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Abstract. An adaptive framework for building intelligent measurement systems
has been proposed in the paper and tested on simulated traffic surveillance data.
The use of the framework enables making intelligent decisions related to the
presence of anomalies in the surveillance data with the help of statistical analysis,
computational intelligent and machine learning. Computational intelligence can
also be effectively utilised for identifying the main contributing features in
detecting anomalous data points within the surveillance data. The experimental
results have demonstrated that a reasonable performance is achieved in terms of
inferential accuracy and data processing speed.

Keywords: Intelligent measurement · Traffic surveillance · Data anomalies ·
Computational intelligence · Artificial neural networks · Cyber physical system

1 Introduction

One of the main purposes of intelligent measurement systems (IMS) is to model the
relationship between information that is required (‘primary characteristics’), and the
information which may be readily derived from (processed) sensor outputs such as target
tracks (‘secondary variable’). An IMS is capable of providing frequent ‘on-line’ esti‐
mates of primary characteristics on the basis of their correlation with the data, obtained
from available sensors, measured in real time. As such, an IMS can help to reduce the
need for measuring devices, improve system reliability, and develop tight control poli‐
cies.

There are several advantages of IMS in comparison with traditional instrumentation
[3]:

• Such measurement systems give more insight into the process under observation
through capturing the information hidden in data.

• They are an emergent technology that allows users to improve productivity, become
more energy and cost efficient.
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• They can be easily implemented on existing hardware; moreover, various model-
building algorithms can be used to adapt the IMS when an operating environment
changes.

• They involve little or no capital cost such as the cost of installation, management of
the required infrastructure, and commissioning.

The range of tasks fulfilled by IMS is quite broad – not only can IMS be used as a
substitute or complement to physical sensors, but they can also perform monitoring and
control of the process under observation, and can provide off-line operational assistance
(e.g. design, diagnosis, knowledge refinement) [2].

The key challenge in building an IMS is to find a suitable structure for the inference
model(s), using which a good estimator of the primary characteristics could be found.
A basic rule in estimation is not to estimate what is already known or can be inferred
from the data available. In other words, it is important to be able to utilise prior knowl‐
edge and physical insights about the process under observation/analysis when selecting
the model structure. It is customary to distinguish between three levels of prior knowl‐
edge [4]:

• White-box models: the structure and parameters of the model are known or can be
obtained from physical insights or basic principles;

• Grey-box models: some physical insights are available, but several model parameters
remain to be determined from observed data;

• Black-box models: no physical insight is available, but the chosen model structure
belongs to generic classes (e.g. artificial neural networks) that are known to have
good flexibility and have been successfully applied in various problem domains.

Most of the existing IMS utilise black-box models operate on sensor data and
produce estimates of essential (or primary) characteristics of the system under obser‐
vation – for example, an unmanned aerial system (UAS) as shown in Fig. 1. (N.B. The

Fig. 1. IMS framework for the unmanned aerial vehicle
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red arrow on the diagram representing ground truth information is desirable for more
effective leaning, but not mandatory for the operation of an IMS.)

Having determined the relationship between the primary characteristics and the
secondary variables, it becomes possible to obtain reasonable estimates of the former
much faster and at a lower cost.

Also, the ability to infer primary characteristics raises the level of “information
intelligence” coming from the UAS, enabling thereby to shift the workload of ground
operators from “target detection to target analysis” and to optimise the throughput of
data communication channels. Taking a road traffic example where it is desired to iden‐
tify dangerous drivers represented by the state vector , the ‘dangerous driver’ cate‐
gorisation would be the primary characteristic, while secondary variables could include
such quantities as driving speed or lane discipline.

A UAS in this context can be considered an autonomous cyber physical system that
is used to acquire large amount of data about complex and changing environments, to
perform interpretation and fusion of the data, and to present the information gathered or
inferred in a synthetic and compact form highlighting the features of interest in the
environment explored. The situation awareness of a UAS is determined by its operating
conditions, various inputs obtained from essential sensors, as well as control adjustments
received from a ground station. The situation awareness in terms of determining
abnormal traffic conditions is an example of a primary characteristic that is difficult to
measure directly. However, the large amount of data coming from on-board sensors or
received from a ground station can be referred to as secondary variables. Due to the
nature of UAS operation, the states of many secondary variables reflect the states of
primary characteristics. For instance, surveillance data obtained from various sensors
can indicate, and even identify, unusual or dangerous behaviour of drivers on the
road [6].

