JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

-
Training program

Classes and Instances

The Methods

The Constructors

Static elements

Initialization sections

Package

Inheritance and Polymorphism
Abstract classes and interfaces
String processing

10. Exceptions and Assertions

11. Nested classes

12. Enums

13. Wrapper classes for primitive types
14. Generics

15. Collections

16. Method overload resolution
7. Multithreads

18. Core Java Classes

19. Object Oriented Design

VRSN N

Module contents

Introduction to Concurrent Programming
Creating Threads

Important Methods in the Thread class
Thread interruption. The interrupt() method
The States of a Thread

The Thread Scheduler. Thread Priority
The Daemon Threads

Thread Synchronization

Synchronized Methods

Synchronized Blocks

The Wait/Notify Mechanism

The Volatile Keyword

Deadlocks

Threads pool

The ReentrantlLock class

Semaphore

Synchronizers

Concurrent Collection

The Fork-Join Framework

Module contents

~Introduction to Concurrent Programming
- Creating Threads

- Important Methods in the Thread class

- Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Introduction to Concurrent Programming 1/3

Java has been the first mainstream programming
language to provide a first native support to
concurrent programming

- “conservative approach”: everything is still an object
- + mechanisms for concurrency

Extended with the java.util.concurrent library to
provide a higher level support to concurrent

programming Java 5 - 2004
- semaphores, locks, synchronizers, etc

- task frameworks

Introduction to Concurrent Programming 2/3

Program with 3 threads running under a single

CPU

Main Thread
Thread 2

Thread 3

e
® ®
&
—» Time
@ Begin

@
ffmneneresof f— i frf f—§
@End // Suspended/Resumed

Introduction to Concurrent Programming 3/3

+ Concurrency vs Parallelism

~
o

v

Concurrent

v

v

v

Paralell

\%

Amdahl's law

6.00

4.00

2.00

0.00

Amdahl’s Law

P

',.-r"'

[

/

=

7

50%
— 75%
90%

—95%

Parallel Portion

PA LN

LN
ARS

= & 4 2 8

256

i

1024
2048
4096
8192

Number of Processors

16384

32768
65536

Module contents

- Introduction to Concurrent Programming
~ Creating Threads

- Important Methods in the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Creating Threads 1/8

You can define and instantiate a thread in one of
two ways:

m Implement the Runnable interface and pass it
to Thread class constructor

m Extend the java.lang.Thread class

Creating Threads 2/8

Runnable
<<interface>>

+run ()

Runnable
<<interface>>
+run ()
User cIass\Tl
Thread | Kxx
+run() <> ' +run()
+Sﬂl"’t () P

2e |
e g- NS
D R

Creating Threads 5/8

- The Runnable interface declares a sole method,
run()

1. public interface Runnable {
public void run();

Runnable interface - is an abstraction of the task
running in the thread and allows you to distinguish
task execution from the logic of thread management

Creating Threads 6/8

public class MyTestRunnable implements Runnable {
@Override
public void run() {
String name = Thread.currentThread().getName();
for (inti=0;i<05;i++){
System.out.printin("Thread:" + name + " i=" + i),
}
}
}

Thread.currentThread.getld()

Creating Threads 7/8

public class Main {
public static void main(String[] args) {

System.out.printin(*main method start");
MyTestRunnable run1 = new MyTestRunnable();
Thread thr1 = new Thread(run1);
System.out.printin("thread created");
thr1.start();
System.out.printin("thread started");

runl.run(); - does not create new thread
]

Creating Threads 8/8

Console output
main method start
thread created
thread started
Thread:Thread-0 i=0
Thread:Thread-0 i=1
Thread:Thread-0 i=2
Thread:Thread-0 i=3
Thread:Thread-0 i=4

Creating Threads 3/8

public class MyTestThread extends Thread {
@Qverride
public void run() {
for(inti=0:i<5;i++){
System.out.printin(*Thread:" +
getName()+ " i="+i);
}
}

}
long getld();

Creating Threads 4/8

public class Main {
public static void main(String[] args) {
MyTestThread th1 = new MyTestThread();
th1.start();

}

thl.run(); - does not create new thread

Thread restart without creating new thread

throws lllegalThreadStateException
-

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods in the Thread class

- Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Important methods in the Thread class 1/8

Pausing Execution with Sleep

Thread.sleep causes the current thread to
suspend execution for a specified period

Pause for 1 second: Thread.sleep(1000);

Thread.sleep throws InterruptedException. This is
an exception that sleep throws when another
thread interrupts the current thread while sleep is
active (calls the interrupt() method from the

sleeping thread).

