JAVA PROGRAMMING BASICS

Module 2: Java Object-oriented Programming

-
Training program

Classes and Instances

The Methods

The Constructors

Static elements

Initialization sections

Package

Inheritance and Polymorphism
Abstract classes and interfaces
String processing

10. Exceptions and Assertions

11. Nested classes

12. Enums

13. Wrapper classes for primitive types
14. Generics

15. Collections

16. Method overload resolution
7. Multithreads

18. Core Java Classes

19. Object Oriented Design

VRSN N

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods in the Thread class

- Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

~ Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

~ Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

The java.util.concurrent packages

Since version 5.0, the Java platform has also included high-
level concurrency APIs in the java.util.concurrent packages.

l java.util.concurrent.* \
| | T T | | : : I
l E(())“glcj;roe:st | l Queues \ l Synchronizers \ l Executors \ l Locks \ l Atomics \

Threads pool 1/12

Thread per task is the bad way:

- creating a new thread for each request can
consume significant computing resources

- having many threads competing for the CPUs can
impose other performance costs as well.

Threads pool 3/12

Reasons for using thread pools:

- gaining some performance when the threads are
reused.

- better program design, letting you focus on the
logic of your program.

Threads pool 2/12

+ Typical thread pool architecture

P mm— — — — — —

| Threads (job
| consumers)
|

“thread pool”

Job providers

Threads pool 4/12

Executor - interfases for thread pool implementations
Runnabler =...

void execute (Runnamble r) [ccinterfaces>

the only method Executor (new Thread(r)).start();
A\ Executor e = ...
<<interface>> e,executE(r);
ExecutorService
o
AbstractExecutorService <<interface>>
éx ScheduledExecutorService
/\
ThreadPoolExecutor

T

ScheduledThreadPoolExecutor f---—-=-===-=-------

Threads pool 5/12

Tasks execution:

Returns a Future object that can be used to track the progress
of the task.

The basic ExecutorService methods:
Future<?> submit(Runnable task)
Future<T> submit(Callable<T> task)
Future<T> submit(Runnable task, T result)

8 Future and Callable -

«interfaces
Future Comparable
+ cancel(boolean) :boolean «interfaces "g:::::’
+ get) vV Delayed
+ get(long, TimeUnit) :V + getDelay(TimeUnit) :long + callf) vV
+ isCancelled() :boolean
+ isDone{) :boolean : .
v v oy '
Runnable dineeces Dl ...-- ..-4Since15
«interfaces ScheduledFuture o
RunnableFuture P
+ runf) :void
| -2
| B -
| Since 1.8 o™
| et
| LT
|
I .
I v %
| A Vv
FutureTask
e winterfaces
Runnable ScheduledFuture
+ cancel{boolean) :boolean + isPeriodic) :boolean
+ FutureTask(Callable<V>) -
+ FutureTask(Runnable, V)
+ get) V
+ get(long, TimeUnit) :V
+ isCancelled() :boolean
+ isDone{) :boolean
+ run{) :void

Threads pool 6/12

List<Future<T>> invokeAll(Collection<? extends
Callable<T>> tasks) - returning a list of Futures holding
their status and results when all complete.

T invokeAny(Collection<? extends Callable<T>> tasks) -
methods execute the tasks in the given collection.

e
ExecutorService Interface

Returns

Method

Description

boolean

awaitTermination(long time

out, TimeUnit unit)

Blocks until all tasks have completed execution
after a shutdown request, or the timeout
occurs, or the current thread is interrupted,
whichever happens first.

<T> List<Future

invokeAll(Collection<?

<T>>

extends Callable<T>> tasks)

Executes the given tasks, returning a list of
Futures holding their status and results when all
complete.

<T> List<Future

invokeAll(Collection<?

<T>>

extends Callable<T>> tasks,
long timeout, TimeUnit unit)

Executes the given tasks, returning a list of
Futures holding their status and results when all
complete or the timeout expires, whichever
happens first.

<T>T invokeAny(Collection<? Executes the given tasks, returning the result of
extends Callable<T>> tasks) |one that has completed successfully (i.e.,
without throwing an exception), if any do.
<T>T invokeAny(Collection<? Executes the given tasks, returning the result of

extends Callable<T>> tasks,
long timeout, TimeUnit unit)

one that has completed successfully (i.e.,
without throwing an exception), if any do before

the given timeout elapses.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlawaitTermination(long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/TimeUnit.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlinvokeAll(java.util.Collection)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlinvokeAll(java.util.Collection,long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/TimeUnit.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlinvokeAny(java.util.Collection)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlinvokeAny(java.util.Collection,long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/TimeUnit.html

e X&OUEO S rvice lnterface

Returns Method Description

boolean isShutdown() Returns true if this executor has been shut
down.

boolean isTerminated() Returns true if all tasks have completed
following shut down.

void shutdown() Initiates an orderly shutdown in which
previously submitted tasks are executed,
but no new tasks will be accepted.

List<Runnable> shutdownNow() Attempts to stop all actively executing

tasks, halts the processing of waiting tasks,
and returns a list of the tasks that were
awaiting execution.

Future<?>

submit(Runnable task)

Submits a Runnable task for execution and
returns a Future representing that task.

<T> Future<T>

submit(Runnable task,

T result)

Submits a Runnable task for execution and
returns a Future representing that task.

<T> Future<T>

submit(Callable<T> task)

Submits a value-returning task for
execution and returns a Future
representing the pending results of the
task.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlisShutdown()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlisTerminated()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlshutdown()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlshutdownNow()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlsubmit(java.lang.Runnable)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlsubmit(java.lang.Runnable,T)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Future.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ExecutorService.htmlsubmit(java.util.concurrent.Callable)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html

Modifier and Type

ScheduledkExecutorservice Interrace

Method

Description

ScheduledFuture<?>

schedule(Runnable comman

d, long delay, TimeUnit unit)

Submits a one-shot task that becomes
enabled after the given delay.

<V> ScheduledFuture<V>

schedule(Callable<V> callabl

e, long delay, TimeUnit unit)

Submits a value-returning one-shot
task that becomes enabled after the
given delay.

ScheduledFuture<?>

scheduleAtFixedRate(Runna

ble command,
long initialDelay,
long period, TimeUnit unit)

Submits a periodic action that
becomes enabled first after the given
initial delay, and subsequently with
the given period; that is, executions
will commence after initialDelay,
then initialDelay + period,

then initialDelay + 2 * period, and so
on.

ScheduledFuture<?>

scheduleWithFixedDelay(Ru

nnable command,
long initialDelay,
long delay, TimeUnit unit)

Submits a periodic action that
becomes enabled first after the given
initial delay, and subsequently with
the given delay between the
termination of one execution and the
commencement of the next.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledExecutorService.htmlschedule(java.lang.Runnable,long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/TimeUnit.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledExecutorService.htmlschedule(java.util.concurrent.Callable,long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Callable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/TimeUnit.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledExecutorService.htmlscheduleAtFixedRate(java.lang.Runnable,long,long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/TimeUnit.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledFuture.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ScheduledExecutorService.htmlscheduleWithFixedDelay(java.lang.Runnable,long,long,java.util.concurrent.TimeUnit)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runnable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/TimeUnit.html

Threads pool 7/12

class MyTask implements Runnable {

String taskinfo;

public MyTask(String taskinfo){
this.taskinfo = taskinfo;

}

@Override

public void run() {
System.out.printin(taskinfo);
/...

