

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods in the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Semaphore
₋ Synchronizers
₋ Concurrent Collection
₋ The Fork-Join Framework

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods in the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

Java 5 - 2004

Amdahl's law

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods in the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

and pass it
to Thread class constructor

User class

Runnable interface - is an abstraction of the task
running in the thread and allows you to distinguish
task execution from the logic of thread management

Thread.currentThread.getId()

run1.run(); - does not create new thread

long getId();

th1.run(); - does not create new thread

Thread restart without creating new thread
throws IllegalThreadStateException

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods in the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

(calls the interrupt() method from the
sleeping thread).

Important methods in the Thread class 7/8

public class ThreadYield {

public static void main(String[] args) {

Runnable r = () -> {

int counter = 0;

while(counter < 2){

System.out.println(Thread.currentThread().getName());

counter++;

Thread.yield();

}

};

new Thread(r).start();

new Thread(r).start();

}

} Runnable is the Functional interface

Important methods in the Thread class 8/8

Output:

Thread-0

Thread-1

Thread-0

Thread-1

Thread-0

Thread-1

Thread-1

Thread-0

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods in the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

Thread work termination
public class MyThread implements Runnable {

private boolean isActive;
MyThread() {

isActive = true;
}
void disable() {

isActive = false;
}
public void run() {

System.out.println(Thread.currentThread().getName() +" started");
int counter = 1;
while (isActive) {

System.out.println("Loop " + counter++);
try {Thread.sleep(400);} catch (InterruptedException e) {}

}
System.out.println(Thread.currentThread().getName() + " finished"); Ї

Thread work termination…
public static void main(String[] args) {

System.out.println("Main thread started");
MyThread myThread = new MyThread();
new Thread(myThread, "MyThread").start();
try {

Thread.sleep(1100);
myThread.disable();
Thread.sleep(1000);

} catch (InterruptedException e) {
System.out.println("Thread interrupted");

}
System.out.println("Main thread finished");

}
}

• For the interrupt mechanism to be used correctly, the
thread to be interrupted must ensure that the
Interrupt Status Flag value is checked in a loop by the
isInterrupted() method or that its interrupt is
processed, for example, by interrupting and handling
an InterruptedException.

public class MyTestThread extends Thread{
@Override
public void run() {

int i =0;
while(!isInterrupted()){

System.out.println("Thread " + getName() + " i=" + i++);
} }

public static void main(String[] args) {
MyTestThread th1 = new MyTestThread();
th1.start();
try {

Thread.sleep(50);
} catch (InterruptedException e) {

e.printStackTrace();
}
th1.interrupt(); } }

true){

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

new Thread(new Runnable(…)

start()

yield()
chosen by
Thread Scheduler
to execute

chosen by
Thread Scheduler
to suspend

run()
finished

join
join(t)

joined thread run() has finished
or elapsed time has expired

The States of a Thread
public class ThreadStatesTest extends Thread {

@Override
public void run() {

try {
System.out.println(getName() + " sleep(50)");
Thread.sleep(50);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
System.out.println(getName() + " finished");

}
public static void main(String[] args) {

try {
Thread t = new ThreadStatesTest();
System.out.println(t.getName() + " is created");
…

The States of a Thread…
printInfo(1, t);
System.out.println(t.getName() + " start()");
t.start();
printInfo(2, t);
System.out.println(Thread.currentThread().

getName() + " sleep(10)");
sleep(10);
printInfo(3, t);
/*joins main to t*/
System.out.println(t.getName() + " t.join()");
t.join();
printInfo(4, t);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
System.out.println(Thread.currentThread().getName() + " finished");

} …

The States of a Thread…
private static void printInfo(int count, Thread t) {

System.out.println(String.valueOf(count) + ": "
+ t.getName() + ", State: " + t.getState()
+ ", isAlive=" + t.isAlive());

}
}

Output:
Thread-0 is created
1: Thread-0, State: NEW, isAlive=false
Thread-0 start()
2: Thread-0, State: RUNNABLE, isAlive=true
main sleep(10)
Thread-0 sleep(50)
3: Thread-0, State: TIMED_WAITING, isAlive=true
Thread-0 t.join()
Thread-0 finished
4: Thread-0, State: TERMINATED, isAlive=false
main finished

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

The Thread Scheduler. Thread Priority 3/3
public class MyTestThread extends Thread {

private double d;

@Override
public void run() {

for (int i = 1; i < 10000000; i++) { //heavy computational task
d += (Math.PI + Math.E) / (double) i;

