oriented experiments, if
we allow each subject to observe the previous subject perform the task which is
measured as the outcome, this is likely to induce serial correlation. And worst of
all, if you use the same subject for every observation, just changing the explanatory
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variable each time, serial correlation is extremely likely. Breaking the assumption
of independent errors does not indicate that no analysis is possible, only that linear
regression is an inappropriate analysis. Other methods such as time series methods
or mixed models are appropriate when errors are correlated.

The worst case of breaking the independent errors assumption in re-
gression is when the observations are repeated measurement on the
same experimental unit (subject).

Before going into the details of linear regression, it is worth thinking about the
variable types for the explanatory and outcome variables and the relationship of
ANOVA to linear regression. For both ANOVA and linear regression we assume
a Normal distribution of the outcome for each value of the explanatory variable.
(It is equivalent to say that all of the errors are Normally distributed.) Implic-
itly this indicates that the outcome should be a continuous quantitative variable.
Practically speaking, real measurements are rounded and therefore some of their
continuous nature is not available to us. If we round too much, the variable is
essentially discrete and, with too much rounding, can no longer be approximated
by the smooth Gaussian curve. Fortunately regression and ANOVA are both quite
robust to deviations from the Normality assumption, and it is OK to use discrete
or continuous outcomes that have at least a moderate number of different values,
e.g., 10 or more. It can even be reasonable in some circumstances to use regression
or ANOVA when the outcome is ordinal with a fairly small number of levels.

The explanatory variable in ANOVA is categorical and nominal. Imagine we
are studying the effects of a drug on some outcome and we first do an experiment
comparing control (no drug) vs. drug (at a particular concentration). Regression
and ANOVA would give equivalent conclusions about the effect of drug on the
outcome, but regression seems inappropriate. Two related reasons are that there
is no way to check the appropriateness of the linearity assumption, and that after
a regression analysis it is appropriate to interpolate between the x (dose) values,
and that is inappropriate here.

Now consider another experiment with 0, 50 and 100 mg of drug. Now ANOVA
and regression give different answers because ANOVA makes no assumptions about
the relationships of the three population means, but regression assumes a linear
relationship. If the truth is linearity, the regression will have a bit more power
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Figure 9.1: Mnemonic for the simple regression model.

than ANOVA. If the truth is non-linearity, regression will make inappropriate
predictions, but at least regression will have a chance to detect the non-linearity.
ANOVA also loses some power because it incorrectly treats the doses as nominal
when they are at least ordinal. As the number of doses increases, it is more and
more appropriate to use regression instead of ANOVA, and we will be able to
better detect any non-linearity and correct for it, e.g., with a data transformation.

Figure 9.1 shows a way to think about and remember most of the regression
model assumptions. The four little Normal curves represent the Normally dis-
tributed outcomes (Y values) at each of four fixed x values. The fact that the
four Normal curves have the same spreads represents the equal variance assump-
tion. And the fact that the four means of the Normal curves fall along a straight
line represents the linearity assumption. Only the fifth assumption of independent
errors is not shown on this mnemonic plot.
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9.2 Statistical hypotheses

For simple linear regression, the chief null hypothesis is H0 : β1 = 0, and the
corresponding alternative hypothesis is H1 : β1 6= 0. If this null hypothesis is true,
then, from E(Y ) = β0 + β1x we can see that the population mean of Y is β0 for
every x value, which tells us that x has no effect on Y . The alternative is that
changes in x are associated with changes in Y (or changes in x cause changes in
Y in a randomized experiment).

Sometimes it is reasonable to choose a different null hypothesis for β1. For ex-
ample, if x is some gold standard for a particular measurement, i.e., a best-quality
measurement often involving great expense, and y is some cheaper substitute, then
the obvious null hypothesis is β1 = 1 with alternative β1 6= 1. For example, if x is
percent body fat measured using the cumbersome whole body immersion method,
and Y is percent body fat measured using a formula based on a couple of skin fold
thickness measurements, then we expect either a slope of 1, indicating equivalence
of measurements (on average) or we expect a different slope indicating that the
skin fold method proportionally over- or under-estimates body fat.

Sometimes it also makes sense to construct a null hypothesis for β0, usually
H0 : β0 = 0. This should only be done if each of the following is true. There are
data that span x = 0, or at least there are data points near x = 0. The statement
“the population mean of Y equals zero when x = 0” both makes scientific sense
and the difference between equaling zero and not equaling zero is scientifically
interesting. See the section on interpretation below for more information.

The usual regression null hypothesis is H0 : β1 = 0. Sometimes it is
also meaningful to test H0 : β0 = 0 or H0 : β1 = 1.

9.3 Simple linear regression example

As a (simulated) example, consider an experiment in which corn plants are grown in
pots of soil for 30 days after the addition of different amounts of nitrogen fertilizer.
The data are in corn.dat, which is a space delimited text file with column headers.
Corn plant final weight is in grams, and amount of nitrogen added per pot is in

http://www.stat.cmu.edu/~hseltman/309/Book/data/corn.dat
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Figure 9.2: Scatterplot of corn data.

mg.

EDA, in the form of a scatterplot is shown in figure 9.2.

We want to use EDA to check that the assumptions are reasonable before
trying a regression analysis. We can see that the assumptions of linearity seems
plausible because we can imagine a straight line from bottom left to top right
going through the center of the points. Also the assumption of equal spread is
plausible because for any narrow range of nitrogen values (horizontally), the spread
of weight values (vertically) is fairly similar. These assumptions should only be
doubted at this stage if they are drastically broken. The assumption of Normality
is not something that human beings can test by looking at a scatterplot. But if
we noticed, for instance, that there were only two possible outcomes in the whole
experiment, we could reject the idea that the distribution of weights is Normal at
each nitrogen level.

The assumption of fixed-x cannot be seen in the data. Usually we just think
about the way the explanatory variable is measured and judge whether or not it
is measured precisely (with small spread). Here, it is not too hard to measure the
amount of nitrogen fertilizer added to each pot, so we accept the assumption of
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fixed-x. In some cases, we can actually perform repeated measurements of x on
the same case to see the spread of x and then do the same thing for y at each of
a few values, then reject the fixed-x assumption if the ratio of x to y variance is
larger than, e.g., around 0.1.

The assumption of independent error is usually not visible in the data and
must be judged by the way the experiment was run. But if serial correlation is
suspected, there are tests such as the Durbin-Watson test that can be used to
detect such correlation.

Once we make an initial judgement that linear regression is not a stupid thing
to do for our data, based on plausibility of the model after examining our EDA, we
perform the linear regression analysis, then further verify the model assumptions
with residual checking.

9.4 Regression calculations

The basic regression analysis uses fairly simple formulas to get estimates of the
parameters β0, β1, and σ2. These estimates can be derived from either of two
basic approaches which lead to identical results. We will not discuss the more
complicated maximum likelihood approach here. The least squares approach is
fairly straightforward. It says that we should choose as the best-fit line, that line
which minimizes the sum of the squared residuals, where the residuals are the
vertical distances from individual points to the best-fit “regression” line.

The principle is shown in figure 9.3. The plot shows a simple example with
four data points. The diagonal line shown in black is close to, but not equal to the
“best-fit” line.

Any line can be characterized by its intercept and slope. The intercept is the
y value when x equals zero, which is 1.0 in the example. Be sure to look carefully
at the x-axis scale; if it does not start at zero, you might read off the intercept
incorrectly. The slope is the change in y for a one-unit change in x. Because the
line is straight, you can read this off anywhere. Also, an equivalent definition is the
change in y divided by the change in x for any segment of the line. In the figure,
a segment of the line is marked with a small right triangle. The vertical change is
2 units and the horizontal change is 1 unit, therefore the slope is 2/1=2. Using b0

for the intercept and b1 for the slope, the equation of the line is y = b0 + b1x.
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Figure 9.3: Least square principle.
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By plugging different values for x into this equation we can find the corre-
sponding y values that are on the line drawn. For any given b0 and b1 we get a
potential best-fit line, and the vertical distances of the points from the line are
called the residuals. We can use the symbol ŷi, pronounced “y hat sub i”, where
“sub” means subscript, to indicate the fitted or predicted value of outcome y for
subject i. (Some people also use the y′i “y-prime sub i”.) For subject i, who has
explanatory variable xi, the prediction is ŷi = b0 + b1xi and the residual is yi − ŷi.
The least square principle says that the best-fit line is the one with the smallest
sum of squared residuals. It is interesting to note that the sum of the residuals
(not squared) is zero for the least-squares best-fit line.

In practice, we don’t really try every possible line. Instead we use calculus to
find the values of b0 and b1 that give the minimum sum of squared residuals. You
don’t need to memorize or use these equations, but here they are in case you are
interested.

b1 =

∑n
i=1(xi − x̄)(yi − ȳ)

(xi − x̄)2

b0 = ȳ − b1x̄

Also, the best estimate of σ2 is

s2 =

∑n
i=1(yi − ŷi)2

n− 2
.

Whenever we ask a computer to perform simple linear regression, it uses these
equations to find the best fit line, then shows us the parameter estimates. Some-
times the symbols β̂0 and β̂1 are used instead of b0 and b1. Even though these
symbols have Greek letters in them, the “hat” over the beta tells us that we are
dealing with statistics, not parameters.

Here are the derivations of the coefficient estimates. SSR indicates sum
of squared residuals, the quantity to minimize.

SSR =
n∑
i=1

(yi − (β0 + β1xi))
2 (9.1)

=
n∑
i=1

(
y2
i − 2yi(β0 + β1xi) + β2

0 + 2β0β1xi + β2
1x

2
i

)
(9.2)
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∂SSR

∂β0

=
n∑
i=1

(−2yi + 2β0 + 2β1xi) (9.3)

0 =
n∑
i=1

(
−yi + β̂0 + β̂1xi

)
(9.4)

0 = −nȳ + nβ̂0 + β̂1nx̄ (9.5)

β̂0 = ȳ − β̂1x̄ (9.6)

∂SSR

∂β1

=
n∑
i=1

(
−2xiyi + 2β0xi + 2β1x

2
i

)
(9.7)

0 = −
n∑
i=1

xiyi + β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i (9.8)

0 = −
n∑
i=1

xiyi + (ȳ − β̂1x̄)
n∑
i=1

xi + β̂1

n∑
i=1

x2
i (9.9)

β̂1 =

∑n
i=1 xi(yi − ȳ)∑n
i=1 xi(xi − x̄)

(9.10)

A little algebra shows that this formula for β̂1 is equivalent to the one
shown above because c

∑n
i=1(zi − z̄) = c · 0 = 0 for any constant c and

variable z.

In multiple regression, the matrix formula for the coefficient estimates is
(X ′X)−1X ′y, where X is the matrix with all ones in the first column (for
the intercept) and the values of the explanatory variables in subsequent
columns.

Because the intercept and slope estimates are statistics, they have sampling
distributions, and these are determined by the true values of β0, β1, and σ2, as
well as the positions of the x values and the number of subjects at each x value.
If the model assumptions are correct, the sampling distributions of the intercept
and slope estimates both have means equal to the true values, β0 and β1, and
are Normally distributed with variances that can be calculated according to fairly
simple formulas which involve the x values and σ2.

In practice, we have to estimate σ2 with s2. This has two consequences. First
we talk about the standard errors of the sampling distributions of each of the betas
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instead of the standard deviations, because, by definition, SE’s are estimates of
s.d.’s of sampling distributions. Second, the sampling distribution of bj − βj (for
j=0 or 1) is now the t-distribution with n − 2 df (see section 3.9.5), where n is
the total number of subjects. (Loosely we say that we lose two degrees of freedom
because they are used up in the estimation of the two beta parameters.) Using the
null hypothesis of βj = 0 this reduces to the null sampling distribution bj ∼ tn−2.

The computer will calculate the standard errors of the betas, the t-statistic
values, and the corresponding p-values (for the usual two-sided alternative hypoth-
esis). We then compare these p-values to our pre-chosen alpha (usually α = 0.05)
to make the decisions whether to retain or reject the null hypotheses.

The formulas for the standard errors come from the formula for the
variance covariance matrix of the joint sampling distributions of β̂0 and
β̂1 which is σ2(X ′X)−1, where X is the matrix with all ones in the first
column (for the intercept) and the values of the explanatory variable in
the second column. This formula also works in multiple regression where
there is a column for each explanatory variable. The standard errors of the
coefficients are obtained by substituting s2 for the unknown σ2 and taking
the square roots of the diagonal elements.

For simple regression this reduces to

SE(b0) = s

√√√√ ∑
x2

n
∑

(x2)− (
∑
x)2

and

SE(b1) = s

√
n

n
∑

(x2)− (
∑
x)2

.

The basic regression output is shown in table 9.1 in a form similar to that
produced by SPSS, but somewhat abbreviated. Specifically, “standardized coeffi-
cients” are not included.

In this table we see the number 84.821 to the right of the “(Constant)” label
and under the labels “Unstandardized Coefficients” and “B”. This is called the
intercept estimate, estimated intercept coefficient, or estimated constant, and can
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Unstandardized
Coefficients 95% Confidence Interval for B

B Std. Error t Sig. Lower Bound Upper Bound
(Constant) 84.821 18.116 4.682 .000 47.251 122.391
Nitrogen added 5.269 .299 17.610 .000 4.684 5.889

Table 9.1: Regression results for the corn experiment.

be written as b0, β̂0 or rarely B0, but β0 is incorrect, because the parameter value
β0 is a fixed, unknown “secret of nature”. (Usually we should just say that b0

equals 84.8 because the original data and most experimental data has at most 3
significant figures.)

The number 5.269 is the slope estimate, estimated slope coefficient, slope es-
timate for nitrogen added, or coefficient estimate for nitrogen added, and can be
written as b1, β̂1 or rarely B1, but β1 is incorrect. Sometimes symbols such as
βnitrogen or βN for the parameter and bnitrogen or bN for the estimates will be used
as better, more meaningful names, especially when dealing with multiple explana-
tory variables in multiple (as opposed to simple) regression.

To the right of the intercept and slope coefficients you will find their standard
errors. As usual, standard errors are estimated standard deviations of the corre-
sponding sampling distributions. For example, the SE of 0.299 for BN gives an idea
of the scale of the variability of the estimate BN , which is 5.269 here but will vary
with a standard deviation of approximately 0.299 around the true, unknown value
of βN if we repeat the whole experiment many times. The two t-statistics are cal-
culated by all computer programs using the default null hypotheses of H0 : βj = 0
according to the general t-statistic formula

tj =
bj − hypothesized value of βj

SE(bj)
.

Then the computer uses the null sampling distributions of the t-statistics, i.e.,
the t-distribution with n−2 df, to compute the 2-sided p-values as the areas under
the null sampling distribution more extreme (farther from zero) than the coefficient
estimates for this experiment. SPSS reports this as “Sig.”, and as usual gives the
misleading output “.000” when the p-value is really “< 0.0005”.



226 CHAPTER 9. SIMPLE LINEAR REGRESSION

In simple regression the p-value for the null hypothesis H0 : β1 = 0
comes from the t-test for b1. If applicable, a similar test is made for
β0.

SPSS also gives Standardized Coefficients (not shown here). These are the
coefficient estimates obtained when both the explanatory and outcome variables
are converted to so-called Z-scores by subtracting their means then dividing by
their standard deviations. Under these conditions the intercept estimate is zero,
so it is not shown. The main use of standardized coefficients is to allow compari-
son of the importance of different explanatory variables in multiple regression by
showing the comparative effects of changing the explanatory variables by one stan-
dard deviation instead of by one unit of measurement. I rarely use standardized
coefficients.

The output above also shows the “95% Confidence Interval for B” which is gen-
erated in SPSS by clicking “Confidence Intervals” under the “Statistics” button.
In the given example we can say “we are 95% confident that βN is between 4.68
and 5.89.” More exactly, we know that using the method of construction of coeffi-
cient estimates and confidence intervals detailed above, and if the assumptions of
regression are met, then each time we perform an experiment in this setting we will
get a different confidence interval (center and width), and out of many confidence
intervals 95% of them will contain βN and 5% of them will not.

The confidence interval for β1 gives a meaningful measure of the loca-
tion of the parameter and our uncertainty about that location, regard-
less of whether or not the null hypothesis is true. This also applies to
β0.

9.5 Interpreting regression coefficients

It is very important that you learn to correctly and completely interpret the co-
efficient estimates. From E(Y |x) = β0 + β1x we can see that b0 represents our
estimate of the mean outcome when x = 0. Before making an interpretation of b0,
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first check the range of x values covered by the experimental data. If there is no
x data near zero, then the intercept is still needed for calculating ŷ and residual
values, but it should not be interpreted because it is an extrapolated value.

If there are x values near zero, then to interpret the intercept you must express
it in terms of the actual meanings of the outcome and explanatory variables. For
the example of this chapter, we would say that b0 (84.8) is the estimated corn plant
weight (in grams) when no nitrogen is added to the pots (which is the meaning of
x = 0). This point estimate is of limited value, because it does not express the
degree of uncertainty associated with it. So often it is better to use the CI for b0.
In this case we say that we are 95% confident that the mean weight for corn plants
with no added nitrogen is between 47 and 122 gm, which is quite a wide range. (It
would be quite misleading to report the mean no-nitrogen plant weight as 84.821
gm because it gives a false impression of high precision.)

After interpreting the estimate of b0 and it’s CI, you should consider whether
the null hypothesis, β0 = 0 makes scientific sense. For the corn example, the null
hypothesis is that the mean plant weight equals zero when no nitrogen is added.
Because it is unreasonable for plants to weigh nothing, we should stop here and not
interpret the p-value for the intercept. For another example, consider a regression
of weight gain in rats over a 6 week period as it relates to dose of an anabolic
steroid. Because we might be unsure whether the rats were initially at a stable
weight, it might make sense to test H0 : β0 = 0. If the null hypothesis is rejected
then we conclude that it is not true that the weight gain is zero when the dose is
zero (control group), so the initial weight was not a stable baseline weight.

Interpret the estimate, b0, only if there are data near zero and setting
the explanatory variable to zero makes scientific sense. The meaning
of b0 is the estimate of the mean outcome when x = 0, and should
always be stated in terms of the actual variables of the study. The p-
value for the intercept should be interpreted (with respect to retaining
or rejecting H0 : β0 = 0) only if both the equality and the inequality of
the mean outcome to zero when the explanatory variable is zero are
scientifically plausible.

For interpretation of a slope coefficient, this section will assume that the setting
is a randomized experiment, and conclusions will be expressed in terms of causa-
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tion. Be sure to substitute association if you are looking at an observational study.
The general meaning of a slope coefficient is the change in Y caused by a one-unit
increase in x. It is very important to know in what units x are measured, so that
the meaning of a one-unit increase can be clearly expressed. For the corn experi-
ment, the slope is the change in mean corn plant weight (in grams) caused by a one
mg increase in nitrogen added per pot. If a one-unit change is not substantively
meaningful, the effect of a larger change should be used in the interpretation. For
the corn example we could say the a 10 mg increase in nitrogen added causes a
52.7 gram increase in plant weight on average. We can also interpret the CI for
β1 in the corn experiment by saying that we are 95% confident that the change in
mean plant weight caused by a 10 mg increase in nitrogen is 46.8 to 58.9 gm.

Be sure to pay attention to the sign of b1. If it is positive then b1 represents the
increase in outcome caused by each one-unit increase in the explanatory variable. If
b1 is negative, then each one-unit increase in the explanatory variable is associated
with a fall in outcome of magnitude equal to the absolute value of b1.

A significant p-value indicates that we should reject the null hypothesis that
β1 = 0. We can express this as evidence that plant weight is affected by changes
in nitrogen added. If the null hypothesis is retained, we should express this as
having no good evidence that nitrogen added affects plant weight. Particularly in
the case of when we retain the null hypothesis, the interpretation of the CI for β1

is better than simply relying on the general meaning of retain.

The interpretation of b1 is the change (increase or decrease depending
on the sign) in the average outcome when the explanatory variable
increases by one unit. This should always be stated in terms of the
actual variables of the study. Retention of the null hypothesis H0 : β1 =
0 indicates no evidence that a change in x is associated with (or causes
for a randomized experiment) a change in y. Rejection indicates that
changes in x cause changes in y (assuming a randomized experiment).
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9.6 Residual checking

Every regression analysis should include a residual analysis as a further check on
the adequacy of the chosen regression model. Remember that there is a residual
value for each data point, and that it is computed as the (signed) difference yi− ŷi.
A positive residual indicates a data point higher than expected, and a negative
residual indicates a point lower than expected.

A residual is the deviation of an outcome from the predicated mean
value for all subjects with the same value for the explanatory variable.

A plot of all residuals on the y-axis vs. the predicted values on the x-axis, called
a residual vs. fit plot, is a good way to check the linearity and equal variance
assumptions. A quantile-normal plot of all of the residuals is a good way to check
the Normality assumption. As mentioned above, the fixed-x assumption cannot be
checked with residual analysis (or any other data analysis). Serial correlation can
be checked with special residual analyses, but is not visible on the two standard
residual plots. The other types of correlated errors are not detected by standard
residual analyses.

To analyze a residual vs. fit plot, such as any of the examples shown in figure
9.4, you should mentally divide it up into about 5 to 10 vertical stripes. Then each
stripe represents all of the residuals for a number of subjects who have a similar
predicted values. For simple regression, when there is only a single explanatory
variable, similar predicted values is equivalent to similar values of the explanatory
variable. But be careful, if the slope is negative, low x values are on the right.
(Note that sometimes the x-axis is set to be the values of the explanatory variable,
in which case each stripe directly represents subjects with similar x values.)

To check the linearity assumption, consider that for each x value, if the mean of
Y falls on a straight line, then the residuals have a mean of zero. If we incorrectly fit
a straight line to a curve, then some or most of the predicted means are incorrect,
and this causes the residuals for at least specific ranges of x (or the predicated Y )
to be non-zero on average. Specifically if the data follow a simple curve, we will
tend to have either a pattern of high then low then high residuals or the reverse.
So the technique used to detect non-linearity in a residual vs. fit plot is to find the
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Figure 9.4: Sample residual vs. fit plots for testing linearity.

(vertical) mean of the residuals for each vertical stripe, then actually or mentally
connect those means, either with straight line segments, or possibly with a smooth
curve. If the resultant connected segments or curve is close to a horizontal line
at 0 on the y-axis, then we have no reason to doubt the linearity assumption. If
there is a clear curve, most commonly a “smile” or “frown” shape, then we suspect
non-linearity.

Four examples are shown in figure 9.4. In each band the mean residual is
marked, and lines segments connect these. Plots A and B show no obvious pattern
away from a horizontal line other that the small amount of expected “noise”. Plots
C and D show clear deviations from normality, because the lines connecting the
mean residuals of the vertical bands show a clear frown (C) and smile (D) pattern,
rather than a flat line. Untransformed linear regression is inappropriate for the
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Figure 9.5: Sample residual vs. fit plots for testing equal variance.

data that produced plots C and D. With practice you will get better at reading
these plots.

To detect unequal spread, we use the vertical bands in a different way. Ideally
the vertical spread of residual values is equal in each vertical band. This takes
practice to judge in light of the expected variability of individual points, especially
when there are few points per band. The main idea is to realize that the minimum
and maximum residual in any set of data is not very robust, and tends to vary a
lot from sample to sample. We need to estimate a more robust measure of spread
such as the IQR. This can be done by eyeballing the middle 50% of the data.
Eyeballing the middle 60 or 80% of the data is also a reasonable way to test the
equal variance assumption.
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Figure 9.5 shows four residual vs. fit plots, each of which shows good linearity.
The red horizontal lines mark the central 60% of the residuals. Plots A and B show
no evidence of unequal variance; the red lines are a similar distance apart in each
band. In plot C you can see that the red lines increase in distance apart as you
move from left to right. This indicates unequal variance, with greater variance at
high predicted values (high x values if the slope is positive). Plot D show a pattern
with unequal variance in which the smallest variance is in the middle of the range
of predicted values, with larger variance at both ends. Again, this takes practice,
but you should at least recognize obvious patterns like those shown in plots C and
D. And you should avoid over-reading the slight variations seen in plots A and B.

The residual vs. fit plot can be used to detect non-linearity and/or
unequal variance.

The check of normality can be done with a quantile normal plot as seen in
figure 9.6. Plot A shows no problem with Normality of the residuals because the
points show a random scatter around the reference line (see section 4.3.4). Plot B
is also consistent with Normality, perhaps showing slight skew to the left. Plot C
shows definite skew to the right, because at both ends we see that several points
are higher than expected. Plot D shows a severe low outlier as well as heavy tails
(positive kurtosis) because the low values are too low and the high values are too
high.

A quantile normal plot of the residuals of a regression analysis can be
used to detect non-Normality.

9.7 Robustness of simple linear regression

No model perfectly represents the real world. It is worth learning how far we can
“bend” the assumptions without breaking the value of a regression analysis.

If the linearity assumption is violated more than a fairly small amount, the
regression loses its meaning. The most obvious way this happens is in the inter-
pretation of b1. We interpret b1 as the change in the mean of Y for a one-unit
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Figure 9.6: Sample QN plots of regression residuals.
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increase in x. If the relationship between x and Y is curved, then the change in
Y for a one-unit increase in x varies at different parts of the curve, invalidating
the interpretation. Luckily it is fairly easy to detect non-linearity through EDA
(scatterplots) and/or residual analysis. If non-linearity is detected, you should try
to fix it by transforming the x and/or y variables. Common transformations are
log and square root. Alternatively it is common to add additional new explanatory
variables in the form of a square, cube, etc. of the original x variable one at a time
until the residual vs. fit plot shows linearity of the residuals. For data that can
only lie between 0 and 1, it is worth knowing (but not memorizing) that the square
root of the arcsine of y is often a good transformation.

You should not feel that transformations are “cheating”. The original way
the data is measured usually has some degree of arbitrariness. Also, common
measurements like pH for acidity, decibels for sound, and the Richter earthquake
scale are all log scales. Often transformed values are transformed back to the
original scale when results are reported (but the fact that the analysis was on a
transformed scale must also be reported).

Regression is reasonably robust to the equal variance assumption. Moderate
degrees of violation, e.g., the band with the widest variation is up to twice as wide
as the band with the smallest variation, tend to cause minimal problems. For more
severe violations, the p-values are incorrect in the sense that their null hypotheses
tend to be rejected more that 100α% of the time when the null hypothesis is true.
The confidence intervals (and the SE’s they are based on) are also incorrect. For
worrisome violations of the equal variance assumption, try transformations of the
y variable (because the assumption applies at each x value, transformation of x
will be ineffective).

Regression is quite robust to the Normality assumption. You only need to worry
about severe violations. For markedly skewed or kurtotic residual distributions,
we need to worry that the p-values and confidence intervals are incorrect. In that
case try transforming the y variable. Also, in the case of data with less than a
handful of different y values or with severe truncation of the data (values piling
up at the ends of a limited width scale), regression may be inappropriate due to
non-Normality.

The fixed-x assumption is actually quite important for regression. If the vari-
ability of the x measurement is of similar or larger magnitude to the variability of
the y measurement, then regression is inappropriate. Regression will tend to give
smaller than correct slopes under these conditions, and the null hypothesis on the
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slope will be retained far too often. Alternate techniques are required if the fixed-x
assumption is broken, including so-called Type 2 regression or “errors in variables
regression”.

The independent errors assumption is also critically important to regression.
A slight violation, such as a few twins in the study doesn’t matter, but other mild
to moderate violations destroy the validity of the p-value and confidence intervals.
In that case, use alternate techniques such as the paired t-test, repeated measures
analysis, mixed models, or time series analysis, all of which model correlated errors
rather than assume zero correlation.

Regression analysis is not very robust to violations of the linearity,
fixed-x, and independent errors assumptions. It is somewhat robust
to violation of equal variance, and moderately robust to violation of
the Normality assumption.

9.8 Additional interpretation of regression out-

put

Regression output usually includes a few additional components beyond the slope
and intercept estimates and their t and p-values.

Additional regression output is shown in table 9.2 which has what SPSS labels
“Residual Statistics” on top and what it labels “Model Summary” on the bottom.
The Residual Statistics summarize the predicted (fit) and residual values, as well
as “standardized” values of these. The standardized values are transformed to Z-
scores. You can use this table to detect possible outliers. If you know a lot about
the outcome variable, use the unstandardized residual information to see if the
minimum, maximum or standard deviation of the residuals is more extreme than
you expected. If you are less familiar, standardized residuals bigger than about 3
in absolute value suggest that those points may be outliers.

The “Standard Error of the Estimate”, s, is the best estimate of σ from our
model (on the standard deviation scale). So it represents how far data will fall
from the regression predictions on the scale of the outcome measurements. For the
corn analysis, only about 5% of the data falls more than 2(49)=98 gm away from
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Minimum Maximum Mean Std. Deviation N
Predicted Value 84.8 611.7 348.2 183.8 24
Residual -63.2 112.7 0.0 49.0 24
Std. Predicted Value -1.43 1.43 0.00 1.00 24
Std. Residual -1.26 2.25 0.00 0.978 24

Adjusted Std. Error of
R R Square R Square the Estimate

0.966 0.934 0.931 50.061

Table 9.2: Additional regression results for the corn experiment.

the prediction line. Some programs report the mean squared error (MSE), which
is the estimate of σ2.

The R2 value or multiple correlation coefficient is equal to the square of the
simple correlation of x and y in simple regression, but not in multiple regression.
In either case, R2 can be interpreted as the fraction (or percent if multiplied by
100) of the total variation in the outcome that is “accounted for” by regressing the
outcome on the explanatory variable.

A little math helps here. The total variance, var(Y), in a regression problem is
the sample variance of y ignoring x, which comes from the squared deviations of y
values around the mean of y. Since the mean of y is the best guess of the outcome
for any subject if the value of the explanatory variable is unknown, we can think
of total variance as measuring how well we can predict y without knowing x.

If we perform regression and then focus on the residuals, these values represent
our residual error variance when predicting y while using knowledge of x. The
estimate of this variance is called mean squared error or MSE and is the best
estimate of the quantity σ2 defined by the regression model.

If we subtract total minus residual error variance (var(Y)-MSE) we can call
the result “explained error”. It represents the amount of variability in y that is
explained away by regressing on x. Then we can compute R2 as

R2 =
explained variance

total variance
=

var(Y )−MSE

var(Y )
.

So R2 is the portion of the total variation in Y that is explained away by using
the x information in a regression. R2 is always between 0 and 1. An R2 of 0
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means that x provides no information about y. An R2 of 1 means that use of
x information allows perfect prediction of y with every point of the scatterplot
exactly on the regression line. Anything in between represents different levels of
closeness of the scattered points around the regression line.

So for the corn problem we can say the 93.4% of the total variation in plant
weight can be explained by regressing on the amount of nitrogen added. Unfortu-
nately, there is no clear general interpretation of the values of R2. While R2 = 0.6
might indicate a great finding in social sciences, it might indicate a very poor
finding in a chemistry experiment.

R2 is a measure of the fraction of the total variation in the outcome
that can be explained by the explanatory variable. It runs from 0 to
1, with 1 indicating perfect prediction of y from x.

9.9 Using transformations

If you find a problem with the equal variance or Normality assumptions, you will
probably want to see if the problem goes away if you use log(y) or y2 or

√
y or 1/y

instead of y for the outcome. (It never matters whether you choose natural vs.
common log.) For non-linearity problems, you can try transformation of x, y, or
both. If regression on the transformed scale appears to meet the assumptions of
linear regression, then go with the transformations. In most cases, when reporting
your results, you will want to back transform point estimates and the ends of
confidence intervals for better interpretability. By “back transform” I mean do
the inverse of the transformation to return to the original scale. The inverse of
common log of y is 10y; the inverse of natural log of y is ey; the inverse of y2 is√
y; the inverse of

√
y is y2; and the inverse of 1/y is 1/y again. Do not transform

a p-value – the p-value remains unchanged.

Here are a couple of examples of transformation and how the interpretations of
the coefficients are modified. If the explanatory variable is dose of a drug and the
outcome is log of time to complete a task, and b0 = 2 and b1 = 1.5, then we can
say the best estimate of the log of the task time when no drug is given is 2 or that
the the best estimate of the time is 102 = 100 or e2 = 7.39 depending on which log
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was used. We also say that for each 1 unit increase in drug, the log of task time
increases by 1.5 (additively). On the original scale this is a multiplicative increase
of 101.5 = 31.6 or e1.5 = 4.48. Assuming natural log, this says every time the dose
goes up by another 1 unit, the mean task time get multiplied by 4.48.

If the explanatory variable is common log of dose and the outcome is blood
sugar level, and b0 = 85 and b1 = 18 then we can say that when log(dose)=0,
blood sugar is 85. Using 100 = 1, this tells us that blood sugar is 85 when dose
equals 1. For every 1 unit increase in log dose, the glucose goes up by 18. But a
one unit increase in log dose is a ten fold increase in dose (e.g., dose from 10 to 100
is log dose from 1 to 2). So we can say that every time the dose increases 10-fold
the glucose goes up by 18.

Transformations of x or y to a different scale are very useful for fixing
broken assumptions.

9.10 How to perform simple linear regression in

SPSS

To perform simple linear regression in SPSS, select Analyze/Regression/Linear...
from the menu. You will see the “Linear Regression” dialog box as shown in figure
9.7. Put the outcome in the “Dependent” box and the explanatory variable in the
“Independent(s)” box. I recommend checking the “Confidence intervals” box for
“Regression Coefficients” under the “Statistics...” button. Also click the “Plots...”
button to get the “Linear Regression: Plots” dialog box shown in figure 9.8. From
here under “Scatter” put “*ZRESID” into the “Y” box and “*ZPRED” into the
“X” box to produce the residual vs. fit plot. Also check the “Normal probability
plot” box.
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Figure 9.7: Linear regression dialog box.

Figure 9.8: Linear regression plots dialog box.
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In a nutshell: Simple linear regression is used to explore the relation-
ship between a quantitative outcome and a quantitative explanatory
variable. The p-value for the slope, b1, is a test of whether or not
changes in the explanatory variable really are associated with changes
in the outcome. The interpretation of the confidence interval for β1 is
usually the best way to convey what has been learned from a study.
Occasionally there is also interest in the intercept. No interpretations
should be given if the assumptions are violated, as determined by
thinking about the fixed-x and independent errors assumptions, and
checking the residual vs. fit and residual QN plots for the other three
assumptions.



Chapter 10

Analysis of Covariance
An analysis procedure for looking at group effects on a continuous outcome when
some other continuous explanatory variable also has an effect on the outcome.

This chapter introduces several new important concepts including multiple re-
gression, interaction, and use of indicator variables, then uses them to present a
model appropriate for the setting of a quantitative outcome, and two explanatory
variables, one categorical and one quantitative. Generally the main interest is in
the effects of the categorical variable, and the quantitative explanatory variable is
considered to be a “control” variable, such that power is improved if its value is
controlled for. Using the principles explained here, it is relatively easy to extend
the ideas to additional categorical and quantitative explanatory variables.