-
Threads pool 8/12

public static void main(String[] args) {
ThreadPoolExecutor tpe =

new ThreadPoolExecutor(
5,10, 30L, TimeUnit. SECONDS,

new LinkedBlockingQueue<Runnable>());
MyTask[] tasks = new MyTask[25];
for (inti=0; i < tasks.length; i++) {
tasks[i] = new MyTask("Task " + i);
tpe.execute(tasks[i]);

}
tpe.shutdown();

%S"Ij—to ThreadPoolExecutor

Task-2
Task-1
Task-7
Task-8

ThreadPoolExecutor tpe = new ThreadPoolExecutor(5, 10, 30L,
TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>(5));

java.util.concurrent.RejectedExecutionException: Task
executors.threadpoolexecutor.MyTask@67f89fa3 rejected from
java.util.concurrent.ThreadPoolExecutor@4ac68d3e

[Running, pool size = 10, active threads =9, gueued tasks =5,
completed tasks = 6]

Threads pool 9/12

Executors.newSingleThreadExecutor(): creates a
single background thread

Executors.newFixedThreadPool(int numThreads):
creates a fixed size thread pool

Executors.newCachedThreadPool(): create a
unbounded thread pool, with automatic thread
reclamation

Threads pool 10/12

public class MyTestCallable implements Callable<String> {
private int workNumber;
MyTestCallable(int workNumber) {
this.workNumber = workNumber;
}
public String call() {
for(inti=1;i<=5; i++){
System.out.printf("Work %d: %d\n", workNumber, i);
try {
Thread.s/eep((int) (Math.randormx) * 1000));
} catch (InterruptedException e) {

}
}

return "work " + workNumber;
}

}
N

Threads pool 11/12

int numOfWorks = 20;
ExecutorService pool = Executors. newFixedThreadPool4),
MyTestCallable works[] = new MyTestCallable[numOfWorks];
Future[] futures = new Future[numOfWorks];
for (inti =0; i < numOfWorks; ++i) {
works[i] = new MyTestCallable(i + 1);
futuresli] = pool.submit(workslil);
¥
for (inti =0; i < numOfWorks; ++i) {
try {
System.out.printin(futures[il.get() + " ended");
} catch (Exception ex) {
ex.printStackTrace();

}

}
N

Threads pool 12/12

Console output

Work 1: 1
Work 4:
Work 2:
Work 3:
Work 2:
Work 3:
Work 2:
Work 1:
Work 3:

WNWNNER R BR

Work 7: 1
work 1 ended
work 2 ended
work 3 ended
Work 5: 4
Work 4: 5
Work 6: 2
work 4 ended
Work 8: 1

Work 19: 3
Work 19: 4
work 17 ended
Work 20: 4
Work 18: 5
work 18 ended
Work 19: 5
Work 20: 5
work 19 ended
work 20 ended

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Locks

winterfaces
Lock
+ lod) woid
+ lockintemruptibly() woid
+ newlondition{) Condition
+ tryledk]) boolean
+ tryLodklong, TimelUnit) boolean
+ wunlodk() woid
. I ™,
. I ™,
Iy I ™,
Java.io. Benslizable java.io. Senslizable java.io. Benalizable
Reentrantlock wstatics astatice
ReadlLock WriteLock
&~
o
-
s
&
java.ic. Seralizable
ReentrantReadiWrite Lock

xinterfaces
Condition

await]) woid
awaitManos{long) :long
awaitlintil{Cate) boclean

signal{) :woid
signalAll) woid

O S S

await{long, Timelnit) boolean

awaitlnintemruptibly{) void

All since 1.5 |

+
-

ReadiVriteLock

xinterfaces

Lock Support

regdlock]) Lodk
writeLodk() :Lock

R T T T R

getBlocker|Thread) :Object
park{Object) void

park() void
parkManocs{Cbjed, long) woid
parkManos{long) void
parkUntil{Cbject, long) :void
parkUntil{long) :void
unpark|Thread) :void

The ReentrantLock class 2/5

Synchronized keyword doesn't support fairness

A thread can be blocked waiting for lock, for an
indefinite period of time and there was no way to
control that.

The ReentrantLock class 3/5

_ock interface provide opportunity of acquiring
ock by different ways:

ocK()

ocklnterruptible()

tryLock()

tryLock(long timeout, TimeUnit timeUnit)

There is only one method for unlocking the lock:
unlock()

The ReentrantLock class 4/5

ReentrantLock is a concrete implementation of Lock

interface provided in Java concurrency package from
Java 5 onwards

Thread can acquire the same lock multiple times
without any issue.

Reentrant locking increments special thread-personal
counter (unlocking - decrements) and the lock will be
released only when counter reaches zero.

-y
The ReentrantLock class 5/5
public class MyCounter {

private intx=1;
public synchronized void increment() {
try {
for (inti=0;i<4;i++){
System.out.printf("%s %d \n", Thread
.currentThread().getName(), x);
X++;
Thread.sleep(500);
}
} catch (InterruptedException e) {
}
}
—

The ReentrantLock class 6/5
public class MyCounterThread extends Thread {

MyCounter res;

MyCounterThread(MyCounter res) {
this.res = res;

}

@Override
public void run() {
res.increment();

}
—

The ReentrantLock class 7/5

public class Main {
public static void main(String[] args) {

MyCounter commonResource = new MyCounter();

for (inti=0;i<5;i++){
Thread t = new

MyCounterThread(commonResource);

t.setName("MoTtok " + i);
t.start();

}
}
}

The ReentrantLock class 8/5

public class MyCounter {
private intx=1;
ReentrantLock locker;
public MyCounter(ReentrantLock locker) {
this.locker = locker;

}

public void increment() {
try {
locker.lock(); //MonyyeHue 610KNPOBKM
System.out.printin(Thread.currentThread()
.getName() +": Lock acquired.");

The ReentrantLock class 9/5

for(inti=0;i<4;i++){
System.out.printf("%s %d \n", Thread
.currentThread().getName(), x);
X++;

Thread.sleep(500);
}
} catch (InterruptedException e) {
} finally {
locker.unlock(); //ocBoboxkaeHne 610KMPOBKMU
System.out.printin(Thread.currentThread()
.getName() +": Lock released.");

*

The ReentrantLock class 10/5

MotokK 0: Lock acquired. Motok 4 11
NMotok 01 Notok 4 12
Motok 0 2 MoTtokK 4: Lock released.
Motok 0 3 Motok 1: Lock acquired.
NMotoKk 0 4 NMotok 113
MoTtok 0: Lock released. Motok 114
MotokK 3: Lock acquired. Motok 1 15
MotoK 35 NMNotoKk 116
MoTtoKk 3 6 MoTtok 1: Lock released.
MoTtok 3 7 MotokK 2: Lock acquired.
MoTtoK 3 8 Notok 2 17
MoTtok 3: Lock released. Motok 2 18
MotoK 4: Lock acquired. MoTtok 2 19
NMotok 49 NMoTtok 2 20

“Mormok4d 10 = NMoTtoK 2: Lock released.

