


APPLIED DYNAMICS 

With Applications to Multibody and 
Mechatronic Systems 

FRANCIS C. MOON 
Cornell University 

A Wiley-Interscience Publication 

JOHN WILEY & SONS, INC. 
New York - Chichester - Weinheim . Brisbane - Singapore Toronto 





APPLIED DYNAMICS 





APPLIED DYNAMICS 

With Applications to Multibody and 
Mechatronic Systems 

FRANCIS C. MOON 
Cornell University 

A Wiley-Interscience Publication 

JOHN WILEY & SONS, INC. 
New York - Chichester - Weinheim . Brisbane - Singapore Toronto 



This book is printed on acid-free paper.@ 

Copyright 0 1998 by John Wiley & Sons, Inc. 

All rights reserved. Published simultaneously in Canada. 

No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means, electronic, 
mechanical, photocopying, recording, scanning or otherwise, except as 
permitted under Section 107 or 108 of the 1976 United States Copyright 
Act, without either the prior written permission of the Publisher, or 
authorization through payment of the appropriate per-copy fee to the 
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, 
(978) 750-8400, fax (978) 750-4744. Requests to the Publisher for 
permission should be addressed to the Permissions Department, John 
Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 
850-601 1, fax (212) 850-6008, E-Mail: PERMREQ@WILEY.COM. 

Library of Congress Cataloging-in-Publication Data 

Moon, F. C., 1939- 
Applied dynamics : with applications to multibody and mechatronic 

systems / by 
Francis C. Moon. 

p. cm. 
“A Wiley-Interscience publication.” 
Includes bibliographical references (p. 
ISBN 0-471-13828-2 (cloth : alk. paper) 
1. Dynamics. I. Title. 

QA845.M657 1998 
620.1 ’054--dc21 

Printed in the United States of America 

10 9 8 7 6 5 4 3 

) and index. 

97-20250 
CIP 



CONTENTS 

Preface 

1 Dynamic Phenomena and Failures 

1.1 Introduction, 1 

1.2 What’s New in Dynamics? 2 

1.3 Dynamic Failures, 13 

1.4 Basic Paradigms in Dynamics, 19 

1.5 Coupled and Complex Dynamic Phenomena, 3 1 

1.6 Dynamics and Design, 32 

1.7 Modern Physics of Dynamics and Gravity, 33 

2 Basic Principles of Dynamics 

2.1 Introduction, 36 

2.2 Kinematics, 36 

2.3 Equilibrium and Virtual Work, 42 

2.4 Systems of Particles, 44 

2.5 Rigid Bodies, 51 

2.6 D’Alembert’s Principle, 54 

2.7 The Principle of Virtual Power, 56 

ix 

1 

36 

V 



vi CONTENTS 

62 3 Kinematics 

3.1 Introduction, 62 

3.2 Angular Velocity, 64 

3.3 Matrix Representation of Angular Velocity, 67 

3.4 Kinematics Relative to Moving Coordinate Frames, 68 

3.5 Constraints and Jacobians, 72 

3.6 Finite Motions, 75 

3.7 Transformation Matrices for General Rigid-body Motion, 83 

3.8 Kinematic Mechanisms, 88 

4 Principles of D’Alembert, Virtual Power, and Lagrange’s Equations 103 

4.1 Introduction, 103 

4.2 D’Alembert’s Principle, 107 

4.3 Lagrange’s Equations, 1 16 

4.4 The Method of Virtual Power, 133 

4.5 Nonholonomic Constraints: Lagrange Multipliers, 146 

4.6 Variational Principles in Dynamics: Hamilton’s Principle, 153 

5 Rigid Body Dynamics 168 

5.1 Introduction, 168 

5.2 Kinematics of Rigid Bodies, 171 

5.3 Newton-Euler Equations of Motion, 181 

5.4 Lagrange’s Equations for a Rigid Body, 205 

5.5 Principle of Virtual Power for a Rigid Body, 214 

5.6 Nonholonomic Rigid Body Problems, 230 

6 Introduction to Robotics and Multibody Dynamics 

6.1 Introduction, 254 

6.2 Graph Theory and Incidence Matrices, 258 

6.3 Kinematics, 265 

6.4 Equations of Motion, 269 

254 



CONTENTS vii 

6.5 Inverse Problems, 289 

6.6 Impact Problems, 296 

7 Orbital and Satellite Dynamics 

7.1 Introduction, 325 

7.2 Central-force Dynamics, 327 

7.3 Two-body Problems, 338 

7.4 Rigid-body Satellite Dynamics, 341 

7.5 Tethered Satellites, 358 

325 

8 Electromechanical Dynamics: An Introduction to Mechatronics 374 

8.1 Introduction and Applications, 374 

8.2 Electric and Magnetic Forces, 376 

8.3 Electromechanical Material Properties, 383 

8.4 Dynamic Principles of Electromagnetics, 390 

8.5 Lagrange’s Equations for Magnetic Systems, 395 

8.6 Applications, 407 

8.7 Control Dynamics, 416 

9 Introduction to Nonlinear and Chaotic Dynamics 

9.1 Introduction, 432 

9.2 Nonlinear Resonance, 435 

9.3 The Undampled Pendulum: Phase-plane Motions, 439 

9.4 Self-excited Oscillations: Limit Cycles, 443 

9.5 Flows and Maps: PoincarC Sections, 446 

9.6 Complex Dynamics in Rigid-body Applications, 458 

432 

Appendix A Second Moments of Mass for Selected Geometric 

Appendix B Commercial Dynamic Analysis and Simulation 
Software Codes 478 

References 483 

Index 487 

Objects 474 





PREFACE 

The modern post industrial era has ushered in a new set of dynamics 
problems and applications, such as robotic systems, high-speed maneuver- 
able aircraft, microelectromechanical systems, space-craft dynamics, mag- 
netic bearings, active suspension in automobiles, and 500-kph magnetically 
levitated trains. Up until the 1950s, engineers generally dealt with dynamic 
effects in machines and structures from a quasi-static point of view or not at 
all. In the last quarter of this century, however, incorporation of dynamic 
forces in design has become necessary, as new materials have permitted 
higher loads, speeds, and temperatures, resulting in more lightweight and 
optimally designed dynamical devices. 

One success of the computer revolution in the field of dynamics has been 
the codification of analysis tools in linear dynamical systems. Codes are now 
available to accurately predict natural frequencies and mode shapes of 
complicated structures and machines. This has pushed the frontiers of 
dynamical analysis into nonlinear dynamics and multibody systems, and 
coupled field dynamical problems such as electromagneto-dynamics, fluid- 
structural dynamics, and intelligent control of machine-structure interac- 
tions. In Europe and Japan the combined field of dynamics, control, and 
computer science is called Mechatronics. 

So why another textbook in dynamics? This book is written to fill a gap 
between elementary dynamics textbooks taught at the sophomore level, such 
as Meriam, Beers, Johnson, etc., and advanced theoretical books, such as 
Goldstein, Guckenheimer, and Holmes, etc., taught at the advanced grad- 
uate level. The focus of this book is on modern applied problems and new 
tools for analysis. 

ix 



X PREFACE 

The goals of this textbook are: 

0 To illustrate the phenomena and applications of modern dynamics 
through interesting examples without excessive mathematical abstrac- 
tion. 

0 To introduce the student to a clear statement of the principles of dynamics 
in the context of modern analytical and computational methods. 

0 To introduce modern methods of virtual velocities or principle of virtual 
power as developed by Jourdain, Kane, and others through clear 
illustrative examples. 

0 To develop educated intuition about advanced dynamics phenomena. 
0 To integrate modeling, derivation of equations, and solution of equa- 

tions as much as possible. 
0 To provide an introduction to applications related to robotics, mecha- 

tronics, aerospace dynamics, multibody machine dynamics, and non- 
linear dynamics. 

The level chosen for this text is at the undergraduate senior, masters 
degree, or first-year graduate level, although an honors junior class should 
have no difficulty with the material. 

Most parts of this book have been used in an Intermediate Dynamics 
course taught at Cornell University by the author over the course of a decade. 
Students who have taken the course have included mechanical and civil 
engineers, theoretical mechanics, and applied physics students. The levels 
have ranged from seniors, master of engineering, to Ph.D.-level students. The 
core of the material (Chapters 2-6) can be taught in a one-semester course or 
in two quarter-system courses. In recent years the author has taught the 
course using MATLAB and MATHEMATICA. Students are asked to write 
programs to automatically derive Lagrange’s equations or to obtain a time 
history of the motion. Also term projects have been used to teach the course 
in which students have 4-5 weeks to analyze and write a report about a 
specific dynamics application, often using the class notes as a launching 
platform to venture into more advanced material as given in the list of 
references and advanced texts. 

Both vector and matrix methods are presented in the book. Experience has 
shown that students easily master Lagrange’s equations, but still struggle 
with the three-dimensional vector dynamics introduced in elementary 
courses in dynamics. Thus the author has kept a strong element of kinematics 
in the book. 

An important feature of this book is the development of the method of 
virtual velocities based on the principle of virtual power. Virtual power ideas 
go back many centuries, but were formalized in dynamics by Jourdain at the 
turn of this century. In the 1960s Professor Thomas Kane of Stanford 
University developed a related formalism to derive equations of motion 
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using virtual velocities. However, in Europe and Germany a less formal, 
more direct use of the principle of virtual power has been used in textbooks 
and software. ‘This book presents the less formal approach. The method is 
not only simpler in many cases than Lagrange’s equations, but is sometimes 
more suited to solving multibody problems using computer methods. 

The second half of the book reflects the author’s research interests, 
especially in magnetomechanical dynamics and nonlinear phenomena. 
There are an increasing number of electromechanical applications, and 
there are few pedagogical treatments of the derivation of equations, of 
motion in such systems. In the last two decades, research in dynamics has 
shown that deriving equations of motion does not always give one intuitive 
knowledge of the dynamical phenomena that is embodied in them. The 
chapter on nonlinear dynamics is included to review some of the important 
phenomena associated with the nonlinear equations of rigid-body dynamics. 

Of course, modern problems in dynamics are sometimes closely linked 
with control. A brief mention of control issues is discussed in Chapter 1, and 
a few of the problems in Chapter 8 incorporate feedback control forces. 
However, the subject is too broad to squeeze into this text. 

Finally, the pedagogical style of writing emphasizes phenomena and 
applications. Thus the book is intended for a broad spectrum of students, 
not just the most advanced, although the advanced student with develop 
dynamical intuition with this book. The goals here are to motivate, develop 
educated intuition in dynamics, and to develop confidence to use modern 
software tools and programs that solve dynamics problems. 

A final word to the Lecturer. Professors wishing to use this book as a text 
may obtain a copy of solved selected homework problems from the Author, 
care of Mechanical and Aerospace Engineering, Upson Hall Cornell Uni- 
versity, Ithaca, NY, 14853. 
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DYNAMIC PHENOMENA AND 
FAILURES 

1.1 INTRODUCTION 

For the scientist, dynamics is both familiar and fascinating; its subject matter 
is close to everyday experience, yet it still holds surprises and mysteries. To 
the engineer, dynamics is a tool to predict forces and to design machines. But 
dynamics also embodies problems that can destroy and damage both the 
machines and the people that use them. These many facets of dynamics are 
the subject of this book. 

At its most basic core, dynamics requires forces to change the velocity of 
bodies and produces forces in machines when accelerations are present. In 
the study of dynamics the student either learns how to predict motions from a 
given set of forces or how to calculate the resultant forces from the motions. 
Force means the interaction of one body with another or the interaction of 
one part of a body with another, interactions that can deform, damage, and 
destroy the machines the engineer designs and builds. Yet before one can 
acquire the skills to successfully predict and design, most students must build 
a catalog of dynamic phenomena and then slowly begin to formalize the ways 
of modeling these phenomena with mathematics. 

This catalog building begins early with play: swings, bicycles, sports. Then 
these experiences are formalized in laboratory experiments or careful obser- 
vation of dynamic events. Finally constructs such as time, space, velocity are 
introduced with which one begins to learn the mathematical laws and 
techniques to calculate and simulate. Although the main focus of this book 
is on model building, analysis, and calculation, the student is encouraged to 
re-experience the phenomena through play and informal experiment. We 

1 
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take for granted the importance of play in forming our early concepts of 
dynamics. The late Nobel laureate Richard Feynman told about visualizing 
early concepts of his theory of quantum electrodynamics by observing the 
wobble of empty food plates that students were playfully throwing like 
Frisbees in the cafeteria at Cornell University. I often encourage my students 
to buy dynamic toys such as gyros and spinning tops, and when no one is 
looking to play with some of the dynamic toys of their younger siblings. 

While avoidance of excessive forces, stresses, and motions is a prime 
interest of the student as engineer, to the student as scientist the challenge and 
joy of understanding the complexities of the subject often inspires the long 
hours of mathematical study required to master the subject. Although this 
text is directed toward technical mastery of dynamics, the student should not 
lose sight of the intellectual fascination of the subject. 

We began this text by reviewing the motivation for studying dynamics at 
the end of the twentieth century. This includes looking at new applications as 
well as reviewing the relation between dynamics and failure in modern 
engineering. We also present a catalog of some of the basic phenomena of 
dynamics and their simplest mathematical models. A more general review of 
the principles of dynamics is presented in Chapter 2. The development of a 
working knowledge of the principles of dynamics is then given in Chapters 3, 
4, and 5. 

It is assumed that the reader has had elementary courses in the dynamics of 
particles and rigid bodies as well as a basic working knowledge of vector 
calculus and ordinary differential equations. 

1.2 WHAT’S NEW IN DYNAMICS? 

What could be new in a field that celebrated its tricentennial in 1986, the 
anniversary of Newton’s Principia’? Ten years earlier one could have said 
“not much.” But in the last quarter of the twentieth century, the field of 
dynamics has developed a new vigor inspired by new discoveries, new 
methods of formulation, new computational and experimental tools, and 
new applications. 

New Discoveries 

The most widely recognized discovery in dynamics in the last twenty years 
has been chaotic dynamics. Chaos theory is a branch of nonlinear dynamics. 

’ Isaac Newton (1642-1727) occupied the Lucasian Chair of Mathematics at Cambridge University. 
Newton invented the calculus, along with Leibniz. In 1687 he published his Philosophire Naturalis 
Principia Mathematica in which he presented his famous laws of motion as well as his law of gravity. 
The Lucasian Chair is now occupied by Stephen Hawking whose new theories of gravity seek to 
replace those of Newton and Einstein (see Hawking, 1988). 
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Figure 1-1 
amount of viscous damping. 

Phase-plane trajectory of the periodically forced pendulum with a small 

Out of new theoretical ideas have come experimental evidence for determi- 
nistic chaos-motions whose time histories are sensitive to initial conditions. 
Such motions resemble random dynamics but originate from nonrandom 
deterministic systems. An example is shown in Figure 1-1 for the forced 
motion of a simple pendulum. The input motion is periodic, but the output 
motion is a complex pattern of rotary and oscillatory motions. These ideas 
had their origin in the work of Henri Poincare (ca 1905), but their full 
meaning in dynamics took nearly a century of mathematical study and the 
advance of computers to become clear. Mechanical systems that are now 
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known to exhibit such motions are: 

0 Buckled structures under dynamic loading 
0 Impact problems 
0 Friction devices 
0 Fluid-structure problems 
0 Magnetomechanical systems 
0 Forced pendular-type problems 

An introduction to chaotic and nonlinear dynamics is given in Chapter 9. [see 
also Moon (1992) or Guckenheimer and Holmes (1983).] 

New Methods of Formulation of Dynamic Models 

The formulation of mathematical models for simulation and analysis is a 
major part of the practice of dynamics. Until the early 1960s the two principal 
methods were the Newton-Euler force approach, taught in the first two years 
of engineering training, and Lagrange’s equations based on energy functions. 
Since the 1960s however, two methods have been rediscovered. These are 
D’Alembert’s principle of virtual work and Jourdain’s principle of virtual 
power. The former is essentially an extension of the principle of virtual work 
to dynamics, while the latter principle goes back to the time of Aristotle but 
was presented in mathematical form by Philip E.B. Jourdain in 1907. The 
virtual power or virtual velocity method was rediscovered by Professor 
Thomas Kane of Stanford University in the 1960s. He extended this 
method to rigid bodies and developed it into a formal structure sometimes 
refered to as Kanes’ equations (see, e.g., Kane and Levinson, 1985, as well as 
Chapters 4 and 5 in this book). 

New Applications 

In rigid-body dynamics, two dominant new areas of application have been 
multibody dynamics and mechatronics. Multibody dynamics involves for- 
mulation of models for connected rigid or near rigid bodies. Mechatronics 
involves the introduction of electromagnetic actuators and feedback forces 
sometimes incorporating computer intelligence. 

Multibody Problems The most common multibody system is the bicycle 
(Figure 1-2). The four principal rigid-body components are two wheels, a 
frame holding a seat, and a fork steering bar. Pedal-sprocket, drive chain, 
and gearing add dozens of other rigid-body subcomponents. And, of course, 
the rider can sometimes be viewed as a multilinked system. In spite of the 
ubiquitous nature of the bicycle and the recent improvements in the so-called 
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Rear Derailleur Front Derailleur Forks 

Figure 1-2 The modern bicycle: a multibody system with both geometric (holonomic) 
and kinematic (nonholonomic) constraints. (Courtesy of Trek Bicycles Inc.) 

mountain bike, very little hard dynamic knowledge is known about this 
system apart from empirical trials and observations. Adding to the complex- 
ity, is the rolling constraint, which adds so-called nonholonornic constraints 
(Chapters 4 and 5 ) .  

The subject of multilink kinematics is an old field with a long history. The 
collection of linkage systems by F. Reuleaux in Germany for teaching 
kinematics in the nineteenth Century has yet to be rivaled in this century. 
And the beautiful catalog of kinematic mechanisms by the Russian Arto- 
bolsky (see the References section) shows the great variety of devices for 
creating motion in a mechanical system (Figure 1-3). See Erdman (1993) for a 
review of modern kinematics. 

One of the world’s most ubiquitous simple multibody mechanisms is the 
slider crank (Figure 1-4) used in internal combustion engines. Earlier 
dynamic analysis of the forces in such systems used graphical methods. 
Today there are powerful commercial and research codes to analyze and 
graphically simulate the motions of complicated dynamic systems (see 
Schiehlen, 1990). 

One of the recent tools has been the use of graph theory to represent the 
connectedness topology of the multibody system. Figure 1-5 shows chain, 
closed-loop, and tree-type multibody geometries. The classic serial link 
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3 

Figure 1-3 Two kinematic mechanisms: top: four-bar spherical mechanism; bottom: 
multiple-bar dwell mechanism. (From Artobolovsky, 1979.) 

Figure 1-4 Exploded view of an internal combustion engine piston and crankshaft 
assembly. (From Two-Stroke Engines, Roy Bacon, Osprey Publ. Ltd, London.) 
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Chain 

Closed Loop 

Tree Structure 

Figure 1-5 Linked multibody systems: top: chain structure; middle: closed-loop struc- 
ture; bottom: tree structure. 

mechanism (Figure 1-6) can be an open chain, a closed chain or a loop 
structure if it comes in contact with its base environment. Some of the most 
difficult dynamics problems in these systems are friction, impact, and rolling 
contracts, which still require more research. Practical examples of multibody 
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p Pitch 

Figure 1-6 Serial-link robotic manipulator arm showing kinematic degrees of freedom. 
(From Rosheim, 1995. Reprinted with permission.) 
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systems include: 

0 Robotic devices 
0 Door and latch mechanisms in aircraft design, jigs, and fixtures 
0 Train, tandum trucks, and buses 
0 Docking of space vehicles 
0 Solar panel deployment on satellites 
0 Helicopters 
0 Biomechanical systems: walking and mobility prosthetics 

Modern texts in multibody dynamics include Huston (1990), Shabana 
(1989), Roberson and Schwertassek (1988) and Wittenburg (1977). 

Mechatvonics Other names are used for this class of problems, including 
controlled machines, smart machines and structures, and intelligent 
machines. However the term, mechatronics is in use in Europe and Japan 
where mechatronic devices such as magnetic bearings and automated 
cameras and video equipment have been pioneered. One of the large-scale 
applications of mechatronics is the Mag-Lev train shown in Figure 1-7 that 
has been developed in Japan and Germany. Active magnetic bearings for 
large and small rotary machines such as gas pipeline pumps and machine tool 
spindles have been pioneered in Switzerland, France, and Japan. (see e.g., 
Moon, 1994). In the United States a significant amount of research and 
development has been directed toward microelectromechanical systems or 
MEMS (Figure 1-8). 

The distinguishing feature of most of these systems compared to tradi- 
tional controlled machines, has been the incorporation of sensing, actuation, 
and intelligence in producing and controlling motion in machines and 
structures. Thus the engineer is called on to integrate control and intelligence 
into the mechanical design from the very beginning and not as an add-on 
after the machine is designed. For example, the control motions at the joints 
of serial robot arms will effect the dynamics of manipulation and must be 
optimized along with the rest of the system. 

New Methods of Computation 

The development of microprocessors, workstations, and computer graphics 
has resulted in a plethora of codes and software to solve particle, rigid body, 
and coupled elastic body dynamics problems (see Appendix B and Schiehlen, 
1990). An example is shown in Figure 1-9. Often, however, the methods of 
formulation and solution of dynamic problems are not transparent to the 
user who cannot assess the limitation of such codes. 

These new codes allow one to specify geometry, materials, and the type of 
joints and constraints. The derivation of equations of motion is hidden from 
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Superconducting magnet 

(bl 

Figure 1-7 Sketch of two Mag-Lev systems (a) Electromagnetic levitation (EML), which 
requires electronic feedback control. (b) Electrodynamic levitation using superconducting 
magnets. (From Moon, 1994) 

the user. The integrated motions are presented in the form of computer- 
generated graphs and movie frame simulation of the moving objects. Two of 
the major workstation codes in use are DADS and ADAMS and another for 
the PC is Working Model. 

An intermediate level code for dynamic analysis is MATLAB. Here the 
user must provide the equations of motion and MATLAB will numerically 
integrate and display the results graphically. A few examples of the use of 
MATLAB are given in this text. 

In addition to these numerical codes, however, software to perform 
symbolic mathematical operations have appeared, such as MACSYMA, 
MAPLE, and MATHEMATICA. A few examples of the use of these codes to 
derive equations of motion are given in this text. 
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Figure 1-8 
substrate. See also Chapter 8, Figure 8-24. (Courtesy Adams, 1996.) 

Microelectromechanical (MEMS) accelerometer photoetched from a silicon 

New Experimental Tools 

In the last two decades the ability of the dynamicist and the engineer to 
observe and measure dynamical systems has been greatly enhanced by new 
sensors, signal processing, and actuator devices for control. 
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Figure 1-9 Still cartoon frame from a dynamic simulation code using Working Model 
software. (See also Appendix B) 

Sensing and Measurement Systems The two most important developments 
have been optical sensing systems and video recording. These include: 

0 Optical follower cameras for large motions 
0 Fiber-optic proximity systems for small motions 
0 Optical encoders for rotary and linear motions 
0 Holographic methods for elastic deformation 
0 High-speed framing cameras 
0 X-Ray methods 
0 Portable video scanning cameras 
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Signal Processing Methods There are four basic signal-processing systems 
for storing data from dynamical systems; analog and digital oscilloscopes, 
dedicated signal analysis electronics, and computer hardware, such as hard 
drives. These devices are either directly connected to sensing electronics or a 
buffer is used, such as a data-acquisition system. Many measurement systems 
use a direct input to a computer or microprocessor where the data are 
analyzed in software. 

One of the important advances in dynamic measurement has been the 
invention of the fast Fourier transform chip (FFT). This allows on-line 
calculation of dynamic Fourier transforms or spectra, which in the past 
required post-data-acquisition processing. 

System Zdentijication: Linear Systems This field has seen the development 
of software tools to allow the construction of a linear mathematical model 
(usually differential or difference equations) from a digitally sampled 
dynamic data record. In some systems where the data are sampled at different 
spatial locations on the machine or structure, the spatial eigenmodes can also 
be reconstructed. In control systems that use model-based feedback, algo- 
rithms such as Kalman filters are used to obtain an approximate model of the 
system under control. 

System Identification: Nonlinear Systems Methods for nonlinear dynamical 
systems are under continual development. In recent years the development of 
Chaos Theory (Chapter 9) has produced an evolving methodology based on 
constructing the topological and geometric features of the dynamical object 
in phase space. New techniques based on time series sampling of dynamic 
records such as fractal dimension and false nearest neighbors, allow us to place 
a bound on the dimension of the phase space (see Moon, 1992; Abarbanel, 
1996). 

Other methods, such as Poincare maps (Chapter 9) and bifurcation 
diagrams, have been used to characterize the nature of motions in nonlinear 
systems. 

1.3 DYNAMIC FAILURES 

While dynamic analysis in engineering is often used to create motions in 
physical systems, in many cases unwanted dynamic failures are to be avoided. 
Such failures include: 

0 Large deflections 
0 Fatigue 
0 Motion-induced fracture 
0 Dynamic instability, e.g., flutter, chatter, wheel shimmy 
0 Impact-induced local damage 
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0 Dynamic buckling in structures 
0 Motion-included noise 
0 Instability about a steady motion, e.g., wheel on rails 
0 Thermal heating due to dynamic friction 

A few of the most important failure modes are fatigue, dynamic instabil- 
ity, and noise. 

Fatigue 

Fatigue is an insidious type of failure in machines and structures because it 
does not result from either large forces or excessive stresses. Instead, it is the 
result of many small oscillations whereby microcracks in the material grow to 
form a large failure-producing crack. In some materials the failure may occur 
only after millions of cycles. An example of a fatigue crack is shown in 
Figure 1-10, Fatigue sometimes occurs near so-called “stress risers,” corners, 

BLADE 28 RI..4DE 89 

Figure 1-10 
Unterweison, 198 1 .) 

Fatigue failure at the root of a turbine blade. (From Hutchings and 
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Number of cycles 

0.001 I I I I I I I 

0.1 1 10 lo2 103 1 o4 1 o5 
Number of cycles 

1.0 r 

0.001 I I I I 1 I 

0.1 1 10 lo2  103 1 o4 
Number of cycles 

Figure 1-11 S-N Curve: Plastic strain vs. cycles to failure. Top: aluminum, commerically 
pure; middle: titanium, commercially pure; bottom: Zn-A1 alloy. (From Frost et al., 1974.) 



16 DYNAMIC PHENOMENA AND FAILURES 

holes, etc. But fatigue can also occur through repeated dynamic contact such 
as in gear teeth in transmissions or rolling problems in rail-wheel systems. A 
standard plot of dynamic stress vs. number of cycles to failure is shown in 
Figure 1-1 1 for aluminum and titanium. In the case of steel there sometimes 
exists a dynamic stress below which cracks don’t grown, a so-called “fatigue 
limit stress.” In the case of aluminum, however, a limit doesn’t exist, so any 
level of repeated stress will eventually lead to failure. Fatigue is one reason 
why the study of small vibrations is such an important subgroup of 
dynamics. (See e.g., Frost et al., 1974.) 

Dynamic Instabilities 

Many machines are designed to operate in a steady dynamic state character- 
ized by a constant velocity, such as an aircraft or constant rotation as in 
turbines and generators. A satellite pointing toward the earth involves both 
steady translation and rotation. One classic failure mode in these machines is 
a significant departure from steady state. Examples include: 

0 Wing flutter 
Machine tool chatter 
Vehicle skidding, wheel shimmy 

e Train derailment 
0 Uncontrollable spin of aircraft 

In many of these systems, a linear stability analysis can be performed. As an 
example consider the lateral-yaw motions of a Mag-Lev vehicle moving 
along a guideway, shown in Figure 1-12 (see Chapter 8, also Moon, 1994). 
The lateral motion of the center of mass, u, and the yaw, 4, can be modelled as 
two coupled oscillators: 

where some of the constants depend on the steady velocity parameter, Vo. In 
linear stability analysis, one looks for a solution of the form 

[ ;] = [ 
This problem results in a so-called eigenvalueproblem. In general there might 
be two such solutions, i.e., two sets of { A i ,  Bi, si} where s1 = f ( V o ) ,  
s2 = g( Vo).  These values can be complex, i.e., si = ai + iPi. 

When ai = 0, we say the mode is oscillatory; ai < 0, Pi # 0, the system is 
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Guideway Coupled pitch and heave vibrations 
(porpoising) 

Coupled lateral and yaw vibrations 

Figure 1-12 Three types of vehicle instabilities in a Mag-lev vehicle: top: porpoising 
(coupled pitch and heave); middle: snaking (coupled lateral and yaw); bottom: roll 
divergence. (From Moon, 1994) 

damped oscillatory, and cyi > 0, the system is unstable. Two classes of 
instability can be observed in many problems: pi = 0, cyi > 0; This case is 
called divergence, buckling, or a static instability. The case pi # 0, ai > 0 is 
called “utter” or a dynamic instability. In nonlinear dynamics, this 
oscillation instability is called a Hopf bifurcation (see Chapter 9). 

In either case, the motion cannot become unbounded, and eventually will 
be limited by either a sudden failure, e.g., a bearing seizure, or will evolve to 
another steady state motion determined by the nonlinear effects in the 
problem (see Chapter 9). 

Dynamic Generation of Noise 

Although stresses and motions can be small in dynamical machines, excessive 
noise can produce an unacceptable product as in the case of automobiles, 
printing machines, dishwashers, and components for submarines. Two 
dynamic problems shown in Figure 1-13 can produce noise: resonance and 
impact. In the impact problem a multibody system undergoes periodic, 
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Figure 1-13 Sketches of vibration induced noise sources. Top: resonance; bottom: 
impact. 
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random, or chaotic impact, generating structureborne noise, which then 
couples to some resonant part of the machine structure to create airborne 
noise. Resonance generation of noise is often associated with rotating 
components. Other noise-generation mechanisms are rolling, friction and 
fluid-structure interaction. 

Avoidance of Dynamic Failure 

The engineer has a number of options to prevent dynamic failure in a 
machine or structure. A short list would include the following: 

0 Understand the dynamics before the design becomes a product, using 
simulation tools or experiments. 

0 Choose materials with enhanced properties to resist fatigue, fracture or 
wear, or choose higher damping materials to minimize resonance. 

0 Use passive damping. 
0 Use active control. 
0 Use internal diagnostics, sensors, limit switches, etc., to detect immi- 

nent failure and avoid catastrophe. 

1.4 BASIC PARADIGMS IN DYNAMICS 

The general principles of dynamics used in this text stem from Newton’s law 
of linear momentum and Euler’s extension of this principle to angular 
momentum. In this text we address the classical dynamics of particles, 
systems of particles, and rigid bodies. The Newton-Euler principles can be 
codified into two mathematical equations 

dV F = m C  
dt 

d 
M --Hc 

- dt 

(1.3a) 

(1.3b) 

where the subscript denotes the velocity of the center of mass V,; the moment 
of the forces about the center of mass M,; and the angular momentum about 
the center of mass H,. However, most students do not learn dynamics by 
starting with these vector differential equations. Instead the novitiate begins 
with simple examples and simple mathematical models. A few of these simple 
models are reviewed in this section; 

1. Motion under a constant force 
2. The pendulum 
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Figure 1-14 Parabolic path of a projectile under gravity without aerodynamic drag. 

3. The linear oscillator and resonance 
4. Gyroscopic motion 
5. Central-force motion 

Motion Under a Constant Force 

Motion under a constant force is a classic problem studied by Galileo Galilei 
(1564-1642) and by every high school student. If the constant force is 
gravity, then the equation of motion is given by (see Figure 1-14): 

m i  = -mge, (1.4) 

(In this text an overdot will indicate a total derivative with respect to time.) 
This equation can be separated into two scalar equations (for planar motion) 
and integrated in time to obtain: 

uy = -gt + uoy 

x = xo + vo,t 

1 2  y = yo + u,t - -gt 
2 

The motion takes the form of a parabola, as shown in Figure 1-14. The 
addition of air-drag to this problem can significantly alter these results as any 
football, soccer, tennis, or baseball player knows. 

Pendulum 

The planar pendulum (Top left Figure 1- 15) is a single-link, single-degree-of- 
freedom device with circular motion under the force of gravity. The human 
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Figure 1-15 Pendula-type motions. 

arm locked at the elbow is an example of pendulum system, albeit without the 
planar constraint. The basic equation of motion involves taking the cross 
product of Newton’s law to obtain a planar version of the law of angular 
momentum (1.3b) 

where H, is the angular momentum of the mass distribution of the link and 
M ,  is the moment of the gravity force. For a link with a mass concentration at 
a distance L from the joint, the equation of motion takes the form 
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This is a nonlinear ordinary differential equation. The nature of the solution 
can be seen by looking at the phase plane (0, 4) in Figure 1-16. There are 
oscillatory notions about 8 = 0, and for initial conditions outside the so- 
called separatrix curve in Figure 1-16, the motions are circulatory, either 
clockwise or counterclockwise. The solution near 0 = T,  is statically 
unstable. When the angle is small we have 

.. g 
L e + - e = o  

and the solution is given by 

0 ( t )  = Acosq t  + Bs inq t  (1.9) 

where ui = g / L .  The natural frequency in cycles per second is given by 

1 
f =%m (1.10) 

4 

3 

2 

1 

0 

-1 

-2 

-3 
t 4 

THETA 
Figure 1-16 Phase-plane trajectories of the pendulum. Enlarge with a copy machine, cut 
out, and join 0 = 0, 27r to form a cylindrical phase space. Time flow for Omega > 0, left to 
right. 
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and we can see that the longer the length L, the slower the oscillation. In 
pendulum or gravity forced systems, the natural frequencies do not depend 
on the mass. 

The Linear Oscillator: Resonance 

Many flexible structures, such as a cantilevered beam, offer a resistance to 
motion that can be modeled as a linear reaction force or spring force. A 
classic dynamics paradigm is the single-degree-of-freedom motion of a mass 
connected to a linear spring and viscous damper (Figure 1-17). This could be 
a model for a simple structure under base motion, as in an earthquake: 

m ( i  + &t) )  = -kx - c i  (1.11) 

When the base motion is sinusoidal, the standard form of the equation of 
motion becomes 

i + 2 y i  + w;x = A cosSlt (1.12) 

2 where wo = k/m, y = c/2m. 

sinusoidal solutions 90" out of phase: 
When the damping and forcing are both zero, y = 0, A = 0, there are two 

x =  C1coswot+C2sinwot (1.13) 

The frequency of oscillation in cycles per second is given by, w0/27r. When the 
damping is small, the frequency in radians per second is given by (k/m)1/2, 
where we assume in this book standard international units of meter, kilo- 
gram, seconds, so that k is in Newton's per meter and m is in kilograms. 

When small damping is present, the motion becomes a damped sinusoidal 
motion 

x ( t )  = e+[C1 coswlt + C2 sinwlt] (1.14) 

where 

2 2 2  w1 =wo-y (1.15) 

In the study of ordinary differential equations this solution is called a 
homogeneous solution. 

When forcing is present, A # 0 in (1-4), one can show that the particular 
solution is also of the same form as the driving signal but with a phase shift. 
The maximum amplitude of the motion exhibits a classic resonance effect 
shown in Figure 1-1 8 for small damping. Thus when the driving frequency is 
close to the natural frequency w1 or wo, large amplitude motions can occur 
that may lead to failure. 
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I 1  
I 1  I 

Figure 1-17 
vibration of a spring-mass oscillator. 

Top: Model for earthquake excitation of a structure. Bottom: Forced 
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Forcing Frequency Nu, 

Figure 1-18 
damping ratios, y. 

Resonance curves for a forced-spring-mass-damper oscillator, for different 

Phase Plane Another way of viewing the motion of an oscillation is the 
phase plane. For the unforced, damped oscillation we rewrite the equation of 
motion (1.12) with A = 0 as two first-order equations 

X = V  

ir = -2yv - wox 2 (1.16) 

Thus we can define a state vector [x, v], and [i, ir] becomes the rate of 
change of that state vector. When damping is zero, y = 0, the trajectories of 
motion become ellipses in this state space or phase plane as shown in Figure 
1-19a. When damping is present, this motion becomes a damped spiral 
(Figure 1-19b). The phase space representation is especially useful for 
analysis of nonlinear systems (Chapter 9). 

Gyroscopic Motion 

When a rigid body is in pure rotation about a point, the equation of motion 
relates the change in angular momentum, H, to the applied force moment M, 
or 

M = H  (1.17) 
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Zero Damping 
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i v = i  

Damped Motion 
v =  i t 

Figure 1-19 Phase-plane trajectories for the unforced, spring-mass oscillator. top: with- 
out damping; bottom: with small damping. 

The example of a cylindrically symmetric body with steady rotation about 
two of its principal axes illustrates the simplest example of the gyroscopic 
effect. Referring to Figure 1-20, the rotation vector can be written in the 
moving axis frame w = $e4 + ?,he+. The rotation about the body symmetry 
axis is called the spin, 4, and the rotation about the vertical axis, 4, is called 
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Figure 1-20 Gyroscopic motion of a spinning wheel. 

theprecession. The angular-momentum vector H can be shown to lie in the x- 
z plane where ex = e4, e, = eQ (Chapter 5) ,  i.e., 

H = Ixdex + Iz$ez (1.18) 

It is shown in Chapter 5 that H = $e, x H. 
Thus the angular-momentum vector changes in a direction normal to the 

x-z plane, i.e., the moment must have a y component, M = M,e,. It can be 
shown that Equation (1.17) then becomes, My = wzHx, or 

M y  = I,$$ (1.19) 

Thus we have a troika relationship; the y component of M is equal to the 
product of the z component of w and the x component of H. This gyroscopic 
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troika is revealed in the remarkable motion of a top or gyroscopic in which 
the moment is created by the force of gravity, i.e., M y  = mgL. The spin rate 4, 
and the precession rate 4 are related by the hyperbolic relation. 

(1.20) 

The reader is encouraged to buy a small toy gyro and demonstrate this 
effect. The gyroscopic moment is present whenever rotating bodies are 
turned about two principal axes such as a bicycle wheel turning left or 
right. One application shown in Figure 1-21 is the retraction of a landing 
wheel on an aircraft wing. 

Figure 1-21 Induced gyroscopic moment, M, on a retracting aircraft wheel. 
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Central-force Motion 

The first dynamics example the student often studies is circular motion of a 
particle under a constant radial force. One learns that the acceleration is v2/r  
and the tension is given by T = mu2/r. Although the velocity is tangential to 
the circle, the change in the velocity vector is in the radial direction pointing 
toward the center. 