}
System.out.println("Thread :" + getName() +

", Priority=" + getPriority());
}

public static void main(String[] args) {
int numThreads = 8; //must be even
MyTestThread[] threads = new MyTestThread[numThreads];
…

The Thread Scheduler. Thread Priority 3/3
…

for (int i = 0; i < numThreads; i = i + 2) {
threads[i] = createThread(Thread.MIN_PRIORITY);
threads[i + 1] = createThread(Thread.MAX_PRIORITY);

}
for (MyTestThread thread : threads) {

thread.start();
}

}

private static MyTestThread createThread(int priority) {
MyTestThread th = new MyTestThread();
th.setPriority(priority);
return th;

}
}

The Thread Scheduler. Thread Priority 3/3

Output:
Thread :Thread-7, Priority=10
Thread :Thread-1, Priority=10
Thread :Thread-3, Priority=10
Thread :Thread-5, Priority=10
Thread :Thread-2, Priority=1
Thread :Thread-0, Priority=1
Thread :Thread-4, Priority=1
Thread :Thread-6, Priority=1

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

Non-Synchronized increment

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

public synchronized void testSync() {
//...
myCount++;

}

this is equivalent to

Synchronized Blocks 6/7
public static void main(String[] args) {

/*Создаётся счёт с начальной суммой*/
UserAccount acc = new UserAccount(500);
for (int i = 0; i < 5; i++) {

/*Создаются потоки, забирающие по 100 со счёта*/
UserAction act = new UserAction(acc, 100);
act.start();

}
try {

Thread.sleep(1000);
} catch (InterruptedException ex) {

ex.printStackTrace();
}
System.out.println("Баланс = " + acc.getMoney());

}

Output:

Get 100 from the account

Get 100 from the account

Get 100 from the account

Get 100 from the account

Get 100 from the account

Баланс = 200

Synchronized method
vs Synchronized block

1. Synchronized block reduce scope of lock. As scope of lock
is inversely proportional to performance, its always better
to lock only critical section of code.

2. For synchronized block you can use arbitrary any lock to
provide mutual exclusion to critical section code. On the
other hand synchronized method always lock either on
current object represented by this keyword or class level
lock, if its static synchronized method.

3. Synchronized block can throw NullPointerException if
expression provided to block as parameter evaluates to
null, which is not the case with synchronized methods.

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

public class GuardedLoop {
private boolean joy;
public void guardedJoy() {

while (!joy) { //guarded block
System.out.println("Iterating...");
try { sleep(1000); } catch InterruptedException ex) {
}

}
System.out.println("Joy has been achieved!");

}
public void setJoy(boolean joy) {

this.joy = joy;
}

}

Guarded block example

Wastes processor time.
Don't do this!

Guarded block example
public class GuardedLoopThread extends Thread {

GuardedLoop gl;
public GuardedLoopThread(GuardedLoop gl) {

this.gl = gl;
}
@Override
public void run() {

try {
sleep(3000);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
gl.setJoy(true);

}
…

Guarded block example
…

public static void main(String[] args) {
GuardedLoop gl = new GuardedLoop();
GuardedLoopThread loopThread =

new GuardedLoopThread(gl);
loopThread.start(); //thread-deblocker start
gl.guardedJoy(); //method with guard block start

}
}

Output:
Iterating...
Iterating...
Iterating...
Joy has been achieved!

The Wait/Notify Mechanism
public class GuardedLoop {

private boolean joy;
public synchronized void guardedJoy() {

while (!joy) {
System.out.println("Iterating...");
try {

wait();
} catch (InterruptedException ex) {
}

}
System.out.println("Joy and efficiency has been achieved!");

}
public synchronized void notifyJoy() {

joy = true;
notify();

} }

The Wait/Notify Mechanism
public class GuardedLoopThread extends Thread {

GuardedLoop gl;
public GuardedLoopThread(GuardedLoop gl) {

this.gl = gl;
}
@Override
public void run() {

try {
sleep(3000);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
gl.notifyJoy();

}
…

The Wait/Notify Mechanism
…

public static void main(String[] args) {
GuardedLoop gl = new GuardedLoop();
GuardedLoopThread loopThread =

new GuardedLoopThread(gl);
loopThread.start(); //запуск потока-разблокировщика
gl.guardedJoy(); //запуск метода с защищенным блоком

}
}

Output:
Iterating...
Joy and efficiency has been achieved!

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

The volatile keyword
Declaring a block of code (or method) synchronized has two

important implications, commonly referred to as atomicity

and visibility.