The ReentrantLock class 11/5
public class MyCounter {

private int x = 1;

ReentrantLock locker;

public MyCounter(ReentrantLock locker) {
this.locker = locker;

}

public void increment() {
try {
boolean flag = locker.tryLock(3000,
TimeUnit.MILLISECONDS);

if (flag) {

try {
System.out.printin(Thread.currentThread()

L _getName() + ": Lock acquired.");

The ReentrantLock class 12/5

for (inti=0;i<4;i++){
System.out.printf("%s %d \n",
Thread.currentThread().getName(), x);
X++;
Thread.sleep(500);
}
Hinally {
locker.unlock();
System.out.printin(Thread.currentThread()
.getName() +": Lock released.");

The ReentrantLock class 13/5

else{
System.out.printin(Thread.currentThread()
.getName() +": Can't get lock. Contimue to work.");

}

} catch (InterruptedException e) {

}

}}

MotoK 1: Lock acquired. MNotok 06
Motok 11 MoTok 3: Can't get lock. Contimue to work.
Motok 12 MoTtok 2: Can't get lock. Contimue to work.
Motok 13 MoTtok 4: Can't get lock. Contimue to work.
Motok 14 MoTtok 0 7

NoTtokK 1: Lock released. Notok 0 8
Motok 0: Lock acquired. Motok 0: Lock released.

MoToK 0 5 CbOPKA YCNELWHO 3ABEPLUEHA

The ReentrantLock class 14/5

Condition using — thread coordination with
wait/notify/notifyAll
public class Producer implements Runnable {

Store store;
public Producer(Store store) {

this.store = store;
}
@Override
public void run() {

for(inti=1;i<6;i++){

store.put();

}
} Supplier of goods to the store

—

The ReentrantLock class 14/5

Condition using — thread coordination with
wait/notify/notifyAll
public class Consumer implements Runnable {

Store store;
public Consumer(Store store) {

this.store = store;
}
@Override
public void run() {

for(inti=1;i<6;i++){

store.get();

}
} Store buyer

—

The ReentrantLock class 14/5

Condition using — thread coordination with
wait/notify/notifyAll
public class Store {
private int product = 0;
public synchronized void get() {
try {
//NOKMN HEMaE AOCTYNHMUX TOBaPiB Ha CKNaAi, OYiKYEMO
while (product < 1) {
this.wait();
}
product--;
System.out.println("Consumer bought 1 product");

System.out.printin("Goods in stock: " + product);
-

The ReentrantLock class 14/5

Condition using — thread coordination with
wait/notify/notifyAll
//cUrHanisayemo npo MoK/nBicTb 6/10KyBaHHA

this.notifyAll();
} catch (InterruptedException ex) {
System.out.println(ex.getMessage());

}
J

public synchronized void put() {
try {
//NOKKU Ha cKknagi 3 ToBapu, YEKAaEMO 3Bi/IbHEHHA MicLS
while (product >= 3) {
this.wait();

- =N
The ReentrantLock class 14/5

Condition using — thread coordination with
wait/notify/notifyAll

product++;
System.out.println("Producer added 1 product");
System.out.println("Goods in stock: " + product);
//cUrHaniayemo npo MoK/nBicTb 6/10KYBaHHA
this.notifyAll();

} catch (InterruptedException e) {
System.out.println(e.getMessage());

}
J
}

The ReentrantLock class 14/5

Condition using — thread coordination with
wait/notify/notifyAll
public static void main(String[] args) {
Store store = new Store();
Producer producer = new Producer(store);
Consumer consumer = new Consumer(store);

new Thread(producer).start();
new Thread(consumer).start();

The ReentrantLock class 14/5
Condition using — thread coordination with

wait/notify/notifyAll

Producer added 1 product
Goods In stock: 1

Producer added 1 product
Goods In stock: 2

Producer added 1 product
Goods in stock: 3
Consumer bought 1 product
Goods In stock: 2
Consumer bought 1 product
Goods in stock: 1
Consumer bought 1 product
Goods in stock: O

Producer added 1 product
Goods in stock: 1

Producer added 1 product
Goods in stock: 2
Consumer bought 1 product
Goods in stock: 1
Consumer bought 1 product
Goods In stock: O

The ReentrantLock class 14/5
Condition using — thread coordination with
Condition await/signal/signalAll
public class Store {
private int product = 0;
ReentrantLock locker;
Condition condition;
public Store() {
locker = new ReentrantLock();
condition = locker.newCondition();

}
public void get() {

try {

locker.lock();
-]

The ReentrantLock class 14/5
Condition using — thread coordination with
Condition await/signal/signalAll
//NOKMN HeEMae AOCTYNHMUX TOBaPiB Ha CKNaAji, OUYiKYEMO

while (product < 1) {condition.await(); }
product--;
System.out.println("Consumer bought 1 product ");
System.out.println("Goods in stock: " + product);
//cUrHanisayemo npo mMoK1nBicTb 610KyBaHHA
condition.signalAll();

} catch (InterruptedException ex) {
System.out.println(ex.getMessage());

} finally {
locker.unlock();

The ReentrantLock class 14/5

Condition using — thread coordination with
. Condition await/signal/signalAll
public void put() {

try {

locker.lock();
//NOKM Ha cknaai 3 ToBapu, YeKAaEMO 3Bi/IbHEHHA MiCLLSA
while (product >= 3) {
condition.await();

}
product++;
System.out.println("Producer added 1 product ");
System.out.println("Goods in stock: " + product);

The ReentrantLock class 14/5
Condition using — thread coordination with
Condition await/signal/signalAll
//cUrHaniayemo npo MoK/nBicTb 610KyBaHHA

condition.signalAll();
} catch (InterruptedException e) {
System.out.println(e.getMessage());
} finally {
locker.unlock();

}
}
}

Running the program will give the result

similar to the previous program.
-—

The ReentrantLock class 14/5

Reentrance demonstration — nested methods
public class NestedMethodsTask {

intx=1;

ReentrantLock locker;

public NestedMethodsTask(ReentrantLock locker) {
this.locker = locker;

J
public void outerMethod() {

try {
locker.lock();
System.out.println(Thread.currentThread().getName()
+": Lock acquired and " + locker.getHoldCount()

+ " lock hold in outerMethod().");
-—

The ReentrantLock class 14/5

Reentrance demonstration
for (inti=0;i<2;i++){
System.out.printf("%s %d \n",

Thread.currentThread().getName(), x);
X++:

4

Thread.sleep(500);
}
innerMethod();
} catch (InterruptedException e) {
} finally {
locker.unlock();
System.out.printIn(Thread.currentThread().getName()
+": Lock released and " + locker.getHoldCount()
+ "lock hold in outerMethod()."): | S .

The ReentrantLock class 14/5

Reentrance demonstration

public void innerMethod() {
try {

locker.lock();

System.out.printIn(Thread.currentThread().getName()
+": Lock acquired and " + locker.getHoldCount()
+ " lock hold in innerMethod().");
System.out.printf("%s %d \n",

Thread.currentThread().getName(), x);

X++:

)

Thread.sleep(500);
} catch (InterruptedException ex) {

_

The ReentrantLock class 14/5

Reentrance demonstration

finally {
locker.unlock();
System.out.printIn(Thread.currentThread().getName()
+": Lock released and " + locker.getHoldCount()
+ " lock hold in innerMethod().");

J
J
}

The ReentrantLock class 14/5
Reentrance demonstration
public class MyThread extends Thread {
NestedMethodsTask res;
MyThread(NestedMethodsTask res) {
this.res = res;
}
@Override
public void run() {
try {
sleep((long) (Math.random() * 1000));
} catch (InterruptedException ex) {

}

res.outerMethod();

F

The ReentrantLock class 14/5
Reentrance demonstration
public static void main(String[] args) {
ReentrantLock locker = new ReentrantLock();
NestedMethodsTask commonResource =
new NestedMethodsTask(locker);

for(inti=0;i<2;i++){

Thread t = new MyThread(commonResource);

t.setName("MNoTtoK " + i);

t.start();

J
}

The ReentrantLock class 14/5

Reentrance demonstration

MoTtok 0: Lock acquired and 1 lock hold in outerMethod().