Important methods in the Thread class 2/8

public class MyTestThread extends Thread {
@Override
public void run() {
for(inti=0;i<5;i++){
System.out.printin("Thread:" +
getName()+ " I="+i);
try {
sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

Important methods in the Thread class 3/8

public class MyTestThread extends Thread {
@Override
public void run() {
for(inti=0;i<5;i++){
System.out.printin("Thread:" +
getName()+ " I="+i);
try {
sleep(1000,100);
} catch (InterruptedException e) {
e.printStackTrace();

Important methods in the Thread class 4/8

Using Thread'’s Join() Method
System.out.printin("main method start");
MyTestRunnable run1 = new MyTestRunnable();
Thread thr1 = new Thread(run1);
thr1.start();

System.out.printin("thread started");
try {
thr1.join();
} catch (InterruptedException e) {
e.printStackTrace();
}

System.out.printin("main method end");

Important methods in the Thread class 5/8

Console output
main method start
thread started
Thread:Thread-0 i=0
Thread:Thread-0 i=1
Thread:Thread-0 i=2
Thread:Thread-0 i=3
Thread:Thread-0 i=4
main method end

Important methods in the Thread class 6/8

The yield() Method

make the currently running thread head back to
runnable to allow other threads of the same
priority to get their turn

=
Important methods in the Thread class 7/8

public class ThreadYield {
public static void main(String[] args) {
Runnabler =() ->{

Int counter = 0O;

while(counter < 2){
System.out.printin(Thread.currentThread().getName());
counter++;
Thread.yield();

}
%
new Thread(r).start();
new Thread(r).start();

}

} Runnable is the Functional interface
-

. 4@
Important methods in the Thread class 8/8

Output:

Thread-0
Thread-1
Thread-0
Thread-1

Thread-0
Thread-1
Thread-1
Thread-0

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods in the Thread class

~ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

=T
Thread work termination

public class MyThread implements Runnable {
private boolean isActive;

MyThread() {
ISActive = true;

}

void disable() {
isActive = false;

}

public void run() {
System.out.printin(Thread.currentThread().getName() +" started");
Int counter = 1;
while (isActive) {
System.out.printIn("Loop " + counter++);
try {Thread.sleep(400);} catch (InterruptedException e) {}

System.out.print|n!THread.currentThread().getName() + " finished"); |

Thread work termination

public static void main(String[] args) {

System.out.printIn("Main thread started");
MyThread myThread = new MyThread();
new Thread(myThread, "MyThread").start();
try {

Thread.sleep(1100);

myThread.disable();

Thread.sleep(1000);
} catch (InterruptedException e) {

System.out.printin("Thread interrupted");

}
System.out.printIn("Main thread finished");

Thread interaption. The interrupt() method

1/4
Interrupts
An interruptis an indication to a thread that it
should stop what it is doing and do something
else.

It's up to the programmer to decide exactly how a
thread responds to an interrupt, but it is very
common for the thread to terminate.

For the interrupt mechanism to be used correctly, the
thread to be interrupted must ensure that the
Interrupt Status Flag value is checked in a loop by the
isinterrupted() method or that its interrupt is
processed, for example, by interrupting and handling

an InterruptedException.
-

I e
public class MyTestThread extends Thread{
@Override
public void run() {
inti=0;
while(lisInterrupted()){
System.out.printin("Thread " + getName() +" i=" + i++);
bl
public static void main(String[] args) {
MyTestThread thl = new MyTestThread();
thl.start();
try {
Thread.sleep(50);
} catch (InterruptedException e) {
e.printStackTrace();
}

thl.interrupt(); 1} }
—_—

-
Thread interaption. The interrupt() method

2/4
public class MyTestThread extends Thread {
@Override
public void run() {
inti=0r

while(true){
System.out.printin(*Thread:" +

getName()+ " i="+i++),

try {
sleep(1000);