The second example of central-force motion that the student encounters is 
orbital motion about a gravitational center (Figure 1-22). This problem goes 
back to the work of Johannes Kepler (1 571-1630) who “discovered” the 
elliptical orbits of orbiting bodies, and Sir Isaac Newton (1642-1722), who 
developed Kepler’s three laws into his mathematical laws of motion and law 
of gravitation. The classical Newtonian force law of gravity assumes an 
inverse-square law between bodies of masses ml , m2: 

(1.21) 

where rI2  is the radial distance between the two gravitational centers of 
m l ,  m2. The complete problem is discussed in Chapter 7. However, one 
result is easy to see, namely the conservation of angular momentum. For all 
radial-force laws, the total circumferential acceleration must be zero, since 
there is no force in this direction. Using polar coordinates the circumferential 
acceleration becomes 

as = re + 2i.8 = 0 (1.22) 

or ( r 2 e >  is constant in time. 

also finds that 
Taking the cross product of Newton’s law (1.3a) and the radial vector, one 

d 2 ‘  d 
- (mr 8) = - (H,) = 0 dt dt (1.23) 

This says that the angular momentum, H, is conserved. Writing e = w, we see 
that the angular velocity for all central-force motions is inversely propor- 
tional to the square of the radius: 

Hz 

mr 
w=- (1.24) 

The bounded motion under gravity is either a circle or an ellipse (Figure 1- 
22). When ml is much larger than m2, the equation for a circular orbit is 
obtained by equating the radial acceleration w2r to the gravitational force 
(1.21) per unit mass: 

u2 = Gmllr 3 
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Figure 1-22 Orbits of a mass under a gravitational central force. 

or since v = rw, 

v = (Grnl /r) ' /2  (1.25) 

For a low earth orbit, this velocity is on the order of 8000 mjs. The period is 
around 90 min (see also Table 7.1). 
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1.5 COUPLED AND COMPLEX DYNAMIC PHENOMENA 

Coupled Fields 

Some of the most exciting problems in applied dynamics arise from the 
coupling of dynamics to other fields of science. Some of these problem areas 
are listed below: 

0 Fluid mechanics and dynamics, e.g., 
Aircraft dynamics 
Submarine, wave-ship motions 
Flutter of flexible structures 
Turbine or pump dynamics 

0 Electromechanical dynamics, e.g., 
Levitated vehicles and trains 
Magnetic bearings 
Linear actuators 
Sensors, accelerometer 
Motors, generators 
Microelectromechanical systems (MEMS) 

0 Control systems, e.g., 
Robotic systems 
Active vehicle control 

0 Orbital dynamics, e.g., 
Spacecraft altitude stability 
Vibrations of flexible structures in space 
Deployment dynamics of space structures 

Walking machines 
Animal locomotion 
Wheelchair stability 
Prosthetic design 

Combustion machines 
Thermoelastic effects 
Wind energy machines 

0 Biomechanical dynamics, e.g., 

0 Dynamics in thermal and energy systems, e.g., 

Another set of problems that provide challenges for the next generation of 
dynamicists involve material and geometric complications. Some of these 
problems are listed below. 
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Complex Dynamics 

0 Material nonlinearities, e.g., 
Friction forces 
Impact problems 
Fracture and fatigue 
Elastoplastic forces, inelasticity 
Cutting forces in material processing 

0 Geometric nonlinearities, e.g., 
Unimodal contact problems 
Gaps or play in mechanisms 

0 Nonconservative forces, e.g., 
Fluid forces 
Nonlinear damping 

0 Nonholonomic problems 
Rolling 
Wheeled vehicles 

0 Many-body systems, e.g., 
Linked systems with dozens of connected components 
Transmission systems 

0 Large motions of flexible bodies, 
Flexible robotic manipulators 
Flexible vehicles and satellites 
Tethered satellites 
Towed vehicles 

1.6 DYNAMICS AND DESIGN 

Until the advent of modern computers, dynamicists and vibration engineers 
were ambulance chasers in engineering design. They arrived on the scene 
after the system was designed, built, and deployed in service, usually called in 
to solve some post design problem or failure. One of the most famous 
examples was the dynamic failure of the suspension bridge over the Tacoma 
Narrows gorge in the State of Washington. At the time, civil engineers did 
not often consider dynamics in design. In recent decades we have witnessed 
incorporation of dynamics into the design of structures in earthquake-prone 
areas. 

In the area of machine design, kinematic principles were employed well 
over a century ago. However, the operation of machines in off-kinematic 
behavior due to machine flexibility, power limits, etc., has only recently been 
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incorporated in design with the advent of multipurpose dynamics codes. Still 
many manufacturing machines are designed initially for steady state, and 
then only in the second stage of the design process checked for vibration 
modes and transient behavior using finite-element codes. 

Many flight vehicles and wheeled vehicles are initially designed for steady- 
motion operation, and only after the initial design is completed will dynamic 
and vibration behavior be addressed. Exceptions are often in high perfor- 
mance flight vehicles where flutter of wings and control surfaces sometimes 
must be considered early in order to avoid limitations on operational speed. 

The one area where dynamics analysis has been central to initial design has 
been in robotics. In earlier stages of the design, a kinematic approach is used, 
followed by dynamic and control aspects of the design. With the need for 
high-speed manipulators, or mobile robotics, dynamic effects will take center 
stage in optimization and choice of design parameters. 

1.7 MODERN PHYSICS OF DYNAMICS AND GRAVITY 

The physics of dynamics has undergone a number of revolutions from the 
time of Aristotle (300 B.c.), Newton (1686), Einstein (1909), to the modern 
quest for a quantum theory of gravity and a unification of all the mass and 
force laws. For all of the applications described in this book, the Newtonian 
ideas of dynamics and gravitation will suffice. This theory is based on the 
assumption of a universal time unit, independent of motion, and the use of a 
reference system in the “fixed” stars against which all accelerations are 
measured. The theory also assumes that gravitational forces are universal, 
proportional to the product of masses of each particle pair, and change 
instantaneously when one particle moves with respect to the other. This 
assumption is sometimes called “action at a distance” and implies an infinite 
force propagation speed. Implicit in this theory is that mass is intrinsic to 
particles and does not change with the velocity. 

However, all students of introductory physics know that this theory is 
challenged when distances are great, when the velocity is near the speed of 
light and when distances become smaller than the size of the atom. The great 
scientific revolutions of relativity and quantum mechanics at the beginning of 
this century, and the new world of particle physics and the theory of 
everything at the end of this century have dramatically changed the New- 
tonian structure of dynamics. So while the continued use of this structure for 
engineering problems is sufficient, the intellectual excitement of these new 
theories challenges all dynamicists to become aware of the limitations of our 
dynamical ideas and tools. 

The first great assault on Newtonian dynamics came at the beginning of 
this century by Albert Einstein (1879-1955) in his special theory of relativity. 
This theory was based on observations of the independence of the speed of 
light to the frame of reference, as well as theoretical work on the equations of 
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electromagnetics as formulated by J. C. Maxwell in 1865. As most high 
school students learn, this theory resulted in the notion of the change of 
length and time scales with velocity, as well as the equivalence of energy and 
mass summarized in the famous equation E = mc2, where c is the velocity of 
light. 

However, Einstein’s general theory of relativity shed new light on gravita- 
tion. In this theory the four-dimensional world of space and time is warped 
by the presence of objects possessing mass. It is this deformation of space- 
time that “causes” one mass to be attracted to another. Thus the “force of 
gravity” is replaced by a geometric warping of space-time. His theory also 
dealt a blow to the “action at a distance” feature of the Newtonian view of 
gravity by including the notion of gravitational waves. That is, any changes in 
the relative position of two masses are not felt instantaneously, but travel at 
the speed of light. Observations of pulsars by Joseph Taylor and Russell 
Hulse of Princeton in 1974 provided evidence for gravitation waves, which 
won them a Nobel Prize in 1993. However, measurements of gravitational 
waves on earth have been more difficult despite substantial ongoing projects 
by several physics groups. 

The second major development in classical dynamics was in quantum 
mechanics, which was developed by several physicists in the first quarter of 
the twentieth century and was embodied in the famous equation of Schro- 
dinger (1926). Instead of assigning a position vector to describe the motion of 
a particle, a wave function representing the probability of a particle’s 
position in space was posited. Out of this theory came the now famous 
uncertainty principle of Heisenberg (1927). This principle says that one 
cannot measure both the particle’s position and velocity with infinite 
accuracy. 

In the last quarter of the twentieth century there has been a bewildering 
display of discoveries in particle physics that has challenged the imagination 
of those trained in classical dynamics. Mass particles have been replaced by 
atomic nucleii (protons and neutrons), which have been replaced by sub- 
nuclear particles: quarks and leptons. Physicists now classify the forces of 
nature into four groups: electromagnetic, gravity, weak nuclear, and strong 
nuclear forces, each transmitted by another group of particles called bosons. 
In fact forces are now viewed as an exchange of particle-like messenger 
objects. For example, electromagnetic forces between particles are realized 
by an exchange of massless photons each traveling with the speed of light. 
Gravitational forces are imagined to be an exchange of gravity quanta, called 
gravitons, again traveling at the speed of light. Thus the force of the earth on a 
satellite is viewed as a continual exchange of gravity quanta between mass 
particles in the earth and mass in the satellite. These theories were developed 
in the period 1974-84. To date, however, experimental evidence for the 
graviton has not been found. 

The most recent theories of mass, forces, and gravity attempt to incorpo- 
rate all known forces of nature into one grand theory called the theory of 
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everything (TOE). One class of TOE replaces mass particles with stringlike 
objects in ten dimensions. Hence the term string or superstring theory. 

What prompted these diversions in this book is the observation that the 
continued mystery of the nature of classic concepts of mass, force, and 
gravity has become one of the principal thrusts of modern physics. The 
reader wishing to gain further insight into these ideas and discoveries should 
read some popular books, such as those of Hawking (1988), Zee (1989), 
Weinberg (1993), Lederman (1993), and Thorne (1994) referenced at the end 
of this book. 



BASIC PRINCIPLES OF 
DYNAMICS 

2.1 INTRODUCTION 

It is assumed that the student has had an introduction to dynamics in a 
college physics course as well as a one-semester course covering kinematics 
and dynamics of particles and rigid bodies at the sophomore or junior level. 
Sometimes it is useful to take a large view of a field. In Chapter 1 we have 
summarized some of the phenomena and paradigms of dynamics without 
emphasizing the basic principles. Here we catalog the various mathematical 
definitions of dynamical measures along with the basic principles and 
equations that embody Newton’s laws of dynamics. Additional concepts 
are introduced later, such as Lagrange’s equations. In later chapters we 
revisit some of the basic principles in greater detail. 

2.2 KINEMATICS 

The teaching of kinematics has evolved in the last century. Prior to the 1950s. 
use of scalar components of velocities and accelerations were mainly used 
and graphical methods of solution were taught. Beginning with the 1950s a 
vector approach was used that de-emphasized the scalar components. In 
recent years the use of matrices has been introduced, especially to describe 
rotations. This approach is most useful when using the digital computer to 
formulate and solve problems. 

In this text we primarily use a vector approach to do the model develop- 
ment and analysis. The matrix form of certain equations is included since it is 

36 
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used quite extensively in modern computer codes in robotics and multibody 
dynamics. 

Position Vector 

Kinematics is the mathematical description of motion. In dynamics we are 
concerned with position, velocity, and acceleration. The position of a particle 
is tracked by a vector whose origin begins at the origin of a reference frame 
(Figure 2-1) and ends at the particle. The position vector is often projected on 
a reference frame with three mutually orthogonal unit vectors or basis 
vectors. 

When a Cartesian frame is used, the three components are often written as a 
column vector in matrix notation, i.e., r = [x ,  y ,  zIT, and the three basis 
vectors are written as {el ,  e2, e3} = {i, j, k}. (The superscript ‘T’ on the 
square bracket indicates a matrix transpose. Thus a 1 x 3 row matrix 
becomes a 3 x 1 column matrix) However, in cylindrical coordinates 

J 
Figure 2-1 Position vector, Cartesian components. 
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Figure 2-2 Position vector, cylindrical components. 

(Figure 2-2) only two basis vectors are used. 

r = pep + ze, (2.2) 

Here the other variable, the angle 0, is implicit since the radial basis vector ep 
depends on 0. 

Velocity 

Using the basic definition of a derivative in vector calculus, the velocity 
vector of a moving particle is given by the derivative of the position vector, 

dr 
dt 

v = -  

In rectangular coordinates this becomes 

v = xi + j j + i k  

where the derivative is taken in a reference frame where the basic vectors 
(i, j, k) are assumed to be fixed. 
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In cylindrical coordinates one must account for the fact that ep changes as 
e( t )  changes. One can show (see Chapter 3) that in these coordinates the 
velocity is given by differentiating (2.2) with respect to time 

v = pep + peee + ie, 

or 

Up = p ,  vg = PO, v, = i  (2.5) 

Acceleration 

By extension of the ideas just discussed, the acceleration a is a vector quantity 
that is the time derivative of the velocity vector 

dv 
dt 

a=-.- 

In Cartesian coordinates we have 

a = xi +j;j + zk (2.7) 

and in cylindrical coordinates 

a = ( i j  - pd2)e, + (pe + 2j8)es + ie, (2.8) 

Here the term -pb2eP is known as the centripetal acceleration and comes 
from the change of ee in (2.5). The term 2p8eg is called the Coviolis' 
acceleration and originates from the time rate of change of p in ve and the 
time rate of change of ep. 

Constraints: Jacobian 

The motions of many components in machines are often limited by geometric 
constraints such as pistons in an engine cylinder or balls in a bearing race. 
This means that the number of degrees of freedom is less than three for a 
particle and less than six for a rigid body. In such problems it is usually 
convenient to replace the spatial position variables by generalized variables 
that are natural to the constraint. Two examples are shown in Figure 2-3 In 
case (a) the particle is constrained to move along a curve whose length is given 
by s( t ) .  This means that the components of the position vector r = [x, y ,  .IT 
are functions of s. In this case the velocity is given by 

. dr , dx  dy v = r = - , y =  (-i + - j + k) i ds ds ds ds 

' Gaspard-Gustave de Coriolis (1792-1843) French engineer and mathematician 



40 

X 

A 

BASIC PRINCIPLES OF DYNAMICS 

Figure 2-3 Two examples of constraints: (a) motion on a curve, and (b)  motion on a 
moving surface. 
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or 

V =  J3 

The vector J is called a 3 x 1 Jucobiun2 matrix. Note that J is tangent to the 
path of the particle. The Jacobian relates the physical velocity v to the 
generalized velocity 3. An alternative representation is to choose one 
component as the independent variable, say x, then r = [x, y ( x ) ,  z(x)IT 
and the velocity is given by 

v = x  i + - j + - k  ( 2 2 )  (2.10) 

In the second example the particle is constrained to move on a surface that 
may itself be moving. In Figure 2-3b we show two generalized coordinates 
( q l ( t ) ,  q 2 ( t ) ) ,  embedded in the moving surface. In this case each of the 
components ( x ,  y ,  z )  is a function of (q l ,  q2) as well as an explicit function 
of time so that 

i=l. 2 

In general, where r = r (q i ,  t )  

(2.11) 

(2.12) 

or 

dr 
v = J q + -  

d t  

The coefficient of qi in Equation (2.12) is called a Jacobian matrix, J. In the 
example of motion on a surface, this matrix is 3 rows by 2 columns, i.e., 

J =  

d x  a y  dz 
dql dql G] 

(2.13) 

Also q = [ q l ,  & I T .  Jacobian matrices embody information about geometric 
constraints and are very important in the study of robotic and other multi- 
body machine dynamics. 

' K. G. J. Jacobi (1804-1851), German mathematician. 
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2.3 EQUILIBRIUM AND VIRTUAL WORK 

In dynamics, equilibrium is the absence of acceleration, not the absence of 
motion. For a single particle this means that the sum of all the forces on the 
particle must be zero; i.e., 

This is a vector eauation and 

CFj=O 
i 

s such we ca 
direction described by a unit vector, e, 

x F j . e = O  
i 

(2.14) 

project the forces onto any 

(2.15) 

For a single particle we can obtain three independent scalar equations 
relating the forces acting on the body. In (2.15) e is arbitrary, but all the 
forces are involved. In the next section we show how to choose e to eliminate 
some of the forces from the equations of equilibrium. 

Virtual Work 

In the Newtonian view of dynamics, changes of velocity or acceleration are 
produced by a vector quantity that we call force. This vector approach 
appears very natural to modern students of dynamics. However, an alter- 
native view of dynamics can be formulated using work and energy concepts, 
which is a scalar-based view of dynamics. This work-energy approach can be 
quite useful in solving many practical problems of both an equilibrium 
nature (the method of virtual work) and a dynamic nature (Lagrange's 
equation and the method of virtual power). These scalar methods can be 
derived without using vectors, but in this text we begin with the vector 
notation. 

The methods derived from the principle of virtual work are most useful in 
problems in which there are workless constraints. For example, consider the 
particle shown in Figure 2-4a that is constrained to move on a rigid surface. 
We write the forces on the particle as the sum of applied forces {Fq} and a 
constraint force FC between the surface and the particle. We next imagine 
that the particle is allowed to move a small amount on the surface. This 
amount is denoted by Sr. This small vector is not arbitrary, but is tangential 
to the surface. If the surface normal is denoted by n, then Sr . n = 0. In this 
case we say that the small test displacement Sr, called a virtual displacement, is 
consistent with the constraints. 

If there is no sticking and no friction between the particle and the surface, 
we can write F C  = FCn, where n is a unit vector, so that FC . Sr = 0. The 
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Ug 

Figure 2-4 Virtual work: (a) motion on a surface; (b) free-body diagram showing 
workless force FC. (c) Constrained motion of a mass on a circular ring under gravity. 
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vector form of equilibrium is 

CF; + F ~  = o 
i 

(2.16) 

However, taking the projection onto Sr, we have 

x F ? . S r  = 0 (2.17) 
i 

In this equation we have eliminated the constraint force FC and have a 
relation between the applied forces as projected onto the direction Sr. Since 
Sr is arbitrary, we can choose two independent directions tangential to the 
surface and obtain two scalar equations of equilibrium of the applied forces. 
Defining the independent variables q l ,  q2, the small virtual displacement Sr 
can be resolved into independent variations Sql  , Sq2 or 

And since these variations are assumed to be independent, we have 

dr CFB .- , = 0  k = l ,  2 
i @k 

(2.18) 

(2.19) 

Here we see again the role of the Jacobian matrix (2.13). The column vectors 
of J represent projection vectors in (2.19). Another statement of the principle 
of virtual work is the matrix equation below (see e.g., Roberson and 
Schwertassek 1988, p. 167.) 

J ~ F ~  = 0. 

2.4 SYSTEMS OF PARTICLES 

The classic equation of dynamics embodied in Newton’s law applies strictly 
for a point mass. In the case of extended bodies, we have to determine which 
point the law of acceleration applies to, as different points can have different 
accelerations. In formulating the laws of dynamics for extended bodies, we 
use the artifact of assuming that fluid, solid, or gaseous bodies can be 
represented by a finite collection of point masses. This allows us to use 
summation operations instead of integrals. Almost all of the definitions that 
follow can be rewritten in integral form over mass densities. For the student 
who desires a more rigorous treatment of continuous matter dynamics, 
appropriate texts in solid, fluid and continuum mechanics are recommended. 
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Also, while some of the principles and equations are applicable to deformable 
mass systems, in this text, the extended bodies of interest will, in almost all 
cases, be rigid bodies. 

We begin with several definitions that are based on the diagram in 
Figure 2-5. Here we assume there exists a distribution of point masses 
{mi} whose positions are each described by position vectors {Ti}. From 
this assumption the following definitions are given. 

Center of Mass 

The total mass given by 

M = x m i  (2.20) 

Figure 2-5 System of particles. 
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The first moment of mass is called the center of muss 

(2.21) 

From this definition we can define relative position vectors ( p i }  whose first 
moment of mass is zero, i.e., 

(2.22) 

Linear Momentum 

From the previous section on kinematics, the time rate of change of the 
position vectors is the velocity of each point mass, i.e., r = v .  

The linear momentum is then defined as 

P = )‘mivi 

and by the preceding definition 

P = Mv, 

(2.23) 

(2.24) 

where v, = r, 

Angular Momentum 

The linear momentum is defined with respect to a given reference frame. The 
angular momentum is the first moment of linear momentum with respect to a 
particular point. In the case where this point is the origin we define the 
angular momentum 

H = C r j  x mivi (2.25) 

We can also define an angular momentum measure with respect to a reference 
frame translating with the center of mass 

It is easy to show, using (2.22), that 

(2.26) 

H = Hc + r, x Mv,.  (2.27) 
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Moment of Force 

An important measure of the effect of point forces on extended bodies is the 
first moment of force defined by 

M = cri x Fi (2.28) 

In this definition each mass is assumed to have an applied force Fi acting 
on it. 

Laws of Linear and Angular Momentum 

With the preceding definitions we can state the extension of Newton's laws 
for extended bodies as represented by a collection of N point masses 
{mi; i = 1,. . . N } .  In stating these laws, we assume that, in addition to the 
forces applied to each mass from outside the system {Fi} there is another set 
of forces that act between pairs of masses represented by the set of vectors 
{fU; i # j } .  We assume that these internal forces obey Newton's law of action 
and reaction or that fU = -fji. Thus for each mass particle we have Newton's 
law, 

(2.29) 

If we sum these equations of motion over all the masses using (2.21) and 
(2.24), then we have Newton's law for the ensemble of particles 

MV, = CFi (2.30) 

This result tells us that in order to apply Newton's law to an extended body 
of particles, we must use the acceleration of the center of mass and the sum of 
all the external forces. 

To obtain the law of angular momentum for a system of particles, we take 
the first moment of (2.29) and again sum over all the particles: 

(2.31) 

There are two more steps to obtain the standard form of this law. First, we 
recognize that on the left-hand side we can take the time derivative outside 
the summation and use (2.25): 

(2.32) 
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The second step is more controversial. Consider pairs of terms in the second 
expression on the right-hand side 

ri x fii + rj x fii = (ri - rj) x fU (2.33) 

If we assume that the internal forces are central, that is, that they are directed 
along the line between the masses, the total moment of the internal forces is 
zero and we have the classic statement of the law of angular momentum 

d 
dt -H = M (2.34) 

where the moment of the external forces M is defined in (2.28). However, 
Newton’s third law fii = -4, does not require that the forces be colinear, i.e., 
directed along the line between the masses (r, - rj). In this case the pairs of 
internal forces would create couples that would contribute to the moment M. 
Goldstein (1980), in the second edition of his book on classical mechanics, 
calls the assumption of central forces the strong form of the third law and the 
noncentral force law the weak form of the third law. There are classic force 
laws in electromagnetics in which the mutual forces between masses are not 
colinear. In this case, additional moment terms must be added in order to use 
the classic form of the angular momentum law (2.34). 

Some authors have stated that deriving the law of angular momentum 
from Newton’s laws for particles is artificial and that we should simply 
assume that the classic law of angular momentum for an extended body is an 
independent law of nature (see, e.g., Truesdell, 1964). In practice, we must 
require that both laws of linear and angular momentum (2.30), (2.34) be 
satisfied for every extended body. 

The combination of both laws yields another form of the angular- 
momentum law. In particular, we use the relative coordinates pi = ri - rr 
to rewrite the angular-momentum vector using (2.27) 

H = H , + r ,  X M V ,  

We also have the identity 

where 

M, = C p ,  x F, (2.36) 

Here, the second term is the moment of the applied forces about the center of 
mass. The expressions (2.34), (2.27), (2.35) lead to the relation 

d 
dt 
-H, = M,, (2.37) 
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The angular momentum H,, (2.26), is calculated by moments about the 
center of mass and from the relative velocities p i  = vi - v,. The time 
derivative is assumed to be taken in a nonrotating reference frame translating 
with the center of mass. 

There are other forms of the law of angular momentum that we do not 
discuss here. The last form (2.37) is very important because the point about 
which the moments are taken moves with the body. This allows us to define 
another set of geometric quantities that measure the angular momentum per 
unit rate of rotation called “moments of inertia.” We leave the discussion of 
moment of inertia to Section 2.5 and Chapter 5. 

Energy Principle 

The laws of linear and angular momentum (2.30) and (2.37), are both vector 
equations. We can also obtain a scalar equation representing changes in 
kinetic and potential energy measures. 

Kinetic Energy The energy associated with motion is defined by 

1 
2 

T = - C mivi . vi (2.38) 

Suppose time-independent constraints, rj(qk(t)),  restrict the motion to a set 
of k generalized coordinates {qk ( t ) } ,  where k = 1,2 , .  . .k < 3N. Then the 
kinetic energy assumes the form 

where the ( K  x K )  mass matrix mke is related to the Jacobian vectors 
J i k  = ari/aqk, i = 1,2,  . . ’ N ,  i.e., mke = xi miJikJie. 

The equations of motion, Equation (2.29), can be put into the form of an 
energy principle if we take the inner product of each of the terms in (2.29) 
with the particle velocities vi and sum overall the particles: 

Then, using the definition of kinetic energy (2.38), we can write 

This means that the rate of change of kinetic energy of the system is equal to 
the power of the external and internal forces. 
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Potential Energy Some forces such as gravitational forces or forces due to 
nondissipative elastic deformation can be represented by a scalar potential 
energy function V ,  i.e., 

F = - V V ( r )  (2.40) 

The symbol V is called the gradient operator. If we write the position vector 
in terms of Cartesian coordinates, r = xel + ye2 + ~ e 3 ,  then 

ax ay az 
av av 
-e l+-e2+-e3 

For a system of particles, the power becomes (using vi = i i e l  + j ie2 + zie3) 

x y . . F . - - x  dV 
I I -  

This assumption changes the expression (2.39) into, 

d 
dt 
- (T + V )  = 7 , 7 - v i .  fij (2.41) 

If the system is a rigid body, then we can show that the right-hand side is zero. 
If the system is nondissipative and the internal forces can also be derived 
from a potential energy V, representing elastic deformations, then we obtain 
a conservation-of-energy principle. 

d 
dt 
- ( T +  v+ V,) = o  (2.42) 

Conservation Laws 

There are three fundamental conservation laws for the dynamics of a system 
of particles: 

Conservation of Linear Momentum 

CFj = 0, implies P = constant (2.43) 

Conservation of Angular Momentum 

M = Cri x F; = 0; implies H = constant (2.44) 

Conservation of Energy 

F = - V V  etc., implies T + V + V, = constant (2.45) 



51 2.5 RIGID BODIES 

The use of conservation laws can sometimes greatly simplify a problem. They 
are also useful to check the accuracy of numerical solutions. 

2.5 RIGID BODIES 

Angular Momentum and Moments of Inertia 

The basic equations of linear and angular momentum for a system of 
particles (2.30) and (2.37) apply to rigid bodies and connected rigid bodies. 
In the case of a single rigid body (Figure 2-6) we use the constraint that the 
relative velocity between two points in a rigid body, r l t  r2 separated by a 
vector p = r2 - rl,  is given by 

p = w x p  (2.46) 

where w is the rotation rate vector. The vector w is a unique time-dependent 
vector that describes infinitesimal rotations of the body (see Chapters 3 and 
5) .  Equation (2.46) can also be written in matrix form 

p=i;;ip (2.47) 

# 
Figure 2-6 Rigid body and rotation rate vector w. 
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where 
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0 -w3 w2 
(2.48) 

The subscripts refer to the components of the vectors w,  p referred to an 
orthogonal set of basic vectors. The w vector is a property of the entire rigid 
body. This follows from Euler’s3 theorem (Chapter 3). The velocity of any 
point in the rigid body in pure rotation about a point can be represented as an 
instantaneous rotation about an axis with rate IwI and direction of the axis of 
rotation given by the unit vector w/lwl. Thus every general motion of a rigid 
body is characterized by a translation of some point in the body (e.g., v,) and 
a rotation vector w. The rotation vector is independent of the particular 
translation point chosen. With no constraints, (vc, w )  represents six state 
variables in addition to the three scalar positions, re, and three angular 
variables representing the orientation of the body. Without constraints, the 
general motion of a rigid body is determined by the integration of twelve first- 
order differential equations. 

With the recognition that w is a property of the entire rigid body, we can 
write the expression for the angular momentum separating the mass-dis- 
tribution measures from the kinematic variables. In the case of a rigid system 
of particles in pure rotation about a fixed point, we have 

H = x r i  x (w x ri)mi 

This triple cross product can be rewritten using the identity 

A x (B x C) = ( A .  C)B - ( A .  B)C 

or 

(2.49) 

(2.50) 

This expression is usually written in matrix form as 

H = l w  (2.51) 

Given an orthonormal set of basis vectors {ej}, the components of the 
symmetric matrix I are given by 

(2.52) 

Leonard Euler (1 707- 1783), Swiss mathematician and physicist. 
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where r f  = ri . ri, and [&,.I is the 3 x 3 identity matrix. (Note that the index i is 
summed over all the masses in the system, while k, j are summed over the 
three components of the position vector.) 

In conventional Cartesian coordinates r = [x, y ,  zIT, we have 

N 

z12 = - mixiyi 
i= 1 

(2.53) 

The first term is called the moment of inertia about the x-axis (also called the 
second moment of mass), and the second term is called a cross product of 
inertia. 

Using basic theorems from linear algebra, we can show that there exists an 
orthogonal set of basis vectors for which the cross products of inertia are 
zero. The remaining diagonal terms Ill ,  122, 133, are called the principal 
inertias {Il, Z2, Z3}. If we then write the components of I in the same 
principal coordinates, with unit vectors (el ,  e2, e3), the angular momentum 
vector takes a rather simple form 

H = Zlwlel + 12w2e2 + 13w3e3 (2.54) 

In general, the vectors {ei} will move and rotate with the rigid body 
(Figure 2-7), except in the cases of cylinders and spheres. What is confusing 
to many students is that H and H represent kinematic measures of motion 
with respect to an inertial frame but are expressed in terms of a coordinate 
system that is not inertial (see Chapter 5 for further discussion). 

For both translation and rotation of a rigid body, it is usually convenient 
to choose the center of mass as the translation point. In this case we use the 
angular-momentum equation about the center of mass and the expressions 
(2.52), (2.53) are understood to be calculated about rc. To calculate H, we 
must recognize that the {ei} are not zero and are given by 

ei = w x ei (2.55) 

This equation along with (2.37) and (2.54) yields the famous Euler’s 
equations of motion for a rigid body. 

(2.56) 
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Principal Axes 

Figure 2-7 Principal axes {el e2 e3} that move with the body. 

This set of first order differential equations can be integrated once the 
components of the resulting applied moment vector are known as functions 
of time. These equations contain nonlinear terms which are sometimes called 
gyroscopic terms [see e.g., (1.19)]. These terms are often responsible for some 
nonintuitive dynamics of spinning bodies [see (1.19), (1.20)] discussed in 
Chapters 1, 5, In the case of rotation about a fixed axis, however, these 
nonlinear terms drop out and we simply have 

11Li, = M *  (2.57) 

which is a form usually taught in high school or first year college physics 
courses in dynamics. 

2.6 D’ALEMBERT’S PRINCIPLE 

The extension of the principle of virtual work (2.17) or (2.19) to dynamical 
problems is called D’Alembert’s4 principle and is covered in more detail in 

Jean Le Rond D’Alembert (1717-1783), French mathematician and mechanician. In 1743 he 
published Traite’ de dynamique where his famous principle is developed which he had proposed in 
1742. 
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Chapter 4. It is not usually treated in a first course in dynamics. However, to 
complete our summary of basic equations of dynamics, it is included here for 
later reference. 

The basic idea of the principle of virtual work is to project the forces onto 
directions in which the forces of constraint will drop out [see (2.17)]. These 
directions are chosen by imagining small displacements of the system in 
which the constraint forces do no work. 

The same idea can be applied to Newton’s law for a single particle of mass 
m, acted on by several active forces {Fq}, and a constraint force FC. 
Following (2.17), (2.19) we seek directions pi where 

( x F Y + F C - m a  (2.58) 

and 

FC * pj = 0 (2.59) 

There are several methods for choosing the pi. In D’Alembert’s method the 
inertia term -ma is treated as an effective force, and the principle of virtual 
work (2.17) is extended to the dynamics problem, i.e., 

( X F q - m a )  . S r = O  (2.60) 

where Sr does not violate the constraints. When Sr is constrained by a surface 
(Figure 2-8), we can choose two independent variables { q l ( t ) ,  q2 ( t )}  and 
associated virtual displacements { S q l ,  S q 2 }  that lead to an equation similar 
to (2.19) 

Here the projection directions pi are given by the Jacobian, 

(2.61) 

(2.62) 

This requires that we express the constraint in the form r = r(ql ,  q2, t ) .  Such 
constraints are called holonomic. Some rolling constraints cannot be 
expressed in this form (see Chapter 4). 

D’Alembert’s method can be directly applied to dynamic problems. It is 
also the basis for the derivation of another method, namely, Lagrange’s 
equations (see Section 4.3). 
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Figure 2-8 D’Alembert’s principle-surface of constraint with generalized coordinates 
(41 ( t ) ,  42(0) .  

2.7 THE PRINCIPLE OF VIRTUAL POWER 

The second method of choosing independent projection directions {pi} for 
Newton’s equation is based on calculating the power of the forces and the 
effective inertia force under small changes in the velocity Sv. Again, the 
velocities are chosen consistent with the constraints, which in the absence of 
friction eliminates the constraint forces from Equation (2.58), i.e., 

( x F j ’ - m a )  . S v = o  (2.63) 

This method has advantages over the D’Alembert method when the con- 
straints depend on velocities as well as the position variables. For example, 
such constraints arise in problems of rolling of one body on another. This 
method has been codified in papers and books by T.R. Kane and co-workers 
of Stanford University and is sometimes known as Kane’s equation. The 
method is also taught in European universities as Jourdain ’s principle based 
on a paper published in 1902. 
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Without further derivation or discussion, we state the simple form of this 
method when generalized coordinates { q l ,  q 2 }  are chosen along with gen- 
eralized speeds { q l ,  q 2 } .  

(2.64) 

When the constraints in the problem are purely geometric with no velocity 
dependence (i.e., holonomic constraints), then the two methods are essen- 
tially the same since one can show that the Jacobian matrix can be calculated 
in two ways (see Chapter 4): 

(2.65) 

where v = r. 

HOMEWORK PROBLEMS 

2.1 Set z = 0 in Figures 2-1 and 2-2. Use the fact that x = rcos 8, y = Y sin 8 
to derive expressions for velocity and acceleration in polar coordinates 
(2.5), (2.8). 

2.2 A particle moves on a helical path on a cylinder of radius R and helical 
angle (Y (Figure P2-2). Derive the Jacobian for the vector velocity v in 
terms of the angular rate about helical axis 

2.3 Consider the particle constrained to move on a circular path in a vertical 
plane as in Figure 2-4c. Assume that gravity acts on the mass in the 
negative vertical direction and a constant force Fo acts in the horizontal 
x-direction. Use the polar coordinates z = R sin 8, x = R cos 8. 
(a) Find the Jacobian matrix as in (2.18). 
(b) Use the virtual work equilibrium condition (2.19) to find the 

2.4 Four mass particles of masses {m, m, m, 2m} are located, respectively, 
as follows: (1) at the origin; (2) along the x-axis at x = a, (3) along the y- 
axis at y = b; and (4) at the position, x = a, y = b, z = e. (Figure P2-4) 
Find the center-of-mass vector (2.21). Find the positions of each 
particle pi relative to the center of mass. Sketch these vectors in an 
isometric view. Try writing a MATLAB program to draw a graphical 
sketch of the four vectors. 

2.5 Suppose each of the masses in Problem 2.4 has a gravity force acting on 
them in the negative z-direction. Calculate the moment vector of the 
mass system about the origin. What is the component of the moment 
about the z-axis? 

(see (2.9)). 

equilibrium angle given by tan 0 = mg/Fo. 
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e e  

-2 

V 

2.6 

2.7 

2.8 

Figure P2-2 

For the set of particles in Problem 2.4, find the moment of inertia matrix 
[Equations (2.52, 2.53)] with respect to the origin. Can you write a 
MATLAB program to find Zii for any set of mass particles? 
(Answer: ZI1 = m(3b2 + 2c2), 122 = m(3a2 + 2c2), 133 = 3m(b2 + a2), 
ZI2 = -2mab, ZI3 = -2mac, Z23 = -2mbc). 

Consider the set of particles in Problem 2.4 as a rigid body and the 
rotation vector w is given by w = wo cos ai + wo sin aj. Calculate the 
angular momentum vector (2.51). Are H and w parallel? 

Suppose a rigid rectangular body is oriented with respect to a rectan- 
gular coordinate system such that one vertex is at the origin and three 
others are at [A,O,O], [O,B,O], [O,O,C] (Figure P2-8). Assume that the 
body rotates about an axis that goes through the origin and the vertex 
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Figure P2-9 

[A ,B ,C] .  Find the matrix representation of the angular velocity W as in 
(2.48). 

2.9 Two equal masses rigidly connected by a link of length L move in a 
plane (Figure P2-9). One mass is constrained to move in the horizontal 
direction located at r = [ x ( t ) ,  0, 0IT. The angular position of the 
second mass with respect to the vertical is e( t ) .  Choose generalized 
coordinates q1 = x(t), q2 = e ( t )  and show that the Jacobian matrix can 
be calculated in two ways as in (2.65). 

2.10 Show that the potential energy function V defined by (2.40) for New- 
ton’s law of gravity is given by, V = Gmlm2/r12. Use the conservation 
of angular momentum (1.23) or (1.24) and conservation of energy to 
relate the orbital radii and circumferential velocities at the apogee and 
perigee of an elliptic orbit of a small mass m2 about a large mass ml . 

2. S1 A mass is connected by two equal springs of stiffness k (Figure P2-11). 
Initially the mass is at the origin and the two springs are stretched along 
the x-axis with an initial tension Fo = kd.  If the initial spring length is ‘a’ 
find an expression for the elastic energy function in (2.40) if the mass is 
moved transverse to the initial stretched configuration by an amount y. 
(Hint: Use Equation (2.40); show that F(y) = 2ky(L - a) /&  where 
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Figure P2-11 7 
L = ( y 2  + (a  + d ) 2 ) ’ / 2 ;  try solving the problem using a symbolic code 
such as MATHEMATICA or MAPLE.) 

A simple program in MATHEMATICA consists of the following 
input statements. (Here k = 1 in Problem 2.11) This program plots F [ y ]  
for a = d = 1, integrates F [ y ]  symbolically to get an energy function, 
(Out [l]), differentiates the energy, (Out[2]), and obtains a Taylor series 
of the force function, (Out[3]). The symbol % indicates “previous 
statement” in the functions below. 

L = S q r t  Cy-2 + (a+d) -21 
FCy] = 2 y ( L - a )  / L  
a = l  
d = l  
F Cyl 
PlotC%, Cy, 0, 631 
Integrate C % %, yl 

OUtC11 = 
y2 - 2 Sqr t  ~4 + y21 

PlotC%, Cy, 0, 611 
DC%%, yl 

Out[21 = 

2 Y - 2 y  
Sqrt  [4 + y21 

SeriesC%, Cy, 0, 611 
OutC31 = 

y + y 3 - 3 y 5  _ -  +o[yl7 
8 128 



3 
KINEMATICS 

3.1 INTRODUCTION 

For many students, kinematics is the most difficult element of applying 
dynamics to specific problems. Although kinematics is usually taught in an 
introductory course, the art of translating geometric and kinematic con- 
straints into mathematics requires skill and practice in order to solve more 
advanced problems in dynamics. A brief introduction and review of kine- 
matics was presented in the previous chapter. In this chapter we elaborate on 
the basic ideas and develop tools that are necessary to apply to problems. 

An excellent review of modern kinematics as well as the historical back- 
ground of the subject may be found in the book edited by Erdman (1993). A 
good tutorial textbook on kinematics may be found in Beatty (1986). The 
modern subject ranges from general mathematical principles to applications 
to specific classes of machines and mechanisms. The study of basic mechan- 
isms such as the lever, wedge, wheel, and screw goes back to the Greeks, 300 
B.C. The Greek word for both machine and mechanism is MHXANH or 
“mechane.” The study of the principles of machines was undertaken by 
Aristotle (ca 300 B.c.) He and his students formulated a principle of virtual 
velocities and the concept of equilibrium as related to energy or virtual work. 

By the nineteenth century, the list of basic mechanisms used in the 
expanding industrial revolution grew to hundreds of linkages, gearing, and 
many exotic configurations. One of the first attempts to catalog and classify 
these mechanisms was by Franz Reuleaux (1875) in his Theoretical Kine- 
matics, or as his translator Kennedy renamed it, Kinematics of Machinery 
(1876). Reuleaux built several hundred models with which to teach kine- 
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matics at the Technical University of Berlin.' However by the 1960s, the use 
of mechanisms as a basis of teaching kinematics was disappearing from 
textbooks in favor of more generic mathematical formulas. Now at the end of 
the twentieth Century, there is a renewed effort to apply computational and 
mathematical kinematics to real industrial mechanisms and machines, and 
there are now many codes and software to help the engineer design and 
analyze kinematic systems. 

A modern catalog of kinematic devices may be found in the Russian two 
volume work of Artobolevsky (1979), which includes linkages, cams, ratch- 
eting devices, clutches, parts feeders, positioning devices, indexing mechan- 
isms, and aerospace-related mechanisms such as control linkages. 

Kinematics is the Description of Motion 

There are two types of kinematic tools: one to understand infinitesimal 
motions such as velocities and accelerations, and the other to describe finite 
motions of bodies. 

The solution of dynamics problems generally involves both kinematics and 
kinetics. Kinematics is the process of describing motions; kinetics (or 
dynamics) involves determining the forces and moments or the resulting 
motions produced by these forces. The basic steps in the kinematic part of the 
problem are: 

1. Define the degrees of freedom. 

2. Assign reference frame. 

3. Establish constraint relationships. 

4. Relate velocities and angular velocities to constraints and geometry. 

5. Calculate accelerations. 

Another distinction is between kinematic and dynamic devices. In a 
kinematic device there are no free degrees of freedom. Once the motion of 
one link is given, then the motion of all the other linkages or connected parts 
are given. Gear transmissions are one example of such zero-degree-offree- 
dom devices. The dynamics problem here is to calculate the resulting forces in 
the mechanism from the imposed motions and acceleration. 

A dynamic device has at least one degree of freedom whose motion is 
determined using both kinematic relations and the Newton-Euler laws of 
motion under applied forces. Usually devices with elastic elements fall into 
this class of problems. Also if a kinematic device violates a constraint, e.g., a 
wheel of a vehicle leaves the ground, then a new degree of freedom emerges 
and a kinematic problem can become a dynamic one. 