Heterogeneous data acquiring sensors on-board of an unmanned aerial vehicle,
which is part of the UAS, also add complexity in the form of analytical challenges,
especially when there exist time and cost differences in processing data from different
sources. Selecting suitable data acquisition sources, e.g. data that can be processed
approximately in order to obtain representative samples, can help in time critical situa‐
tions. Additional data acquisition sources that involve longer data processing but are
more accurate or detailed, can be applied later to provide adaptive measurement features.

With the vast amounts of data, traditional data acquisition and data processing
methods have become inefficient or sometimes inappropriate, especially in a real time
environment. Computational Intelligence (CI) techniques have been successfully
applied to problems in various application domains [1, 5]. These techniques however
require accurately labelled training data to provide reliable and accurate specification
of the context in which a UAS operates. For example, drivers may behave differently in
the different road conditions (e.g. icy, wet, and foggy). The term “driver(s)” used
throughout this paper refers to drivers of vehicles on the road (i.e. in the simulated model)
under the surveillance of a UAS. The context enables the system to highlight potential
anomalies in the data so that intelligent and autonomous control of the underlying
process can be carried out.
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Anomalies are defined as incidences or occurrences, under a given circumstances or
a set of assumptions, that are different from the expectance. By their nature, these inci‐
dences are rare and often not known in advance. This makes it difficult for the compu‐
tational intelligence techniques to form an appropriate training dataset. Moreover, UAVs
often operate in different or dynamic environments [11]. This can further aggravate the
lack of training data by the increased likelihood of intermittent anomalies. Computa‐
tional intelligence techniques that are used to tackle dynamic problems should therefore
be able to adapt to environmental/contextual changes [6].

The research work described in the presented paper is aimed at using machine
learning algorithms for addressing ‘Situational Assessment’. The immediate application
area is the development and evaluation of such algorithms for a UAS application
carrying out wide area surveillance of a tract of ground.

The detection of unusual profiles or anomalous behavioural characteristics from
sensor data is especially complicated in security applications where the threat indicators
may not be known in advance [8]. Data-driven modelling in such cases can yield insights
on usual and baseline profiles, which in turn can be used to isolate unusual profiles when
new data are observed in real time.

In general terms, therefore, the problem being tackled can be defined as finding the
most effective ways of using measured data obtained from multiple sensors on board an
aerial vehicle, in order to address the inherent difficulty in precisely defining and quan‐
tifying what constitutes anomalies. The presence of several sources of variability in
anomalous patterns (for example, traffic density, vehicle types, features of terrain, etc.)
and the limited availability, or even absence, of training datasets aggravate the difficulty
of the problem being addressed [10].

The desired outcome of the work would be to devise a solution framework for intel‐
ligent processing of data obtained from multiple UAS sensors. This framework,
described in Sect. 2 of the paper, is built with the premise that all the data sources
considered together are capable of capturing the important features that could lead to a
reliable anomaly detection, to efficient extraction and to intelligent interpretation of these
features, which could in turn significantly reduce the number of false alarms generated
as a result of the UAS operation.

To handle the challenges presented by the problem being addressed an incremental
approach was adopted as a three-stage development of intelligent measurement systems.
The first stage (anomaly detection) processes the available data by extracting the most
representative features (referred to as ‘secondary’ variables) that characterise potential
anomalies – this process is described in Sect. 3. For anomaly detection a mixture of
statistical analysis and computational intelligence (CI) techniques has been adopted. The
choice of detection techniques depends on the amount of historical data and the avail‐
ability of insights on ‘normal’ system profiles – at the start of the detection process
preferences are given to statistical techniques utilising probabilistic measure of data
anomalies. As more data is being obtained, anomalous patterns/profiles start appearing,
which can be detected more effectively with the help of CI techniques.

The features selected are then used to build inferential models, demonstrated in
Sect. 4, that are utilised in the second stage (anomaly modelling) to interpret the new
incoming data for real-time decision. In the second stage of building data-driven
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inference models two types of classifiers have been used – conventional classifiers
utilising clustering algorithms, which do not require training data sets, and computa‐
tional intelligence methods that carry out supervised learning of anomalous data patterns
(in particular, artificial neural network (ANN)).

Finally, when the operating conditions of the system/process under observation
change, both the secondary variables and the inference models are adapted in the third
stage (anomaly modification) to provide the means of adjusting the IMS within dynamic
operating environments. This final stage of adaptive measurement by the IMS is imple‐
mented using an automated machine learning algorithm, described in our previous work
[7], that continuously tunes the inference models built for processing measured data and
the representative features of data anomalies.