The term ANCOVA, analysis of covariance, is commonly used in this setting,
although there is some variation in how the term is used. In some sense ANCOVA
is a blending of ANOVA and regression.

10.1 Multiple regression

Before you can understand ANCOVA, you need to understand multiple regression.
Multiple regression is a straightforward extension of simple regression from one to
several quantitative explanatory variables (and also categorical variables as we will
see in the section 10.4). For example, if we vary water, sunlight, and fertilizer to
see their effects on plant growth, we have three quantitative explanatory variables.

241
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In this case we write the structural model as

E(Y |x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3.

Remember that E(Y |x1, x2, x3) is read as expected (i.e., average) value of Y (the
outcome) given the values of the explanatory variables x1 through x3. Here, x1 is
the amount of water, x2 is the amount of sunlight, x3 is the amount of fertilizer, β0

is the intercept, and the other βs are all slopes. Of course we can have any number
of explanatory variables as long as we have one β parameter corresponding to each
explanatory variable.

Although the use of numeric subscripts for the different explanatory variables
(x’s) and parameters (β’s) is quite common, I think that it is usually nicer to
use meaningful mnemonic letters for the explanatory variables and corresponding
text subscripts for the parameters to remove the necessity of remembering which
number goes with which explanatory variable. Unless referring to variables in a
completely generic way, I will avoid using numeric subscripts here (except for using
β0 to refer to the intercept). So the above structural equation is better written as

E(Y |W,S, F ) = β0 + βWW + βSS + βFF.

In multiple regression, we still make the fixed-x assumption which indicates
that each of the quantitative explanatory variables is measured with little or no
imprecision. All of the error model assumptions also apply. These assumptions
state that for all subjects that have the same levels of all explanatory variables
the outcome is Normally distributed around the true mean (or that the errors are
Normally distributed with mean zero), and that the variance, σ2, of the outcome
around the true mean (or of the errors) is the same for every other set of values of
the explanatory variables. And we assume that the errors are independent of each
other.

Let’s examine what the (no-interaction) multiple regression structural model is
claiming, i.e., in what situations it might be plausible. By examining the equation
for the multiple regression structural model you can see that the meaning of each
slope coefficient is that it is the change in the mean outcome associated with (or
caused by) a one-unit rise in the corresponding explanatory variable when all of
the other explanatory variables are held constant.

We can see this by taking the approach of writing down the structural model
equation then making it reflect specific cases. Here is how we find what happens to
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the mean outcome when x1 is fixed at, say 5, and x2 at, say 10, and x3 is allowed
to vary.

E(Y |x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3

E(Y |x1 = 5, x2 = 10, x3) = β0 + 5β1 + 10β2 + β3x3

E(Y |x1 = 5, x2 = 10, x3) = (β0 + 5β1 + 10β2) + β3x3

Because the βs are fixed (but unknown) constants, this equation tells us that when
x1 and x2 are fixed at the specified values, the relationship between E(Y ) and x3

can be represented on a plot with the outcome on the y-axis and x3 on the x-axis
as a straight line with slope β3 and intercept equal to the number β0 + 5β1 + 10β2.
Similarly, we get the same slope with respect to x3 for any combination of x1 and
x2, and this idea extends to changing any one explanatory variable when the others
are held fixed.

From simplifying the structural model to specific cases we learn that the no-
interaction multiple regression model claims that not only is there a linear rela-
tionship between E(Y ) and any x when the other x’s are held constant, it also
implies that the effect of a given change in an x value does not depend on what the
values of the other x variables are set to, as long as they are held constant. These
relationships must be plausible in any given situation for the no-interaction mul-
tiple regression model to be considered. Some of these restrictions can be relaxed
by including interactions (see below).

It is important to notice that the concept of changing the value of one ex-
planatory variable while holding the others constant is meaningful in experiments,
but generally not meaningful in observational studies. Therefore, interpretation of
the slope coefficients in observational studies is fraught with difficulties and the
potential for misrepresentation.

Multiple regression can occur in the experimental setting with two or more
continuous explanatory variables, but it is perhaps more common to see one ma-
nipulated explanatory variable and one or more observed control variables. In that
setting, inclusion of the control variables increases power, while the primary in-
terpretation is focused on the experimental treatment variable. Control variables
function in the same way as blocking variables (see 8.5) in that they affect the
outcome but are not of primary interest, and for any specific value of the control
variable, the variability in outcome associated with each value of the main exper-
imental explanatory variable is reduced. Examples of control variables for many
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Figure 10.1: EDA for the distraction example.

psychological studies include things like ability (as determined by some auxiliary
information) and age.

As an example of multiple regression with two manipulated quantitative vari-
ables, consider an analysis of the data of MRdistract.dat which is from a (fake)
experiment testing the effects of both visual and auditory distractions on reading
comprehension. The outcome is a reading comprehension test score administered
after each subject reads an article in a room with various distractions. The test is
scored from 0 to 100 with 100 being best. The subjects are exposed to auditory
distractions that consist of recorded construction noise with the volume randomly
set to vary between 10 and 90 decibels from subject to subject. The visual dis-
traction is a flashing light at a fixed intensity but with frequency randomly set to
between 1 and 20 times per minute.

http://www.stat.cmu.edu/~hseltman/309/Book/data/MRdistract.dat
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Unstandardized
Coefficients 95% Confidence Interval for B

B Std. Error t Sig. Lower Bound Upper Bound
(Constant) 74.688 3.260 22.910 <0.0005 68.083 81.294
db -0.200 0.043 -4.695 <0.0005 -0.286 -0.114
freq -1.118 0.208 -5.38 <0.0005 -1.539 -0.697

Table 10.1: Regression results for distraction experiment.

Adjusted Std. Error of
R R Square R Square the Estimate

0.744 0.553 0.529 6.939

Table 10.2: Distraction experiment model summary.

Exploratory data analysis is difficult in the multiple regression setting because
we need more than a two dimensional graph. For two explanatory variables and
one outcome variable, programs like SPSS have a 3-dimensional plot (in SPSS
try Graphs/ChartBuilder and choose the “Simple 3-D Scatter” template in the
Scatter/Dot gallery; double click on the resulting plot and click the “Rotating 3-D
Plot” toolbar button to make it “live” which allows you to rotate the plot so as to
view it at different angles). For more than two explanatory variables, things get
even more difficult. One approach that can help, but has some limitations, is to plot
the outcome separately against each explanatory variable. For two explanatory
variables, one variable can be temporarily demoted to categories (e.g., using the
visual bander in SPSS), and then a plot like figure 10.1 is produced. Simple
regression fit lines are added for each category. Here we can see that increasing the
value of either explanatory variable tends to reduce the mean outcome. Although
the fit lines are not parallel, with a little practice you will be able to see that given
the uncertainty in setting their slopes from the data, they are actually consistent
with parallel lines, which is an indication that no interaction is needed (see below
for details).

The multiple regression results are shown in tables 10.1 10.2, and 10.3.
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Sum of
Squares df Mean Square F Sig.

Regression 22202.3 2 1101.1 22.9 <0.0005
Residual 1781.6 37 48.152

Total 3983.9 39

Table 10.3: Distraction experiment ANOVA.

Really important fact: There is an one-to-one relationship between the
coefficients in the multiple regression output and the model equation
for the mean of Y given the x’s. There is exactly one term in the
equation for each line in the coefficients table.

Here is an interpretation of the analysis of this experiment. (Computer reported
numbers are rounded to a smaller, more reasonable number of decimal places –
usually 3 significant figures.) A multiple regression analysis (additive model, i.e.,
with no interaction) was performed using sound distraction volume in decibels and
visual distraction frequency in flashes per minute as explanatory variables, and
test score as the outcome. Changes in both distraction types cause a statistically
significant reduction in test scores. For each 10 db increase in noise level, the test
score drops by 2.00 points (p<0.0005, 95% CI=[1.14, 2.86]) at any fixed visual
distraction level. For each per minute increase in the visual distraction blink rate,
the test score drops by 1.12 points (p<0.0005, 95%CI=[0.70,1.54]) at any fixed
auditory distraction value. About 53% of the variability in test scores is accounted
for by taking the values of the two distractions into account. (This comes from
adjusted R2.) The estimate of the standard deviation of test scores for any fixed
combination of sound and light distraction is 6.9 points.

The validity of these conclusions is confirmed by the following assumption
checks. The quantile-normal plot of the residuals confirms Normality of errors,
the residual vs. fit plot confirms linearity and equal variance. (Subject 32 is a
mild outlier with standardized residual of -2.3). The fixed-x assumption is met
because the values of the distractions are precisely set by the experimenter. The
independent errors assumption is met because separate subjects are used for each
test, and the subjects were not allowed to collaborate.

It is also a good idea to further confirm linearity for each explanatory variable
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with plots of each explanatory variable vs. the residuals. Those plots also look
OK here.

One additional test should be performed before accepting the model and anal-
ysis discussed above for these data. We should test the “additivity” assumption
which says that the effect (on the outcome) of a one-unit rise of one explanatory
variable is the same at every fixed value of the other variable (and vice versa). The
violation of this assumption usually takes the form of “interaction” which is the
topic of the next section. The test needed is the p-value for the interaction term
of a separate multiple regression model run with an interaction term.

One new interpretation is for the p-value of <0.0005 for the F statistic of
22.9 in the ANOVA table for the multiple regression. The p-value is for the null
hypothesis that all of the slope parameters, but not the intercept parameter, are
equal to zero. So for this experiment we reject H0 : βV = βA = 0 (or better yet,
H0 : βvisual = βauditory = 0

Multiple regression is a direct extension of simple regression to mul-
tiple explanatory variables. Each new explanatory variable adds one
term to the structural model.

10.2 Interaction

Interaction is a major concept in statistics that applies whenever there are two
or more explanatory variables. Interaction is said to exist between two or more
explanatory variables in their effect on an outcome. Interaction is never between
an explanatory variable and an outcome, or between levels of a single explanatory
variable. The term interaction applies to both quantitative and categorical ex-
planatory variables. The definition of interaction is that the effect of a change in
the level or value of one explanatory variable on the mean outcome depends on the
level or value of another explanatory variable. Therefore interaction relates to the
structural part of a statistical model.

In the absence of interaction, the effect on the outcome of any specific change
in one explanatory variable, e.g., a one unit rise in a quantitative variable or a
change from, e.g., level 3 to level 1 of a categorical variable, does not depend on



248 CHAPTER 10. ANALYSIS OF COVARIANCE

difference
Setting xS xL E(Y) from baseline

1 2 4 100-5(2)-3(4)=78
2 3 4 100-5(3)-3(4)=73 -5
3 2 6 100-5(2)-3(6)=72 -6
4 3 6 100-5(3)-3(6)=67 -11

Table 10.4: Demonstration of the additivity of E(Y ) = 100− 5xS − 3xL.

the level or value of the other explanatory variable(s), as long as they are held
constant. This also tells us that, e.g., the effect on the outcome of changing from
level 1 of explanatory variable 1 and level 3 of explanatory variable 2 to level 4 of
explanatory variable 1 and level 2 of explanatory variable 2 is equal to the sum
of the effects on the outcome of only changing variable 1 from level 1 to 4 plus
the effect of only changing variable 2 from level 3 to 1. For this reason the lack
of an interaction is called additivity. The distraction example of the previous
section is an example of a multiple regression model for which additivity holds
(and therefore there is no interaction of the two explanatory variables in their
effects on the outcome).

A mathematic example may make this more clear. Consider a model with
quantitative explanatory variables “decibels of distracting sound” and “frequency
of light flashing”, represented by xS and xL respectively. Imagine that the param-
eters are actually known, so that we can use numbers instead of symbols for this
example. The structural model demonstrated here is E(Y ) = 100 − 5xS − 3xL.
Sample calculations are shown in Table 10.4. Line 1 shows the arbitrary starting
values xS = 2, xL = 4. The mean outcome is 78, which we can call the “base-
line” for these calculations. If we leave the light level the same and change the
sound to 3 (setting 2), the mean outcome drops by 5. If we return to xS = 2, but
change xL to 6 (setting 3), then the mean outcome drops by 6. Because this is
a non-interactive, i.e., additive, model we expect that the effect of simultaneously
changing xS from 2 to 3 and xL from 4 to 6 will be a drop of 5+6=11. As shown
for setting 4, this is indeed so. This would not be true in a model with interaction.

Note that the component explanatory variables of an interaction and the lines
containing these individual explanatory variables in the coefficient table of the
multiple regression output, are referred to as main effects. In the presence of an
interaction, when the signs of the coefficient estimates of the main effects are the
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same, we use the term synergy if the interaction coefficient has the same sign.
This indicates a “super-additive” effect, where the whole is more than the sum of
the parts. If the interaction coefficient has opposite sign to the main effects, we
use the term antagonism to indicate a “sub-additive” effects where simultaneous
changes in both explanatory variables has less effect than the sum of the individual
effects.

The key to understanding the concept of interaction, how to put it into a struc-
tural model, and how to interpret it, is to understand the construction of one or
more new interaction variables from the existing explanatory variables. An inter-
action variable is created as the product of two (or more) explanatory variables.
That is why some programs and textbooks use the notation “A*B” to refer to the
interaction of explanatory variables A and B. Some other programs and textbooks
use “A:B”. Some computer programs can automatically create interaction vari-
ables, and some require you to create them. (You can always create them yourself,
even if the program has a mechanism for automatic creation.) Peculiarly, SPSS
has the automatic mechanism for some types of analyses but not others.

The creation, use, and interpretation of interaction variables for two quanti-
tative explanatory variables is discussed next. The extension to more than two
variables is analogous but more complex. Interactions that include a categorical
variable are discussed in the next section.

Consider an example of an experiment testing the effects of the dose of a drug
(in mg) on the induction of lethargy in rats as measured by number of minutes
that the rat spends resting or sleeping in a 4 hour period. Rats of different ages
are used and age (in months) is used as a control variable. Data for this (fake)
experiment are found in lethargy.dat.

Figure 10.2 shows some EDA. Here the control variable, age, is again cate-
gorized, and regression fit lines are added to the plot for each level of the age
categories. (Further analysis uses the complete, quantitative version of the age
variable.) What you should see here is that the slope appears to change as the
control variable changes. It looks like more drug causes more lethargy, and older
rats are more lethargic at any dose. But what suggests interaction here is that the
three fit lines are not parallel, so we get the (correct) impression that the effect of
any dose increase on lethargy is stronger in old rats than in young rats.

In multiple regression with interaction we add the new (product) interaction
variable(s) as additional explanatory variables. For the case with two explanatory

http://www.stat.cmu.edu/~hseltman/309/Book/data/lethargy.dat
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Figure 10.2: EDA for the lethargy example.



10.2. INTERACTION 251

variable, this becomes

E(Y |x1, x2) = β0 + β1x1 + β2x2 + β12(x1 · x2)

where β12 is the single parameter that represents the interaction effect and (x1 ·x2)
can either be thought of a the single new interaction variable (data column) or as
the product of the two individual explanatory variables.

Let’s examine what the multiple regression with interaction model is claim-
ing, i.e., in what situations it might be plausible. By examining the equation for
the structural model you can see that the effect of a one unit change in either
explanatory variable depends on the value of the other explanatory variable.

We can understand the details by taking the approach of writing down the
model equation then making it reflect specific cases. Here, we use more meaningful
variable names and parameter subscripts. Specifically, βd*a is the symbol for the
single interaction parameter.

E(Y |dose, age) = β0 + βdosedose + βageage + βd*adose · age

E(Y |dose, age = a) = β0 + βdosedose + aβage + aβd*a · dose

E(Y |dose, age = a) = (β0 + aβage) + (βdose + aβd*a)dose

Because the βs are fixed (unknown) constants, this equation tells us that when
age is fixed at some particular number, a, the relationship between E(Y ) and dose
is a straight line with intercept equal to the number β0 + aβage and slope equal
to the number βdose + aβd*a. The key feature of the interaction is the fact that
the slope with respect to dose is different for each value of a, i.e., for each age.
A similar equation can be written for fixed dose and varying age. The conclusion
is that the interaction model is one where the effects of any one-unit change in
one explanatory variable while holding the other(s) constant is a change in the
mean outcome, but the size (and maybe direction) of that change depends on the
value(s) that the other explanatory variable(s) is/are set to.

Explaining the meaning of the interaction parameter in a multiple regression
with continuous explanatory variables is difficult. Luckily, as we will see below, it
is much easier in the simplest version of ANCOVA, where there is one categorical
and one continuous explanatory variable.

The multiple regression results are shown in tables 10.5 10.6, and 10.7.
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Unstandardized
Coefficients 95% Confidence Interval for B

B Std. Error t Sig. Lower Bound Upper Bound
(Constant) 48.995 5.493 8.919 <0.0005 37.991 59.999
Drug dose 0.398 0.282 1.410 0.164 -0.167 0.962
Rat age 0.759 0.500 1.517 0.135 -0.243 1.761
DoseAge IA 0.396 0.025 15.865 <0.0005 0.346 0.446

Table 10.5: Regression results for lethargy experiment.

Adjusted Std. Error of
R R Square R Square the Estimate

0.992 0.985 0.984 7.883

Table 10.6: Lethargy experiment model summary.

Sum of
Squares df Mean Square F Sig.

Regression 222249 3 1101.1 22.868 <0.0005
Residual 3480 56 48.152

Total 225729 59

Table 10.7: Lethargy experiment ANOVA.
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Here is an interpretation of the analysis of this experiment written in language
suitable for an exam answer. A multiple regression analysis including interaction
was performed using drug dose in mg and rat age in months as explanatory vari-
ables, and minutes resting or sleeping during a 4 hour test period as the outcome.
There is a significant interaction (t=15.86, p<0.0005) between dose and age in
their effect on lethargy. (Therefore changes in either or both explanatory variables
cause changes in the lethargy outcome.) Because the coefficient estimate for the
interaction is of the same sign as the signs of the individual coefficients, it is easy to
give a general idea about the effects of the explanatory variables on the outcome.
Increases in both dose and age are associated with (cause, for dose) an increase in
lethargy, and the effects are “super-additive” or “synergistic” in the sense that the
effect of simultaneous fixed increases in both variables is more than the sum of the
effects of the same increases made separately for each explanatory variable. We
can also see that about 98% of the variability in resting/sleeping time is accounted
for by taking the values of dose and age into account. The estimate of the standard
deviation of resting/sleeping time for any fixed combination of dose and age is 7.9
minutes.

The validity of these conclusions is confirmed by the following assumption
checks. The quantile-normal plot of the residuals confirms Normality of errors,
the residual vs. fit plot confirms linearity and equal variance. The fixed-x assump-
tion is met because the dose is precisely set by the experimenter and age is precisely
observed. The independent errors assumption is met because separate subjects are
used for each test, and the subjects were not allowed to collaborate. Linearity is
further confirmed by plots of each explanatory variable vs. the residuals.

Note that the p-value for the interaction line of the regression results (coeffi-
cient) table tells us that the interaction is an important part of the model. Also
note that the component explanatory variables of the interaction (main effects) are
almost always included in a model if the interaction is included. In the presence
of a significant interaction both explanatory variables must affect the outcome, so
(except in certain special circumstances) you should not interpret the p-values of
the main effects if the interaction has a significant p-value. On the other hand,
if the interaction is not significant, generally the appropriate next step is to per-
form a new multiple regression analysis excluding the interaction term, i.e., run an
additive model.

If we want to write prediction equations with numbers instead of symbols, we
should use Y ′ or Ŷ on the left side, to indicate a “best estimate” rather than the
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true but unknowable values represented by E(Y ) which depends on the β values.
For this example, the prediction equation for resting/sleeping minutes for rats of
age 12 months at any dose is

Ŷ = 49.0 + 0.398(dose) + 0.76(12) + 0.396(dose · 12)

which is Ŷ = 58.1 + 5.15(dose).

Interaction between two explanatory variables is present when the
effect of one on the outcome depends on the value of the other. In-
teraction is implemented in multiple regression by including a new
explanatory variable that is the product of two existing explanatory
variables. The model can be explained by writing equations for the
relationship between one explanatory variable and the outcome for
some fixed values of the other explanatory variable.

10.3 Categorical variables in multiple regression

To use a categorical variable with k levels in multiple regression we must re-code
the data column as k − 1 new columns, each with only two different codes (most
commonly we use 0 and 1). Variables that only take on the values 0 or 1 are called
indicator or dummy variables. They should be considered as quantitative
variables. and should be named to correspond to their “1” level.

An indicator variable is coded 0 for any case that does not match the
variable name and 1 for any case that does match the variable name.

One level of the original categorical variable is designated the “baseline”. If
there is a control or placebo, the baseline is usually set to that level. The baseline
level does not have a corresponding variable in the new coding; instead subjects
with that level of the categorical variable have 0’s in all of the new variables. Each
new variable is coded to have a “1” for the level of the categorical variable that
matches its name and a zero otherwise.
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It is very important to realize that when new variables like these are con-
structed, they replace the original categorical variable when entering variables into
a multiple regression analysis, so the original variables are no longer used at all.
(The originals should not be erased, because they are useful for EDA, and because
you want to be able to verify correct coding of the indicator variables.)

This scheme for constructing new variables insures appropriate multiple regres-
sion analysis of categorical explanatory variables. As mentioned above, sometimes
you need to create these variables explicitly, and sometime a statistical program
will create them for you, either explicitly or silently.

The choice of the baseline variable only affects the convenience of presentation
of results and does not affect the interpretation of the model or the prediction of
future values.

As an example consider a data set with a categorical variable for favorite condi-
ment. The categories are ketchup, mustard, hot sauce, and other. If we arbitrarily
choose ketchup as the baseline category we get a coding like this:

Indicator Variable
Level mustard hot sauce other

ketchup 0 0 0
mustard 1 0 0

hot sauce 0 1 0
other 0 0 1

Note that this indicates, e.g., that every subject that likes mustard best has a 1
for their “mustard” variable, and zeros for their “hot sauce” and “other” variables.

As shown in the next section, this coding flexibly allows a model to have no
restrictions on the relationships of population means when comparing levels of the
categorical variable. It is important to understand that if we “accidentally” use a
categorical variable, usually with values 1 through k, in a multiple regression, then
we are inappropriately forcing the mean outcome to be ordered according to the
levels of a nominal variable, and we are forcing these means to be equally spaced.
Both of these problems are fixed by using indicator variable recoding.

To code the interaction between a categorical variable and a quantitative vari-
able, we need to create another k − 1 new variables. These variables are the
products of the k − 1 indicator variable(s) and the quantitative variable. Each of
the resulting new data columns has zeros for all rows corresponding to all levels of
the categorical variable except one (the one included in the name of the interaction
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variable), and has the value of the quantitative variable for the rows corresponding
to the named level.

Generally a model includes all or none of a set of indicator variables that cor-
respond with a single categorical variable. The same goes for the k− 1 interaction
variables corresponding to a given categorical variable and quantitative explana-
tory variable.

Categorical explanatory variables can be incorporated into multiple
regression models by substituting k − 1 indicator variables for any k-
level categorical variable. For an interaction between a categorical
and a quantitative variable k − 1 product variables should be created.

10.4 ANCOVA

The term ANCOVA (analysis of covariance) is used somewhat differently by dif-
ferent analysts and computer programs, but the most common meaning, and the
one we will use here, is for a multiple regression analysis in which there is at least
one quantitative and one categorical explanatory variable. Usually the categorical
variable is a treatment of primary interest, and the quantitative variable is a “con-
trol variable” of secondary interest, which is included to improve power (without
sacrificing generalizability).

Consider a particular quantitative outcome and two or more treatments that we
are comparing for their effects on the outcome. If we know one or more explanatory
variables are suspected to both affect the outcome and to define groups of subjects
that are more homogeneous in terms of their outcomes for any treatment, then we
know that we can use the blocking principle to increase power. Ignoring the other
explanatory variables and performing a simple ANOVA increases σ2 and makes it
harder to detect any real differences in treatment effects.

ANCOVA extends the idea of blocking to continuous explanatory variables,
as long as a simple mathematical relationship (usually linear) holds between the
control variable and the outcome.
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10.4.1 ANCOVA with no interaction

An example will make this more concrete. The data in mathtest.dat come from
a (fake) experiment testing the effects of two computer aided instruction (CAI)
programs on performance on a math test. The programs are labeled A and B,
where A is the control, older program, and B is suspected to be an improved
version. We know that performance depends on general mathematical ability so
the students math SAT is used as a control variable.

First let’s look at t-test results, ignoring the SAT score. EDA shows a slightly
higher mean math test score, but lower median for program B. A t-test shows no
significant difference with t=0.786, p=0.435. It is worth noting that the CI for
the mean difference between programs is [-5.36, 12.30], so we are 95% confident
that the effect of program B relative to the old program A is somewhere between
lowering the mean score by 5 points and raising it by 12 points. The estimate of
σ (square root of MSwithin from an ANOVA) is 17.1 test points.

EDA showing the relationship between math SAT (MSAT) and test score sep-
arately for each program is shown in figure 10.3. The steepness of the lines and
the fact that the variation in y at any x is smaller than the overall variation in y
for either program demonstrates the value of using MSAT as a control variable.
The lines are roughly parallel, suggesting that an additive, no-interaction model is
appropriate. The line for program B is higher than for program A, suggesting its
superiority.

First it is a good idea to run an ANCOVA model with interaction to verify that
the fit lines are parallel (the slopes are not statistically significantly different). This
is done by running a multiple regression model that includes the explanatory vari-
ables ProgB, MSAT, and the interaction between them (i.e, the product variable).
Note that we do not need to create a new set of indicator variables because there
are only two levels of program, and the existing variable is already an indicator
variable for program B. We do need to create the interaction variable in SPSS. The
interaction p-value is 0.375 (not shown), so there is no evidence of a significant
interaction (different slopes).

The results of the additive model (excluding the interaction) are shown in tables
10.8 10.9, and 10.10.

Of primary interest is the estimate of the benefit of using program B over
program A, which is 10 points (t=2.40, p=0.020) with a 95% confidence interval
of 2 to 18 points. Somewhat surprisingly the estimate of σ, which now refers to

http://www.stat.cmu.edu/~hseltman/309/Book/data/mathtest.dat
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Figure 10.3: EDA for the math test / CAI example.

Unstandardized
Coefficients 95% Confidence Interval for B

B Std. Error t Sig. Lower Bound Upper Bound
(Constant) -0.270 12.698 -0.021 0.983 -25.696 25.157
ProgB 10.093 4.206 2.400 0.020 1.671 18.515
Math SAT 0.079 0.019 4.171 <0.0005 0.041 0.117

Table 10.8: Regression results for CAI experiment.
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Adjusted Std. Error of
R R Square R Square the Estimate

0.492 0.242 0.215 15.082

Table 10.9: CAI experiment model summary.

Sum of
Squares df Mean Square F Sig.

Regression 4138 2 2069.0 0.095 <0.0005
Residual 12966 57 227.5

Total 17104 59

Table 10.10: CAI experiment ANOVA.

the standard deviation of test score for any combination of program and MSAT is
only slightly reduced from 17.1 to 15.1 points. The ANCOVA model explains 22%
of the variabilty in test scores (adjusted r-squared = 0.215), so there are probably
some other important variables “out there” to be discovered.

Of minor interest is the fact that the “control” variable, math SAT score, is
highly statistically significant (t=4.17, p<0.0005). Every 10 additional math SAT
points is associated with a 0.4 to 1.2 point rise in test score.

In conclusion, program B improves test scores by a few points on average for
students of all ability levels (as determined by MSAT scores).

This is a typical ANOVA story where the power to detect the effects of a
treatment is improved by including one or more control and/or blocking variables,
which are chosen by subject matter experts based on prior knowledge. In this
case the effect of program B compared to control program A was detectable using
MSAT in an ANCOVA, but not when ignoring it in the t-test.

The simplified model equations are shown here.

E(Y |ProgB,MSAT ) = β0 + βProgBProgB + βMSATMSAT

Program A: E(Y |ProgB = 0,MSAT ) = β0 + βMSATMSAT

Program B: E(Y |ProgB = 1,MSAT ) = (β0 + βProgB) + βMSATMSAT
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To be perfectly explicit, βMSAT is the slope parameter for MSAT and βProgB
is the parameter for the indicator variable ProgB. This parameter is technically a
“slope”, but really determines a difference in intercept for program A vs. program
B.

For the analysis of the data shown here, the predictions are:

Ŷ (ProgB,MSAT ) = −0.27 + 10.09ProgB + 0.08MSAT

Program A: Ŷ (ProgB = 0,MSAT ) = −0.27 + 0.08MSAT

Program B: Ŷ (ProgB = 1,MSAT ) = 9.82 + 0.08MSAT

Note that although the intercept is a meaningless extrapolation to an impossible
MSAT score of 0, we still need to use it in the prediction equation. Also note, that
in this no-interaction model, the simplified equations for the different treatment
levels have different intercepts, but the same slope.

ANCOVA with no interaction is used in the case of a quantitative
outcome with both a categorical and a quantitative explanatory vari-
able. The main use is for testing a treatment effect while using a
quantitative control variable to gain power.

10.4.2 ANCOVA with interaction

It is also possible that a significant interaction between a control variable and
treatment will occur, or that the quantitative explanatory variable is a variable of
primary interest that interacts with the categorical explanatory variable. Often
when we do an ANCOVA, we are “hoping” that there is no interaction because
that indicates a more complicated reality, which is harder to explain. On the other
hand sometimes a more complicated view of the world is just more interesting!

The multiple regression results shown in tables 10.11 and 10.12 refer to an
experiment testing the effect of three different treatments (A, B and C) on a
quantitative outcome, performance, which can range from 0 to 200 points, while
controlling for skill variable S, which can range from 0 to 100 points. The data
are available at Performance.dat. EDA showing the relationship between skill and

http://www.stat.cmu.edu/~hseltman/309/Book/data/Performance.dat
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Figure 10.4: EDA for the performance ANCOVA example.
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performance separately for each treatment is shown in figure 10.4. The treatment
variable, called Rx, was recoded to k−1 = 2 indicator variables, which we will call
RxB and RxC, with level A as the baseline. Two interaction variables were created
by multiplying S by RxB and S by RxC to create the single, two column interaction
of Rx and S. Because it is logical and customary to consider the interaction between
a continuous explanatory variable and a k level categorical explanatory variable,
where k > 2, as a single interaction with k − 1 degrees of freedom and k − 1
lines in a coefficient table, we use a special procedure in SPSS (or other similar
programs) to find a single p-value for the null hypothesis that model is additive
vs. the alternative that there is an interaction. The SPSS procedure using the
Linear Regression module is to use two “blocks” of independent variables, placing
the main effects (here RxB, RxC, and Skill) into block 1, and the going to the
“Next” block and placing the two interaction variables (here, RxB*S and RxC*S)
into block 2. The optional statistic “R Squared Change” must also be selected.

The output that is labeled “Model Summary” (Table 10.11) and that is pro-
duced with the “R Squared Change” option is explained here. Lines are shown
for two models. The first model is for the explanatory variables in block 1 only,
i.e., the main effects, so it is for the additive ANCOVA model. The table shows
that this model has an adjusted R2 value of 0.863, and an estimate of 11.61 for the
standard error of the estimate (σ). The second model adds the single 2 df interac-
tion to produce the full interaction ANCOVA model with separate slopes for each
treatment. The adjusted R2 is larger suggesting that this is the better model. One
good formal test of the necessity of using the more complex interaction model over
just the additive model is the “F Change” test. Here the test has an F statistic of
6.36 with 2 and 84 df and a p-value of 0.003, so we reject the null hypothesis that
the additive model is sufficient, and work only with the interaction model (model
2) for further interpretations. (The Model-1 “F Change test” is for the necessity
of the additive model over an intercept-only model that predicts the intercept for
all subjects.)

Using mnemonic labels for the parameters, the structural model that goes with
this analysis (Model 2, with interaction) is

E(Y |Rx, S) = β0 +βRxBRxB +βRxCRxC +βSS +βRxB*SRxB · S +βRxC*SRxC · S

You should be able to construct this equation directly from the names of the
explanatory variables in Table 10.12.

Using Table 10.12, the parameter estimates are β0 = 14.56, βRxB = 17.10, βRxC =
17.77, βS = 0.92, βRxB*S = 0.23, and βRxC*S = 0.50.
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Adjusted R Std. Error of
Model R R Square Square the Estimate
1 0.931 0.867 0.863 11.61
2 0.941 0.885 0.878 10.95

Change Statistics
R Square

Model Change F Change df1 df2 Sig. F Change
1 0.867 187.57 3 86 <0.0005
2 0.017 6.36 2 84 0.003

Table 10.11: Model summary results for generic experiment.

Unstandardized
Coefficients

Model B Std. Error t Sig.
1 (Constant) 3.22 3.39 0.95 0.344

RxB 27.30 3.01 9.08 <0.0005
RxC 39.81 3.00 13.28 <0.0005
S 1.18 0.06 19.60 <0.0005

2 (Constant) 14.56 5.00 2.91 0.005
RxB 17.10 6.63 2.58 0.012
RxC 17.77 6.83 2.60 0.011
S 0.92 0.10 8.82 <0.0005
RxB*S 0.23 0.14 1.16 0.108
RxC*S 0.50 0.14 3.55 0.001

Table 10.12: Regression results for generic experiment.
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To understand this complicated model, we need to write simplified equations:

RxA: E(Y |Rx=A, S) = β0 + βSS

RxB: E(Y |Rx=B, S) = (β0 + βRxB) + (βS + βRxB*S)S

RxC: E(Y |Rx=C, S) = (β0 + βRxC) + (βS + βRxC*S)S

Remember that these simplified equations are created by substituting in 0’s
and 1’s for RxB and RxC (but not into parameter subscripts), and then fully
simplifying the equations.

By examining these three equations we can fully understand the model. From
the first equation we see that β0 is the mean outcome for subjects given treatment
A and who have S=0. (It is often worthwhile to “center” a variable like S by
subtracting its mean from every value; then the intercept will refer to the mean of
S, which is never an extrapolation.)

Again using the first equation we see that the interpretation of βS is the slope
of Y vs. S for subjects given treatment A.

From the second equation, the intercept for treatment B can be seen to be
(β0 +βRxB), and this is the mean outcome when S=0 for subjects given treatment
B. Therefore the interpretation of βRxB is the difference in mean outcome when
S=0 when comparing treatment B to treatment A (a positive parameter value
would indicate a higher outcome for B than A, and a negative parameter value
would indicate a lower outcome). Similarly, the interpretation of βRxB*S is the
change in slope from treatment A to treatment B, where a positive βRxB*S means
that the B slope is steeper than the A slope and a negative βRxB*S means that
the B slope is less steep than the A slope.

The null hypotheses then have these specific meanings. βRxB = 0 is a test of
whether the intercepts differ for treatments A and B. βRxC = 0 is a test of whether
the intercepts differ for treatments A and C. βRxB*S = 0 is a test of whether the
slopes differ for treatments A and B. And βRxC*S = 0 is a test of whether the
slopes differ for treatments A and C.

