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Design of Nonlinear Dynamics Using Feedback

In most of the text we will rely on linear approximations to design feedback laws
that stabilize an equilibrium point and provide a desired level of performance.
However. for some classes of problems the feedback controller must be nonlinear to
accomplish its function. By making use of Lyapunov functions we can often design
a nonlinear control law that provides stable behavior. as we saw i Example 4.12.

One way to systematically design a nonlinear controller is to begin with a
candidate Lyapunov function V(x) and a confrol system X = f(x,u). We say
that V' (x) 1s a control Lvapunov function if for every x there exists a u such that
V(x) = % f(x,u) < 0. In this case. it may be possible to find a function a(x)
such that # = a(x) stabilizes the system. The following example illustrates the
approach.



0.4 Using feedback to design stabilizing control

Consider systems of the form ¥ = f(r,u). We will not investigate in-depth topics such as Input-to-
State-Stability (ISS) and Input-Output Stability (105). Instead we will study how control is used
to obtain desired stahility as pertitent to applications in robotics.

At a basic level, our goal 18 to obtain ¢ in a ferdback-form, i.e.

u = ¢(r),
g0 that the resulting closed-loop syvstems has the dynamics
T = f(z,d(z))
Example 7. I-d examples. Consider the system
F=ar — 2 +u for some a # 0

The simplest approach is to set
u——art+r—=r

which results in the closed-loop system
Tr=—-T

which iz exponentially stable. This approach was to simply cancel all nonlinear terms. But actually,
it is not really necessary to cancel the term —z? sinee it is already dissipative. A more economical
control law would have just been:
w=—azr’—=r
The question of determining a proper u also comes down to finding a Lyapunov function. One
approach is to actually specify the Lyapunov function ¥ and a negative definite ¥V and then find o
to match these choices. For instance, in the example above, let

1
Viz) = 52°
and let .
V=—ar® — '+ ru< —Liz),

for some positive definite L(x). One choice is L(z) = x? which results in
u=—ar’ +z —u,

i.e. the same expensive control law., But another choice 1= to include higher-order terms, ie.
L(z) = 2% + #*. Then we have

= —-III!2 — T,

which 18 the preffered control law to globally asymptotically stabilize the system.
MNext consider the the trajectory tracking of standard fully-actuated robotic systems. The
dynamics is given hy
Mig)g + Clg.q)d + Nig.q) = u



and the task is to track a desired trajectory gg(t) which is at least twice differentiable. The computed
torque law 18 given by

u=Mg)igs — Kaé — Kge) + Clg. §)g + Nig.q),

where € = g — g4 and K and K are constant matrices. When we substitutd this control law we
have the following error dynamics

E+K&é+KPE=|:|.

Since this is a linear equation it is easy to choose Ky and K, to guarantee that the system is
exponentially stable.

Theorem T. Stability of computed forque law. If K, K3 E™*™ are positive definite svmmetric
matrices, then the computed torque law results in exponential trajectory tracking.
Proof: We have the dvnamics

JONEEO

We can show that the eigenvalues of A have negative real parts. Let A © C be an eigenvalue of A
with corresponding eigenvector v = (v1,v2) c gy # 0. Then

()= [ k] ()= (o km )

=¥ |

which means that if A = 0 then v = 0 and so A = 0 is not an eigenvalue. Similarly, v1, v2 # 0 and
we may assume that |vi|| = 1. Then we have

A = Aty = vl A
- 'Ei [_Kpt'l - H—JUE]' = _'UIKP‘Ul — AUIKH‘U]_:

where + denotes complex conjugate transpose. Sinee a 2 v} pt1 = 0 and g 2 viK v = 0 we have
Miar+8=0, ag=0
the real part of A must be nerative. o

This is an example of a more general technigque known as feedback linearization. In subsequent
lectures we will generalize these results to underactuated or constrained systems.

Example: &1 =2, d2=—x1+zu and V(z)=1(z?+23).

V =zixs —3x2 + ;1300 = u= —LgV(z) = —z129



Jurdjevie-Quinn (Nonlinear Damping) Control:  If V' is such that LV <0,
then u = — L,V globally asymptotically stabilizes the origin.

Viz) = %(x? + x3).

Example: 17 = 19 fo = —x1 + 7311 and
[l Sl 1
V =122 — 2132 + 21020 = u=—LV(x)=—x122
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V. Jurdjevic and T. P. Quinn, “Controllability and Stability”, 7. Diff’ Egs., 1978.
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Xample. .
=R X, =y (X, X, ) + U

V(Xl’ Xz) =%(X12 +X22)1 u=-X, _¢(X11X2)_'//(X1’X2)X1 - V =_)(14 =X,