Atomicity means that only one thread can execute code

protected by a given object-monitor (lock) at a time,

preventing collisions of threads during the update of a state

that is accessible from many threads.

Visibility is related to the features of memory caching and

program optimization during compilation. If the developer

used synchronization, it will be checked at runtime that

variable updates performed by one thread before exiting the

synchronized block will be immediately visible to another

thread when it enters the synchronized block protected by the

same monitor (lock).

The volatile keyword
The volatile keyword only applies to variables and has the

following effects in multithreaded programming:

1) the variable is always read from the main memory, and is

never cached into the thread's memory, which means it is

always available to any thread;

2) for read and write requests from multiple threads, the system

guarantees that the write requests are first executed;

3) the atomicity of read/write operations is guaranteed,

although this is relevant only for variables of type long and

double, for other types these actions are already atomic.

For all other operations like ++, synchronization is done

externally, or atomic types are used like AtomicInteger from

the java.util.concurrent.atomic package (will be considered

later).

The volatile keyword 2/6

public class VolatileTest {

// private static volatile int myInt = 0;
private static int myInt = 0;

public static void main(String[] args) {
Thread listener = new ChangeListener();
Thread changer = new ChangeMaker();
listener.start();
changer.start();

}
…

…
static class ChangeMaker extends Thread {

@Override
public void run() {

int localValue = myInt ;
while (localValue < 5) {

myInt = ++ localValue;
System.out.printf("Incrementing myInt to

%d%n", localValue);
try {

Thread.sleep(500);
} catch (InterruptedException e) {

e.printStackTrace();
}

} } } }

The volatile keyword 3/6

The volatile keyword 4/6
…
static class ChangeListener extends Thread {

@Override
public void run() {

int localValue = myInt ;
while (localValue < 5) {

if (localValue != myInt) {
System.out.printf("Got Change for myInt :

%d%n", myInt);
localValue= myInt ;

}
}

}
}

The volatile keyword 5/6

Thread ChangeListener started
Thread ChangeMaker started
Incrementing myInt to 1
Got Change for myInt : 1
Incrementing myInt to 2
Incrementing myInt to 3
Incrementing myInt to 4
Incrementing myInt to 5
BUILD STOPPED (total time: 5 seconds)

hangs in a loop

for non-volatile myInt:

The volatile keyword 6/6

Thread ChangeMaker started
Thread ChangeListener started
Incrementing myInt to 1
Incrementing myInt to 2
Got Change for myInt : 2
Incrementing myInt to 3
Got Change for myInt : 3
Got Change for myInt : 4
Incrementing myInt to 4
Got Change for myInt : 5
Incrementing myInt to 5
BUILD SUCCESSFUL

for volatile myInt:

volatile vs synchronized
Synchronized can guarantee both visibility and atomicity,
and volatile variables only guarantee visibility.

You can use volatile variables instead of synchronized only
under limited circumstances. For volatile variables, both of
the following criteria must be met to ensure the desired
thread safety:

1) write in the variable do not depend on its current value;

2) the variable does not participate in invariants with other
variables (does not depend on other variables).

volatile variable as Status Flag
public class StatusFlagTest extends Thread {

boolean keepRunning = true;
// volatile boolean keepRunning = true;

@Override
public void run() {

while (keepRunning) {
}
System.out.println("Thread terminated.");

}

public static void main(String[] args) throws InterruptedException {
StatusFlagTest t = new StatusFlagTest();
t.start();
Thread.sleep(1000);
t.keepRunning = false;
System.out.println("keepRunning set to false.");

} }

volatile variable as Status Flag

Output:
keepRunning set to false.

hangs in a loop
BUILD STOPPED

Output:
keepRunning set to false.
Thread terminated.
BUILD SUCCESSFUL

boolean keepRunning volatile boolean keepRunning

Module contents
₋ Introduction to Concurrent Programming
₋ Creating Threads
₋ Important Methods of the Thread class
₋ Thread interruption. The interrupt() method
₋ The States of a Thread
₋ The Thread Scheduler. Thread Priority
₋ The Daemon Threads
₋ Thread Synchronization
₋ Synchronized Methods
₋ Synchronized Blocks
₋ The Wait/Notify Mechanism
₋ The Volatile Keyword
₋ Deadlocks
₋ Threads pool
₋ The ReentrantLock class
₋ Synchronizers
₋ Atomic Variables
₋ Concurrent Collection
₋ The Fork-Join Framework

DeadLocks 2/5
public class SimpleDeadLock extends Thread {

public static final String obj0 = "obj0";
public static final String obj1 = "obj1";

public static void main(String[] args) {
Thread t1 = new MyThread(obj0, obj1);
Thread t2 = new MyThread(obj1, obj0);
t1.start();
t2.start();