} catch (InterruptedException e) {
return;

}

Thread interaption. The interrupt() method
3/4

public static void main(String[] args) {
MyTestThread th1 = new MyTestThread();
th1.start();
try {
Thread.s/eep(5000);
} catch (InterruptedException e) {
e.printStackTrace();

}
th1.interrupt();

Thread interaption. The interrupt() method
4/4

Console output

Thread:Thread-0 i=0
Thread:Thread-0 i=1
Thread:Thread-0 i=2
Thread:Thread-0 i=3
Thread:Thread-0 i=4

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

The States of a Thread 1/2

- Athread can be only in one of five states

Waiting/
Blocking

Runnable Running

The States of a Thread 2/2

NEW Waiting/ blocking
- — s BLOCKED
start thread | start() unlock
e join
RUNNABLE - . .
chosen by choselrty———) join(t), WAITING
Thread Scheduler| yield() } Thredd Schedulernotify() . . .
0 execute =INNING T sutge nd notifyAll() joined threa!d run() has ﬁnlshed
| or elapsed time has expired
tread | run() wait(t)
task completed | finished sleep(t) | TIMED_WAITING
— e D i (SLEEPING)
- interval expires

=
The States of a Thread
public class ThreadStatesTest extends Thread {
@Override
public void run() {
try {
System.out.printin(getName() + " sleep(50)");
Thread.sleep(50);
} catch (InterruptedException ex) {
ex.printStackTrace();

}
System.out.printin(getName() + " finished");

}
public static void main(String[] args) {

try {
Thread t = new ThreadStatesTest();

System.out.printin(t.getName() + " is created");
-

The States of a Thread

printinfo(1, t);
System.out.printin(t.getName() + " start()");
t.start();
printinfo(2, t);
System.out.printIn(Thread.currentThread().
getName() + " sleep(10)");

sleep(10);
printinfo(3, t);
/*joins main to t*/
System.out.printin(t.getName() + " t.join()");
t.join();
printinfo(4, t);

} catch (InterruptedException ex) {
ex.printStackTrace();

}

Wad.currentThread().getName() + " finished");
| -

The States of a Thread

private static void printinfo(int count, Thread t) {
System.out.printIn(String.valueOf(count) + ": "
+ t.getName() + ", State: " + t.getState()

+ "’ isAlive=" + tISAllve())l

Output:

Thread-0 is created

1: Thread-0, State: NEW, isAlive=false
Thread-0 start()

2: Thread-0, State: RUNNABLE, isAlive=true
main sleep(10)

Thread-0 sleep(50)

3: Thread-0, State: TIMED _WAITING, isAlive=true
Thread-0 t.join()

Thread-0 finished

4: Thread-0, State: TERMINATED, isAlive=false

.
main finished

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

- Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

The Thread Scheduler. Thread Priority 1/3

* The scheduler in most JVMs uses preemptive, priority-
based scheduling mme hreads Thread 2 Thread 3

Thread 2 |

Thread 3

.....

The Thread Scheduler. Thread Priority 2/3

Setting a Thread's Priority

The Thread class has the three following constants
that define the range of thread priorities:

Thread.MIN_PRIORITY (1)
Thread.NORM_PRIORITY (5)
Thread.MAX_PRIORITY (10)

=
The Thread Scheduler. Thread Priority 3/3

public class MyTestThread extends Thread {
private double d;

@Override
public void run() {

for (inti=1;i<10000000; i++) { //heavy computational task

d += (Math.Pl + Math.E) / (double) i;
}
System.out.printIn("Thread :" + getName() +
" Priority=" + getPriority());

}
public static void main(String[] args) {

int numThreads = 8; //must be even

MyTestThread[] threads = new MyTestThread[numThreads];