The proposed approach to intelligent measurement is evaluated on simulated and
benchmark datasets – the main conclusions and proposed areas of further research are
summarized in Sect. 5.

2 Inferential Measurement Systems

The impediments caused by unavailability or ineffectiveness of conventional measure‐
ments can negatively affect “situational assessment”, but the problem can be alleviated,
at least partially, by developing an intelligent measurement system (IMS) that performs
intelligent sensing through the use of “soft” sensor technology. Intelligent sensing is a
relatively new capability of measurement systems that supports such features as long
mission duration, reliability and availability, real-time operation in hazardous and
changing environments, as well as flexibility of use. These requirements lead to meas‐
urement systems with increasingly autonomous functionalities based on decentralised
and distributed system architecture, effectively utilising available instrumentation data.
Figure 2 illustrates a generic framework for building an IMS, proposed in [7].

Modelling using Computational Intelligence (CI) has become a versatile tool for
enhancing the capabilities and efficiency of inferential measurement systems [5]. This
type of modelling utilises the computational capabilities of modern computing devices
(smart sensors, DSP-based microcontroller, and microprocessors) to effectively process
the acquired input and infer the desired information. The AI-based techniques are appli‐
cable at various layers of IMS – from the data acquisition (sensor) layer, through to the
layer of instrument calibration and customisation, then to the layer of process modelling,
control and optimisation, and finally to the knowledge acquisition layer [6]. The wide
spectrum of possible applications is due to the capabilities of an IMS to gain insight into
the behaviour of complex dynamic systems by means of data-driven modelling, a
systematic approach to which is described in this section.

The underlying principle of “soft” sensing is in estimating unmeasured variables,
properties or parameters by using a model of a process under investigation, or of a part
thereof, that correlates the measurements of interest (primary characteristics in Fig. 1)
with more immediate (secondary) variables. As the name suggests, the model used by
“soft” sensors is usually implemented in software; the secondary variables for such
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sensors are the controlled inputs, disturbances, and other intermediate variables affecting
the process/application of interest [9].

In the course of the project the following tasks have been addressed:

• Data pre-processing: this step is performed only for building the inference models
based on supervised machine learning techniques. Essentially, the step involves
annotating the input data streams with the “ground truth” values needed for training
certain Computational Intelligence (CI) algorithms (discussed later in the paper).
Once the necessary training has been carried out, the data pre-processing activity
becomes unnecessary, but can still be used if the reduction of noise in the data streams
or filling in missing values are desired.

• Selection of secondary variables: it is important to choose the appropriate secondary
variables (also referred to as data filters) to be used in building the inference model(s)
– the number of these variables affects the time and complexity of inference, as well
as the size of the data set needed for model development. The main objective of this
step is to make use of the least number of secondary variables to develop a model of
sufficient accuracy.

Fig. 2. Generic framework for building Intelligent Measurement Systems (IMS)
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• Building inference models: Once a set of potential secondary variables is selected
and their values are determined (this might involve passing the original data streams
coming from sensors through several data filters), inferential models can be obtained
using various data-driven modelling paradigms. At this stage it is important to strike
the right balance between the accuracy and generalizability (i.e. minimising the effect
of overtraining), and simplicity of the inference models. This is often achieved by
varying the number of secondary variables (e.g. number of input nodes of ANNs)
used in building the models through running screening and regression experiments
(explained in more detail later in the paper).

• Evaluating and tuning the inference models: the inference models built have been
validated on previously unseen data using a cross-validation approach. After the
validation the inference model parameters (e.g. the window size of a data filter) can
be dynamically adjusted if the operating environment changes (e.g. significant
increase in traffic density) or the objectives of inferential modelling are modified (e.g.
switching from the identification to classification mode of operation). The process
of dynamic parameter adjustment is shown by the block at the bottom in Fig. 1, and
is performed by a meta-learning layer of the developed IMS using a genetic algorithm
(one of the Computational Intelligence techniques adopted within the proposed
framework) [7].

2.1 Context Acquisition Level

In the presented research work, it is assumed that raw input data are pre-processed by
having been already passed through the stages at the Data Acquisition level in Fig. 2
(e.g. data cleaning, fusing) and therefore this level is not considered. The only exception
is the data discretisation activity, which can also be attributed to context processing level.