}

/*Клас потоку*/
private static class MyThread extends Thread {

/*Об'єкти-монітори блокувань*/
private String firstLock;
private String secondLock;
public MyThread(String firstLock, String secondLock) {…}

…

DeadLocks 3/5…
@Override
public void run() {

System.out.println(getName() + " is started");
synchronized (firstLock) {

System.out.println("Holding " + firstLock + " by "
+ Thread.currentThread().getName());

try {sleep(10);} catch (InterruptedException ex) {
ex.printStackTrace();

}
System.out.println(getName()
+ " is waiting for " + secondLock + "...");

synchronized (secondLock) {
System.out.println("Holding " + firstLock + " & " + secondLock

+ " by " + Thread.currentThread().getName());
}

} } } }

DeadLocks 4/5

Output:

Thread-0 is started

Thread-1 is started

Holding obj0 by Thread-0

Holding obj1 by Thread-1

Thread-0 is waiting for obj1...

Thread-1 is waiting for obj0...
hangs while waiting

Deadlocks - jps, jstack 1/3

C:\>jps
7684 Jps
2920 SimpleDeadLock
1212

C:\>jstack 2920
2016-05-06 19:34:22
Full thread dump Java HotSpot(TM) 64-Bit Server VM (25.92-b14
mixed mode):
…

Deadlocks - jps, jstack 2/3

…
Found one Java-level deadlock:
=============================
"Thread-1":
waiting to lock monitor 0x0000000002cf98c8 (object

0x00000000e0f73450, a java.lang.Object),
which is held by "Thread-0"

"Thread-0":
waiting to lock monitor 0x0000000002cf6e28 (object

0x00000000e0f73460, a java.lang.Object),
which is held by "Thread-1":

…

Deadlocks - jps, jstack 3/3…
Java stack information for the threads listed above:
===
"Thread-1":

at
thread.deadlocks.SimpleDeadLock$Thread2.run(SimpleDeadLock.jav
a:57)

- waiting to lock <0x00000000e0f73450> (a java.lang.Object)
- locked <0x00000000e0f73460> (a java.lang.Object)

"Thread-0":
at

thread.deadlocks.SimpleDeadLock$Thread1.run(SimpleDeadLock.jav
a:36)

- waiting to lock <0x00000000e0f73460> (a java.lang.Object)
- locked <0x00000000e0f73450> (a java.lang.Object)

Found 1 deadlock.

public class SimpleDeadLockElimination extends Thread {
public static final String obj0 = "obj0";
public static final String obj1 = "obj1";

/* Lock objects with a certain order of selection */
public static String firstLock = null;
public static String secondLock = null;

public static void main(String[] args) {
Thread t1 = new Thread1();
Thread t2 = new Thread2();
t1.start();
t2.start();

}
…

Deadlocks elimination 1/5

…
/*Rule of selection of monitor objects: the object with the smaller

hash code will be selected first*/
private static void selectLockRule() {

if (obj0.hashCode() == obj1.hashCode()) {
try {

throw new Exception("Hashcode collision");
} catch (Exception ex) {

System.out.println(ex.getMessage());
}

} else if (obj0.hashCode() < obj1.hashCode()) {
firstLock = obj0;
secondLock = obj1;

} else {
firstLock = obj1;
secondLock = obj0;

} …

Deadlocks elimination 2/5

…
synchronized (firstLock) {

System.out.println("Holding " + firstLock
+ " by " + Thread.currentThread().getName());

try {
sleep(10);

} catch (InterruptedException ex) {
ex.printStackTrace();

}
System.out.println(Thread.currentThread().getName()

+ " is waiting for " + secondLock + "...");
synchronized (secondLock) {

System.out.println("Holding " + firstLock
+ " & " + secondLock + " by "

+ Thread.currentThread().getName());
}

} } …

Deadlocks elimination 3/5

…
/*Thread class*/
private static class MyThread extends Thread {

@Override
public void run() {

System.out.println(getName() + " is started");
selectLockRule();

}
}

}

Deadlocks elimination 4/5

Output:

Thread-0 is started
Holding obj0 by Thread-0
Thread-1 is started
Thread-0 is waiting for obj1...
Holding obj0 & obj1 by Thread-0
Holding obj0 by Thread-1
Thread-1 is waiting for obj1...
Holding obj0 & obj1 by Thread-1
BUILD SUCCESSFUL

Dining philosophers problem