' One of the few remaining collections is at Cornell University. 
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3.2 ANGULAR VELOCITY 

The concept of an angular velocity vector is one of the most important tools 
in the application of dynamics to rigid bodies and complex multibody 
problems. Although it is treated in elementary courses, the skilled use and 
understanding of angular velocity and acceleration usually takes further 
study and practice. 

The derivation of an angular velocity vector can be obtained from Euler’s 
theorem (see, e.g., Goldstein, 1980). This theorem states that the most general 
motion of a rigid body about a point is equivalent to a finite rotation about a 
unique axis. If we consider the rotation to be an infinitesimal angle A8 in a 
time A t ,  then the theorem says that the velocity of any point in a rigid body, 
with one fixed point, can be derived from the instantaneous circular motion 
about a fixed axis. 

Referring to Figure 3-la, the mathematical form of the preceding theorem 
says that we can identify an axis with unit vector n, and a vector 

d8 
dt w =- n  

such that the velocity of any point in the body is given by the cross-product 
operation 

where r is a position vector from the fixed point to the moving body point. 
Looking down the axis at a plane normal to the axis (Figure 3-lb), all the 
points are moving instantaneously in circles, with points further from the axis 
undergoing higher velocities proportional to the radius, i.e., = pe.  In a 
general motion, however, both the axis of rotation and the angular rate can 
change in time. 

Rate of Change of a Constant-length Vector 

The preceding discussion of angular velocity and rigid-body rotation, leads 
us to a useful theorem in vector calculus concerning the rate of change of a 
constant-length vector. 

The time derivative of a fixed length vector, C, is given by the cross product 
of the rotation rate w and the vector, C, i.e., 

dC 
- = w x c  
dt (3.3) 

Here we view C as if it were embedded in a rigid body rotating with w 
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w x r  

/ 

Figure 3-1 
to the plane. 

(a) Rotation vector of a rigid body. (b) Circular motion about an axis normal 

(Figure 3-2). Further, we can write w with components parallel to and 
normal to C, with w = w I I  + wI and: 

(3.4) 
d -c = W L  x c 
dt 
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Thus a vector of constant length can only change due to rotation about an 
axis with a component normal to C. This rule is very useful in calculating 
velocities and accelerations in moving coordinate frames. 

EXAMPLE 3.1 
Suppose the airplane shown in Figure 3-2 is undergoing a roll maneuver 
with rate 4, and a yaw or turn to the left with a rate 4. We want to find the 
relative velocity of a point on the horizontal stabilizer C with respect to 
the center of mass of the aircraft. The angular velocity vector, written with 
respect to the aircraft body axis {el, e,, e3} is given by (e, directed from 

P" 

Figure 3-2 Rotation of a constant length vector C in a rigid body. 
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tail to nose, e3 is the vertical yaw axis) 

= $en + 4e3 (3.5) 

Assuming that C lies in the plane of the wing, i.e., C = [b, a, 0IT,  the 
relative velocity C is given by 

C = w x C = -a4el  + b4e2 - b4e3 (3.6) 

3.3 MATRIX REPRESENTATION OF ANGULAR VELOCITY 

It is easy to show that the cross product w x C in Equation (3.3) can be 
represented by a matrix operation as in Equation (2.48). [see also Beatty 
(1986)l However, we must assume a right-handed orthogonal coordinate 
system in which the components of w and C and are given by 

or w = [wl,  w2, w3] T 

or = [c,, ~ 2 ,  c31T 
w = wlel + w2e2 + w3e3, 

c = Clel + ~ 2 e 2  + ~ 3 e 3 ,  

(3.7a) 

(3.7b) 

Then ([. . .I' means transpose of the 1 x 3 row matrix into a 3 x 1 column 
matrix.) (3.3) in matrix notation becomes, 

-2 -211 [ (3.8) 
-w2 w1 0 

This expression can also be derived from the finite rotation transformation 
discussed below. To use a compact notation we define the skew symmetric 
rotation matrix G corresponding to the vector w and write 

dC I 

- = w C  
dt (3.9) 

This product operator is different from either an inner product ( 0 )  or cross 
product (x ) .  The product of the 3 x 3 matrix ij and the 3 x 1 vector C is 
understood to be a 3 x 1 vector, C. 

The matrix representation of the cross product is very useful in computer 
calculations that are often based on matrix operations. You should always 
keep in mind, however, that the explicit form of G implies a specific reference 
frame in which the components [w l ,  w2, w3] are calculated. 
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3.4 
FRAMES 

KINEMATICS RELATIVE TO MOVING COORDINATE 

In describing the motion of a body, we must distinguish between the 
coordinate frame in which the vector components are written, and the 
coordinate frame in which time derivatives are taken. A classic problem in 
kinematics is the description of motion in a reference frame moving relative 
to another frame (which we consider to be fixed). This problem is illustrated 
in Figure 3-3. The fixed frame has an orthogonal set of basis vectors 
{ i, j, k}. The moving frame has a position vector R to its origin, and a set 
of orthogonal basis vectors {el,  e2, e3}. The moving set of basis vectors acts 
as a rigid body and, therefore, has its own angular velocity, w or ij, which 
describes the rate of change of the angular orientation with respect to 

We consider a motion trajectory r(t) and calculate r(t) ,  r(t) in terms of 
rates observed in the rotating coordinate system. To this end we introduce a 
relative position vector p, 

{ i ,  j, Q.  

4 

r = R + p  

dr d R  dp v = - = - + -  
dt dt dt 

Reference 

(3.10) 

\ 

Path of Particle 

Figure 3-3 Motion of a particle relative to a moving reference frame { e l ,  e2, e 3 } .  
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This leads to the formula 

v = R + v , + w  x p 

where 

vr = (g) re1 

To see this we write p in explicit form; 

P = Plel + P2e2 + P3e3 

- dp = (blel + b2e2 + b3e3) + w x p 
dt 

= v , + w x p  (3.13) 

The first term in (3.13) is the velocity as calculated in the moving reference 
coordinate system. The second term in (3.13) is the effect of the rate of 
rotation of the basis vectors and uses (3.3): 

ei = w x e i ,  i = 1, 2, 3. (3.14) 

To obtain the expression for the acceleration we differentiate the velocity 
formula (3.1 1) with respect to time as observed in the fixed reference frame: 

dv .( 
a = - = R + a, + w x v, 

dt 

dp dw 
+ w  x- +- x  p 

dt dt 

The fourth term can be expanded using 

- _  dp-  v, + w x p 
dt 

The second and third terms come from the expression (see (3.13)) 

The final formula takes the form 

a = R + a, + w x (w x p)  + x p + 2w x v, 
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(3.1 1) 

(3.12) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 



70 KINEMATICS 

Before we blindly use this expression, careful attention should be paid to the 
implied derivatives. The derivatives of the scalar components &, ji are rates 
observed in the moving reference. However, the rate w is measured in the 
fixed system, although we could express the resulting vector components in 
either the ( i, 3, k) or (el ,  e2, e 3 )  bases or for that matter any convenient set 
of basis vectors. 

The five terms in this expression have the following interpretation: 

R Represents the acceleration of the moving reference point P. 
a, Is the acceleration of the object as observed in the moving 

reference. 
w x (w x p) Is a centripetal acceleration correction term for the local 

position vector p rotating with the moving frame angular 
velocity w. 
Is a correction term for the angular-acceleration vector w of the 
moving references frame. 
The Coriolis acceleration correction has two sources, both of 
which measure the rotation of the basis vectors of the moving 
reference frame. 

wxp 

2w x v, 

EXAMPLE 3.2 SATELLITE SOLAR PANEL DEPLOYMENT 
The satellite shown in Figure 3-4 has a steady spin R about the body fixed 
e3 axis. At the same time a solar panel arm simultaneously rotates about 
the e2 axis with a rate 8, and angular acceleration 0 = 0 and telescopes 
along the radial direction e, with a steady rate a = a. In this example we 
wish to find the acceleration of the point P at the end of the solar panel 
relative to a nonrotating reference frame. We have several choices of 
intermediate reference frame. As an illustration let us choose aframe that 
rotates with the solar panel, which has a local coordinate system 
{e r r  eo, e2} .  In order to apply the five term acceleration expression 
(3.18), we define the following vectors. 

R = belr p = (a( t )  + c)e, 

w = Re3 + ee, 

With these definitions, we can easily show that 

a, = aer = 0, v, = aer = ae, 

w = Re, x 0e2 = -Roel 

(3.19) 

(3.20) 

This last term follows since the axis of rotation of ee, rotates with Re,. With 
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4 
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Figure 3-4 Top: Rotating satellite with solar panel deployment. Bottom: View from top. 
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these results we can calculate the other four terms in (3.18) 

R = -bR2el 

~ j x p = ~ b ( a + c ) c o s ~ e ~  

w x (w x p )  = -02(a + c) sin Be1 - b2(a + c)e, + Ob(a + c) cos Be2 

2w x v, = 2a (O  sin Be2 + be,) (3.21) 

To express all quantities in one reference frame, we can use the 
transformation relation. 

(3.22) 

(Note that the expressions in the column “vectors” are unit vectors, not 
scalars.) 

An alternate method to calculate ap is to directly differentiate r = R + p, 
i.e., 

(3.23) vp = (bO + (a  + c ) n  sin 8)e2 + (a  + c)8e, + aer 

In order to calculate ap from the preceding expression, we must note 
that a( t ) ,  B ( t )  are time dependent and use expressions for e2, e,, e,  for 
rotating unit vectors (3.3). It is left as an exercise to show that the two 
methods give the same result. 

3.5 CONSTRAINTS AND JACOBIANS 

A machine or a mechanism is defined by the way it is constrained to behave 
dynamically. The motion of a serial-link robot arm is limited by the 
constraints at each joint, and an all-terrain vehicle is supposed to operate 
with all four wheels rolling over the ground (Figure 3-5). Although a set of N 
rigid bodies may have up to 6N degrees of freedom, in practice the actual 
number of degrees of freedom K is limited by the M constraints that define 
the machine or machine component, i.e., K = 6N - M .  

A brief discussion of how constraints enter kinematic formulas was given 
in Chapter 2. In particular, it was shown that the sensitivity of the velocities 
of the bodies to the generalized velocities {qi} was represented by a Jacobian 
matrix [see (2.13)]. The Jacobian matrices are an important part of D’Alem- 
bert’s principle and the principle of virtual power. They allow you to project 
the forces and accelerations onto a reduced set of generalized equations that 
determine the dynamics of the system. 

To illustrate how constraints come into kinematics, consider the example 
of the planar motion of a two-link chain represented by two masses, ml , m2 
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(4 

Figure 3-5 Motion of constrained rigid bodies. (a) Two-link robot arm. (b) All-terrain 
vehicle . 

with position vectors r l ,  r2. In general this system would have four degrees of 
freedom. 

There are two methods for dealing with constraints. 

1. Use the constraint equations along with the equations of motion and 
solve simultaneously. This method generally involves opening up the 
system to expose the constraint forces. 

2. Define a reduced set of independent coordinates and use constraint 
equations to eliminate coordinates, and constraint forces. 
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EXAMPLE 3.3 
In the example of the two-link mechanism shown in Figure 3-6, we choose 
(q l ,  q2) = (el, 0,) as the independent coordinates. The implicit form the 
constraint is x: + fi = L:. 

The position-vector components, velocities, and accelerations are 
given by 

x1 = L~ C O S ~ ,  

y1 = L1 sine1 

xl = -LIB, sin el 
i1 = L l e l  cos el 

- - L ~ &  sin el - ~ , b :  cos el 
{ x -  .. 

yl = L1el cos el - ~ , b :  sin el 

(3.24) 

(3.25) 

(3.26) 

Figure 3-6 Two-link planar mechanism 
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In the notation of (2.12) and (2.61), 

and 

(3.27) 

[ V I I  = [Jll[irl 

where [q] = [el, e2IT. 
Similar expressions follow for (x2,  y2). 

x2 = XI + L~ cos(el + e,) 

y, = yl + L2 sin(8, + 0,) (3.28) 

Then the kinematic constraint for r2 in matrix notation becomes 

[VPI = [J21[41 (3.29) 

where 

[J2Il1 = -(Ll sin 8, + L2 sin(@, + 6,)) 

[J2]12 = -L2 sin(8, + 0,) 

[J,],, = L~ cos el + L, cos(e, + e,) 

[J2122 = L2 cos(4 + 02) (3.30) 

3.6 FINITE MOTIONS 

Unlike structural dynamics, where the motions are generally small, mechan- 
isms and machine components such as gears or robot manipulators undergo 
large motions. One of the major theorems of theoretical kinematics is that a 
general motion of a rigid body can be resolved into the translation of some 
point on the body and a finite rotation about this point. (Chasle's theorem is 
a generalization of Euler's theorem.) We begin with a discussion of the 
rotation of a rigid body about a point. 

The mathematical problem in finite motions is to find a relation between a 
position vector of a point, P, before the motion rp and the new position 
vector after the motion r >  (Figure 3-7). In matrix notation, we require a 3 x 3 
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Figure 3-7 Finite rotation of a rigid body. 

transformation matrix relating rp and r; i.e., 

r; = TrP (3.31) 

It is a theorem of theoretical kinematics attributed to Euler that this matrix is 
the same for any point in the rigid body. Thus we can drop the subscript on 
the position vector. Also the motion should be invertible so that, r = T-lr', 
or that an inverse should exist. The other fact about T follows from the 
requirement that the length of r be unchanged after the motion. Using the 
matrix operation for an inner product (r . r = rTr), we have 

(3.32) rTr = (r I T /  ) r = (Tr)TTr = rTTTTr 

so that the product TTT must be an identity matrix I 

T ~ T  = I (3.33) 

This implies that T is an orthogonal matrix, with TT = T-'. Also the 
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eigenvalues of T are unity, and the off-diagonal terms are skew symmetric, 
i.e., To = J' i # j .  

Another consequence of Euler's theorem is that any finite motion can be 
viewed as a rotation about a fixed axis. As a specific example, consider the 
rotation of the body in Figure 3-8 about the z-axis through an angle 4. It is 
not difficult to find a transformation matrix, T, that relates the new 
coordinates [x', y ' ,  z'] to the old coordinates [x, y ,  z] 

cosq5 -s in4 0 [i] = [ siif" coo;+ 

Here we denote the matrix by Al, 

cos$ -s in4 0 

0 1  

(3.34) 

(3 .35)  

Figure 3-8 
to the plane. 

Rotation transformation: finite rigid-body rotation, 4, about an axis normal 



78 KINEMATICS 

The inverse of the motion is to rotate the body through -4, so that 
A;’ = AT, as is required. It is not difficult to show that a rotation about 
the y axis through an angle 0 is given by the matrix A2: 

cos0 0 sin0 

0 1 0  

-sin0 0 cos0 

For a rotation about the x-axis one can show. 

A 3 =  I’ 0 cos$ O -sin$ 

(3.36) 

(3.37) 

In general, however, these transformations do not commute, i.e., 

This can be seen in Figure 3.9, where an object is first rotated about the z-axis 
and then the y-axis and compared to the motion resulting from inverting the 
rotations. The object clearly ends up in different positions. 

We can also find an expression for the new position vector r’ in vector 
notation, if one specifies a unit vector n along the axis of rotation and angle of 
rotation $ (see Goldstein2, 1980, p. 164, or Beatty, 1986) then 

r’ = n(n . r) + [r - n(n . r)] cos 4 + (n x r) sin $ (3.38) 

This expression has the advantage that it is independent of a specific 
coordinate reference. 

Thus, in order to determine the finite motion of a rigid body about a point, 
three scalars are required; either three angles of rotation about the three basis 
axes (4, 0, $) or as in the last expression (4 ,  n,, nyr ~ 1 , ; n . n  = 1). The 
matrix representation, r’ = Tr, (3.3 1) and the vector representation of a finite 
rotation (3.38) are related by 

Tn = n, Trace T = 1 + 2 cos 4. (3.39) 

For numerical codes, often so-called Euler parameters are used instead of 

’ Note in Goldstein, q5 is defined in the opposite sense to q5 defined here 
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t z  
I 

Initial I 

A,A 2: 

X 

Final Position 

/ X 

Y 

Figure 3-9 Noncommutability of two rotations A 2 ,  A 3  about different axes 
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{+, n}. These four scalars {eo, e l ,  e2, e3} are defined by (Goldstein, 1980, 
p. 165) 

4 eo = cos- 
2 

4 e = nsin- 
2 

(3.40) 

where 

2 e o + e . e =  I 

For small angles of rotation, we can use the approximations 
cos 4 N 1, sin 4 - 4. Thus, if we write 4 - w,At, 0 - wyAt ,  we qb N w x A t  
one can show first that A l ,  A2, A3 commute and that 

r '  = r ( t  + At) 21 A1A2A3r(t) 

or 

Separating the transformation matrix into the identity mat: x and a skew 
symmetric matrix, we obtain an expression for the velocity of a point in a 
rigid body undergoing rotation about some point. 

r(t + At) - r ( t )  
v =  lim = wr( t )  

At-0 At 

where 

(3.41) 

(3.42) 

This is the same matrix representation of the rotation vector w described in 

A similar expression can be obtained from (3.38) where we write 4 N w A t .  
(3.9). 

Then 

r' - r 
At N (n x r)w (3.43) 
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In the limit as At -+ 0, we obtain the expression 

v = w x r  

w = wn 

which is identical to (3.1) and (3.2). 
The conclusion here is that finite rotations do not commute if there are 

rotations about different axes and that infinitesimal rotations do commute. 

EXAMPLE 3.4 
The finite rotation transformation is useful in designing a simple computer 
graphics program to simulate the dynamics of rigid-body motion. Con- 
sider the planar case of a hinged box shown in Figure 3-10. The dynamics 
of the falling box are governed by the law of angular momentum 

COMPUTER GRAPHICS DYNAMIC SIMULATION 

M = H ,  H=lwe,  

The moment of the gravity force is m = mgL sin(0 + +o)e,. If a viscous 
torsional damper is added, the resulting second order differential equa- 
tion is (we define L = 0.5[a2 + b2]$ 

For numerical integration, we rewrite this equation in the form of two first 
order differential equations 

0 = w  

w . = - - - s i n ( 0 +  mgL 40) - 7" C I 
(3.45) 

The following program was written in MATLAB, which couples a simple 
Euler integration scheme to a plotting subroutine that replots a new 
picture of the box after a fixed time interval. We define MATLAB constants 

e = mgL/I ,  c = C / I  (3.46) 

In the following, we retain the use of the Greek 0, w, +o in the MATLAB 
program for easier reading. You will have to define new variables, e.g., 
theta, omega, phi. Also the assignment of parameter values for 
dt, e, c,  +o must be added. 
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Figure 3-10 Output of computer graphics simulation using the finite-rotation matrix. 
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% 

% 

MATLAB Animation Program for Falling Box 

Define the vertices of the box 

x = [O, a, a, 0, 01; 

Y = [o, 0, b ,  b, 01; 

r = [x; Y]; 

% 

% 
line(x, y ,  ‘linestyle’, ‘ - - I ) ;  

% 
6 = 0 ;  w = o ;  

% 
m = 1 : 5 ;  

% 
for n = 1 : 20; 

w = w + dt * e * sin(6 + +,,) - dt * c *  w ;  

6 = 6 + d t  * w ;  

% end of inner loop 

end 

% 
A = [cos(6) sin(6); - sin(6) cos(6)l; 

r l  = A * r ;  

x l  = rl(1, :); y l  = rl(2, :); 

line(x1, y’, ‘linestyle’,’ - -’); axis (’equal’) 

end 

The student can add color, shading, and a pause option to stop the 
action. Also to avoid distortion an equal line scale must be used in the 
horizontal and vertical scales. 

Define a matrix whose column vectors are the box vertices 

Draw the box in the initial position 

Integrate the equations of motion 

Do loop for new box graphic for 

Do loop for elapsed time integration 

Rotate box graphic using finite rotation matrix 

3.7 TRANSFORMATION MATRICES FOR GENERAL RIGID- 
BODY MOTION 

One of the basic requirements of multibody kinematic analysis is to specify 
the location and angular orientation of one rigid body with respect to the 
reference frame of another rigid body. The general motion of one body 



84 KINEMATICS 

relative to another involves translation of a point in the body (or an extended 
point) and a finite rotation about that point. For example, the displacement 
and rotation of the body about the z-axis shown in Figure 3-11 can be 
described by a finite rotation of a typical vector in the body p and a 
translation vector u, i.e., 

r = u + A p  (3.47) 

where for rotation through an angle 0 about the z-axis, 

cose -sin8 0 
A = sin0 cos0 (3.48) 

[ o  o : ]  

Suppose r is expressed j n  terms of components [x, y ,  .IT with respect to 
the basis vectors ( i ,  j, k),  and p has components [ px,  py, p J T  with respect 

Figure 3-11 General motion of a rigid body: translation R plus a finite rotation. 
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to the basic vectors (ex, e,, e z ) ,  where this local basis triad is coincident with 
(i, j, k) when A = I. Then the new coordinates of the point in the body is 
given by the explicit form of (3.47): 

cos6 -sin8 0 

[I:] = [ ~ ]  + [ si;e c o y  4 [al (3.49) 

It is straightforward to show that both translation and rotation operations 
can be combined in one transformation matrix if we write r, p in a fictitious 
four dimensional space, (see e.g., Paul, 1981) i.e., 

Within this space one can show that 

r = Tp 

where 

where A is the 3 x 3 rotation matrix. Using this notation, it is easy to show 
that a pure translation by a vector u is given by 

(3.53) 

(3.50) 

(3.51) 

(3.52) 

Also a pure rotation represented in a three-dimensional space by the 
orthogonal matrix A is written in 4 x 4 notation by 

(3.54) 
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Thus the homogeneous transformation (3.51) is given by 

T = TIT2 (3.55) 

This represents rotating the body first and then translating the body. Note 
that in general, the two operations do not commute, i.e., 

(3.56a) 

(3.56b) 

It is also straightforward to show that these 4 x 4 transformation matrices 
have an inverse, as can be shown by the following pair of equations: 

n, ny n, , - u . n  
m, my m, I - u . m  
k,x ky k,  I -u. k _ _ _ _ _ _ _ _ _ _ _  
0 0 0 1 1  

(3.57) 

(3.58) 

T where n = [nx,ny,n,] etc, and n .  n = 1, m . m  = 1, and n . m  = 0, etc, The 
3 x 3 matrix is orthonormal and represents a rotation operation. 

EXAMPLE 3.5 THREE-LINK PLANAR MANIPULATOR 
Figure 3-12 shows a device for positioning an object in a plane using three 
links with finite rotations (O,, 02, 03). It is usual in multibody problems to 
attach local coordinates to each body. In this example we define four sets 
of basis vectors with coordinates ( x o ,  y o ) ,  (xl, y l ) ,  ( x p ,  y 2 )  and (x3 ,y3) .  
The latter coordinates sit at the end of link number 3. Thus if p = [x,, y3]' 
represents the position of a point P in the moveable object with respect to 
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X O  

Figure 3-12 Three-link planar manipulator. 

the gripper coordinates, its position relative to link number 2 is given by 

r2 = T3P (3.59) 

where 

(3.60) 

where we have used the notation c3 = cos Q3, s3 = sin Q3. Then one can 
show that the position of a vector in link number 2 with respect to link 
number 1 involves a translation and a rotation, i.e., 

rl = T2 r2 
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where 

KINEMATICS 

The same form followsfor link number 1 with the subscript2 replaced by 1, 
i.e., 

ro = T1 rl 

where 

(3.62) 

Thus the position of a point in the gripper object with respect to the base 
coordinates is given by 

(3.63) 

For example, it is not difficult to show that the position of the point P in the 
base coordinates is, 

yo = dl sin Q1 + d2 sin(0, + 0,) 
+ x, sin(O1 + O2 + 0,) + y3 cos(0, + Q2 + 0,) 

+ x3 cos(Q1 + O2 + 0,) - y3 sin(& + o2 + 0,) (3.64) 

3.8 KINEMATIC MECHANISMS 

A pure kinematic mechanism is a collection of bodies with geometric 
constraints such that the motion of one or more bodies determines the 
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motion of the rest of the bodies. In machines, mechanisms can have many 
functions, including; 

0 Conversion of rotary to translation motion 
0 Conversion of translation to rotation 
0 Conversion of circular motion to oscilatory motion 
0 Conversion of circular motion about one axis to circular motion about 

another axis 
0 Ratcheting, indexing 
0 Produce similarity motions (pantagraphs) 
0 Produce dwell motions 
0 Stopping and breaking actions 
0 Clamping actions 

Analysis of mechanisms can be divided into the kinematics of relative 
motion of kinematic pairs, or joints and the overall kinematics of the 
mechanism. 

Examples of modern applications of mechanisms may be found in 
deployment of solar panels in satellites, aircraft door latches, VCR cassette 
receptacles, and windshield-wiper systems. 

Joints: Kinematic Pairs 

In many mechanisms with rigid-body elements, the relative motion between 
bodies is constrained to one to five degrees of freedom. Several such 
kinematic pairs are shown in Figure 3-13. The motion of one link relative 
to the other can be described by a tranformation matrix, as in Section 3.7. 
Thus the revolute joint in Figure 3-13, has a single degree of freedom in 
rotation. However the cylindrical joint in Figure 3-13 has both rotary and 
translation degrees of freedom. In robotics, joints with pure rotation are 
called revolute, whereas those with translation are called prismatic. 

Analysis of Motion in a Closed Kinematic Chain 

Two classic planar mechanisms are the 4-bar linkage and the slider crank 
shown in Figure 3-14a, and b. One link in each case is ground. The latter is, of 
course, employed in millions of reciprocating engines and may be the world’s 
most ubiquitous mechanism. A classic problem is to find the motion of the 
remaining links given the motion of link 1, usually thought of as having 
steady circular motion. There are two basic methods to solve such problems: 

1. Geometric and trigonometric method 
2. Vector calculus 

Method 1 is illustrated in the following example. 
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Spherical or Ball 

Figure 3-13 Kinematic joint pairs. 



3.8 KINEMATIC MECHANISMS 91 

Figure 3-14 (a) Slider crank mechanism. (b)  and (c) Four-bar planar linkage. 
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EXAMPLE 3.6 SLIDER CRANK 
From the geometry in Figure 3-14a, the following scalar equations result 

rs in  8 = L sin Q (3.65) 

or 

cy = sin-’ ( i s i n  8) (3.66) 

These two equations determine x(8) and ~ ( 8 ) .  To find the velocity 
relations we differentiate (3.65) and obtain a set of linear equations for x 
and (jl in terms of 6, i.e., 

r .cos8 
(jl z - 8 -  

L COSCY 

x = -re(sin 8 + tan Q cos 8) (3.67) 

This simple example can be solved using a symbolic computer code. The 
following text in bold is a program written in MATHEMATICA (See 
Appendix B). The operation D[%, t] performs symbolic differentiation on 
the expressions preceding it indicated by the symbol %. The operation 
Solve is an algebraic equation solver for the generalized velocities ql’[t] 
and q3’[t], in terms of the velocity q2’[t]. The user inputs the statements in 
bold and the computer program returns the solution that follows. Similar 
solutions can be obtained using MAPLE and MACSYMA. 

Input Statements: 

x=ql Ctl 
theta=q2 [tl 
alpha=q3 [tl 
r Cos [theta] + L Cos [alpha] - x == 0 
r Sin [theta] - L Sin [alpha] == 0 
Dc% %,tl 
D c% %,tl 
Solve Cc%, % 11, Iql’ Ctl ,q3‘ Ctl11 
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Output Statement: 

Compare this with (3.67) 

In method 2 we use the closed chain property and write the position vector 
to point C in the 4-bar example in two forms. The equality of the velocity 
calculated from each vector relation provides a vector equation that yields 
two scalar relations between the circular motion and the unknown motion of 
the center link. 

EXAMPLE 3.7 4-BAR CLOSED CHAIN 
In Figure 3-14b, point C can be described by two different sums of vectors. 

rAC = rAB + rBc = +rDc (3.69) 

The velocity rc is obtained by recognizing that each of the vectors is of 
constant length so that the angular-velocity cross-product theorem can be 
used. 

For example: 

iAB = W ,  x rAB = Or, (cos ei - sin ei)  (3.70) 

Differentiating the vector identity (Equation (3.69)) then yields two equa- 
tions linear in 4, ci, 4, or 

r2 sin $ -L sin a sin 0 
r2 cos 4 -L cos a ]  [ i] (3.71) ! =r,e 

* [ cos 01 

One can show that 

rl .sin($ - 0) 
L sin(a -4)  

b=-e  (3.72) 

Note that although this relation is independent of r2, $(e) and a(e) 
depend on r2 .  

The determinant of the 2 x 2 matrix in Equation (3.71) is 
-r2Lsin($ - a) .  We can see that when sin($ - a )  = 0, the rates {d, ci} 
cannot be determined, given 4. These points are known as singularpoints 
of the mechanism and are usually avoided in practical design. 
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HOMEWORK PROBLEMS 

3.1 A spacecraft spins about the vertical axis e3 in Figure P3-1 with constant 
rate 0. A solar panel is deployed by rotation about two nonintersecting 
axes separated by a distance b. 
(a) If ci, e are constant, what is the angular acceleration of the panel for 

an arbitrary angle O? 
(b) Find the velocity v, and acceleration, v, of point P on the panel for 

ci, 4, R constant as a function of a,  6. 
(c) Find a 4 x 4 transformation matrix for finite motion from the 

stowed position A to the deployed position B. 

r o  o -1 o 1 
Answer: T =  

3.2 A stowed solar panel on the satellite shown in Figure P3-2 undergoes 
one translation and two finite rotations in the sequence shown. 
(a) Write a rotation matrix for each of the three deployment motions of 

(b) Find a 4 x 4 transformation for the complete motion. 
the panel. 

X 

r &  

f C 

Figure P3-1 
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Stowed 

t' 

Figure P3-2 

3.3 The two-link serial mechanism shown in Figure P3-3 rotates about two 
axes as shown. 
(a) Find expressions for the velocity and acceleration of the end point B 

given {el, 02,  el = wl, 8, = w 2 }  and ijl = w2 = 0. 
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I 

Figure P3-3 

(b) Calculate the Jacobian matrix that relates the velocity vB to the 

(c) Write the velocity vB in three different basis vectors: {i^ ,  j ,  k}, 

generalized velocities {el, d2}. 

{el ,  e2,  e3} on link #1, and {e l ,  e2, e3} on link #2. 

3.4 A rod-shaped lever rotates about the z-axis, and a plate is constrained to 
rotate about the x-axis as shown in Figure P3-4. The end of the rod- 
shaped lever is constrained to remain in contact with the plate as it 
rotates. 
(a) Show that the path traced on the plate by the rod is a circle of radius 

(a2 + b 2 y 2 .  
(b) Find the relation between the vertical rate $ and the horizontal axis 

(c) If $ is constant, find the angular acceleration of the plate. (Hint: Use 
rate 4 as a function of 4. 

the constraint vplate . n = vlever . n; n is normal to the plate). 
[Answer: 4 = dab cos $/[b2 + a2 sin2 411. 
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Figure P3-4 

3.5 Given two finite rotations of 7r/2 about two orthogonal axes that 
intersect at a point, find an equivalent Euler rotation, i.e., a single 
axis and single angle of rotation about that axis (see Beatty, 1986, p. 
214). [Hint: Find T in Equation (3.3 1) and use the relations in Equations 
( 3 W 1  

3.6 A general displacement of a rigid body consists of a translation and a 
rotation about an axis. Show that any general displacement of a rigid 
body is equivalent to a rotation about a unique axis and a translation 
parallel to that axis. (This is called a screw displacement. The theorem is 
attributed to Chasles (1843). (See e.g., Beatty, 1986, p. 197). 

3.7 A compound solar panel on a satellite is shown in Figure P3-7. The 
inner panel undergoes a rotation about the vertical axis, e2, while the 
outer panel undergoes a rotation about the el axis. 
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/ 

Figure P3-7 .--- 
Figure P3-8 
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Figure P3-10 

(a) Find the velocity and acceleration of the point P on the outer edge, 
assuming that the scalar value of the rotation rates are constant. 
Express the answer in components of the local coordinate system 
{el, e2, e3>. 

(b) What is the angular acceleration of the outer panel? 

3.8 Find a homogeneous (4 x 4) transformation that will move the object 
in Figure P3-8 from position A to position B as shown. What is the 
inverse transformation? 

3.9 Write the 4 x 4 transformation matrices for a kinematic pair that relate 
the position of points in one body relative to another connected by (a) a 
revolute joint, (b) a prismatic joint, (c) a screw joint. (Figure 3-13) 
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Figure P3-11 

3.10 The end of a rotating link (Figure P3-10) is connected by an inextensible 

0 
a 

cable to a pin constrained to move along the vertical axis. 
(a) Find the relations between the generalized velocities e,  i. 
(b) Find an expression for the acceleration I when the arm rotates with 

3.11 A parallelepiped of dimensions {a, b, c} is shown in Figure P3-11. 
Suppose the object is subject to three finite motions: (1) translate along 
the x-axis by a; (2) translate along the y-direction by a; (3) rotate about 
the z axis by n/4. 
(a) Sketch the final position. 
(b) Find the 4 x 4 transformation matrix. 

3.12 Two levers shown in Figure P3-12 rotate about the x, y axes. The rod- 
shaped lever end is constrained to remain in contact with the flat-plate 
surface of the second lever. 
(a) If 0 5 q5 5 q5*, find the curve traced by the contact point on the 

(b) Given that wy is constant, find w, of the rod shaped lever. 

constant angular velocity. 

plate. (q5* is the angle where contact is no longer possible.) 

(Answer: w, = -wy (b / a )  cos2 q5 cos 0) 

3.13 Using part of the MATLAB program in Example 3.4, animate the three 
link motion in Example 3.5. Move the box from the configuration 
0, = e2 = O3 = 0, to a position determined by = n/4, Q2 = ~ / 2 ,  
O3 = -7r/4. Use the tranformation matrices T I ,  T2, T, in the example. 
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Figure P3-12 

To complete the animation, draw wire cartoons for the three links and 
several intermediate angles between the initial and final positions. 

3.14 Using the MATLAB program in Example 3.4 as a model, write a 
program that will animate the falling of a box off the ledge shown in 
Figure P3-14. Give the box an angular impulse at 0 = 0, and release the 
pin constraint when 6 = 7r/2. 

3.15 Consider the three-dimensional 4-link mechanism ABCD shown in 
Figure P3-15. The link AB is constrained to move in the x-y plane 
about the z-axis with angular rate 6. The link CD is constrained to move 
in the y z  plane about an axis parallel to the x-axis with angular rate 4. 
(a) Find a kinematic relation between 0,$. 

(b) What is the vector expression for the angular velocity of link BD in 
terms of 0? 
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Figure P3-14 

Figure P3-15 



PRINCIPLES OF D’ALEMBERT, 
VIRTUAL POWER, AND 
LAGRANGE’S EQUATIONS 

4.1 INTRODUCTION 

In this chapter we present methods to formulate equations of motion for 
complex dynamical systems. Although a machine can be designed and 
created without direct knowledge of equations of motion, the complexity 
and cost of development puts a burden on the engineer to try and understand 
the behavior of these devices before they are built or put into service. Hence, 
dynamic models become the fundamental basis for constructing “virtual 
reality” simulations of dynamic machines and structures. 

The method of Newton and its extension by Euler and others is essentially 
geometry- and vector-based. The methods presented in this chapter are more 
scalar-based and depend heavily on the differential calculus of several 
variables. These methods, which sometime involve kinetic and potential 
energy functions, are called variational methods or energy methods. They 
actually predate the time of Newton (i.e., late seventeenth century). Some 
historians of mechanics such as Dugas (1988) even suggest that the method of 
virtual velocities goes back to the time of Aristotle in Greece, around 300 B.C. 
Some of these methods are based on the notion of minimization of energy 
and are rooted in theological ideas of an efficient Creator popular in the 
Middle Ages. However, the modern development is linked with names such 
as Joseph-Louis Lagrange (1 736- 18 13), Sir William Rowan Hamilton 
(1 805- 1865) among many others. 

The basis of these methods for deriving equations of motion are the ideas 
of virtual work and the “force of inertia” (see Chapter 2). D’Alembert, in 
1743, proposed to treat the acceleration times the mass as a negative 
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“effective force.” Lagrange then used this idea to formulate a dynamic 
principle of virtual work that today is known as D’Alembert’s principle 
[see Section 2.6)]. For a single particle under several forces, this principle 
takes the form [see Section 2.6, Equation (2.60)], 

(CFj - mv) . Sr = 0 (4.1) 

The advantage of these methods is that they eliminate forces that do no work 
from the equations of motion. Such forces arise naturally when the system 
moves under certain types of constraints, such as linked bodies in a robotic 
device. 

Constraints and Degrees of Freedom 

Consider the planar motion of two masses ml ,  m2 shown in Figure 4-1. In 
general there are four degrees of freedom (xl ,  x 2 ,  y l ,  y2) .  Because of the rigid 
link, the coupled dynamic system has only three degrees of freedom 
(xc ,yc r8 ) :  the two scalar positions of the mass center, and the angular 
position of the connecting rod. Thus, in any variational method such as 
D’Alembert’s principle, the variations (bxl, Sx2, Syl ,  by2) are not all inde- 
pendent. The geometric constraint equation is nonlinear, which makes direct 

Y 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

I I I > X  
XI XC x2 

Figure 4-1 Constrained motion of two masses in the plane. 
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elimination of one of the four variables difficult: 

However, a standard trick is to write the variational form of the constraint 
by assuming that each of the variables depends on time; 

Next, if we assume that (xl - x2) and (yl - y 2 )  remain approximately 
constant during some arbitrarily small time, the variational constraint 
equation becomes 

(x1 - X2)(SXl - 6x2) + (Y1  - Y 2 ) ( b l  - b 2 )  = 0 (4.4) 
This equation is linear in the virtual displacements, and we can choose to 

In formulating the equations of motion with K constraints such as (4.4) we 
represent one in terms of the others. 

have two choices: 

1. Choose a convenient set of generalized coordinates {q i ( t ) ;  i = 
1, 2 , .  . . , M } ,  which may not be independent, and solve the K con- 
straint equations along with the equations of motion. This results in 
M + K equations to solve. 

2. Use the constraint equations to eliminate some of the dependent 
coordinates in terms of the other coordinates, or choose M - K  
different but independent coordinates that are compatible with the 
constraints. This results in having to solve M -  K differential 
equations. 

If we denote the position variables by the set of scalars {qi ( t )} ,  then 
equation (4.4) takes the form 

where 

and Sql = 6x1, 6q2 = Sx2, Sq3 = Syl , Sq4 = by2. 
In order to generalize the preceding example to a system of N particles, we 

define position vectors rk for each particle in Figure 4-2. Without constraints 
the system will have 3N degrees of freedom. If we impose K geometric 
constraints, we will be left with M = 3N - K degrees of freedom. To choose 
a set of M independent coordinates, we have the choice of picking M of the 
original coordinates as our independent variables or choosing M new 
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Figure 4-2 System of N particles with constraints. 

coordinates. We denote the set of independent coordinates by {qj} ,  where 
j = I, 2, . . . , M .  If we use the notation [SrIT to denote the virtual variation in 
the string of position vectors, i.e., 

then the constraints provide a relation between the old and new variables (see 
(2.12) and (2.13): 

Here [Sq] is a column vector of the scalar virtual displacements, i.e., 
[Sq]‘ = [Sql, 6q2,. . . ,SqM]. The Jacobian matrix [J] is 3N rows by M 
columns. In explicit notation 

m 

where Jkj = 8rk/dqi. To make the matrix notation more transparent, the 
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3N x M matrix [J] is composed of a vertical stack of the Jkj vectors: 

(4.9) 

4.2 D’ALEMBERT’S PRINCIPLE 

If the forces acting on the particle are separated into workless reaction forces 
of constraint, R, and active forces, Fa, then Lagrange’s generalization of 
D’Alembert’s principle for a single particle is (see Section 2.6) 

R . S r = O  
(Fa - mv) . Sr = 0 (4.10) 

The displacements Sr are called “virtual,” but the term is not a descriptive 
one. Instead, one should think of Sr as arbitrarily small displacements that do 
not violate the constraints. Thus, if the particle moves on a curved surface, 
then Sr is arbitrary, but tangent to the surface. 

There are two advantages of this method. First, it eliminates constraint 
forces or internal forces. Second, it can be extended to many particle systems 
and to rigid bodies. 