@ @@= 171
The Thread Scheduler. Thread Priority 3/3

for (inti=0;i<numThreads;i=i+2){
threads][i] = createThread(Thread.MIN_PRIORITY);
threads[i + 1] = createThread(Thread.MAX_PRIORITY);
}
for (MyTestThread thread : threads) {
thread.start();

}

}

private static MyTestThread createThread(int priority) {
MyTestThread th = new MyTestThread();
th.setPriority(priority);
return th;

}

The Thread Scheduler. Thread Priority 3/3

Output:

Thread :Thread-7, Priority=10
Thread :Thread-1, Priority=10
Thread :Thread-3, Priority=10
Thread :Thread-5, Priority=10
Thread :Thread-2, Priority=1
Thread :Thread-0, Priority=1
Thread :Thread-4, Priority=1
Thread :Thread-6, Priority=1

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

The daemon threads 1/6

There are two kinds of threads, daemon
threads and user threads.

The JVM exits when the only threads running are all
daemon threads. In other words, the JVM considers
its job done, when there is no more user threads and
all the remaining threads are its infrastructure
threads.

The daemon threads 2/6

public class MyTestThread extends Thread {
@Override
public void run() {
for(inti=0;i<5;i++){
System.out.printin("Thread:" +

getName() + " i=" +i);
try {
sleep(1000);
} catch (InterruptedException e) {

The daemon threads 3/6

public static void main(String[] args) {
MyTestThread myThread = new MyTestThread();
myThread.start();
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();

}
System.out.printin("method main() finished");

}

The daemon threads 4/6

Console output
Thread:Thread-0 i=0
Thread:Thread-0 i=1
method main() finished
Thread:Thread-0 i=2
Thread:Thread-0 i=3
Thread:Thread-0 i=4

The daemon threads 5/6

public static void main(String[] args) {

MyTestThread myThread = new MyTestThread();
myThread.setDaemon(true);
myThread.start(),

try {
Thread.s/leep(2000);

} catch (InterruptedException e) {
e.printStackTrace();

}

System.out.printin("method main() finished");

The daemon threads 6/6

After the thread is set to daemon

Console output
Thread:Thread-0 i=0
Thread:Thread-0 i=1
method main() finished

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Thread Synchronization

Thread Synchronization

Threads communicate primarily by sharing access
to fields and the objects reference fields refer to

This form of communication is extremely efficient,
but makes two kinds of errors possible: thread
interference and memory consistency errors.

The tool needed to prevent these errors
IS synchronization.

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

~ Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Synchronized Methods 1/6

To make a method synchronized, simply add
the synchronized keyword to its declaration:

public synchronized void increment() {
c++:

}

Synchronized Methods 2/6

Not Synchronized

class MyCounter {
private long cnt = 0;
public void increment() {
cnt++;
}
public long getValue() {
return cnt;

}
}

Synchronized Methods 3/6

class MyCounterThread extends Thread{
MyCounter m,;
int n;
public MyCounterThread(MyCounter m,int n){
this.m =m; this.n=n;
}
public void run(){
for(int i=0;i<n;i++)
{
m.increment();
}
}
}

Synchronized Methods 4/6

public static void main(String[] args) {
MyCounter m = new MyCounter();
MyCounterThread[] tg = new MyCounterThread[100];
for(inti=0:;i<100; i++){
tgli] = new MyCounterThread(m,1000000);
}
for(MyCounterThread t:tgX
t.start();

}

Synchronized Methods 5/6

try {
for(MyCounterThread t:tg){
t.join();
}
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.printin(m.getValue());
}
}

Console output

85394622

Non-Synchronized increment

increment

Thread A
Thread B
Integer

Time

Synchronized Methods 6/6
Synchronized
class MyCounter {

private long cnt = 0;
public|synchronized|void increment() {

cnt++;
}
public synchronized long getValue() {
return cnt;
} Console output
) 100000000

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

~ Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Synchronized Blocks 1/7

Synchronized blocks in Java are marked with the
synchronized keyword.

A synchronized block in Java is synchronized on
some object.

All synchronized blocks synchronized on the same
object can only have one thread executing inside
them at the same time.

All other threads attempting to enter the
synchronized block are blocked until the thread
inside the synchronized block exits the block.