[MoTok 0 1

[MoToK O 2

MoTtok 0: Lock acquired and 2 lock hold in innerMethod().

[MoTok O 3

MoTtok O: Lock released and 1 lock hold in innerMethod().

MoTtok 0: Lock released and O lock hold in outerMethod().

MoTtok 1: Lock acquired and 1 lock hold in outerMethod().

[loTok 14

[ToTOK 1 5

MoTtok 1: Lock acquired and 2 lock hold in innerMethod().

[ToTOK 1 6
: nd 1 lock hold in innerMethod().

MNoTtoK 1: Lock released and O lock hold in outerMethod().

The ReentrantLock class 14/5

When to use Reentrant lock

Use ReentrantLock objects when we need something that is
not supported by synchronized, such as:

releasing threads for another job that do not receive a
lock;

waiting for a lock for a certain amount of time;

arranging a lock that can be interrupted by another
thread; the use of several variable blocking conditions or
the organization of a blocking poll.

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Semaphore 1/10

Conceptually, a semaphore maintains a set of
permits.

Each acquire() blocks if necessary until a permit is
available, and then takes it.

Each release() adds a permit, potentially releasing
a blocking acquirer.

Semaphore semaphore = new Semaphore(5);

\

permits

Semaphore 2/10
A semaphore is an object with a counter that
counts the amount of free resources.

Semaphore s = new Semaphore (3)

Neeo

L N
N—_

s.acquire() s.release()

fair

Semaphore sem = new Semaphore(5, true);
S

- 1]
Semaphore

Semaphore

Permits =3

0 |

Semaphore s = new Semaphore(3, true);

Semaphore 3/10

public class Task implements Runnable {
Semaphore semaphore;
public Task(Semaphore semaphore) {
this.semaphore = semaphore;

}

public void run() {
boolean permit = false;
try { permit = semaphore.tryAcquire(3000,
TimeUnit.MILLISECONDS);
if (permit) {
System.out.printIin(Thread.currentThread().getName()
+": Permit acquired");
sleep(5000);

Semaphore 4/10

} else {
System.out.printIin(Thread.currentThread().getName()
+": Could not acquire permit");

}

} catch (InterruptedException ex) {
} finally {
if (permit) {
semaphore.release();
System.out.printIin(Thread.currentThread(). getName()
+": Permit released");

Semaphore 5/10

public class SemaphoreDemo {
public static void main(String[] args) throws InterruptedException {
ExecutorService executor = Executors.newFixedThreadPool(10);
Semaphore semaphore = new Semaphore(3);
Task task = new Task(semaphore);
for (inti=0;i<10; i++) {
executor.submit(task);
Thread.sleep(500); //notpibHo nigbupatn yac, wWob nobaunTn

} //poboTty cemadopy
executor.shutdown();

}
J

Output: Semaphore 10/10

pool-1-thread-1: Permit acquired
pool-1-thread-2: Permit acquired
pool-1-thread-3: Permit acquired
pool-1-thread-4: Could not acquire permit
pool-1-thread-1: Permit released
pool-1-thread-5: Permit acquired
pool-1-thread-2: Permit released
pool-1-thread-6: Permit acquired
pool-1-thread-3: Permit released
pool-1-thread-7: Permit acquired
pool-1-thread-8: Could not acquire permit
pool-1-thread-9: Could not acquire permit
pool-1-thread-10: Could not acquire permit
pool-1-thread-5: Permit released

ool-1-thread-6: Permit released
poo|—!—!Hreaa-’: Permit released

CountDownlLatch 1/5

CountDownlLatch counter = new CountDownlLatch (5):

counter.await () ; count = 5 counter.countDbDown () ;

Conditions:

CountDownLatch 3/5

class Runner extends Thread {

private CountDownLatch timer;

public Runner(CountDownLatch cdl, String name) {
timer = cdl;
this.setName(name);
System.out.printin(this.getName() +

" ready and waiting to start");

start();

CountDownLatch 4/5

public void run() {
try {
timer.await();
} catch (InterruptedException ie) {
System.err.printin("interrupted -"+
"can't start running the race");
}
System.out.printin(this.getName() +
" started running");

-,
CountDownLatch 5/5

CountDownLatch counter = new CountDownLatch(5);
new Runner(counter, "Carl");
new Runner(counter, "joe");
new Runner(counter, "Jack™"),
System.out.printin("Starting the countdown ");
long countVal = counter.getCount();
while (countVal > 0) {

Thread.s/eep(1000);

System. out.printin(countVal);

if (countVal == 1) {

System.out.printin("Start"),

}

counter.countDown();

countVal = counter.getCount();

=T
CountDownlatch

run:
Carl ready and waiting to start
Joe ready and waiting to start

Jack ready and waiting to start
Starting the countdown

= N W A U

Start

Carl started running
Jack started running
Joe started running

CyclicBarrier

CyclicBarrier is a synchronization point where

a specified in constructor number of parallel threads
meet and block. Once all threads have arrived, an
option barrierAction is performed (or not performed
if the barrier was initialized without it), and, after the
barrierAction, the barrier breaks and the waiting
threads are "released".

The number of parties to be "met" and, optionally,
the action to be taken when the parties have met,
but before when they are "released” is passed to the
barrier constructor (CyclicBarrier (int parties)
and CyclicBarrier (int parties, Runnable
barrierAction))

CyclicBarrier
CyclicBarrier barrier = new CyclicBarrier(3, new BarrierAction());
parties = 3
T T
T
T

barrierAction

CyclicBarrier

 The int await() method of a CyclicBarrier object
indicates to the thread from which the method was
called that it came to the barrier. This thread is put on
WAITING state until all other threads, the number of
which is specified in the constructor as a party
parameter, reach the barrier (they will call the int
await() method of the CyclicBarrier object).

 There is an int await (long timeout, TimeUnit unit)
method of the CyclicBarrier object, which puts the
current thread on WAITING state until all other
threads reach the barrier or the time interval
specified as a parameter expires.

CyclicBarrier

public class Car implements Runnable {
private int carNumber;
public Car(int carNumber) {
this.carNumber = carNumber;

}
@Override
public void run() {
try {
System.out.printf("Car Ne%d drove up to the ferry.\n",
carNumber);
Ferry.BARRIER.await();
System.out.printf("Car Ne%d continued to move.\n",
carNumber);
} catch (Exception e) { }
8

CyclicBarrier
public class FerryBoat implements Runnable {
@Override
public void run() {
try {

Thread.sleep(500);
System.out.printIn("FerryBoat ferrying cars!");
} catch (InterruptedException e) {

}
}
}

CyclicBarrier

public class Ferry {

static final CyclicBarrier BARRIER =
new CyclicBarrier(3, new FerryBoat());

public static void main(String[] args) throws InterruptedException {
for(inti=0;i<9;i++){
new Thread(new Car(i)).start();
Thread.sleep(400);

}
}
}

CyclicBarrier

Output:

Car NeO drove up to the ferry.
Car Nel drove up to the ferry.
Car Ne2 drove up to the ferry.
Car Ne3 drove up to the ferry.
FerryBoat ferrying cars!