2.2 Context Processing Level

The Context Processing level in Fig. 2 utilises statistical and mathematical techniques
of characterising raw input data. Depending on the complexity of the application domain,
statistical methods can be used with the raw input data in order to identify anomalies
within the input data stream; alternatively, statistical analysis may be used to prepare
the raw input data for processing by computational intelligence techniques in identifying
the pattern(s) of interest (or anomalies).

At this level, measurable variables are used to create secondary variables by applying
different data filters and window sizes. For example, a secondary variable of speed may
be defined as the change in distance travelled over a period of time, where change
represents a data filter, period of time represents a window size  applied
to the measurable variable distance. Secondary variables can also be obtained by nesting
data filters (with corresponding window sizes) one within another. For example, a
composite secondary variable, based on the one exemplified above, could be defined as
an average over the observed length of the road of the changes in travelled distance in
a specified period of time. The applications of data filters and window sizes onto meas‐
urable variables are carried out by the Context Processing (see Fig. 2). Context agnostic
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data filters can also be created that characterise interactions between objects within the
system under observation (e.g. relative distances or speeds) or the operating environment
(e.g. object density).

Context Processing might also involve data annotation, which provides ground truth
for the training of supervised learning techniques and for evaluating the accuracy of both
supervised and unsupervised learning. Ground truth labels can be obtained by using
some form of statistical thresholds (e.g. 3σ interval for normally distributed data), by
manual annotation, or by obtaining the labels directly from a simulation model.

2.3 Context Selection Level

Once the data anomalies have been identified, they are then passed onto the Context
Selection level. Classification of anomalies and the predictions of their effects are
achieved by applying machine learning in order to build inference models. Additional
raw or processed input data may be required at this level.

The Inference Model builder operates in the following way:

• The structure of the model specifies which learning technique  is going to be used

with the chosen secondary variables .
• The specified learning technique checks the need for data conditioning and training

datasets.
• The selected secondary variables determine the measurable variables  and

the data filters with corresponding window sizes .
• This process minimises the amount of data collected and processed while the infer‐

ence models (represented as tuples , where  is the vector of secondary vari‐
ables and  is a vector of parameters for the learning technique  (for example as an
error acceptance rate for ANN) being built and evaluated.

The number of selected secondary variables  directly influences the structure,
complexity and usability of the inference model, and thus needs to be optimized in
accordance with the size of data samples.

2.4 Context Application Level

The Context Application level supports autonomous operation of the IMS by reducing
the importance of human involvement in adjusting the model to changing operating
conditions. As was mentioned previously, this task is achieved with the help of genetic
algorithms, which autonomously select the optimal parameters on the inference through
the effective use of evolutionary processes adopted from nature.

Based on the way the intelligence is obtained, intelligent measurement systems can
be categorised either by the function they perform (calibration, error compensation,
data validation, anomaly detection, adaptation, decision making, etc.) or by the tech‐
nique(s) used (statistical, symbolic, ANN-based, fuzzy logic, and the like) [2]. Having
chosen the secondary measurands to be used, the processed data together with the
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inference models build are then passed on to an autonomously chosen supervised or
unsupervised learning algorithm. These learning algorithms are used to identify and
classify the patterns of interest in the analysed data streams, which reflect dynamic
operating environment.

3 Data Filtering for Intelligent Instrumentation

The analysis of surveillance information in general, especially related to situation
awareness, is a complex process that, given the amount and heterogeneous nature of
data, is prone to data overload. This results in an inability to support real-time processing
and analysis of surveillance data. This is especially true when using mobile platforms
where datalink and bandwidth issues are significant [12, 13].

3.1 Problem Specification

In order to design and build an intelligent measurement system a testing dataset derived
from a MATLAB vehicle simulation model (developed and evaluated by our industrial
collaborator) was used in this research. This model is capable of mimicking the behav‐
iour of various types of drivers; typical examples are the normal and “cowboy” drivers.
Normal drivers are those that observe road discipline, which regulates that no under‐
taking is acceptable, and that the vehicles shall move to the left lane whenever possible.
The “cowboy” drivers are those that might violate these constraints.

The simulation model provides ground truth ‘normal’ and ‘cowboy’ labels; the char‐
acteristics of particular drivers within a type are subject to distributions rather than being
entirely deterministic – frequencies and instances of exhibited behaviours are context
dependent (e.g. traffic density, behaviours of other close vehicles). Therefore, a
“cowboy” driver may or may not exhibit the salient features of his behaviour during the
observation period.