Here is a full interpretation of the performance ANCOVA example. Notice
that the interpretation can be thought of a description of the EDA plot which uses
ANCOVA results to specify which observations one might make about the plot
that are statistically verifiable.

Analysis of the data from the performance dataset shows that treatment and
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skill interact in their effects on performance. Because skill levels of zero are a gross
extrapolation, we should not interpret the intercepts.

If skill=0 were a meaningful, observed state, then we would say all of the things
in this paragraph. The estimated mean performance for subjects with zero skill
given treatment A is 14.6 points (a 95% CI would be more meaningful). If it were
scientifically interesting, we could also say that this value of 14.6 is statistically
different from zero (t=2.91, df=84, p=0.005). The intercepts for treatments B and
C (mean performances when skill level is zero) are both statistically significantly
different from the intercept for treatment A (t=2.58,2.60, df=84, p=0.012, 0.011).
The estimates are 17.1 and 17.8 points higher for B and C respectively compared
to A (and again, CIs would be useful here).

We can also say that there is a statistically significant effect of skill on per-
formance for subjects given treatment A (t=8.82, p< 0.0005). The best estimate
is that the mean performance increases by 9.2 points for each 10 point increase
in skill. The slope of performance vs. skill for treatment B is not statistically
significantly different for that of treatment A (t=1.15, p=0.108). The slope of
performance vs. skill for treatment C is statistically significantly different for that
of treatment A (t=3.55, p=0.001). The best estimate is that the slope for subjects
given treatment C is 0.50 higher than for treatment A (i.e., the mean change in
performance for a 1 unit increase in skill is 0.50 points more for treatment C than
for treatment A). We can also say that the best estimate for the slope of the effect
of skill on performance for treatment C is 0.92+0.50=1.42.

Additional testing, using methods we have not learned, can be performed to
show that performance is better for treatments B and C than treatment A at all
observed levels of skill.

In summary, increasing skill has a positive effect on performance for treatment
A (of about 9 points per 10 point rise in skill level). Treatment B has a higher
projected intercept than treatment A, and the effect of skill on subjects given
treatment B is not statistically different from the effect on those given treatment
A. Treatment C has a higher projected intercept than treatment A, and the effect
of skill on subjects given treatment C is statistically different from the effect on
those given treatment A (by about 5 additional points per 10 unit rise in skill).
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If an ANCOVA has a significant interaction between the categorical
and quantitative explanatory variables, then the slope of the equation
relating the quantitative variable to the outcome differs for different
levels of the categorical variable. The p-values for indicator variables
test intercept differences from the baseline treatment, while the in-
teraction p-values test slope differences from the baseline treatment.

10.5 Do it in SPSS

To create k− 1 indicator variables from a k-level categorical variable in SPSS, run
Transform/RecodeIntoDifferentVariables, as shown in figure 5.16, k−1 times. Each
new variable name should match one of the non-baseline levels of the categorical
variable. Each time you will set the old and new values (figure 5.17) to convert
the named value to 1 and “all other values” to 0.

To create k− 1 interaction variables for the interaction between a k-level cate-
gorical variable and a quantitative variable, use Transform/Compute k − 1 times.
Each new variable name should specify what two variables are being multiplied. A
label with a “*”, “:” or the word “interaction” or abbreviation “I/A” along with
the categorical level and quantitative name is a really good idea. The “Numeric
Expression” (see figure 5.15) is just the product of the two variables, where “*”
means multiply.

To perform multiple regression in any form, use the Analyze/Regression/Linear
menu item (see figure 9.7), and put the outcome in the Dependent box. Then put
all of the main effect explanatory variables in the Independent(s) box. Do not
use the original categorical variable – use only the k − 1 corresponding indicator
variables. If you want to model non-parallel lines, add the interaction variables
as a second block of independent variables, and turn on the “R Square Change”
option under “Statistics”. As in simple regression, add the option for CI’s for
the estimates, and graphs of the normal probability plot and residual vs. fit plot.
Generally, if the “F change test” for the interaction is greater than 0.05, use “Model
1”, the additive model, for interpretations. If it is ≤0.05, use “Model 2”, the
interaction model.
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Two-Way ANOVA
An analysis method for a quantitative outcome and two categorical explanatory
variables.

If an experiment has a quantitative outcome and two categorical explanatory
variables that are defined in such a way that each experimental unit (subject) can
be exposed to any combination of one level of one explanatory variable and one
level of the other explanatory variable, then the most common analysis method
is two-way ANOVA. Because there are two different explanatory variables the
effects on the outcome of a change in one variable may either not depend on the
level of the other variable (additive model) or it may depend on the level of the
other variable (interaction model). One common naming convention for a model
incorporating a k-level categorical explanatory variable and an m-level categorical
explanatory variable is “k by m ANOVA” or “k x m ANOVA”. ANOVA with
more that two explanatory variables is often called multi-way ANOVA. If a
quantitative explanatory variable is also included, that variable is usually called a
covariate.

In two-way ANOVA, the error model is the usual one of Normal distribution
with equal variance for all subjects that share levels of both (all) of the explana-
tory variables. Again, we will call that common variance σ2. And we assume
independent errors.

267
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Two-way (or multi-way) ANOVA is an appropriate analysis method
for a study with a quantitative outcome and two (or more) categorical
explanatory variables. The usual assumptions of Normality, equal
variance, and independent errors apply.

The structural model for two-way ANOVA with interaction is that each combi-
nation of levels of the explanatory variables has its own population mean with no
restrictions on the patterns. One common notation is to call the population mean
of the outcome for subjects with level a of the first explanatory variable and level
b of the second explanatory variable as µab. The interaction model says that any
pattern of µ’s is possible, and a plot of those µ’s could show any arbitrary pattern.

In contrast, the no-interaction (additive) model does have a restriction on the
population means of the outcomes. For the no-interaction model we can think of
the mean restrictions as saying that the effect on the outcome of any specific level
change for one explanatory variable is the same for every fixed setting of the other
explanatory variable. This is called an additive model. Using the notation of the
previous paragraph, the mathematical form of the additive model is µac − µbc =
µad − µbd for any valid levels a, b, c, and d. (Also, µab − µac = µdb − µdc.)

A more intuitive presentation of the additive model is a plot of the population
means as shown in figure 11.1. The same information is shown in both panels.
In each the outcome is shown on the y-axis, the levels of one factor are shown on
the x-axis, and separate colors are used for the second factor. The second panel
reverses the roles of the factors from the first panel. Each point is a population
mean of the outcome for a combination of one level from factor A and one level
from factor B. The lines are shown as dashed because the explanatory variables
are categorical, so interpolation “between” the levels of a factor makes no sense.
The parallel nature of the dashed lines is what tells us that these means have a
relationship that can be called additive. Also the choice of which factor is placed
on the x-axis does not affect the interpretation, but commonly the factor with
more levels is placed on the x-axis. Using this figure, you should now be able to
understand the equations of the previous paragraph. In either panel the change
in outcome (vertical distance) is the same if we move between any two horizontal
points along any dotted line.

Note that the concept of interaction vs. an additive model is the same for
ANCOVA or a two-way ANOVA. In the additive model the effects of a change in
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Figure 11.1: Population means for a no-interaction two-way ANOVA example.
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one explanatory variable on the outcome does not depend on the value or level
of the other explanatory variable, and the effect of a change in an explanatory
variable can be described while not stating the (fixed) level of the other explanatory
variable. And for the models underlying both analyses, if an interaction is present,
the effects on the outcome of changing one explanatory variable depends on the
specific value or level of the other explanatory variable. Also, the lines representing
the mean of y at all values of quantitative variable x (in some practical interval)
for each particular level of the categorical variable are all parallel (additive model)
or not all parallel (interaction) in ANCOVA. In two-way ANOVA the order of the
levels of the categorical variable represented on the x-axis is arbitrary and there
is nothing between the levels, but nevertheless, if lines are drawn to aid the eye,
these lines are all parallel if there is no interaction, and not all parallel if there is
an interaction.

The two possible means models for two-way ANOVA are the additive
model and the interaction model. The additive model assumes that
the effects on the outcome of a particular level change for one explana-
tory variable does not depend on the level of the other explanatory
variable. If an interaction model is needed, then the effects of a par-
ticular level change for one explanatory variable does depend on the
level of the other explanatory variable.

A profile plot, also called an interaction plot, is very similar to figure 11.1,
but instead the points represent the estimates of the population means for some
data rather than the (unknown) true values. Because we can fit models with
or without an interaction term, the same data will show different profile plots
depending on which model we use. It is very important to realize that a profile
plot from fitting a model without an interaction always shows the best possible
parallel lines for the data, regardless of whether an additive model is adequate
for the data, so this plot should not be used as EDA for choosing between the
additive and interaction models. On the other hand, the profile plot from a model
that includes the interaction shows the actual sample means, and is useful EDA
for choosing between the additive and interaction models.
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A profile plot is a way to look at outcome means for two factors
simultaneously. The lines on this plot are meaningless, and only are
an aid to viewing the plot. A plot drawn with parallel lines (or for
which, given the size of the error, the lines could be parallel) suggests
an additive model, while non-parallel lines suggests an interaction
model.

11.1 Pollution Filter Example

This example comes from a statement by Texaco, Inc. to the Air and Water Pol-
lution Subcommittee of the Senate Public Works Committee on June 26, 1973.
Mr. John McKinley, President of Texaco, cited an automobile filter developed by
Associated Octel Company as effective in reducing pollution. However, questions
had been raised about the effects of filters on vehicle performance, fuel consump-
tion, exhaust gas back pressure, and silencing. On the last question, he referred
to the data in CarNoise.dat as evidence that the silencing properties of the Octel
filter were at least equal to those of standard silencers.

This is an experiment in which the treatment “filter type” with levels “stan-
dard” and “octel” are randomly assigned to the experimental units, which are cars.
Three types of experimental units are used, a small, a medium, or a large car, pre-
sumably representing three specific car models. The outcome is the quantitative
(continuous) variable “noise”. The categorical experimental variable “size” could
best be considered to be a blocking variable, but it is also reasonable to consider it
to be an additional variable of primary interest, although of limited generalizability
due to the use of a single car model for each size.

A reasonable (initial) statistical model for these data is that for any combination
of size and filter type the noise outcome is normally distributed with equal variance.
We also can assume that the errors are independent if there is no serial trend in
the way the cars are driven during the testing or in possible “drift” in the accuracy
of the noise measurement over the duration of th experiment.

The means part of the structural model is either the additive model or the
interaction model. We could either use EDA to pick which model to try first, or
we could check the interaction model first, then switch to the additive model if the

http://www.stat.cmu.edu/~hseltman/309/Book/data/CarNoise.dat
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TYPE
Standard Octel Total

SIZE small 6 6 12
medium 6 6 12
large 6 6 12

Total 18 18 36

Table 11.1: Cross-tabulation for car noise example.

interaction term is not statistically significant.

Some useful EDA is shown in table 11.1 and figures 11.2 and 11.3. The cross-
tabulation lets us see that each cell of the experiment, i.e., each set of outcomes
that correspond to a given set of levels of the explanatory variables, has six subjects
(cars tested). This situation where there are the same number of subjects in all
cells is called a balanced design. One of the key features of this experiment
which tells us that it is OK to use the assumption of independent errors is that
a different subject (car) is used for each test (row in the data). This is called a
between-subjects design, and is the same as all of the studies described up to
this point in the book, as contrasted with a within-subjects design in which each
subject is exposed to multiple treatments (levels of the explanatory variables).
For this experiment an appropriate within-subjects design would be to test each
individual car with both types of filter, in which case a different analysis called
within-subjects ANOVA would be needed.

The boxplots show that the small and medium sized cars have more noise than
the large cars (although this may not be a good generalization, assuming that
only one car model was testing in each size class). It appears that the Octel filter
reduces the median noise level for medium sized cars and is equivalent to the
standard filter for small and large cars. We also see that, for all three car sizes,
there is less car-to-car variability in noise when the Octel filter is used.

The error bar plot shows mean plus or minus 2 SE. A good alternative, which
looks very similar, is to show the 95% CI around each mean. For this plot, the
standard deviations and sample sizes for each of the six groups are separately
used to construct the error bars, but this is less than ideal if the equal variance
assumption is met, in which case a pooled standard deviation is better. In this
example, the best approach would be to use one pooled standard deviation for
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Figure 11.2: Side-by-side boxplots for car noise example.

each filter type.

Figure 11.3: Error bar plot for car noise example.
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Source Sum of Squares df Mean Square F Sig.

Corrected Model 27912 5 5582 85.3 <0.0005
SIZE 26051 2 13026 199.1 <0.0005
TYPE 1056 1 1056 16.1 <0.0005
SIZE*TYPE 804 2 402 6.1 <0.0005
Error 1962 30 65
Corrected Total 29874 35

Table 11.2: ANOVA for the car noise experiment.

11.2 Interpreting the two-way ANOVA results

The results of a two-way ANOVA of the car noise example are shown in tables 11.2
and 11.3. The ANOVA table is structured just like the one-way ANOVA table.
The SS column represents the sum of squared deviations for each of several differ-
ent ways of choosing which deviations to look at, and these are labeled “Source
(of Variation)” for reasons that are discussed more fully below. Each SS has a
corresponding df (degrees of freedom) which is a measure of the number of inde-
pendent pieces of information present in the deviations that are used to compute
the corresponding SS (see section 4.6). And each MS is the SS divided by the df
for that line. Each MS is a variance estimate or a variance-like quantity, and as
such its units are the squares of the outcome units.

Each F-statistic is the ratio of two MS values. For the between-groups ANOVA
discussed in this chapter, the denominators are all MSerror (MSE) which corre-
sponds exactly to MSwithin of the one-way ANOVA table. MSE is a “pure” es-
timate of σ2, the common group variance, in the sense that it is unaffected by
whether or not the null hypothesis is true. Just like in one-way ANOVA, a com-
ponent of SSerror is computed for each treatment cell as deviations of individual
subject outcomes from the sample mean of all subjects in that cell; the component
df for each cell is nij − 1 (where nij is the number of subjects exposed to level i of
one explanatory variable and level j of the other); and the SS and df are computed
by summing over all cells.

Each F-statistic is compared against it’s null sampling distribution to compute
a p-value. Interpretation of each of the p-values depends on knowing the null
hypothesis for each F-statistic, which corresponds to the situation for which the
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numerator MS has an expected value σ2.

The ANOVA table has lines for each main effect, the interaction (if
included) and the error. Each of these lines demonstrates MS=SS/df.
For the main effects and interaction, there are F values (which equal
that line’s MS value divided by the error MS value) and corresponding
p-values.

The ANOVA table analyzes the total variation of the outcome in the experiment
by decomposing the SS (and df) into components that add to the total (which only
works because the components are what is called orthogonal). One decomposition
visible in the ANOVA table is that the SS and df add up for “Corrected model”
+ “Error” = “Corrected Total”. When interaction is included in the model, this
decomposition is equivalent to a one-way ANOVA where all of the ab cells in a
table with a levels of one factor and b levels of the other factor are treated as ab
levels of a single factor. In that case the values for “Corrected Model” correspond
to the “between-group” values of a one-way ANOVA, and the values for “Error”
correspond to the “within-group” values. The null hypothesis for the “Corrected
Model” F-statistic is that all ab population cell means are equal, and the deviations
involved in the sum of squares are the deviations of the cell sample means from the
overall mean. Note that this has ab− 1 df. The “Error” deviations are deviations
of the individual subject outcome values from the group means. This has N − ab
df. In our car noise example a = 2 filter types, b = 3 sizes, and N = 36 total noise
tests run.

SPSS gives two useless lines in the ANOVA table, which are not shown in figure
11.2. These are “Intercept” and “Total”. Note that most computer programs
report what SPSS calls the “Corrected Total” as the “Total”.

The rest of the ANOVA table is a decomposition of the “Corrected Model” into
main effects for size and type, as well as the interaction of size and type (size*type).
You can see that the SS and df add up such that “Corrected Model” = “size” +
“type” + “size*type”. This decomposition can be thought of as saying that the
deviation of the cell means from the overall mean is equal to the size deviations
plus the type deviations plus any deviations from the additive model in the form
of interaction.

In the presence of an interaction, the p-value for the interaction is most im-
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portant and the main effects p-values are generally ignored if the interaction is
significant. This is mainly because if the interaction is significant, then some
changes in both explanatory variables must have an effect on the outcome, regard-
less of the main effect p-values. The null hypothesis for the interaction F-statistic
is that there is an additive relationship between the two explanatory variables in
their effects on the outcome. If the p-value for the interaction is less than alpha,
then we have a statistically significant interaction, and we have evidence that any
non-parallelness seen on a profile plot is “real” rather than due to random error.

A typical example of a statistically significant interaction with statisti-
cally non-significant main effects is where we have three levels of factor A
and two levels of factor B, and the pattern of effects of changes in factor
A is that the means are in a “V” shape for one level of B and an inverted
“V” shape for the other level of B. Then the main effect for A is a test
of whether at all three levels of A the mean outcome, averaged over both
levels of B are equivalent. No matter how “deep” the V’s are, if the V and
inverted V are the same depth, then the mean outcomes averaged over B
for each level of A are the same values, and the main effect of A will be
non-significant. But this is usually misleading, because changing levels of
A has big effects on the outcome for either level of B, but the effects differ
depending on which level of B we are looking at. See figure 11.4.

If the interaction p-value is statistically significant, then we conclude that the
effect on the mean outcome of a change in one factor depends on the level of the
other factor. More specifically, for at least one pair of levels of one factor the effect
of a particular change in levels for the other factor depends on which level of the
first pair we are focusing on. More detailed explanations require “simple effects
testing”, see chapter 13.

In our current car noise example, we explain the statistically significant interac-
tion as telling us that the population means for noise differ between standard and
Octel filters for at least one car size. Equivalently we could say that the population
means for noise differ among the car sizes for at least one type of filter.

Examination of the plots or the Marginal Means table suggests (but does not
prove) that the important difference is that the noise level is higher for the standard
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Figure 11.4: Significant interaction with misleading non-significant main effect of
factor A.

95% Confidence Interval
SIZE TYPE Mean Std. Error Lower Bound Upper Bound
small Standard 825.83 3.30 819.09 832.58

Octel 822.50 3.30 815.76 829.24
medium Standard 845.83 3.30 839.09 852.58

Octel 821.67 3.30 814.92 828.41
large Standard 775.00 3.30 768.26 781.74

Octel 770.00 3.30 763.26 776.74

Table 11.3: Estimated Marginal Means for the car noise experiment.
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filter than the Octel filter for the medium sized car, but the filters have equivalent
effects for the small and large cars.

If the interaction p-value is not statistically significant, then in most situations
most analysts would re-run the ANOVA without the interaction, i.e., as a main
effects only, additive model. The interpretation of main effects F-statistics in a
non-interaction two-way ANOVA is easy. Each main effect p-value corresponds to
the null hypothesis that population means of the outcome are equal for all levels
of the factor ignoring the other factor. E.g., for a factor with three levels, the
null hypothesis is that H0 : µ1 = µ2 = µ3, and the alternative is that at least one
population mean differs from the others. (Because the population means for one
factor are averaged over the levels of the other factor, unbalanced sample sizes can
give misleading p-values.) If there are only two levels, then we can and should
immediately report which one is “better” by looking at the sample means. If there
are more than two levels, we can only say that there are some differences in mean
outcome among the levels, but we need to do additional analysis in the form of
“contrast testing” as shown in chapter 13 to determine which levels are statistically
significantly different.

Inference for the two-way ANOVA table involves first checking the
interaction p-value to see if we can reject the null hypothesis that the
additive model is sufficient. If that p-value is smaller than α then
the adequacy of the additive model can be rejected, and you should
conclude that both factors affect the outcome, and that the effect of
changes in one factor depends on the level of the other factor, i.e., there
is an interaction between the explanatory variables. If the interaction
p-value is larger than α, then you can conclude that the additive model
is adequate, and you should re-run the analysis without an interaction
term, and then interpret each of the p-values as in one-way ANOVA,
realizing that the effects of changes in one factor are the same at every
fixed level of the other factor.

It is worth noting that a transformation, such as a log transformation of the
outcome, would not correct the unequal variance of the outcome across the groups
defined by treatment combinations for this example (see figure 11.2). A log trans-
formation corrects unequal variance only in the case where the variance is larger
for groups with larger outcome means, which is not the case here. Therefore,
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other than using much more complicated analysis methods which flexibly model
changes in variance, the best solution to the problem of unequal variance in this
example, is to use the “Keppel” correction which roughly corrects for moderate
degrees if violation of the equal variance assumption by substituting α/2 for α.
For this problem, we still reject the null hypothesis of an additive model when we
compare the p-value to 0.025 instead of 0.05, so the correction does not change
our conclusion.

Figure 11.5 shows the 3 by 3 residual plot produced in SPSS by checking the
Option “Residual plot”. The middle panel of the bottom row shows the usual
residual vs. fit plot. There are six vertical bands of residual because there are six
combinations of filter level and size level, giving six possible predictions. Check the
equal variance assumption in the same way as for a regression problem. Verifying
that the means for all of the vertical bands are at zero is a check that the mean
model is OK. For two-way ANOVA this comes down to checking that dropping the
interaction term was a reasonable thing to do. In other words, if a no-interaction
model shows a pattern to the means, the interaction is probably needed. This
default plot is poorly designed, and does not allow checking Normality. I prefer
the somewhat more tedious approach of using the Save feature in SPSS to save
predicted and residual values, then using these to make the usual full size residual
vs. fit plot, plus a QN plot of the residuals to check for Normality.

Residual checking for two-way ANOVA is very similar to regression
and one-way ANOVA.

11.3 Math and gender example

The data in mathGender.dat are from an observational study carried out to in-
vestigate the relationship between the ACT Math Usage Test and the explanatory
variables gender (1=female, 2=male) and level of mathematics coursework taken
(1=algebra only, 2=algebra+geometry, 3=through calculus) for 861 high school
seniors. The outcome, ACT score, ranges from 0 to 36 with a median of 15 and a
mean of 15.33. An analysis of these data of the type discussed in this chapter can
be called a 3x2 (“three by two”) ANOVA because those are the numbers of levels
of the two categorical explanatory variables.

http://www.stat.cmu.edu/~hseltman/309/Book/data/mathGender.dat
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Figure 11.5: Residual plots for car noise example.

The rows of the data table (experimental units) are individual students. There
is some concern about independent errors if the 861 students come from just a
few schools, with many students per school, because then the errors for students
from the same school are likely to be correlated. In that case, the p-values and
confidence intervals will be unreliable, and we should use an alternative analysis
such as mixed models, which takes the clustering into schools into account. For
the analysis below, we assume that student are randomly sampled throughout the
country so that including two students from the same school would only be a rare
coincidence.

This is an observational study, so our conclusions will be described in terms
of association, not causation. Neither gender nor coursework was randomized to
different students.

The cross-tabulation of the explanatory variables is shown in table 11.4. As
opposed to the previous example, this is not a balanced ANOVA, because it has
unequal cell sizes.

Further EDA shows that each of the six cells has roughly the same variance
for the test scores, and none of the cells shows test score skewness or kurtosis
suggestive of non-Normality.
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Gender
Female Male Total

Coursework algebra 82 48 130
to geometry 387 223 610
to calculus 54 67 121

Total 523 338 861

Table 11.4: Cross-tabulation for the math and gender example.
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Figure 11.6: Cell means for the math and gender example.
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Source Sum of Squares df Mean Square F Sig.

Corrected Model 16172.8 5 3234.6 132.5 <0.0005
courses 14479.5 2 7239.8 296.5 <0.0005
gender 311.9 1 311.9 12.8 <0.0005
courses*gender 37.6 2 18.8 0.8 0.463
Error 20876.8 855 24.4
Corrected Total 37049.7 860 43.1

Table 11.5: ANOVA with interaction for the math and gender example.

A profile plot of the cell means is shown in figure 11.6. The first impression is
that students who take more courses have higher scores, males have slightly higher
scores than females, and perhaps the gender difference is smaller for students who
take more courses.

The two-way ANOVA with interaction is shown in table 11.5.

The deviations used in the sums of squared deviations (SS) in a two-
way ANOVA with interaction are just a bit more complicated than in
one-way ANOVA. The main effects deviations are calculated as in one-
way interaction, just ignoring the other factor. Then the interaction SS is
calculated by using the main effects to construct the best “parallel pattern”
means and then looking at the deviations of the actual cell means from the
best “parallel pattern means”.

The interaction line of the table (courses*gender) has 2 df because the difference
between an additive model (with a parallel pattern of population means) and
an interaction model (with arbitrary patterns) can be thought of as taking the
parallel pattern, then moving any two points for any one gender. The formula for
interaction df is (k − 1)(m− 1) for any k by m ANOVA.

As a minor point, note that the MS is given for the “Corrected Total” line.
Some programs give this value, which equals the variance of all of the outcomes
ignoring the explanatory variables. The “Corrected Total” line adds up for both
the SS and df columns but not for the MS column, to either “Corrected Model” +
“Error” or to all of the main effects plus interactions plus the Error.
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Source Sum of Squares df Mean Square F Sig.

Corrected Model 16135.2 3 5378.4 220.4 <0.0005
courses 14704.7 2 7352.3 301.3 <0.0005
gender 516.6 1 516.6 21.2 <0.0005
Error 20914.5 857 24.4
Corrected Total 37049.7 860

Table 11.6: ANOVA without interaction for the math and gender example.

The main point of this ANOVA table is that the interaction between the ex-
planatory variables gender and courses is not significant (F=0.8, p=0.463), so we
have no evidence to reject the additive model, and we conclude that course effects
on the outcome are the same for both genders, and gender effects on the outcome
are the same for all three levels of coursework. Therefore it is appropriate to re-run
the ANOVA with a different means model, i.e., with an additive rather than an
interactive model.

The ANOVA table for a two-way ANOVA without interaction is shown in table
11.6.

Our conclusion, using a significance level of α = 0.05 is that both courses and
gender affect test score. Specifically, because gender has only two levels (1 df),
we can directly check the Estimated Means table (table 11.7) to see that males
have a higher mean. Then we can conclude based on the small p-value that being
male is associated with a higher math ACT score compared to females, for each
level of courses. This is not in conflict with the observation that some females are
better than most males, because it is only a statement about means. In fact the
estimated means table tells us that the mean difference is 2.6 while the ANOVA
table tells us that the standard deviation in any group is approximately 5 (square
root of 24.4), so the overlap between males and females is quite large. Also, this
kind of study certainly cannot distinguish differences due to biological factors from
those due to social or other factors.

Looking at the p-value for courses, we see that at least one level of courses dif-
fers from the other two, and this is true separately for males and females because
the additive model is an adequate model. But we cannot make further impor-
tant statements about which levels of courses are significantly different without
additional analyses, which are discussed in chapter 13.
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95% Confidence Interval
courses Mean Std. Error Lower Bound Upper Bound
algebra 10.16 0.44 9.31 11.02
to geometry 14.76 0.20 14.36 15.17
to calculus 14.99 0.45 24.11 25.87

95% Confidence Interval
gender Mean Std. Error Lower Bound Upper Bound
female 14.84 0.26 15.32 16.36
male 17.44 0.30 16.86 18.02

Table 11.7: Estimated means for the math and gender example.

We can also note that the residual (within-group) variance is 24.4, so our esti-
mate of the population standard deviation for each group is

√
24.4 = 4.9. There-

fore about 95% of test scores for any gender and level of coursework are within 9.8
points of that group’s mean score.

11.4 More on profile plots, main effects and in-

teractions

Consider an experiment looking at the effects of different levels of light and sound
on some outcome. Five possible outcomes are shown in the profile plots of figures
11.7, 11.8, 11.9, 11.10, and 11.11 which include plus or minus 2 SE error bars
(roughly 95% CI for the population means).

Table 11.8 shows the p-values from two-way ANOVA’s of these five cases.

In case A you can see that it takes very little “wiggle”, certainly less than the
size of the error bars, to get the lines to be parallel, so an additive model should be
OK, and indeed the interaction p-value is 0.802. We should re-fit a model without
an interaction term. We see that as we change sound levels (move left or right),
the mean outcome (y-axis value) does not change much, so sound level does not
affect the outcome and we get a non-significant p-value (0.971). But changing light
levels (moving from one colored line to another, at any sound level) does change
the mean outcome, e.g., high light gives a low outcome, so we expect a significant
p-value for light, and indeed it is <0.0005.
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Case light sound interaction
A <0.0005 0.971 0.802
B 0.787 0.380 0.718
C <0.0005 <0.0005 <0.0005
D <0.0005 <0.0005 0.995
E 0.506 <0.0005 0.250

Table 11.8: P-values for various light/sound experiment cases.
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Figure 11.7: Case A for light/sound experiment.
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Figure 11.8: Case B for light/sound experiment.
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Figure 11.9: Case C for light/sound experiment.

In case B, as in case A, the lines are nearly parallel, suggesting that an additive,
no-interaction model is adequate, and we should re-fit a model without an inter-
action term. We also see that changing sound levels (moving left or right on the
plot) has no effect on the outcome (vertical position), so sound is not a significant
explanatory variable. Also changing light level (moving between the colored lines)
has no effect. So all the p-values are non-significant (>0.05).

In case C, there is a single cell, low light with sound at level 4, that must be
moved much more than the size of the error bars to make the lines parallel. This is
enough to give a significant interaction p-value (<0.0005), and require that we stay
with this model that includes an interaction term, rather than using an additive
model. The p-values for the main effects now have no real interest. We know
that both light and sound affect the outcome because the interaction p-value is
significant. E.g., although we need contrast testing to be sure, it is quite obvious
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Figure 11.10: Case D for light/sound experiment.

that changing from low to high light level for any sound level lowers the outcome,
and changing from sound level 3 to 4 for any light level lowers the outcome.

Case D shows no interaction (p=0.995) because on the scale of the error bars,
the lines are parallel. Both main effects are significant.because for either factor,
at at least one level of the other factor there are two levels of the first factor for
which the outcome differs.

Case E shows no interaction. The light factor is not statistically significant as
shown by the fact that for any sound level, changing light level (moving between
colored lines) does not change the outcome. But the sound factor is statistically
significant because changing between at least some pairs of sound levels for any
light level does affect the outcome.
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Taking error into account, in most cases you can get a good idea which
p-values will be significant just by looking at a (no-interaction) profile
plot.

11.5 Do it in SPSS

To perform two-way ANOVA in SPSS use Analyze/GeneralLinearModel/Univariate
from the menus. The “univariate” part means that there is only one kind of out-
come measured for each subject. In this part of SPSS, you do not need to manually
code indicator variables for categorical variables, or manually code interactions.

The Univariate dialog box is shown in figure 11.12. Enter the quantitative out-
come in the Dependent Variable box. Enter the categorical explanatory variables
in the Fixed Factors box. This will fit a model with an interaction.

Figure 11.12: SPSS Univariate dialog box.

To fit a model without an interaction, click the Model button to open the
Univariate:Model dialog box, shown in figure 11.13. From here, choose “Custom”
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instead of “Full Factorial”, then do whatever it takes (there are several ways to do
this) to get both factors, but not the interaction into the “Model” box, then click
Continue.

Figure 11.13: SPSS Univariate:Model dialog box.

For either model, it is a good idea to go to Options and turn on “Descriptive
statistics”, and “Residual plot”. The latter is the 3 by 3 plot in which the usual
residual vs. fit plot is in the center of the bottom row. Also place the individual
factors in the “Display Means for” box if you are fitting a no-interaction model,
or place the interaction of the factors in the box if you are fitting a model with an
interaction.

If you use the Save button to save predicted and residual values (either stan-
dardized or unstandardized), this will create new columns in you data sheet; then
a scatter plot with predicted on the x-axis and residual on the y-axis gives a resid-
ual vs. fit plot, while a quantile-normal plot of the residual column allows you to
check the Normality assumption.

Under the Plots button, put one factor (usually the one with more levels) in
the “Horizontal Axis” box, and the other factor in the “Separate Lines” box, then
click Add to make an entry in the Plots box, and click Continue.

Finally, click OK in the main Univariate dialog box to perform the analysis.
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Chapter 12

Statistical Power

12.1 The concept

The power of an experiment that you are about to carry out quantifies the chance
that you will correctly reject the null hypothesis if some alternative hypothesis is
really true.

Consider analysis of a k-level one-factor experiment using ANOVA. We arbi-
trarily choose α = 0.05 (or some other value) as our significance level. We reject
the null hypothesis, µ1 = · · · = µk, if the F statistic is so large as to occur less than
5% of the time when the null hypothesis is true (and the assumptions are met).

This approach requires computation of the distribution of F values that we
would get if the model assumptions were true, the null hypothesis were true, and
we would repeat the experiment many times, calculating a new F-value each time.
This is called the null sampling distribution of the F-statistic (see Section 6.2.5).

For any sample size (n per group) and significance level (α) we can use the
null sampling distribution to find a critical F-value “cutoff” before running the
experiment, and know that we will reject H0 if Fexperiment ≥ Fcritical. If the
assumptions are met (I won’t keep repeating this) then 5% of the time when
experiments are run on equivalent treatments, (i.e. µ1 = · · · = µk), we will falsely
reject H0 because our experiment’s F-value happens to fall above F-critical. This
is the so-called Type 1 error (see Section 8.4). We could lower α to reduce the
chance that we will make such an error, but this will adversely affect the power of
the experiment as explained next.

293
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Figure 12.1: Null and alternative F sampling distributions.

Under each combination of n, underlying variance (σ2) and some particular non-
zero difference in population means (non-zero effect size) there is an alternative
sampling distribution of F. An alternative sampling distribution represents how
likely different values of a statistic such as F would be if we repeat an experiment
many times when a particular alternative hypothesis is true. You can think of this
as the histogram that results from running the experiment many times when the
particular alternative is true and the F-statistic is calculated for each experiment.

As an example, figure 12.1 shows the null sampling distribution of the F-
statistic for k = 3 treatments and n = 50 subjects per treatment (black, solid
curve) plus the alternative sampling distribution of the F-statistic for two specific
“alternative hypothesis scenarios” (red and green curves) labeled “n.c.p.=4” and
“n.c.p.=9”. For the moment, just recognize that n.c.p. stands for something called
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the “non-centrality parameter”, that the n.c.p. for the null hypothesis is 0, and
that larger n.c.p. values correspond to less “null-like” alternatives.

Regarding this specific example, we note that the numerator of the F-
statistic (MSbetween) will have k−1 = 2 df, and the denominator(MSwithin)
will have k(n − 1) = 147 df. Therefore the null sampling distribution
for the F-statistic that the computer has drawn for us is the (central) F-
distribution (see Section 3.9.7) with 2 and 147 df. This is equivalent to
the F-distribution with 2 and 147 df and with n.c.p.=0. The two alter-
native null sampling distributions (curves) that the computer has drawn
correspond to two specific alternative scenarios. The two alternative dis-
tributions are called non-central F-distributions. They also have 2 and 147
df, but in addition have “non-centrality parameter” values equal to 4 and
9 respectively.