Car Ne2 continued to move.
Car Nel continued to move.
Car NeO continued to move.
Car Ne4 drove up to the ferry.
Car Ne5 drove up to the ferry.
Car Ne6 drove up to the ferry.

Car Ne3 continued to move.
Car Ne5 continued to move.
Car Ne4 continued to move.
Car Ne7 drove up to the ferry.
Car Ne8 drove up to the ferry.
FerryBoat ferrying cars!

Car Ne8 continued to move.
Car Ne7 continued to move.
Car Ne6 continued to move.

The barrier is called Cyclic because
it can be reused after the expected
streams are released.

FerryBoat ferrying cars!

Exchanger

Exchanger<V> objects can exchange data
between two threads at a certain point in both
threads. The exchanger is the point of
synchronization of a pair of threads: the thread
that calls the exchanger method

V exchange(V x) is blocked and waiting for
another thread. When another thread calls the
same method, objects will be exchanged: each
will receive an argument of the V exchange(V x)
method called in another thread.

- 1]
Exchanger

Exchanger<String> exchanger = new Exchanger<>();

exchanger.exchange(“Some string”);

Exchanger

public class Truck implements Runnable {
private int number;
private String dep;
private String dest;
private String[] parcels;
public Truck(int number, String departure,
String destination, String[] parcels) {
this.number = number;
this.dep = departure;
this.dest = destination;
this.parcels = parcels;

= Exchanger
@Override

public void run() {
try {
System.out.printf("The truck Ne%d was loaded with:
%s n %s.\n", number, parcels[0], parcels[1]);
System.out.printf("The truck Ne%d went from point
%s to point %s.\n", number, dep, dest);
Thread.sleep(1000 + (long) Math.random() * 5000);
System.out.printf("The truck Ne%d arrived at point E.\n", number);
parcels[1] = Delivery.EXCHANGER.exchange(parcels[1]);
System.out.printf("The parcel for point %s was
moved to truck Ne%d.\n", dest, number);
Thread.sleep(1000 + (long) Math.random() * 5000);
System.out.printf("Truck Ne%d arrived at point %s and delivered
the parcels: %s and %s.\n", number, dest, parcels[0], parcels[1]);
} catch (InterruptedException e) { } }}

Exchanger

public class Delivery {
static final Exchanger<String> EXCHANGER = new Exchanger<>();
public static void main(String[] args) throws InterruptedException {
String[] p1 = new String[l{"{parcel A->D}",
"{parcel A->C}"}; //for 1-st truck
String[] p2 = new String[]{"{parcel B->C}",

"{parcel B->D}"}; //for 2-nd truck
new Thread(new Truck(1, "A", "D", p1)).start();
Thread.sleep(100);
new Thread(new Truck(2, "B", "C", p2)).start();

}
J

=
Exchanger

Output:

The truck Ne1 was loaded with: {parcel A->D} u {parcel A->C}.

The truck Nel went from point A to point D.

The truck Ne2 was loaded with: {parcel B->C} u {parcel B->D}.

The truck Ne2 went from point B to point C.

The truck Ne1l arrived at point E.

The truck Ne2 arrived at point E.

The parcel for point D was moved to truck Neo1l.

The parcel for point C was moved to truck No2.

Truck Ne1l arrived at point D and delivered the parcels: {parcel A->D}
and {parcel B->D}.

Truck No2 arrived at point C and delivered the parcels: {parcel B->C}
and {parcel A->C}.

Phaser

Phaser allows to synchronize threads that
represent a single phase or stage of a common

action.

Phaser determines the synchronization object
that waits until a certain phase is completed.
Phaser then moves on to the next phase and
waits for it to complete again.

Phaser

* To create a Phaser object, you use one of the
constructors:
Phaser ()
Phaser (1nt parties)
Phaser (Phaser parent)
Phaser (Phaser parent, 1nt parties)

parties - the number of parties (threads) that
must perform all phases of the action.

parent -the parent Phaser object.

=
Phaser

Basic methods of the Phaser class:

* int register() - registers a new party that
performs phases, and returns the number of the
current phase (usually phase 0);

* int arrive() - reports that the party has
completed the phase and returns the number of
the current phase, when calling this method,
the thread does not stop, but continues to run;

* int arriveAndAwaitAdvance() is similar to the
arrive() method, except that it causes the
Phaser object to wait for all other parties to

complete the phase;
-

=
Phaser

* int awaitAdvance(int phase) - if phase is equal to
the current phase number, suspends the thread in
which this method is called until the end of the
current phase. Returns the number of the next
phase, or an argument if it is negative, or a
(negative) current phase if it is complete;

* int arriveAndDeregister() - notifies the completion
of all phases by the party and removes it from
registration. Returns the current phase number or
a negative number if the Phaser synchronizer has
shut down;

* int getPhase() - returns the current phase number.
-

Phaser
 When working with the Phaser class, its object is

usually created first. Next, you need to register all
the parties (flows) involved in the implementation
of the phases by register() method (or by
constructor with parameters).

 Then each side (thread) performs a certain set of
actions that make up the phase. And the Phaser
synchronizer waits until all parties (threads) finish
completion of execution of a phase. To notify the
synchronizer that a phase is complete, the party
(thread) must call the arrive() or arriveAndAwait
Advance() method. After that, the synchronizer

—RI0CEEds TO the next phase.

|
Phaser

arriveAndAwaitAdvance(); =

arrive(); phE?SE I Phaser
awaitAdvance(i); partles =5

arriveAndDeregister(); arrived =0

register();

Phaser

public class Passenger extends Thread {

int departure;

int destination;

public Passenger(int departure, int destination) {
this.departure = departure;
this.destination = destination;
System.out.printIn(this + " waiting at the bus stop Ne"

+ this.departure);

}

@Override

public void run() {

try {
System.out.printIn(this + " got on the bus.");

=T
Phaser

while (Bus.PHASER.getPhase() < destination) {

/*TOTOYHMM NOTIK 3aBepLInB Pasy, OUYiKYEMO
3aBeplleHHs ¢asn iHWMMM NoToKammu™/

Bus.PHASER.arriveAndAwaitAdvance();

}

Thread.sleep(1);

System.out.printin(this + " left the bus.");

/*Bci ¢a3n noTouyHmi NoTiK 3asepins™®/

Bus.PHASER.arriveAndDeregister();

} catch (InterruptedException e) {

}

}
@Override

public String toString() {
return "Passenger{" + departure + " ->

1}

+ destination + '};

Phaser
public class Bus {
static final Phaser PHASER = new Phaser(1); //Peectpaliis
//noTtoKky Main. ®a3un 0 Ta 6 - aBTOOYCHUIMN NapK, 1 - 5 3ynuHKM
public static void main(String[] args) throws InterruptedException {
ArrayList<Passenger> passengers = new ArrayList<>();
for (inti=1;i<5;i++) { //TeHepalis nacaxupis
if ((int) (Math.random() * 2) > 0) {
passengers.add(new Passenger(i, i + 1)); //BuxoanTb Ha
} //HaCTYNHIM 3ynuHL,
if ((int) (Math.random() * 2) > 0) {
passengers.add(new Passenger(i, 5)); //BuxoanTb Ha KiHLEBIN
} //3ynuHLj
}