EXAMPLE 4.1 
A direct application of the principle of virtual work and D’Alembert’s 
principle is illustrated in the motion of a cable-wrapped cylinder shown in 
Figure 4-3. (This example is modified after one in Szabo, 1987.) 

We wish to find the angular acceleration 4 as a function of the two 
masses ml, m2 and the geometry. The position coordinates to each mass 
center are zl, z2, but because of the cable wrap-up, the change in zl, z2 is 
a function of the change of the cylinder angular position, i.e., 

Szl = -rS+ 

S(Z, - ~ 1 )  = RS4 (4.1 1) 

These constraints also lead to the following kinematic relations 

(4.12) 
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m 1  
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analysis, one can also show that (neglecting rotary inertia) 

T2 = m2g(1 -,o> R - r  

109 

(4.16) 

EXAMPLE 4.2 
For the two-mass, planar system in Figure 4-4, in the absence of applied 
forces, D’Alembert’s principle takes the form 

mX,Sx, + mX,Sx, + mYlSY, + mY2SYz = 0 (4.17) 

We cannot set the coefficients of each of the virtual displacements equal to 
zero because they are not all independent. We could, however, use the 
constraint equation (4.4) to eliminate one. However, another method is to 
transform the dependent set of variables ( x , ,  x2,  yl, y 2 )  into a set of 

- t  

x c  X 

Figure 4-4 Planar motion of two masses with a rigid-link constraint. 
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independent variables (xc, yc, 0) using the geometric relations 

x2 = xc + LCOSO 

yl =y,-LsinO 

y2 = yc + L sin 0 

From these equations we can obtain the matrix equation 

where 

(4.18) 

(4.19) 

(4.20) 

D’Alembert’s principle of virtual work (4.17) can also be written as a matrix 
equation 

[F’]‘[s~] = o (4.21) 

where the inertial force vector is 

[F ] = [ -177Xl,  -177x2, -mil,  -my23 (4.22) 

Substituting (4.22) into (2.61) with F: = 0, we obtain 

[F’lTIJl[Sql = 0 (4.23) 

where 

is the set of independent virtual displacements. The reader should note 
that since the elements of the matrix [Sq] are arbitrary, we can generate 
three equations of motion by choosing [q] equal to [1,0,0], [0,1,0], or 
[O,O, 11. This is equivalent to setting each of the three column entries in the 
single-row matrix [F’]’[J] equal to zero. 
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It is easy to see that the first two equations are equivalent to conserva- 
tion of momentum, i.e., 

mx, + mx, = 0 

myl + my, = 0 (4.25) 

The third equation is equivalent to the conservation of angular momentum 
about the center of mass, i.e., 

p1 x mr, + p2 x mr, = 0 (4.26) 

where 

p2 = L cos Oe, + L sin Oe,,, p1 = -p2 (4.27) 

Although this example is simple enough to do without the cumbersome 
matrix notation, the use of the notation illustrates how we can generalize the 
method for more complex problems, using symbolic software packages such 
as MAPLE, MATHEMATICA or MACSYMA. The reader is encouraged to 
try this problem and a slightly more complex one using these tools in the 
problems at the end of this chapter. 

D’Alembert’s Principle for a System of Particles 

Consider a system of N particles of mass {mi}  where the total force on each 
particle is Fj. Then Lagrange’s generalization of D’Alembert’s principle 
becomes 

C(Fi - rniri) . Srj = 0 (4.28) 

When there are either externalgeometric constraints, such as motion confined 
to a surface or internal constraints, such as rigid links between the particles, 
then elements of the set {firj} are not independent and the set must be reduced 
to, or replaced by, a set of independent, generalized coordinates, as in the 
examples given earlier. 

Also the forces on each particle may be separated into three categories 
(Figure 4-5) 

(4.29) 

The forces noted by Fq are the external or active forces, the set {f,} are the 
internal forces between the particles. The forces {Ri} are the reaction or 
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Figure 4-5 System of masses with internal forces fij and constraint forces Ri  

constraint forces. In the case where there is no friction or plastic deformation 
between the particles and constraint surfaces, we assume that 

CRj .  Srj = 0 (4.30) 

when the virtual displacements are chosen to be compatible with the 
constraints. Thus, the statement of the generalization of the principle of 
virtual work for a system of particles becomes 

The second term may be thought of as the internal energy storage or 
dissipation. In the case of a collection of particles with rigid internal 
constraints, this term is zero. In the case of a set of particles with internal 
elastic links, we can replace the right-hand term with a potential energy 
function (see Section 4.3). 

When the set of independent generalized coordinates has been chosen, 
{ q k ( t ) } ,  (k = 1 , 2 , .  . . M )  the statement of virtual work must be transformed 
into these variables. In applications, this is usually the hard part. However, if 
we can obtain explicit relations between the position vectors and the new 
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variables { r i ( qk ( t ) ,  t ) } ,  this transformation is straightforward: 

(4.32) 

Note here that in a virtual displacement, the explicit dependence on time is 
suppressed, i.e., St  = 0. Only the dependence of ri on the qk variables is 
needed. [See Goldstein (1980) for a more detailed discussion of the theory.] 

To simplify the notation, the idea of a generalized force is introduced, 
defined by the equation 

(4.33) 

(4.34) 

Let us assume that the internal forces do not store any elastic energy or 
dissipate energy. Then D’Alembert’s principle takes the form 

(4.35) 

If we choose the new set of variables to be independent, each of the bracketed 
terms can be set to zero, or 

.. dr i  
E m i r i .  - = Qk 

dqk 
(4.36) 

where i = 1 , 2 , .  . . N (sum over all particles) and k = 1,2 , .  . . M < 3N. 
This is the form of D’Alembert’s principle that we use to derive Lagrange’s 

equations. However, it should be emphasized that we can use the equations 
directly to solve problems in dynamics. Until recently this fact has not been 
emphasized in dynamics textbooks. The form (4.36) is very useful for 
computer derivation and solutions of equations of motion. 

To solve problems directly using D’Alembert’s principle we can view the 
Jacobian column vectors as projection or tangent vectors, 

d ri p. -- 
dqk 

ik - (4.37) 

Then the equations of motion are simply Newton’s law projected onto these 
projection directions 

N 

C ( m i v i  - F ~ )  . pjk = o (4.38) 
i= 1 
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An example of the direct application of D’Alembert’s principle of Lagrange 
is given in the following example. [See also Lesser (1995), p96 for a discussion 
of D’ Alembert’s principle and tangent vectors.] 

EXAMPLE 4.3 
As a direct application of D’Alembert’s principle, consider the two masses 
constrained to move in a radial slot on a freely rotating platform of 
negligible inertia (Figure 4-6). The masses are secured to the platform 
by linear springs whose forces go to zero when the masses are at a radius 
a. We assume that the forces of constraint in the slot are frictionless and 
do no work. The slot constraint on the masses reduces the 4-degree-of- 
freedom problem to three. We choose the three generalized variables as 
{ q k }  = {p , ,  p2, 8). The position vectors of each of the masses written in 

Figure 4-6 Two masses constrained to a radial slot on a freely rotating platform. 
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terms of {qk} become 

rl = pl(cosei + sin ei)  = pie, 

r2 = -p2(cos e i  + sin e j )  = -p2e, (4.39) 

The only active forces are those of the springs that we write in the form 

F? = -k(pl  - a)e, 

F; = k(p2 - a)e, (4.40) 

The projection or tangent vectors Pik are then given by 

Note that 8erl86 = ee. 
The acceleration vectors are best written in polar coordinates, e.g., 

The first equation of motion using (4.38) is then 

or 

The second equation is similar to the first 

m2(ij2 - e2p2) + k(p2 - a) = o (4.44) 

The third equation of motion becomes 

It is straightforward to show that this is equivalent to conservation of 
angular momentum, or, 

d 
- (mlp :  + m2p;)e = 0 dt 

(4.46) 
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If Ho is the initial angular momentum of the masses, we can eliminate 6 in 
the first two equations using 

4.3 LAGRANGE'S EQUATIONS' 

Single Particle: One Degree of Freedom 

Before discussing the general case, let us look at a single particle whose 
position vector depends on one generalized coordinate q( t )  as well as time: 

r ( t )  = r ( q ( t ) ,  t )  (4.48) 

An example is shown in Figure 4-7 for a pendulum attached to a massless, 
moving base. If r = [x ,  y ]  T ,  then 

Here q( t )  = B(t) .  
In general, the velocity of a particle with a single degree of freedom is given 

by 

(4.50) 

The second term on the right hand side does not depend on q, so that we have 
the identity: 

The virtual displacement is given by 

(4.5 1) 

(4.52) 

' Joseph Louis Lagrange (1 736- 18 13) was a French-Italian mathematician and dynamicist. His 
treatise Michanique Analytique was first published in 1788 in which his famous equations appear. He 
was proud that his proofs did not require geometric proofs. 
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Figure 4-7 Motion of a pendulum on a moving base. 

As in Section 4.2, let us assume that the forces on the particle involve an 
active force F a  which does work and a workless constraint force R. Using 
(4.52), D’Alembert’s principle (4.10) becomes 

0 (4.53) 
dr 
89 

(mi: - Fa) . - = 

Following the previous section, we define the projection of the active force Fa 
onto the direction p = ( d r / d q )  as the generalized force Q so that (4.53) takes 
the form 

. dr 
89 

mv.-=Q 

Or using the identity (4.51), we have 

(4.54) 

(4.55) 

Note that the product Qq has units of power. This equation can be used 
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directly to solve problems. We shall see, in the next section, that this equation 
is essentially the principle ofvirtualpower. But, for now, we wish to transform 
the equation further using the kinetic energy; 

(4.56) 
1 T = - m v . v  
2 

In general T can depend on both q ( t )  and q ( t ) ,  so that we can write 

av d T  
89 89 

89 a9 89 

- = m v . -  

av dr 
-- - mv . - = mv . - d T  

(4.57) 

This last term is a projection of the momentum onto the direction (d r ldq ) ,  
hence, we define the generalized momentum by 

(4.58) 

In Newton’s formulation, the time derivative of the momentum mv is equal to 
the force. Let us see how the time derivative of the generalized momentump is 
related to the generalized force Q: 

dt dP = $ ( m v  . g) 

In the last term we can interchange derivatives so that (4.59) becomes 

(4.59) 

(4.60) 

The second term on the right is just d T / d q .  Using the equations (4.60), (4.55) 
and (4.51), we can show that 

or 

(4.61) 



4.3 LAGRANGE’S EQUATIONS 119 

Thus, when the particle is constrained to one degree of freedom, the 
projection of the equation of motion onto 0, (4.54) is analogous to Newton’s 
form, with the added term reflecting the dependence of the kinetic energy on 
the generalized displacement. The standard form for Lagrange’s equation of 
motion in terms of the kinetic energy T(q, q)  is then 

d d T  d T  
dt dq dq - Q  (4.62) 

where 

EXAMPLE 4.4 MULTIWELL PART HOLDER 
Consider the manufacturing fixture shown in Figure 4-8, in which parts are 
positioned for some operation. The base is moved in a prescribed manner 
so as to shift a part from one well to the next. We wish to find the equation 
of motion of a part as it goes from one well to another, so that a base 
motion can be designed to produce the jump. As an idealization, we 
neglect friction and assume that during the motion the mass follows the 
sinusoidal surface given by the constraint equation: 

The wavelength between wells is A = 27r/k. We choose the relative 
position 9 as the generalized coordinate. The mass position vector is 
r = xe, +ye,. The constrained velocity is then 

r = (s + Q)e, + AokO sin k9 e,, (4.64) 

The D’Alembert projection vector is then given by 

di 
= ex + Aok sin k9 e, = ail dr 

8 4  
- (4.65) 

Note the identity (4.65). The only active force on the mass is gravity, so that 
the generalized force is the projection of gravity onto the D’Alembert 
direction 

d r  
Q = -mge . - 

89 

Q = -mgA,k sin k9 (4.66) 
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Figure 4-8 Top: Motion of a particle in a sinusoidal potential well. Bottom; MATLAB 
integration of (4.68) Initial velocity q(0) = 3, moves the particle from the first well a t  
q = 0, to the second well at q = 2x. Damping added. 

As a special case, consider a zero base motion or s ( t )  = 0. To obtain 
Lagrange’s equations we must calculate the kinetic energy T :  

1 1 
2 2 

T(9 ,  4) = -m(x  + y 2 )  = -m( l  + A i k 2  sin2 kq)Q2 (4.67) 



4.3 LAGRANGE’S EQUATIONS 121 

Lagrange’s equation is then 

d d T  dT 
dtdq dq 

= Q  _ _ _ _  (4.68) 

Carrying out the details of the two terms on the left-hand-side, one can see 
common terms that partially cancel. The resulting equation of motion is 
then 

m(1 +AGk2sin2kq)9+mAok 2 3 . 2  q sinkqcoskq+mgkAosinkq = 0 

(4.69) 

This equation can be obtained directly from D’Alembert’s principle (4.36), 
by calculating the acceleration and projecting onto the D’Alembert vector 
(dr/aq) using 

r = qex + (Aoklj sin kq + Aok2q2 cos kq)e, (4.70) 

The equation of motion, (4.69) is nonlinear and it is difficult to obtain a 
solution without recourse to numerical integration. However, for small 
motions in one well we can linearize the terms, assuming that sin kq N kq, 
and coskq N 1. In this limit the equation becomes 

9 + gk2Aoq = 0 (4.71) 

This is the equation for a harmonic oscillator with a natural frequency in 
radius per time 

w = (gk2Ao)’/2 (4.72) 

Using the wavelength A, (k  = 27r/A), the frequency is the same as a 
pendulum with length L = A2/47r2Ao. Thus to move the base so that the 
mass jumps from one well to another, the base motion s( t )  should have a 
frequency component near this frequency. 

The nonlinear differential equation (4.69) can be numerically inte- 
grated. The following is a simple MATLAB program (version 4.2) which 
uses a fourth order Runge-Kutta algorithm (see Pratap, 1996). 

The program requires that the second-order differential equation be 
written as two first-order differential equations. We have nondimensio- 
nalized the equation using x = kq and a time scale based on the natural 
frequency (gk2Ao)-’/’. (This program can be used for other second order 
equations in this text.) Also some linear damping has been added to the 
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X = V  

. [ -yv-sinx-a2v2sinxcosx] 
V =  

[I + a2 sin2 x] 

where a = A&. 
The values used in the numerical integration are y = 0.3, a = 7r/2, 

x(0) = 0, v(0) = 3. The time interval is 0 5 t 5 25 nondimensional time 
units. 

A phase plane plot is shown in Figure 4-8b. It shows that the initial 
velocity has moved the mass over the first well peak and shows damped 
oscillations in the next well valley. 

The MATLAB integration scheme requires the definition of a function 
which here is called rnultiwell 

function dx = multiwell (t,x) 
a = 3.14 / 2 ; 
dx = zeros (2,l); 
dx(1) = ~ ( 2 ) ;  
dx(2)=(-0.3 .*  x(2) - sin(x(1)) - (a -2) .* (x(2) .-2) . . .  
. *  sin(x(1)) .* cos(x(1))) . /  (1 + a .* sin(x(l))-2) ; 

tO = 0; tf = 25; 
x0 = [ O  ; 31; 
[t.x] = ode45(‘multiwell’,tO,tf,xO); 

xlabel ( x Displacement ’ ) , ylabel( ‘Velocity’ ) 
grid 

plot(x:,l),x(:,2)) 

Potential Energy and Conservative Forces 

In elementary physics one learns that the work done by some forces in nature 
can be represented by the change in a scalar function of the position called 
potentidenergy V(r). For such forces the work done in moving from position 
rl to r2 is independent of the path: 

l2 F .  dr = V(r,)  - V(r2) (4.73) 

If the motion is constrained to move along some path with a generalized 
coordinate q, then 

F . d r = -  
dV 

--dq = -dV 
4 

(4.74) 
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In general, where r = [x, y ,  .IT in a three dimensional space, F can be 
represented by the gradient operation; 

F(r) = -VV(r) (4.75) 

Forces that can be expressed in this way are called conservative forces. In 
Cartesian coordinates the operator becomes 

d d d 
V = e e , - + e  -+ee,-  

ax yay dz  

Examples of common conservative forces include (Figure 4-9): 

Gravity near the Earth's Surface 

F = -mge,, 

Gravitation Force 

GMm 
r2  F = - -  er > 

Elastic Spring Forces 

F = -kx, 

Magnetic Force Between Two Wires 

V = mgz 

GMm V = - -  
r 

1 2  V = -kx 
2 

(po = 4n10-' in mks units). 

Electric Force Between Two Charges 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

(4.80a) 

(4.80b) 

( 1 / 4 ~ & ~  = 8.99109, in mks units). 

for a single-degree-of-freedom system, the generalized force is given by 
Since the force potential is defined in terms of work, it is easy to show that 

(4.81) 



124 

~ - - - - - - 7Jg 

PRINCIPLES OF D’ALEMBERT 

o J 

/////////// > 

Figure 4-9 Conservative force systems. (a) Near Earth gravity. (b) Gravity force. (c) 
Elastic spring. (6) Magnetic force. 
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Thus, for a single particle constrained to move in a conservative force field, 
Lagrange’s equation of motion becomes 

d d T  dT d V  
dt dq dq dq  

+ - = O  

It is traditional to define a function C called the Lagrangian 

In terms of this function, Lagrange’s equation becomes 

= o  d d C  dC 
d t d q  dq 

(4.82) 

(4.83) 

(4.84) 

Conservation of Energy 

Educated intuition would lead one to conclude that if the generalized forces 
are related to a potential energy function and the constraints are fixed, then 
the total mechanical energy, kinetic plus potential energies, is conserved in 
any dynamic motion of the particle. To see this we return to the D’Alembert 
form of the equation of motion (4.54)’ multiplied by the generalized velocity 
q and use (4.81): 

Now consider the total time derivative of the kinetic energy 

=mv.v 
dT 
dt 
- 

(4.85) 

(4.86) 

If the constraints are fixed, i.e., r = r (q ( t ) ) ,  then the kinematic relation 
between the velocity v and the generalized velocity q is 

(4.87) 

(Note: This is a special case of a more general constraint, equation (4.48), 
r = r (q ,  t ) . )  Substituting this expression into equation (4.85) and using 
equation (4.86), we can see that 

or T + V = constant (4.88) 
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Rayleigh Dissipation Function Many mechanical systems contain linear 
viscous damping forces. Such forces can be introduced into Lagrange’s 
equation of motion by choosing a generalized force proportional to the 
generalized velocity Q = -bq(t). However, another method is to define a 
quadratic dissipation function, R, 

and modifying Lagrange’s equation (4.84) 

d d C  dL d R  
d t d q  dq dq 

f - = O  __.--- (4.89) 

The Rayleigh dissipation function is also useful in the application of Lagran- 
ge’s equation to electric circuits (see Chapter 8). For example, the generalized 
voltage across a resistor is derived from R = 1 RZ2, where R is the electrical 
resistance and q = Z is the electric current. 

Lagrange’s Equations for a System of Particles 

In this section, we generalize Lagrange’s equations to many interacting 
particles, and in Chapter 5 we extend the principle to rigid bodies. The 
application of Lagrange’s equations to continuous deformable systems is not 
treated in this text. One should consult more advanced texts such as the 
second edition of Goldstein (1980). 

We begin with a set of N interacting particles of masses {mi}, which are 
acted upon by mutual forces between them {fU}, external active forces Fq 
that do work, and reaction forces of constraint R ,  that, under virtual 
displacements, do no work. Following the procedure in Section 4.2, we 
write a generalization of the principle of virtual work: 

C(miri - Fq - R ,  - C f U ) .  Sr, = 0 (4.90a) 

and assume that 

C R i .  Sri = 0. (4.90b) 

We next have to identify the number of constraints and assume a set of M 
generalized position coordinates { q k }  that can be displacements, angles, or 
other measures of the configuration of the system. We also assume that the 
constraints are geometric and of the form; 
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The velocity of each mass then depends on all the M generalized velocities: 

From these kinematic relations we can again obtain the identity 

(4.92) 

(4.93) 

This is true because we assumed that the constraint relations ri(qk, t )  do not 
depend on the generalized velocities {qk}. Such constraints are called 
holonomic. 

Next we write the virtual displacements of each mass, Sri in terms of the 
generalized virtual displacements Sqk, i.e., 

(4.94) 

Note the contrast of this equation with the expressions for the velocities, 
Equation (4.92). In the concept of virtual work, we freeze time, i.e., S t  = 0; 
only geometric variations come into play. 

To define the generalized forces Qk we consider the work of active forces in 
(4.90a) 

(4.95) 
d ri 

C F q . 6 r i =  CCFq--Sqk 
%k 

Exchanging the order of the summation operators, we define 

(4.96) 

Here the vectors pik = (dri/dqk) represent projection directions on which we 
take the component of the corresponding force. 

Using all these definitions, the principle of virtual work takes the form of 
the following scalar equation. 

(4.97) 

Since we have assumed all the {qk} and the variations {Sqk} are independent, 
we can set each of the bracketed terms equal to zero, resulting in M equations 
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(4.98) 

As discussed in Section 4.2, these equations can be used to directly solve 

To derive Lagrange's equations of motion, we must relate the kinetic 

The kinetic energy of the ensemble is the sum of the kinetic energies of each 

problems without using Lagrange's form of these equations. 

energy T to the left-hand side of (4.98). 

of the particles, i.e., 

In Section 4.2 for a single particle we showed that [see equation (4.61)] 

(4.100) 

Substituting this expression into equation (4.98), using (4.99), we obtain 

(4.101) 

where k = 1, 2, . . . , M .  Thus there are as many equations as there are 
independent degrees of freedom. These equations are generally not used in 
this form. We usually try to separate out active forces and internal forces that 
can be represented by a potential energy function V(qk) .  Such forces are 
sometimes called conservative forces. Thus we assume that the generalized 
force Qk can be separated into conservative and nonconservative parts, i.e., 

(4.102) 

In the case of the internal forces we have fv = -5; which expresses Newton's 
law of action and reaction. Thus the double sum over internal forces in 
(4.101) can be written in terms of pairs of particles; 

(4.103) 

There are three possibilities here. First, in the case of rigid constraints 
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between all the particles it can be shown that the double sum over fv is zero 
(see, e.g., Goldstein, 1980). In the second case, the pairwise terms represent 
elastic or conservative forces that can be represented by a potential energy 
function, i.e., 

(4.104) 

In the third case some of the pairwise forces may contain nonconservative or 
dissipative elements, such as friction or viscous dampers. In this case we can 
sometimes use a Rayleigh dissipation function to represent these forces, as in 
(4.8 9). 

In the case of only conservative forces, we combine the potential energy 
functions of the active and internal forces, i.e., v (qk )  = V ,  + V2. 

Thus for the case of conservative forces, Lagrange’s equations take the 
form 

(4.105) 

for k = 1, 2, . . . , M .  We note again that the kinetic energy function may 
depend on both generalized position and velocity, qk, qk. But the potential 
energy can only depend on the generalized position. With this understanding, 
a Lagrangian function C(qk, qk) is defined; 

C = T(qk, q k )  - v(qk) (4.106) 

and Lagrange’s equations take a more compact form 

=0, k=l, 2, . . . ,  M .  d dC dC 

dtdqk %k 

The generalized momentum is defined as in Section 4.2: 

8.L dT p k = - = -  
%k @k 

(4.107) 

(4.108) 

Thus if the Lagrangian function C is independent of the generalized position 
qk, the corresponding momentum pk is conserved, [see (4. lOS)] i.e., if 

- = 0  
dC 

dqk 
then 

d T  
P k  = - = constant 

dqk 
(4.109) 
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Thus, one can sometimes obtain a constant of the motion merely by 
inspecting the kinetic energy function. A generalized coordinate q k  that 
does not appear in the Lagrangian C, is called a ignorable or cyclic 
coordinate. 

EXAMPLE 4.5 
Consider the system shown in Figure 4-10 in which a large elastic 
structure sits on an oscillating base. Engineering examples include a 
building or water tower under earthquake excitation. One of the methods 
to minimize the vibration of the large mass is to attach a smaller mass with 
a restoring force as a vibration absorber. In this example we have 
attached a pendulum of mass m2. We wish to derive equations of 
motion to determine under what mass and stiffness ratios will the small 
mass “quench” the motion of mass m i .  

The idealized model chosen is shown in Figure 4-lob. Here the 
structural stiffness is replaced by a single spring of stiffness k .  We 
assume the mass ml undergoes pure translation. Obviously, in a real 
structure there are many vibration modes. We have chosen to model only 
the lowest one with frequency given by ( k / m i ) i / 2 .  To use Lagrange’s 
equations we chose the two generalized coordinates as 

qi = x ,  92 = (4.1 10) 

In the first analysis, we examine the zero-base motion case (see the 
homework problem 4.3 for the case of forced, sinusoidal-base motion). 
The kinetic energy function is given by 

1 1 . 2  
T = -m1X2 +-m2(Xe, + Lees) 

2 2 
(4.1 11) 

where the second term represents an inner product. The vertical motion of 
the structural mass is neglected here. The resulting scalar function 
becomes 

I 
T = - (mi  + m2)X2 + LJ2 ,2e2  

2 2 

+ m 2 x ~ d  cos 8 (4.1 12) 

It is clear that T depends on the angle 0 as well as e. 
spring and the gravitational potential of the pendulum mass: 

The potential energy function is the sum of the energy stored in the 

v = - k x  1 2  + m 2 g ~ ( 1 -  cos e)  (4.1 13) 
2 
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Figure 4-10 (a) Elastic structure with pendulum vibration absorber. (b) Simple model of 
pendulum attached to an elastically constrained base. 
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We then use Lagrange's equations in the form 

d dT dT dV 
+--0. 

dtdqj dqj dqj 
(4.1 14) 

where for the unforced case the generalized force Qi = 0. Carrying out the 
derivatives, we obtain two ordinary, nonlinear, differential equations of 
motion: 

(m,  + m2)x + m,L8cos 0 - m 2 L j 2  sin e + kx = o (4.1 15) 

m2L2t7 + m,Li cos 0 + m,gL sin 0 = o (4.116) 

(Note: In the second equation two terms equal to m 2 X k  sin 0 cancelled 
out. This can be a problem in symbolic math programs that may keep both 
terms and may result in calculation inefficiency if the equations are then 
integrated numerically. 

In the case of small motions of the pendulum, these equations can be 
linearized and put into the following matrix form 

where we have set cos 0 N 1 and dropped e'sin 0 in the x equation. We 
can see here that the two motions are coupled through the off-diagonal 
terms of the mass matrix. 

To find a solution we assume a sinusoidal motion 

(4.1 18) 

It is straightforward to show that the two vibration frequencies are 
determined by setting the following determinant equal to zero: 

2 k - w'(ml + m2) 

2 m,gL - m 2 ~ ' w 2  -m2Lw 

-m2Lw ] = o  (4.1 19) det [ 
or 

w4(1 - p)  - (w: + w; )w2 + w:u; = o (4.120) 

where 
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To design a vibration absorber under forced sinusoidal base motion, the 
frequency w2 is tuned to the frequency of the driven base motion. 

4.4 THE METHOD OF VIRTUAL POWER 

In Section 4.1, we saw how Lagrange’s form of D’Alembert’s principle of 
virtual work could be directly used to find equations of motion. In recent 
years, several authors in the United States and Europe (Kane and Levinson. 
1985; Pfeiffer, 1989; Schiehlen, 1985; Lesser, 1995) have taught a new method 
based on an old idea, namely, the principle of virtual power or virtual 
velocities. Why do we need another method to derive equations of motion? 

We have seen that the Newtonian formulation employs all the forces 
whether active or produced from constraints. Both D’Alembert’s method 
and Lagrange’s equations allow us to formulate equations of motion when 
there are geometric constraints (so called holonomic constraints). However, 
there are important constraints such as rolling of one body on another or of 
feedback control that are often expressed in the form of velocity constraints 
or nonholonomic constraints of the form, 

Cagqj + b,(t) = 0,  i = 1, 2, . . . , k (4.122) 

In some cases, these equations can be integrated to obtain equivalent 
geometric constraints, and the direct form of Lagrange’s equations is valid. 
In three-dimensional rolling problems, Lagrange’s equations must be mod- 
ified to handle such nonholonomic constraints (see Section 4.5). 

However, the principle of virtual power as stated in Chapter 2, can be 
directly used to solve both geometric- and velocity dependent constraints. In 
this section we show how one can apply the method to problems with 
geometric or holonomic constraints. 

The principle of virtual power can be considered as an extension of 
D’Alembert’s principle2 or as a separate principle in its own right (see 
Jourdain, 1909). We will not enter the philosophical debate on this point. 
Also, there are several variations of the method, such as Kane’s equations 
(Kane, 1961). We shall not judge the originality of this method. The historian 
Dugas (1988) suggests that the essence of the idea may go back to Aristotle. 
The important point here is that for certain classes of problems expressing the 
constraints in terms of velocities and kinematics may provide an easier way to 
find projection vectors with which to derive the equations of motion. 

As a simple example, we treat the case of a single particle constrained to 
move along a curve described by the variables (Figure 4- 1 1). We define a unit 

Neimark and Fufaev (1972) discuss similar methods by V. Volterra and G .  A. Massi published a 
century ago. 
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(b) 

Figure 4-11 
constraint force Ro. (b) Path coordinates. 

(a) Motion of a constrained mass under an active force Fa, and a workless 
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vector, e,, tangent to the path and a normal unit vector, e,, pointing toward 
the instantaneous center of curvature. When the curve is known, it is 
convenient to use path coordinates, i.e., the velocity is expressed as a 
vector tangent to the curve: 

v = Se, (4.123) 

where s( t )  is the distance along the path. The acceleration is then given by 

i2 
a = ies +-en 

P 
(4.124) 

If we assume that the path constraint has no friction and Fa is an applied 
force, Newton’s law for the particle is given by 

mi2 
mie,+-e, = F a + R  

P 
(4.125) 

where we have, by assumption of a frictionless constraint, 

R . e , = O  (4.126) 

Then, taking the projection of the vector equation (4.125) onto the direction 
e,y, we have, 

m s = F a . e ,  (4.127) 

However, we note that the tangent vector e, is given by [see (4.123)] 

av 
dS 

e =- (4.128) 

Therefore, we can write the projected equation of motion (4.127) in a form 
that is vector-basis independent: 

av 
dS 

(mv-Fa).-- ;=O (4.129) 

This equation expresses the fact that the power of the active force under unit 
velocity must balance the power of the D’Alembert inertial “force,” -ma. 
Another statement of this principle is that the power of the reaction force R 
under frictionless constraints is zero. 

For this example, it is easy to show that equation (4.129) is equivalent to 
D’Alembert’s principle of virtual work. When the position vector is con- 
strained by a relation r = r (q ( t ) ) ,  where q is a generalized coordinate, then 
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the equation of motion takes the form 

dr 
(ma - F") . - = 0 

84 
(4.130) 

However, in Chapter 2 and from equation (4.40) we can easily establish the 
identity 

dr aV - 
aq = 3 (4.1 31) 

Thus, in the case of geometric or holonomic constraints, the projection 
vector can be determined either from the geometry r(q, t )  or from the 
kinematic relations v(q, q) ,  which are in some cases easier to establish. 

EXAMPLE 4.6 
To show how we can derive the equation of motion from the principle of 
virtual power, consider the motion of a particle on a helical path wrapped 
around a cylinder with nondimensional pitch K (Figure 4-12). In this 
problem we choose cylindrical coordinates (R, 4) .  Here we have one 
degree of freedom +( t ) ,  and we choose this as our generalized coordi- 
nate. The geometric and kinematic equations are easily established: 

r = ReR + KR+e, 

v = Rde$ + KRde, 

a = -R+ '2 eR + RJe, + KRJe, (4.132) 

We wish to determine the velocity as a function of time under a gravity 
force, 

Fa = -mge, (4.133) 

To apply this method we use the velocity relation to project the force and 
acceleration onto the vector: 

(4.134) 

(Note: In this case the projection vector is not a unit vector and it has the 
dimension of length.) The advantage of this method (4.129) over using r(4) 
in (4.130) is that e, is independent of 4, but in differentiating the position 
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Figure 4-12 Mass particle on a helical path. 

vector, we must find the dependence of eR on the 4 variable, i.e., 

de, de, d r  

84 84 84 
= KRe, + R- , - = e$ __ (4.135) 

Using the velocity expression v(4) avoids this extra step. Projecting the 
gravity force and the acceleration onto the vector , we obtain 

mR‘(1 + K”(3 = -mgRK (4.136) 

Integrating with respect to time 

(4.137) 
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The scalar velocity is related to 4 by 

(4.138) 

You should check this solution by using the conservation of energy 
principle (2.42) or (2.45) to find v(z) .  

2 112 v =  s = R&1+ K ) 

Principle of Virtual Power for a System of Particles 

Following the pattern in earlier sections, we assume a set of N particles with 
masses {mi}, each with a position vector ri(t). We assume that the force on 
each particle can be separated into three parts; active or external forces Fq, 
internal forces between the ith and jth particles fij = -qj, and workless forces 
of constraint R j ,  i.e., 

N 

(4.139) 

Then the general statement of the principle of virtual power is similar to the 
principle of virtual work for dynamic systems, (see Jourdain, 1909 or 
Papastravidis, 1992)) 

(4.140) 

Like virtual displacements, the virtual velocities of each of the particles Svi 
represent a set of arbitrary vectors that are compatible with the constraints. 
In order to solve a holonomic constraint problem, we have to choose a set of 
independent coordinates { q j ( t ) } ,  say i = 1, 2, . . . , M ,  where M 5 3N. 
Associated with each coordinate is a generalized velocity qi(t). To obtain a 
set of A4 independent equations of motion we assume 

(4.141) 

In a virtual velocity we assume that the configuration and time are frozen 
(see, e.g., Jourdain, 1909), i.e., 

bqi = St = 0 (4.142) 

Then the variation of ti is just due to small variations in the generalized 
velocities, i.e., 

(4.143) 
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Substituting this expression into equation (4.140) and changing the order of 
summation, we obtain 

This equation has the form 

If the set {xk} is linearly independent, then the only solution for arbitrary 
choices of the xk is bk = 0. Since we have assumed a set of M independent 
variations sqk, we can set the term multiplying each variation equal to zero. 

(4.146) 

There is one scalar equation for each independent generalized velocity 
(k = l ! .  . . , M ) .  This is the form we will use to solve problems. If the 
constraints are velocity dependent or nonholonomic, the same equations 
hold, except the choice of independent velocities {qk} may not be easily 
related to a set of generalized coordinates. This is discussed further in 
Section 4.5. 

To further simplify these equations, we make the assumption that the 
internal forces do not store energy or dissipate power, i.e., 

CCf, * svj = 0 (4.147) 

This statement is close to assuming that the collection of particles is either 
rigidly connected or some particles are free of mutual interaction forces. 

Professor Kane of Stanford University calls the projection vectors partial 
velocities. Other authors call them tangent vectors (see, e.g., Lesser, 1996). We 
shall use the latter terminology and define the tangent vectors { p j k }  

d Vi p. -- 
l k  - dqk 

(4.148) 

The equations of motion then take the form 

N 

~ ( m j v j - F P ) . / 3 , k = 0 ,  k =  1 ,  2, . . . ,  M (4.149) 
i= 1 

The relation (4.148) assumes that each velocity can be expressed in a linear 
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sum of the tangent vectors, i.e., 

The term tangent vector is motivated by (4.128) where ,B = e, is a vector 
tangent to the trajectory. 

Equations (4.149) are similar to what some practitioners call Kane’s 
equations, named after Professor Thomas Kane of Stanford University. 
Using the notation in this book, we can write (4.149) as, 

Qk + Qi = 0 

where Qk is called the generalized active force and Qi is called the generalized 
inertia force defined by 

N 

i= 1 

N 

Qi = - C mi+, . Pik 
i= 1 

In the text of Kane and Levinson (1985), they define a set of generalized 
speeds {u,} as a linear combination of the generalized velocities {qs } ;  

where Y,, and 2, may depend on the (4,) and time. The velocities of the 
particles are given by 

M 

i= 1 

where v: are calledpartial velocities. Kane’s equations for holonomic systems 
becomes, 

3, + F; (4.150) 
where 

i= 1 

i=l  
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Thus when the generalized speeds {u,} are simply chosen as the set {&}, the 
partial velocities vk are identical to the Jacobian vector Pik in (4.148), derived 
from the principle of virtual power. 

EXAMPLE 4.7 
To illustrate the method, consider the two-particle pendulum under 
gravity and masses m i ,  m2 constrained to remain on y = 0 and a rigid 
link between mi and m2 of length L (Figure 4-13). The elements of the 
method are as follows: 

1. Identify the numbers of degrees of freedom: M = 2. 
2. Choose independent generalized velocities: 9, = x,  q2 = 8, 

v1 = xe, 

v2 = xe, + Leee (4.151) 

e Y  

Y 

Figure 4-13 Two-degrees-of-freedom, two-mass pendulum. 
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3. Calculate the tangent vectors or partial velocities 

8 V i  
Pi1 = = ex, P i2  = 0 

8 v2 8 v2 
P2i = = ex, p22 = ae = Leo (4.152) 

4. Calculate generalized active forces (project active forces onto the 
tangent vector) 

F; = 0,  FZ = -mge, 

Q1 = FZ . P2i = -mge, . ex = 0 

QP = FZ . P22 = -mgLe,. eo = -mgL sin 6 (4.153) 

5. Calculate accelerations 

v, = xe, 

v2 = xe, + Lee, - Lj2e,  (4.154) 

6. Calculate generalized inertia (project accelerations onto the tangent 
vectors) 

Cmivi . Pi, = mivl  . ex + m2v2 . ex 

= (mi + m,)x + m2(L8cos6 - Lb2 sin 6)  

Cmivi + Pi2 = mlv l  .O + m2v2 . Leo 

= m2L(xcos 6 + L8) (4.155) 

Thus the resulting equations of motion (4.149) become 

(mi + m2)x + m2L(8cos 0 - b2 sin 6) = 0 

m,Li cos 6 + m2L28 + m,gL sin e = o (4.156) 

These equations are nonlinear ordinary differential equations and, as 
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such, an analytic solution cannot be found. One can try to integrate 
these equations numerically, or one can linearize the equations about 
an equilibrium point and study the local motions near this point. The 
equilibrium points are 6' = 0, T ,  with 6' = 0 obviously a stable configura- 
tion. For motions close to 9 = 0, we assume cos x 1, sin 9 M 9 to obtain 

X + p L i = O  

X + ~e + ge = o (4.1 57) 

or 

(1 - p ) L j +  go = 0, 

This equation describes an oscillating solution 

( p  = m2/(m1 + m2)) (4.158) 

9 = A cos (d  + 4 0 )  (4.1 59) 

where 

(4.160) 

When ml/m2 >> 1, the system behaves as a classic pendulum. When 
ml << m2, the frequency increases as ml decreases. 

As an exercise, the student can examine the case where ml is attached 
to a linear elastic spring of constant k .  

EXAMPLE 4.8 
MATHEMATICS SOFTWARE: MATHEMATlCA 
The development of computer codes to manipulate mathematical symbols 
and perform algebraic and calculus operations without numbers has been 
a quiet revolution in computer software. Popular codes on the market 
today (1997) include MACSYMA, MATHEMATICA, and MAPLE. In this 
example we illustrate the use of the principle of virtual power in a 
MATHEMATlCA format to derive equations of motion for the double 
pendulum shown in Figure 4-14. In the following, comment statements 
are shown. MATHEMATEA input statements are shown in bold, and 
MATHEMATEA output statements are unitalicized. Students should con- 
sult a MATHEMATlCA handbook for precise instructions. In this example 
we assume lossless pinned joints and that the only active force on the two 
masses is gravity. 

VIRTUAL POWER METHOD USING SYMBOLIC 
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Figure 4-14 Double pendulum for Example 4.18. 