The whole concept of power is explained in this figure. First focus on the black
curve labeled “null is true”. This curve is the null sampling distribution of F for
any experiment with 1) three (categorical) levels of treatment; 2) a quantitative
outcome for which the assumptions of Normality (at each level of treatment), equal
variance and independent errors apply; 3) no difference in the three population
means; and 4) a total of 150 subjects. The curve shows the values of the F-
statistic that we are likely (high regions) or unlikely (low regions) to see if we
repeat the experiment many times. The value of Fcritical of 3.1 separates (for k=3,
n=50) the area under the null sampling distribution corresponding to the highest
5% of F-statistic values from the lowest 95% of F-statistic values. Regardless of
whether or not the null hypothesis is in fact true, we will reject H0 : µ1 = µ2 = µ3,
i.e., we will claim that the null hypothesis is false, if our single observed F-statistic
is greater than 3.1. Therefore it is built into our approach to statistical inference
that among those experiments in which we study treatments that all have the same
effect on the outcome, we will falsely reject the null hypothesis for about 5% of
those experiments.

Now consider what happens if the null hypothesis is not true (but the error
model assumptions hold). There are many ways that the null hypothesis can be
false, so for any experiment, although there is only one null sampling distribution
of F, there are (infinitely) many alternative sampling distributions of F. Two are
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shown in the figure. The information that needs to be specified to characterize a
specific alternative sampling distribution is the spacing of the population means,
the underlying variance at each fixed combination of explanatory variables (σ2),
and the number of subjects given each treatment (n). The number of treatments
is also implicitly included on this list. I call all of this information an “alternative
scenario”. The alternative scenario information can be reduced through a simple
formula to a single number called the non-centrality parameter (n.c.p.), and this
additional parameter value is all that the computer needs to draw the alternative
sampling distribution for an ANOVA F-statistic. Note that n.c.p.=0 represents
the null scenario.

The figure shows alternative sampling distributions for two alternative scenarios
in red (dashed) and blue (dotted). The red curve represents the scenario where
σ = 10 and the true means are 10.0, 12.0, and 14.0, which can be shown to
correspond to n.c.p.=4. The blue curve represents the scenario where σ = 10
and the true means are 10.0, 13.0, and 16.0, which can be shown to correspond
to n.c.p.=9. Obviously when the mean parameters are spaced 3 apart (blue) the
scenario is more un-null-like than when they are spaced 2 apart (red).

The alternative sampling distributions of F show how likely different F-statistic
values are if the given alternative scenario is true. Looking at the red curve, we
see that if you run many experiments when σ2 = 100 and µ1 = 10.0, µ2 = 12.0,
and µ3 = 14.0, then about 59% of the time you will get F < 3.1 and p > 0.05,
while the remaining 41% of the time you will get F ≥ 3.1 and p ≤ 0.05. This
indicates that for the one experiment that you can really afford to do, you have a
59% chance of arriving at the incorrect conclusion that the population means are
equal, and a 41% chance of arriving at the correct conclusion that the population
means are not all the same. This is not a very good situation to be in, because
there is a large chance of missing the interesting finding that the treatments have
a real effect on the outcome.

We call the chance of incorrectly retaining the null hypothesis the Type 2 error
rate, and we call the chance of correctly rejecting the null hypothesis for any given
alternative the power. Power is always equal to 1 (or 100%) minus the Type 2
error rate. High power is good, and typically power greater than 80% is arbitrarily
considered “good enough”.

In the figure, the alternative scenario with population mean spacing of 3.0 has
fairly good power, 76%. If the true mean outcomes are 3.0 apart, and σ = 10 and
there are 50 subjects in each of the three treatment groups, and the Normality,
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equal variance, and independent error assumptions are met, then any given experi-
ment has a 76% chance of producing a p-value less than or equal to 0.05, which will
result in the experimenter correctly concluding that the population means differ.
But even if the experimenter does a terrific job of running this experiment, there
is still a 24% chance of getting p > 0.05 and falsely concluding that the population
means do not differ, thus making a Type 2 error. (Note that if this alternative
scenario is correct, it is impossible to make a Type 1 error; such an error can only
be made when the truth is that the population means do not differ.)

Of course, describing power in terms of the F-statistic in ANOVA is only one
example of a general concept. The same concept applies with minor modifications
for the t-statistic that we learned about for both the independent samples t-test
and the t-tests of the coefficients in regression and ANCOVA, as well as other
statistics we haven’t yet discussed. In the cases of the t-statistic, the modification
relates to the fact that “un-null-like” corresponds to t-statistic values far from zero
on either side, rather than just larger values as for the F-statistic. Although the
F-statistic will be used for the remainder of the power discussion, remember that
the concepts apply to hypothesis testing in general.

You are probably not surprised to learn that for any given experiment and
inference method (statistical test), the power to correctly reject a given alterna-
tive hypothesis lies somewhere between 5% and (almost) 100%. The next section
discusses ways to improve power.

For one-way ANOVA, the null sampling distribution of the F-statistic
shows that when the null hypothesis is true, an experimenter has a
95% chance of obtaining a p-value greater than 0.05, in which case she
will make the correct conclusion, but 5% of the time she will obtain
p ≤ 0.05 and make a Type 1 error. The various alternative sampling
distributions of the F-statistic show that the chance of making a Type
2 error can range from 95% down to near zero. The corresponding
chance of obtaining p ≤ 0.05 when a particular alternative scenario is
true, called the power of the experiment, ranges from as low as 5% to
near 100%.
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12.2 Improving power

For this section we will focus on the two-group continuous outcome case because
it is easier to demonstrate the effects of various factors on power in this simple
setup. To make things concrete, assume that the experimental units are a random
selection of news websites, the outcome is number of clicks (C) between 7 PM and
8 PM Eastern Standard Time for an associated online ad, and the two treatments
are two fonts for the ads, say Palatino (P) vs. Verdana (V). We can equivalently
analyze data from an experiment like this using either the independent samples
t-test or one-way ANOVA.

One way to think about this problem is in terms of the two confidence intervals
for the population means. Anything that reduces the overlap of these confidence
intervals will increase the power. The overlap is reduced by reducing the common
variance (σ2), increasing the number of subjects in each group (n), or by increasing
the distance between the population means, |µV − µP |.

This is demonstrated in figure 12.2. This figure shows an intuitive (rather
than mathematically rigorous) view of the process of testing the equivalence of
the population means of ad clicks for treatment P vs. treatment V. The top row
represents population distributions of clicks for the two treatments. Each curve
can be thought of as the histogram of the actual click outcomes for one font for
all news websites on the World Wide Web. There is a lot of overlap between the
two curves, so obviously it would not be very accurate to use, say, one website per
font to try to determine if the population means differ.

The bottom row represents the sampling distributions of the sample means for
the two treatments based on the given sample size (n) for each treatment. The
key idea here is that, although the two curves always overlap, a smaller overlap
corresponds to a greater chance that we will get a significant p-value for our one
experiment.

Start with the second column of the figure. The upper panel shows that the
truth is that σ2 is 100, and µV = 13, while µP = 17. The arrow indicates that
our sample has n = 30 websites with each font. The bottom panel of the second
column shows the sampling distributions of sample means for the two treatments.
The moderate degree of overlap, best seen by looking at the lower middle portion
of the panel, is suggestive of less than ideal power.

The leftmost column shows the situation where the true common variance is
now 25 instead of 100 (i.e., the s.d. is now 5 clicks instead of 10 clicks). This
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Figure 12.2: Effects of changing variance, sample size, and mean difference on
power. Top row: population distributions of the outcome. Bottom row: sampling
distributions of the sample mean for the given sample size.
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markedly reduces the overlap, so the power is improved. How did we reduce the
common variance? Either by reducing some of the four sources of variation or
by using a within-subjects design, or by using a blocking variable or quantitative
control variable. Specific examples for reducing the sources of variation include
using only television-related websites, controlling the position of the ad on the
website, and using only one font size for the ad. (Presumably for this experiment
there is no measurement error.) A within-subjects design would, e.g., randomly
present one font from 7:00 to 7:30 and the other font from 7:30 to 8:00 for each
website (which is considered the “subject” here), but would need a different anal-
ysis than the independent-samples t-test. Blocking would involve, e.g., using some
important (categorical) aspect of the news websites, such as television-related vs.
non-television related as a second factor whose p-value is not of primary interest
(in a 2-way ANOVA). We would guess that for each level of this second variable
the variance of the outcome for either treatment would be smaller than if we had
ignored the television-relatedness factor. Finally using a quantitative variable like
site volume (hit count) as an additional explanatory variable in an ANCOVA set-
ting would similarly reduce variability (i.e., σ2) at each hit count value.

The third column shows what happens if the sample size is increased. Increasing
the sample size four-fold turns out to have the same effect on the confidence curves,
and therefore the power, as reducing the variance four-fold. Of course, increasing
sample size increases cost and duration of the study.

The fourth column shows what happens if the population mean difference,
sometimes called (unadjusted) effect size, is increased. Although the sampling
distributions are not narrowed, they are more distantly separated, thus reducing
overlap and increasing the power. In this example, it is hard to see how the
difference between the two fonts can be made larger, but in other experiments it
is possible to make the treatments more different (i.e., make the active treatment,
but not the control, “stronger”) to increase power.

Here is a description of another experiment with examples of how to improve
the power. We want to test the effect of three kinds of fertilizer on plant growth
(in grams). First we consider reducing the common variability of final plant weight
for each fertilizer type. We can reduce measurement error by using a high quality
laboratory balance instead of a cheap hardware store scale. And we can have a
detailed, careful procedure for washing off the dirt from the roots and removing
excess water before weighing. Subject-to-subject variation can be reduced by using
only one variety of plant and doing whatever is possible to ensure that the plants



12.2. IMPROVING POWER 301

are of similar size at the start of the experiment. Environmental variation can be
reduced by assuring equal sunlight and water during the experiment. And treat-
ment application variation can be reduced by carefully measuring and applying
the fertilizer to the plants. As mentioned in section 8.5 reduction in all sources of
variation except measurement variability tends to also reduce generalizability.

As usual, having more plants per fertilizer improves power, but at the expense
of extra cost. We can also increase population mean differences by using a larger
amount of fertilizer and/or running the experiment for a longer period of time.
(Both of the latter ideas are based on the assumption that the plants grow at a
constant rate proportional to the amount of fertilizer, but with different rates per
unit time for the same amount of different fertilizers.)

A within-subjects design is not possible here, because a single plant cannot be
tested on more than one fertilizer type.

Blocking could be done based on different fields if the plants are grown outside
in several different fields, or based on a subjective measure of initial “healthiness”
of the plants (determined before randomizing plants to the different fertilizers). If
the fertilizer is a source of, say, magnesium in different chemical forms, and if the
plants are grown outside in natural soil, a possible control variable is the amount
of nitrogen in the soil near each plant. Each of these blocking/control variables are
expected to affect the outcome, but are not of primary interest. By including them
in the means model, we are creating finer, more homogeneous divisions of “the set
of experimental units with all explanatory variables set to the same values”. The
inherent variability of each of these sets of units, which we call σ2 for any model,
is smaller than for the larger, less homogeneous sets that we get when we don’t
include these variables in our model.

Reducing σ2, increasing n, and increasing the spacing between popu-
lation means will all reduce the overlap of the sampling distributions
of the means, thus increasing power.
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12.3 Specific researchers’ lifetime experiences

People often confuse the probability of a Type 1 error and/or the probability of a
Type 2 error with the probability that a given research result is false. This section
attempts to clarify the situation by looking at several specific (fake) researchers’
experiences over the course of their careers.

Remember that a given null hypothesis, H0, is either true or false, but we can
never know this truth for sure. Also, for a given experiment, the standard decision
rule tells us that when p ≤ α we should reject the null hypothesis, and when p > α
we should retain it. But again, we can never know for sure whether our inference
is actually correct or incorrect.

Next we need to clarify the definitions of some common terms. A “positive”
result for an experiment means finding p ≤ α, which is the situation for which we
reject H0 and claim an interesting finding. “Negative” means finding p > α, which
is the situation for which we retain H0 and therefore don’t have enough evidence
to claim an interesting finding. “True” means correct (i.e. reject H0 when H0 is
false or retain H0 when H0 is true), and “false” mean incorrect. These terms are
commonly put together, e.g., a false positive refers to the case where p ≤ 0.05, but
the null hypothesis is actually true.

Here are some examples in which we pretend that we have omniscience, al-
though the researcher in question does not. Let α = 0.05 unless otherwise speci-
fied.

1. Neetika Null studies the effects of various chants on blood sugar level. Every
week she studies 15 controls and 15 people who chant a particular word from
the dictionary for 5 minutes. After 1000 weeks (and 1000 words) what is
her Type 1 error rate (positives among null experiments), Type 2 error rate
(negatives among non-null experiments) and power (positives among non-
null experiments)? What percent of her positives are true? What percent of
her negatives are true?

This description suggests that the null hypothesis is always true, i.e. I assume
that chants don’t change blood sugar level, and certainly not within five
minutes. Her Type 1 error rate is α = 0.05. Her Type 2 error rate (sometimes
called β) and power are not applicable because no alternative hypothesis is
ever true. Out of 1000 experiments, 1000 are null in the sense that the
null hypothesis is true. Because the probability of getting p ≤ 0.05 in an
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experiment where the null hypothesis is true is 5%, she will see about 50
positive and 950 negative experiments. For Neetika, although she does not
know it, every time she sees p ≤ 0.05 she will mistakenly reject the null
hypothesis, for a 100% error rate. But every time she sees p > 0.05 she will
correctly retain the null hypothesis for an error rate of 0%.

2. Stacy Safety studies the effects on glucose levels of injecting cats with subcu-
taneous insulin at different body locations. She divides the surface of a cat
into 1000 zones and each week studies injection of 10 cats with water and 10
cats with insulin in a different zone.

This description suggests that the null hypothesis is always false. Because
Stacy is studying a powerful treatment and will have a small measurement
error, her power will be large; let’s use 80%=0.80 as an example. Her Type
2 error rate will be β=1-power=0.2, or 20%. Out of 1000 experiments, all
1000 are non-null, so Type 1 error is not applicable. With a power of 80%
we know that each experiment has an 80% chance of giving p ≤ 0.05 and a
20% chance of given p > 0.05. So we expect around 800 positives and 200
negatives. Although Stacy doesn’t know it, every time she sees p ≤ 0.05 she
will correctly reject the null hypothesis, for a 0% error rate. But every time
she sees p > 0.05 she will mistakenly retain the null hypothesis for an error
rate of 100%.

3. Rima Regular works for a large pharmaceutical firm performing initial screen-
ing of potential new oral hypoglycemic drugs. Each week for 1000 weeks she
gives 100 rats a placebo and 100 rats a new drug, then tests blood sugar. To
increase power (at the expense of more false positives) she chooses α = 0.10.

For concreteness let’s assume that the null hypothesis is true 90% of the
time. Let’s consider the situation where among the 10% of candidate drugs
that work, half have a strength that corresponds to power equal to 50% (for
the given n and σ2) and the other half correspond to power equal to 70%.

Out of 1000 experiments, 900 are null with around 0.10*900=90 positive and
810 negative experiments. Of the 50 non-null experiments with 50% power,
we expect around 0.50*50=25 positive and 25 negative experiments. Of the
50 non-null experiments with 70% power, we expect around 0.70*50=35 pos-
itive and 15 negative experiments. So among the 100 non-null experiments
(i.e., when Rima is studying drugs that really work) 25+35=60 out of 100
will correctly give p ≤ 0.05. Therefore Rima’s average power is 60/100 or
60%.
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Although Rima doesn’t know it, when she sees p ≤ 0.05 and rejects the
null hypothesis, around 60/(90+60)=0.40=40% of the time she is correctly
rejecting the null hypothesis, and therefore 60% of the time when she rejects
the null hypothesis she is making a mistake. Of the 810+40=850 experiments
for which she finds p > 0.05 and retains the null hypothesis, she is correct
810/(810+40)=0.953=95.3% of time and she makes an error 4.7% of the
time. (Note that this value of approximately 95% is only a coincidence, and
not related to α = 0.05; in fact α = 0.10 for this problem.)

These error rates are not too bad given Rima’s goals, but they are not very
intuitively related to α = 0.10 and power equal to 50 or 70%. The 60% error
rate among drugs that are flagged for further study (i.e., have p ≤ 0.05) just
indicates that some time and money will be spent to find out which of these
drugs are not really useful. This is better than not investigating a drug that
really works. In fact, Rima might make even more money for her company if
she raises α to 0.20, causing more money to be wasted investigating truly use-
less drugs, but preventing some possible money-making drugs from slipping
through as useless. By the way, the overall error rate is (90+40)/1000=13%.

Conclusion: For your career, you cannot know the chance that a negative result
is an error or the chance that a positive result is an error. And these are what
you would really like to know! But you do know that when you study “ineffective”
treatments (and perform an appropriate statistical analysis) you have only a 5%
chance of incorrectly claiming they are “effective”. And you know that the more
you increase the power of an experiment, the better your chances are of detecting
a truly effective treatment.

It is worth knowing something about the relationship of power to confidence
intervals. Roughly, wide confidence intervals correspond to experiments with
low power, and narrow confidence intervals correspond to experiments with good
power.

The error rates that experimenters are really interested in, i.e., the
probability that I am making an error for my current experiment, are
not knowable. These error rates differ from both α and β=1-power.
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12.4 Expected Mean Square

Although a full treatment of “expected mean squares” is quite technical, a su-
perficial understanding is not difficult and greatly aids understanding of several
other topics. EMS tells us what values we will get for any given mean square
(MS) statistic under either the null or an alternative distribution, on average over
repeated experiments.

If we have k population treatment means, we can define µ̄ =
∑k

i=1
µi

k
as the mean

of the population treatment means, and λi = µi − µ̄ (where λ is read “lambda”),

and σ2
A =

∑k

i=1
λ2
i

k−1
. The quantity σ2

A is not a variance, because it is calculated
from fixed parameters rather than from random quantities, but it obviously is a
“variance-like” quantity. Notice that we can express our usual null hypothesis as
H0 : σ2

A = 0 because if all of the µ’s are equal, then all of the λ’s equal zero. We
can similarly define σ2

B and σ2
A∗B for a 2 way design.

Let σ2
e be the true error variance (including subject-to-subject, treatment ap-

plication, environmental, and measurement variability). We haven’t been using
the subscript “e” up to this point, but here we will use it to be sure we can distin-
guish various symbols that all include σ2. As usual, n is the number of subjects
per group. For 2-way ANOVA, a (instead of k) is the number of levels of factor A
and b is the number of levels of factor B.

The EMS tables for one-way and two-way designs are shown in table 12.1 and
12.2.

Remember that all of the between-subjects ANOVA F-statistics are ratios of
mean squares with various means squares in the numerator and with the error
mean square in the denominator. From the EMS tables, you can see why, for
either design, under the null hypothesis, the F ratios that we have been using are
appropriate and have “central F” sampling distributions (mean near 1). You can
also see why, under any alternative, these F ratios tend to get bigger. You can
also see that power can be increased by increasing the spacing between population
means (“treatment strength”) via increased values of |λ|, by increasing n, or by
decreasing σ2

e . This formula also demonstrates that the value of σ2
e is irrelevant to

the sampling distributing of the F-statistic (cancels out) when the null hypothesis
is true, i.e., σ2

A = 0.
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Source of Variation MS EMS
Factor A MSA σ2

e + nσ2
A

Error (residual) MSerror σ2
e

Table 12.1: Expected mean squares for a one-way ANOVA.

Source of Variation MS EMS
Factor A MSA σ2

e + bnσ2
A

Factor B MSB σ2
e + anσ2

B

A*B interaction MSA∗B σ2
e + nσ2

AB

Error (residual) MSerror σ2
e

Table 12.2: Expected mean squares for a two-way ANOVA.

For the mathematically inclined, the EMS formulas give a good idea
of what aspects of an experiment affect the F ratio.

12.5 Power Calculations

In case it is not yet obvious, I want to reiterate why it is imperative to calculate
power for your experiment before running it. It is possible and common for exper-
iments to have low power, e.g., in the range of 20 to 70%. If you are studying a
treatment which is effective in changing the population mean of your outcome, and
your experiment has, e.g., 40% power for detecting the true mean difference, and
you conduct the experiment perfectly and analyze it appropriately, you have a 60%
chance of getting a p-value of greater than 0.05, in which case you will erroneously
conclude that the treatment is ineffective. To prevent wasted experiments, you
should calculate power and only perform the experiment if there is a reasonably
high power.

It is worth noting that you will not be able to calculate the “true” power of your
experiment. Rather you will use a combination of mathematics and judgement to
make a useful estimation of the power.
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There are an infinite number of alternative hypothesis. For any of them we can
increase power by 1) increasing n (sample size) or 2) decreasing experimental error
(σ2

e). Also, among the alternatives, those with larger effect sizes (population mean
differences) will have more power. These statements derive directly from the EMS
interpretive form of the F equation (shown here for 1-way ANOVA):

Expected Value of F = Expected value of
MSA
MSerror

≈ σ2
e + nσ2

A

σ2
e

Obviously increasing n or σ2
A increases the average value of F. Regarding the

effect of changing σ2
e , a small example will make this more clear. Consider the case

where nσ2
A = 10 and σ2

e = 10. In this case the average F value is 20/10=2. Now
reduce σ2

e to 1. In this case the average F value is 11/1=11, which is much bigger,
resulting in more power.

In practice, we try to calculate the power of an experiment for one or a few
reasonable alternative hypotheses. We try not to get carried away by considering
alternatives with huge effects that are unlikely to occur. Instead we try to devise
alternatives that are fairly conservative and reflect what might really happen (see
the next section).

What we need to know to calculate power? Beyond k and alpha (α), we need to
know sample size (which we may be able to increase if we have enough resources),
an estimate of experimental error (variance or σ2

e , which we may be able to reduce,
possibly in a trade-off with generalizability), and reasonable estimates of true effect
sizes.

For any set of these three things, which we will call an “alternative hypoth-
esis scenario”, we can find the sampling distribution of F under that alternative
hypothesis. Then it is easy to find the power.

We often estimate σ2
e with residual MS, or error MS (MSE), or within-group

MS from previous similar experiments. Or we can use the square of the actual or
guessed standard deviation of the outcome measurement for a number of subjects
exposed to the same (any) treatment. Or, assuming Normality, we can use expert
knowledge to guesstimate the 95% range of a homogenous group of subjects, then
estimate σe as that range divided by 4. (This works because 95% of a normal
distribution is encompassed by mean plus or minus 2 s.d.) A similar trick is to
estimate σe as 3/4 of the IQR (see Section 4.2.4), then square that quantity.

Be careful! If you use too large (pessimistic) of a value for σ2
e your computed

http://en.wikipedia.org/wiki/Guesstimate
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power will be smaller than your true power. If you use too small (optimistic) of a
value for σ2

e your computed power will be larger than your true power.

12.6 Choosing effect sizes

As mentioned above, you want to calculate power for “reasonable” effect sizes that
you consider achievable. A similar goal is to choose effects sizes such that smaller
effects would not be scientifically interesting. In either case, it is obvious that
choosing effect sizes is not a statistical exercise, but rather one requiring subject
matter or possibly policy level expertise.

I will give a few simple examples here, choosing subject matter that is known to
most people or easily explainable. The first example is for a categorical outcome,
even though we haven’t yet discussed statistical analyses for such experiments.
Consider an experiment to see if a certain change in a TV commercial for a political
advisor’s candidate will make a difference in an election. Here is the kind of
thinking that goes into defining the effect sizes for which we will calculate the
power. From prior subject matter knowledge, he estimate that about one fourth of
the voting public will see the commercial. He also estimates that a change of 1%
in the total vote will be enough to get him excited that redoing this commercial
is a worthwhile expense. So therefore an effect size of 4% difference in a favorable
response towards his candidate is the effect size that is reasonable to test for.

Now consider an example of a farmer who wants to know if it’s worth it to
move her tomato crop in the future to a farther, but more sunny slope. She
estimates that the cost of initially preparing the field is $2000, the yearly extra
cost of transportation to the new field is $200, and she would like any payoff to
happen within 4 years. The effect size is the difference in crop yield in pounds
of tomatoes per plant. She can put 1000 plants in either field, and a pound of
tomatoes sells for $1 wholesale. So for each 1 pound of effect size, she gains $1000
per year. Over 4 years she needs to pay off $2000+4($200)=$2800. She concludes
that she needs to have good power, say 80%, to detect an effect size of 2.8/4=0.7
additional pounds of tomatoes per plant (i.e., a gain of $700 per year).

Finally consider a psychologist who wants to test the effects of a drug on mem-
ory. She knows that people typically remember 40 out of 50 items on this test. She
really wouldn’t get too excited if the drug raised the score to 41, but she certainly
wouldn’t want to miss it if the drug raised the score to 45. She decides to “power
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her study” for µ1 = 40 vs. µ2 = 42.5. If she adjusts n to get 80% power for
these population test score means, then she has an 80% chance of getting p ≤ 0.05
when the true effect is a difference of 2.5, and some larger (calculable) power for a
difference of 5.0, and some smaller (calculable) non-zero, but less than ideal, power
for a difference of 1.0.

In general, you should consider the smallest effect size that you consider inter-
esting and try to achieve reasonable power for that effect size, while also realizing
that there is more power for larger effects and less power for smaller effects. Some-
times it is worth calculating power for a range of different effect sizes.

12.7 Using n.c.p. to calculate power

The material in this section is optional.

Here we will focus on the simple case of power in a one-way between-subjects
design. The “manual” calculation steps are shown here. Understanding these may
aid your understanding of power calculation in general, but ordinarily you will use
a computer (perhaps a web applet) to calculate power.

Under any particular alternative distribution the numerator of F is inflated,
and F follows the non-central F distribution with k − 1 and k(n − 1) degrees of
freedom and with “non-centrality parameter” equal to:

n.c.p. =
n ·∑k

i=1 λ
2
i

σ2
e

where n is the proposed number of subjects in each of the groups we are comparing.
The bigger the n.c.p., the more the alternative sampling distribution moves to the
right and the more power we have.

Manual calculation example: Let α = 0.10 and n = 11 per cell. In a similar
experiment MSE=36. What is the power for the alternative hypothesis HA : µ1 =
10, µ2 = 12, µ3 = 14, µ4 = 16?

1. Under the null hypothesis the F-statistic will follow the central F distribution
(i.e., n.c.p.=0) with k − 1 = 3 and k(n− 1) = 40 df. Using a computer or F
table we find Fcritical = 2.23.

2. Since µ̄=(10+12+14+16)/4=13, the λ’s are -3,-1,1,3, so the non-centrality
parameter is
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11(9 + 1 + 1 + 9)

36
= 6.11.

3. The power is the area under the non-central F curve with 3,40 df and
n.c.p.=6.11 that is to the right of 2.23. Using a computer or non-central
F table, we find that the area is 0.62. This means that we have a 62% chance
of rejecting the null hypothesis if the given alternate hypothesis is true.

4. An interesting question is what is the power if we double the sample size to 22
per cell. dferror is now 21*4=84 and Fcritical is now 2.15. The n.c.p.=12.22.
From the appropriate non-central F distribution we find that the power in-
creases to 90%.

In practice we will use a Java applet to calculate power.

In R, the commands that give the values in the above example are:
qf(1-0.10, 3, 40) # result is 2.226092 for alpha=0.10

1-pf(2.23, 3, 40, 6.11) # result is 0.6168411

qf(1-0.10, 3, 84) # result is 2.150162

1-pf(2.15,3, 84, 12.22) # result is 0.8994447

In SPSS, put the value of 1-α (here, 1-0.10=0.90) in a spreadsheet
cell, e.g., in a column named “P”. The use Transform/Compute to create
a variable called, say, ”Fcrit”, using the formula “IDF.F(P,3,40)”. This
will give 2.23. The use Transform/Compute to create a variable called,
say, “power”, using the formula “1-NCDF.F(Fcrit,3,40,6.11)”. This will
give 0.62.

12.8 A power applet

The Russ Lenth power applet is very nice way to calculate power. It is available on
the web at http://www.cs.uiowa.edu/~rlenth/Power. If you are using it more
that occasionally you should copy the applet to your website. Here I will cover
ANOVA and regression. Additional topic are in future chapters.

http://www.cs.uiowa.edu/~rlenth/Power
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12.8.1 Overview

To get started with the Lenth Power Applet, select a method such as Linear Regres-
sion or Balanced ANOVA, then click the “Run Selection” button. A new window
will open with the applet for the statistical method you have chosen. Every time
you see sliders for entering numeric values, you may also click the small square at
upper right to change to a text box form for entering the value. The Help menu
item explains what each input slider or box is for.

12.8.2 One-way ANOVA

This part of the applet works for one-way and two-way balanced ANOVA. Re-
member that balanced indicates equal numbers of subjects per group. For one-
way ANOVA, leave the “Built-in models” drop-down box at the default value of
“One-way ANOVA”.

Figure 12.3: One-way ANOVA with Lenth power applet.

Enter “n” under “Observations per factor combination”, and click to study the
power of “F tests”. A window opens that looks like figure 12.3.

On the left, enter “k” under “levels[treatment] (Fixed)”. Under “n[Within]
(Random)” you can change n.

On the right enter σe (σ) under “SD[Within]” (on the standard deviation, not
variance scale) and α under “Significance level”. Finally you need to enter the
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“effect size” in the form of “SD[treatment]”. For this applet the formula is

SD[treatment] =

√∑k
i=1 λ

2
i

k − 1

where λi is µi − µ̄ as in section 12.4.

For HA : µ1 = 10, µ2 = 12, µ3 = 14, µ4 = 16, µ̄ = 13 and λ1 = −3, λ2 = −1,
λ3 = +1, λ4 = +3.

SD[treatment] =

√∑k
i=1 λ

2
i

k − 1

=

√
(−3)2 + (−1)2 + (+1)2 + (+3)2

3

=
√

20/3

= 2.58

You can also use the menu item “SD Helper” under Options to graphically set
the means and have the applet calculate SD[treatment].

Following the example of section 12.7 we can plug in SD[treatment]=2.58, n =
11, and σe = 6 to get power=0.6172, which matches the manual calculation of
section 12.7

At this point it is often useful to make a power plot. Choose Graph under the
Options menu item. The most useful graph has “Power[treatment]” on the y-axis
and “n[Within]” on the x-axis. Continuing with the above example I would choose
to plot power “from” 5 “to” 40 “by” 1. When I click “Draw”, I see the power
for this experiment for different possible sample sizes. An interesting addition can
be obtained by clicking “Persistent”, then changing “SD[treatment]” in the main
window to another reasonable value, e.g., 2 (for HA : µ1 = 10, µ2 = 10, µ3 = 10,
µ4 = 14), and clicking OK. Now the plot shows power as a function of n for two (or
more) effect sizes. In Windows you can use the Alt-PrintScreen key combination
to copy the plot to the clipboard, then paste it into another application. The result
is shown in figure 12.4. The lower curve is for the smaller value of SD[treatment].

12.8.3 Two-way ANOVA without interaction

Select “Two-way ANOVA (additive model)”. Click “F tests”. In the new window,
on the left enter the number of levels for each of the two factors under “levels[row]
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Figure 12.4: One-way ANOVA power plot from Lenth power applet.
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(Fixed)” and “levels[col] (Fixed)”. Enter the number of subjects for each cell under
“Replications (Random)”.

Enter the estimate of σ under “SD[Residual]” and the enter the “Significance
level”.

Calculate “SD[row]” and “SD[col]” as in the one-way ANOVA calculation for
“SD[treatment]”, but the means for either factor are now averaged over all levels
of the other factor.

Here is an example. The table shows cell population means for each combina-
tion of levels of the two treatment factors for which additivity holds (e.g., a profile
plot would show parallel lines).

Row factor / Column Factor Level 1 Level 2 Level 3 Row Mean
Level 1 10 20 15 15
Level 2 13 23 18 18

Col. Mean 11.5 21.5 16.5 16.5

Averaging over the other factor we see that for the column means, using some
fairly obvious invented notation we get HColAlt : µC1 = 11.5, µC2 = 21.5, µC3 =
16.5. The row means are HRowAlt : µR1 = 15, µR2 = 18.

Therefore SD[row] is the square root of ((−1.5)2 + (+1.5)2)/1 which is 2.12.
The value of SD[col] is the square root of ((−5)2 + (+5)2 + (0)2)/2 which equals
5. If we choose α = 0.05, n = 8 per cell, and estimate σ at 8, then the power is a
not-so-good 24.6% for HRowAlt, but a very good 87.4% for HColAlt.

12.8.4 Two-way ANOVA with interaction

You may someday find it useful to calculate the power for a two-way ANOVA
interaction. It’s fairly complicated!

Select “Two-way ANOVA”. Click “F tests”. In the new window, on the left
enter the number of levels for each of the two factors under “levels[row] (Fixed)”
and “levels[col] (Fixed)”. Enter the number of subjects for each cell under “Repli-
cations (Random)”.

Enter the estimate of σ under “SD[Residual]” and the enter the “Significance
level”.

The treatment effects are a bit more complicated here. Consider a table of cell
means in which additivity does not hold.
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Row factor / Column Factor Level 1 Level 2 Level 3 Row Mean
Level 1 10 20 15 15
Level 2 13 20 18 17

Col. Mean 11.5 20.0 16.5 16

For the row effects, which come from the row means of 15 and 17, we subtract

16 from each to get the λ values of -1 and 1, then find SD[row]=
√

(−1)2+(1)2

1
= 1.41.

For the column effects, which come from the column means of 11.5, 20.0, and
16.5, we subtract their common mean of 16 to get λ values of -4.5, 4.0, and 0.5,

and then find that SD[col]=
√

(−4.5)2+(4.0)2+(0.5)2

2
= 4.27.

To calculate “SD[row*col]” we need to calculate for each of the 6 cells, the value
of µij− (µ̄+λi. +λ.j) where µij indicates the ith row and jth column, and λi. is the
λ value for the ith row mean, and λ.j is the λ value for the jth column mean. For
example, for the top left cell we get 10-(16-4.5-1.0)=-0.5. The complete table is

Row factor / Column Factor Level 1 Level 2 Level 3 Row Mean
Level 1 -0.5 1.0 -0.5 0.0
Level 2 +0.5 -1.0 0.5 0.0

Col. Mean 0.0 0.0 0.0 0.0

You will know you constructed the table correctly if all of the margins are zero.
To find SD[row*col], sum the squares of all of the (non-marginal) cells, then divide
by (r−1) and (c−1) where r and c are the number of levels in the row and column

factors, then take the square root. Here we get SD[row*col]=
√

0.25+1.0+0.25+0.25+1.0+0.25
1·2 =

1.22.

If we choose α = 0.05, n = 7 per cell, and estimate σ at 3, then the power is a
not-so-good 23.8% for detecting the interaction (gettin an interaction p-value less
than 0.05). This is shown in figure 12.5.

12.8.5 Linear Regression

We will just look at simple linear regression (one explanatory variable). In addition
to the α, n, and σ, and the effect size for the slope, we need to characterize the
spacing of the explanatory variable.