Phaser
for(inti=0;i<7;i++){
switch (i) {
case O:

System.out.printin("The bus left the park.");
/*MoTik Main (aBTobyc) 3aBepwmns ¢asy 0*/
PHASER.arrive();
break;

case 6:
System.out.printIn("The bus went to park.");
/*MoTik Main (aBTobYyc) 3aBeplms Bci pasn*/
PHASER.arriveAndDeregister();
break;

Phaser
default:

int currentBusStop = PHASER.getPhase();
System.out.printin("Bus stop N2 " + currentBusStop);
/*TMepeBipaemo, UM € NacakmMpu Ha 3ynuHLi*/
for (Passenger p : passengers) {
if (p.departure == currentBusStop) {
/*AKLLO Ha 3yNUHLL € Nacaxmpm,
PEECTPYEMO HOBUMN NOTIK*/
PHASER.register();
p.start();
} }
/*MoTOYHUI NOTIK 3aBepLunB dhasy, O4iKYEMO
ii 3aBepleHHA iIHWKMMM NoToKammu™/
PHASER.arriveAndAwaitAdvance();
} //KiHeupb switch

5 } //KiHeup for bl

=
Output: Phaser

Passenger{2 -> 3} waiting at the bus stop No 2
Passenger{4 -> 5} waiting at the bus stop N2 4
Passenger{4 -> 5} waiting at the bus stop N2 4
The bus left the park.
Bus stop Ne 1
Bus stop Ne 2
Passenger{2 -> 3} got on the bus.
Bus stop N2 3
Passenger{2 -> 3} left the bus.
Bus stop Ne 4
Passenger{4 -> 5} got on the bus.
Passenger{4 -> 5} got on the bus.
Bus stop N2 5
Passenger{4 -> 5} left the bus.
Passenger{4 -> 5} left the bus.
" The bus went to the park.

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Compare And Swap (CAS) algorithm

There are 3 parameters for a CAS operation:

* amemory location V where value has to be replaced

* old value A which was read by thread last time

* new value B which should be written over V

1) Suppose first V =10 and there are threads 1 and 2 that want to
read and increment the values in the memory cell V:
V=10,A,=0,B,=0,A,=0,B,=0

2) Threads 1 and 2 want to increase the value of V, they both read
the value:
V=10,A,=10,B,=0,A,=10,B,=0

3) Threads 1 and 2 increase the read value by 1 in their local
variables (also remembering the previous values):
vV=10,A,=10,B,=11,A,=10,B,=11

.. Compare And Swap (CAS) algorithm

4) Let thread 1 access the memory cell first and

5)

compare the value of V with the last read value:
vV=10,A,=10,B,=11,A,=10,B,=11

if (A==V){
V will be swapped as 11: V=B
v=11,A,=11,B,=11,A,=10,B,=11 }else {

When thread 2 accesses a memory cell, /) operation failed
it performs a similar operation: return V

In this case, V =11 is not equal to A, = 10, so the value is not
replaced and returns the current value of V= 11. Thread 2
updates the last read value in A,
v=11,A,=11,B,=11,A,=11,B,=11

Compare And Swap (CAS) algorithm

6)

7)

Now thread 2 will repeat the increment operation again with
the values:

vV=11,A,=11,B,=11,A,=11,B, =12

When thread 2 now has access to the cell and no other thread
has changed its value during this time, it executes the CAS-
algorithm, replaces the value of V with its incremental
(because A, =11 was equal to V = 11). \

New values will be: _
V=12,A,=11,B,=11,A, =11, B, =12 I8 ==V

} else {
operation failed

}

return V

Atomics

java.util.concurrent.atomic

Jjava.io. Seralizable Number Number Jjava.io.Senalizable Jjava.io. Serializable
AtomicBoolean java.io.Senalizable java.io.Senalizable AtomicintegerArray AtomicLongArray
Atomicinteger AtomicLong
v v v E
java.ic. Serializable AtomicMarkableReference Atomic StampedReference java.ic.Senalizable
AtomicReference AtomicReferenceArray
T T
f v
AtomicintegerFieldUpdater AtomicLongFieldUpdater AtomicReferenceFieldUpdater All since 1. Eﬁ

Added in Java 5

Atomics

AtomicBoolean, Atomicinteger, AtomicLong,
AtomicReference:

boolean compareAndSet (type expect, type update) -
takes two arguments of the corresponding types: the estimated
current and new value. The method atomically sets the object to a
new value If the current value is equal to the expected one, and
returns true. If the current value changes, the method will return
false and the new value will not be set.

type getAndSet (type newValue) - atomically
unconditionally sets a new value and returns the old one.

In addition Atomicinteger and AtomicLong has:

type getAndIncrement () - atomic increment of the current
value and return of the old value (equivalent to the operation i++);
type incrementAndGet () - atomic increment of the current

ngHg 2”9 return gf thg gld value after increase (equivalent to
operation ++1); ... tvpe is boolean or int or long or V

=
Atomics

type getAndDecrement () - atomic decrement of current
value and return of old value (equivalent to operation i--);

type decrementAndGet () - atomic decrement of the current
value and return of the old value after reduction (equivalent to the
-—1 operation);

type addAndGet (type delta) - atomic addition of value-
argument to the current one, returns a new value after addition;
type getAndAdd (type delta) - atomic addition of an
argument value to the current one, returns the old value.

Also, all these classes have methods for obtaining the current
value of type get () and unconditionally setting the specified

value of void set (type newValue).

tvpe is boolean or int or long or V

Atomics

AtomicintegerArray, AtomicLongArray,
AtomicReferenceArray contain methods for working with array
elements, similar to the methods of the classes Atomicinteger,
AtomicLong, AtomicReference. The difference between these

methods is In adding an additional argument that points to the
Index of the element in the array i, for example,

boolean compareAndSet (1int 1, type expect, type
update), type getAndIncrement (int 1), etC.

tvpe is boolean or int or long or V

Atomics

AtomicintegerFieldUpdater, AtomicLongFieldUpdater,
AtomicReferenceFieldUpdater contain methods for updating the
values of object fields by their names using reflection, similar to
the methods of the Atomiclnteger, AtomicLong, AtomicReference..
The difference between these methods is adding an additional
argument indicating the ob7j object whose field is being updated,
for example, boolean compareAndSet (T obj, type
expect, type update), type getAndIncrement method
(T ob7), etc.
The AtomicMarkableReference class supports object references
along with a tag bit that can be updated atomically.
The AtomicStampedReference class supports a reference to an
object along with an integer "stamp" that can be updated
atomically.
-

Atomic Variables 1/5

Composite read/write operations such as the
increment/decrement operation on volatile variables
are not performed atomically

class MyCounter {

public int cnt1;

public volatile int cnt2;

public Atomicinteger cnt3 = new Atomiclnteger(0);

}

Atomic Variables 2/5

class MyCountThread extends Thread{
MyCounter m,;
int n;
public MyCountThread(MyCounter m,int n){
this.m = m; this.n =n;
}
public void run(){
for(int i=0;i<n;i++)
{
this.m.cnt1++; this.m.cnt2++;
this.m.cnt3.getAndIncrement();