Synchronized Blocks 2/7

Synchronized Blocks (Statements)

synchronized statements must specify the object
that provides the intrinsic lock:

public void testSync() {
synchronized(this) {

/...
myCount++; this is equivalent to

) public synchronized void testSync() {
1 //...

myCount++;

—

Synchronized Blocks 3/7

public class UserAccount {

private int money;

public UserAccount(int money) {
this.money = money;

}

public int get() {
return money;

}

public void set(int money) {
this.money = money;

}
e —

Synchronized Blocks 4/7

class UserAction extends Thread {
private UserAccount acc;
private int withdraw;
public UserAction(UserAccount acc, int withdraw) {
this.acc = acc;
this.withdraw = withdraw;

Synchronized Blocks 5/7

public void run() {

int has = acc.get();

try {
Thread.s/eep(1);

} catch (InterruptedException e) {
e.printStackTrace();

Y

if (has >= withdraw) {
acc.set(acc.get() - withdraw);

}

_

Synchronized Blocks 6/7

public static void main(String[] args) {

/*Co3paéTca CYET C HaYaNbHOM cymmon™/
UserAccount acc = new UserAccount(500);

for (inti=0;i<5;i++){

/*Co3pgatoTca NnoToku, 3abupatowwime no 100 co cyérta™®/
UserAction act = new UserAction(acc, 100);

act.start();

}

try {
Thread.sleep(1000);

} catch (InterruptedException ex) {
ex.printStackTrace();

}

Qutput:

Get 100 from the account
Get 100 from the account
Get 100 from the account
Get 100 from the account
Get 100 from the account
banaHc = 200

System.out.printIn("bananc =" + acc.getMoney());

Synchronized Blocks 7/7

public void run() {

synchronized (acc) {

int has = acc.get();

try {
Thread.s/eep(1);

} catch (InterruptedException e) {
e.printStackTrace();

¥

if (has >= withdraw) {
acc.set(acc.get() - withdraw);

}

Console output

0

_

Synchronized method
vs Synchronized block

1. Synchronized block reduce scope of lock. As scope of lock
is inversely proportional to performance, its always better
to lock only critical section of code.

2. For synchronized block you can use arbitrary any lock to
provide mutual exclusion to critical section code. On the
other hand synchronized method always lock either on
current object represented by this keyword or class level
lock, if its static synchronized method.

3. Synchronized block can throw NullPointerException if
expression provided to block as parameter evaluates to

null, which is not the case with synchronized methods.
-

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

~ The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

The Wait/Notify Mechanism 1/10

Threads often have to coordinate their actions.
The most common coordination idiom is

the guarded block. Such a block begins by polling
a condition that must be true before the block can
proceed. There are a number of steps to follow in
order to do this correctly.

Guarded block example

public class GuardedLoop {
private boolean joy;
public void guardedJoy() {
while (ljoy) { //guarded block
System.out.printin("Iterating...");
try { sleep(1000); } catch InterruptedException ex) {

}
}
System.out.printin("Joy has been achieved!");
}
public void setJoy(boolean joy) {
this.joy = joy;
}

} Wastes processor time.

Don't do this!
-

Guarded block example

public class GuardedLoopThread extends Thread {
GuardedLoop gl;
public GuardedLoopThread(GuardedLoop gl) {
this.gl = gl;
}
@Override
public void run() {
try {
sleep(3000);
} catch (InterruptedException ex) {
ex.printStackTrace();

}
gl.setloy(true);

Guarded block example

public static void main(String[] args) {
GuardedLoop gl = new GuardedLoop();
GuardedLoopThread loopThread =
new GuardedLoopThread(gl);
loopThread.start(); //thread-deblocker start
gl.guardedJoy(); //method with guard block start

Output:

lterating...

lterating...

lterating...

Joy has been achieved!