Choose “Linear regression” in the applet and the Linear Regression dialog
shown in figure 12.6 appears. Leave “No. of predictors” (number of explanatory
variables) at 1, and set “Alpha”, “Error SD” (estimate of σ), and “(Total) Sample
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Figure 12.5: Two-way ANOVA with Lenth power applet.

size”.

Under “SD of x[j]” enter the standard deviation of the x values you will use.
Here we use the fact that the spread of any number of repetitions of a set of values
is the same as just one set of those values. Also, because the x values are fixed, we
use n instead of n− 1 in the denominator of the standard deviation formula. E.g.,
if we plan to use 5 subjects each at doses, 0, 25, 50, and 100 (which have a mean

of 43.75), then SD of x[j] =
√

(0−43.75)2+(25−43.75)2+(50−43.75)2+(100−43.75)2

4
= 36.98.

Plugging in this value and σ = 30, and a sample size of 3*4=12, and an effect
size of beta[j] (slope) equal to 0.5, we get power = 48.8%, which is not good enough.

In a nutshell: Just like the most commonly used value for alpha is
0.05, you will find that (arbitrarily) the most common approach people
take is to find the value of n that achieves a power of 80% for some
specific, carefully chosen alternative hypothesis. Although there is
a bit of educated guesswork in calculating (estimating) power, it is
strongly advised to make some power calculations before running an
experiment to find out if you have enough power to make running the
experiment worthwhile.
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Figure 12.6: Linear regression with Lenth power applet.
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Chapter 13

Contrasts and Custom
Hypotheses
Contrasts ask specific questions as opposed to the general ANOVA null vs. alter-
native hypotheses.

In a one-way ANOVA with a k level factor, the null hypothesis is µ1 = · · · = µk,
and the alternative is that at least one group (treatment) population mean of the
outcome differs from the others. If k = 2, and the null hypothesis is rejected we
need only look at the sample means to see which treatment is “better”. But if k >
2, rejection of the null hypothesis does not give the full information of interest. For
some specific group population means we would like to know if we have sufficient
evidence that they differ from certain other group population means. E.g., in a
test of the effects of control and two active treatments to increase vocabulary,
we might find that based on a the high value for the F-statistic we are justified in
rejecting the null hypothesis µ1 = µ2 = µ3. If the sample means of the outcome are
50, 75 and 80 respectively, we need additional testing to answer specific questions
like “Is the control population mean lower than the average of the two active
treatment population means?” and “Are the two active treatment population
means different?” To answer questions like these we frame “custom” hypotheses,
which are formally expressed as contrast hypothesis.

Comparison and analytic comparison are other synonyms for contrast.

319
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13.1 Contrasts, in general

A contrast null hypothesis compares two population means or combinations of pop-
ulation means. A simple contrast hypothesis compares two population means,
e.g. H0 : µ1 = µ5. The corresponding inequality is the alternative hypothesis:
H1 : µ1 6= µ5.

A contrast null hypotheses that has multiple population means on either or
both sides of the equal sign is called a complex contrast hypothesis. In the
vast majority of practical cases, the multiple population means are combined as
their mean, e.g., the custom null hypothesis H0 : µ1+µ2

2
= µ3+µ4+µ5

3
represents a test

of the equality of the average of the first two treatment population means to the
average of the next three. An example where this would be useful and interesting
is when we are studying five ways to improve vocabulary, the first two of which are
different written methods and the last three of which are different verbal methods.

It is customary to rewrite the null hypothesis with all of the population means
on one side of the equal sign and a zero on the other side. E.g., H0 : µ1 − µ5 = 0
or H0 : µ1+µ2

2
− µ3+µ4+µ5

3
= 0. This mathematical form, whose left side is checked

for equality to zero is the standard form for a contrast. In addition to hypothesis
testing, it is also often of interest to place a confidence interval around a contrast
of population means, e.g., we might calculate that the 95% CI for µ3 − µ4 is [-5.0,
+3.5].

As in the rest of classical statistics, we proceed by finding the null sampling
distribution of the contrast statistic. A little bit of formalism is needed so that
we can enter the correct custom information into a computer program, which will
then calculate the contrast statistic (estimate of the population contrast), the
standard error of the statistic, a corresponding t-statistic, and the appropriate p-
value. As shown later, this process only works under the special circumstances
called “planned comparisons”; otherwise it requires some modifications.

Let γ (gamma) represent the population contrast. In this section, will use an
example from a single six level one-way ANOVA, and use subscripts 1 and 2 to
distinguish two specific contrasts. As an example of a simple (population) contrast,
define γ1 to be µ3 − µ4, a contrast of the population means of the outcomes for
the third vs. the fourth treatments. As an example of a complex contrast let γ2

be µ1+µ2

2
− µ3+µ4+µ5

3
, a contrast of the population mean of the outcome for the first

two treatments to the population mean of the outcome for the third through fifth
treatments. We can write the corresponding hypothesis as H01 : γ1 = 0, HA1 :
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γ1 6= 0 and H02 : γ2 = 0, HA2 : γ2 6= 0.

If we call the corresponding estimates, g1 and g2 then the appropriate estimates
are g1 = ȳ3 − ȳ4 and g2 = ȳ1+ȳ2

2
− ȳ3+ȳ4+ȳ5

3
. In the hypothesis testing situation, we

are testing whether or not these estimates are consistent with the corresponding
null hypothesis. For a confidence interval on a particular population contrast (γ),
these estimates will be at the center of the confidence interval.

In the chapter on probability theory, we saw that the sampling distribution of
any of the sample means from a (one treatment) sample of size n using the assump-
tions of Normality, equal variance, and independent errors is ȳi ∼ N(µi, σ

2/n), i.e.,
across repeated experiments, a sample mean is Normally distributed with the “cor-
rect” mean and the variance equal to the common group variance reduced by a
factor of n. Now we need to find the sampling distribution for some particular
combination of sample means.

To do this, we need to write the contrast in “standard form”. The standard
form involves writing a sum with one term for each population mean (µ), whether
or not it is in the particular contrast, and with a single number, called a contrast
coefficient in front of each population mean. For our examples we get:

γ1 = (0)µ1 + (0)µ2 + (0)µ3 + (1)µ4 + (−1)µ5 + (0)µ6

and

γ2 = (1/2)µ1 + (1/2)µ2 + (−1/3)µ3 + (−1/3)µ4 + (−1/3)µ5 + (0)µ6.

In a more general framing of the contrast we would write

γ = C1µ1 + · · ·+ Ckµk.

In other words, each contrast can be summarized by specifying its k coefficients
(C values). And it turns out that the k coefficients are what most computer
programs want as input when you specify the contrast of a custom null hypothesis.

In our examples, the coefficients (and computer input) for null hypothesis H01

are [0, 0, 1, -1, 0, 0], and for H02 they are [1/2, 1/2, -1/3, -1/3, -1/3, 0]. Note
that the zeros are necessary. For example, if you just entered [1, -1], the computer
would not understand which pair of treatment population means you want it to
compare. Also, note that any valid set of contrast coefficients must add to zero.
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It is OK to multiply the set of coefficients by any (non-zero) number.
E.g., we could also specify H02 as [3, 3, -2, -2, -2, 0] and [-3, -3, 2, 2, 2,
0]. These alternate contrast coefficients give the same p-value, but they do
give different estimates of γ, and that must be taken in to account when
you interpret confidence intervals. If you really want to get a confidence
interval on the difference in average group population outcome means for
the first two vs. the next three treatments, it will be directly interpretable
only in the fraction form.

A positive estimate for γ indicates higher means for the groups with positive
coefficients compared to those with negative coefficients, while a negative estimate
for γ indicates higher means for the groups with negative coefficients compared to
those with positive coefficients

To get a computer program to test a custom hypothesis, you must
enter the k coefficients that specify that hypothesis.

If you can handle a bit more math, read the theory behind contrast estimates
provided here.

The simplest case is for two independent random variables Y1 and
Y2 for which the population means are µ1 and µ2 and the variances are
σ2

1 and σ2
2. (We allow unequal variance, because even under the equal

variance assumption, the sampling distribution of two means, depends on
their sample sizes, which might not be equal.) In this case it is true that
E(C1Y1 + C2Y2) = C1µ1 + C2µ2 and Var(C1Y1 + C2Y2) = C2

1σ
2
1 + C2

2σ
2
2.

If in addition, the distributions of the random variables are Normal, we
can conclude that the distribution of the linear combination of the random
variables is also Normal. Therefore Y1 ∼ N(µ1, σ

2
1), Y2 ∼ N(µ2, σ

2
2), ⇒

C1Y1 + C2Y2 ∼ N(C1µ1 + C2µ2, C
2
1σ

2
1 + C2

2σ
2
2).
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We will also use the fact that if each of several independent random
variables has variance σ2, then the variance of a sample mean of n of these
has variance σ2/n.

From these ideas (and some algebra) we find that in a one-way ANOVA
with k treatments, where the group sample means are independent, if
we let σ2 be the common population variance, and ni be the number of
subjects sampled for treatment i, then Var(g) = Var(C1Ȳ1 + · · ·+CkȲk) =
σ2[
∑k
i=1(C2

i /ni)].

In a real data analysis, we don’t know σ2 so we substitute its estimate,
the within-group mean square. Then the square root of the estimated
variance is the standard error of the contrast estimate, SE(g).

For any normally distributed quantity, g, which is an estimate of a
parameter, γ, we can construct a t-statistic, (g − γ)/SE(g). Then the
sampling distribution of that t-statistic will be that of the t-distribution
with df equal to the number of degrees of freedom in the standard error
(dfwithin).

From this we can make a hypothesis test using H0 : γ = 0, or we can
construct a confidence interval for γ, centered around g.

For two-way (or higher) ANOVA without interaction, main effects contrasts
are constructed separately for each factor, where the population means represent
setting a specific level for one factor and ignoring (averaging over) all levels of the
other factor.

For two-way ANOVA with interaction, contrasts are a bit more complicated.
E.g., if one factor is job classification (with k levels) and the other factor is incentive
applied (with m levels), and the outcome is productivity, we might be interested
in comparing any particular combination of factor levels to any other combination.
In this case, a one-way ANOVA with k ·m levels is probably the best way to go.

If we are only interested in comparing the size of the mean differences for two
particular levels of one factor across two levels of the other factor, then we are
more clearly in an “interaction framework”, and contrasts written for the two-way
ANOVA make the most sense. E.g., if the subscripts on mu represent the levels
of the two factors, we might be interested in a confidence interval on the contrast
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(µ1,3 − µ1,5)− (µ2,3 − µ2,5).

The contrast idea extends easily to two-way ANOVA with no interac-
tion, but can be more complicated if there is an interaction.

13.2 Planned comparisons

The ANOVA module of most statistical computer packages allow entry of custom
hypotheses through contrast coefficients, but the p-values produced are only valid
under stringent conditions called planned comparisons or planned contrasts or
planned custom hypotheses. Without meeting these conditions, the p-values will
be smaller than 0.05 more than 5% of the time, often far more, when the null
hypothesis is true (i.e., when you are studying ineffectual treatments). In other
words, these requirement are needed to maintain the Type 1 error rate across the
entire experiment.

Note that for some situations, such as genomics and proteomics, where
k is very large, a better goal than trying to keep the chance of making any
false claim at only 5% is to reduce the total fraction of positive claims that
are false positive. This is called control of the false discovery rate (FDR).

The conditions needed for planned comparisons are:

1. The contrasts are selected before looking at the results, i.e., they are planned,
not post-hoc (after-the-fact).

2. The tests are ignored if the overall null hypothesis (µ1 = · · · = µk) is not
rejected in the ANOVA.

3. The contrasts are orthogonal (see below). This requirement is often ignored,
with relatively minor consequences.
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4. The number of planned contrasts is no more than the corresponding degrees
of freedom (k − 1, for one-way ANOVA).

The orthogonality idea is that each contrast should be based on in-
dependent information from the other contrasts. For the 36309 course,
you can consider this paragraph optional. To test for orthogonality of two
contrasts for which the contrast coefficients are C1 · · ·Ck and D1 · · ·Dk,
compute

∑k
i=1(CiDi). If the sum is zero, then the contrasts are orthogo-

nal. E.g., if k=3, then µ1 − 0.5µ2 − 0.5µ3 is orthogonal to µ2 − µ3, but
not to µ1 − µ2 because (1)(0)+(-0.5)(1)+(-0.5)(-1)=0, but (1)(1)+(-0.5)(-
1)+(-0.5)(0)=1.5.

To reiterate the requirements of planned comparisons, let’s consider the conse-
quences of breaking each requirement. If you construct your contrasts after looking
at your experimental results, you will naturally choose to compare the biggest and
the smallest sample means, which suggests that you are implicitly comparing all
of the sample means to find this interesting pair. Since each comparison has a
95% chance of correctly retaining the null hypothesis when it is true, after m in-
dependent tests you have a 0.95m chance of correctly concluding that there are no
significant differences when the null hypothesis is true. As examples, for m=3, 5,
and 10, the chance of correctly retaining all of the null hypotheses are 86%, 77%
and 60% respectively. Put another way, choosing which groups to compare after
looking at results puts you at risk of making a false claim 14, 23 and 40% of the
time respectively. (In reality the numbers are often slightly better because of lack
of independence of the contrasts.)

The same kind of argument applies to looking at your planned comparisons
without first “screening” with the overall p-value of the ANOVA. Screening pro-
tects your Type 1 experiment-wise error rate, while lack of screening raises it.

Using orthogonal contrasts is also required to maintain your Type 1 experiment-
wise error rate. Correlated null hypotheses tend to make the chance of having
several simultaneous rejected hypotheses happen more often than should occur
when the null hypothesis is really true.

Finally, making more than k−1 planned contrasts (or k−1 and m−1 contrasts
for a two-way k × m ANOVA without interaction) increases your Type 1 error
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because each additional test is an additional chance to reject the null hypothesis
incorrectly whenever the null hypothesis actually is true.

Many computer packages, including SPSS, assume that for any set of custom
hypotheses that you enter you have already checked that these four conditions
apply. Therefore, any p-value it gives you is wrong if you have not met these
conditions.

It is up to you to make sure that your contrasts meet the conditions of
“planned contrasts”; otherwise the computer package will give wrong
p-values.

In SPSS, anything entered as “Contrasts” (in menus) or “LMATRIX” (in Syn-
tax, see Section 5.1) is tested as if it is a planned contrast.

As an example, consider a trial of control vs. two active treatments (k = 3).
Before running the experiment, we might decide to test if the average population
means for the active treatments differs from the control, and if the two active
treatments differ from each other. The contrast coefficients are [1, -0.5, -0.5] and
[0, 1, -1]. These are planned before running the experiment. We need to realize
that we should only examine the contrast p-values if the overall (between-groups,
2 df) F test gives a p-value less than 0.05. The contrasts are orthogonal because
(1)(0)+(-0.5)(1)+(-0.5)(-1)=0. Finally, there are only k-1=2 contrasts, so we have
not selected too many.

13.3 Unplanned or post-hoc contrasts

What should we do if we want to test more than k − 1 contrasts, or if we find
an interesting difference that was not in our planned contrasts after looking at
our results? These are examples of what is variously called unplanned compar-
isons, multiple comparisons, post-hoc (after-the-fact) comparisons, or data snoop-
ing. The answer is that we need to add some sort of penalty to preserve our Type
1 experiment-wise error rate. The penalty can either take the form of requiring a
larger difference (g value) before an unplanned test is considered “statistically sig-
nificant”, or using a smaller α value (or equivalently, using a bigger critical F-value
or critical t-value).
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How big of a penalty to apply is mostly a matter of considering the size of the
“family” of comparisons within which you are operating. (Amount of dependence
among the contrasts can also have an effect.) For example, if you pick out the
biggest and the smallest means to compare, you are implicitly comparing all pairs
of means. In the field of probability, the symbol

(
a
b

)
(read a choose b) is used to

indicate the number of different groups of size b that can be formed from a set of
a objects. The formula is

(
a
b

)
= a!

b!(a−b)! where a! = a · (a − 1) · · · (1) is read “a

factorial”. The simplification for pairs, b = 2, is
(
a
2

)
= a!

2!(a−2)!
= a(a − 1)/2. For

example, if we have a factor with 6 levels, there are 6(5)/2=15 different paired
comparisons we can make.

Note that these penalized procedures are designed to be applied without first
looking at the overall p-value.

The simplest, but often overly conservative penalty is the Bonferroni correc-
tion. If m is the size of the family of comparisons you are making, the Bonferroni
procedure says to reject any post-hoc comparison test(s) if p ≤ α/m. So for k = 6
treatment levels, you can make post-hoc comparisons of all pairs while preserving
Type 1 error at 5% if you reject H0 only when p ≤ α/15 = 0.0033.

The meaning of conservative is that this procedure is often more stringent
than necessary, and using some other valid procedure might show a statistically
significant result in some cases where the Bonferroni correction shows no statistical
significance.

The Bonferroni procedure is completely general. For example, if we want to
try all contrasts of the class “compare all pairs and compare the mean of any two
groups to any other single group”, the size of this class can be computed, and the
Bonferroni correction applied. If k=5, there are 10 pairs, and for each of these
we can compare the mean of the pair to each of the three other groups, so the
family has 10*3+10=40 possible comparisons. Using the Bonferroni correction
with m=40 will ensure that you make a false positive claim no more than 100α%
of the time.

Another procedure that is valid specifically for comparing pairs is the Tukey
procedure. The mathematics will not be discussed here, but the procedure is
commonly available, and can be used to compare any and all pairs of group pop-
ulation means after seeing the results. For two-way ANOVA without interaction,
the Tukey procedure can be applied to each factor (ignoring or averaging over the
other factor). For a k × m ANOVA with a significant interaction, if the desired
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contrasts are between arbitrary cells (combinations of levels of the two factors),
the Tukey procedure can be applied after reformulating the analysis as a one-way
ANOVA with k × m distinct (arbitrary) levels. The Tukey procedure is more
powerful (less conservative) than the corresponding Bonferroni procedure.

It is worth mentioning again here that none of these procedures is needed for
k = 2. If you try to apply them, you will either get some form of “not applicable”
or you will get no penalty, i.e., the overall µ1 = µ2 hypothesis p-value is what is
applicable.

Another post-hoc procedure is Dunnett’s test. This makes the appropriate
penalty correction for comparing one (control) group to all other groups.

The total number of available post-hoc procedures is huge. Whenever you see
such an embarrassment of riches, you can correctly conclude that there is some
lack of consensus on the matter, and that applies here. I recommend against using
most of these, and certainly it is very bad practice to try as many as needed until
you get the answer you want!

The final post-hoc procedure discussed here is the Scheffé procedure.
This is a very general, but conservative procedure. It is applicable for the
family of all possible contrasts! One way to express the procedure is to
consider the usual uncorrected t-test for a contrast of interest. Square the
t-statistic to get an F statistic. Instead of the usual F-critical value for the
overall null hypothesis, often written as F (1−α, k−1, N−k), the penalized
critical F value for a post-hoc contrast is (k − 1)F (1 − α, k − 1, N − k).
Here, N is the total sample size for a one-way ANOVA, and N − k is the
degrees of freedom in the estimate of σ2.

The critical F value for a Scheffé penalized contrast can be obtained as
(k−1)×qf(0.95, k−1, N−k) in R or from (k−1)×IDF.F(0.95, k−1, N−k)
in SPSS.

Although Scheffé is a choice in the SPSS Post-Hoc dialog box, it doesn’t
make much sense to choose this because it only compares all possible pairs,
but applies the penalty needed to allow all possible contrasts. In practice,
the Scheffé penalty makes sense when you see an interesting complex post-
hoc contrast, and then want to see if you actually have good evidence
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that it is “real” (statistically significant). You can either use the menu
or syntax in SPSS to compute the contrast estimate (g) and its standard
error (SE(g)), or calculate these manually. Then find F = (g/SE(g))2 and
reject H0 only if this value exceeds the Scheffé penalized F cutoff value.

When you have both planned and unplanned comparisons (which should be
most of the time), it is not worthwhile (re-)examining any planned comparisons
that also show up in the list of unplanned comparisons. This is because the un-
planned comparisons have a penalty, so if the contrast null hypothesis is rejected
as a planned comparison we already know to reject it, whether or not it is rejected
on the post-hoc list, and if it is retained as a planned comparison, there is no way
it will be rejected when the penalty is added.

Unplanned contrasts should be tested only after applying an appro-
priate penalty to avoid a high chance of Type 1 error. The most useful
post-hoc procedures are Bonferroni, Tukey, and Dunnett.

13.4 Do it in SPSS

SPSS has a Contrast button that opens a dialog box for specifying planned con-
trasts and a PostHoc button that opens a dialog box for specifying various post-hoc
procedures. In addition, planned comparisons can be specified by using the Paste
button to examine and extend the Syntax (see Section 5.1) of a command to include
one or more contrast calculations.

13.4.1 Contrasts in one-way ANOVA

Here we will examine planned and post-hoc contrast analyses for an experiment
with three levels of an independent variable called “additive” (which is a chemical
additive to a reaction, and has nothing to do with additive vs. interaction model
types). The outcome is the number of hours until the reaction completes.
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Figure 13.1: One-way ANOVA contrasts dialog box.

For a k-level one-way (between-subjects) ANOVA, accessed using Analyze/OneWayANOVA
on the menus, the Contrasts button opens the “One-Way ANOVA: Contrasts”
dialog box (see figure 13.1). From here you can enter the coefficients for each
planned contrast. For a given contrast, enter the k coefficients that define any
given contrast into the box labeled “Coefficients:” as a decimal number (no frac-
tions allowed). Click the “Add” button after entering each of the coefficients. For
a k-level ANOVA, you must enter all k coefficients, even if some are zero. Then you
should check if the “Coefficient Total” equals 0.000. (Sometimes, due to rounding,
this might be slightly above or below 0.000.) If you have any additional contrasts
to add, click the Next button and repeat the process. Click the Continue button
when you are finished. The figure shows a planned contrast for comparing the
mean outcome (hours) for additives 1 and 2 to the mean outcome for additive 3.

When entering contrast coefficients in one-way ANOVA, SPSS will warn you
and give no result if you enter more or less than the appropriate number of co-
efficients. It will not warn you if you enter more than k − 1 contrasts, if your
coefficients do not add to 0.0, or if the contrasts are not orthogonal. Also, it
will not prevent you from incorrectly analyzing post-hoc comparisons as planned
comparisons.

The results for this example are given in Table 13.1. You should always look
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Contrast Coefficients
additive

Contrast 1 2 3
1 0.5 0.5 -1
2 1 -1 0

Contrast Tests
Contr Value of Std. Sig.
ast Contrast Error t df (2-tailed)

hrs Assume 1 -0.452 0.382 -1.18 47 0.243
equal variance 2 0.485 0.445 1.09 47 0.282
Does not assume 1 -0.452 0.368 -1.23 35.58 0.228
equal variance 2 0.485 0.466 1.04 28.30 0.307

Table 13.1: Contrast results for one-way ANOVA.

at the Contrast Coefficients table to verify which contrasts you are testing. In this
table, contrast 1, using coefficients (0.5, 0.5, -1) is testing H01 : µ1+µ2

2
− µ3 = 0.

Contrast 2 with coefficients (1, -1, 0) is testing H02 : µ1 − µ2 = 0.

The Contrast Tests table shows the results. Note that “hrs” is the name of the
outcome variable. The “Value of the Contrast” entry is the best estimate of the
contrast. For example, the best estimate of µ1−µ2 is 0.485. The standard error of
this estimate (based on the equal variance section) is 0.445 giving a t-statistic of
0.485/0.445=1.09, which corresponds to a p-value of 0.282 using the t-distribution
with 47 df. So we retain the null hypothesis, and an approximate 95% CI for
µ1 − µ2 is 0.485 ± 2 × 0.445 = [−0.405, 1.375]. If you have evidence of unequal
variance (violation of the equal variance assumption) you can use the lower section
which is labeled “Does not assume equal variances.”

In SPSS, the two post-hoc tests that make the most sense are Tukey HSD and
Dunnett. Tukey should be used when the only post-hoc testing is among all pairs
of population means. Dunnett should be used when the only post-hoc testing is
between a control and all other population means. Only one of these applies to a
given experiment. (Although the Scheffé test is useful for allowing post-hoc testing
of all combinations of population means, turning that procedure on in SPSS does
not make sense because it still only tests all pairs, in which case Tukey is more
appropriate.)
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Multiple Comparisons
hrs
Tukey HSD

95% Confidence Interval
(I) (J) Mean
additive additive Difference (I-J) Std.Error Sig. Lower Bound Upper Bound
1 2 0.485 0.445 0.526 -0.593 1.563

3 -0.209 0.445 0.886 -1.287 0.869
2 1 -0.485 0.445 0.526 -1.563 0.593

3 -0.694 0.439 0.263 -1.756 0.367
3 1 0.209 0.445 0.886 -0.869 1.287

2 0.694 0.439 0.263 -0.367 1.756

Homogeneous Subsets
hrs

Tukey HSD
Subset for

alpha=0.05
additive N 1
2 17 16.76
1 16 17.244
3 17 17.453
Sig. 0.270

Table 13.2: Tukey Multiple Comparison results for one-way ANOVA.
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Table 13.2 shows the Tukey results for our example. Note the two columns
labeled I and J. For each combination of levels I and J, the “Mean Difference (I-J)”
column gives the mean difference subtracted in that order. For example, the first
mean difference, 0.485, tells us that the sample mean for additive 1 is 0.485 higher
than the sample mean for additive 2, because the subtraction is I (level 1) minus
J (level 2). The standard error of each difference is given. This standard error is
used in the Tukey procedure to calculate the corrected p-value that is appropriate
for post-hoc testing. For any contrast that is (also) a planned contrast, you should
ignore the information given in the Multiple Comparisons table, and instead use
the information in the planned comparisons section of the output. (The p-value
for a planned comparison is smaller than for the corresponding post-hoc test.)

The Tukey procedure output also gives a post-hoc 95% CI for each contrast.
Note again that if a contrast is planned, we use the CI from the planned contrasts
section and ignore what is in the multiple comparisons section. Contrasts that are
made post-hoc (or analyzed using post-hoc procedures because they do not meet
the four conditions for planned contrasts) have appropriately wider confidence
intervals than they would have if they were treated as planned contrasts.

The Homogeneous Subsets table presents the Tukey procedure results in a
different way. The levels of the factor are presented in rows ordered by the sample
means of the outcome. There are one or more numbered columns that identify
“homogeneous subsets.” One way to read this table is to say that all pairs are
significantly different except those that are in the same subset. In this example,
with only one subset, no pairs have a significant difference.

You can alternately use the menu item Analyze/GeneralLinearModel/Univariate
for one-way ANOVA. Then the Contrasts button does not allow setting arbitrary
contrasts. Instead, there a fixed set of named planned contrasts. Figure 13.2 shows
the “Univariate: Contrasts” dialog box. In this figure the contrast type has been
changed from the default “None” to “Repeated”. Note the word “Repeated” un-
der Factors confirms that the change of contrast type has actually been registered
by pressing the Change button. Be sure to also click the Change button whenever
you change the setting of the Contrast choice, or your choice will be ignored! The
pre-set contrast choices include “Repeated” which compares adjacent levels, “Sim-
ple” which compares either the first or last level to all other levels, polynomial
which looks for increasing orders of polynomial trends, and a few other less useful
ones. These are all intended as planned contrasts, to be chosen before running the
experiment.



334 CHAPTER 13. CONTRASTS AND CUSTOM HYPOTHESES

Figure 13.2: Univariate contrasts dialog box.

Figure 13.3: Univariate syntax window.



13.4. DO IT IN SPSS 335

Custom Hypothesis Tests #1
Contrast Results (K Matrix)

Dependent
Contrast hrs
L1 Contrast Estimate 0.138

Hypothesized Value 0
Difference(Estimate-Hypothesized) 0.138
Std. Error 0.338
Sig. 0.724
95% Confidence Interval Lower Bound -0.642
for Difference Upper Bound 0.918

Based on user-specified contrast coefficients: first vs. second and third

Table 13.3: Planned contrast in one-way ANOVA using LMATRIX syntax.
.

To make a custom set of planned contrasts in the Univariate procedure, click
the Paste button of the Univariate dialog box. This brings up a syntax window
with the SPSS native commands that are equivalent to the menu choices you have
made so far (see Figure 13.3). You can now insert some appropriate subcommands
to test your custom hypotheses. You can insert the extra lines anywhere between
the first line and the final period. The lines that you would add to the Univariate
syntax to test H01 : µ1 − µ2+µ3

2
= 0 and H02 : µ2 − µ3 = 0 are:

/LMATRIX = "first vs. second and third" additive 1 -1/2 -1/2

/LMATRIX = "second vs. third" additive 0 1 -1

Note that you can type any descriptive phrase inside the quotes, and SPSS will
not (cannot) test if your phrase actually corresponds to the null hypothesis defined
by your contrasts. Also note that fractions are allowed here. Finally, note that the
name of the factor (additive) precedes its list of coefficients.

The output of the first of these LMATRIX subcommands is shown in Table
13.3. This gives the p-value and 95%CI appropriate for a planned contrast.
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13.4.2 Contrasts for Two-way ANOVA

Contrasts in two-way (between-subjects) ANOVA without interaction work just
like in one-way ANOVA, but with separate contrasts for each factor. Using the
Univariate procedure on the Analyze/GeneralLinearModel menu, if one or both
factors has more than two levels, then pre-defined planned contrasts are available
with the Contrasts button, post-hoc comparisons are available with the Post-Hoc
button, and arbitrary planned contrasts are available with Paste button and LMA-
TRIX subcommands added to the Syntax.

For a k × m two-way ANOVA with interaction, two types of contrasts make
sense. For planned comparisons, out of the km total treatment cells, you can test
up to (k− 1)(m− 1) pairs out of the

(
km
2

)
= km(km−1)

2
total pairs. With the LMA-

TRIX subcommand you can only test a particular subset of these: comparisons
between any two levels of one factor when the other factor is fixed at any particular
level. To do this, you must first check the order of the two factors in the DESIGN
line of the pasted syntax. If the factors are labeled A and B, the line will look
either like

/DESIGN=A B A*B

or

/DESIGN=B A B*A

Let’s assume that we have the “A*B” form with, say, 3 levels of factor A and
2 levels of factor B. Then a test of, say, level 1 vs. 3 of factor A when factor B is
fixed at level 2 is performed as follows: Start the LMATRIX subcommand in the
usual way:

/LMATRIX="compare A1B2 to A3B2"

Then add coefficients for the varying factor, which is A in this example:

/LMATRIX="compare A1B2 to A3B2" A 1 0 -1

Finally add the “interaction coefficients”. There are km of these and the rule is
“the first factor varies slowest”. This means that if the interaction is specified as
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A*B in the DESIGN statement then the first set of coefficients corresponds to all
levels of B when A is set to level 1, then the next set is all levels of B when A is
set to level 2, etc. For our example with we need to set A1B2 to 1 and A3B2 to
-1, while setting everything else to 0. The correct subcommand is:

/LMATRIX="compare A1B2 to A3B2" A 1 0 -1 A*B 0 1 0 0 0 -1

It is helpful to space out the A*B coefficients in blocks to see what is going on
better. The first block corresponds to level 1 of factor A, the second block to level
2, and the third block to level 3. Within each block the first number is for B=1
and the second number for B=2. It is in this sense that B is changing quickly
and A slowly as we move across the coefficients. To reiterate, position 2 in the
A*B list corresponds to A=1 and B=2, while position 6 corresponds to A=3 and
B=2. These two have coefficients that match those of the A block (1 0 -1) and the
desired contrast (µA1B2 − µA3B2).

To test other types of planned pairs or to make post-hoc tests of all pairs, you
can convert the analysis to a one-way ANOVA by combining the factors using a
calculation such as 10*A+B to create a single factor that encodes the information
from both factors and that has km different levels. Then just use one-way ANOVA
with either the specific planned hypotheses or the with the Tukey post-hoc proce-
dure.

The other kind of hypothesis testing that makes sense in two-way ANOVA with
interaction is to test the interaction effects directly with questions such as “is the
effect of changing from level 1 to level 3 of factor A when factor B=1 the same or
different from the effect of changing from level 1 to level 3 of factor A when factor
B=2?” This corresponds to the null hypothesis: H0 : (µA3B1 − µA1B1)− (µA3B2 −
µA1B2) = 0. This can be tested as a planned contrast within the context of the
two-way ANOVA with interaction by using the following LMATRIX subcommand:

/LMATRIX="compare A1 to A3 for B1 vs. B2" A*B -1 1 0 0 1 -1

First note that we only have the interaction coefficients in the LMATRIX sub-
command for this type of contrast. Also note that because the order is A then B
in A*B, the A levels move change slowly, so the order of effects is A1B1 A1B2
A2B1 A2B2 A3B1 A3B2. Now you can see that the above subcommand matches
the above null hypothesis. For an example of interpretation, assume that for fixed
levels of both B=1 and B=2, A3-A1 is positive. Then a positive Contrast Estimate



338 CHAPTER 13. CONTRASTS AND CUSTOM HYPOTHESES

for this contrast would indicate that the outcome difference with B=1 is greater
than the difference with B=2.



Chapter 14

Within-Subjects Designs
ANOVA must be modified to take correlated errors into account when multiple
measurements are made for each subject.

14.1 Overview of within-subjects designs

Any categorical explanatory variable for which each subject experiences all of the
levels is called a within-subjects factor. (Or sometimes a subject may experience
several, but not all levels.) These levels could be different “treatments”, or they
may be different measurements for the same treatment (e.g., height and weight as
outcomes for each subject), or they may be repetitions of the same outcome over
time (or space) for each subject. In the broad sense, the term repeated measure
is a synonym for a within-subject factor, although often the term repeated measures
analysis is used in a narrower sense to indicate the specific set of analyses discussed
in Section 14.5.

In contrast to a within-subjects factor, any factor for which each subject ex-
periences only one of the levels is a between-subjects factor. Any experiment
that has at least one within-subjects factor is said to use a within-subjects de-
sign, while an experiment that uses only between-subjects factor(s) is called a
between-subjects design. Often the term mixed design or mixed within-
and between-subjects design is used when there is at least one within-subjects
factor and at least one between-subjects factor in the same experiment. (Be care-
ful to distinguish this from the so-called mixed models of chapter 15.) All of the
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experiments discussed in the preceding chapters are between-subjects designs.

Please do not confuse the terms between-groups and within-groups with the
terms between-subjects and within-subjects. The first two terms, which we first
encountered in the ANOVA chapter, are names of specific SS and MS compo-
nents and are named because of how we define the deviations that are summed
and squared to compute SS. In contrast, the terms between-subjects and within-
subjects refer to experimental designs that either do not or do make multiple
measurements on each subject.

When a within-subjects factor is used in an experiment, new methods are
needed that do not make the assumption of no correlation (or, somewhat more
strongly, independence) of errors for the multiple measurements made on the same
subject. (See section 6.2.8 to review the independent errors assumption.)