}
}
}

Atomic Variables 3/5

public static void main(String[] args) {
MyCounter m = new MyCounter();\
MyCountThread[] tg = new MyCountThread[100];
for(inti=0;i<100; i++){
tg[i] = new MyCountThread(m,1000000);
}
for(MyCountThread t:tg){
t.start();

}

Atomic Variables 4/5

try {
for(MyCountThread t:tg){

t.join();
}
} catch (InterruptedException e) {
e.printStackTrace();
¥
System.out.printf("int: %s ,volatile: %s,
Atomic: %s", m.cnt1,m.cnt2,m.cnt3);

}

Console output
int: 49793826 ,volatile: 99998132,Atomic: 100000000

Atomic Variables 5/5

increment

Thread A
Thread B
Integer

Time

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

Synchronized Collections

java.util.Collections has methods that return synchronized
collections:

public static <T> Collection<T>
synchronizedCollection(Collection<T> c),

public static <T> List<T> synchronizedList(List<T> list),

public static <T> Set<T> synchronizedSet(Set<T> s),

public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m),

public static <T> SortedSet<T>
synchronizedSortedSet(SortedSet<T> s),

public static <K,V> SortedMap<K,V>

synchronizedSortedMap(SortedMap<K,V> m)

Synchronized collections are static nested classes of the
Collections class and have fields - a reference to the backed
collection (parameter of the corresponding method from the

above) and the object whose monitor is used for synchronization
-

Synchronized Collections
In java.util.Collections:

static class SynchronizedCollection<E>
Implements Collection<E>, Serializable {

final Collection<E> c; // Backing Collection
final Object mutex; // Object on which to synchronize

SynchronizedCollection(Collection<E> c) {
this.c = Objects.requireNonNull(c);
mutex = this;

}

public boolean add(E e) {
synchronized (mutex) {return c.add(e);}

}

Svnchronized collections are low efficiency

Concurrent Collections 1/16

Concurrent, thread safe implementations of
several collections

Queues — ConcurrentLinkedQueue or one of the
blocking queues

HashMap — ConcurrentHashMap
TreeMap — ConcurrentSkipListMap
ArraylList — CopyOnWriteArrayList
ArraySet — CopyOnWriteArraySet

since Java 5

Concurrent Collections 2/16

java.util.concurrent | java.util I
F e —ET1
winterface» ~ =1 _ _ _ _ _ _ _ _ | ArrayBlocking | —
BlockingQueue 1 Queue
1
1 —_——
1 I E :
l _ _ | LinkedBlocking T
S — 1 Queue
F e 1 F e i —
winterface» ~ | ’ «winterface» ~— | . : —: E :
TransferQueue BlockingDeque 1 PriorityBlocking T —
| I Queue R I
A A : - SN
r_E_—i _Jﬁ'—g—' 1 '—E—i —~{ an tQue = — «interface» =
o [1 strac ue - —
LinkedTransfér T — ' | LinkedBlockirig ! __ | synchronous™ T —F Queue
Queue Deque 1 Queue
1
P e emeee—— =i i F==
-—— I —{_E: Delayed : — 1_ & 1 — .E._ -:
1 KV — 0 ! e e Abstract sinterfaces
i e i K,V L—— - DelayQ
«interface» | i | ayQlueue Collection Deque
ConcurrentMap e] Concurrent 'I' A | A
HashMap
== 1 |
— &] I
=== Concurrent” | — !
K,V 1 LinkedQueue |
ainterfacen '— — —! 1 K.V | e —————— 1
Concurrent o - Concurrent | o |
NavigableMap SkipListMap e ¥
i 1
Concurrent” | :
= | LinkedDeque }+— — — — —+ — — — 4 — — — — — — — — F——=
— E | —————— E |
copyonwrite [.. winterface» ~ |
ArrayList | T T T T - List
—En ———t —E —— e
CopyOnWrite | — Concurrent™ T S iy winterfaces — |
ArraySet SkipListSet [AbstractSet I potiny

Concurrent Collections 3/16

Thread 2

* The BlockingQueue

Thread 1

BlockingQueue

- D:D]:D =

Concurrent Collections 4/16

class Producer implements Runnable {
private final BlockingQueue<Long> queue;
private long i;
Producer(BlockingQueue<Long> q) { queue = q; }
public void run() {
try {
while (IThread. currentThread).isinterrupted()) {
queue.put(produce());
Thread.s/eep(1000);

}
} catch (InterruptedException ex) { }

}
Long produce() {
return i++;

}

}
N

Concurrent Collections 5/16

class Consumer implements Runnable {
private final BlockingQueue<Long> queue;
Consumer(BlockingQueue<Long> q) {

queue =q; }
public void run() {
try {

while (IThread.currentThread().isInterrupted()) {
consume(queue.take()); }
} catch (InterruptedException ex) { }
¥
void consume(Long dt) {
System.out.printin(dt);

}
}

Concurrent Collections 6/16

public static void main(String[] args)X
BlockingQueue<Long> g = new ArrayBlockingQueue<>(10);
Producer p = new Producer(q);
Consumer ¢1 = new Consumer(q);
new Thread(p).start();
try {
Thread.s/eep(5000);
} catch (InterruptedException e) {
e.printStackTrace();

}
new Thread(c1).start();

Concurrent Collections 7/16

Console output

Ooo~NOOULL B~ WDND - O

[N
o

Ha camom pene BHavane
NOCTaBLLMKOM B ouepeab
NOCTaBAAIOTCA 3/IEMEHTbI

B TeueHne 5cekc0no 4,

a 3aTem 3anycKaeTca notpeburens,
norpebéasaiowme KaxKayto CEKyHAY
anemeHTbl c0 no 10

W NOKa OH noTtpebnser c0 no 4
3/1eMEeHT, NOCTaBLMK ycneBaeT
£06aBuTb B ouepeab ocTasLuMecs
c5no 10.

Concurrent Collections 8/16
* The BlockingDeque

Thread 1 Thread 2

Put/Take D:D:D] Put/Take

BlockingQueue

Concurrent Collections 9/16

- The ConcurrentHashMap

Segment|]

HashEntry|]

Concurrent Collections 10/16

public class TestConcHashMap extends Thread{
private String name;

private static Map<String,String> cmap=new
ConcurrentHashMap<String,String>();

TestConcHashMap(String name){
this.name=name;

}

public void run() {
cmap.put(name+"1","A");
cmap.put(name+"2","B"),
cmap.put(name+"3","C");
cmap.put(name+"4","D");
cmap.put(name+"5","E"),
System.out.printin(name +" completed.");

Concurrent Collections 11/16

public static void main(String[] args) {
TestConcHashMap th1= new TestConcHashMap("One");
TestConcHashMap th2= new TestConcHashMap("Two");
th1.start(); th2.start();
try {
th1.join(); th2.join();
} catch (InterruptedException e) {
e.printStackTrace();
Y

System.out.printin(cmap);

Concurrent Collections 12/16

Console output

One completed.

Two completed.