The Wait/Notify Mechanism 2/10

Invoke Object.wait to suspend the current thread

The invocation of wait does not return until
another thread has issued a notification that some
special event may have occurred — though not
necessarily the event this thread is waiting for

The Wait/Notify Mechanism

public class GuardedLoop {
private boolean joy;
public synchronized void guardedloy() {

while (!joy) {
System.out.printIn("lterating...");
try {
wait();
} catch (InterruptedException ex) {
}
}

System.out.printIn("Joy and efficiency has been achieved!");
}
public synchronized void notifyloy() {

joy = true;

notify();

P

The Wait/Notify Mechanism

public class GuardedLoopThread extends Thread {
GuardedLoop gl;
public GuardedLoopThread(GuardedLoop gl) {
this.gl = gl;
}
@Override
public void run() {
try {
sleep(3000);
} catch (InterruptedException ex) {
ex.printStackTrace();

}
gl.notifyloy();

}

The Wait/Notify Mechanism

public static void main(String[] args) {
GuardedLoop gl = new GuardedLoop();
GuardedLoopThread loopThread =
new GuardedLoopThread(gl);
loopThread.start(); //3anyck notoka-paszbioKMpoBLLMKa
gl.guardedloy(); //3anyck metoAa ¢ 3alnLEeHHbIM 610KOM

}
}

Output:
lterating...
Joy and efficiency has been achieved!

The Wait/Notify Mechanism 3/10

Scheduled
| - to run
| RUNNABLE > “running” ‘
wait()
Acquired the lock Releases lock of this object.
of this object Places this thread on the
v “wait” set of this object.

| BLOCKED I< WAITING |

notifyAll()

notify() and this thread happens to be arbitrarily
chosen from the “wait” set of this object.

Blocked for acquiring the lock of this object

The Wait/Notify Mechanism 4/10

class MyTestData {
private byte[] data;
public void setData(byte[] data) {
this.data = data;
Y
public boolean ready() {
return data != null;

}
}

The Wait/Notify Mechanism 5/10

class DataGenerator extends Thread {
MyTestData dat;
public DataGenerator(MyTestData dat) {
this.dat = dat;
}
public void run() {
System.out.print("Generating Data....");
try {
Thread.s/eep(1000);
} catch (InterruptedException e) {
e.printStackTrace();

}

The Wait/Notify Mechanism 6/10

byte[] data = new byte[1000];
new Random().nextBytes(data);
System. out.printIn("OK!!!");
synchronized (dat) {
dat.setData(data);
dat.notifyAll();

}
}
}

The Wait/Notify Mechanism 7/10

class DataSender extends Thread {
MyTestData data;
String user,
public DataSender(MyTestData doc, String user){
this.data = doc;
this.user = user;

}

The Wait/Notify Mechanism 8/10

public void run() {
System.out.printin("Waiting for Data #" +
+ getld() + "...");
synchronized (data) {
try {
while (data.ready()){
data.wait();
}
} catch (InterruptedException e) {
return;

}
}

System.out.printf("Sending data to %s\r\n",user);

}

The Wait/Notify Mechanism 9/10

public static void main(String[] args) {
MyTestData data = new MyTestData();
DataSender[] senders ={
new DataSender(data, "user1"),
new DataSender(data, "user2"),
new DataSender(data, "user3"),
3
for (DataSender sender : senders)
sender.start();
DataGenerator pr = new DataGenerator(data);
pr.start();

The Wait/Notify Mechanism 10/10

Console output
Waiting for Data #9...
Waiting for Data #11...
Waiting for Data #10...
Generating Data....
OK!!!

Sending data to user2
Sending data to userl
Sending data to user3

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

~ The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

=
The volatile keyword

Declaring a block of code (or method) synchronized has two
Important implications, commonly referred to as atomicity
and visibility.

Atomicity means that only one thread can execute code
protected by a given object-monitor (lock) at a time,
preventing collisions of threads during the update of a state
that is accessible from many threads.

Visibility is related to the features of memory caching and
program optimization during compilation. If the developer
used synchronization, it will be checked at runtime that
variable updates performed by one thread before exiting the
synchronized block will be immediately visible to another
thread when it enters the synchronized block protected by the
same monitor (lock).