Why would we want to make multiple measurements on the same subjects?
There are two basic reasons. First, our primary interest may be to study the
change of an outcome over time, e.g., a learning effect. Second, studying multiple
outcomes for each subject allows each subject to be his or her own “control”, i.e.,
we can effectively remove subject-to-subject variation from our investigation of the
relative effects of different treatments. This reduced variability directly increases
power, often dramatically. We may use this increased power directly, or we may
use it indirectly to allow a reduction in the number of subjects studied.

These are very important advantages to using within-subjects designs, and such
designs are widely used. The major reasons for not using within-subjects designs
are when it is impossible to give multiple treatments to a single subject or because
of concern about confounding. An example of a case where a within-subjects
design is impossible is a study of surgery vs. drug treatment for a disease; subjects
generally would receive one or the other treatment, not both.

The confounding problem of within-subjects designs is an important concern.
Consider the case of three kinds of hints for solving a logic problem. Let’s take
the time till solution as the outcome measure. If each subject first sees problem
1 with hint 1, then problem 2 with hint 2, then problem 3 with hint 3, then we
will probably have two major difficulties. First, the effects of the hints carry-
over from each trial to the next. The truth is that problem 2 is solved when the
subject has been exposed to two hints, and problem 3 when the subject has been
exposed to all three hints. The effect of hint type (the main focus of inference) is
confounded with the cumulative effects of prior hints.
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The carry-over effect is generally dealt with by allowing sufficient time between
trials to “wash out” the effects of previous trials. That is often quite effective, e.g.,
when the treatments are drugs, and we can wait until the previous drug leaves the
system before studying the next drug. But in cases such as the hint study, this
approach may not be effective or may take too much time.

The other, partially overlapping, source of confounding is the fact that when
testing hint 2, the subject has already had practice with problem 1, and when
testing hint three she has already had practice with problems 1 and 2. This is the
learning effect.

The learning effect can be dealt with effectively by using counterbalancing.
The carryover effect is also partially corrected by counterbalancing. Counterbal-
ancing in this experiment could take the form of collecting subjects in groups of
six, then randomizing the group to all possible orderings of the hints (123, 132,
213, 231, 312, 321). Then, because each hint is evenly tested at all points along the
learning curve, any learning effects would “balance out” across the three hint types,
removing the confounding. (It would probably also be a good idea to randomize
the order of the problem presentation in this study.)

You need to know how to distinguish within-subjects from between-
subjects factors. Within-subjects designs have the advantages of more
power and allow observation of change over time. The main disadvan-
tage is possible confounding, which can often be overcome by using
counterbalancing.

14.2 Multivariate distributions

Some of the analyses in this chapter require you to think about multivariate
distributions. Up to this point, we have dealt with outcomes that, among all
subjects that have the same given combination of explanatory variables, are as-
sumed to follow the (univariate) Normal distribution. The mean and variance,
along with the standard bell-shape characterize the kinds of outcome values that
we expect to see. Switching from the population to the sample, we can put the
value of the outcome on the x-axis of a plot and the relative frequency of that
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value on the y-axis to get a histogram that shows which values are most likely and
from which we can visualize how likely a range of values is.

To represent the outcomes of two treatments for each subject, we need a so-
called, bivariate distribution. To produce a graphical representation of a bivariate
distribution, we use the two axes (say, y1 and y2) on a sheet of paper for the two
different outcome values, and therefore each pair of outcomes corresponds to a
point on the paper with y1 equal to the first outcome and y2 equal to the second
outcome. Then the third dimension (coming up out of the paper) represents how
likely each combination of outcome is. For a bivariate Normal distribution, this is
like a real bell sitting on the paper (rather than the silhouette of a bell that we
have been using so far).

Using an analogy between a bivariate distribution and a mountain peak, we can
represent a bivariate distribution in 2-dimensions using a figure corresponding to a
topographic map. Figure 14.1 shows the center and the contours of one particular
bivariate Normal distribution. This distribution has a negative correlation between
the two values for each subject, so the distribution is more like a bell squished along
a diagonal line from the upper left to the lower right. If we have no correlation
between the two values for each subject, we get a nice round bell. You can see
that an outcome like Y1 = 2, Y2 = 6 is fairly likely, while one like Y1 = 6, Y2 = 2
is quite unlikely. (By the way, bivariate distributions can have shapes other than
Normal.)

The idea of the bivariate distribution can easily be extended to more than two
dimensions, but is of course much harder to visualize. A multivariate distribution
with k-dimensions has a k-length vector (ordered set of numbers) representing its
mean. It also has a k×k dimensional matrix (rectangular array of numbers) repre-
senting the variances of the individual variables, and all of the paired covariances
(see section 3.6.1).

For example a 3-dimensional multivariate distribution representing the out-
comes of three treatments in a within-subjects experiment would be characterized
by a mean vector, e.g.,

µ =

 µ1

µ2

µ3

 ,
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Figure 14.1: Contours enclosing 1/3, 2/3 and 95% of a bivariate Normal distribu-
tion with a negative covariance.

and a variance-covariance matrix, e.g.,

Σ =

 σ2
1 γ1,2 γ1,3

γ1,2 σ2
2 γ2,3

γ1,3 γ2,3 σ2
3

 .
Here we are using γi,j to represent the covariance of variable Yi with Yj.

Sometimes, as an alternative to a variance-covariance matrix, people use a
variance vector, e.g.,

σ2 =

 σ2
1

σ2
2

σ2
3

 ,
and a correlation matrix, e.g.,

Corr =

 1 ρ1,2 ρ1,3

ρ1,2 1 ρ2,3

ρ1,3 ρ2,3 1

 .
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Here we are using ρi,j to represent the correlation of variable Yi with Yj.

If the distribution is also Normal, we could write the distribution as Y ∼
N(µ,Σ).

14.3 Example and alternate approaches

Consider an example related to the disease osteoarthritis. (This comes from the
OzDASL web site, OzDASL. For educational purposes, I slightly altered the data,
which can be found in both the tall and wide formats on the data web page
of this book: osteoTall.sav and osteoWide.sav.) Osteoarthritis is a mechanical
degeneration of joint surfaces causing pain, swelling and loss of joint function
in one or more joints. Physiotherapists treat the affected joints to increase the
range of movement (ROM). In this study 10 subjects were each given a trial of
therapy with two treatments, TENS (an electric nerve stimulation) and short wave
diathermy (a heat treatment), plus control.

We cannot perform ordinary (between-subjects) one-way ANOVA for this ex-
periment because each subject was exposed to all three treatments, so the errors
(ROM outcomes for a given subject for all three treatments minus the population
means of outcome for those treatment) are almost surely correlated, rather than
independent. Possible appropriate analyses fall into four categories.

1. Response simplification: e.g. call the difference of two of the measurements
on each subject the response, and use standard techniques. If the within-
subjects factor is the only factor, an appropriate test is a one-sample t-
test for the difference outcome, with the null hypothesis being a zero mean
difference. In cases where the within-subjects factor is repetition of the same
measurement over time or space and there is a second, between subjects-
factor, the effects of the between subjects factor on the outcome can be
studied by taking the mean of all of the outcomes for each subject and using
standard, between-subjects one-way ANOVA. This approach does not fully
utilize the available information. Often it cannot answer some interesting
questions.

2. Treat the several responses on one subject as a single “multivariate” re-
sponse and model the correlation between the components of that response.
The main statistics are now matrices rather than individual numbers. This

http://www.statsci.org/data/oz/oa.html
http://www.stat.cmu.edu/~hseltman/309/Book/data/osteoTall.sav
http://www.stat.cmu.edu/~hseltman/309/Book/data/osteoWide.sav
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approach corresponds to results labeled “multivariate” under “repeated mea-
sures ANOVA” for most statistical packages.

3. Treat each response as a separate (univariate) observation, and treat “sub-
ject” as a (random) blocking factor. This corresponds to within-subjects
ANOVA with subject included as a random factor and with no interaction
in the model. It also corresponds to the “univariate” output under “re-
peated measures”. In this form, there are assumptions about the nature of
the within-subject correlation that are not met fairly frequently. To use the
univariate approach when its assumptions are not met, it is common to use
some approximate correction (to the degrees of freedom) to compensate for
a shifted null sampling distribution.

4. Treat each measurement as univariate, but explicitly model the correlations.
This is a more modern univariate approach called “mixed models” that sub-
sumes a variety of models in a single unified approach, is very flexible in
modeling correlations, and often has improved interpretability. As opposed
to “classical repeated measures analysis” (approaches 2 and 3), mixed models
can accommodate missing data as oppposed to dropping all data from every
subject who is missing one or more measurements), and it accommodates
unequal and/or irregular spacing of repeated measurements. Mixed models
can also be extended to non-normal outcomes. (See chapter 15.)

14.4 Paired t-test

The paired t-test uses response simplification to handle the correlated errors. It
only works with two treatments, so we will ignore the diathermy treatment in
our osteoarthritis example for this section. The simplification here is to compute
the difference between the two outcomes for each subject. Then there is only one
“outcome” for each subject, and there is no longer any concern about correlated
errors. (The subtraction is part of the paired t-test, so you don’t need to do it
yourself.)

In SPSS, the paired t-test requires the “wide” form of data in the spreadsheet
rather than the “tall” form we have used up until now. The tall form has one
outcome per row, so it has many rows. The wide form has one subject per row
with two or more outcomes per row (necessitating two or more outcome columns).
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The paired t-test uses a one-sample t-test on the single column of com-
puted differences. Although we have not yet discussed the one-sample
t-test, it is a straightforward extension of other t-tests like the independent-
sample t-test of Chapter 6 or the one for regression coefficients in Chapter
9. We have an estimate of the difference in outcome between the two treat-
ments in the form of the mean of the difference column. We can compute
the standard error for that difference (which is the square root of the vari-
ance of the difference column divided by the number of subjects). Then
we can construct the t-statistic as the estimate divided by the SE of the
estimate, and under the null hypothesis that the population mean differ-
ence is zero, this will follow a t-distribution with n − 1 df, where n is the
number of subjects.

The results from SPSS for comparing control to TENS ROM is shown in table
14.1. The table tells us that the best point estimate of the difference in population
means for ROM between control and TENS is 17.70 with control being higher
(because the direction of the subtraction is listed as control minus TENS). The
uncertainty in this estimate due to random sampling variation is 7.256 on the
standard deviation scale. (This was calculated based on the sample size of 10 and
the observed standard deviation of 22.945 for the observed sample.) We are 95%
confident that the true reduction in ROM caused by TENS relative to the control
is between 1.3 and 34.1, so it may be very small or rather large. The t-statistic
of 2.439 will follow the t-distribution with 9 df if the null hypothesis is true and
the assumptions are met. This leads to a p-value of 0.037, so we reject the null
hypothesis and conclude that TENS reduces range of motion.

For comparison, the incorrect, between-subjects one-way ANOVA analysis of
these data gives a p-value of 0.123, leading to the (probably) incorrect conclusion
that the two treatments both have the same population mean of ROM. For future
discussion we note that the within-groups SS for this incorrect analysis is 10748.5
with 18 df.

For educational purposes, it is worth noting that it is possible to get the same
correct results in this case (or other one-factor within-subjects experiments) by
performing a two-way ANOVA in which “subject” is the other factor (besides
treatment). Before looking at the results we need to note several important facts.
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Paired Differences
95% Confidence

Std. Interval of the
Std. Error Difference Sig.

Mean Deviation Mean Lower Upper t df (2-tailed)
17.700 22.945 7.256 1.286 34.114 2.439 9 0.037

Table 14.1: Paired t-test for control-TENS ROM in the osteoarthritis experiment.

There is an important concept relating to the repeatability of levels of a factor.
A factor is said to be a fixed factor if the levels used are the same levels you
would use if you repeated the experiment. Treatments are generally fixed factors.
A factor is said to be a random factor if a different set of levels would be used
if you repeated the experiment. Subject is a random factor because if you would
repeat the experiment, you would use a different set of subjects. Certain types of
blocking factors are also random factors.

The reason that we want to use subject as a factor is that it is reasonable to
consider that some subjects will have a high outcome for all treatments and others
a low outcome for all treatments. Then it may be true that the errors relative
to the overall subject mean are uncorrelated across the k treatments given to a
single subject. But if we use both treatment and subject as factors, then each
combination of treatment and subject has only one outcome. In this case, we have
zero degrees of freedom for the within-subjects (error) SS. The usual solution is
to use the interaction MS in place of the error MS in forming the F test for the
treatment effect. (In SPSS it is equivalent to fit a model without an interaction.)
Based on the formula for expected MS of an interaction (see section 12.4), we
can see that the interaction MS is equal to the error MS if there is no interaction
and larger otherwise. Therefore if the assumption of no interaction is correct (i.e,.
treatment effects are similar for all subjects) then we get the “correct” p-value,
and if there really is an interaction, we get too small of an F value (too large of a
p-value), so the test is conservative, which means that it may give excess Type 2
errors, but won’t give excess Type 1 errors.

The two-way ANOVA results are shown in table 14.2. Although we normally
ignore the intercept, it is included here to demonstrate the idea that in within-
subjects ANOVA (and other cases called nested ANOVA) the denominator of the
F-statistic, which is labeled “error”, can be different for different numerators (which
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Type III Sum
Source of Squares df Mean Square F Sig.
Intercept Hypothesis 173166.05 1 173166.05 185.99 <0.0005

Error 8379.45 9 931.05
rx Hypothesis 1566.45 1 1566.45 5.951 0.035

Error 2369.05 9 263.23
subject Hypothesis 8379.45 9 931.05 3.537 0.037

Error 2369.05 9 263.23

Table 14.2: Two-way ANOVA results for the osteoarthritis experiment.

correspond to the different null hypotheses). The null hypothesis of main interest
here is that the three treatment population means are equal, and that is tested
and rejected on the line called “rx”. The null hypothesis for the random subject
effect is that the population variance of the subject-to-subject means (of all three
treatments) is zero.

The key observation from this table is that the treatment (rx) SS and MS
corresponds to the between-groups SS and MS in the incorrect one-way ANOVA,
while the sum of the subject SS and error SS is 10748.5, which is the within-groups
SS for the incorrect one-way ANOVA. This is a decomposition of the four sources
of error (see Section 8.5) that contribute to σ2, which is estimated by SSwithin in
the one-way ANOVA. In this two-way ANOVA the subject-to-subject variability
is estimated to be 931.05, and the remaining three sources contribute 263.23 (on
the variance scale). This smaller three-source error MS is the denominator for the
numerator (rx) MS for the F-statistic of the treatment effect. Therefore we get a
larger F-statistic and more power when we use a within-subjects design.

How do we know which error terms to use for which F-tests? That requires
more mathematical statistics than we cover in this course, but SPSS will produce
an EMS table, and it is easy to use that table to figure out which ratios are 1.0
when the null hypotheses are true.

It is worth mentioning that in SPSS a one-way within-subjects ANOVA can be
analyzed either as a two-way ANOVA with subjects as a random factor (or even
as a fixed factor if a no-interaction model is selected) or as a repeated measures
analysis (see next section). The p-value for the overall null hypothesis, that the
population outcome means are equal for all levels of the factor, is the same for
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each analysis, although which auxiliary statistics are produced differs.

A two-level one-way within-subjects experiment can equivalently be
analyzed by a paired t-test or a two-way ANOVA with a random sub-
ject factor. The latter also applies to more than two levels. The extra
power comes from mathematically removing the subject-to-subject
component of the underlying variance (σ2).

14.5 One-way Repeated Measures Analysis

Although repeated measures analysis is a very general term for any study in which
multiple measurements are made on the same subject, there is a narrow sense of
repeated measures analysis which is discussed in this section and the next section.
This is a set of specific analysis methods commonly used in social sciences, but
less commonly in other fields where alternatives such as mixed models tends to be
used.

This narrow-sense repeated measures analysis is what you get if you choose
“General Linear Model / Repeated Measures” in SPSS. It includes the second
and third approaches of our list of approaches given in the introduction to this
chapter. The various sections of the output are labeled univariate or multivariate
to distinguish which type of analysis is shown.

This section discusses the k-level (k ≥ 2) one-way within-subjects ANOVA
using repeated measures in the narrow sense. The next section discusses the mixed
within/between subjects two-way ANOVA.

First we need to look at the assumptions of repeated measures analysis. One-
way repeated measures analyses assume a Normal distribution of the outcome for
each level of the within-subjects factor. The errors are assumed to be uncorrelated
between subjects. Within a subject the multiple measurements are assumed to
be correlated. For the univariate analyses, the assumption is that a technical
condition called sphericity is met. Although the technical condition is difficult
to understand, there is a simpler condition that is nearly equivalent: compound
symmetry. Compound symmetry indicates that all of the variances are equal
and all of the covariances (and correlations) are equal. This variance-covariance
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pattern is seen fairly often when there are several different treatments, but is
unlikely when there are multiple measurements over time, in which case adjacent
times are usually more highly correlated than distant times.

In contrast, the multivariate portions of repeated measures analysis output are
based on an unconstrained variance-covariance pattern. Essentially, all of the vari-
ances and covariances are estimated from the data, which allows accommodation
of a wider variety of variance-covariance structures, but loses some power, particu-
larly when the sample size is small, due to “using up” some of the data and degrees
of freedom for estimating a more complex variance-covariance structure.

Because the univariate analysis requires the assumption of sphericity, it is cus-
tomary to first examine the Mauchly’s test of sphericity. Like other tests of as-
sumptions (e.g., Levene’s test of equal variance), the null hypothesis is that there is
no assumption violation (here, that the variance-covariance structure is consistent
with sphericity), so a large (>0.05) p-value is good, indicating no problem with
the assumption. Unfortunately, the sphericity test is not very reliable, being often
of low power and also overly sensitive to mild violations of the Normality assump-
tion. It is worth knowing that the sphericity assumption cannot be violated with
k = 2 levels of treatment (because there is only a single covariance between the
two measures, so there is nothing for it to be possible unequal to), and therefore
Mauchly’s test is inapplicable and not calculated when there are only two levels of
treatment.

The basic overall univariate test of equality of population means for the within-
subjects factor is labeled “Tests of Within-Subjects Effects” in SPSS and is shown
in table 14.3. If we accept the sphericity assumption, e.g., because the test of
sphericity is non-significant, then we use the first line of the treatment section
and the first line of the error section. In this case F=MSbetween divided by
MSwithin=1080.9/272.4=3.97. The p-value is based on the F-distribution with
2 and 18 df. (This F and p-value are exactly the same as the two-way ANOVA
with subject as a random factor.)

If the sphericity assumption is violated, then one of the other, corrected lines of
the Tests of Within-Subjects Effects table is used. There is some controversy about
when to use which correction, but generally it is safe to go with the Huynh-Feldt
correction.

The alternative, multivariate analysis, labeled “Multivariate Tests” in SPSS
is shown in table 14.4. The multivariate tests are tests of the same overall null
hypothesis (that all of the treatment population means are equal) as was used for
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Type III Sum
Source of Squares df Mean Square F Sig.
rx Sphericity Assumed 2161.8 2 1080.9 3.967 .037

Greenhouse-Geisser 2161.8 1.848 1169.7 3.967 .042
Huynh-Feldt 2161.8 2.000 1080.9 3.967 .042
Lower-bound 2161.8 1.000 1169.7 3.967 .042

Error(rx) Sphericity Assumed 4904.2 18 272.4
Greenhouse-Geisser 4904.2 16.633 294.8
Huynh-Feldt 4904.2 18,000 272.4
Lower-bound 4904.2 9.000 544.9

Table 14.3: Tests of Within-Subjects Effects for the osteoarthritis experiment.

the univariate analysis.

The approach for the multivariate analysis is to first construct a set of
k − 1 orthogonal contrasts. (The main effect and interaction p-values are
the same for every set of orthogonal contrasts.) Then SS are computed for
each contrast in the usual way, and also “sum of cross-products” are also
formed for pairs of contrasts. These numbers are put into a k− 1 by k− 1
matrix called the SSCP (sums of squares and cross products) matrix. In
addition to the (within-subjects) treatment SSCP matrix, an error SSCP
matrix is constructed analogous to computation of error SS. The ratio of
these matrices is a matrix with F-values on the diagonal and ratios of
treatment to error cross-products off the diagonal. We need to make a
single F statistic from this matrix to get a p-value to test the overall null
hypothesis. Four methods are provided for reducing the ratio matrix to a
single F value. These are called Pillai’s Trace, Wilk’s Lambda, Hotelling’s
Trace, and Roy’s Largest Root. There is a fairly extensive, difficult-to-
understand literature comparing these methods, but it most cases they
give similar p-values.

The decision to reject or retain the overall null hypothesis of equal population
outcome means for all levels of the within-subjects factor is made by looking at
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Effect Value F Hypothesis df Error df Sig.
modality Pillai’s Trace 0.549 4.878 2 8 0.041

Wilk’s Lambda 0.451 4.878 2 8 0.041
Hotelling’s Trace 1.220 4.878 2 8 0.041
Roy’s Largest Root 1.220 4.878 2 8 0.041

Table 14.4: Multivariate Tests for the osteoarthritis experiment.

the p-value for one of the four F-values computed by SPSS. I recommend that you
use “Pillai’s trace”. The thing you should not do is pick the line that gives the
answer you want! In a one-way within-subjects ANOVA, the four F-values will
always agree, while in more complex designs they will disagree to some extent.

Which approach should we use, univariate or multivariate? Luckily, they agree
most of the time. When they disagree, it could be because the univariate approach
is somewhat more powerful, particularly for small studies, and is thus preferred.
Or it could be that the correction is insufficient in the case of far deviation from
sphericity, in which case the multivariate test is preferred as more robust. In
general, you should at least look for outliers or mistakes if there is a disagreement.

An additional section of the repeated measures analysis shows the planned
contrasts and is labeled “Tests of Within-Subjects Contrasts”. This section is the
same for both the univariate and multivariate approaches. It gives a p-value for
each planned contrast. The default contrast set is “polynomial” which is generally
only appropriate for a moderately large number of levels of a factor representing
repeated measures of the same measurement over time. In most circumstances,
you will want to change the contrast type to simple (baseline against each other
level) or repeated (comparing adjacent levels).

It is worth noting that post-hoc comparisons are available for the within-
subjects factor under Options by selecting the factor in the Estimated Marginal
Means box and then by checking the “compare main effects” box and choosing
Bonferroni as the method.
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14.6 Mixed between/within-subjects designs

One of the most common designs used in psychology experiments is a two-factor
ANOVA, where one factor is varied between subjects and the other within subjects.
The analysis of this type of experiment is a straightforward combination of the
analysis of two-way between subjects ANOVA and the concepts of within-subject
analysis from the previous section.

The interaction between a within- and a between-subjects factor shows up in the
within-subjects section of the repeated measures analysis. As usual, the interaction
should be examined first. If the interaction is significant, then (changes in) both
factors affect the outcome, regardless of the p-values for the main effects. Simple
effects contrasts in a mixed design are not straightforward, and are not available in
SPSS. A profile plot is a good summary of the results. Alternatively, it is common
to run separate one-way ANOVA analyses for each level of one factor, possibly
using planned and/or post-hoc testing. In this case we test the simple effects
hypotheses about the effects of differences in level of one factor at fixed levels of
the other factor, as is appropriate in the case of interaction. Note that, depending
on which factor is restricted to a single level for these analyses, the appropriate
ANOVA could be either within-subjects or between-subjects.

If the interaction is not significant, then the analysis can be re-run without the
interaction. Either the univariate or multivariate tests can be used for the overall
null hypothesis for the within-subjects factor.

There is also a separate section for the overall null hypothesis for the be-
tween subjects factor. Because this section compares means between levels of the
between-subjects factor, and those means are reductions of the various levels of
the within-subjects factor to a single number, there is no concern about correlated
errors, and there is only a single univariate test of the overall null hypothesis.

For each factor you may select a set of planned contrasts (assuming that there
are more than two levels and that the overall null hypothesis is rejected). Finally,
post-hoc tests are available for the between-subjects factor, and either the Tukey
or Dunnett test is usually appropriate (where Dunnett is used only if there is no
interest in comparisons other than to the control level). For the within-subjects
factor the Bonferroni test is available with Estimated Marginal Means.
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Repeated measures analysis is appropriate when one (or more) fac-
tors is a within-subjects factor. Usually univariate and multivariate
tests agree for the overall null hypothesis for the within-subjects fac-
tor or any interaction involving a within-subjects factor. Planned
(main effects) contrasts are appropriate for both factors if there is no
significant interaction. Post-hoc comparisons can also be performed.

14.6.1 Repeated Measures in SPSS

To perform a repeated measures analysis in SPSS, use the menu item “Analyze
/ General Linear Model / Repeated Measures.” The example uses the data in
circleWide.sav. This is in the “wide” format with a separate column for each level
of the repeated factor.

Figure 14.2: SPSS Repeated Measures Define Factor(s) dialog box.

Unlike other analyses in SPSS, there is a dialog box that you must fill out before
seeing the main analysis dialog box. This is called the “Repeated Measures Define
Factor(s)” dialog box as shown in Figure 14.2. Under “Within-Subject Factor

http://www.stat.cmu.edu/~hseltman/309/Book/data/circleWide.sav
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Name” you should enter a (new) name that describes what is different among the
levels of your within-subjects factor. Then enter the “Number of Levels”, and click
Add. In a more complex design you need to do this for each within-subject factor.
Then, although not required, it is a very good idea to enter a “Measure Name”,
which should describe what is measured at each level of the within-subject factor.
Either a term like “time” or units like “milliseconds” is appropriate for this box.
Click the “Define” button to continue.

Figure 14.3: SPSS Repeated Measures dialog box.

Next you will see the Repeated Measures dialog box. On the left is a list of
all variables, at top right right is the “Within-Subjects Variables” box with lines
for each of the levels of the within-subjects variables you defined previously. You
should move the k outcome variables corresponding to the k levels of the within-
subjects factor into the “Within-Subjects Variables” box, either one at a time or
all together. The result looks something like Figure 14.3. Now enter the between-
subjects factor, if any. Then use the model button to remove the interaction if
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desired, for a two-way ANOVA. Usually you will want to use the contrasts button
to change the within-subjects contrast type from the default “polynomial” type to
either “repeated” or “simple”. If you want to do post-hoc testing for the between-
subjects factor, use the Post-Hoc button. Usually you will want to use the options
button to display means for the levels of the factor(s). Finally click OK to get
your results.



Chapter 15

Mixed Models
A flexible approach to correlated data.

15.1 Overview

Correlated data arise frequently in statistical analyses. This may be due to group-
ing of subjects, e.g., students within classrooms, or to repeated measurements on
each subject over time or space, or to multiple related outcome measures at one
point in time. Mixed model analysis provides a general, flexible approach in these
situations, because it allows a wide variety of correlation patterns (or variance-
covariance structures) to be explicitly modeled.

As mentioned in chapter 14, multiple measurements per subject generally result
in the correlated errors that are explicitly forbidden by the assumptions of standard
(between-subjects) AN(C)OVA and regression models. While repeated measures
analysis of the type found in SPSS, which I will call “classical repeated measures
analysis”, can model general (multivariate approach) or spherical (univariate ap-
proach) variance-covariance structures, they are not suited for other explicit struc-
tures. Even more importantly, these repeated measures approaches discard all
results on any subject with even a single missing measurement, while mixed mod-
els allow other data on such subjects to be used as long as the missing data meets
the so-called missing-at-random definition. Another advantage of mixed models is
that they naturally handle uneven spacing of repeated measurements, whether in-
tentional or unintentional. Also important is the fact that mixed model analysis is
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often more interpretable than classical repeated measures. Finally, mixed models
can also be extended (as generalized mixed models) to non-Normal outcomes.

The term mixed model refers to the use of both fixed and random effects in
the same analysis. As explained in section 14.1, fixed effects have levels that are
of primary interest and would be used again if the experiment were repeated.
Random effects have levels that are not of primary interest, but rather are thought
of as a random selection from a much larger set of levels. Subject effects are almost
always random effects, while treatment levels are almost always fixed effects. Other
examples of random effects include cities in a multi-site trial, batches in a chemical
or industrial experiment, and classrooms in an educational setting.

As explained in more detail below, the use of both fixed and random effects
in the same model can be thought of hierarchically, and there is a very close
relationship between mixed models and the class of models called hierarchical linear
models. The hierarchy arises because we can think of one level for subjects and
another level for measurements within subjects. In more complicated situations,
there can be more than two levels of the hierarchy. The hierarchy also plays out in
the different roles of the fixed and random effects parameters. Again, this will be
discussed more fully below, but the basic idea is that the fixed effects parameters
tell how population means differ between any set of treatments, while the random
effect parameters represent the general variability among subjects or other units.

Mixed models use both fixed and random effects. These correspond
to a hierarchy of levels with the repeated, correlated measurement
occurring among all of the lower level units for each particular upper
level unit.

15.2 A video game example

Consider a study of the learning effects of repeated plays of a video game where
age is expected to have an effect. The data are in MMvideo.txt. The quantitative
outcome is the score on the video game (in thousands of points). The explanatory
variables are age group of the subject and “trial” which represents which time the
subject played the game (1 to 5). The “id” variable identifies the subjects. Note

http://www.stat.cmu.edu/~hseltman/309/Book/data/MMvideo.txt
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the the data are in the tall format with one observation per row, and multiple rows
per subject,

Figure 15.1: EDA for video game example with smoothed lines for each age group.

Some EDA is shown in figure 15.1. The plot shows all of the data points, with
game score plotted against trial number. Smoothed lines are shown for each of
the three age groups. The plot shows evidence of learning, with players improving
their score for each game over the previous game. The improvement looks fairly
linear. The y-intercept (off the graph to the left) appears to be higher for older
players. The slope (rate of learning) appears steeper for younger players.

At this point you are most likely thinking that this problem looks like an AN-
COVA problem where each age group has a different intercept and slope for the
relationship between the quantitative variables trial and score. But ANCOVA
assumes that all of the measurements for a given age group category have uncor-
related errors. In the current problem each subject has several measurements and
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the errors for those measurements will almost surely be correlated. This shows
up as many subjects with most or all of their outcomes on the same side of their
group’s fitted line.

15.3 Mixed model approach

The solution to the problem of correlated within-subject errors in the video game
example is to let each subject have his or her own “personal” intercept (and possibly
slope) randomly deviating from the mean intercept for each age group. This results
in a group of parallel “personal” regression lines (or non-parallel if the slope is
also random). Then, it is reasonable (but not certain) that the errors around
the personal regression lines will be uncorrelated. One way to do this is to use
subject identification as a categorical variable, but this is treating the inherently
random subject-to-subject effects as fixed effects, and “wastes” one parameter for
each subject in order to estimate his or her personal intercept. A better approach
is to just estimate a single variance parameter which represents how spread out
the random intercepts are around the common intercept of each group (usually
following a Normal distribution). This is the mixed models approach.

From another point of view, in a mixed model we have a hierarchy of levels. At
the top level the units are often subjects or classrooms. At the lower level we could
have repeated measurements within subjects or students within classrooms. The
lower level measurements that are within the same upper level unit are correlated,
when all of their measurements are compared to the mean of all measurements for
a given treatment, but often uncorrelated when compared to a personal (or class
level) mean or regression line. We also expect that there are various measured
and unmeasured aspects of the upper level units that affect all of the lower level
measurements similarly for a given unit. For example various subject skills and
traits may affect all measurements for each subject, and various classroom traits
such as teacher characteristics and classroom environment affect all of the students
in a classroom similarly. Treatments are usually applied randomly to whole upper-
level units. For example, some subjects receive a drug and some receive a placebo,
Or some classrooms get an aide and others do not.

In addition to all of these aspects of hierarchical data analysis, there is a vari-
ety of possible variance-covariance structures for the relationships among the lower
level units. One common structure is called compound symmetry, which indicates
the same correlation between all pairs of measurements, as in the sphericity char-
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acteristic of chapter 14. This is a natural way to represent the relationship between
students within a classroom. If the true correlation structure is compound sym-
metry, then using a random intercept for each upper level unit will remove the
correlation among lower level units. Another commonly used structure is autore-
gressive, in which measurements are ordered, and adjacent measurements are more
highly correlated than distant measurements.

To summarize, in each problem the hierarchy is usually fairly obvious, but
the user must think about and specify which fixed effects (explanatory variables,
including transformations and interactions) affect the average responses for all sub-
jects. Then the user must specify which of the fixed effect coefficients are sufficient
without a corresponding random effect as opposed to those fixed coefficients which
only represent an average around which individual units vary randomly. In ad-
dition, correlations among measurements that are not fully accounted for by the
random intercepts and slopes may be specified. And finally, if there are multiple
random effects the correlation of these various effects may need to be specified.

To run a mixed model, the user must make many choices including
the nature of the hierarchy, the fixed effects and the random effects.

In almost all situations several related models are considered and some form of
model selection must be used to choose among related models.

The interpretation of the statistical output of a mixed model requires an under-
standing of how to explain the relationships among the fixed and random effects
in terms of the levels of the hierarchy.

15.4 Analyzing the video game example

Based on figure 15.1 we should model separate linear relationships between trial
number and game score for each age group. Figure 15.2, shows smoothed lines for
each subject. From this figure, it looks like we need a separate slope and intercept
for each age group. It is also fairly clear that in each group there is random subject-
to-subject variation in the intercepts. We should also consider the possibilities that
the “learning trajectory” is curved rather than linear, perhaps using the square of
the trial number as an additional covariate to create a quadratic curve. We should
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Figure 15.2: EDA for video game example with smoothed lines for each subject.
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also check if a random slope is needed. It is also prudent to check if the random
intercept is really needed. In addition, we should check if an autoregressive model
is needed.

15.5 Setting up a model in SPSS

The mixed models section of SPSS, accessible from the menu item “Analyze /
Mixed Models / Linear”, has an initial dialog box (“Specify Subjects and Re-
peated”), a main dialog box, and the usual subsidiary dialog boxes activated by
clicking buttons in the main dialog box. In the initial dialog box (figure 15.3) you
will always specify the upper level of the hierarchy by moving the identifier for
that level into the “subjects” box. For our video game example this is the subject
“id” column. For a classroom example in which we study many students in each
classroom, this would be the classroom identifier.

Figure 15.3: Specify Subjects and Repeated Dialog Box.
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If we want to model the correlation of the repeated measurements for each
subject (other than the correlation induced by random intercepts), then we need to
specify the order of the measurements within a subject in the bottom (“repeated”)
box. For the video game example, the trial number could be appropriate.

Figure 15.4: Main Linear Mixed Effects Dialog Box.

The main “Linear Mixed Models” dialog box is shown in figure 15.4. (Note
that just like in regression analysis use of transformation of the outcome or a
quantitative explanatory variable, i.e., a covariate, will allow fitting of curves.) As
usual, you must put a quantitative outcome variable in the “Dependent Variable”
box. In the “Factor(s)” box you put any categorical explanatory variables (but not
the subject variable itself). In the “Covariate(s)” box you put any quantitative
explanatory variables. Important note: For mixed models, specifying factors
and covariates on the main screen does not indicate that they will be used in the
model, only that they are available for use in a model.