{Twol=A, Two3=C, Onel=A, Two2=B, Two5=E, Two4=D, One3=C,
One2=B, One4=D, One5=E}

=
CopyOnWrite collections

E
E
List
RandomAccess AbstractSet
Cloneable java.io.Senalizable
java.io.Serializable £ — = — = — = = = CopyOnWriteArray Set
CopyOnWriteArrayList

CopyOnWriteArraylList<E> - additional methods:

int indexOf(E e, int index)

int lastindexOf(E e, int index)

boolean addifAbsent(E e)

int addAllAbsent(Collection<? extends E> c)

CopyOnWriteArraySet<E> - no additioanl methods
—

Concurrent Collections 13/16

public class TestCopOnWrArrLst {
public static void main(String[] args){

final CopyOnWriteArrayList<integer> numbers =
new CopyOnWriteArrayList<>(Arrays.asL/s1, 2, 3, 4, 5));

/7 new thread to concurrently modify the list
new Thread(new Runnable() {

Concurrent Collections 14/16

@OQOverride
public void run() {
try {
Thread.sleep(250);
} catch (InterruptedException e) {
e.printStackTrace();
}

numbers.add(10); here array is copied - see next slide
System.out.printin("numbers:" + numbers);

}
}).start();

Concurrent Collections 15/16

for (inti: numbers) {
System.out.printin(i);
try {
Thread.s/eep(100);
} catch (InterruptedException e) {
e.printStackTrace();

Concurrent Collections 16/16

Console output

1

2

3

numbers:[1, 2, 3, 4, 5, 10]
4

5

add(E e) method of
CopyOnWriteArraylist

private transient volatile Object[] array;

public boolean add(E e) {

final ReentrantLock lock = this.lock;

lock.lock();

try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);
newElements[len] = e;
setArray(newElements);
return true;

} finally {
lock.unlock();

}
—

Module contents

- Introduction to Concurrent Programming
- Creating Threads

- Important Methods of the Thread class

_ Thread interruption. The interrupt() method
- The States of a Thread

- The Thread Scheduler. Thread Priority

- The Daemon Threads

- Thread Synchronization

- Synchronized Methods

- Synchronized Blocks

- The Wait/Notify Mechanism

- The Volatile Keyword

- Deadlocks

- Threads pool

- The ReentrantLock class

- Synchronizers

- Atomic Variables

- Concurrent Collection

- The Fork-Join Framework

The Fork-Join Framework 1/12

The fork/join framework is an implementation of
the ExecutorService interface that helps you take
advantage of multiple processors

It is designed for work that can be broken into
smaller pieces recursively.

The goal is to use all the available processing
power to enhance the performance of your

application.
The fork / join framework distributes tasks for
worker threads in a thread pool. Worker threads
that have completed their task can intercept (steal)

tasks from other threads that are still busy.
-

since Java /

Fork-Join Framework

v
AbstractExecutorService
zinterfaces
Future
.. b oo e e e e e e

The Fork-Join Framework 2/12

- Work Stea”ng Initial state
| | | |

5
==

The Fork-Join Framework 3/12

- Work Steali ng

Other threads are idle until the first thread finished

*

The Fork-Join Framework 4/12

The fork/join framework is
distinct because it uses
a work-stealing algorithm

Worker threads that run
out of things to do can
steal tasks from other
threads that are still busy

The fork and join principle
consists of two steps which
are performed recursively.
These two steps are the
fork step and the join step.

The Fork-Join Framework 6/12

Problem

Problem 1

Problem 2

Problem 1a

(worker 1)

Problem 1b

Problem 2a Problem2b

Problem 1b

worker 2

The Fork-Join Framework 7/12

73

fork and
compute

begin

=begin

compute

=i [—

ol©|o|~N|o|u|a|w|in| =

—end

.end

ol©|®| [N|o| |o|a]w|[™N]=

Join
/ rightAns
) 3
worker-0
=115
/
12 ___worker-2 HightAn
leftAns
rightAns
) 13
worker-1
\ >[40
worker-3 leftAns
271
| leftAns

Fork and join

55

The Fork-Join Framework 8/12

public class SumOfNUsingForkjoin {
private static long /= 1000_000L,;
private static final int NUM_THREADS = 10;
static class RecSumOfN extends RecursiveTask<Long> {
long from, to;
public RecSumOfN(long from, long to) {
this.from = from;
this.to = to;

The Fork-Join Framework 9/12

public Long compute() {
if (to - from) <= N/ NUM_THREADS) {
long localSum = 0;
for (long i = from; i <= to; i++) {
localSum +=i;
}
System.out.printf("\t Summing of range %d to %d is %d %n",
from, to, localSum);
return localSum;
} else {
long mid = (from + to) / 2,
System.out.printf("Forking into two ranges: " +
"%d to %d and %d to %d %n", from, mid, mid, to);
RecSumOfN firstHalf = new RecSumOfN(from, mid);
firstHalf.fork();
RecSumOfN secondHalf = new RecSumOfN(mid + 1, to);
long resultSecond = secondHalf.compute();
return firstHalf.join() + resultSecond;

The Fork-Join Framework 10/12

public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool(NUM_THREADS);

long computedSum = pool.invoke(new RecSumOfN(0, N));
long formulaSum = (N* (N+ 1))/ 2;

System.out.printf("Sum for range 1..%d; computed sum =
%d, formula sum = %d %n", N,computedSum, formulaSum);

}
}

The Fork-Join Framework 11/12

Console output

Forking computation into two ranges: 0 to 500000 and 500000 to 1000000
Forking computation into two ranges: 500001 to 750000 and 750000 to 1000000
Forking computation into two ranges: 750001 to 875000 and 875000 to 1000000
Forking computation into two ranges: 875001 to 937500 and 937500 to 1000000
Forking computation into two ranges: 0 to 250000 and 250000 to 500000
Forking computation into two ranges: 250001 to 375000 and 375000 to 500000
Forking computation into two ranges: 375001 to 437500 and 437500 to 500000
Summing of range 937501 to 1000000 is 60546906250
Summing of range 437501 to 500000 is 29296906250
Summing of range 375001 to 437500 is 25390656250
Forking computation into two ranges: 250001 to 312500 and 312500 to 375000
Forking computation into two ranges: 0 to 125000 and 125000 to 250000
Summing of range 875001 to 937500 is 56640656250
Forking computation into two ranges: 750001 to 812500 and 812500 to 875000

Forking computation into two ranges: 125001 to 187500 and 187500 to 250000
s |

The Fork-Join Framework 12/12

Summing of range 187501 to 250000 is 13671906250
Summing of range 125001 to 187500 is 9765656250
Summing of range 312501 to 375000 is 21484406250
Summing of range 812501 to 875000 is 52734406250
Forking computation into two ranges: 0 to 62500 and 62500 to 125000
Summing of range 62501 to 125000 is 5859406250
Summing of range 0 to 62500 is 1953156250
Forking computation into two ranges: 500001 to 625000 and 625000 to 750000
Forking computation into two ranges: 625001 to 687500 and 687500 to 750000
Summing of range 687501 to 750000 is 44921906250
Summing of range 625001 to 687500 is 41015656250
Forking computation into two ranges: 500001 to 562500 and 562500 to 625000
Summing of range 562501 to 625000 is 37109406250
Summing of range 500001 to 562500 is 33203156250
Summing of range 250001 to 312500 is 17578156250
Summing of range 750001 to 812500 is 48828156250
Sum for range 1..1000000; computed sum = 500000500000, formula sum = 500000500000