Define Position Vectors 

rl = C L ~  SinCql [tll , L1 CosCql Ctll) 
r 2  = rl + C L ~  SinCqI [ tI+q2Ctll ,  L2 CosCqI Ctl + q2Ctl13 

Define Velocity Vectors 

v l  = D C r l ,  t] 

{LI cos [qI [ t I  I 91’ [t] , - (LI SinCql CtI 41’ [ t I  1) 

v2 = DCr2, t l  

{Ll  cos[ql [ t l1  qI”t1 + L2 Cos[ql[tl + q2[t11 
(ql’[tI + q2’[t1), - (LI Sin[ql [ t I I  qI’[ tI)  - 

~2 SinCqICtl + q 2 ~ t 1 1  (q1’Ctl + q2’Ctl)) 

Define Acceleration Vectors 

a1 = DCv1, t] 

{-(LI Sin[ql  [ t l l  q1’[t12) + LI C O S [ ~ I  C ~ I I  q l ” [ t I ,  
-(LI cos Cql [tl I ql’ [ t I  2, - LI Sin [qi  [ t I  I ql” [ t ~  I 

a2 = DCv2, t] 



4.4 THE METHOD OF VIRTUAL POWER 145 

Define Active Gravity Forces 

Fa1 = CO, m1$ g) 

Fa2 = 10, m2: g) 

Define Tangent Vectors or Jacobian 

Virtual Power Equations for Generalized Velocity ql’[t] 

eqnl = (Fa1 - m l  al) . J c b l l  + (Fa2 - m2 a2) . Jcb21; 

Simplify Expressions by Combining Trig Terms 
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Virtual Power Equation for Generalized Velocity q2’[t] 

eqn2 = (Fa1 - m l  a l )  . Jcbl2 + (Fa2 - m2 a21 . Jcb22; 

Expand c%, Trig + True1 

-(g ~2 m2 S i n [ q l [ t l  + q2CtlI)  - 
LI ~2 m2 ~ i n [ q ~ [ t l ]  ql’[t12 - ~2~ m2 q l ’ ’ [ t~  - 
LI ~2 m2 cos[q2[t11 q l N [ t I  - ~ 2 ’  m2 q2/’[tI 

eqn3 = YO 

Evaluate Constants in Equations of Motion 

Integrate the Equations of Motion for Initial Conditions 

Sol = NDSolve [Ceqn5=O, eqn6 == 0,  
ql[Ol = q2CO1 == 0,  ql”0l = 0,  
q2”Ol = 11, Cql, 92, Ct,lO)I 

Plot Time History From Time = O  to 10 Seconds 

Plot [Evaluate [q2[tI /. Sol], C t ,  0 ,  1011 

The results are shown in Figure 4-15a, and b are for another set of initial 
conditions. 

4.5 NONHOLONOMIC CONSTRAINTS: LAGRANGE 
MULTIPLIERS 

In most dynamics problems, one tries to formulate the model using the least 
number of variables. In this sense the use of constraints is always implicit in 
formulating a problem, e.g. assuming that the motion is planar or that the 
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Figure 4.15 Numerical solution of double pendulum in Example 4.8, Figure 4-14. Top: 
Time history of ql ( t )  from numerical simulation showing oscillatory motion. Bottom: 
Time history of q2( t )  from numerical simulation showing rotary motion. Initial condi- 
tions qI(0) = 7 ~ / 2 ,  qZ(0) = 7r, zero initial velocities. 

0 

Time, Sec 

motion is confined to a circle. But there are some constraints that require 
special treatment, especially those that depend on velocities and so-called 
nonholonomic constraints (see, e.g., Neimark and Fufaev, 1972). 

EXAMPLE 4.9 
An example of a kinematic constraint is shown in Figure 4-16 where the 
velocity of one particle is constrained to be proportional to the velocity of 
another particle through the use of electrical feedback. In this case the 
horizontal velocity of mass m2 is constrained to be proportional to the 
velocity of mass m,; 

v 2 .  e, = -I'x (4.161) 

The velocity of mass m2 is given by 

v2 = xe, + Leee (4.162) 
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X 

Feedback 
electronics 

Figure 4-16 Electromechanical system with kinematic constraints 

Thus the contraint becomes 

X + .ukase + r i  = o (4.163) 

or using the notation 

a l l x  + al,e = o (4.1 64) 

where 

a l l  = (1 +r),  a12 = Lcose (4.165) 

We note in this example that the constraint (4.163) can be integrated to 
obtain a geometric constraint in terms of { x ,  0). 

Nonholonomic Constraints and Lagrange’s Equations 

Let us assume that the problem has been reduced to N independent degrees of 
freedom with N generalized coordinates { q k } .  Also, we assume that we have 
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conservative forces with a potential energy function v(qk) and kinetic energy 
function T(qk, q k )  with no dissipation. Now let us introduce M < N 
constraint equations. These can be of two kinds: first relations between the 
N coordinates (holonomic constraints), 

A(41, q 2 , .  . * , q N ,  0 = 0 (4.166) 

and second constraint equations, linear in the generalized velocities 

where the aik are not related to a set of functionsf;. In other words, we assume 
that, in terms of the velocities, these new constraints cannot be integrated 
into a relationship between the coordinates only. Such constraints are called 
nonholonomic. By differentiating equation (4.166) with respect to time, we 
also get a linear relationship between the velocities 

Note, however, that the aik are all related to the M functionsf;.. 

(4.168) 

X 

Figure 4-17 Rolling of a wheel on a planar surface. Nonholonomic constraints. 
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EXAMPLE 4.1 0 
An example of a nonholonomic constraint is rolling of a disc on a plane, 
where the disc is always vertical (Figure 4-17). Without rolling, the 
degrees of freedom involve four variables, x,, yc, 8, 4. 

The rolling constraint is of the form 

dx, = Rd4 cos 8 

dy, = Rd4sin 8 (4.1 69) 

In terms of velocities 

x, - Rdcose = 0, y, - Rdsin8 = 0 (4.1 70) 

In the notation of nonholonomic constraints (4.167), Caikok = 0, we have 

all  = 1, a12 = 0, a13 = 0, a14 = -Rcose 

aZ1 = 0, aZ2 = 1, a23 = 0, a24 = -Rsin 8 (4.1 71) 

In order to modify Lagrange’s equations with the constraints of the form 
of (4.167) or (4.168) we must introduce constraint forces Qk.  (Note that we 
cannot derive a set of Lagrange’s equations in the original N variables {qk}  
because they are not independent under the added constraints.) However, we 
can think of the N variables { q k }  as independent if we enforce the constraints 
by the generalized forces Qk.  This allows us to write a set of N Lagrange’s 
equations, 

(4.172) 

Next we assume that these constraint forces do zero virtual work, i.e., 

6w = Qk6qk = 0 (4.173) 
k 

From the constraint equation (4.167) or (4.168), we also have 

(4.1 74) 

One can show that (4.173) can be satisfied if we assume that Qk is a linear 
combination of the aek, i.e., 

(4.175) 
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where the A, must be determined. Substituting this expression into (4.173) for 
S W ,  we get 

If the order of summation is changed and the constraint conditions (4.174), 
are involved, then S W = 0. (This argument may be found in Goldstein (1980, 

Substituting (4.175) into (4.172), Lagrange’s equations take the form 
48-49).) 

Now, however, both the { q k }  and {A,} as unknowns, i.e., we have N + M 
unknowns. To the N Lagrange’s equations, we must add the M constraint 
equations (4.162) 

The added variables {A,} are called Lagrange multipliers and can be used to 
calculate the forces of constraint. 

It should be noted that for some problems in which the Lagrangian does 
not depend on some of the coordinates q k ,  one can use the relations (4.178) to 
eliminate some of the variables directly and reduce the degrees of freedom to 
N - M ,  and avoid the use of the Lagrange multipliers. 

EXAMPLE 4.11 ROLLING OF A WIDE TREAD TIRE ON A PLANAR INCLINE 
Consider the inclined plane with a wide tread tire on it as shown in 
Figure 4-17. Assume that the plane is inclined to gravity by an angle +. The 
potential energy of gravity is given by 

V = rng(sin $)y, (4.179) 

To calculate the kinetic energy we assume a distribution of particles 
around the rim of mass yRd@. The position vector components of this 
differential mass element is given by 

r = r, + ReR 

The velocity of a particle at position @ on the ring circumference is given 
by 

v(@) = v, + R$e, + Rbcos @es 
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Note that v, is in the plane of the ring and e0 is normal to this plane. Thus 
we have 

The kinetic energy of the ring can be found by integrating with respect 
to a, holding 8, 4, 8 fixed: 

The resulting expression is given by (see also Chapter 5) 

1 1 1 
2 2 2 

T = - m ( x : + y : ) + - / 1 ~ 2 + - / 2 8 2  (4.1 80) 

where Il = mR2 is the moment of inertia about the axel, and /2 = mR2/2 is 
the moment of inertia about a diameter. The wide-tread assumption 
ensures that the plane of the tire remains perpendicular to the inclined 
plane. Using the constraint equations (4.170), (4.171) in Example 4-10, the 
equations of motion (4.177) become: 

mx, = &al l  + X2az1 = XI 

my, = -mg sin $ + Xla12 + X2aZ2 = -mg sin $ + X2 

12e = &al3 + &az3 = 0 

i1$= X,al4+X2aZ4 = - ~ ~ ~ c o s e + - X ~ ~ s i n e  

x, - Rdcos8 = 0, yc - RdsinB = 0 (4.181) 

The third equation says that the angular momentum about the axis normal 
to the plane is conserved, i.e., 

129 = = constant (4.182) 

or 8 = a + bt, where a,  b depend on initial conditions. 

equation (also using the constraint conditions) 
Next, using the first two equations we eliminate X1, X2 from the fourth 

= - m x , ~  cos e - (my, + mg sin +)R sin e (4.183) 

Note that by taking the time derivative of the constraint equations (4.181), 
we can show that 

cos ex, + sin ey, = R$ (4.184) 
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Thus (4.183) becomes 

(I ,  + R2m)$ = -mg(sin $)rsin(a + bt) (4.185) 

This last equation can be integrated directly to get $ ( t )  and 4(t)  as 
functions of time. 

The Lagrange multiplier method can be compared with the direct 
Newton-Euler method for the special case of a cylinder rolling down an 
incline. In Figure 4-17, set 6 = 7r/2, 8 = 0, x, = x, = 0. One must include 
a tangential friction force N2. The Newton-Euler equations (2.30), (2.57) 
become 

myc = -mg sin $ - N2 

I& = N2r 

Yc = R4 (4.186) 

This yields the same equation as Lagrange’s equation, with a = 7r/2 and 
b = 0. Also we see that the Lagrange multiplier X2 = -N2  represents a 
constraint force. 

4.6 VARIATIONAL PRINCIPLES IN DYNAMICS: HAMILTON’S 
PRINCIPLE 

The modern student of dynamics is usually taught the Newtonian force 
vector approach in introductory dynamics. However, historically dynamics 
principles were approached from the concepts of virtual work, energy, and 
virtual power. This approach goes back to Greek science in the fourth 
century B.C. (see Dugas, 1988). These concepts evolved into variational or 
optimization mathematics. Such problems involve minimizing drag, time, 
thrust forces, or cost under a set of constraints. In fact, Lagrange’s equations 
can be derived from a minimization or extremum problem called Hamilton’s 
principle. In words this principle states: 

The motion of a conservative system under a set of geometric (holonomic) 
constraints is such that the integral of the Lagrangian L = T - V between any 
two times t l ,  t2 is an extremum. 

In mathematical terms, this principle is written in the form 

(4.187) 
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The symbol S[ ] means that the generalized coordinates are varied about the 
correct or natural time history qT(t), i.e., 

Then Hamilton’s principle takes the form 

Ll f2  L(t ;  a )  dt = 0 
d a  

(4.189) 

under a suitable set of arbitrary test functions q j ( t )  and for a + 0 (see, e.g., 
Goldstein, 1980). 

The origins of variational methods predate Newton’s Principia (1687). For 
example, Simon Stevin (1 548- 1620) analyzed the pulley using the idea of 
virtual power. Galileo (1564-1642) used the concept of virtual work to solve 
the problem of the static inclined plane, and extended this principle to a 
system of connected bodies under gravity. He deduced that the common 
center of gravity was as near as possible to the center of the earth. This is 
essentially the principle of minimum potential energy, which follows from the 
idea of virtual work. Jean (or Johann) Bernoulli3 (1667-1748) in 1717 called 
this the principle of vitesse virtuelle or virtual velocities. Later he and his 
brother, James (Jacob or Jacques) (1 654- 1705) posited the variational 
mechanics problem of a hanging chain or catenary (Figure 4-18). They 
reasoned that the chain would take the configuration for which the center of 
gravity would be lowest. Mathematically they sought to minimize the 
potential energy 

(4.190) 

The solution to this problem is the catenary; 

y = A cash kx + B (4.191) 

Around the time of Newton, Jean Bernoulli, a student of James, posited 
the famous brachistochrone problem in 1696. He sought to find a curve y ( x )  
along which a particle will travel from x1 to x2 under gravity in the shortest 
time (Figure 4-19). Thus he sought to minimize the integral: 

x 2  ds ds 
= I :  v = 6’ [2g(y - a)]’/’ 

(4.192) 

The Bernoulli family produced three generations of Swiss mathematicians and scientists in the 
Seventeenth and Eighteenth centuries. 
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" 

I I 

X 
X i  x 2  

Figure 4-18 Minimum potential energy problem of the hanging chain or catenary. 

This problem is similar to one in optics posed by Pierre de Fermat (1601- 
1665) in 1662. He sought the path of least time that a light ray would travel 
between two points in an optical medium. 

The solution to the brachistochrone problem is the cycloid curve. 
Finally Euler in 1744 and later Lagrange in 1762-1770 presented an 

analytical method to solve more general extremum problems. They sought to 
find solutions y (x )  that would extremize integrals of the form 

(4.193) 

The result is the famous Euler-Lagrange equation: i.e., f (y (x) ,  ~ ' ( x ) )  must 
satisfy 

= o  d Of O f  
dx Oy' dy 

(4.194) 

It was Hamilton who saw the connection between Lagrange's equations of 
motion and the Euler-Lagrange equation. He defined the Lagrangian 
C[q( t ) ,  q ( t ) ]  and used the extremum of the integral of C and the Euler- 
Lagrange condition to arrive at Lagrange's equation i.e., let f = C, y = q,  
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y’ = q, x --+ t in equation (4.194): [compare with (4.84)] 

= o  d d C  dC 
d t a q  aq (4.195) 

Another variational principle that embodies Newton’s laws of motion is 
the principle of least action proposed by Pierre-Louis de Maupertuis in 1744. 
Inspired by Fermat’s principle of least time in optics, he reasoned by analogy 
that during a motion of a particle under given forces, nature would choose 
the path that would minimize the “action” integral 

A = l: mu ds (4.196) 

The general principle.. . , is that the quantity of action necessary to produce some 
change in Nature is the smallest that is possible. 

(see Dugas, 1988, 260-269). Maupertuis applied this principle to solve the 
problem of the impact of two bodies. However, the variation in the principle 
of least action is different from that in Hamilton’s principle. A theoretical 
discussion of these variational principles can be found in Goldstein (1980), 
and Meirovitch (1970). A historical discussion may be found in Szabo 
(1976). 

X 

Figure 4-19 Brachistochrone or minimum-time problem of Bernoulli 
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In Example 4.2 let the two masses m l ,  m2 be unequal. Find the equation 
of motion using D’Alembert’s principle. 

In Example 4.2 let gravity forces act in the -y-direction for ml = m2. 
Find the equations of motion using D’Alembert’s principle. 

Vibration Absorber. In Example 4.5, let the base motion be equal to 
A cos Rt. Find the value of L,  m2 such that the steady-state motion of 
ml is identically zero. 

The massless rod in Figure P4-4 has two masses on it, one mass ml  is 
fixed at the end, while the other m2, is constrained to move along the 
radius by a linear spring k. Use Lagrange’s equations to find the 
equations of motion for a constant torque. Assume the spring is 
unstretched when r = L/2.  

[Answer : 

m2(i: - re2> + k(r  - ~ / 2 )  - m2gcose = 0, 

ml ~~e + m2(2riB + r2e)  + ( m l L  + m2r>g sin 6 = T ) ]  

T 

Figure P4-4 
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m l  [I- 

Figure P4-5 

4.5 Two masses are constrained by the three-bar linkages shown in 
Figure P4-5. Mass ml is constrained to move in the vertical direction, 
while mass m2 moves in a circular motion. Use 0 as a generalized 
coordinate and find the Lagrangian. Show that the equation of 
motion is given by 

i ~ ~ ( m ~  + 4ml sin2 e)  + 8 2 4 ~ 2 m l  sinecos e - (2ml + m 2 ) g ~ s i n 8  = o 

4.6 (a) In Problem 4.5, derive the equation of motion using the principle 
of virtual power or D’Alembert’s method of virtual work. 
(Hint: show that the projection vectors are given by 
,B1 = -2LsinBe,, ,B2 = Leo.) 

(b) Reverse the direction of gravity and show that the frequency of 
small vibration is given by [( 1 + 2ml/m2)g/L]1/2. 

4.7 A particle ml  is constrained to move on a conical surface shown in 
Figure P4-7, while a second mass m2 is constrained to the vertical 
direction. The two masses are connected by an unextensible string of 
length L. Choose Y, 0 as generalized coordinates and find the equations 
of motion using Lagrange’s equations. 
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Figure P4-7 

[Answer : 

(ml + rn2) i :  - m,re2 sin2 a + mlgcosa + m2g = o 
re + 2ri.8 = o)] 

Use a constant of the motion to reduce the problem to a single 
differential equation for r (  t ) .  
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Figure P4-9 

4.8 A particle m is constrained to move on a frictionless circular path. A 
linear spring force acts on the particle proportional to k(d - do) and 
always in the horizontal direction. Choose 8 as a generalized velocity 
and find the projection vector p. Use the principle of virtual power to 
derive the equation of motion for O ( t ) .  

[Answer : mR28 + kR2( 1 - cos 6 )  sin O = 01 

4.9 A block shown in Figure P4-9 is suspended by four linear springs of 
stiffness k each. Assume that the unstretched state is when y = 0. Derive 
the equation of motion for vertical motion. Show that the equilibrium 
position under gravity is approximately given by y: = mgL2/2k. 

4.10 Two particles are constrained to motion in the plane by two inextensible 
cables of lengths R, L = p + r (Figure P4-10). Use the principle of 
virtual power to derive the equations of motion with 01, O2 as general- 
ized coordinates. 

4.11 Four equal masses carry positive and negative charges, as shown in 
Figure P4-11. The electric force between any two pairs of charges is 
given by 

F12 = rQi Q 2 / &  

with the rule that like charges repel and unlike charges attract one 
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Figure P4-10 

Figure P4-11 

another. Assume that the two middle charges can move in the hor- 
izontal direction. 
(a) Find the equations of motion. 
(b) What is the potential energy for this problem? 
(c) Derive the equations of motion using Lagrange’s equations and 

4.12 A massless rod rolls on a half cylinder with masses m l ,  m2 at the ends 
(Figure P4-12). Assume that when Q = 0 the lengths are x1 = x2 = L. 
(a) Use the method of virtual power to derive the equation of motion. 
(b) What is the equilibrium position? 
(c) For the case of equal masses ml = m2 find the natural frequency for 

compare with Newton’s force method. 

small motion. 
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Figure P4-12 

(Hint: Show that the rolling constraint yields x1 = L + a0, x2 = L - ad. 

[Answer : (a) ml ( L  + a0){ ( L  + a0)e + ad2} 

+ m 2 ( ~  - a e ) { ( L  - ae)e - ad2> 

+ mlgcosO(L + a0) - m2gcosd(L - ad) = 0; 

(c) w2 =ga/L2] 

4.13 A massless cylinder of radius R rolls on a horizontal surface (Figure P4- 
13). A concentrated mass acts at a radius p < R. 
(a) Use the method of virtual power to find the equation of motion. 
(b) Show that the natural frequency for small angular motions is given 

4.14 A particle of mass m is constrained to move on a circular track, as 
shown in Figure P4-14. A linear spring, one end secured to the mass is 
anchored at a radial offset d and exerts a prestress Fo when 0 = 0. Use 
the principle of virtual work (D’Alembert’s method) to find the 
equation of motion (neglect friction and gravity). Find the natural 
frequency of oscillation when 0 is small. 

by [gp/(R - d 2 P 2 .  
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Figure P4-13 

/Figure P4-14 
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Figure P4-15 

4.15 A pendulum axis is attached to a spinning disc, as shown in Figure P4- 
15. The disc rotates about the vertical e3 axis with constant speed w. The 
pendulum is constrained to rotate in the plane formed by the e3 axis and 
the attachment point P. Use the angle 8 as a generalized coordinate and 
derive the equation of motion using Lagrange’s equation. 

g 
L Answer: 8 + - s i n 8 = w  

4.16 Derive the equation of motion for the rotating pendulum in 
Problem 4.15 using the principle of virtual power. For very large w2 
compare this problem with Example 5.10. 

4.17 Two masses ml, m2 rotate about the verticle axis and are attached to 
the same inextensible string (Figure P4-17). Let w1 = el, w2 = O2 and 
assume that both w l ,  w2 are perturbed from an initially large angular 
rotation Ro, i.e., $ = no, 

81 = $ + A ,  82 = $+P2 
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Figure P4-17 

430") = 0 I 

Figure P4-18 
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where both PI, P2 are small. Derive the equations of motion in the 
horizontal plane using Lagrange’s equations. Linearize and find the 
natural frequency. Compare with the double pendulum problem, 
Figure 4-14, Example 4.8. 

4.18 Consider the three mass mechanism shown in Figure P4-18. Suppose 
some applied torque rotates the masses about the vertical axis with 
constant speed R. Use the principle of virtual power to find the equation 
of motion. 

4.19 Four identical planetary gears roll without slip on a sun gear of radius R 
(Figure P4-19). Four springs of equal length Lo = f i R  are connected 
between the gears. 
(a) Neglect the rotary inertia of the planet gears (see Chapter 5 for the 

correction terms) and derive the equations of motion using Lagran- 
ge’s equations. Neglect gravity. Assume that the perturbed angles 
{Oi} are small. 

(Hint: Use the relation for the new spring length, L = & ? ( 1 +  
sin(ei - ei-l)1’2). 

(b) What are the modes of vibration and natural frequencies? 

Figure P4-19 
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Figure P4-20 

4.20 A two-link mechanism has a pin at the center and four equal masses at 
the ends, as shown in Figure P4-20. This problem is similar to one in 
Greenwood (1988) who asks the student to derive the equation of 
motion using Lagrange’s equations. In this problem derive the 
equation of motion using D’Alembert’s method of virtual work. 
(Hint: Show that the projection vector for the two top masses is 
,B = (LcosOe, - 2Lsin8eY)/2. 

[Answer : a( 1 + sin2 8) + O2 sin 8 cos 8 = 2(g/L) sin 81 



RIGID BODY DYNAMICS 

5.1 INTRODUCTION 

The applications of rigid-body dynamics include aircraft, vehicle and satellite 
dynamics, robotic devices, gyroscopic instruments, to name a few. In fact, 
much of our common experience of dynamical phenomena is governed by the 
principles of rigid-body kinematics and dynamics. This includes the motions 
of humans and animals as a connected set of rigid bodies. These principles 
also govern the behavior of sport objects such as footballs, baseballs, and 
bowling balls and pins. In power-producing machines, rigid-body mechanics 
is used to calculate the forces between components in internal combustion 
machines, power transmission devices, and gearing systems. 

In order to appreciate the ubiquitous nature of rigid-body mechanics, the 
student should examine a common consumer item such as a bicycle or even a 
VCR and dissect it into rigid-body and nonrigid components. Then the 
student should identify which of these components requires knowledge of 
rotational motion, force moments, and torques as well as accelerations and 
forces in understanding or designing the system. Two examples are the 
reciprocating engine shown in Figure 5-1 and the Hubble space telescope 
shown in Figure 5-2. 

EXAMPLE 5.1 
In the exploded view of a reciprocating engine (Figure 5-l), combustion 
pressure on the top face of the piston is transmitted through the connect- 
ing rods to produce torque on the crankshaft assembly. The rigid-body 
dynamics of the connecting rod determine the forces on the crank pin. 

168 
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Figure 5-1 
Restoring Motorcycles, Two-Stroke Engines, R. Bacon, Osprey Publ. Ltd., London) 

Exploded view of internal combustion engine crankshaft and pistons. (From 

Also the distribution of mass in the crank shaft determines the dynamic 
forces on the bearings. This mechanism is a three-dimensional version of 
the slider-crank mechanism discussed at the end of Chapter 3, 
Example 3.6. 

Methods of Formulation 

As in the case of dynamics of particles, there are a number of different 
formulations for rigid body problems: 

1. Newton-Euler formulation 
2. D’Alembert’s method and principle of virtual work 
3. Lagrange’s equations 
4. Principle of virtual power; methods of Jourdain and Kane 

For simple planar problems with one degree of freedom, we can also use 
energy and momentum methods as described in elementary texts. 
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Figure 5-2 Sketch of the Hubble space telescope. (From Capara, 1986.) 

Problem Solving in Rigid Body Dynamics 

The basic method to solve problems in rigid-body systems can be broken 
down into five steps: 

Develop a geometric and physical model 
Apply kinematics and constraints 

0 Derive equations of motion using dynamical principles 
0 Obtain analytical or numerical solutions 

Use simulation for design and optimization 

Dynamics texts often place more emphasis on the second and third topics. 
However, in many problems modeling is a key element in obtaining a correct 
dynamic analysis. Modeling not only involves assigning geometric measures 
such as moments of inertia and center of mass, but often requires material 
properties such as friction between bodies or making idealized assumptions 
about forces and moments. Modeling is a skill not obtained with mathema- 
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tical acumen alone, but with a strong grounding in physics and mechanics. It 
is learned through solving many different kinds of problems related to the 
technical world. 

The student is often confused by the many variations of Newton’s laws; 
energy methods, force-acceleration, moment-angular momentum methods, 
D ’Alembert ’s method, Lagrange’s equation, and the principle of virtual 
power. In recent years the choice of method has been guided by the need to 
obtain numerical solutions. Modern codes and computers are sometimes 
configured to treat problems efficiently in a matrix formulation. This has 
tended to favor methods such as D’Alembert’s method or the virtual power 
methods over the more traditional Lagrange’s equations. Also, new compu- 
ter algorithms such as symbolic calculus codes, MACSYMA, M A  THEMA- 
TICA, or MAPLE can now be used to handle pages of algebraic terms that 
sometimes result from the simplest formulation of a rigid body, e.g., the 
rolling of one body on a rigid surface. 

Thus, while the principles of kinematics and dynamics are embodied in 
mathematical rigor, the route from model to solution, from a design goal to a 
controlled multibody machine often has several paths, some more efficient 
than others, but often chosen as a matter of personal style and experience. 

5.2 KINEMATICS OF RIGID BODIES 

In Chapter 3 we reviewed the concept of a rotation-rate vector w and finite- 
rotation transformations. Both of these concepts are extremely important in 
the dynamics of rigid bodies. It is the author’s experience that of the many 
difficulties students have in advanced dynamics, most are traceable to a lack 
of clear understanding of kinematics. 

Instantaneous Motion of a Rigid Body 

The fixed-distance constraint between any two points in a rigid body leads to 
the basic relation between the velocity of two points, A ,  P in the body: Let 
pAp be a fixed length vector from point A to point P and let w be the rotation 
rate vector of the body relative a fixed reference. Then; 

v p  = V A  + w  x P A P  

From this expression, we can derive the relation between the acceleration 
between the two points: 

( 5 4  

ap = a A  + k x p A p  + w x (W x PAP) ( 5 4  

Here we have used the fact that 
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since P A B  is a constant length vector [see (3.3)]. It should also be noted that 
the angular acceleration vector LJ can be nonzero even though scalar 
components of w are constant. 

EXAMPLE 5.2 ANGULAR ACCELERATION 
A classic example of angular acceleration is theprecession of a rigid body 
shown in Figure 5-3. We assume that the body spins about a moving axis 
with constant rate 4 at the same time the spin axis rotates about the 
vertical axis with constant rate 4, i.e., 

w = 4es + 4eZ 

w =(be, 

(5.4) 

Then 

and 
. .  

w = (b$ez x e, 

= t'. 

X 

Figure 5-3 
symmetric axis. 

Sketch of a rigid symmetric body in precession 4 and spin 4 about its 
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This term is often called a gyroscopic effect and refers to the coupling 
between rotations about two different axes. 

For computer-based numerical calculation, it is sometimes more conve- 
nient to work with a matrix representation of the kinematics. In Chapter 3 we 
introduced a rotation-rate matrix 

Using this notation, the formula (5.3) becomes 

In using this notation it is necessary that all three terms in (5.3) be written in 
the same coordinate system. The disadvantage of this notation is that the 
reference basis vectors are implicit. 

Finite Motions of a Rigid Body 

Finite motions require a definition of angular position. Traditional angle 
systems have been defined in the theory of gyroscopes, mechanisms and 
aircraft. One set is called Euler angles, although different books often use 
slightly different notations. 

In Sections 3.6 and 3.7 we introduced 3 x 3 finite-rotation matrices and 
4 x 4 transformation matrices, sometimes called homogeneous transforma- 
tions. If the body is in pure rotation about a point in a fixed reference 
(Figure 5-4), a point in the rigid body denoted by the column position vector 
p before the rotation, is transformed into the column vector r by the formula 

r = A p  (5.8) 

where A is an orthogonal matrix with the property 

ATA = I (5.9) 

If the reference basis vectors are (1, j, k} and the body fixed basis vectors are 
{el, e2, e3}, t h e n p = p l j + P 2 j + P 3 k , a n d  

r = Plel + P2e2 + P3e3 (5.10) 

We can interpret the rotation matrix A as operating on the basis vectors, i.e., 
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Figure 5-4 Finite rotation of a rigid body. 

el  = A[1, 0, 0IT 

el = ~~~i + ~~~j + (5.1 1) 

Thus A ,  are the direction cosines of the basis vector {ei} with respect to the 
fixed reference. The matrix operator A is sometimes called the direction 
cosines matrix. Note that in this interpretation el = [ l ,  0, OIT in the body 
reference and is given by (5-1 1) in the fixed base reference. Another way to 
write this is to think of, p = r( t  = 0), so that (5-8) becomes 

or 

r(t) = A(t)r(O) 

r(0) = ATr(t) (5.12) 
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To find the relation between the angular velocity vector w and A ( t ) ,  we 
differentiate (5.12a) with respect to time. 

r(t)  = A(t)r(O) = AATr(t) (5.13) 

But in Equations (5.6) and (5.7) we saw that we could represent the angular 
velocity as a matrix Lz1. So we are led to the relation 

EXAMPLE 5.3 
Suppose A represents a rotation about the x-axis where 0 = w,t, 

0 0 

(5.15) 

To find the angular velocity matrix, Lz1, we perform a term-by-term 
derivative of A with respect to time, 

0 cose -s in0 

Performing the matrix multiplication AAT, we obtain 

Comparing this matrix with Equation (5.6), we see that 

w = w,i 

(5.16) 

(5.17) 

For the general case of translation and rotation, we learned in Chapter 3 
that we could artificially extend the vector dimension to 4 and incorporate 
a rotation A and a translation R in a single 4 x 4 transformation T. 
Writing r = [ y X ,  rJ,, rZ, 11 , p = [ p l ,  p2, p3, 1IT. The new position r, is 
related to the original position by the equation 

T 

r = T p  (5.18) 
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T =  (5.19) 

Here as in (5.8), A is an orthogonal rotation matrix. At any time, we can 
interpret this transformation as a finite rotation of the body, followed by a 
translation R. We recall, however, that a translation by R, followed by a 
rotation A, is not represented by (5.19) [see (3.56b)l. 

Kinematic Relations: Euler Angles 

The integration of the dynamic equations of motion for a rigid body, 
equations (2.30) and (2.37),  yields the velocity of the center of mass 
v,(t) and the rotation rate vector w(t ) .  The translation position [xc(t), 
y , ( t ) ,  z,(t)]‘ can be found by integrating the following set of first-order 
differential equations 

x c  = ~ c x ( Q  

j c  = v c J 0  

i, = w,, ( t )  (5.20) 

These equations are known as kinematic equations of motion. To find the 
analogous set or relations for the angular orientation of the body, we must 
define a set of three independent angular transformations. There are many 
possibilities. One class of such transformations is called Euler angles, and this 
contains two popular sets, one used to describe gyroscopic problems (called 
Set A in this book), such as spinning satellites, and the other set used to 
describe aircraft, ship, or vehicle dynamics (Set B is sometimes called Bryan 
angles. See e.g., Goldstein, 1980.). 

The Set A Euler angles are defined in Figure 5-5. The base reference has a 
frame labeled { X ,  Y ,  Z } ,  and the final reference is labeled {x, y ,  z } ,  with 
two intermediate references {x’, y ’ ,  z } ,  {x’, y ” ,  z } .  The sequence of rota- 
tions are defined by 

Rotate about Z axis by $( t ) ;  

Rotate about x’-axis by O ( t ) ;  

Rotate about z-axis by +( t ) ;  

Precession 

Nutation 

Spin 

The angular-velocity vector can be written as the sum of three rate vectors: 

(5.21) w = qik + Be,yl + de, 
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\ X '  

X 

Set A 

Figure 5-5 The 2 - x' - z set of Euler angles (Set A) to describe the finite rotation of a 
rigid body. 

The vector w can be written in either the fixed-base coordinates or the body 
based coordinates. For many rigid-body problems, it is more convenient to 
write w in terms of the body basis vectors: 

w = w,e, + wyey + w,e, 

Thus we must write k and e,, in terms of the body reference, e.g., 

ex! = cos $ex - sin $ey (5.22) 

The resulting scalar equations relating the components of w to the general- 
ized velocities $, 8, $, can be written in the form of a matrix equation 

sin B sin $ 

sin B cos $ -sin$ 31 [ :] = [ :[:"] cos $ 

(5.23) [ COSB 0 1  WZ(t) 

This set of kinematic relations has a solution, provided the determinant is 
not zero. We can show, however, that the determinate = - sin0. Thus, we 
cannot obtain a unique solution relating w and {& 6 ,  $} near B = 0, m. 
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Set B Euler angles are designed to avoid the singular nature of Set A near 
0 = 0. In aircraft or vehicle problems, we want to operate near 0 = 0. For 
these problems, the Euler angles are defined by the following transformation 
shown in Figure 5-6. 

Rotate about the Z-axis by $( t ) ;  
Rotate about the y'-axis by e(t); 
Rotate about the x-axis by $( t ) ;  

Heading (yaw) 
Attitude (pitch) 
Bank (roll) 

Goldstein (1980) calls these the Tait-Bryan angles. The kinematic rela- 
tions can be shown to be 

0 - sin 9 [A cos4 cosesino] [ :] = [i] 
0 - sin$ cosQcos$ 

(5.24) 

Two of the Euler angles are defined as transformations relative to the 
intermediate reference systems not with respect to the ( I ,  j, k) system. 
Suppose R,, Rg, R, are the three Euler transformation matrices. If po is a 
vector in the untransformed body, what are the coordinates of po after the 
three Euler transformations? In other words, can we find a transformation A 
such that the new coordinates in ( i ,  j, k) are given by 

p = Apo (5.25) 

It is straight forward to show that the transformation matrix A is given by the 
reverse sequence of rotations, i.e., 

A = R,RgR, (5.26) 

cos+ - sin+ 0 

R, = 1 sinocj co;+ y ]  ; (relative to the { e : }  or {i, j, k} basis) (5 .27)  

C O S ~  0 sine 

Rg = 1 0 1 0 1 ; (relative to the { e ; }  basis) (5.28) 

L-sine o coseJ 

0 

; (relative to the {ei} basis) (5.29) 
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Set B 

L 
Pitch 

J 

Figure 5-6 (a)The 2 - y’ - x set of Euler angles (Set B). (b), (c) Yaw, pitch, and roll axes 
of vehicle dynamics. 
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To see this we define four sets of basis vectors, {ei}, {e;}, de:}, {ee} (-! = 
1, 2, 3) A , .  such A that {ee} are the body fixed basis vectors and {ee} are identical 
with {i, j, k}. 

These vectors are related by the transformations, 

(5.30) e; = R@ee, ee = Roe; ee = R4e$ 

where the components of e; in {ei} are the components of the lth column 
vector of R,. The transformation sequence takes po + p' p" -+ p. Since 
these are rigid-body transformations, the components of p , p", p in the 
local coordinate bases remain fixed, i.e., 

0 I /  

Combining (5.30) and (5.31), we find that the new components of p" in the 
original basis after two transformations R+, Re are given by 

i.e. the components of p'l in the {e!} (or { i, j, k}) basis are 

r 1 
(5.33) 

0 or p" = R, Re p . 
It follows that after the three Euler transformations, the components of 

the original vector po in the basis {e:} or {i, j, k} are given by (5.25), (5.26), 
or 

P = R, Re R, PO 

EXAMPLE 5.4 EULER ANGLES 
Suppose a slender body like a submarine (Figure 5-6c) undergoes a yaw 
rate 4 = A cos Rt, and a pitch rate 8 = 8 sin Rt. If the local x-axis is in the 
long-body direction, describe the motion of the bow of the submarine 
relative to its center of mass. Use the Set B Euler angles. 

To solve this we define a position vector p = Le,, from the mass center 
to the bow of the body. The velocity of this point is given by 

v = w x p = L l p  (5.34) 

where 

w = $I; + ee, + $ex 

In this example 4 = 0. 
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In the body references, the components of w depend not only on qb, 4, 
but also on the angles (+, 8, 4) .  Choosing zero initial values, we can 
integrate the angle rate equations to find 

A 
I) = -sin Rt R 

B 
8 = --COSRt R 

4 = 0  

Using the kinematic equations (5.24), we find that 

(5.35) 

w =  - -7)sin~e,+4ey+(qbcos~)ez 

where we have used 4 = 0, 4 = 0 in (5.24). Then the velocity is given by 

v = -ke, + ~ ( q b  cos e)  ey 

or 

v =  -BLsinRte,+ALcosRtcos (5.36) 

For small values of B/R, the velocity vector performs circular motion and 
the vector p describes an elliptical motion of the end of the body. 

5.3 NEWTON-EULER EQUATIONS OF MOTION 

In the direct application of Newton’s laws to a particle, one works with 
forces, velocity, and rate of change of momentum. In rigid-body dynamics 
one deals with moments of force and the moment of momentum called 
angular momentum, H. Defined as an integral over a continuous mass 
density, H is given by (see Figure 5-7) 

H =  r x v d m  (5.37) s 
where r is a position vector from some reference point to a differential mass 
element dm. 
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X 

Figure 5-7 Sketch of a body with a point of translation rA, and a rotation rate vector w. 

The expression (5.37) implies that H is relative to a specific reference point. 
In practical terms this reference point is usually the center of mass of the 
body, or a fixed point of pure rotation. The definition (Equation (5.37)) is not 
specific to rigid bodies, however. The rigid body is defined by the statement 
(2.46). If r A ( t )  is a point that moves with the body and pis a vector from point 
A to another point in the body, then r, v become 

r = r A + p  

This expression embodies the assumption that the distance between any two 
points in a body, e.g., p, is a constant length vector [see Equation (3.3)] .  The 
angular velocity vector is a property of the entire body and thus can be 
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removed from the integral in (5.37). This leads to the concept of second 
moments of mass or the moment of inertia matrix. [See (2.52), (2.53).] 

Mass Moments for a Rigid Body 

When the velocity is written in terms of the angular velocity w for a rigid body 
(5.38), and substituted into (5.37), three mass integrals emerge in the 
calculation of H ,  the mass, vector moment of mass, and second moment of 
mass matrix: 

H = r A  x v A J ’ d m +  [ J ’ p d m ]  x v A + r A  x i W X  bdmI 
(5.39) 

In the first two integrals we have the total mass and definition of center of 
mass relative to the point A :  

m = J ’ d m  

mPc = J’ P dm (5.40) 

If the point A is the center of mass, then p c  = 0. With these definitions we can 
rewrite the angular momentum about the origin of reference 

H = H A  + rA x mvA + pc x mvA + rA x (w x p c ) m  (5.41) 

where 

H A  = p x (w x p )  dm J’ 
In this last integral, it is practical to bring the angular velocity vector w 
outside the integral. Then we can perform an integral over the mass 
distribution that is independent of the motion. To do this, we use an 
expression for the triple-vector product: 

A x (B x C) = ( A .  C)B - ( A .  B)C 

or 

(5.42) 
1 
2 

p x (w x p )  = p . p -  w - p p  . w 

It is standard practice to write both terms as a dot or scalar product, with w 
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using either a matrix or dyadic notation. When p, w are expressed in an 
orthonormal vector basis, the first term is easily written in matrix notation. 

or using compact notation 

1 2 
p . p -  w = p S . w  2 

and the matrix 6 is the identity matrix 

[S] = 0 1 0 [I 1 :1 
Note that the matrix product 

(5.43) 

The second term of (5.42) is more difficult. Consider the expression 

D = A B . C  

where all vectors are planar and an orthonormal basis set is {el, e2} so that 
A = Alel + A2e2, etc. Then we know that 

D1 = Al(BlC1 + B2C2) 

0 2  = A2(BICl + B2C2) 

Expressed as a matrix operation on C, we can show that 

(5.44) 

In the case of the angular momentum HA, (A = p, B = p, C = w) we have 

(5.45) 

where p = xel + ye2 + ~ e 3  and p2 = x2 + y2 + z2. The matrices in equations 
(5.43) and (5.45) must be integrated over the body. 
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The final expression of HA is given in the form 

(5.46) 

HA = IW 

The matrix I is called the moment of inertia or simply inertia matrix. (Some 
texts use the term “inertia tensor.”) However, the name is a misnomer since 
we have taken the kinematics outside of the integral (5.41). It should properly 
be called the second moment of mass matrix, as is clear from the expressions 
for Zg: 

111 = / ( y 2  + z2 )  dm 

112 = - / x y  dm (5.47) 

The first integral represents an integral of mass elements times the square 
of the perpendicular distance from the el axis through the point A .  The off- 
diagonal terms are called cross products of inertia. 