In total, five driver types are considered – three of these are additional ‘abnormal’
types (viz. slow, cautious and boy racer). The slow and cautious drivers are similar to
the normal driver in that they both follow the lane discipline. Cautious drivers, however,
tend to leave a larger gap in front of them, whereas the slow drivers move more slowly,
as well as react, brake and accelerate more gently. The “boy racers” are similar to the
“cowboy” drivers in that both types do not always follow the lane discipline; what
distinguishes them is that the “boy racers” drive faster, braking and accelerating harder,
than the “cowboy” drivers.

Such a vehicle simulation model creates a data source rich enough to be used for
making intelligent measurement of the driver type. In particular, the presence of several
types of anomalous drivers makes it sensible to conduct the inference process in a
number of phases: identification, classification and prediction. The identification phase
minimises the volume of data and the data processing cost by analysing only a small set
of measured data using anomaly identification techniques, such, for instance, as outlier
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detection. Identified potential anomalies are then passed onto the classification phase,
where they are separated out into different types.

As a means of understanding the potential of the IMS techniques developed in the
general context, the aims of such evaluation are to use the datasets generated by this
vehicle simulation model in order to:

1. Identify anomalous drivers (i.e. all driver types different from the “normal”) – the
identification phase of IMS operation.

2. Appropriately classify these anomalous drivers into the corresponding types.

3.2 Choosing Secondary Measurands

There are a number of simulation parameters that can be adjusted within the MATLAB
traffic simulation model. Some of the simulation parameters directly affect the behaviour
of simulated drivers (i.e. speed ranges, driver reaction time). The other parameters
determine the environment – in our case the characteristics of the road (i.e. lane width
and number of lanes), which indirectly influence how each driver behaves.

The task of choosing the right set of variable to measure (i.e. measurands), which
provide reliable inference capabilities, is not trivial. Therefore, selection of an appro‐
priate set of secondary (i.e. based on applying filtering to directly measurable data inputs)
measurands is a vital step in building an inference measurement system, affecting its
accuracy, complexity and generalizability of the inference operation(s).

A conventional methodology of choosing a set of input variables is based on
conducting a ‘screening’ experiment aimed at establishing the significance of each input
in terms of inference capabilities of an IMS. This experiment is done by setting the high
and low levels for six main variables within the vehicle simulation model: lane, average
speed, traffic rate, road length, road width and reaction time. The proportion of normal
vs. anomalous drivers was fixed as 80:20. There are sixteen trials in total, i.e. half-
factorial screening experiment has been carried out.

Given the difficulty of empirically selecting secondary measurands for building an
inference model(s), a more systematic approach has been proposed in the course of this
work that is capable of not only choosing the most appropriate input data streams and
associated data filters, but also of automatically determining the most effective learning
algorithms for adapting the IMS to operate in changing environments. The results of the
screening experiments are summarised in Table 1.

The results in Table 1 are obtained using four different statistical data filters (i.e.
AVERAGE, VARIANCE, MIN, MAX) on three measurable variables (distance trav‐
elled (along road), lateral movement or frequency of changing lanes, and total number
of vehicles). The results shown are obtained using balanced training datasets, which use
the equal number of training examples for each driver type (unbalanced training datasets
use unequal number of training examples).

The F-test and t-test have been applied to analyse the statistical significance of
different features, represented by low p-values (which represent the probability of
obtaining the observed differences in accuracy purely by inherent randomness of experi‐
ments). Low p-values  indicate that the differences in model performance are
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attributed to systematic factors (significant parameters are highlighted in yellow, low p-
values are shown in red):

• Lane is the only variable in this experiment that is shown to significantly affect the
accuracy measure of all learning techniques.

• Another variable that has a significant effect on the accuracy rate of supervised
learning techniques is the road width;

• The interactions between lane with road width and traffic rate significantly affect the
effectiveness of supervised learning – see the p-values highlighted in red in the table
below.

These significance values exhibit a degree of correlation with the design of the
vehicle simulation model, where lane discipline is a major characteristic that distin‐
guishes different types of drivers.

Table 1. Significance level of secondary measurands
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4 Building Inferential Capabilities Within IMS

The analysis of surveillance information in general, especially related to situation
awareness, is a complex process that, given the amount and heterogeneous nature of
data, is prone to data overload. This results in an inability to support real-time processing
and analysis of surveillance data. This is especially true when using mobile platforms
where datalink and bandwidth issues are significant [12, 13].

In this study, the data to be acquired and processed by an intelligent measurement
system comes from various sensors on-board a UAS, such as radar, electro-optical/infra-
red, GPS and Inertial Navigation Systems (INS). Apart from on-board input data
streams, additional contextual input data can also be taken into account. The choice of
which contextual input to apply can be automatically tailored using the computational
intelligence techniques.