=
The volatile keyword

The volatile keyword only applies to variables and has the
following effects in multithreaded programming:

1) the variable is always read from the main memory, and is
never cached into the thread's memory, which means it is
always available to any thread,

2) for read and write requests from multiple threads, the system
guarantees that the write requests are first executed,;

3) the atomicity of read/write operations is guaranteed,
although this is relevant only for variables of type long and
double, for other types these actions are already atomic.
For all other operations like ++, synchronization is done
externally, or atomic types are used like Atomicinteger from
the java.util.concurrent.atomic package (will be considered
later).

-

The volatile keyword 1/4

Main Memory

\ \ \% Vv \ \

Working Memory Working Memory Working Memory

Thread Thread

Thread Engine

The volatile keyword 2/6

public class VolatileTest {

private static int myint = 0;

public static void main(String[] args) {
Thread listener = new Changelistener();
Thread changer = new ChangeMaker();
listener.start();
changer.start();

}

The volatile keyword 3/6

static class ChangeMaker extends Thread {
@Override
public void run() {
int localValue = myint ;
while (localValue < 5) {
myIint = ++ localValue;
System.out.printf("Incrementing myint to
%d%n", localValue);
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();

}
W

The volatile keyword 4/6

static class ChangelListener extends Thread {
@Override
public void run() {
int localValue = myint;
while (localValue < 5) {
if (localValue != myint) {
System.out.printf("Got Change for myint :
%d%n", myint);
localValue= myint ;
}
}
}
—

The volatile keyword 5/6

for non-volatile myint:

Thread Changelistener started

Thread ChangeMaker started
Incrementing myintto 1

Got Change for myint : 1

Incrementing myint to 2

Incrementing myint to 3

Incrementing myint to 4

Incrementing myintto 5

BUILD STOPPED (total time: 5 seconds)

hangs in a loop
T

The volatile keyword 6/6

for volatile myint:

Thread ChangeMaker started
Thread Changelistener started
Incrementing myintto 1
Incrementing myint to 2

Got Change for myint : 2
Incrementing myint to 3

Got Change for myint : 3

Got Change for myint : 4
Incrementing myint to 4

Got Change for myint : 5
Incrementinﬁ mxlnt to5
BUILD SUCCESSFUL

volatile vs synchronized

Synchronized can guarantee both visibility and atomicity,
and volatile variables only guarantee visibility.

You can use volatile variables instead of synchronized only
under limited circumstances. For volatile variables, both of
the following criteria must be met to ensure the desired
thread safety:

1) write in the variable do not depend on its current value;

2) the variable does not participate in invariants with other
variables (does not depend on other variables).

volatile variable as Status Flag

public class StatusFlagTest extends Thread {

boolean keepRunning = true;
// volatile boolean keepRunning = true;

@Override

public void run() {
while (keepRunning) {
}

System.out.printIin("Thread terminated.");

}

public static void main(String[] args) throws InterruptedException {
StatusFlagTest t = new StatusFlagTest();
t.start();
Thread.sleep(1000);
t.keepRunning = false;

sttem.out.ﬁrintln‘"keepRunning set to false.");

volatile variable as Status Flag

boolean keepRunning volatile boolean keepRunning
Output: Output:
keepRunning set to false. keepRunning set to false.
hangs in a loop Thread terminated.
BUILD STOPPED BUILD SUCCESSFUL

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Deadlocks 1/5

- Deadlock describes a situation where two or more
threads are blocked forever, waiting for each
other

Thread 1 Thread 2

Is holding Is holding

Object 1 Object 2

7
DeadlLocks 2/5
public class SimpleDeadLock extends Thread {
public static final String obj0 = "obj0";
public static final String obj1 = "obj1";

public static void main(String[] args) {
Thread t1 = new MyThread(obj0, obj1);
Thread t2 = new MyThread(obj1, obj0);
tl.start();
t2.start();

)

/*Knac notoky*/

private static class MyThread extends Thread {
/*06'eKTU-MmoHiTOpM 6N10KYBaHb™/
private String firstLock;
private String secondLock;