From the symmetry of Zq, it follows that one can find a set of three 
orthogonal axes for which Zg is diagonal. These axes are called principal axes 
and the diagonal elements { I I ,  Z2, Z3} are called principal inertias. They can 
be shown to be the eigenvalues of the matrix ZV. [See also the discussion 
before (2.54).] 

Properties of the Inertia Matrix 

The following properties of Zg are listed without proof. The reader should 
consult a theoretical text or try the proofs as an exercise. (The proofs are not 
difficult): 

1. Zg is a symmetric matrix. 
2. Zg has positive eigenvalues and three orthogonal eigenvectors. 
3.  The off-diagonal terms are zero in a basis with symmetry planes. 
4. The inertia-matrix calculation is an additive operator. The inertia 

matrix of a body with volumes V1 + V2 is the sum of the inertia 
matrix of V ,  and the inertia matrix of V2. 

5.  The parallel axes theorem. The inertia matrix about a set of axes at rA 
can be written in terms of inertias about a set of parallel axes at the 
center of mass rc using the following formula: 

(5.48) 
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where Ak is the distance between the two parallel axes. Also xc, y ,  are the 
components of the vector rc - rA. 

Practical Methods to Determine the Inertia Matrix 

In practice one rarely uses the expressions, equation (5.47), to calculate Zij or 
HA except in elementary physics and calculus exercises. The engineer usually 
resorts to one of three methods: 

1. Look-up tables (see Appendix A) 
2. Computer calculation; digital or symbolic 
3.  Experiments 

EXAMPLE 5.5 
A small satellite antenna dish is modeled approximately by a thin circular 
disc of radius R and thickness A and is attached to an axis of rotation x1 by 
three thin-walled hollow rods of thickness 6, as shown in Figure 5-8. We 
are asked to find the inertia matrix relative to the reference axes 
(el, e2, e3)  shown in the figure. 

To solve this problem we note that the four subbodies have their 
symmetry axes aligned with the {xl, x 2 ,  x 3 }  axes so that the off-diagonal 
products of inertia will be zero. To solve the problem we make use of the 
formula in Appendix A for the principal inertias for a cylinder and a thin 
cylindrical shell about their centers of mass. We also make use of the 
parallel-axis theorem, relating the inertia about a principal axis through 
the center of mass I, to the inertia about a parallel axis I separated by a 
perpendicular distance D: 

INERTIA MATRIX FOR A SATELLITE ANTENNA 

2 I = I , + m D  (5.49) 

As a simplification, we assume that the following ratios are small; 
A/R, S/d, d / a ,  d / b ,  d/c .  In the following we neglect the squares of 
these ratios compared to unity. With these approximations and assump- 
tions, we can easily show that the three principal inertias are given by: 

mcb2 mDc2 +- 
12 

+mBb2+- 1 3 

[1;2 2] 

mBa2 mDc2 
/ 3 = m A  - + a  +-+- 

3 12 
(5.50) 
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Figure 5-8 Geometric model to calculate the moments of inertia of a deployable satellite 
dish (Example 5.5). 

If all the parts are made of the same material, with density, p, then the 
masses are given by 

mA = . i r ~ 2 ~ p  

mB = .irdSap; mc = ndSbp; mD = d S c p  (5.51) 
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Angular Momentum and Dynamics 

As reviewed in Chapter 2, the laws governing the motion of a rigid body are 
the application of Newton’s law to the motion of the center of mass and the 
application of the law of angular momentum to the rotational motion of the 
body. (In the latter, the moments in M and H can be calculated either about a 
fixed point or about the center of mass.) 

d 
F = -mv, 

dt 
d 
dt M = - H  (5.52) 

In the previous section we learned that the angular momentum H is linearly 
proportional to the angular velocity components [see (5.46) or (2.54)], 
through the principal second moments of mass {Il, 12, 13} and the ortho- 
normal basis of principal axes {el ,  e2, e3}; 

H = I w ,  (5.53) 

or 

This relationship makes the law or angular momentum different from the 
law of linear momentum. In the latter, the force is directly proportional to the 
acceleration vector, v, , but the force moment, M, is not always proportional 
to the angular acceleration vector cj .  Even in the case of motion about a fixed 
axis, there can arise a moment transverse to the axis of rotation if the rotation 
axis is not a principal axis. This difference makes the use of educated intuition 
in problems of angular motion more difficult than the application of New- 
ton’s law to particles where one learns about Coriolis and centripetal 
acceleration and can directly relate the accelerations to associated forces. 
Another difficulty in rigid-body dynamics is the problem of moment-free 
dynamics. When F = 0, the velocity is a constant vector. When the moment is 
zero, e.g., M = 0, the angular momentum vector, H, is constant, but the 
angular-velocity vector w may not be constant. 

EXAMPLE 5.6 
A long, thin solid rod is suspended at one end and attached with a low- 
friction bearing to a massless moving base (Figure 5-9). Starting from 
rest, the rod is to be moved a distance so from point A to point B.  An 
engineer is asked to design a time history u( t )  such that the rod comes to 
rest (i.e., (3 = 8 = 0) at point B without the need of braking or friction. 

To solve this problem we first write the equation of motion for the rod 
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Figure 5-9 Rod pendulum on a freely moving base (Example 5.6). 

using a polar coordinate system attached to the rod. The velocity and 
acceleration of the center of mass of the rod is given by 

. L  
2 

v, = ue, + 8-eo 

a, = ije, + 8-ee - 8 -e, ..L '2 L 
2 2 

(5.55) 
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The Newton-Euler equations of motion become 

ma, = Frer + Fees - mge, 

L 
I,$ = -Fe- 

2 
(5.56) 

This set involves three scalar equations in the three scalar unknowns, e, 
and the two components of the pin force F,, Fe. Writing a, and ey in polar 
coordinates, we can eliminate Fe from the angular momentum equation 
(note ey = - cos Be, + sin Bee, ex = cos Bee + sin Be,): 

.. L 
2 

/,B = - - [mace + mg sin B] 

or 

/,8+-sinB= ---case mL .. 
2 2 

(5.57) 

where lo = I, + mL2/4 is the moment of inertia about the axis of rotation. 
As with many engineering problems, there is more than one solution. 

Here we choose one such that 0 is small and sin 0 N B and COSB N 1. We 
also divide the time interval into two short-time, impulsive intervals near 
A, B ,  and an interval in between where u = vo is constant, so that the 
elapsed time between A, B is to = so/vo. 

During the impulsive interval near A, sine N 0, and we can integrate 
the equation to obtain 

I,e(t = O+) = - 
mL 
1 vo 

Since 8 is small in the steady motion stage, we have 

(5.58) 

(5.59) 

or 

B = Csinwt 

where w 2  = mgL/210, and from the initial impulse, wC = -mLvo/210. 

of motion around to  yields 
Near point B at t = to ,  we require that, B = 0. Integration of the equation 

(5.60) 

where t,' - t i  is very small compared with to. We know that u ( t i )  = vo and 
require that e(t,') = u(t ; )  = 0. Thus, before the impulsive braking of 
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the pivot, we must have 

From the steady-motion solution we have 

If we choose do = 2n7r or 

I 

vo = - ‘0 ,/*; (n  is an integer) 
2n7r 210 

191 

(5.61) 

(5.62) 

(5.63) 

we can bring the oscillation to a halt at 0 = 0 and satisfy (5.61). 
This analysis can also be applied to a construction crane moving a load 

hanging from a cable. The student can verify the solution by moving a 
heavy hanging object from a string with his or her hand. 

Euler’s Equations for Rigid-body Dynamics 

There are three levels of expressing the law of angular momentum developed 
in Chapter 2. The first level is simply a statement that the rate of change of 
angular momentum is equal to the applied moment vector: 

M = H  (5.64) 

In this section we assume that either the body is in pure rotation about a fixed 
point 0, and M, H are calculated with respect to this point, or in the case of 
general motion, M, H involve moments about the center of mass. 

The next level of writing the law of angular momentum is to express the 
equations of motion in terms of the angular velocity as in (5.46) 

H = l w  (5.65) 

The third level is to add the kinematic equations relating w to the angular 
variables e.g., (5.23) or (5.24) or to incorporate the angles or generalized 
position variables directly into H. 

Euler’s equations express the law (5.64) at the second level, i.e., in terms of 
w. To make this explicit we write win a coordinate system with principal axes 

w = wlel + w2e2 + w3e3 



192 RIGID BODY DYNAMICS 

There are two forms of these equations. In the first, {el, e2, e3} rotate with 
the body so that 

el = w x e l ,  etc. 

When the principal axes are fixed to the body, the calculation of the inertia 
matrix I is independent of time since {el, e2, e3} are fixed to the body. 
Therefore, the change in H comes about due to a change in w and more 
specifically, due to changes in both the components {wl ( t )  , w2 ( t ) ,  w3 ( t ) } ,  as 
well as the change in the directions of {ei}. Carrying out the details we write 

H = Zlhlel + Z l w l e l  + etc. 

or 

H = Ilcjlel + Z ~ W ~ W  x el,etc. (5.66) 

Collecting all the terms for each direction, we obtain Euler’s equations of 
motion 

This is a set of three coupled, first-order, nonlinear differential equations. To 
solve for wi( t ) ,  we require knowledge of the moments that may depend 
explicitly on time, on the angular velocity, and even on the angular variables. 

In the second case or modified Euler’s equations, one of the axes is an axis 
symmetry, say e3, with Zl = Z 2 .  The angular velocity is written in the form 

w = 0 + woe3 

where 0 is the angular velocity of the basis vectors {el ,  e2, e3}, i.e., 
el = 0 x el ,  etc. 

Thus the body spins about the e3 axis. When Go = 0, the modified Euler 
equations become 

MI = I l h l  + ( 1 3  - 1 1 ) 0 2 0 3  4 13w002 

~2 = 11h2 + (11 - ~ 3 ) 0 3 0 1  - 1 3 ~ 0 0 1  

M3 = 1 3 0 3  (5.68) 

There are several important cases where Euler’s equations can be solved 
explicitly. These are discussed below. 



5.3 NEWTON-EULER EQUATIONS OF MOTION 193 

EXAMPLE 5.7 
Consider the example of a plate in rotation about a fixed axis, as shown in 
Figure 5-10. We write the angular velocity in the form 

MOTION ABOUT A FIXED AXIS 

w = Re, = wlel + w2e2 + w3e3 

or 

wl = Re, .e l  = R d,, etc. 

where { d i }  are direction cosines and 

d: + d ;  + d ;  = 1 

We also define 

M, = M . e, 

In this case, we can easily show that the first two Euler’s equations (5.67) 
reduce to a scalar equation 

Ma = I,R (5.69) 

/ 

Figure 5-10 
(Example 5.7). 

Rotation of a rigid, thin, rectangular plate about a nonprincipal axis 
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where since d3 = 0 

RIGID BODY DYNAMICS 

and dl = cosp, d2 = sinp. In this example w1 = Rcosp, w2 = Rsin p, 
w3 = 0. Using the third equation in Euler's equations (5.67), we obtain 

M3 = ( / 2  - /,)R2cospsin/3 (5.70) 

This moment must be created by bearing forces normal to the plate 
surface 

2 112 F = M3/2(a2 + b ) 

If R is related to an angular variable 8, 

then a class of problems where the applied moment is linearly propor- 
tional to 8, w can be solved using standard techniques of linear ordinary 
differential equations, i.e., if Ma is the sum of applied and reaction torques, 
then (5.69) becomes 

Ma = Mo(t) - yR - KO 

Iae + ye + K 8  = Mo(t) (5.71) 

The third term on the left-hand side of (5.71) is a torsional stiffness. For 
most motor-generator, pump, and engine applications, K = 0, and (5.71) 
takes the simple form of a first-order differential equation: 

+ yR = Mo(t) (5.72) 

or 

The first term represents the damped decay of the angular velocity, and 
the second term represents a particular solution depending on the time 
history of Mo(t) .  
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Gyroscopic Dynamics 

The most tangible effect of gyroscopic motion occurs when the axis of 
rotation of a body is itself made to rotate about a transverse axis, thereby 
generating a moment, couple, or torque about an axis orthogonal to the two 
rotation axes. The reader can experience this troika or three-axis effect by 

Figure 5-11 (a) Gyro experiment: Holding a spinning bicycle wheel while sitting on a 
swivel chair, try to turn the wheel about an axis perpendicular to the spin axis. (b)  Sketch 
of the angular-momentum components of the wheel. 
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demounting a front wheel from a mountain bike, spinning the wheel while 
holding the axle, and sitting in a rotary office chair. The effect, illustrated in 
Figure 5-lla, will be the feeling of a torque about the axis parallel to the 
arms. 

This effect can be best understood by using the law of angular momentum 
(Chapter 1) and the rule for calculating the derivative of a rotating vector of 
constant length. Assume that a body spins with rate q5 about one of ifs 
principal axes, say e l ,  which is made to rotate about the e3 axis with rate $I, 
shown in Figure 5-1 lb. The angular momentum is given by 

with 4, 4 held constant. The rate of change of H becomes 

H = r14il = 1~44e3 x el (5.74) 

Thus the applied moment requiring this to happen is given by a vector 
orthogonal to the {el, e3}  plane; 

M = Ilqi4ez (5.75) 

From the figure, it is clear that as the tip of the angular momentum vector 
rotates with 4 in a circle, the change in H must occur in the direction of the 
circle or perpendicular to the axes of q!~ and 4. Another way to express this is 
to write 

M = $ X H  (5.76) 

Steady Precession of a Gyro Top 

The gyro effect can also be seen in the steady precession of a spinning 
symmetric body about a point (Figure 5-12). Here we take moments about 
the fixed point, 0. Choosing e3 for the symmetry axis and assuming that 
Il = I., the angular-momentum vector and the rotation vector can be 
expressed as 

w = 4e3 + 4cos8e3 + $sineel (5.77) 

where the precession 4 occurs about the vertical or k axis. 
Thus w1 = 4sin 8, w2 = 0 ,  w3 = 4 + +cos 8. For steady motion we 

assume that 8 = 0, and Ljl = wz = Lj3 = 0. (Note that the vector rate w is 
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Figure 5-12 Sketch of a spinning, precessing, symmetric top under a gravitational-force 
moment. 

not zero.) As in the previous example, the change in Ho is given by 

HO = 4k x Ho = (Zlwl cos 8 - Z3w3 sin Q)4e2 (5.78) 

This change in Ho must equal the applied-force moment, Mo. In this problem 
the gravitrational force mg produces a moment about the point 0 given by 

Mo = -mgLe3 x k = -mgLsin8e2 (5.79) 

Thus, for steady rotation about the point 0 to occur, we must satisfy one of 
two conditions 

sin Q = 0 

or 

mgL = Z3y@ + (Z3 - Z1)42 cos 8 (5.80) 
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We also note that since the gravity force acts through the e3 axis, the H3 
component is conserved, i.e., 

. .  
H3 = Z3w3 = Z3(+ + $cos 0) = constant (5.81) 

Thus if we choose the angle 0, Equations (5.80) and (5.81) determine the 
values of 4 and 4 for steady rotation under the gravity moment. 

Special Case 0 = 7r/2 For this case we see that 4 = constant, and 

mgL = 1 3 4 4 0  

Thus the precession speed 4 is determined by 

(5.82) 

Note also that since Z3 is proportional to the mass times the radius of 
gyration squared, i.e., I3 = my$, 4 is independent of the mass 

(5.83) 

Increasing the spin 4o decreases the precession and increasing the moment 
arm increases +. For a more advanced analysis of the spinning top and 
related gyroscopic dynamics, look at Meirovitch (1970) or Greenwood 
(1988). 

EXAMPLE 5.8 ENERGY-STORAGE FLYWHEEL ON A MAGNEflC 
THRUST BEARING 
Conventional energy-storage flywheels suffer energy losses from wind- 
age and mechanical bearings. In recent designs the rotor is operated in a 
vacuum and levitated on either active electromagnetic or passive super- 
conducting magnetic bearings. One such design is shown in Figure 5-13 
using cryogenically cooled yttrium-barium-copper-oxide (YBCO) super- 
conducting material as a thrust bearing (see Moon, 1994). The magnetic- 
field source is a rare-earth permanent magnet (see Chapter 8 for a 
discussion of magnetic forces). In this example we wish to determine 
the natural frequencies of the rotor as afunction of the rotation speed. For 
this problem it is easier to use the so-called modified Euler’s equations 
(5.68). This formulation is useful for axially symmetric bodies for which the 
inertia matrix does not change with motion around the spin axes. The 
rotation of the symmetric body is separated into a spin component and a 
gimbal component n, i.e., 

w = w,e3 + f-2 (5.84) 

The gimbal frame unit vectors are denoted by ( e x ,  ey, e, = e3). The 
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Figure 5-13 
conductor (YBCO) (Example 5.8). 

Spinning, magnetially levitated flywheel suspended above a ceramic super- 

angular momentum of the flywheel is given by 

(5.85) 

The resulting modified Euler’s equations (5.68) become 

To investigate the small vibrations of the spinning flywheel, we assume 
thatw, is large compared to the components of the gimbal angular velocity 
R. Keeping only linear terms in R, the previous equations become 

(5.87) 

We next choose a set of kinematic relations relating 0 to a set of Euler 
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angles. To first order we have 

As a further simplification we assume that the angular motion is 
decoupled from the center of mass motion. This is tantamount to assum- 
ing restoring magnetic torques in the form 

M, = - K $ ,  My = - - ~ 0  (5.88) 

These assumptions result in the following coupled second-order differ- 
ential equations 

I1$ + /,w,e = - K $  

110 - i3w,$ = - K O  (5.89) 

The second terms on the left-hand side are called gyroscopic coupling. 
When w, = 0, there is a double natural frequency for pitch and roll; 
wo = (tc//1).1/2 Gyroscopic coupling induces coupled pitch and roll 90" 
out of phase, i.e., 

$=Acoswt,  0=Bsinwt  

The characteristic equation for the natural frequencies is given by 

(5.90) 

The two branches as a function of spin rate w, are shown in Figure 5-14. If 
there is a slight imbalance in the flywheel rotor, there will be a driving 
frequency w shown as the 45" line in Figure 5-14. The splitting of the 
frequencies means that there can be two resonant conditions where the 
imbalance frequency can excite large oscillations in the flywheel. This 
problem is similar to a spinning rotor on air bearings or other soft 
suspension. 

Moment-free Dynamics 

Spinning satellites, gymnasts, the free flight of sports balls, such as footballs, 
are all governed to some extent by moment-free dynamics, neglecting 
aerodynamic forces, of course. It was noted that Euler's equations of 
motion (5.67) for the angular motion of a rigid body are incomplete. We 
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Figure 5-14 The dependence of the natural frequencies of a spinning levitated flywheel as 
a function of the spin rate ws (Example 5.8). 

must define the applied moments as well as append kinematic relations 
between the angular variables and the components of angular velocity. 
However, in the moment-free case an important problem can be addressed 
with Euler's equations, namely, the stability of rotation of a body about one 
of its principal axes. By stability we ask the question: If the initial rotation 
vector is ever so close to a principal axis, will it remain close, or will the body 
begin to see increasing rotation about one of the other axes? 

A complete theoretical analysis of moment-free motion can be found in 
classic texts such as Goldstein. Here we present a more limited analysis and 
give the important results of the theory. 

The main results of this theory can be observed easily with an experiment. 
The reader should take a book, like this one, and secure the covers with a 
strong rubber band, as illustrated in Figure 5-15. The experimenter throws 
the book up into the air in such a way that the book initially rotates about one 
of the three axes. What are the observations? 

1. Rotary motion about either of two principal axes persists 
2. Rotation about one of the three principal axes begins to wobble and 

complex motions of the book are observed. 
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Stable axis 
of spin 
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Stable axis 

Figure 5-15 
(Use a rubber band to keep the book covers closed while spinning.) 

Experiment on the spin stability of moment-free rotation of a rigid body. 

The question then arises: What distinguishes the unstable principal axis 

We begin by writing Euler's equations (5.68) under the assumption that 
from the two stable axes? 

the net force moment about the center of mass is zero: 

Zl&, + ( 1 3  - 1*)w3w2 = 0 

1 2 4  + ( I ,  - 13)w3w* = 0 

13&3 + (12 - I1)WIWZ = 0 (5.91) 

Now assume that there is an initial motion about one of the axes, wo, and that 
a small perturbation vector [q,( t) ,  ~ ( t ) ,  q3(r)]' is added to the angular 
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velocity vector 

These expressions are put into Euler’s equations (5.91) and all nonlinear 
terms of the type, viqj are dropped. 

(5.93) 

This method of analysis is calledperturbation theory. The theoretical basis for 
dropping the nonlinear terms can be found in books by Nayfeh and Mook 
(1979) or Guckenheimer and Holmes (1983). 

A solution to the second and third first-order linear differential equations 
can be found by writing 

[;:I = 

It is easy to see that for a solution to exist 

x2 = (11 - I ~ ) ( I ~  - I ~ ) ~ ~ / I ~ I ~  

(5.94) 

(5.95) 

Thus there are two solutions of the form (5.94) corresponding to the two 
roots of (5.95). If X > 0, one solution is unstable since perturbations about 
the off-axis spin will grow and the body will experience severe wobbling 
motions. However, if X2 < 0, oscillating solutions will exist and the spin will 
remain close to the original axis. For stable spin we require 

or 

One concludes that the el or spin axis is stable if I l  is either the maximum or 
minimum principal inertia. On the other hand, the spin is unstable if the el 
axis is the intermediate principal inertia axis. This can be confirmed with the 
rotating book experiment of Figure 5-1 5. 
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The general theory of moment-free dynamics of a rigid body can be 
understood by reference to the Poinsott ellipsoid shown in Figure 5-16 (see 
Goldstein, 1980). Since M = 0, H = 0, the angular-momentum vector H is 
of constant length and fixed in space. What is counter-intuitive, is that the 
angular velocity vector w is not fixed in general, but can vary in time. In 
addition to the conservation of angular momentum, we also have conserva- 
tion of kinetic energy (see Section 5.4 below), i.e., 

2 (5.96) -w . H = - ( I l w l  + 12w2 + 13w3) = constant 
2 2 
1 1 2  2 

This fact allows us to construct an ellipsoid in the (q, w2, w3 )  space. The 
possible paths of motion of w are then drawn on this ellipsoid. 

t"' 

Figure 5-16 Phase space orbits of the angular velocity vector w of moment-free rotation 
of a rigid body. Initial motions near the small ellipses about axes 1 and 3 are stable. Initial 
motions near the saddle point on axis 2 are unstable. 
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In this figure, e l ,  e3 represent maximum and minimum principal axes, 
while e2 is an intermediate principal axis. It can be seen that for initial 
motions near el or e3 the angular velocity vector will move in a small orbit or 
precession about the principal axis. But at the intermediate inertia axis, a 
saddle point exists. Motions near the saddle are unstable (see, e.g., 
Chapter 9), i.e., the angular-velocity components about el and e3 will 
become very large (not infinite) and the body will experience large wobble, 
precession, and large nutation. 

5.4 LAGRANGE’S EQUATIONS FOR A RIGID BODY 

The general method of Lagrange’s equations for a system of particles was 
described in Chapter 4. To solve problems using Lagrange’s equations, one 
must identify the generalized position variables q k (  t )  and the generalized 
velocities & ( I ) .  Then the kinetic energy, T ,  must be determined. Next the 
forces that do reversible work are expressed in terms of a potential energy 
function, V ,  or generalized forces, Qk; then the equivalent form of Newton’s 
laws of motion are obtained by Lagrange’s equations (Equation (4.105)), one 
for each of the generalized variables q k :  

(5.97) 

Extension of Lagrange’s equations to rigid bodies is straightforward, as 
shown below. 

Kinetic Energy 

There are two steps to formulate the kinetic energy function for use in 
Lagrange’s equations of motion. First, the kinetic energy is expressed in 
terms of the angular velocity vector, and then the angular velocity must be 
expressed in terms of the generalized velocities. In the general case, the center 
of mass is in motion and the instantaneous axis of rotation itself is in 
rotation. This is the case for an aircraft, ship, or ground vehicles (Figure 5- 
17) In such problems it is usually convenient to choose a set of axes that is 
centered at the center of mass, and whose axes are aligned with the principal 
axes. For these conditions we will show below that the kinetic energy 
associated with the translation of the center of mass can be decoupled 
from the kinetic energy of rotation about the center of mass: 

1 1 T = -mv, . v, -t -H . w 
2 2 

(5.98) 

where the angular momentum H is calculated about the center of mass. Using 
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Figure 5-17 Vehicle with both translation and rotational kinetic energy 

(5.54), the second term can be written in an explicit form 

where {Il, Z2, Z3} are the principal inertias and 

In matrix notation the expression (5.99), is written in the form 

1 
TR = -j [0] T[Z] [0] (5.100) 

The next step is to write the vector w, or the column matrix [w] in terms of 
generalized velocities. When a body is in simple rotation about a fixed axis eo 
and w = Reo, then the variable R(t) can be directly related to the time 
derivative of an angular variable, say $( t ) :  
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Therefore, { 4, a}  represent a generalized position-velocity pair. In general, 
the angular velocity components ( w l ,  w2,  w 3 )  are not related simply to the 
time derivative of three angles. 

In Section 5.2 we explained the use of Euler angles to orient a body in 
space. We also derived the kinematic relations (5.23) or (5.24) between the 
angular velocity and the time derivative of the angular variables: 

Thus to complete the expression for the kinetic energy, this relation is 
substituted into (5.100) to obtain an explicit formula for 
TR(4,  8, $, 4, 6, 4). Examples 5.9 and 5.10 below illustrate the method. 

The expression for the kinetic energy for a rigid body (5.98), can be derived 
from the integral 

T = -  v ’ v d m  
2 ‘S (5.101) 

where 

v = v, + w x p 

Here v, is the velocity of the center of mass and pis a vector from the center of 
mass to the differential mass dm. The vectors vc, w ,  can be brought outside the 
integral. Also the first moment of mass is zero, i.e., 

p d m = O  J’ 
This leads to the expression 

2 ‘S 1 
2 

T = -mvc . v, + - (w x p)  (w x p) dm 

or 

p x ( w x p ) d m  (5.102) 

The second term uses the following property of a scalar triple product, 

(A x B) . C  = A .  (B x C) 
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The integral in (5.102) can be seen to be the definition of the angular 
momentum of a rigid body about the center of mass H,, as in (5.41). The 
expression for T ,  (5.102), is identical to (5.98). 

Generalized Forces for Rigid Bodies 

In the application of Lagrange’s equations to rigid bodies the active forces 
that do work must be incorporated into generalized forces { Q k }  or a 
potential energy function V(qk) .  The idea of generalized forces originated 
with the foundation of Lagrange’s equations, namely D’ Alembert’s principle 
of virtual work (Chapter 4). Here the virtual work of all the active forces is 
equal to the work of the generalized forces, i.e., 

CFY . Sri = CQiSqi (5.103) 

Consider the example shown in Figure 5-18 of the planar motion of an 
aircraft with integrated lift and control forces F1, FZ. Then according to the 
ideas of virtual work we imagine a small change in the position and 

Figure 5-18 
respective moment arm vectors p l ,  p2 about the center of mass. 

Sketch of a rigid vehicle with aerodynamic force resultants F 1 ,  F2 and their 
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orientation of the body so that 

r{ = rl + Srl, rk = r2 + 6r2 

For our generalized position variables, we choose 

91 = X J  q 2  = Y ,  93 = Q 

where 

ro = xel + ye2 

rl = ro + P1, r2 = ro + P2 (5.104) 

Under the variation {Sx, Sy, be},  ro --+ ro + [Sx, Sy, 0IT. But the lengths 
of pl, p2 do not change since this is a rigid body. To find the change in these 
vectors we can use 

6ri = Sro + SQe3 x pi (5.105) 

Sro = Sxel + Syez (5.106) 

Using the triple scalar product theorem, 

A . (B x C) = B . (C x A) 

the expression for the virtual work (5.103) becomes 

SW = F1 . Srl + F2 . Sr2 

= (F1 + F2) Sro + ( p1 x F1 + p2 x F2) . e3SQ 

= F,SX + F,Sy + M360 (5.107) 

The three generalized forces then become by inspection 

The last term is the total moment of the forces about the point 0 projected 
onto the axis e3. 

EXAMPLE 5.9 
Consider the circular cam mechanism shown in Figure 5-19. The off-axis 
pin is constrained to slide in a frictionless horizontal slot, while the 
circular edge is constrained by the plane at x = 0. An elastic spring is 
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Figure 5-19 Planar motion of a cylinder constrained by a frictionless pin in a horizontal 
slot and by a frictionless fixed wall (Example 5.9). 

used to pull the pin toward the contact plane. When the cam rotates we 
assume that a constant dynamic friction force, f,, exists between the wall 
and the cam. In this example, the rotational and translational motion are 
coupled. The constraint equation can be written as 

or 

rc = xc i  + y,j = ~i + a cos ej 

X c  =o,  , yc = -a0sin0 

In order to apply Lagrange’s equation, we need to find the kinetic energy 
function T(0,  4). For this planar problem T takes the form 

1 2 1  2 T = - m v ,  +-/cu 
2 2 
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or 

T =-me2a2($+sin2Q) 1 
2 

(5.109) 

where I, = mR2/2. We assume that the spring force is proportional to the x 
position of the pin or that the potential energy is given by 

v = -kx2  1 = - k ( ~  1 + a sine) 2 
2 2 

(5.1 10) 

To calculate the generalized force due to friction between the wall and the 
cam, we write the energy dissipation rate and integrate to get the virtual 
work. 

or 

sw = - fo(R + a sin 0) sign(@ SO 

and 

Q = -fo(R + a sin 6 )  sign(0) 

Lagrange’s equation, with Q as a generalized coordinate is then 

case= --(R+asinQ) f0 sign(Q) (5.111) 
ma2 

This is a nonlinear, second-order differential equation. When fo = 0, and 
both band eare zero, there are two two equilibrium positions for the cam, 
0 = 7r/2 and -7r/2. 

By intuition, the position 6’ = 7r/2 is unstable. Near the stable position 
0 = -7r/2, we can write 19 = -7r/2 + 4, where 4 is a small angle. The 
linearized equation near 6 = -7r/2 becomes (for zero friction) 

(5.112) 
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which is the equation of a harmonic oscillator with a natural frequency 
f(Hz) given by 

2 n f =  ( k ) ;  - (" -- ,);( 1 +T R2)-' 
m a  2a 

(5.113) 

EXAMPLE 5.10 ROTATION INDUCED STIFFNESS 
Consider the rotating cylinder with a moveable flap shown in Figure 5-20. 
Assume that the motion of the flap does not significantly change the 

Figure 5-20 
induces a restoring moment or stiffness about the 0 axis. 

Rotating cylinder with a hinged plate flap (Example 5.10). The rotation 0 
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rotation of the large rotor, R. We also neglect gravity, so there are no 
forces that do work in the system. With these assumptions the problem 
has one degree of freedom, which is the angular motion of the hinged flap. 
In order to derive Lagrange’s equation, we need to calculate the kinetic 
energy as a function of the flap angle B( t ) .  To this end we assign a local 
coordinate system {ex, e,, e,} at the center of mass and in the principal 
moments of inertia directions of the flap. Then we project the angular 
velocity and center-of-mass velocity onto these coordinates. 

w = R(cos Be, + sin Be,) - Be, 

v, = (R  + b cos B)Re, + bee, (5.114) 

The kinetic energy function, (5.98), is given by 

1 2 1  2 2 = -mvc + - + I ~ , W ,  + I,,u~) 2 2 
(5.115) 

From a table of moments of inertia, we can find 

(5.116) 2 mb2 I - - (4b2+C) m 
12 I,, = - cz - 

mc2 
Icx = 12’ 3 ’  

Under all the assumptions the kinetic energy function can be found to be 

1 
T(6, 8) = -m((R 2 + bcosB)2R2 + b2e2) 

) (5.117) 

With no active forces in the problem, Lagrange’s equation of motion is 

Carrying out the derivatives we obtain 

4 b  
(5.118) 

For small motions of the flap, cos8 M 1, sin B z 8, and the equation of 
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motion resembles a harmonic oscillator with natural frequency f (Hz) 

(5.1 19) 

Thus we see that a large rotation can induce an effective kinematic 
stiffness. This occurs in helicopters and turbine components. 

5.5 PRINCIPLE OF VIRTUAL POWER FOR A RIGID BODY 

The concept of virtual power applied to a system of particles was discussed in 
Section 4.4. The extension of this principle to a rigid body can be found in an 
early paper by Kane (1961) and is derived in several textbooks such as Kane 
and Levenson (1985) and Pfeiffer (1989). We begin with a statement of the 
principle [see (4.146)] for N particles with M degrees of freedom and a 
corresponding set of M generalized position variables { q k (  t ) }  (Figure 5-21) 

mivi - Fq - xf.. - 0,  k = l ,  2 , . . . ,  M (5.120) 
i 

We recall that {F?} are the forces that do work and that constraint forces that 
do not produce power have been eliminated. The internal forces between 
particles of mass mi and mj are {fU}. 

The projection vectors &/a& are obtained from the kinematic constraint 
relations. 

For a rigid body the distances between any two particles is constant in time 
and the maximum number of degrees of freedom is six, i.e., M 5 6. Also for a 
rigid body it can be shown as an exercise that the internal forces produce no 
net power, i.e., 

(5.121) 
a Vi XXfq-7&=0 

i j  

To extend the principle of virtual power to a rigid body we must express the 
velocities of all the particles in terms of a velocity of one particle, say vo, and 
the rotation velocity, w, i.e., 

vi = vo + w x pi (5.122) 

where pi is a position vector from point 0 to the mass mi. 

first consider the restricted problem of motion about a fixed point. 
In order to see the basic form that this principle takes for a rigid body, we 
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Figure 5-21 
applied external forces Fq. 

A collection of rigidly constrained particles showing internal forces fii, and 

Special Case: Motion About a Fixed Point In this case we set vo = 0. Thus 
there are at most three degrees of freedom, A4 I: 3 .  The generalized velocity 
variables { q j }  will, in general, represent the time rate of change of three 
angular positions of the body. We note that the local position vectors pi are 
not functions of the three generalized velocities {qi}. Therefore, the kine- 
matic constraints and the Jacobians become, 

vi = w x pj 

- - - x p i  - a v j  aw 

a q k  a q k  
(5.123) 
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With all the assumptions thus far, (5.120) now takes the form 

aw 
(5.124) 

Since w and its derivative are independent of the mass points, we manipulate 
this expression so that w is outside the summation. To do this we use a vector 
identity for a triple-scalar product; A + (B x C) = B . (C x A). Consider the 
force terms first 

C(miVi - F:) * -  x pi = 0, k = 1;. . M 
%k 

(5.125) 

The term in brackets is simply the total moment of all the active forces about 
the point 0. The inertia terms are a little bit more complicated, but follow in 
the same fashion as the force summation: 

dW Cmiiii. (& x pi )  = aqk. cpi  x miii 

(5.126) 

The second equality follows, since 

(5.127) 
d 
dt 

p i x m i i i i = - ( p i  x m i v i ) - p i  x m i v i  

and pi x vi = 0. Also the angular momentum about the point 0 is easily 
recognized. 

Thus, in its simplest form, the principle of virtualpower for a rigid body takes 
the form 

(5.129) 

Both H and Ma are calculated about the fixed point of rotation. The equation 
looks like the projection of Euler's equation onto the direction dw/aqk. 
However, the Ma only includes the moment of the forces that do work. The 
moments due to zero-work constraint forces do not appear. 
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EXAMPLE 5.11 GYROPENDULUM 
Consider the disc of radius R and mass m rolling on an inclined plane 
shown in Figure 5-22. The effective active gravity force in the plane is 
mg sin 4. Assume that the disc rolls without slipping and find the natural 
frequency for small motions of the angle 8. 

Figure 5-22 
(Example 5.11). 

Gyro pendulum. A thin disc of radius R rotating on an inclined surface 
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The number of degrees of freedom is one and we choose e as the 
generalized velocity. The total angular velocity of the disc is given by 

w = Oe, - $e, 

The rolling constraint is given by calculating the velocity of the center of 
the disc from two references 

eL = R q  (5.130) 

Thus 

dW L ae = ez - - e r  R 

Since the disc is in pure rotation about the hinge point, we calculate the 
angular momentum about this point. 

H = I,Be, - l,,$er 

. .  
H = I,Be, - lo$e, - lo$@ee (5.131) 

The moment of the gravity force about the hinge point is given by 

M = -mgL sin $sin Be, 

The generalized force is given by, 

(5.132) 
dW 
dB 

M . -T = -mgL sin $ sin 0 

Also 

dW L " 

H . - =  1,e-t lo,$ ae (5.1 33) 

The disc is in pure rotation about the point 0 so that H, M, I,, lo are all 
calculated with respect to this point. Since the body is in pure rotation, we 
can use the principle of virtual power in the form of (5.129): 

(5.134) 
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The effective inertia term is simplified using the parallel axis theorem: 

3 1 
2 4 

= -mL2 +-mR2 

For small angles, 8 << 1, the equation takes the form 

8 f C r 2 e = o  

Thus an oscillating solution has a frequency given by 

2gLsinq5 

3L2 + R2/2 
a =  (5.1 35) 

Virtual Power: General Motion of a Rigid Body 

In the general case of both translation and rotation we assume that the point 
0 in (5.122) is the center of mass of the rigid body. This will allow us to use the 
identity 

Cmipi = 0 (5.136) 

when { p i }  are measured from the center of mass. We also note that the 
number of degrees of freedom may be as h g h  as six. The Jacobian matrix for 
each mass mi for the general case takes the form 

(5.137) 

We will also need an expression for the acceleration of each particle 

where the last term on the right-hand side expresses the fact that each pi is a 
constant-length vector and can only change by rotation (see Chapter 3). 
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When these expressions are put into (5.120), there will be six groups of terms 

dW Cmiv, . - + Cmiv,. - X Pi 
v, 

%k a q k  

a v, - Cmi[cj x pi + w x (w x pi)]  
a q k  

dW Emi[& x pi + w x (w x pi) ]  . - x pi = 0 
&?k 

(5.139) 

Because of the assumption on the center of mass (5.136), the second and fifth 
summations are zero. Using the definition of total mass, force, and moment 
about the center of mass, the remaining terms can be rewritten employing the 
scalar triple product theorem: 

v, (mv, - F a ) .  -+ 
%k 

aw 
(Cmip, x (LJ x pi + w x (w x pi ) )  - M:) . - = 0 (5.140) 

d q k  

where 

m = Emi 

M: = Cpj x Fq 

Fa = CFP 

The last term can be shown to be related to the change in angular-momentum 
vector calculations with reference to the center of mass. Thus, we define 

H, = Cpi x mivi = Cmipi x (w X pi) (5.141) 

where we have used 

Cpi x miv, = 0 

Then it is easy to see that the second bracketed term in (5.140) is H,: 

H, = Cmipi  x [LJ x pi + w x (w x pi ) ]  (5.142) 
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Thus the final form of the principle of virtual power for general motion of a 
rigid body is 

(5.143) 

or 

(mv, -Fa)  ‘ P k  + (8, - Mz) ‘ y k  = 0 

where P k ,  Yk are projection vectors, defined by, 

Comparison of Virtual Power and Newton-Euler Methods 

It is easy to write down general equations like Lagrange’s equations (5.97) or 
the principle of virtual power (5.143). Since the “devil is in the details,” we 
examine a popular example from many textbooks; the rolling of a disc on a 
flat surface as shown in Figure 5-23 (see, e.g., Greenwood, 1988, pp. 459-462, 
pp. 434-437). We derive equations of motion suitable for numerical simula- 
tion, using both the Newton-Euler method and principle of virtual power 
(Jourdain-Kane Method). 