Four learning techniques are currently available within the IMS and are used for
building the models – three of which are CI-based: artificial neural network (ANN),
support vector machine (SVM), Bayesian network (BN), and K-means classifier. These
techniques are implemented in JAVA and the Encog machine learning library [12]. Built
in statistical analyses include Difference, Average, Variance, Standard deviation,
Summation, Min and Max.

The simulated data set includes: X and Y locations of each vehicle on the road over
the surveillance distance of a 6 kilometre road with three lanes, as well as the ground
truth labels of driver types.

An inference model can be represented as a tuple , where  is the vector of
secondary measurands,  is a parameter vector of the learning technique , specifying
such values as, for example, an error acceptance rate for artificial neural networks. The
process of building an inference model is, in fact, an application of the learning technique

 with its set of parameters  to the vector of chosen secondary variables  that provides
both training and testing data inputs.

Having built the inference models corresponding to all the learning techniques used,
this case study explores the influence of salient features of the modelled system on the
performance of the IMS. As an example, one salient feature of the traffic simulation
model is the ratio of abnormal and normal drivers, which in our experiments varies from
5 % to 25 %. The dependence of inference accuracy on this ratio for each learning tech‐
nique implemented by the IMS are shown in Figs. 3 and 4.

Therefore, a multi-tiered IMS that uses computational intelligence techniques should
be able to enhance situation awareness of a UAV, especially in a real-time environment.
Once anomalies are identified from direct measurements, additional data from both
easily accessible and detail-rich data sets can be added to improve the system classifi‐
cation and prediction performance.

For balanced training (Fig. 3), the numbers of training samples representing normal
drivers is limited by the number of samples representing abnormal drivers of a particular
type, which are relatively small in the case-study.

For unbalanced training (Fig. 4), the size of the training dataset representing normal
drivers can exceed that of the abnormal ones. All other experimental parameters,
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including the size of testing datasets and the ratio of normal vs. abnormal drivers, are
the same.)

As can be observed from the two figures above, the performance of supervised
learning techniques is by and large similar, especially for smaller ratios of the numbers
of abnormal and normal drivers, denoted as .

SVM outperforms other supervised learning techniques when  is small (<10 %),
whereas for large values of  (>20 %), ANNs become the best choice of supervised
learning used for building inference models.

Unsupervised learning generally shows worse performance, but can also reach quite
high inference accuracy. Despite their inconsistency in inference accuracy, unsupervised
algorithms (unlike their supervised counterparts) do not require training. The ground
truth labels obtained from MATLAB simulation (i.e. driver types – “normal” and

Fig. 3. Multiple data sources fused by an IMS

Fig. 4. The effect of different surveillance distances on system accuracy
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“cowboy”) are used only for validating these algorithms. This implies that the unsuper‐
vised algorithms converge much quicker and can be useful in cases when no (or very
limited) training can be provided. It may also be possible to use an unsupervised algo‐
rithm as a precursory approach, while a training process of the supervised algorithms is
carried out.

5 Conclusions

On the basis of the research work conducted in the present study, which was aimed at
the development of IMSs for enhancing situation awareness of an UAS, the following
conclusions can be drawn:

First of all, it has been shown that the concept of an IMS is viable in the chosen
context – it has been demonstrated that the implementation of a framework for building
such measurement systems is a feasible task, even with limited amounts of data available
for making inferences.

Secondly, one of the main benefits of an intelligent measurement system, i.e. the
ability to discover relationships between the primary characteristics of the system being
monitored and the observed or measured data, has been demonstrated by inferring the
behavioral type of drivers.

Thirdly, an essential step in building a good inference model is the selection of the
most appropriate set of secondary measurands done semi-automatically by the proposed
IMS that is achieved by adaptive filtering of input data streams.

Finally, the inference models within an IMS can be efficiently built with the help of
machine learning techniques, which use both supervised and unsupervised approaches
to learning. The ANN-based model of the process under observation proved to be the
most adequate.

The experiments conducted on several simulated datasets and have demonstrated
that reasonable performance can be achieved in terms of accuracy of data processing
and its speed. For comprehensive evaluation of the developed IMS aimed at enhancing
situational awareness of a UAS, however, it would be desirable to deploy the system on
a mobile computing platform and to feed it with real-time sensor data, related to traffic
surveillance. Experimenting with such a setup will inevitably bring some programming
and engineering issues to the forefront, addressing which would reinforce system
usability.
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