Eublic M¥Thread‘String firstLock, String secondLock) {...}

DeadlLocks 3/5

@Override
public void run() {
System.out.printin(getName() + " is started");
synchronized (firstLock) {
System.out.printin("Holding " + firstLock + " by "
+ Thread.currentThread().getName());
try {sleep(10);} catch (InterruptedException ex) {
ex.printStackTrace();
}
System.out.printin(getName()
+ " is waiting for " + secondLock + "...");
synchronized (secondLock) {
System.out.printIn("Holding " + firstLock + " & " + secondLock
+" by " + Thread.currentThread().getName());

J
oy gy

DeadlLocks 4/5

Qutput:

Thread-0 is started

Thread-1 Is started

Holding objO by Thread-0
Holding objl by Thread-1
Thread-0 is waliting for obj1...
Thread-1 is waliting for objO...
hangs while waiting

Deadlocks - jps, jstack 1/3

C:\>jps

7684 Jps

2920 SimpleDeadLock
1212

C:\>jstack 2920

2016-05-06 19:34:22

Full thread dump Java HotSpot(TM) 64-Bit Server VM (25.92-b14
mixed mode):

Deadlocks - jps, jstack 2/3

Found one Java-level deadlock:

"Thread-1":
waiting to lock monitor 0x0000000002¢f98c8 (object
0x00000000e0f73450, a java.lang.Object),
which is held by "Thread-0"
"Thread-0":
waiting to lock monitor 0x0000000002cf6e28 (object
0x00000000e0f73460, a java.lang.Object),
which is held by "Thread-1":

Deadlocks - jps, jstack 3/3

Java stack information for the threads listed above:

"Thread-1":

at
thread.deadlocks.SimpleDeadLockSThread2.run(SimpleDeadLock.jav
a:57)

- waiting to lock <0x00000000e0f73450> (a java.lang.Object)

- locked <0x00000000e0f73460> (a java.lang.Object)
"Thread-0":

at
thread.deadlocks.SimpleDeadLockSThreadl.run(SimpleDeadLock.jav
a:36)

- waiting to lock <0x00000000e0f73460> (a java.lang.Object)

- locked <0x00000000e0f73450> (a java.lang.Object)

oun

eadalocCkK.

Deadlocks elimination 1/5

public class SimpleDeadLockElimination extends Thread {
public static final String obj0 = "obj0";
public static final String obj1 = "obj1";
/* Lock objects with a certain order of selection */
public static String firstLock = null;
public static String secondLock = null;

public static void main(String[] args) {
Thread t1 = new Threadl();
Thread t2 = new Thread?2();
tl.start();
t2.start();

Deadlocks elimination 2/5

/*Rule of selection of monitor objects: the object with the smaller
hash code will be selected first*/
private static void selectLockRule() {
if (objO.hashCode() == objl.hashCode()) {
try {
throw new Exception("Hashcode collision");
} catch (Exception ex) {
System.out.printIn(ex.getMessage());
}
} else if (obj0.hashCode() < objl.hashCode()) {
firstLock = obj0;
secondLock = obj1;
} else {
firstLock = obj1;
secondLock = obj0;

Deadlocks elimination 3/5

synchronized (firstLock) {
System.out.printIn("Holding " + firstLock
+ " by " + Thread.currentThread().getName());
try {
sleep(10);
} catch (InterruptedException ex) {
ex.printStackTrace();
}
System.out.printin(Thread.currentThread().getName()
+ " is waiting for " + secondLock + "...");
synchronized (secondLock) {
System.out.printIn("Holding " + firstLock
+" & " +secondLock + " by "
+ Thread.currentThread().getName());

}

Deadlocks elimination 4/5

/*Thread class*/
private static class MyThread extends Thread {
@Override
public void run() {
System.out.printin(getName() + " is started");
selectLockRule();

} Output:

} Thread-0 is started
} Holding obj0 by Thread-0
Thread-1 is started
Thread-0 is waiting for obj1...
Holding obj0 & obj1 by Thread-0
Holding obj0 by Thread-1
Thread-1 is waiting for obj1...
Holding obj0 & obj1 by Thread-1
BUILD SUCCESSFUL

Dining philosophers problem

[[]
IIII
"hl

i

1 11
1

r|-"tir g -'r|u||l

P

i
iy