This rolling problem is an example of a nonholonomic constraint (see 
Section 4.5). Such constraints involve a relation between the generalized 
velocities of the form (4.167) 

Caijqj(‘) + b$) = 0 

In Section 5.6 we discuss methods to solve such problems. One common 
method is to choose a set of generalized coordinates and velocities that 
automatically satisfy the rolling constraint. This method is used in this 
example. 

In both the Newton-Euler and virtual power methods we need to specify 
the kinematics and determine the acceleration of the center of mass and the 
time rate of change of angular momentum about the center of mass. 

We first assign reference axes in which the x-axis is normal to the disc, the 
y-axis is parallel to the plane, and the z-axis lies in the plane of the disc and 
goes through the contact point, 0. 

The disc is constrained to the plane by means of a planar vector ro to the 
contact point 0, and three angular coordinates (0, 4, $} to specify the 
orientation. As shown in Figure 5-23, $ specifies the precession angle in the 
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Figure 5-23 Sketch of the geometry of a rolling disc on a horizontal surface. 
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plane, Q specifies the tilt or nutation of the disc, and 4 is similar to a spin angle 
in gyro dynamics [see also Euler angles Set A, (5.23)]. 

The rolling constraint couples the angular rates and the velocity of the 
center of mass through the relation 

v c = w x p  

where 

p = -re, 

and 

w = (4  - 4sinQ)e, + eey + dcosQe, (5.144) 

The acceleration of the center of mass is then 

a, = v ,  = w  x p + w  x p (5.145) 

The only active force in the problem is the gravitational force that we assume 
is concentrated at the origin: 

Fa=mg(-sin6e,+cos6e,) =mgn (5.146) 

where n is normal to the plane. The active moment is zero since Fa acts 
through the center of mass. The angular momentum vector is given by 

H, = I, w, e, + It wy e ,  + It wz e, (5.147) 

The calculation of H, requires not only G,, etc., but also e,, etc. Since these 
are constant length vectors, we must use 

e, = w1 x ex, etc. 

where w1 is the rotation vector of the reference system, which differs from w 
by the spin 4, 

w1 = (-?)sin6)e,+Bey+4cos6eZ (5.148) 

From both a, and H, we can obtain components of each in the coordinate 
system {ex, ey, ez}, i.e., 

a, = a, e, + ay ey + a, e, (5.149) 

Note that a, is the absolute acceleration, but we have written its components 
in a moving reference. 
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Newton-Euler Method 

Here we must write the total force in the body, which includes both gravity 
and the reaction force: 

F = R + mg(cos Be, - sin Oe,) (5.150) 

The force moment about the center of mass is then 

M = r e , x R  (5.151) 

The equations of motion then take the form 

ma, = R, - mgsin0 

ma, = R, 

ma,= R,+mgcos8 

H,  = -rR, 

Hy = rR, 

H, = 0 

Eliminating R,, R, from the angular momentum equation, we get 

H, = -rma, 

H, = rma, + rmg sin 0 

H, = 0 

(5.152) 

(5.153) 

Now, let us compare this with the virtual power method. 

Principle of Virtual Power Method 

In this method, the constraint force R does not enter the equation since it 
does no work. However, we must calculate Jacobian matrices or partial 
velocities in the language of Kane’s method. Following the steps in Example 
4.7, we first choose generalized velocities: 

41 = +> 4 2  = 0, 4 3  = 4 (5.154) 

Then we write the velocity constraint, 

v, = -ree, + r ( 4  - 6 sin e)e,, (5.155) 
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Next calculate the tangent vectors (partial velocities) or Jacobians: 

dW 
a43 
-- dW -- - e x  

These terms are then used in (5.143) 

aq2 - ev, 

dv, . OW 

a9i a91 
(mv, - Fa) . + (H, - Mz) . - = 0 

where 
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(5.156) 

(5.157) 

Ma = 0. 

Carrying out the inner products or projections we obtain 

fix(- sin Q)  + 12, cos Q - ma,r sin Q = o (5.158a) 

(5.158b) 

(5.158~) 

Hy - maxr - mgrsinQ = 0 

Hx + nzayr = 0 

The first and third equations yield 

Ei, = 0 (5.159) 

which agrees with the Newton-Euler equations (5.153). The second and 
third equations are identical to those in the Newton-Euler method (5.153). 

For completeness, we write out the acceleration terms 

a, = r[-8 - ~ C O S  Q($ - 1)sin~)l  

ay = r[$ - 4sinO - 21)&0se] 

Hx = I ~ [ $  - +sine - 1)4cos0] 

Eiy = l I [8  + d2 sin QCOS 01 + I , ~ C O S  e($ - 1) sin Q )  

I;r, = I , [ ~ C O S Q  - 21)4sin0] - I&$ - 4sinQ) (5.160) 
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The equations of motion, (5.158), are three coupled second-order non- 
linear differential equations in the unknown functions {$( t ) ,  O ( t ) ,  $ ( t ) } .  In 
numerical integration schemes (5.158) are written as a set of six first-order 
differential equations, and an integration algorithm such as the Runge- 
Kutta method is used. This solution will determine the set 

To determine the position of the contact point we must go back and integrate 
the constraint equation (5.155). 

i, = -reex + r ( d  - 6 sin oley (5.161) 

Stability of a Rolling Disc 

General analytic solutions to the rolling disc equations derived above have 
not been found due to the nonlinear nature of the equations. However, a 
standard technique in nonlinear systems is to seek a solution close to a steady 
motion. Such techniques are called perturbation methods (see, e.g., Nayfeh 
and Mook, 1979). 

One can easily conduct a stability experiment by rolling a coin on a rough 
surface. The coin will roll on a straight path if the speed is greater than some 
critical value. At slower speeds than the critical value, the coin rolls over on 
its side. 

We begin the analysis by looking for a solution to (5.158) close to @ = 0. 
Then we determine the critical value at which the motion loses stability. In 
the case of near-vertical motion we write the generalized velocity variables in 
the form 

where we assume q 1, q 2 ,  q 3  are small compared with the spin wo. 

assume 
In the perturbation method we linearize the equations of motion. Thus, we 

sin0 N 0 

and we drop all nonlinear terms in (5.158) such as d4 ,  G@, 42, etc. When 
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this is done the equations for {q  1, q2,  q3}  take the form 

j l ,  = o  
I t7 j2- IaW0773 = o  (5.163) 

[my2 + 1 ~ ] j l 3  + [mr2 + 1,]wOq2 = mgro 

These equations correspond to (5.158c), (5.158a), (5.158b) in that order. 
Taking the derivative of the last equation and using 8 = q3,  we obtain a single 
second-order differential equation: 

(5.164) 

where 

I :  =Il +my2, I :  = I, +mr 2 . (5.165) 

This second-order equation has oscillatory solutions of the form, 
q3 = C1 cos(G2t + C2), provided that 

or 

(5.166) 

When wo < w,, the solution grows exponentially with time, q 3 ( t )  becomes 
large, and the linear approximataion breaks down. Thus w, is a critical 
rolling speed to avoid growth in the roll angle O ( t ) .  

For a solid disc of the size of a US. quarter coin ($0.25), 2r = 2.4 cm and 
I, = 21, = mr2/2. For this case the spin rate wJ2n is equal to 2.65 cycles per 
second (cps). Note that w, is independent of the mass: 

This is also the natural frequency of a particle pendulum on a string of length 
3r. 

In order to ensure the no-slip rolling constraint in testing out the theory 
with a coin, you may have to carefully wrap a small rubber band around the 
coin edge. 

This example, like the one in Example 5.10, shows how a rotary motion 
can induce a kinematic stiffness. 
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Rolling Dynamics: Simulation and Animation 

Until recently dynamicists could do little to make use of the highly nonlinear 
equations of rigid-body dynamics, like those for the rolling coin (5.158) 
beyond linear stability analysis or numerical integration. However, advances 
in both computer software and hardware permit more direct application of 
nonlinear equations of motion. The rolling disc problem serves as a model for 
these applications. Our goal here is to integrate the equations of motion to 
obtain the state vector as a function of time [e, 4, 11, 4, 4, 4JT .  

It is important for the dynamicist to define the goals for numerical 
analysis. For example if we wanted to know the contact force as a function 
of time or to check if the rolling friction force exceeded the material proper- 
ties, a more complicated analysis would be needed. In this section our goal is 
to provide a numerical algorithm to obtain a three-dimensional animation of 
the rolling as a function of time. This entails collecting a sequence of time- 
frozen images of the disc to enable a graphics software package to create a 
movie of the rolling dynamics. We outline the steps to create an animation 
movie: 

1. Set up the equations of motion in first-order format for numerical 

2. Choose a numerical integration algorithm. 
3. Define an object set of vectors in three space { p k }  that will embody the 

approximate geometry of the disc in a reference state: t = to. 
4. Establish a transformation matrix that will use the output of the 

integration subprogram to create a new set of object vectors at each 
of the movie frame times { t k } ,  tk > to. 

5. Input the sets of object vectors into a graphics plotting subroutine to 
obtain a set of time-sequential images. 

6. Input the time-series images in a movie subroutine at a certain graphics 
refresh rate to produce an illusion of a moving object. 

integration. 

Each of these steps will be explained below. 

1. First -order Format of Equations of Motion Most numerical integration 
methods are based on the dynamic equations in the form 

x = f(x, t )  

where x is called a state vector. In the case of the rolling disc it is convenient to 
use a set of generalized coordinates and velocities 
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where 6 is the relative spin rate defined by 

6 = 4 - qs ine  (5.167) 

To obtain a set of first order equations from (5.158) we define the angular 
rates 

$.I = 211, 

Q! = w@ 
Then we solve (5.158) for the second derivative of {b, 4, 6} 

(5.168) 

The equation for & is from (5.158b), that for 3, is from Hz = 0 (use (5.158a) 
and (5.158~)) and &, is from (5.158~). The two sets of equations form a 
coupled set. In addition to these equations, we must also integrate the 
equations for the center-of-mass position: r, = Xci + Ycj + Zck 

r, = -r be, + r 6 er 

Note that the vertical position off the plane Z ,  is equal to r cos 0. 
2. Numerical Integration Scheme There are many numerical integration 
algorithms, including Euler, Runge-Kutta, and Adams. Many of these 
methods contain variable time-step sizes. If one wishes to avoid interpolat- 
ing, a fixed time-step method should be chosen in order to have a correct time 
flow in the movie or animation. 
3.  Define a Set of Object Vectors Typical computer graphics packages draw 
lines between points defined by position vectors. In the case of the circular 
disc, we define a reference position in the vertical plane with 
X, = Y, = 6' = $.I = 0. The circumference is divided into N segments, and a 
set of position vectors corresponding to these N points must be defined. 
4. Finite Transformation Matrix At each time, the integration subroutine 
will return a set of generalized positions {&, $.Ik, Q!k, X c k ,  Yck, Zck}. Here 



230 RIGID BODY DYNAMICS 

we can use the finite-rotation transformation matrices in Chapter 3. Using a 
4 x 4 matrix format, the new set of object vectors Pk can be determined by the 
matrix operation 

where 

where Z c k  = rcos &, and R k  is the product of the three Euler angle rotation 
matrices (5.27), (5.28), (5.29) discussed in Section 5.2. 
5,6. Graphics Plotting and Movie Subroutines MATLAB is one of the more 
widely available multipurpose codes. In Figure 5-24, a MATLAB subroutine 
called surf is used to draw a reference surface with a grid to simulate the 
rolling constraint surface. The input involves initial conditions, the time step 
size, and the number of frames N .  The output matrix M is a set of “frames” 
i.e., position of the vector {&} at different times. MATLAB then displays 
each frame sequentially with a subroutine called movie ( M ) .  Figure 5-24 
shows a sequence of frames showing the rolling disc. (This program was 
written by a former Cornell University graduate student Dr E. Catto.) 

Caution As in all numerical computer programs, one must always be 
skeptical of the output until one have verified the code. One source of 
error is the numerical integration scheme, which can sometimes add a 
negative damping (energy input) to the system. In the coin problem, there 
is no energy dissipation. Therefore one should check that the total kinetic 
plus potential energy is conserved. Make the time step smaller if one sees 
serious deviations from conservation of energy. 

5.6 NONHOLONOMIC RIGID BODY PROBLEMS 

Nonholonomic problems involve kinematic constraints between the general- 
ized velocities that cannot be integrated to give a pure geometric constraint 
between the generalized coordinates. Examples include rolling, some types of 
feedback control forces, and certain types of voltage-current constraints 
involving sliding contacts in electric machines. In nonholonomic problems 
the N unconstrained degrees of freedom or generalized coordinates {@( t ) }  
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t = 5  

Figure 5-24 Time sequence of numerically integrated motions of a rolling disc. Graphi- 
cal output using MATLAB software program. 

are reduced in number by the M nonholonomic constraint equations that 
usually take the form 

N 

Ca,ci,(r)+b,(r)=O; ( i =  1,  2, . . . ,  M )  (5.170) 
j=  1 
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There are three commonly used methods to solve such problems: 

1. Choose another set of N - M generalized coordinates that identically 
satisfy the kinematic constraints. 

2. Use Lagrange multipliers. This technique was introduced in Section 4.5. 
3. Use the principle of virtual power. 

Technically, rigid-body problems with nonholonomic constraints involve 
the stability of rolling, such as shimmy and vehicle skid stability. 

A general discussion of the dynamics of nonholonomic constraints can be 
found in the excellent momograph by Neimark and Fufaev (1972). They 
discuss many rolling problems as well as nonholonomic problems in electro- 
mechanical systems such as arise in sliding contacts. They also treat practical 
problems of the stability of aircraft landing gear, automobile steering and 
shimmy, and the stability of railroad wheels. 

In Chapter 4 we described the principle of virtual power as a method that 
naturally incorporated nonholonomic constraints and attributed its theory 
and application to Jourdain (1905) and Kane (1961). However, Neimark and 
Fufaev describe several other formulations and modifications of Lagrange's 
equations for incorporating nonholonomic constraints. [See references to 
Volterra (1898), Appel (1899) and Voronec (1901) in Neimark and Fufaev 
(1972).] Anyone with a more theoretical interest in these problems is 
encouraged to read Neimark and Fufaev, who give several hundred refer- 
ences on the subject. 

In this section, we present a classic skidding problem of rigid bodies that 
helps illustrate the methods discussed in the previous sections. 

Vehicle Stability in a Skid 

The problem of vehicle stability in a skid is shown in Figure 5-25, in which a 
two-axel vehicle skids and we are asked to determine the stability of motion 
of the body rolling on one axle. This problem may be found in Greenwood 
(1988) and also in Neimark and Fufaev (1972). The Author also attended a 
discussion of the problem by Professor Thomas Kane of Stanford University 
at a guest lecture at Cornell University in the early 1980s. 

In all three treatments of the problem the rolling constraint is simplified to 
what some call a skating or sliding knife-edge constraint. Mathematically the 
velocity parallel to the nonskidding axle is assumed to be zero. Thus if B is a 
point on the axle and the axes {e l ,  e2} are fixed to the vehicle, then we require 
that 

vB . e2 = 0 (5.171) 

Denoting the velocity of the center of mass by v, = [q, v2]', and 8, the 
angular position of the el  axis relative to the horizontal x-axis, the constraint 
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Figure 5-25 Nonholonomic rolling or skating dynamics of a rigid vehicle (Example 5.1 1). 

(5.171), takes the form of a scalar equation 

212 - bQ =: 0 (5.172) 

Thus of the three possible generalized velocities {q, u2, w = Q}, only two 
are independent. We present two methods of analysis for comparison: (1) the 
principle of virtual power, and (2) Lagrange’s equations with Lagrange 
multiplers. 

The virtual power method has the advantage of being closer to the physics 
of Newton’s law and involves calculating accelerations and forces and 
moments. Lagrange’s method of multipliers is more abstract, but has less 
dependence on vector calculus. The student should judge for him or herself 
which method is easier. 
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EXAMPLE 5.12 
In this method we choose {vl, v2 }  for the two independent generalized 
velocities. In this analysis, we neglect the rotary inertia of the rolling 
wheels. Following (5.143), the equations of motion take the form 

PRINCIPLE OF VIRTUAL POWER 

(5.173) 

where from the constraint, Equation (5.172), 

(5.174) w = Be, = be3 

The velocity of the center of mass is, v, = vlel + v2e2. The projection 
vectors are then given by 

"2 

(5.175) 

We assume for the moment that the vehicle is on an inclined plane with 
a grade 4, and that the gravity-force component in the plane is in the 
negative y-direction, or 

F~ = -mg sin 4 j  (5.176) 

With no power on the wheeled axle, we also have M a  = O .  The two 
equations of motion are given by 

ma, - F ;  = 0 

ma2 - Fz + / W ( i )  = 0 

where 

F ;  = -mgsinBsin4 

FZ = -mgcosBsinqj. (5.177) 

The acceleration of the center of mass v, is written in components relative 
to the body axes, 

v, = vle, + v2e2 + ",el + v2e2  

= al  el + a2e2 



5.6 NONHOLONOMIC RIGID BODY PROBLEMS 

where 
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al = Vl - 9v2 = Vl - v$/b 

a2 = V 2  + 8vl = v2 + vlv2/b (5.178) 

For zero grade, = 0, Fa = 0, the equations of motion become 

(5.179) 

where we have replaced the moment of inertia by its radius of gyration 
about the center of mass; I = m r i .  We shall solve these coupled first- 
order nonlinear differential equations after the next example. 

EXAMPLE 5.13 LAGRANGE MULTIPLIER 
The kinetic energy of the vehicle is given by 

1 2 1 2  T = -mv ,  + - / w  
2 2 

(5.180) 

In this method we must choose generalized coordinates {q i ( t ) } .  Thus we 
are not free to choose the path velocities as in the virtual power method, 
since we cannot integrate them directly to obtain a set of { q i ( t ) } .  For the 
Lagrange method we choose Cartesian components of the position vector 
as well as the angle, 8; i.e., { q i }  = { x ,  y, e}, so that 

1 1 
2 2 

T = -m(X2 + y 2 )  + - / e2  

In these coordinates the constraint (5.171), becomes 

which has the form 

where 

caj9j = 0 

(5.181) 

(5.1 82) 
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Lagrange’s equations with one Lagrange multiplier have the form (see 
Section 4.5) 

(5.183) 

which in this problem becomes 

mx=-Xs in6  

m y =  XcosB-mgsin#J 

l9= -bX (5.184) 

Thus in the Lagrange forumulation we end up with three differential 
equations of motion (5.184) plus the constraint equation (5.182) in four 
unknown functions of time { x ,  y ,  6, A}. We can show that X(t )  is propor- 
tional to the lateral constraint force on the fixed, nonskid axle. Knowledge 
of this force may be importantfor adesigner. But if we want a minimum set 
of equations, we have to eliminate A, 6. To show that these equations are 
equivalent to those found from the principle of virtual power we transform 
the velocity to body fixed axes using a rotation matrix: 

cos6 -sin13 [:I = [s ins  case ] [ (5.185) 

Eliminating X from the first two equations of (5.184), one obtains for 4 = 0, 

xcos 6 + y sin 6 = 0 (5.186) 

Using the transformation equation, one can then obtain 

Vl - v,6 = 0 (5.1 87) 

or using the constraint (5.171), 

Vl = v g / b  (5.188) 

which is identical to that obtained by the principle of virtual power (5.179). 
The second equation for v2 in (5.179) can also be obtained from (5.184) and 
(5.182). 
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Stability of a Vehicle Skid 

The virtual power and the Lagrange multiplier methods applied to the planar 
dynamics of a vehicle under the nonholonomic skating or skid constraints 
result in equations of motion involving the velocity components measured 

- - - -  - - - - I  3." . 

Figure 5-26 (a)  Phase plane diagram showing trajectories of the unstable motion with 
negative initial velocity Vo. (b) Unstable and (c) stable skid configurations of a vehicle. 
The dotted axel shows the skidding wheels. 
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relative to the principal axes (5.179) (Figure 5-25): 

iJ2 = -vlvz/b(l + Yi/b2) (5.189) 

In this problem rg is the radius of gyration about the center of mass and b is 
the distance between the center of mass and the skating or non skid axle as 
shown in Figure 5-25. 

This set of first order differential equations is amenable to the general 
methods of nonlinear dynamical systems (see Chapter 9). In these methods, 
we describe the dynamics using trajectories in a phase plane with a vector 
[vl,  u2] T ,  as shown in Figure 5-26. Equilibrium points in the phase plane are 
given by itl = 0, G2 = 0, or 

u2 = 0,  zll = &V,, (constant velocity) 

Dividing iJ1 by 2j2,  we can show that the following relation is valid; 

(5.190) 

This equation can be integrated to obtain a conservation-of-energy relation, 

(5.191) 

This trajectory is drawn in the (q, u2) plane through the two equilibrium 
points on the v2 = 0 axis. One can also show that time flows away from the 
negative steady velocity -Vo, as shown in Figure 5-26a since i~~ is always 
positive (5.184). Thus a small departure from a negative velocity (i.e., rear 
wheel skid) leads to an increase in v2 or a rotation of the body (Figure 5-26b). 
On the other hand, if the front wheels skid and the rear do not (Figure 5-26c), 
the initial velocity in the body axes is positive and small departures tend to 
reorient the body away from rotation. 

HOMEWORK PROBLEMS 

5.1 A spacecraft similar to the Hubble telescope rotates about an axis 
parallel to its diameter with constant rate R, while at the same time the 
solar panels rotate relative to the main structure with angular velocity 
and acceleration 0, 8 (Figure P5-1). 
(a) Write an expression for the velocity and acceleration of the point P 

on the end of the solar panel. (Assume e3 fixed in space.) 



HOMEWORK PROBLEMS 239 

Figure P5-1 

(b) What is the angular acceleration vector for the cylindrical body? 
(c) What is cj for the solar panel? 

5.2 In problem 5.1, suppose the spacecraft first performs a finite rotation 
about the e3 or k-axis of 7r/2 radian and then the solar panel rotates 
relative to the spacecraft by an angle of 8 = 60 degrees. Find a 3 x 3 
rotation matrix that gives the new position vector for the point P 
relative to an unrotated reference frame { f ,  j,A k} at the origin. (Note: 
The original position vector is r = (b + c) j - Li.) [Hint: Use the 
relations in (3.39)]. 

5.3 In the previous problem, use the vector representation in Chapter 3 
(3.38) to find a single axis of rotation n and angle 4 that describes the 
same finite rotation of the solar panel. (Note: r’ = n ( n . r ) +  
[r - n(n . r)] cos q5 + (n x r) sin 4. See Problem 3.5 and use the relations 
(3.39) .) 

5.4 A two-link mechanism undergoes three sequential finite motions 
(Figure P5-4). With the hinge originally at the origin, the initial position 
vector of the point P is given by r = ai - bk. Find a 4 x 4 transforma- 
tion that describes the new position vector after three subtransforma- 
tions: 
(a) TI  : Translation along x-axis, distance L. 
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Z 

1 
X 

5.5 

5.6 

P' '&/ 
Figure P5-4 

(b) T2: Rotation about the y-axis, 8 = -7r/2. 
(c) T3: Rotation about the x axis, 

Write a MATLAB program (or use equivalent software) to simulate the 
finite rotation of the second (bent) link in Problem 5.4. (Hint: Use a wire 
model for the bent link that has initial vertices given by [0, c, 01, [a, c ,  01, 
[a, c, -b], [a, -c ,  4 1 ,  [a, -c, 01, [0, -c, 01. Use the transformation 
matrices defined in Problem 5.4 to draw the wire model after each of 
the three transformations.) 

An axisymmetric body similar to that shown in Figure 5-3 undergoes 
precession, nutation, and spin { 4 ,  8, $} using the Set A Euler angles, 
Assuming that the spin is about the axisymmetric z-axis in Figure 5-5, 
derive kinematic relations similar to (5.23), but where the components 
of w are in the nonspin intermediate axes or w = [w,,; w,.~, 4 . 

= -27r/3. 

T 
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Figure P5-8 

5.7 A vehicle-like rigid body similar to that in Figure 5-6b undergoes a 
rotation rate projected in the principal axes coordinates given by 
w, = 0.1, wy = 0.3, w2 = -0.5 rad per min. Find the yaw, pitch, and 
roll rates when 8 = 0, 4 = 10". 

5.8 The frame structure in Figure P5-8 is made out of two square aluminum 
plates and four thin aluminum rods. The top plate has a circular 
opening of radius r. Find the center of mass as well as the principal 
inertias about the center of mass. 

5.9 A satellite-type structure shown in Figure P5-9 consists of a thin-walled 
cylinder of mass ml and two rectangular solar panels, each of mass m2 
oriented at an angle 8 to the long axis of the cylinder. If both cylinder 
and panels have the same angular velocity vector w, find an expression 
for the angular momentum in terms of the cylinder-based reference 
{xl, x2, x3}. (Hint: Use the principal axes formula for each subbody 
H = Cl jw ie i  and transform the panel basis vectors in terms of the 
cylinder principal axis vectors.) 

5.10 Consider the pendulum shown in Figure P5-10. In this problem we 
assume that the connecting pin block sits on a rough surface with mass 
ml and friction coefficient p, i.e., the horizontal friction force F, = p N  
if the mass does not move. Suppose the rod oscillates with small angles 
Q( t ) .  How large must the pin block be for a given maximum angle Omax 
so that the block does not slip? 
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5. 

X1 

Figure P5-9 

Derive t.,e equations of motion for Problem 5.10 m,,en the block slips 
under Coulomb friction. (Assume static and dynamic coefficients of 
friction are equal.) Write a MATLAB code to integrate the equations of 
motion or initial conditions i ( 0 )  = 0, x(0) = 0, e(0) = 0, b(0) = u0, 
where wo is large enough so that the block slides sometime after t > 0 
and 10maxl < 7r/2. Show that eventually the slipping will stop and that 
the rod oscillates with periodic motion. 

5.12 A wheel of mass m and radius R shown in Figure P5-12 rotates about 
two axes with constant rotation rates 6, 4. (a) Calculate the angular 
momentum vector Ho and the applied moment Mo necessary to 
maintain this motion. (b) Suppose the vertical strut is a hollow, thin- 
walled tube of diameter d and thickness A. Find the average torsional 
stress IT required to produce this motion. Assume the mass is concen- 
trated at the outer rim of the wheel. [Answer: T = mR24e/7rdA.] 

5.13 A thin rod of mass m and length L is constrained to move in the plane by 
two massless cables of lengths a,  b with fixed points separated by a 
distance c (Figure P5-13). Use Lagrange’s equation to find the equation 
of motion. When the cable lengths are equal, a = b, can you show that 
the rotation rate w, is always zero? (Hint: see Example 3.7) 

5.14 A particle m1 is attached to a rolling cylinder by an inextensible cable, as 
shown in Figure P5-14. The roll angle 6 = 0 when the entire cable length 
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Figure P5-10 

hangs below the rolling surface. Use the Newton-Euler equations of 
motion to derive the equations of motion. For small angular motions, 
show that the cable tension is approximately equal to mlg and that the 
roll oscillations mimic that of a pendulum with a natural frequency, 

5.15 A half cylinder of radius R rolls without slipping on a horizontal surface 
(Figure P5-15). Use Lagrange’s equation to derive the equation of 
motion. Assume a small angle of rotation and find the natural frequency 
of oscillation. 

5.16 A cylinder of elliptic cross section rolls on a horizontal surface without 
slipping (Figure P5-16). Assume that the semimajor and minor axes are 
a, b, respectively. Use Lagrange’s equation to find the equation of 
motion. For small oscillations find the natural frequency. 

2 112 
0 = [m1gR/Uo + m2R ) I  . 
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1, 
Figure P5-12 

5.17 A three-body satellite structure spins about the e3 axis with initial 
angular velocity Ro (Figure P5-17). A pantograph mechanism moves 
the outer masses m2 away from the central structure. 
(a) At what value of d will the spin become unstable? 
(b) At the critical value of d, what is the value of the sign? 

5.18 A thin rectangular plate of mass ml  rotates about an axis along the 
diagonal, as shown in Figure P5-18. Four small masses m2 are screwed 
onto the plate along the minor plate axis front and back for symmetry. 
(a) Find the lateral reaction forces on the bearings due to rotation when 

(b) Can you find an offset E and mass m2 that makes the reaction force 
m2 = 0 (neglect gravity). 

become zero? 
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Figure P5-13 

5.19 A thin rod with a pin joint at its end is spun about the vertical axis with 
constant angular velocity R (Figure P5- 19). 

(a) Use the principle of virtualpower to derive the equations of motion 
for the generalized coordinate O ( t ) .  (Hint:  Show that the Jacobian 
vector is given by Ow/OO = e2, where e2 is a vector normal to the 
plane of the rod and vertical axis of rotation for 0.1 

(b) Show that 8 = 0 is a stable equilibrium point for R < R,, where 
~f = r n g ~ / 2 1 ~ .  

mgL [Answer: Ioe - R2 .lo sin O cos 0 + -sin 0 = 0.1 
2 

5.20 The ends of a thin rod are constrained to follow the rigid vertical and 
horizontal surfaces as shown in Figure P5-20. The bottom end is 
attached to a linear spring whose uncompressed state is at 

(a) Use the principle of virtual work to find the equilibrium position. 
(b) Use the principle of virtualpower to find the equation of motion for 

x = xo = L/3. 

the generalized coordinate x ( t ) .  
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Figure P5-14 

RIGID BODY DYNAMICS 

3" 

Figure P5-15 

5.21 A rate gyro is a spinning device that produces a measurable nutation 
angle Q proportional to the precessional or yaw angular velocity. A 
sketch of such a sensor is shown in Figure P5-21. Assume that the 
precession angular velocity is constant and is directed along the vertical 
axis. Also assume that the linear spring restricts the angle to small 
values. Use the direct form of the law of angular momentum, M = h, to 
derive the equation of motion. Assume that the spin rate & is constant. 
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I 

Figure P5-17 

Show that when 8 = 0 and 8, >> &, 0 is proportional to 4,. 
[Answer: 4 B + b 8 - ~ l ( ~ o + ? l o e ) 1 3 + ~ ~ e r ,  + L 2 k e = 0 ,  

where I , ,  I ,  are the principal moments of inertia.] 
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Figure P5-18 

Figure P5-19 
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d g  
x ,=u3 

Figure P5-20 

'0 Yaw velocity di 

/ 

Figure P5-21 
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'1 

Figure P5-22 

5.22 One end of a thin rod is constrained to follow a path y = ax2 , /2  
(Figure P5-22). 
(a) Use Lagrange's equations to derive equations of motion for the 

(b) Linearize the equations of motion for small x, 8 and find the natural 

5.23 Spinner Toy. A handheld children's toy is shown in Figure P5-23. A 
rotor is free to turn about a pin joint. The hand moves in an oscillatory 
manner. By changing the oscillation frequency and amplitude, one can 
obtain rotary, oscillatory, or chaotic motion of the spinner. A dynamics 
model is shown in Figure P5-23b, in which the base motion is pre- 
scribed: x ( t )  = A sin wot. Use the principle of virtual power to derive the 
equation of motion. As a special project numerically integrate the 
equation and look for the three different types of motion. This problem 
is similar to a magnetic dipole (e.g., compass needles) in an oscillatory 
magnetic field (Figure P5-23c), which has been shown to exhibit chaotic 
motions. 

generalized coordinates q1 = x, 42 = 8. 

frequencies of the system. 
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Figure P5-23 

[Answer: In nondimensional form, the equation of motion becomes: 

8 f a s i n . r s i n d  = 0 

For numerical integration add a small damping term and define 

i = y ,  j = - y y - a s i n x = O ]  
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X C  

Figure P5-24 

5.24 In Section 5.6 we examined a nonholonomic problem 0, vehicle skid 
(Examples 5.12 and 5.13). In the examples, friction was neglected. 
Suppose we assume that there is a skid pad at point A shown in 
Figure P5-24. One of the models for friction is the Coulomb model 
where the friction force is a constant magnitude p and directed opposite 
to the velocity, i.e., 

Derive the equations of motion in the vehicle basis vectors {el ,  ez} 
when friction is present. 

5.25 Two bodies are connected by a rigid massless link of length L, as shown 
in Figure P5-25. The cylindrical body rolls without slipping. Use the 
method of Lagrange multipliers to determine the force in the link. (Hint: 
Use x, 0 as initially independent generalized coordinates and introduce 
the link as a constraint.) 

lig J 
0 h 

/////// /// 27-- 
I 

Figure P5-25 
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5.26 In the gyropendulum problem of Example 5.11, Figure 5-22, derive the 
equations of motion using the Newton-Euler equations. For small 
oscillations, find the dynamic component of the contact force on the 
disc. 



INTRODUCTION TO ROBOTICS 
AND MULTIBODY DYNAMICS 

6.1 INTRODUCTION 

In this chapter we present methods to formulate dynamics problems invol- 
ving connected rigid bodies. The animal and human skeletal system is the 
most ubiquitous multibody mechanism. However, in the technical world 
almost all machines are multibody systems. Robotic manipulator devices are 
the most anthropomorphic class of problems. Other problems including 
vehicle-suspension systems, truck tandem trailers, trains, geared power 
transmissions, construction vehicles such as front-end loaders, all involve 
the coupled dynamics between two or more rigid bodies (Figure 6-1). 

The coupling between different rigid bodies is of three types: 

1 .  Kinematic 
2. Force elements 
3.  Control elements 

Kinematic coupling usually occurs at a local region called a joint, which 
constrains the motion to limited actions such as rotation about an axis, 
rotation about a point, translation along a line or in a plane, or a combined 
motion such as the helical motion in a screw joint (Figure 6-2). 

A force element connection includes springs and dampers, but could also 
include fluid or aerodynamic forces and magnetic or electric actuators. 

In mechatronic or controlled machines, forces, torques or motions are 
sometimes applied through actuators which depend on the feedback of some 
or all of the state variables. These devices include rotary and linear motors 

254 
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Direct-Drive Motor 

Figure 6-1 
from Rosheim, 1994. 

Sketch of a commercial robot manipulator arm. Reprinted with permission 

such as servo-motors, hydraulic actuators and piezoelectric and shape 
memory material actuators. 

Another force coupling involves so-called unimodal constraints. These 
include impact and friction, stiction, or cold welding between bodies in 
contact. In these problems the constraints are sometimes short-lived, as in 
impact, or discontinuous, as in friction or the breaking of a stiction or cold- 
weld junction. These problems present special difficulties. A discussion of 
impact problems for a rigid body is given at the end of this chapter (see also 
Brach, 1991 or Pfeiffer and Glocker, 1996). 

A series of connected rigid bodies can be further classified according to the 
topology of the connections (Figure 6-3). Thus, connected rigid bodies can 
have an open- or closed-chain structure, or have several branches as in a tree. 
In computer codes that simulate the dynamics of multibody systems one 
must adopt a labeling model to denote which body is connected to which. 
One such system is based on the theory ofgraphs (see, e.g., Wittenburg, 1977). 
A brief description of this convention is given in Section 6.2. 
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Figure 6-2 Kinematic pair joints. (a) Revolute joints. (b) Prismatic joint. (c) Ball or 
spherical joint. (d) Helical or screw joint. 
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Figure 6-3 (a) Open chain of connected bodies. (b) Closed chain. (c) Branched system of 
connected bodies. 
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The solution of the dynamics of multibody systems has a number of steps: 

0 Modeling; limiting assumptions, approximations 
0 Geometric description 
0 Interconnection convention 
0 Formulation of equations of motion 
0 Analytical and/or numerical integration of equations of motion 
0 Graphical display, e.g., phase plane, animation 
0 Dynamic data analysis; Fourier transform, modal decomposition, 

fractal dimension 
0 Design implications 

The methods of formulating equations of motion are based on all the 
principles discussed in Chapters 2, 3, 4, and 5. The principal methods used 
today are the Newton-Euler, Lagrange, and D’Alembert’s virtual work and 
virtual power methods. In modern codes this is often done using symbolic 
computer software such as MACSYMA, M A  THEMATICA, and MAPLE. 

Multibody Codes 

Often the engineer or dynamic analyst will use a packaged software system 
that combines all the elements in the list just described. Such codes include 
Working Model, Adams, or DADS. A description of some of these codes can 
be found in Appendix B and in the reviews by Schiehlen (1990) and Erdman 
(1993). For two or three connected bodies however, the student can often 
accomplish a good deal by combining a symbolic code such as 
M A  THEMA TICA with numerical and graphical packages such as 
MATLAB. This method will be illustrated in several examples in this chapter. 

One word of caution: In many codes, the methods used to derive and 
integrate the equations of motion are proprietary and not available to the 
user, so one may not know the assumptions in a simulation displayed on the 
computer screen. The phrase “garbage in-garbage out” is still valid here. 
When using numerical codes you should always be cautious and skeptical. 
Always try the code out on several problems with known analytical solutions. 
Another test of packaged codes is to check conservation of energy and 
momentum in the output of a simulation. 

6.2 GRAPH THEORY AND INCIDENCE MATRICES 

Anyone who has taken apart a machine or looked at an exploded view 
graphic of one is struck with the enormous number of parts (see, e.g., Figures 
5-1,5-2). Some clusters of parts move as one, as in a control circuit card, but 
other components, such as ball bearings, have many moving parts. In order 
to analyze the dynamics of these machines, we must assemble equations of 
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motion for each component. Modern multibody codes require some method 
to link the motion of one body with another. There are several schemes to do 
this. In this text we provide a brief introduction to the application of graph 
theory to this task. The treatment follows the conventions in the advanced 
text by Wittenburg (1977). 

We consider a multibody system as a set of linked rigid bodies in an open 
or closed chain or tree structure. To each body we assign an index Si, and to 
each link or connection between bodies we assign an index ui. In graph theory 
the set { Si} are called the vertices and the set { u,} are called the edges of the 
graph. In this abstract picture of a machine or mechanism, the geometric 
model is replaced by a set of points representing the different bodies, 
connected with arrows or arcs corresponding to the links as shown in 
Figure 6-4. The direction of the arrows is arbitrary. The points and the 
arcs are numbered according to the indices {Si} and {u,}. 

(b) 

Figure 6-4 (a) Closed-link and branched system of rigid bodies. (b) Graph convention of 
the system in part (a). 
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Next, we speak of paths along the graph, say from body So to body 
S, denoted by the sequence of hinge numbers along the path 
(u l  + . . u, . . . u b .  . .). A hinge or arc u, is said to be incident with ( S j ,  Sj) if 
it connects the two bodies. This leads to one of the important constructs in 
the theory, the incidence matrix [S,]. The incidence matrix elements take 
only three values: + l ,  -1, 0. These numbers essentially indicate to the 
computer algorithm the sense of the hinge force acting on a body. The 
elements of [S,] are defined by 

+l ;  if the arc u, is directed away from Si 
-1; if the arc u, is directed toward Si Sj, = { 0; if u, is not incident on Sj  

It is useful to separate [S,] into a row vector and a n x n matrix 

The n x yt matrix S can be shown to have an inverse T 

The matrix T has the property 

TTS; = -1 

which is a n x 1 column matrix of -1 entries. It can be shown that the 
elements of T have the following interpretation: 

+l; 

0; 

if u, is on the path [So, Si] and points toward body So 

if u, is on the path [So, Sj]  and points away from So 

if u, is not on the path between body So and S, 

(6 .5 )  

EXAMPLE 6.1 
Consider the two-link armlike mechanism shown in Figure 6-5. By con- 
vention the base is labeled So, and the system graph drawn in Figure 6-31. 
Thus we assume we have three bodies connected by two hinges or arcs. 
The Sia matrix is 3 rows by 2 columns as shown below 

TWO LINK SERIAL MECHANISM 
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Gr // 

SO 

Figure 6-5 (a) Two-link serial or open-chain system (Examples 6.1, 6.2). (b)  Graph of 
system in part (a). (c) Internal constraint forces in the system in part (a). 
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By convention, we define the hinge connected to So, to be directed away 
from So, so that Slo = 1. If this is done right, the columns should sum to 
zero. We also separate [Sia] into a 1 x 2 and 2 x 3 matrices 

[ S ] =  [-1 0 -1 11 

Using (6.5) we can find the T matrix and establish (6.3), (6.4). 