The next step is to specify the fixed effects components of the model, using
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the Fixed button which brings up the “Fixed Effects” dialog box, as shown in
figure 15.5. Here you will specify the structural model for the “typical” subject,
which is just like what we did in ANCOVA models. Each explanatory variable or
interaction that you specify will have a corresponding parameter estimated, and
that estimate will represent the relationship between that explanatory variable and
the outcome if there is no corresponding random effect, and it will represent the
mean relationship if there is a corresponding random effect.

Figure 15.5: Fixed Effects Dialog Box.

For the video example, I specified main effects for age group and trial plus their
interaction. (You will always want to include the main effects for any interaction
you specify.) Just like in ANCOVA, this model allows a different intercept and
slope for each age group. The fixed intercept (included unless the “Include in-
tercept” check box is unchecked) represents the (mean) intercept for the baseline
age group, and the k − 1 coefficients for the age group factor (with k = 3 levels)
represent differences in (mean) intercept for the other age groups. The trial co-
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efficient represents the (mean) slope for the baseline group, while the interaction
coefficients represent the differences in (mean) slope for the other groups relative to
the baseline group. (As in other “model” dialog boxes, the actual model depends
only on what is in the “Model box”, not how you got it there.)

In the “Random Effects” dialog box (figure 15.6), you will specify which param-
eters of the fixed effects model are only means around which individual subjects
vary randomly, which we think of as having their own personal values. Mathemat-
ically these personal values, e.g., a personal intercept for a given subject, are equal
to the fixed effect plus a random deviation from that fixed effect, which is zero on
average, but which has a magnitude that is controlled by the size of the random
effect, which is a variance.

Figure 15.6: Random Effects Dialog Box.
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In the random effects dialog box, you will usually want to check “Include In-
tercept”, to allow a separate intercept (or subject mean if no covariate is used)
for each subject (or each level of some other upper level variable). If you specify
any random effects, then you must indicate that there is a separate “personal”
value of, say, the intercept, for each subject by placing the subject identifier in the
“Combinations” box. (This step is very easy to forget, so get in the habit of doing
this every time.)

To model a random slope, move the covariate that defines that slope into the
“Model” box. In this example, moving trial into the Model box could be used to
model a random slope for the score by trial relationship. It does not make sense
to include a random effect for any variable unless there is also a fixed effect for
that variable, because the fixed effect represents the average value around which
the random effect varies. If you have more than one random effect, e.g., a random
intercept and a random slope, then you need to specify any correlation between
these using the “Covariance Type” drop-down box. For a single random effect,
use “identity”. Otherwise, “unstructured” is usually most appropriate because it
allows correlation among the random effects (see next paragraph). Another choice
is “diagonal” which assumes no correlation between the random effects.

What does it mean for two random effects to be correlated? I will illustrate
this with the example of a random intercept and a random slope for the trial
vs. game score relationship. In this example, there are different intercepts and
slopes for each age group, so we need to focus on any one age group for this
discussion. The fixed effects define a mean intercept and mean slope for that age
group, and of course this defines a mean fitted regression line for the group. The
idea of a random intercept and a random slope indicate that any given subject
will “wiggle” a bit around this mean regression line both up or down (random
intercept) and clockwise or counterclockwise (random slope). The variances (and
therefore standard deviations) of the random effects determine the sizes of typical
deviations from the mean intercept and slope. But in many situations like this
video game example subjects with a higher than average intercept tend to have a
lower than average slope, so there is a negative correlation between the random
intercept effect and the random slope effect. We can look at it like this: the
next subject is represented by a random draw of an intercept deviation and a
slope deviation from a distribution with mean zero for both, but with a negative
correlation between these two random deviations. Then the personal intercept
and slope are constructed by adding these random deviations to the fixed effect
coefficients.
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Some other buttons in the main mixed models dialog box are useful. I rec-
ommend that you always click the Statistics button, then check both “Parameter
estimates” and “Tests for covariance parameters”. The parameter estimates are
needed for interpretation of the results, similar to what we did for ANCOVA (see
chapter 10). The tests for covariance parameters aid in determining which random
effects are needed in a given situation. The “EM Means” button allows generation
of “expected marginal means” which average over all subjects and other treatment
variables. In the current video game example, marginal means for the three video
groups is not very useful because this averages over the trials and the score varies
dramatically over the trials. Also, in the face of an interaction between age group
and trial number, averages for each level of age group are really meaningless.

As you can see there are many choices to be made when creating a mixed model.
In fact there are many more choices possible than described here. This flexibility
makes mixed models an important general purpose tool for statistical analysis, but
suggests that it should be used with caution by inexperienced analysts.

Specifying a mixed model requires many steps, each of which requires
an informed choice. This is both a weakness and a strength of mixed
model analysis.

15.6 Interpreting the results for the video game

example

Here is some of the SPSS output for the video game example. We start with the
model for a linear relationship between trial and score with separate intercepts and
slopes for each age group, and including a random per-subject intercept. Table
15.1 is called “Model Dimension”. Focus on the “number of parameters” column.
The total is a measure of overall complexity of the model and plays a role in model
selection (see next section). For quantitative explanatory variables, there is only
one parameter. For categorical variables, this column tells how many parameters
are being estimated in the model. The “number of levels” column tells how many
lines are devoted to an explanatory variable in the Fixed Effects table (see below),
but lines beyond the number of estimated parameters are essentially blank (with
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Number Covariance Number of Subject
of Levels Structure Parameters Variables

Fixed Intercept 1 1
Effects agegrp 3 2

trial 1 1
agegrp * trial 3 2

Random Effects Intercept 1 Identity 1 id
Residual 1
Total 9 8

Table 15.1: Model dimension for the video game example.

parameters labeled as redundant and a period in the rest of the columns). We
can see that we have a single random effect, which is an intercept for each level
of id (each subject). The Model Dimension table is a good quick check that the
computer is fitting the model that you intended to fit.

The next table in the output is labeled “Information Criteria” and contains
many different measures of how well the model fits the data. I recommend that
you only pay attention to the last one, “Schwartz’s Bayesian Criterion (BIC)”, also
called Bayesian Information Criterion. In this model, the value is 718.4. See the
section on model comparison for more about information criteria.

Next comes the Fixed Effects tables (tables 15.2 and 15.3). The tests of fixed
effects has an ANOVA-style test for each fixed effect in the model. This is nice
because it gives a single overall test of the usefulness of a given explanatory vari-
able, without focusing on individual levels. Generally, you will want to remove
explanatory variables that do not have a significant fixed effect in this table, and
then rerun the mixed effect analysis with the simpler model. In this example, all
effects are significant (less than the standard alpha of 0.05). Note that I converted
the SPSS p-values from 0.000 to the correct form.

The Estimates of Fixed Effects table does not appear by default; it is produced
by choosing “parameter estimates” under Statistics. We can see that age group 40-
50 is the “baseline” (because SPSS chooses the last category). Therefore the (fixed)
intercept value of 14.02 represents the mean game score (in thousands of points)
for 40 to 50 year olds for trial zero. Because trials start at one, the intercepts
are not meaningful in themselves for this problem, although they are needed for
calculating and drawing the best fit lines for each age group.
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Denominator
Source Numerator df df F Sig.
Intercept 1 57.8 266.0 <0.0005
agegrp 2 80.1 10.8 <0.0005
trial 1 118.9 1767.0 <0.0005
agegrp * trial 2 118.9 70.8 <0.0005

Table 15.2: Tests of Fixed Effects for the video game example.

95% Conf. Int.
Std. Lower Upper

Parameter Estimate Error df t Sig. Bound Bound
Intercept 14.02 1.11 55.4 12.64 <0.0005 11.80 16.24
agegrp=(20,30) -7.26 1.57 73.0 -4.62 <0.0005 -10.39 -4.13
agegrp=(30,40) -3.49 1.45 64.2 -2.40 0.019 -6.39 -0.59
agegrp=(40,50) 0 0 . . . . .
trial 3.32 0.22 118.9 15.40 <0.0005 2.89 3.74
(20,30)*trial 3.80 0.32 118.9 11.77 <0.0005 3.16 4.44
(30,40)*trial 2.14 0.29 118.9 7.35 <0.0005 1.57 2.72
(40,50)*trial 0 0 . . . . .

Table 15.3: Estimates of Fixed Effects for the video game example.
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As in ANCOVA, writing out the full regression model then simplifying tells us
that the intercept for 20 to 30 year olds is 14.02-7.26=6.76 and this is significantly
lower than for 40 to 50 year olds (t=-4.62, p<0.0005, 95% CI for the difference is
4.13 to 10.39 thousand points lower). Similarly we know that the 30 to 40 years
olds have a lower intercept than the 40 to 50 year olds. Again these intercepts
themselves are not directly interpretable because they represent trial zero. (It
would be worthwhile to recode the trial numbers as zero to four, then rerun the
analysis, because then the intercepts would represent game scores the first time
someone plays the game.)

The trial coefficient of 3.32 represents that average gain in game score (in
thousands of points) for each subsequent trial for the baseline 40 to 50 year old
age group. The interaction estimates tell the difference in slope for other age groups
compared to the 40 to 50 year olds. Here both the 20 to 30 year olds and the 30 to
40 year olds learn quicker than the 40 to 50 year olds, as shown by the significant
interaction p-values and the positive sign on the estimates. For example, we are
95% confident that the trial to trial “learning” gain is 3.16 to 4.44 thousand points
higher for the youngest age group compared to the oldest age group.

Interpret the fixed effects for a mixed model in the same way as an
ANOVA, regression, or ANCOVA depending on the nature of the ex-
planatory variables(s), but realize that any of the coefficients that have
a corresponding random effect represent the mean over all subjects,
and each individual subject has their own “personal” value for that
coefficient.

The next table is called “Estimates of Covariance Parameters” (table 15.4). It
is very important to realize that while the parameter estimates given in the Fixed
Effects table are estimates of mean parameters, the parameter estimates in this
table are estimates of variance parameters. The intercept variance is estimated as
6.46, so the estimate of the standard deviation is 2.54. This tells us that for any
given age group, e.g., the oldest group with mean intercept of 14.02, the individual
subjects will have “personal” intercepts that are up to 2.54 higher or lower than
the group average about 68% of the time, and up to 5.08 higher or lower about 95%
of the time. The null hypothesis for this parameter is a variance of zero, which
would indicate that a random effect is not needed. The test statistic is called
a Wald Z statistic. Here we reject the null hypothesis (Wald Z=3.15, p=0.002)
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95% Conf. Int.
Std. Wald Lower Upper

Parameter Estimate Error Z Sig. Bound Bound
Residual 4.63 0.60 7.71 <0.0005 3.59 5.97
Intercept(Subject=id) Variance 6.46 2.05 3.15 0.002 3.47 12.02

Table 15.4: Estimates of Covariance Parameters for the video game example.

and conclude that we do need a random intercept. This suggests that there are
important unmeasured explanatory variables for each subject that raise or lower
their performance in a way that appears random because we do not know the
value(s) of the missing explanatory variable(s).

The estimate of the residual variance, with standard deviation equal to 2.15
(square root of 4.63), represents the variability of individual trial’s game scores
around the individual regression lines for each subjects. We are assuming that
once a personal best-fit line is drawn for each subject, their actual measurements
will randomly vary around this line with about 95% of the values falling within
4.30 of the line. (This is an estimate of the same σ2 as in a regression or ANCOVA
problem.) The p-value for the residual is not very meaningful.

Random effects estimates are variances. Interpret a random effect
parameter estimate as the magnitude of the variability of “personal”
coefficients from the mean fixed effects coefficient.

All of these interpretations are contingent on choosing the right model. The
next section discusses model selection.

15.7 Model selection for the video game example

Because there are many choices among models to fit to a given data set in the mixed
model setting, we need an approach to choosing among the models. Even then,
we must always remember that all models are wrong (because they are idealized
simplifications of Nature), but some are useful. Sometimes a single best model
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is chosen. Sometimes subject matter knowledge is used to choose the most useful
models (for prediction or for interpretation). And sometimes several models, which
differ but appear roughly equivalent in terms of fit to the data, are presented as
the final summary for a data analysis problem.

Two of the most commonly used methods for model selection are penal-
ized likelihood and testing of individual coefficient or variance estimate p-values.
Other more sophisticated methods include model averaging and cross-validation,
but they will not be covered in this text.

15.7.1 Penalized likelihood methods for model selection

Penalized likelihood methods calculate the likelihood of the observed data using
a particular model (see chapter 3). But because it is a fact that the likelihood
always goes up when a model gets more complicated, whether or not the addi-
tional complication is “justified”, a model complexity penalty is used. Several
different penalized likelihoods are available in SPSS, but I recommend using the
BIC (Bayesian information criterion). AIC (Akaike information criterion) is
another commonly used measure of model adequacy. The BIC number penalizes
the likelihood based on both the total number of parameters in a model and the
number of subjects studied. The formula varies between different programs based
on whether or not a factor of two is used and whether or not the sign is changed.
In SPSS, just remember that “smaller is better”.

The absolute value of the BIC has no interpretation. Instead the BIC values
can be computed for two (or more) models, and the values compared. A smaller
BIC indicates a better model. A difference of under 2 is “small” so you might use
other considerations to choose between models that differ in their BIC values by
less than 2. If one model has a BIC more than 2 lower than another, that is good
evidence that the model with the lower BIC is a better balance between complexity
and good fit (and hopefully is closer to the true model of Nature).

In our video game problem, several different models were fit and their BIC
values are shown in table 15.5. Based on the “smaller is better” interpretation, the
(fixed) interaction between trial and age group is clearly needed in the model, as is
the random intercept. The additional complexity of a random slope is clearly not
justified. The use of quadratic curves (from inclusion of a trial2 term) is essentially
no better than excluding it, so I would not include it on grounds of parsimony.
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Interaction random intercept random slope quadratic curve BIC
yes yes no no 718.4
yes no no no 783.8
yes yes no yes 718.3
yes yes yes no 727.1
no yes no no 811.8

Table 15.5: BIC for model selection for the video game example.

The BIC approach to model selection is a good one, although there are some
technical difficulties. Briefly, there is some controversy about the appropriate
penalty for mixed models, and it is probably better to change the estimation
method from the default “restricted maximum likelihood” to “maximum likeli-
hood” when comparing models that differ only in fixed effects. Of course you
never know if the best model is one you have not checked because you didn’t think
of it. Ideally the penalized likelihood approach is best done by running all rea-
sonable models and listing them in BIC order. If one model is clearly better than
the rest, use that model, otherwise consider whether there are important differing
implications among any group of similar low BIC models.

15.7.2 Comparing models with individual p-values

Another approach to model selection is to move incrementally to one-step more or
less complex models, and use the corresponding p-values to choose between them.
This method has some deficiencies, chief of which is that different “best” models
can result just from using different starting places. Nevertheless, this method,
usually called stepwise model selection , is commonly used.

Variants of step-wise selection include forward and backward forms. Forward
selection starts at a simple model, then considers all of the reasonable one-step-
more-complicated models and chooses the one with the smallest p-value for the
new parameter. This continues until no addition parameters have a significant
p-value. Backward selection starts at a complicated model and removes the term
with the largest p-value, as long as that p-value is larger than 0.05. There is no
guarantee that any kind of “best model” will be reached by stepwise methods, but
in many cases a good model is reached.



15.8. CLASSROOM EXAMPLE 375

15.8 Classroom example

The (fake) data in schools.txt represent a randomized experiment of two different
reading methods which were randomly assigned to third or fifth grade classrooms,
one per school, for 20 different schools. The experiment lasted 4 months. The
outcome is the after minus before difference for a test of reading given to each
student. The average sixth grade reading score for each school on a different
statewide standardized test (stdTest) is used as an explanatory variable for each
school (classroom).

It seems likely that students within a classroom will be more similar to each
other than to students in other classrooms due to whatever school level characteris-
tics are measured by the standardized test. Additional unmeasured characteristics
including teacher characteristics, will likely also raise or lower the outcome for a
given classroom.

Cross-tabulation shows that each classroom has either grade 3 or 5 and either
placebo or control. The classroom sizes are 20 to 30 students. EDA, in the form
of a scatterplot of standardized test scores vs. experimental test score difference
are shown in figure 15.7. Grade differences are represented in color and treatment
differences by symbol type. There is a clear positive correlation of standardized test
score and the outcome (reading score difference), indicating that the standardized
test score was a good choice of a control variable. The clustering of students within
schools is clear once it is realized that each different standardized test score value
represents a different school. It appears that fifth graders tend to have a larger
rise than third graders. The plot does not show any obvious effect of treatment.

A mixed model was fit with classroom as the upper level (“subjects” in SPSS
mixed models) and with students at the lower level. There are main effects for
stdTest, grade level, and treatment group. There is a random effect (intercept) to
account for school to school differences that induces correlation among scores for
students within a school. Model selection included checking for interactions among
the fixed effects, and checking the necessity of including the random intercept. The
only change suggested is to drop the treatment effect. It was elected to keep the
non-significant treatment in the model to allow calculation of a confidence interval
for its effect.

Here are some results:

We note that non-graphical EDA (ignoring the explanatory variables) showed
that individual students test score differences varied between a drop of 14 and a

http://www.stat.cmu.edu/~hseltman/309/Book/data/schools.txt
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Figure 15.7: EDA for school example

Denominator
Source Numerator df df F Sig.
Intercept 1 15.9 14.3 0.002
grade 1 16.1 12.9 0.002
treatment 1 16.1 1.2 0.289
stdTest 1 15.9 25.6 <0.0005

Table 15.6: Tests of Fixed Effects for the school example.
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95% Conf. Int.
Std. Lower Upper

Parameter Estimate Error df t Sig. Bound Bound
Intercept -23.09 6.80 15.9 -3.40 0.004 -37.52 -8.67
grade=3 -5.94 1.65 16.1 -3.59 0.002 -9.45 -2.43
grade=5 0 0 . . . . .
treatment=0 1.79 1.63 16.1 1.10 0.289 -1.67 5.26
treatment=1 0 0 . . . . .
stdTest 0.44 0.09 15.9 5.05 <0.0005 0.26 0.63

Table 15.7: Estimates of Fixed Effects for the school example.

95% Conf. Int.
Std. Wald Lower Upper

Parameter Estimate Error Z Sig. Bound Bound
Residual 25.87 1.69 15.33 <0.0005 22.76 29.40
Intercept(Subject=sc.) Variance 10.05 3.94 2.55 0.011 4.67 21.65

Table 15.8: Estimates of Covariance Parameters for the school example.
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rise of 35 points.

The “Tests of Fixed Effects” table, Table 15.6, shows that grade (F=12.9,
p=0.002) and stdTest (F=25.6, p<0.0005) each have a significant effect on a stu-
dent’s reading score difference, but treatment (F=1.2, p=0.289) does not.

The “Estimates of Fixed Effects” table, Table 15.7, gives the same p-values
plus estimates of the effect sizes and 95% confidence intervals for those estimates.
For example, we are 95% confident that the improvement seen by fifth graders is
2.43 to 9.45 more than for third graders. We are particularly interested in the
conclusion that we are 95% confident that treatment method 0 (control) has an
effect on the outcome that is between 5.26 points more and 1.67 points less than
treatment 1 (new, active treatment).

We assume that students within a classroom perform similarly due to school
and/or classroom characteristics. Some of the effects of the student and school
characteristics are represented by the standardized test which has a standard devi-
ation of 8.8 (not shown), and Table 15.7 shows that each one unit rise in standard-
ized test score is associated with a 0.44 unit rise in outcome on average. Consider
the comparison of schools at the mean vs. one s.d. above the mean of standardized
test score. These values correspond to µstdTest and µstdTest + 8.8. This corresponds
to a 0.44*8.8=3.9 point change in average reading scores for a classroom. In addi-
tion, other unmeasured characteristics must be in play because Table 15.8 shows
that the random classroom-to-classroom variance is 10.05 (s.d.= 3.2 points). In-
dividual student-to-student, differences with a variance 23.1 (s.d. = 4.8 points),
have a somewhat large effect that either school differences (as measured by the
standardized test) or the random classroom-to-classroom differences.

In summary, we find that students typically have a rise in test score over the
four month period. (It would be good to center the stdTest values by subtracting
their mean, then rerun the mixed model analysis; this would allow the Intercept to
represent the average gain for a fifth grader with active treatment, i.e., the baseline
group). Sixth graders improve on average by 5.9 more than third graders. Being in
a school with a higher standardized test score tends to raise the reading score gain.
Finally there is no evidence that the treatment worked better than the placebo.

In a nutshell: Mixed effects models flexibly give correct estimates of
treatment and other fixed effects in the presence of the correlated
errors that arise from a data hierarchy.



Chapter 16

Analyzing Experiments with
Categorical Outcomes
Analyzing data with non-quantitative outcomes

All of the analyses discussed up to this point assume a Normal distribution for
the outcome (or for a transformed version of the outcome) at each combination of
levels of the explanatory variable(s). This means that we have only been cover-
ing statistical methods appropriate for quantitative outcomes. It is important to
realize that this restriction only applies to the outcome variable and not to the ex-
planatory variables. In this chapter statistical methods appropriate for categorical
outcomes are presented.

16.1 Contingency tables and chi-square analysis

This section discusses analysis of experiments or observational studies with a cat-
egorical outcome and a single categorical explanatory variable. We have already
discussed methods for analysis of data with a quantitative outcome and categorical
explanatory variable(s) (ANOVA and ANCOVA). The methods in this section are
also useful for observational data with two categorical “outcomes” and no explana-
tory variable.

379
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16.1.1 Why ANOVA and regression don’t work

There is nothing in most statistical computer programs that would prevent you
from analyzing data with, say, a two-level categorical outcome (usually designated
generically as “success” and “failure”) using ANOVA or regression or ANCOVA.
But if you do, your conclusion will be wrong in a number of different ways. The
basic reason that these methods don’t work is that the assumptions of Normality
and equal variance are strongly violated. Remember that these assumptions relate
to groups of subjects with the same levels of all of the explanatory variables.
The Normality assumption says that in each of these groups the outcomes are
Normally distributed. We call ANOVA, ANCOVA, and regression “robust” to this
assumption because moderate deviations from Normality alter the null sampling
distributions of the statistics from which we calculate p-values only a small amount.
But in the case of a categorical outcome with only a few (as few as two) possible
outcome values, the outcome is so far from the smooth bell-shaped curve of a
Normal distribution, that the null sampling distribution is drastically altered and
the p-value completely unreliable.

The equal variance assumption is that, for any two groups of subjects with
different levels of the explanatory variables between groups and the same levels
within groups, we should find that the variance of the outcome is the same. If we
consider the case of a binary outcome with coding 0=failure and 1=success, the
variance of the outcome can be shown to be equal to pi(1 − pi) where pi is the
probability of getting a success in group i (or, equivalently, the mean outcome for
group i). Therefore groups with different means have different variances, violating
the equal variance assumption.

A second reason that regression and ANCOVA are unsuitable for categorical
outcomes is that they are based on the prediction equation E(Y ) = β0 + x1β1 +
· · · + xkβk, which both is inherently quantitative, and can give numbers out of
range of the category codes. The least unreasonable case is when the categorical
outcome is ordinal with many possible values, e.g., coded 1 to 10. Then for any
particular explanatory variable, say, βi, a one-unit increase in xi is associated with
a βi unit change in outcome. This works only over a limited range of xi values,
and then predictions are outside the range of the outcome values.

For binary outcomes where the coding is 0=failure and 1=success, a mean
outcome of, say, 0.75 corresponds to 75% successes and 25% failures, so we can
think of the prediction as being the probability of success. But again, outside of
some limited range of xi values, the predictions will correspond to the absurdity
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of probabilities less than 0 or greater than 1.

And for nominal categorical variables with more than two levels, the prediction
is totally arbitrary and meaningless.

Using statistical methods designed for Normal, quantitative outcomes
when the outcomes are really categorical gives wrong p-values due
to violation of the Normality and equal variance assumptions, and
also gives meaningless out-of-range predictions for some levels of the
explanatory variables.

16.2 Testing independence in contingency tables

16.2.1 Contingency and independence

A contingency table counts the number of cases (subjects) for each combination of
levels of two or more categorical variables. An equivalent term is cross-tabulation
(see Section 4.4.1). Among the definitions for “contingent” in the The Oxford
English Dictionary is “Dependent for its occurrence or character on or upon some
prior occurrence or condition”. Most commonly when we have two categorical
measures on each unit of study, we are interested in the question of whether the
probability distribution (see section 3.2) of the levels of one measure depends on the
level of the other measure, or if it is independent of the level of the second measure.
For example, if we have three treatments for a disease as one variable, and two
outcomes (cured and not cured) as the other outcome, then we are interested in
the probabilities of these two outcomes for each treatment, and we want to know
if the observed data are consistent with a null hypothesis that the true underlying
probability of a cure is the same for all three treatments.

In the case of a clear identification of one variable as explanatory and the
other as outcome, we focus on the probability distribution of the outcome and
how it changes or does not change when we look separately at each level of the
explanatory variable. The “no change” case is called independence, and indicates
that knowing the level of the (purported) explanatory variable tells us no more
about the possible outcomes than ignoring or not knowing it. In other words, if the
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variables are independent, then the “explanatory” variable doesn’t really explain
anything. But if we find evidence to reject the null hypothesis of independence,
then we do have a true explanatory variable, and knowing its value allows us to
refine our predictions about the level of the other variable.

Even if both variables are outcomes, we can test their association in the same
way as just mentioned. In fact, the conclusions are always the same when the roles
of the explanatory and outcome variables are reversed, so for this type of analysis,
choosing which variable is outcome vs. explanatory is immaterial.

Note that if the outcome has only two possibilities then we only need the
probability of one level of the variable rather than the full probability distribution
(list of possible values and their probabilities) for each level of the explanatory
variable. Of course, this is true simply because the probabilities of all levels must
add to 100%, and we can find the other probability by subtraction.

The usual statistical test in the case of a categorical outcome and a
categorical explanatory variable is whether or not the two variables
are independent, which is equivalent to saying that the probability
distribution of one variable is the same for each level of the other
variable.

16.2.2 Contingency tables

It is a common situation to measure two categorical variables, say X (with k levels)
and Y (with m levels) on each subject in a study. For example, if we measure
gender and eye color, then we record the level of the gender variable and the level
of the eye color variable for each subject. Usually the first task after collecting
the data is to present it in an understandable form such as a contingency table
(also known as a cross-tabulation).

For two measurements, one with k levels and the other with m levels, the
contingency table is a k × m table with cells for each combination of one level
from each variable, and each cell is filled with the corresponding count (also called
frequency) of units that have that pair of levels for the two categorical variables.

For example, table 16.1 is a (fake) contingency table showing the results of
asking 271 college students what their favorite music is and what their favorite ice
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favorite ice cream
chocolate vanilla strawberry other total

rap 5 10 7 38 60
jazz 8 9 23 6 46

favorite classical 12 3 4 3 22
music rock 39 10 15 9 73

folk 10 22 8 8 48
other 4 7 5 6 22

total 78 61 62 70 271

Table 16.1: Basic ice cream and music contingency table.

cream flavor is. This table was created in SPSS by using the Cross-tabs menu item
under Analysis / Descriptive Statistics. In this simple form of a contingency table
we see the cell counts and the marginal counts. The margins are the extra
column on the right and the extra row at the bottom. The cells are the rest of the
numbers in the table. Each cell tells us how many subjects gave a particular pair of
answers to the two questions. For example, 23 students said both that strawberry
is their favorite ice cream flavor and that jazz is their favorite type of music. The
right margin sums over ice cream types to show that, e.g., a total of 60 students
say that rap is their favorite music type. The bottom margin sums over music
types to show that, e.g,, 70 students report that their favorite flavor of ice cream
is neither chocolate, vanilla, nor strawberry. The total of either margin, 271, is
sometimes called the “grand total” and represent the total number of subjects.

We can also see, from the margins, that rock is the best liked music genre, and
classical is least liked, though there is an important degree of arbitrariness in this
conclusion because the experimenter was free to choose which genres were in or not
in the “other” group. (The best practice is to allow a “fill-in” if someone’s choice
is not listed, and then to be sure that the “other” group has no choices with larger
frequencies that any of the explicit non-other categories.) Similarly, chocolate is
the most liked ice cream flavor, and subject to the concern about defining “other”,
vanilla and strawberry are nearly tied for second.

Before continuing to discuss the form and content of contingency tables, it is
good to stop and realize that the information in a contingency table represents
results from a sample, and other samples would give somewhat different results.
As usual, any differences that we see in the sample may or may not reflect real
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favorite ice cream
chocolate vanilla strawberry other total

rap 5 10 7 38 60
8.3% 17.7% 11.7% 63.3% 100%

jazz 8 9 23 6 46
17.4% 19.6% 50.0% 13.0% 100%

classical 12 3 4 3 22
favorite 54.5% 13.6% 18.2% 13.6% 100%
music rock 39 10 15 9 73

53.4% 13.7% 20.5% 12.3% 100%
folk 10 22 8 8 48

20.8% 45.8% 16.7% 16.7% 100%
other 4 7 5 6 22

18.2% 31.8% 22.7% 27.3% 100%

total 78 61 62 70 271
28.8% 22.5% 22.9% 25.8% 100%

Table 16.2: Basic ice cream and music contingency table with row percents.

differences in the population, so you should be careful not to over-interpret the
information in the contingency table. In this sense it is best to think of the
contingency table as a form of EDA. We will need formal statistical analysis to
test hypotheses about the population based on the information in our sample.

Other information that may be present in a contingency table includes various
percentages. So-called row percents add to 100% (in the right margin) for each
row of the table, and column percents add to 100% (in the bottom margin) for
each column of the table.

For example, table 16.2 shows the ice cream and music data with row percents.
In SPSS the Cell button brings up check boxes for adding row and/or column
percents. If one variable is clearly an outcome variable, then the most useful and
readable version of the table is the one with cell counts plus percentages that
add up to 100% across all levels of the outcome for each level of the explanatory
variable. This makes it easy to compare the outcome distribution across levels
of the explanatory variable. In this example there is no clear distinction of the
roles of the two measurements, so arbitrarily picking one to sum to 100% is a good
approach.
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Many important things can be observed from this table. First, we should look
for the 100% numbers to see which way the percents go. Here we see 100% on the
right side of each row. So for any music type we can see the frequency of each
flavor answer and those frequencies add up to 100%. We should think of those row
percents as estimates of the true population probabilities of the flavors for each
given music type.

Looking at the bottom (marginal) row, we know that, e.g., averaging over all
music types, approximately 26% of students like “other” flavors best, and approx-
imately 29% like chocolate best. Of course, if we repeat the study, we would get
somewhat different results because each study looks at a different random sample
from the population of interest.

In terms of the main hypothesis of interest, which is whether or not the two
questions are independent of each other, it is equivalent to ask whether all of the
row probabilities are similar to each other and to the marginal row probabilities.
Although we will use statistical methods to assess independence, it is worthwhile
to examine the row (or column) percentages for equality. In this table, we see
rather large differences, e.g., chocolate is high for classical and rock music fans,
but low for rap music fans, suggesting lack of independence.

A contingency table summarizes the data from an experiment or ob-
servational study with two or more categorical variables. Comparing
a set of marginal percentages to the corresponding row or column
percentages at each level of one variable is good EDA for checking
independence.

16.2.3 Chi-square test of Independence

The most commonly used test of independence for the data in a contingency ta-
ble is the chi-square test of independence. In this test the data from a k by
m contingency table are reduced to a single statistic usually called either X2 or
χ2 (chi-squared), although X2 is better because statistics usually have Latin, not
Greek letters. The null hypothesis is that the two categorical variables are inde-
pendent, or equivalently that the distribution of either variable is the same at each
level of the other variable. The alternative hypothesis is that the two variables are
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not independent, or equivalently that the distribution of one variable depends on
(varies with) the level of the other.

If the null hypothesis of independence is true, then the X2 statistic is asymp-
totically distributed as a chi-square distribution (see section 3.9.6) with (k −
1)(m−1) df. Under the alternative hypothesis of non-independence the X2 statistic
will be larger on average. The p-value is the area under the null sampling distri-
bution larger than the observed X2 statistic. The term asymptotically distributed
indicates that the null sampling distribution can not be computed exactly for a
small sample size, but as the sample size increases, the null sampling distribution
approaches the shape of a particular known distribution, which is the chi-square
distribution in the case of the X2 statistic. So the p-values are reliable for “large”
sample sizes, but not for small sample sizes. Most textbooks quote a rule that no
cell of the expected counts table (see below) can have less than five counts for the
X2 test to be reliable. This rule is conservative, and somewhat smaller counts also
give reliable p-values.

Several alternative statistics are sometimes used instead of the chi-square statis-
tic (e.g., likelihood ratio statistic or Fisher exact test), but these will not be covered
here. It is important to realize that these various tests may disagree for small sam-
ple sizes and it is not clear (or meaningful to ask) which one is “correct”.

The calculation of the X2 statistic is based on the formula

X2 =
k∑
i=1

m∑
j=1

(Observedij − Expectedij)
2

Expectedij

where k and m are the number of rows and columns in the contingency table (i.e.,
the number of levels of the categorical variables), Observedij is the observed count
for the cell with one variable at level i and the other at level j, and Expectedij is
the expected count based on independence. The basic idea here is that each cell
contributes a non-negative amount to the sum, that a cell with an observed count
very different from expected contributes a lot, and that “a lot” is relative to the
expected count (denominator).

Although a computer program is ordinarily used for the calculation, an un-
derstanding of the principles is worthwhile. An “expected counts” table can be
constructed by looking at either of the marginal percentages, and then computing
the expected counts by multiplying each of these percentages by the total counts
in the other margin. Table 16.3 shows the expected counts for the ice cream exam-
ple. For example, using the percents in the bottom margin of table 16.2, if the two
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favorite ice cream
chocolate vanilla strawberry other total

rap 17.3 13.5 13.7 15.5 60
jazz 13.2 10.4 10.5 11.9 46

favorite classical 6.3 5.0 5.0 5.7 22
music rock 21.0 16.4 16.7 18.9 73

folk 13.8 10.8 11.0 12.4 48
other 6.3 5.0 5.0 5.7 22

total 78 61 62 70 271

Table 16.3: Expected counts for ice cream and music contingency table.

variables are independent, then we expect 22.9% of people to like strawberry best
among each group of people defined by their favorite music. Because 73 people
like rock best, under the null hypothesis of independence, we expect (on average)
0.229 ∗ 73 = 16.7 people to like rock and strawberry best, as shown in table 16.3.
Note that there is no reason that the expected counts should be whole numbers,
even though observed counts must be.

By combing the observed data of table 16.1 with the expected values of table
16.3, we have the information we need to calculate the X2 statistic. For the ice
cream data we find that

X2 =

(
(5− 17.3)2

5

)
+

(
(10− 13.5)2

10

)
+ · · ·+

(
(6− 5.7)2

6

)
= 112.86.

So for the ice cream example, jazz paired with chocolate shows a big deviation
from independence and of the 24 terms of the X2 sum, that cell contributes (5−
17.3)2/5 = 30.258 to the total of 112.86. There are far fewer people who like that
particular combination than would be expected under independence. To test if all
of the deviations are consistent with chance variation around the expected values,
we compare the X2 statistic to the χ2 distribution with (6−1)(4−1) = 15 df. This
distribution has 95% of its probability below 25.0, so with X2 = 112.86, we reject
H0 at the usual α = 0.05 significance level. In fact, only 0.00001 of the probability
is above 50.5, so the p-value is far less than 0.05. We reject the null hypothesis of
independence of ice cream and music preferences in favor of the conclusions that
the distribution of preference of either variable does depend on preference for the
other variable.



388 CHAPTER 16. CATEGORICAL OUTCOMES

You can choose among several ways to express violation (or non-violation) of the
null hypothesis for a “chi-square test of independence” of two categorical variables.
You should use the context of the problem to decide which one best expresses the
relationship (or lack of relationship) between the variables. In this problem it
is correct to say any of the following: ice cream preference is not independent of
music preference, or ice cream preference depends on or differs by music preference,
or music preference depends on or differs by ice cream preference, or knowing a
person’s ice cream preference helps in predicting their music preference, or knowing
a person’s music preference helps in predicting their ice cream preference.

The chi-square test is based on a statistic that is large when the ob-
served cell counts differ markedly from the expected counts under the
null hypothesis condition of independence. The corresponding null
sampling distribution is a chi-square distribution if no expected cell
counts are too small.

Two additional points are worth mentioning in this abbreviated discussion of
testing independence among categorical variables. First, because we want to avoid
very small expected cell counts to assure the validity of the chi-square test of
independence, it is common practice to combine categories with small counts into
combined categories. Of course, this must be done in some way that makes sense
in the context of the problem.

Second, when the contingency table is larger than 2 by 2, we need a way to
perform the equivalent of contrast tests. One simple solution is to create subtables
corresponding to the question of interest, and then to perform a chi-square test
of independence on the new table. To avoid a high Type 1 error rate we need
to make an adjustment, e.g., by using a Bonferroni correction, if this is post-hoc
testing. For example to see if chocolate preference is higher for classical than jazz,
we could compute chocolate vs. non-chocolate counts for the two music types to
get table 16.4. This gives a X2 statistic of 8.2 with 1 df, and a p-value of 0.0042.
If this is a post-hoc test, we need to consider that there are 15 music pairs and 4
flavors plus 6 flavor pairs and 6 music types giving 4*15+6*6=96 similar tests, that
might just as easily have been noticed as “interesting”. The Bonferroni correction
implies using a new alpha value of 0.05/96=0.00052, so because 0.0042 > 0.00052,
we cannot make the post-hoc conclusion that chocolate preference differs for jazz
vs. classical. In other words, if the null hypothesis of independence is true, and we



16.3. LOGISTIC REGRESSION 389

favorite ice cream
chocolate not chocolate total

jazz 8 38 46
favorite 17.4% 82.6% 100%
music classical 12 10 22

54.5% 45.5% 100%

total 20 48 68
29.4% 70.6% 100%

Table 16.4: Cross-tabulation of chocolate for jazz vs. classical.

data snoop looking for pairs of categories of one factor being different for presence
vs. absence of a particular category of the other factor, finding that one of the 96
different p-values is 0.0042 is not very surprising or unlikely.

16.3 Logistic regression

16.3.1 Introduction

Logistic regression is a flexible method for modeling and testing the relationships
between one or more quantitative and/or categorical explanatory variables and one
binary (i.e., two level) categorical outcome. The two levels of the outcome can
represent anything, but generically we label one outcome “success” and the other
“failure”. Also, conventionally, we use code 1 to represent success and code 0 to
represent failure. Then we can look at logistic regression as modeling the success
probability as a function of the explanatory variables. Also, for any group of
subjects, the 0/1 coding makes it true that the mean of Y represents the observed
fraction of successes for that group.

Logistic regression resembles ordinary linear regression in many ways. Besides
allowing any combination of quantitative and categorical explanatory variables
(with the latter in indicator variable form), it is appropriate to include functions of
the explanatory variables such as log(x) when needed, as well as products of pairs
of explanatory variables (or more) to represent interactions. In addition, there
is usually an intercept parameter (β0) plus one parameter for each explanatory
variable (β1 through βk), and these are used in the linear combination form: β0 +
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x1β1 + · · ·+ xkβk. We will call this sum eta (written η) for convenience.

Logistic regression differs from ordinary linear regression because its outcome
is binary rather than quantitative. In ordinary linear regression the structural
(means) model is that E(Y ) = η. This is inappropriate for logistic regression
because, among other reasons, the outcome can only take two arbitrary values,
while eta can take any value. The solution to this dilemma is to use the means
model

log

(
E(Y )

1− E(Y )

)
= log

(
Pr(Y = 1)

Pr(Y = 0)

)
= η.

Because of the 0/1 coding, E(Y ), read as the “expected value of Y” is equivalent
to the probability of success, and 1−E(Y ) is the probability of failure. The ratio
of success to failure probabilities is called the odds. Therefore our means model
for logistic regression is that the log of the odds (or just “log odds”) of success
is equal to the linear combination of explanatory variables represented as eta. In
other words, for any explanatory variable j, if βj > 0 then an increase in that
variable is associated with an increase in the chance of success and vice versa.

The means model for logistic regression is that the log odds of suc-
cess equals a linear combination of the parameters and explanatory
variables.

A shortcut term that is often used is logit of success, which is equivalent to the
log odds of success. With this terminology the means model is logit(S)=η, where
S indicates success, i.e., Y=1.

It takes some explaining and practice to get used to working with odds and log
odds, but because this form of the means model is most appropriate for modeling
the relationship between a set of explanatory variables and a binary categorical
outcome, it’s worth the effort.

First consider the term odds, which will always indicate the odds of success
for us. By definition

odds(Y = 1) =
Pr(Y = 1)

1− Pr(Y = 1)
=

Pr(Y = 1)

Pr(Y = 0)
.

The odds of success is defined as the ratio of the probability of success to the
probability of failure. The odds of success (where Y=1 indicates success) contains
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Pr(Y = 1) Pr(Y = 0) Odds Log Odds
0 1 0 -∞

0.1 0.9 1/9 -2.197
0.2 0.8 0.25 -1.383

0.25 0.75 1/3 -1.099
1/3 2/3 0.5 -0.693
0.5 0.5 1 0.000
2/3 1/3 2 0.693

0.75 0.25 3 1.099
0.8 0.2 4 1.386
0.9 0.1 9 2.197

1 0 ∞ ∞

Table 16.5: Relationship between probability, odds and log odds.

the same information as the probability of success, but is on a different scale.
Probability runs from 0 to 1 with 0.5 in the middle. Odds runs from 0 to ∞ with
1.0 in the middle. A few simple examples, shown in table 16.5, make this clear.
Note how the odds equal 1 when the probability of success and failure are equal.
The fact that, e.g., the odds are 1/9 vs. 9 for success probabilities of 0.1 and 0.9
respectively demonstrates how 1.0 can be the “center” of the odds range of 0 to
infinity.

Here is one way to think about odds. If the odds are 9 or 9/1, which is often
written as 9:1 and read 9 to 1, then this tells us that for every nine successes there
is one failure on average. For odds of 3:1, for every 3 successes there is one failure
on average. For odds equal to 1:1, there is one failure for each success on average.
For odds of less than 1, e.g., 0.25, write it as 0.25:1 then multiply the numerator
and denominator by whatever number gives whole numbers in the answer. In this
case, we could multiple by 4 to get 1:4, which indicates that for every one success
there are four failures on average. As a final example, if the odds are 0.4, then this
is 0.4:1 or 2:5 when I multiply by 5/5, so on average there will be five failures for
every two successes.

To calculate probability, p, when you know the odds use the formula

p =
odds

1 + odds
.
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The odds of success is defined as the ratio of the probability of success
to the probability of failure. It ranges from 0 to infinity.

The log odds of success is defined as the natural (i.e., base e, not base 10) log of
the odds of success. The concept of log odds is very hard for humans to understand,
so we often “undo” the log odds to get odds, which are then more interpretable.
Because the log is a natural log, we undo log odds by taking Euler’s constant
(e), which is approximately 2.718, to the power of the log odds. For example, if
the log odds are 1.099, then we can find e1.099 as exp(1.099) in most computer
languages or in Google search to find that the odds are 3.0 (or 3:1). Alternatively,
in Windows calculator (scientific view) enter 1.099, then click the Inv (inverse)
check box, and click the “ln” (natural log) button. (The “exp” button is not an
equivalent calculation in Windows calculator.) For your handheld calculator, you
should look up how to do this using 1.099 as an example.

The log odds scale runs from −∞ to +∞ with 0.0 in the middle. So zero
represents the situation where success and failure are equally likely, positive log
odds values represent a greater probability of success than failure, and negative log
odds values represent a greater probability of failure than success. Importantly,
because log odds of −∞ corresponds to probability of success of 0, and log odds
of +∞ corresponds to probability of success of 1, the model “log odds of success
equal eta” cannot give invalid probabilities as predictions for any combination of
explanatory variables.

It is important to note that in addition to population parameter values for an
ideal model, odds and log odds are also used for observed percent success. E.g., if
we observe 5/25=20% successes, then we say that the (observed) odds of success
is 0.2/0.8=0.25.

The log odds of success is simply the natural log of the odds of success.
It ranges from minus infinity to plus infinity, and zero indicates that
success and failure are equally likely.

As usual, any model prediction, which is the probability of success in this situa-
tion, applies for all subjects with the same levels of all of the explanatory variables.
In logistic regression, we are assuming that for any such group of subjects the prob-
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ability of success, which we can call p, applies individually and independently to
each of the set of similar subjects. These are the conditions that define a binomial
distribution (see section 3.9.1). If we have n subjects all with with the same level
of the explanatory variables and with predicted success probability p, then our er-
ror model is that the outcomes will follow a random binomial distribution written
as Binomial(n,p). The mean number of successes will be the product np, and the
variance of the number of success will be np(1− p). Note that this indicates that
there is no separate variance parameter (σ2) in a logistic regression model; instead
the variance varies with the mean and is determined by the mean.

The error model for logistic regression is that for each fixed combi-
nation of explanatory variables the distribution of success follows the
binomial distribution, with success probability, p, determined by the
means model.

16.3.2 Example and EDA for logistic regression

The example that we will use for logistic regression is a simulated dataset (LRex.dat)
based on a real experiment where the experimental units are posts to an Internet
forum and the outcome is whether or not the message received a reply within the
first hour of being posted. The outcome variable is called “reply” with 0 as the
failure code and 1 as the success code. The posts are all to a single high volume
forum and are computer generated. The time of posting is considered unimportant
to the designers of the experiment. The explanatory variables are the length of
the message (20 to 100 words), whether it is in the passive or active voice (coded
as an indicator variable for the “passive” condition), and the gender of the fake
first name signed by the computer (coded as a “male” indicator variable).

Plotting the outcome vs. one (or each) explanatory variable is not helpful when
there are only two levels of outcome because many data points end up on top of
each other. For categorical explanatory variables, cross-tabulating the outcome
and explanatory variables is good EDA.

For quantitative explanatory variables, one reasonably good possibility is to
break the explanatory variable into several groups (e.g., using Visual Binning in
SPSS), and then to plot the mean of the explanatory variable in each bin vs. the

http://www.stat.cmu.edu/~hseltman/309/Book/data/LRex.dat
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observed fraction of successes in that bin. Figure 16.1 shows a binning of the
length variable vs. the fraction of successes with separate marks of “0” for active
vs. “1” for passive voice. The curves are from a non-parametric smoother (loess)
that helps in identifying the general pattern of any relationship. The main things
you should notice are that active voice messages are more likely to get a quick
reply, as are shorter messages.
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Figure 16.1: EDA for forum message example.
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EDA for continuous explanatory variables can take the form of cate-
gorizing the continuous variable and plotting the fraction of success
vs. failure, possibly separately for each level of some other categorical
explanatory variable(s).

16.3.3 Fitting a logistic regression model

The means model in logistic regression is that

logit(S) = β0 + β1x1 + · · ·+ βkxk.

For any continuous explanatory variable, xi, at any fixed levels of all of the other
explanatory variables this is linear on the logit scale. What does this correspond
to on the more natural probability scale? It represents an “S” shaped curve that
either rises or falls (monotonically, without changing direction) as xi increases. If
the curve is rising, as indicated by a positive sign on βi, then it approaches Pr(S)=1
as xi increases and Pr(S)=0 as xi decreases. For a negative βi, the curve starts
near Pr(S)=1 and falls toward Pr(S)=0. Therefore a logistic regression model is
only appropriate if the EDA suggest a monotonically rising or falling curve. The
curve need not approach 0 and 1 within the observed range of the explanatory
variable, although it will at some extreme values of that variable.

It is worth mentioning here that the magnitude of βi is related to the steepness
of the rise or fall, and the value of the intercept relates to where the curve sits left
to right.

The fitting of a logistic regression model involves the computer finding the best
estimates of the β values, which are called b or B values as in linear regression.
Technically logistic regression is a form of generalized (not general) linear model
and is solved by an iterative method rather than the single step (closed form)
solutions of linear regression.

In SPSS, there are some model selection choices built-in to the logistic regres-
sion module. These are the same as for linear regression and include “Enter” which
just includes all of the explanatory variables, “Backward conditional (stepwise)”
which starts with the full model, then drops possibly unneeded explanatory vari-
ables one at a time to achieve a parsimonious model, and “Forward conditional
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Dependent Variable Encoding
Original Value Internal Value
Not a quick reply 0
Got a quick reply 1

Table 16.6: Dependent Variable Encoding for the forum example.

(stepwise)” which starts with a simple model and adds explanatory variables until
nothing “useful” can be added. Neither of the stepwise methods is guaranteed to
achieve a “best” model by any fixed criterion, but these model selection techniques
are very commonly used and tend to be fairly good in many situations. Another
way to perform model selection is to fit all models and pick the one with the lowest
AIC or BIC.

The results of an SPSS logistic regression analysis of the forum message ex-
periment using the backward conditional selection method are described here. A
table labeled “Case Processing Summary” indicates that 500 messages were tested.
The critical “Dependent Variable Encoding” table (Table 16.6) shows that “Got
a quick reply” corresponds to the “Internal Value” of “1”, so that is what SPSS
is currently defining as success, and the logistic regression model is estimating the
log odds of getting a quick reply as a function of all of the explanatory variables.
Always check the Dependent Variable Encoding. You need to be certain which
outcome category is the one that SPSS is calling “success”, because if it is not the
one that you are thinking of as “success”, then all of your interpretations will be
backward from the truth.

The next table is Categorical Variables Codings. Again checking this table is
critical because otherwise you might interpret the effect of a particular categorical
explanatory variable backward from the truth. The table for our example is table
16.7. The first column identifies each categorical variable; the sections of the
table for each variable are interpreted entirely separately. For each variable with,
say k levels, the table has k lines, one for each level as indicated in the second
column. The third column shows how many experimental units had each level of
the variable, which is interesting information but not the critical information of
the table. The critical information is the final k − 1 columns which explain the
coding for each of the k − 1 indicator variables created by SPSS for the variable.
In our example, we made the coding match the coding we want by using the
Categorical button and then selecting “first” as the “Reference category”. Each
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Parameter
coding

Frequency (1)

Male gender? Female 254 .000
Male 246 1.000

Passive Active voice 238 .000
voice? Passive voice 262 1.000

Table 16.7: Categorical Variables Codings for the forum example.

Hosmer and Lemeshow Test
Step Chi-square df Sig.
1 4.597 8 0.800
2 4.230 8 0.836

Table 16.8: Hosmer-Lemeshow Goodness of Fit Test for the forum example.

of the k − 1 variables is labeled “(1)” through “(k-1)” and regardless of how we
coded the variable elsewhere in SPSS, the level with all zeros is the “reference
category” (baseline) for the purposes of logistic regression, and each of the k-1
variables is an indicator for whatever level has the Parameter coding of 1.000 in
the Categorical Variables Coding table. So for our example the indicators indicate
male and passive voice respectively.

Correct interpretation of logistic regression results in SPSS critically
depends on correct interpretation of how both the outcome and ex-
planatory variables are coded.

SPSS logistic regression shows an uninteresting section called “Block 0” which
fits a model without any explanatory variables. In backward conditional model
selection Block 1 shows the results of interest. The numbered steps represent
different models (sets of explanatory variables) which are checked on the way to
the “best” model. For our example there are two steps, and therefore step 2
represents the final, best model, which we will focus on.
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One result is the Hosmer and Lemeshow Test of goodness of fit, shown
in Table 16.8. We only look at step 2. The test is a version of a goodness-of-
fit chi-square test with a null hypothesis that the data fit the model adequately.
Therefore, a p-value larger than 0.05 suggests an adequate model fit, while a small
p-value indicates some problem with the model such as non-monotonicity, variance
inappropriate for the binomial model at each combination of explanatory variables,
or the need to transform one of the explanatory variables. (Note that Hosmer and
Lemeshow have deprecated this test in favor of another more recent one, that is
not yet available in SPSS.) In our case, a p-value of 0.836 suggests no problem
with model fit (but the test is not very powerful). In the event of an indication of
lack of fit, examining the Contingency Table for Hosmer and Lemeshow Test may
help to point to the source of the problem. This test is a substitute for residual
analysis, which in raw form is uninformative in logistic regression because there are
only two possible values for the residual at each fixed combination of explanatory
variables.

The Hosmer-Lemeshow test is a reasonable substitute for residual
analysis in logistic regression.

The Variables in the Equation table (Table 16.9) shows the estimates of the
parameters, their standard errors, and p-values for the null hypotheses that each
parameter equals zero. Interpretation of this table is the subject of the next section.

16.3.4 Tests in a logistic regression model

The main interpretations for a logistic regression model are for the parameters.
Because the structural model is

logit(S) = β0 + β1x1 + · · ·+ βkxk

the interpretations are similar to those of ordinary linear regression, but the linear
combination of parameters and explanatory variables gives the log odds of success
rather than the expected outcome directly. For human interpretation we usually
convert log odds to odds. As shown below, it is best to use the odds scale for inter-
preting coefficient parameters. For predictions, we can convert to the probability
scale for easier interpretation.
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B S.E. Wald df Sig. Exp(B)
length -0.035 0.005 46.384 1 <0.005 0.966
passive(1) -0.744 0.212 12.300 1 <0.005 0.475
Constant 1.384 0.308 20.077 1 <0.005 3.983

Table 16.9: Variables in the equation for the forum message example.

The coefficient estimate results from the SPSS section labeled “Variables in the
Equation” are shown in table 16.9 for the forum message example. It is this table
that you should examine to see which explanatory variables are included in the
different “steps”, i.e., which means model corresponds to which step. Only results
for step 2 are shown here; step 1 (not shown) indicates that in a model including
all of the explanatory variables the p-value for “male” is non-significant (p=0.268).

This model’s prediction equation is

logit(S) = β0 + βlength(length) + βpassive(passive)

and filling in the estimates we get

̂logit(S) = 1.384− 0.035(length)− 0.744(passive).

The intercept is the average log odds of success when all of the explanatory
variables are zero. In this model this is the meaningless extrapolation to an active
voice message with zero words. If this were meaningful, we could say that the
estimated log odds for such messages is 1.384. To get to a more human scale we
take exp(1.384)=e1.384 which is given in the last column of the table as 3.983 or
3.983:1. We can express this as approximately four successes for every one failure.
We can also convert to the probability scale using the formula p = 3.983

1+3.983
= 0.799,

i.e., an 80% chance of success. As usual for an intercept, the interpretation of the
estimate is meaningful if setting all explanatory variables to zero is meaningful and
is not a gross extrapolation. Note that a zero log odds corresponds to odds of e0 = 1
which corresponds to a probability of 1

1+1
= 0.5. Therefore it is almost never valid

to interpret the p-value for the intercept (constant) in logistic regression because it
tests whether the probability of success is 0.5 when all explanatory variables equal
zero.
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The intercept estimate in logistic regression is an estimate of the log
odds of success when all explanatory variables equal zero. If “all
explanatory variables are equal to zero” is meaningful for the problem,
you may want to convert the log odds to odds or to probability. You
should ignore the p-value for the intercept.

For a k-level categorical explanatory variable like “passive”, SPSS creates k−1
indicator variables and estimates k−1 coefficient parameters labeled Bx(1) through

Bx(k-1). In this case we only have Bpassive(1) because k = 2 for the passive

variable. As usual, Bpassive(1) represents the effect of increasing the explanatory

variable by one-unit, and for an indicator variable this is a change from baseline
to the specified non-baseline condition. The only difference from ordinary linear
regression is that the “effect” is a change in the log odd of success.

For our forum message example, the estimate of -0.744 indicates that at any
fixed message length, a passive message has a log odds of success 0.744 lower than
a corresponding active message. For example, if the log odds of success for active
messages for some particular message length is 1.744, then the log odds of success
for passive messages of the same length is 1.000.

Because log odds is hard to understand we often rewrite the prediction equation
as something like ̂logit(S) = B0L − 0.744(passive)

where B0L = 1.384− 0.035L for some fixed message length, L. Then we exponen-
tiate both sides to get

̂odds(S) = eB0Le−0.744(passive).

The left hand side of this equation is the estimate of the odds of success. Because

e−0.744 = 0.475 and e0 = 1, this says that for active voice ̂odds(S) = eB0L and

for passive voice ̂odds(S) = 0.475eB0L . In other words, at any message length,
compared to active voice, the odds of success are multiplied (not added) by 0.475
to get the odds for passive voice.

So the usual way to interpret the effect of a categorical variable on a binary
outcome is to look at “exp(B)” and take that as the multiplicative change in odds
when comparing the specified level of the indicator variable to the baseline level.
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If B=0 and therefore exp(B) is 1.0, then there is no effect of that variable on the
outcome (and the p-value will be non-significant). If exp(B) is greater than 1, then
the odds increase for the specified level compared to the baseline. If exp(B) is less
than 1, then the odds decrease for the specified level compared to the baseline. In
our example, 0.475 is less than 1, so passive voice, compared to active voice, lowers
the odds (and therefore probability) of success at each message length.

It is worth noting that multiplying the odds by a fixed number has very different
effects on the probability scale for different baseline odds values. This is just what
we want so that we can keep the probabilities between 0 and 1. If we incorrectly
claim that for each one-unit increase in x probability rises, e.g., by 0.1, then this
becomes meaningless for a baseline probability of 0.95. But if we say that, e.g., the
odds double for each one unit increase in x, then if the baseline odds are 0.5 or 2
or 9 (with probabilities 0.333, 0.667 and 0.9 respectively) then a one-unit increase
in x changes the odds to 1, 4 and 18 respectively (with probabilities 0.5, 0.8, and
0.95 respectively). Note that all new probabilities are valid, and that a doubling of
odds corresponds to a larger probability change for midrange probabilities than for
more extreme probabilities. This discussion also explains why you cannot express
the interpretation of a logistic regression coefficient on the probability scale.

The estimate of the coefficient for an indicator variable of a categorical
explanatory variable in a logistic regression is in terms of exp(B). This
is the multiplicative change in the odds of success for the named vs.
the baseline condition when all other explanatory variables are held
constant.

For a quantitative explanatory variable, the interpretation of the coefficient
estimate is quite similar to the case of a categorical explanatory variable. The
differences are that there is no baseline, and that x can take on any value, not
just 0 and 1. In general, we can say that the coefficient for a given continuous
explanatory variable represents the (additive) change in log odds of success when
the explanatory variable increases by one unit with all other explanatory variables
held constant. It is easier for people to understand if we change to the odds
scale. Then exp(B) represents the multiplicative change in the odds of success for
a one-unit increase in x with all other explanatory variables held constant.

For our forum message example, our estimate is that when the voice is fixed
at either active or passive, the log odds of success (getting a reply within one
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hour) decreases by 0.035 for each additional word or by 0.35 for each additional
ten words. It is better to use exp(B) and say that the odds are multiplied by 0.966
(making them slightly smaller) for each additional word.

It is even more meaningful to describe the effect of a 10 word increase in message
length on the odds of success. Be careful: you can’t multiply exp(B) by ten. There
are two correct ways to figure this out. First you can calculate e−0.35 = 0.71, and
conclude that the odds are multiplied by 0.71 for each additional ten words. Or
you can realize that if for each additional word, the odds are multiplied by 0.966,
then adding a word ten times results in multiplying the odds by 0.966 ten times.
So the result is 0.96610 = 0.71, giving the same conclusion.

The p-value for each coefficient is a test of βx = 0, and if βx = 0, then when x
goes up by 1, the log odds go up by 0 and the odds get multiplied by exp(0)=1. In
other words, if the coefficient is not significantly different from zero, then changes
in that explanatory variable do not affect the outcome.

For a continuous explanatory variable in logistic regression, exp(B) is
the multiplicative change in odds of success for a one-unit increase in
the explanatory variable.

16.3.5 Predictions in a logistic regression model

Predictions in logistic regression are analogous to ordinary linear regression. First
create a prediction equation using the intercept (constant) and one coefficient
for each explanatory variable (including k − 1 indicators for a k-level categorical
variable). Plug in the estimates of the coefficients and a set of values for the
explanatory variables to get what we called η, above. This is your prediction of
the log odds of success. Take exp(η) to get the odds of success, then compute

odds
1+odds to get the probability of success. Graphs of the probability of success vs.

levels of a quantitative explanatory variable, with all other explanatory variable
fixed at some values, will be S-shaped (or its mirror image), and are a good way
to communicate what the means model represents.

For our forum messages example, we can compute the predicted log odds of
success for a 30 word message in passive voice as η = 1.384−0.035(30)−0.744(1) =
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−0.41. Then the odds of success for such a message is exp(-0.41)=0.664, and the
probability of success is 0.664/1.664=0.40 or 40%.

Computing this probability for all message lengths from 20 to 100 words sep-
arately for both voices gives figure 16.2 which is a nice summary of the means
model.
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Figure 16.2: Model predictions for forum message example.
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Prediction of probabilities for a set of explanatory variables involves
calculating log odds from the linear combination of coefficient esti-
mates and explanatory variables, then converting to odds and finally
probability.

16.3.6 Do it in SPSS

In SPSS, Binary Logistic is a choice under Regression on the Analysis menu. The
dialog box for logistic regression is shown in figure 16.3. Enter the dependent
variable. In the “Covariates” box enter both quantitative and categorical explana-
tory variables. You do not need to manually convert k-level categorical variables
to indicators. Select the model selection method. The default is to “Enter” all
variables, but you might want to switch to one of the available stepwise methods.
You should always select “Hosmer-Lemeshow goodness-of-fit” under Options.

Figure 16.3: SPSS dialog box for logistic regression.

If you have any categorical explanatory variables listed in the “Covariates” box,
click on “Categorical” to open the dialog box shown in figure 16.4. Move only the
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categorical variables over to the “Categorical Covariates” box. The default is for
SPSS to make the last category the baseline (reference) category. For variables
that are already appropriately named indicator variables, like passive and male
in our example, you will want to change the “Reference Category” to “First” to
improve the interpretability of the coefficient tables. Be sure to click the “Change”
button to register the change in reference category.

Figure 16.4: SPSS Categorical Definition dialog box for logistic regression.

The interpretation of the SPSS output is shown in the preceding sections.
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Index

additive model, 268
additivity, 248
alpha, 158
alternative hypothesis, 152
alternative scenario, 294
analysis of covariance, see ANCOVA
analytic comparison, see contrast
ANCOVA, 241
ANOVA, 171

multiway, 267
one-factor, see ANOVA, one-way
one-way, 171
two-way, 267

ANOVA table, 187
antagonism, 249
AR1, see autoregressive
association, 193
assumption, 177

equal spread, 214
fixed-x, 214, 234
independent errors, 162, 215
linearity, 214
Normality, 214

asymptotically distributed, 386
autoregressive, 360
average, 67

balanced design, 272
Bayesian Information Criterion, 373
Bernoulli distribution, 54

between-subjects design, 272, see design,
between-subjects

between-subjects factor, see factor, between-
subjects

bias, 10
BIC, see Bayesian Information Criterion
bin, 73
binary, 389
binomial distribution, 54
blind

double, see double blind
triple, see triple blind

blinding, 197
block randomization, 194
blocking, 208
Bonferroni correction, 327
boxplot, 79

carry-over, 340
causality, 193
cell, 272
cell counts, 382
cells, 382
Central Limit Theorem, 52
central tendency, 37, 67
Chebyshev’s inequality, 39
chi-square distribution, 59
chi-square test, 385
CI, see confidence interval
CLT, see central limit theorem
coefficient, 214
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coefficient of variation, 38
column percent, 384
complex hypothesis, see hypothesis, com-

plex
compound symmetry, 349, 360
concept map, 6
conditional distribution, 44
confidence interval, 159, 167
confounding, 194
contingency table, 381
contingency tables, 382
contrast, 320
contrast coefficient, 321
contrast hypothesis, 319

complex, 320
simple, 320

control group, 198
control variable, 208
correlation, 46
correlation matrix, 47
counterbalancing, 341
counterfactuals, 149
covariance, 46
covariate, 208, 267
cross-tabulation, 89
custom hypotheses, see contrast
CV, see coefficient of variation

data snooping, 326
decision rule, 158
degrees of freedom, 59, 98
dependent variable, see variable, outcome
design

between-subjects, 339
mixed, 339
within-subjects, 339

df, see degrees of freedom
distribution

conditional, see conditional distribu-
tion

joint, see joint distribution
marginal, see marginal distribution
multivariate, 341

double blind, 197
dummy variable, 254
DV, see variable, dependent

EDA, 3
effect size, 163, 308
EMS, see expected mean square
error, 161, 215

Type 1, 155, 203
Type 2, 159, 163, 296

error model, see model, error
eta, 389
event, 20
example

osteoarthritis, 344
expected mean square, 305
expected values, 35
experiment, 196
explanatory variable, see variable, ex-

planatory
exploratory data analysis, 3
extrapolate, 214

F-critical, 185
F-distribution, 60
factor

between-subjects, 339
fixed, 346
random, 346
within-subjects, 339

false negative, 302
false positive, 302
fat tails, 82
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fixed factor, see factor, fixed
frequencies, see tabulation
frequency, 382

Gaussian distribution, 57
gold standard, 218
grand mean, 180

Hawthorne effect, 197
HCI, 143
histogram, 73
Hosmer-Lemeshow Test, 397
hypothesis

complex, 152
point, 152

iid, 50
independence, 31
independent variable, see variable, ex-

planatory
indicator variable, 21, 254
interaction, 12, 247
interaction plot, 270
interpolate, 214
interquartile range, 70
IQR, see interquartile range
IV, see variable, independent

joint distribution, 42

kurtosis
population, 39
sample, 71

learning effect, 341
level, 15
linear regression, see regression, linear
log odds, 392
logistic regression, 389
logit, 390

main effects, 248, 253
marginal counts, 382
marginal distribution, 44
margins, 382
masking, 197
mean, 67

population, 35
mean square, 178
mean squared error, 236
means model, see model, structural
measure, 9
median, 67
mediator, 12
mixed design, see design, mixed
mode, 68
model

error, 4, 150
means, see model, structural
noise, see model, error, 150
structural, 4, 150

model selection, 373
models, 4
moderator, 12
Moral Sentiment, 172
MS, see mean square
MSE, 236
multinomial distribution, 56
multiple comparisons, 326
multiple correlation coefficient, 236
multivariate distributions, 341

n.c.p., see non-centrality parameter
negative binomial distribution, 57
noise model, see model, error
non-centrality parameter, 295, 309
Normal distribution, 57
null hypothesis, 152
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null sampling distribution, see sampling
distribution, null

observational study, 196
odds, 390
one-way ANOVA, see ANOVA, one-way
operationalization, 9
outcome, see variable, outcome
outlier, 65, 81

p-value, 156
parameter, 35, 67
pdf, see probability density function
penalized likelihood, 373
placebo effect, 197
planned comparisons, 324
pmf, see probability mass function
point hypothesis, see hypothesis, point
Poisson distribution, 57
population, 34
population kurtosis, see kurtosis, popu-

lation
population mean, see mean, population
population skewness, see skewness, pop-

ulation
population standard deviation, see stan-

dard deviation, population
population variance, see variance, pop-

ulation
post-hoc comparisons, 326
power, 163, 296
precision, 206
probability, 19

conditional, 31
marginal, 32

probability density function, 26
probability mass function, 24
profile plot, 270

QN plot, see quantile-normal plot
QQ plot, see quantile-quantile plot
quantile-normal plot, 83
quantile-quantile plot, 83
quartiles, 70, 79

R squared, 236
random factor, see factor, random
random treatment assignment, 194
random variable, 20
randomization, see random treatment as-

signment
range, 71
recoding, 119
regression

simple linear, 213
reliability, 10
repeated measure, 339
residual, 161
residual vs. fit plot, 229
residuals, 220, 222
robustness, 4, 68, 163
row percent, 384

sample, 34, 64
convenience, 35
simple random, 50

sample deviations, 69
sample space, 20
sample statistics, 51, 65
sampling distribution, 51, 67

alternative, 293, 294
null, 154

Schwartz’s Bayesian Criterion, see Bayesian
Information Criterion

SE, see standard error
serial correlation, 215
side-by-side boxplots, 95
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signal, see model, structural
significance level, 158
simple random sample, see sample, sim-

ple random
Simpson’s paradox, 209
skewness

population, 39
sample, 71

sources of variation, see variation, sources
of

sphericity, 349
spread, 38, 69
SPSS

boxplot, 133
correlation, 125
creating variables, 116
cross-tabulate, 123
data editor, 102
data transformation, 116
data view, 102
descriptive statistics, 124
dialog recall, 104
Excel files, 111
explore, 139
frequencies, 123
functions, 118
histogram, 131
importing data, 111
measure, 107
median, 126
overview, 102
quartiles, 126
recoding, 119

automatic, 120
scatterplot, 134

regression line, 135
smoother line, 135

tabulate, 123

text import wizard, 111
value labels, 108
variable definition, 107
variable view, 103
visual binning, 121

SS, see sum of squares
standard deviation, 70

population, 38
standard error, 167
standardized coefficients, 226
statistic, 50
statistical significance, 158
stem and leaf plot, 78
stepwise model selection, 374
structural model, see model, structural
substantive significance, 160
sum of squares, 69
support, 21
synergy, 249
Syntax (in SPSS), 103

t-distribution, 59
tabulation, 63
transformation, 21, 116
triple blind, 198
true negative, 302
true positive, 302
Type 1 error, see error, Type 1
Type 2 error, see error, Type 2

uncorrelated, 46
units

observational, 34
unplanned comparisons, 326

validity
construct, 11, 199
external, 201
internal, 193
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variable, 9
classification

by role, 11
by type, 12

dependent, see variable, outcome
explanatory, 11
independent, see variable, explana-

tory
mediator, see mediator
moderator, see moderator
outcome, 11

variance, 69
population, 38

variation
sources of, 205

within-subjects design, 207, see design,
within-subjects

within-subjects factor, see factor, within-
subjects

Z-score, 226