Incidence Matrices and Equations of Motion 

To see how the incidence matrix for a system of linked bodies is applied, we 
consider the special case of a tree structure in which all bodies are connected 
with ball-and-socket joints, as shown in Figure 6-6. We focus on body Si, 
which has hinges u,, ub, etc., that connect the body Si to other bodies. Acting 
at each of the hinges are constraint forces R,, Rb, and hinge moments or 
couples C,, cb. These moments may result from friction, internal springs, or 
dampers. We choose a sign convention such that R, is positive when it acts in 
the direction assigned to u,. Thus if the arc u, is directed toward Si and away 
from sk, R, is directed away from body sk and points toward body Si. This 
statement can be written as 

or in general 

a= 1 

To obtain the law of angular momentum, we define local position vectors pi, 
in body Si from the center of mass to the hinge point ria. It can be shown (see 
Wittenburg, 1977) that 

n 

Hi = M! + Sia(pia x R, + C,) (6.9) 
a= 1 

In this equation, we assume that the moments of the active forces M f  are 
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Figure 6-6 Two joints and three links in a multibody system. 

taken about the center of mass of body Si.  
In both the methods of Lagrange and virtual power, workless constraint 

forces such as {R,} do not appear in the equations of motion. However, for 
design purposes, knowledge of hinge forces may be important. If the motions 
of all the mass centers in the multibody system are determined, i.e., we know 
{ri}, then the constraint forces can be found using the inverse of Sj, or TUi 

n 

R, = C T,j(mirj - F f )  (6.10) 
i= 1 
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EXAMPLE 6.2 
We wish to write the equations of motion for the system of two bodies in 
Figure 6.5, where we assume that the internal hinge moments are zero 
and that gravity is the only applied force on each body. 

For these assumptions the equations of motion (6.8), (6.9) become 

a=l 

a=l 

where 

Thus 

s,= 1-1 0 -1 '1 
L -I 

(6.1 1) 

Suppose we write the hinge forces in polar coordinates relative to the first 
hinge: 

Using these components of R1, R2, the angular momentum equations 
become 

To complete these equations, we need to relate r l ,  r2, hi,  h2 through 
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the geometric constraints 

The relation between r2 and rl follows from this last equation. 
Using these constraint relations, we will have six scalar equations of 

motion in the six unknowns {el, 62, R I B ,  R I r ,  R20, R2r} .  
The use of the machine matrix Si, in this example is trivial. its 

usefulness may become more important in more complex multibody 
systems. 

6.3 KINEMATICS 

One of the first steps in formulating equations of motion for a multibody 
system is the choice of a kinematic formalism. This choice has two parts: a 
choice of reference frame and the type of mathematical description, e.g., 
whether vector or matrix representation. General theories of multibody 
dynamics can be found in more advanced books. In this introduction we 
discuss the principles by examples. 

Consider the open chain, serial link mechanism shown in Figure 6-7. This 
topology is characteristic of serial-link robot manipulator arms. Shown in 
the figure are four reference frames: one is called the base coordinate frame, in 
which Newton's laws are valid, and three other reference frames are attached 
to the links. These local reference frames move and rotate with each link. In 
deriving the equation of motion for a single rigid body we found that using a 
local frame simplified the calculation of the angular momentum (Chapter 5) .  
We can choose to represent all dynamic vectors in the base coordinates. 
However, in robotics, actuation of each link is relative to the neighboring 
links and the use of local frames is often more useful. 

In Chapter 3 we saw that the location and motion of a rigid body could be 
represented by three conventions: 

1. Position vectors and rotation rate vectors w 
2. Position vectors and 3 x 3 finite rotation matrices 
3. 4 x 4 transformation matrices representing rotations and translation 

We illustrate the kinematics description with the first and second methods. 
See Paul (1981) for a treatment using 4 x 4 matrices. 
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Figure 6-7 Local link coordinate bases in a multibody system. 

Degrees of Freedom: Generalized Coordinates 

A system of N rigid bodies has at most 6N degrees of freedom. The use of 
hinges and connections restricts the degrees of freedom. When we use relative 
frames of reference, it is natural to choose the generalized coordinates {q l  ( t ) ,  
q2( t ) ,  . . . , q n 2 ( l ) } ,  which describe the motion of one body relative to one of its 
neighboring links. Thus in the example in Figure 6-8, where revolute joints 
are used, there is one angular degree of freedom for each link. It is natural to 
choose qi = Oi where, Oj  is the relative motion of link i with respect to link 
i - 1. In vector notation, the angular velocity of each link in the chain 
depends on all the relative angular velocities, i.e., 

i 

wj = dj bj (6.14) 
j=  1 

where bi is a unit vector along the joint axis of rotation connecting the ith and 
( i  - 1)-th links. This convention is used in the robotics book by Asada and 
Slotine (1986). The preceding formula is useful in calculating the Jacobian 
matrix used in the virtual power method of deriving equations of motion 
[Chapter 5, (5.143)]. 

Jacobians 

In deriving equations of motion for connected rigid bodies, we need to know 
the relation between the velocities {rci} and the generalized velocities {di}. 

To write a position vector to the center of mass of the ith link, rci, we must 
define vectors that give the position of hinge (i-1) relative to hinge i, denoted 
by p ( i - l ) i ,  and vectors that give the relative position of the center of mass of 
each link pci, as shown in Figure 6-8. 
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Figure 6-8 Local axes of rotation {b i }  in a serial, revolute-link multibody system. 

In vector notation we can then write 

or 

where 

j=  1 

The velocity is then given by 

v,. = Rj + wj x pC; 

Thus 

&,j awi 

aei ae, 
- = - x pcj 

(6.15) 

(6.16) 
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An alternative representation is to use relative rotation matrices Aj(ei )  that 
describe the position of the local vectors p(i-l)i and pci relative to the local 
frame of the next lower link (i - 1) [see (3.35) etc.]. In this notation we define 
a vector fici to be the position of pci relative to the ( i  - 1) frame when Bi = 0. 
For this representation, we have 

rci = Rj + Aipci (6.17) 

and 

v,j = R j  + Aj(8j( l )) f ic j  

or 

v,i = R i  + A~(Bi)fici e i  (6.18) 

where the prime on Ai indicates a derivative with respect to Oi.  Note that pci 
does not depend on time. Again this is useful in calculating the Jacobian 
matrix or the projection vectors. For example 

(6.19) 

To calculate the Jacobian for the rotation projection vectors yi, in the 
Virtual Power method (5.143) we use (6.14), 

a W i  
-= bj for j 5 i a ej 

= 0 for j > i. (6.20) 

EXAMPLE 6.3 
Consider the planar motion of a two-link serial mechanism shown in 
Figure 6-5. We define a system velocity vector 

and a generalized configuration vector 

We want to show that there exists a linear relation between v and q of the 
form 

v = Jq (6.23) 
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where J is a 6 x 2 system Jacobian matrix. This global Jacobian can be 
broken into smaller matrices, i.e., 

J = [ J T ~ ,  J R ~ ,  ~ r 2 ,  J R ~ I ~  (6.24) 

where 

(The notation here is SO = sin 8, CB = cos 8) 
The other two sub-matrices are given by 

(6.25) 

6.4 EQUATIONS OF MOTION 

The equations of motion can be derived using several methods related to 
Newton’s laws and the principles of virtual work and power. In the following 
we outline the method of virtual power (Jourdain’s principle), which was 
formulated for rigid bodies by Kane (1961). In all methods we must define a 
vector of generalized coordinates 

where M 5 6N. With complete generality, the resulting equations of motion 
for a multibody system will have the following form (see, e.g., Asada and 
Slotine, 1986 or Wittenburg, 1977): 

(6.26) 

In general, mij and pub will be nonlinear functions of q. It can be shown that 
the mass matrix [mu] IS symmetric, i.e., mij = mji. Also there is symmetry in 
the coefficients in the second term, i.e., pUk = pikj. 
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The first expression on the left represents the linear acceleration terms, 
while the second term represents nonlinear accelerations that are similar to 
centripetal and Coriolis accelerations that appear in cylindrical or polar 
coordinates (see, e.g., Chapter 2). The term on the right is the generalized 
force. Note that the product Qiqi has units of power. The generalized force Qi 
contains gravity and load forces as well as feedback forces in the case of 
controlled machines. 

Principle of Virtual Power for Connected Rigid Bodies 

The principle of virtual power formulation for one rigid body (5.143) can be 
generalized to N connected bodies under the assumption that the constraint 
forces between them do no work: for each generalized velocity q k ,  we have 

where the projection vectors are given by 

In the preceding equation vci is the velocity of the center of mass of the ith 
body, and Hi is the angular momentum about the center of mass of the ith 
body. As in the single-body case, Fq, MY represent the active forces and 
moments that do work on the ith body. It is clear that the forces of constraint 
between the bodies do not enter the equations of motion. 

We present a limited proof for the case of two bodies connected by a ball- 
and-socket-joint, shown in Figure 6-9. The pin forces acting on each body 
FY, F; are assumed to obey Newton’s third law, FY = -F;. We neglect 
moments in the joint. To obtain the two-body form of (6.27) we first write the 
principle of virtual power for each link. 

The sum of these two equations will yield the two body version of (6.27), 
provided we can show that 
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Figure 6-9 Geometry of two connected bodies with a ball joint. 

To relate the Jacobian or projection vectors we use the kinematic constraints; 

rc2 = re1 + PI - P 2  

vc2 = VCI + w1 x PI - w 2  x P 2  

(6.30) 8 vc2 
P 2 k  = = P l k  $- Y l k  PI - 7 2 k  P 2  

Substituting this expression into (6.29), we obtain the identity. 
An alternative statement of the principle of virtual power for multibody 

systems is the statement that the inner product of a global constraint force 
vector F' with a global Jacobian J is zero (see, e.g., Schiehlen, 1986). In the 
special case of a system of constrained particles (neglecting angular momen- 
tum), this statement takes the form 

J ~ F '  = o (6.31) 

where FC = [FfT, FST, . . . , FhT,TIT and J is defined by 

i = J h  
T .T T T  ' T and r = [rl , r 2 , .  . . , rN] , q = [ q l ,  q 2 , .  . . ,q,] . 

This abstract statement is made more explicit in the example below. 
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EXAMPLE 6.4 
In order to clarify the preceding equations (6.26), (6.31), consider the 
simple example of the two-particle system shown in Figure 6-10. 

In the example shown in Figure 6-10 we restrict the motion of mass rn, 
to the plane, and the motion of mass m2 to a linear direction normal to the 
plane. Thus without constraints there are three degrees of freedom 
{x , ,  y, ,  z2 } .  However, if a cable of fixed length is connected between 
the two particles, we are left with only two degrees of freedom, which we 
elect to choose as q = [r, 81'. Thus our global configuration vector is 
r = [ x , ,  y,, z2IT and it is straightforward to find a relation 

i = Jq (6.32) 

where J is a 3 x 2 Jacobian matrix. It can be shown that the constraint 
condition 

r + z = Constant 

i + Z = O  

or 

leads to 

cos0 -rsin8 

(6.33) 

Y 

Figure 6-10 Cable constrained motion of two connected masses. 
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The equations of motion can be written in the form of matrix equations 

0 [ m1 ml :] [ "] = [I;::,"] + [ : ] 
where we assume frictionless sliding in the plane. These equations can be 
written in compact matrix notation 

(6.34) 

m2 z2 -T m2g 

fif = Fc + F a  (6.35) 

where the mass matrix fi is given by 

0 
M =  h [' i2] 

the constraint force Fc = [-TCe, -TSB, -TIT and the active or work- 
producing force Fa = [0, 0, m2gIT. 

When the kinematic equations (6.32), are substituted into (6.34), we find 

f i ~ q  + f i jq  = F~ + F~ (6.36) 

According to the principle of virtual power, the power of the constraint 
force is zero, (6.31), 

J ~ F ~  = o 

Thus multiplying the equation of motion (6.36), by JT, we obtain 

~ ~ f i ~ i j  + JTfi jh = J ~ F ~  (6.37) 

It remains to show that this has the form of (6.26). In particular we note that 
j is linear in q: 

-SO - r ce  o -se 

This leads to 

(6.38) 
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Also we can define a new 2 x 2 mass matrix 

(6.39) 

The generalized force is easily seen to be 

JTP = [ 
-rSO rC0 0 

The resulting equations of motion in the reduced coordinates become 

These equations could have been derived more simply by using polar 
coordinates and using Newton's direct method. Lagrange's equations 
would lead to the same equations. However, the formulation shows how 
the virtual power method can be used in multibody problems as is 
illustrated below. 

The principle of virtual power in the form of (6.31) can be used in a 
symbolic code, such as MAPLE or MATHEMA TICA, to derive equations of 
motion. The idea is to write Newton-Euler equations of motion in the form 
(6.34), and premultiply both sides of (6.34) by JT to obtain equations of the 
form (6.26) or (6.40). Note, one does not need to know the constraint forces 
FC since they dropout via (6.31). 

Serial-link Robotic Manipulators 

The most common robotic mechanism is the serial-link manipulator arm 
shown in Figure 6-1 1. Modern realization of these robotic devices had its 
origins in the 1950s and 1960s, and began to be deployed in industry in the 
1970s. The classic device is broken down into the arm and the end effector or 
gripper. In many commercial robot arms, different types of end effectors can 
be used. Almost all of these devices are constructed by a series of rigid bodies 
connected at a joint. Typical joints are the revolute joint (an axis of rotation) 
and a prismatic joint (an axis of translation) (See Figure 6-2). Each joint 
typically has one degree of freedom. Thus to move and position a workpiece 
with a serial link arm requires at least six rigid links. 
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Figure 6-11 Geometry of a planar system of revolute, serially connected bodies. 

There are many excellent books on the dynamics of robotic devices. A 
classic treatment is by Paul (198 l), in which he derives the basic equation set 
using Lagrange’s equations and uses the 4 x 4 transformation kinematics. 
Other excellent texts are by Asada and Slotine (1986) and Craig (1986). 
Asada and Slotine use both the Newton-Euler approach and Lagrange’s 
equations. 
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To illustrate the methodology, we consider a system of planar links with 
pin-joint connections, as shown in Figure 6-1 1. The equations of motion for 
each link are given by 

miVci = F; + F +  + F; 

li;li = M q f n .  (ai x F; + b i  x F:) (6.41) 

where n is a unit vector out of the plane, FT, F7 are pin joint forces, and ai, 
and bi, are vectors from the center of mass to the pin joints. In robotic 
applications F4 is typically a gravity or load force and Mi“ are applied torques 
at the joints. A series of N links in an open chain with one link pinned to a 
base has N degrees of freedom. We choose the relative angles Oi shown in 
Figure 6-1 1 as generalized variables. Thus the angular velocities wi are given 
by 

i 

wi = e k  
k= 1 

(6.42) 

By using either D’Alembert’s direct method of virtual work or virtual power 
we can eliminate the constraint forces FT, F; at the frictionless pins. This 
principle has the form 

f o r j =  1, 2, . . . ,  M 

from the geometric conditions 
The velocity constraints that define the Jacobian, dvCi /db j  are derived 

ri + ai = riPl + bi-l (6.44) 

To see the details of this method we look at the two-link arm in the example 
below. 

EXAMPLE 6.5 TWO-LINK MANIPULATOR ARM 
The geometry is defined in Figure 6-12. For convenience we use the 
notation pcl = a l ,  L1 = al  + b l ,  pc2 = a2, where {a i ,  b i }  are lengths in 
Equation (6.44) and Figure 6-11. The kinematics of this problem were 
discussed in the previous section. The global configuration veztor 
is r = [xcl, ycl, 01, xc2, yc2, O1 + e,]. The global mass matrix M = 
diag. {ml, ml, I1, m2, m2, /2}. The Newton-Euler equations in Carte- 
sian coordinates takes the form 
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Figure 6-12 Geometry of the two-link system in Example 6.5. 

The principle of virtual power (6.43), can be applied by pre multiplying this 
equation by JT and using (6.31) or JTFC = 0. The global matrix equation of 
motion has the standard form 

Mq + JTf iJq = Q (6.45) 

where M = JTMJ. The 2 row by 6 column transpose of the Jacobian matrix 
J is found from r = Jq, T 

and 

(Note, SO2 = sin el, SOl2 = sin(8, + 8,)etc.) 
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The generalized applied force/torque is defined by 

Q = JTFa (6.46) 

where 

Fa = [O, mlg ,  @, 0, m2g, @IT (6.47) 

The equations of motion for this problem are derived in Asada and 
Slotine (1986) using the direct Newton-Euler method. The principle of 
virtual power yields exactly the same equations which take the form 

where p = m2L,pc2 sin B2. The mass matrix terms can be shown to be 

(6.49) 

The generalized gravity terms are 

The generalized applied torques T~ = 111.: + M i ,  r2 = MZ have either 
specified time histories or are tied into a feedback control scheme. 

Note that the centripetal and Coriolis acceleration terms in the second 
bracketted term in (6.48) are similar to the general form of (6.27). Compare 
this example with Example 4.8. 

Numerical Integration of Equations of Motion 

Multibody equations of the form (6.26), (6.40), or (6.48), are coupled second- 
order nonlinear differential equations. Many standard numerical integration 
algorithms, such as Runge-Kutta and some variable time step methods, are 
formulated for coupled first-order differential equations. In the case of the 
multilink manipulator with equations of motion of the form (6.45), one can 
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put them into a first-order form by defining q = [el, 02 ,  . . . en ]  and 

Q = W  

~j = M-' [Q - J T M j  W ]  

provided M-' exists, i.e., M is not singular or det M # 0 for any configura- 
tion q. 

Problem Formulation in Three-dimensional Linked Bodies 

The preceding examples illustrate the basic method for deriving equations of 
motion for linked multibody problems. This method can be summarized as 
follows: 

1. Choose a fixed reference and local coordinate frames in each body. 
Usually these are located at the centers of mass or at the joints. 

2. Choose N independent generalized coordinates corresponding to the N 
degrees of freedom. 

3. Write expressions for the angular velocity wk of each body in terms of 
the generalized velocities { q k (  t)}. 

4. Use the angular velocities wk to obtain expressions for the velocities of 
the centers of mass of all the bodies v& in terms of the generalized 
coordinates { q k ( t ) }  and generalized velocities {qk( t ) } .  These expres- 
sions allow us to calculate the Jacobian J or projection vectors dv,j/dqk 
and dwjldqk. 

5 .  Calculate the acceleration of each body aCi as well as the rate of change 
of angular momentum of each body Hci. 

6. Identify active forces and moments (torques) on each of the bodies. 
7. Apply the principle of virtual power: 

(Note that for planar problems Hci is proportional to the angular accelera- 
tion of each link ei as in (6.41) and (6.43).) 

This method is illustrated below for a nonplanar, three-degree-of-freedom 
serial-link manipulator. This problem is adapted from the German text by 
Professor F. Pfeiffer of the Technical University of Munich (1989). Pfeiffer 
also derives the equations using Lagrange's equations and, of course, arrives 
at the same result. 

These steps can be performed by a symbolic code such as MAPLE or 
MA THEMA TICA. The example below provides motivation for using such 
codes for equation formulation. 
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Ix 

Figure 6-13 Three-degree-of-freedom, two-link system. 

The geometry of a typical serial-link robot arm with revolute joints is 
sketched in Figure 6-13. In this example we look at the three-link, three- 
degree-of-freedom mechanism to illustrate the steps in deriving the equations 
of motion. Note that Link #1 is simply a rotor with motion 4, about the 
vertical axis. 
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Step 1 

Assignfour-coordinate systems. The fixed-base triad unit vectors are {i,  j, k}, 
as shown in Figure 6-13. Local coordinate systems are assigned to each of 
the three links {eix, ei,, ei,}, i = 1, 2, 3. The y-axes are chosen as the 
axes of rotation, and the x-axes for links 2 and 3 are parallel to the joint 
location vectors r2, r3.  These local coordinate references are each centered 
at the center of mass of the respective links. As we shall see in Steps 5 and 7 
we need to express the basis vectors of one link in terms of basis vectors in 
another link. To this end we can use either vector expressions such as 

A n  A 

(6.52) 

where S+ = sin 4, C+ = cos 4 and 423  = 42 + @3.  One can also use 
matrix transformation rules as illustrated for relative motion between 
links 2 and 3: 

e2x 

= 

e2z 

e3x 

e3Y 
e3z 

(6.53) 

Step 2 

Choose generalized coordinates. The three independent joint-rotation angles 
are the natural choice for generalized coordinates {q51, 42, 43}. They each 
measure the rotation of the i th link relative to the ( i  - I)-th link. 

Step 3 

Determine the angular velocities. The angular-velocity vectors of each of the 
rigid bodies are written in terms of the generalized velocities {&, &2, J3} 
as in (6.14). 

(6.54) 

Step 4 

Calculate the projection vectors or Jacobian. First calculate the velocity of the 
center of mass of the three links. For the system in Figure 6-13, these 
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become, (see (6.16)), 
v1 = o  
v2 = w2 x P1 

v3 = w2 x r2 + w3 x p2 (6.55) 

where the vectors { p i }  specify the location of the center of mass of the i th 
link relative to the ( i  - 1)-th joint, as shown in Figure 6-13. From the 
expressions (6.54) and (6.55) we can derive the Jacobian vectors or 
projection vectors for the principle of virtual power. 

a V 2  a w 2  
- - X P 1  

- - 

a4i a+i 

(6.56) 

(6.57) 

Step 5 

Calculate the linear and angular momentum rates. It is important to decide in 
which set of basis vectors to write these expressions. It is a matter of taste 
and convenience as to which basis to choose. Since terms in the virtual 
power equations such as v i .  dvj/d&k are scalars, we choose to write the 
acceleration vi and the Jacobian vector &j/a$k in the local link basis 
vectors {eix, ei,, eiz}. The general expressions for the accelerations follow 
from Chapters 3 and 5 [e.g., (5.1), (5.2)]: 

(6.58) 
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Here we note that in calculating w2, Lj3 the angular change in the unit 
vectors must be considered; i.e., eix = wi x ejx etc. 

Step 6 

Identify the active forces. In this example the active forces are gravity and 
torque axis moments. We write the moment vectors in the form 

M? = Mlely, M; = M2e2,, MC; = M3e3,. (6.59) 

In practice these moments will often be effected by servomotors connected 
to the axes of rotation by either cables, gearing, or belts. Sometimes the 
motors are directly connected, but then their masses must be considered in 
the dynamics. The torques on the servomotors are created by magnetic 
fields and electric currents whose dynamics must often be considered along 
with control electronics (see Chapter 8). Of course, mechanical actuation 
such as pneumatic or hydraulic actuators are also used in such devices. 

The gravity forces on the second and third links are aligned with the 
base vector j = ely, i.e., 

F; = -m2gely 

F; = -m3gelJ, (6.60) 

These forces can be written in terms of the local unit vectors by using the 
transformation matrices such as (6.53). 

Step 7 

Derive the equations of motion. One of the four methods discussed in this 
book can be used: 

Newton-Euler 
Lagrange’s equations 
D’Alembert’s method (virtual work) 
Principle of virtual power (methods of Jourdain, Kane) 

In the example below we give some of the details of this derivation using 
the virtual power method. Pfeiffer (1989) derives a simplified version of 
this problem ( e2  = e3 = 0) in Example 6.6 using both Jourdain’s principle 
(virtual power) and Lagrange’s equations. In this example either method 
results in a system of three coupled, nonlinear ordinary equations of 
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motion of the form similar to (6.26). 

0 [mi' m22 m:3] + 
0 m23 m33 

0 

Yl 

7 2  1 = [ ~ ~ l  (6.61) 

where the terms {mV}, { p i j k } ,  {ri} all depend on the generalized coordinates 
{42, 42, $3). 

Interpretation of Equations of Motion 

The appearance of some Coriolis/centripetal terms and not others in the 
equations of motions can be understood by analogy to the acceleration of a 
particle in cylindrical coordinates (2.8): 

We observe that the centripetal acceleration must be balanced by a radial 
force that cannot produce a torque about the axis of rotation. The Coriolis 
acceleration, on the other hand, results from both radial and circumferential 
motions and requires a torque or moment about the axis of rotation. 

Consider first the virtual power equations for & .  Only the Coriolis terms 
&&, $ 1 4 3  appear. This is because they induce a torque about the e axis, 
whereas the centripetal acceleration vectors, proportional to 4 $$, 
d:, pass through the axis e,l, and hence create no need for respective torques 
(see Figure 6-1 3). 

On the other hand, the second virtual power equation in (6.61), derives 
from the power about the link-2 axis of rotation. Here we see the terms 
4?, $;, 42 d3  in the equation ofmotion, but not 4;. Thereason for the latter 
follows from the previous remarks, i.e., the partial acceleration vector 
proportional to 4; goes through the link-2 joint axis. However, the partial- 

y2 
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acceleration vectors associated with d;, 4: produce a moment about 
the joint axis that must be balanced by M2 

The term 42$3 is a Coriolis term where d2 is analogous to e in Equation 
(2.8) and d3 produces a radial velocity i relative to the link-2 axis on which 
M2 is applied (see Figure 6-12). Similar remarks follow for the terms in the 
third virtual power equation of motion (6.61). 

EXAMPLE 6.6 
In this example (Figure 6-14) we show some of the details involved in 
deriving the equations of motion (6.61). In this problem the local y axis and 
unit vector eiy were chosen to be parallel to the three axes of rotation. With 
the angular rates chosen as generalized velocities {&}, the Jacobian or 
projection vectors for the principle of virtual power (6.57) can be derived. It 
is convenient in this problem to calculate vi, H i ,  aw/a&, 6bi/adi in their 
respective local coordinates. The notation here and in Figure 6-14 is that 
rl , r2 are joint-to-joint vectors and p l ,  p2 are joint-to-center of mass locator 
vectors. 

As an example, consider the second link with mass m2 and principal 
inertias {Ilx, /2y, /3z}. We assume that the basis vectors {eix, eiy, ei2} are 
principal axes. The velocity of the center of mass of link 2 can be shown to 
be using (6.55): 

THREE LINK ROBOT ARM 

v2 = -2d2e2x + d I (42C42  + c2S42)e2y - a2d2e22 (6.62) 

To calculate the acceleration we must consider the rate of change of the 
local link basis vectors. Again these are expressed in components 
relative to the local link coordinates. 

622 = d2e2x - d1s42e2y (6.63) 

Using these expressions and (6.62), we can show that the acceleration 
vector for the center of mass of link 2 has components in the local basis 
given by: 

v 2  = A2xe2x + A2ye2y + A2ze2z 
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/////////// 

Figure 6-14 Geometry of three-degree-of-freedom robot arm in Example 6.6. 
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where 

A 2 x  = -242  + &a2C42 + €2S42)C42 - a2& 

A2y  = 41 (-a2C42 + E2S42)  + 24142(a2S452 + E2C42) 

A~ = -a2$* + e2& + & ( - a , ~ 4 ~  + E ~ s ~ ~ ) s ~ ~  (6.64) 

It is clear that these terms are quite complicated, with just three degrees 
of freedom. 

Finally, in order to derive the equations of motion we must calculate the 
Jacobian vectors 

= o  dv, 
843 

(6.65) 

We can then take the inner product or projection term in the virtual power 
equation, (6.51): 

(6.66) 1 A2y(-a2C42 + E 2 S 4 2 )  

m2v2 ' - -A2xE2  - A2za2 
0 

This calculation can also be carried out in matrix notation. For example, in 
the local coordinate system of link 2: 

or 

0 

0 -a2 0 

(6.67) 
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To see how the angular acceleration projections are obtained, consider 
the second link. We calculate H2 about the center of mass of link 2. For the 
angular momentum terms we write 

Again we calculate H2 and w2 in the local link coordinates. 

w2 = 41S42e2x + 42e2y - 41C42e2z (6.69) 

The first and third terms come from the relation 

ely = S42e2x - C42e2z (6.70) 

As in the case of the linear acceleration, when we calculate H2, the time 
derivatives of the basis vectors must be considered. This results in the 
following expressions for the angular acceleration H2 expressed in the 
local coordinates. 

The Jacobian vectors for rotation are then calculated using (6.69) 

(6.72) 

The contribution of the projection terms for the angular acceleration in the 
virtual power equations becomes 

(6.73) 

These extensive calculations lead to the following expressions: 
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Selected Centripetal Acceleration Term 

11322 = m3r2(a3S43 f E 3 C 4 3 )  

Selected Coriolis Acceleration Term 

11223 = -2m2r2(a3S43 f E 3 C 4 3 )  

(6.74) 

(6.75) 

6.5 INVERSE PROBLEMS 

A multibody machine, such as a robot, is usually designed to fulfill a set of 
kinematic or dynamic tasks. For example, the end effector of a manipulator 
arm may be required to traverse a given path or to move an object from one 
location and orientation to another, as shown in Figure 6-15. The inverse 
problem is defined as the determination of the time histories of the forces, 
torques, joint angles, and velocities necessary to produce a given kinematic 
output of one of the links of a multibody device. In contrast, the direct 
problem involves solution of the link dynamics output [as in (6.61)] in terms of 
given torques and forces. The inverse problem is closer to engineering design. 
The direct problem involves analytical or numerical solution of a set of 
differential equations with unique solutions. The inverse problem involves 
solution of nonlinear algebraic equations that often have multiple solutions. 
In this section we outline the inverse problem for a serial-link mechanism 
often found in robotic devices. We begin the discussion with the simple two- 
link, two- and three-degree-of-freedom problem and then give a brief 
discussion of the six-degree-of-freedom robot arm. The reader is referred 
to more advanced texts on robotics such as Craig (1986) or Asada and Slotine 
(1986) for more details on the inverse problem. 

EXAMPLE 6.7 TWO-LINK PLANAR ARM 
The two-link mechanism has been studied elsewhere in this text from the 
viewpoint of a direct problem (see, e.g., Chapters 4 and 6). The mechan- 
ism is shown in Figure 6-16 with control torques T,( t ) ,  T2 ( f )  as well as 
gravity. In the simplest problem we try to find the joint angles and torques 
(01, 02; T I ,  T2)  required to move the arm from position rA to r6. Since 
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Figure 6-15 (a) Sketch of three-link robot arm and end effector. (b)  Three-degree-of- 
freedom end-effector wrist (after Asada and Slotine, 1986). 
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Figure 6-16 Workspace envelope of a two-link arm and the two configurations possible 
in an inverse problem (Figure 6-7). 
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neither the path nor the velocity along the path is specified, we write an 
expression for r(&, e,), and then try to find the inverse expression for 
{el (r), e 2 w  

The solution is determined from the geometry 

r = (L, cos 8, + L2 cos(8, + @,))ex + (L,  sin 8, + L2 sin(@, + e2))ey 

If we write r = [x ,  y]’, then we must solve the algebraic equation for e l ,  e2 
given x,  y :  

Licei + ~ ~ c ( e ~  + e,) = x 

L,SB, + L ~ s ( ~ ,  + e,) = Y (6.76) 

A simple graphical solution shown in Figure 6-16 shows clearly that two 
solutions are possible: 

1 Y  8, = tan- - - a 
X 

1 a: = cos-1 ( r 2  +22; G 
e2 = COS-, ( r 2  - (L: + L:) )  

2L1 L2 

where 

r 2  = x 2  + y 2  (6.77) 

The solution of the six-degree-of-freedom inverse kinematic problem is a 
highly nonlinear, often transcendental mathematical problem. According to 
Craig (1986), the serial-link problem can be solved in principle, at least, 
numerically. However, for on-line or “live” computation in a working 
environment, numerical solutions for inverse robotic problems are not 
desirable. In fact, sometimes the robot geometry is designed with the 
analytical or closed-form inverse solution in mind. Special configurations 
of manipulator-end effect or devices can be solved in closed form. One such 
arrangement is a three-link serial wrist-positioning system with an end- 
effector or wrist device that has three intersecting axes of rotation (see 
Figure 6-1%). Thus, we can first solve for the wrist position (i.e., three 
degrees of freedom), and then use Euler angle kinematics to invert the 
angular orientation of the wrist mechanism. In the following example we 
consider a three degree-of-freedom serial mechanism. The interested reader is 
encouraged to consult more advanced books on robotics, such as Craig 
(1 986) or Asada and Slotine (1 987), for the complete six-degree-of-freedom 
problem. 
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In the robotics literature, a conventional choice of assignment of separate 
link coordinate systems is used, called the Denavit-Hartenberg notation 
after the two engineers who invented it in 1951. We do not digress here to 
define this convention. Instead, we choose the most direct coordinate systems 
to illustrate the use of the 4 x 4 transformation matrices. We remind the 
reader of the nature of this transformation (see Chapter 3). For the example 
shown in Figure 6-17, we have two revolute joints with an intermediate 
prismatic or translation joint. We suppose that a point on an object in the 
wrist coordinates is denoted by 

dw = [x3, y3, z3IT (6.78) 

Then its position in the base coordinates is given by 

= T [ i ]  (6.79) 

where the 4 x 4 transformation can be decomposed into three sequential 
transformations: 

T =’: T:T:T (6.80) 

where we have used the notation of Craig. For example i T  transforms 
components of a 4-vector written in the {x2, y2,  z2} system into a vector in 
the {xl, y l ,  zl} system under the translation operation. 

These “T” matrices can be shown to be given by 

0 

(6.81) 
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x O  1 
Figure 6-17 Geometry for the inverse problem of a three-degree-of-freedom arm. 

The last matrix is found by first translating a unit triad at the origin of 
{x2, y2,  z 2 }  along the y2 direction an amount L2 and then rotating the triad 
about the x2 axis to place the unit triad at the wrist location and orientation 

The inverse problem for the origin of the wrist is then solved by finding 
of system {x3, Y3, z31. 
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values of {01, Ozl  p } ,  in terms of its position in the base coordinates, i.e., 

where 

T =  

(6.82) 

(6.83) 

Thus the coordinates [xwo, ywo, zwO]' are given by the rightmost column 
vector, i.e., we must solve the three nonlinear algebraic equations 

xwo = pcosO1 - L2 cos02 sinO1 

yIo0 = p sin el + L2 cos O2 cos O1 

zwo = L1 + L2 sin O2 (6.84) 

The angle O2 is found easily: 

z .o - L1 

L2 
o2 = sin-' (6.85) 

To find 01, first multiply the first two equations of (6.84) by cos O1 and sin O l  , 
respectively. Adding the resulting equations, we obtain 

p = x , , ~  cos 01 + yK,o sin 01 (6.86) 

The value of O1 is found by defining 

Then 

sin(O1 + P )  = p / A  

(see also Craig, 1986 for another form of the solution.) 
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To move the wrist point along some path, we divide the path into path 
segments given by a set of position vectors {r$}. The preceding algebraic 
solution is then used to generate a sequence of joint variables 

There are also problems when the dynamics along the path must be 
specified. Here we must then determine joint velocities as well, and knowl- 
edge of Jacobians, e.g., drWo/dOi or dr,,o/de must be used. But this topic is 
beyond the level of this book. One should consult more advanced texts on 
robotics, such as Asada and Slotine (1986) or Craig (1986). 

{p (k ) ,  By),  er) ;  k = I ,  2 , .  . .I. 

6.6 IMPACT PROBLEMS 

A foot hitting a soccer ball, backlash in gears, a meteorite hitting a satellite, 
these are common examples of transient contact of bodies that we call 
impact. Elementary treatment of impact problems usually concerns smooth 
spherical particles with no friction. In the simplest case, we have direct 
impact, that is, initial velocities directed along the line of the center of mass 
(Figure 6.18). The problem in central impact is to determine the relative 
separation velocity after impact as a function of the relative approach 
velocity before impact. The so-called Newton law of impact assumes a 
linear relationship between the final and initial relative velocities v,', v,, 

Figure 6-18 Central impact of spherical bodies. 
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with a sign change, i.e., 

(6.87) 
- 

v , + . n =  --Ev, . n  

where E is called the coejicient of restitution and n is a unit vector normal to 
the tangent plane of contact. 

Contact problems between extended bodies is still an evolving field of 
study. As such, the use of numerical codes, either multibody or finite-element 
codes for complex impact problems must be used and interpreted with 
extreme caution. There are many impact problems where the deformation 
of the body is important, such as impact with cables or strings, fluid surfaces, 
extended vibratory structures, such as beams or plates, and highly deform- 
able systems, such as sand or other granular media. In this section we restrict 
our attention to the impact between bodies where, except for the contact 
region, the overall motion can be described by rigid-body dynamics. 

In the contact region, complex mechanical deformation processes such as 
elastic and inelastic deformation, sliding and static friction, stiction, cold 
welding, fracture, cratoring, melting, and heating, can occur. There may be 
other physical processes, including light and electron emission, as well as 
chemical reactions. The traditional approach to solving the dynamics of 
impact problems has been to make as many simplifying assumptions as 
possible, as in the case of Newton's law of impact. In this section we show by 
example how this simple theory may be extended to planar rigid-body 
collisions. However, many practical impact problems require a more com- 
plex analysis. Two recent monographs on impact of rigid bodies include 
Brach (1991) and Pfeiffer and Glocker (1996). 

The Newton law of impact (6.87) is called a kinematic law since it relates 
velocities and not forces. However, another method, called the Poisson law, 
relates the impulse during the approach or compression of the two bodies, to 
the impulse during the separation or expansion phase. 

Consider again the central impact of spheres shown in Figure 6-18. In the 
Newton theory, the impact time is infinitesimal, while in the Poisson theory 
we imagine a finite contact time. In the approach phase t- < t < t*, the 
compressive contact force F,( t )  between the bodies rises to a maximum value, 
and during the separation phase it drops to zero, t* < t < t'. The total 
impulse of the impact force is given by 

A = 1-l' F,( t)dt (6.88) 

This integral can be divided into integrals over the approach (compression) 
and separation (expansion) phases so that 

A = A ,  + AE (6.89) 
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The Poisson law of impact relates the two phases of impact, i.e., 

AE = EAc (6.91) 

When friction is not present, we can set E = E and the Newton and Poisson 
formulations yield the same result. 

The basic procedure for solving rigid-body impact problems can be 
outlined as follows: 

1. Integrate the differential equations of motion up to the time of impact 

2. Determine if impact is about to occur. 
3.  Solve the algebraic impact laws to find the separation velocities and 

4. Continue integration of the equation of motion until the next contact 

t = t- (either numerically, or analytically). 

angular velocities. 

event . 

The preceding shows the importance of determining whether impact is 
about to occur. In some machine systems with loose-fitting parts, a whole 
sequence of impacts can occur, so one must continually monitor at each time 
step of the numerical integration if impact will occur. 

In the following examples we assume that there is just one contact event. 
For more complex problems, see Pfeiffer and Glocker (1996). 

EXAMPLE 6.8 MACHINE RATTLING NOISE 
In many multiple-part machines, gaps and play between moving parts 
create impact that generates structure-borne and eventually air-bourne 
noise. An idealized model problem is shown in Figure 6.19. A moving 
mass suffers impact between two moving walls, one of which has a 
prescribed motion U( t )  = U,sinwt, while the right-hand wall motion 
W ( t )  behaves like a linear oscillator with natural frequency R. Our goal 
here is to find the equations of motion. 

To solve this problem we denote the free-mass velocity by v ( t ) ,  the 
sequence of impact times on the left wall by {f,}, and those on the right 
wall by { tCY}.  Newton’s law of impact applied to the impacts at the left and 
right walls are given by 

v,+ - u, = E(V, + U,) 

v,+ + w: = E(V, - w ; )  (6.92) 



6.6 IMPACT PROBLEMS 299 

k 

Figure 6-19 Model for machine-generated noise. A free mass impacting two moveable 
walls. 

where U, = w Uo cos w t,, and 

V ( t i )  = -v;, v(tn+) = v; 

The + and - denote post- and pre-impact times. We assume that the left 
wall mass has sufficient mass to be unaffected by the impact. In the right- 
wall impact we assume conservation of linear momentum 

m1V, + m2W; = -rnjv; + m,W;t (6.93) 

In some problems, we can have multiple impacts on one wall or the other. 
In this treatment we assume that an alternating impact sequence is 
possible, so that we have the ordered sequence t,, t,, t,,,}. 
Neglecting friction on mass ml as it moves from one wall to the other, 
we assume that 

v; = v,, v; = v;+1. (6.94) 

For alternating impact, the resulting impact times are determined by 

(6.95) 
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(If the impacts are indeed alternating, the absolute-value signs are 
superfluous.) 

Finally, we need an equation for the motion of the right wall W ( t ) ,  which 
is governed by 

where R2 = k/m,. By assumption we assume that the displacement is 
continuous during the impact, i.e., W(t(y)  = W(t,') = W,, whereas the 
velocity suffers a discontinuity. If the state of the oscillator after an impact 
at t = t, is { W,, h:}, then we can show that the oscillatory solution yields 
a set of equations for the state at t = 

= -RW, sin[R(t,+l - t ) ]  + h: cos[R(t,+, - fa)] (6.96) 

The set of impact equations is a transendental set of algebraic 
equations. A simplifying assumption is to assume that the gap A is 
much larger than the moving wall amplitudes, i.e., A >> Ao, A >> IW,I. 
In this case, the time of input is approximately given by 

t, = t, + AlV,' 

To solve this system for one cycle of alternating impact {t,, tn+l ,  
we assume that {fa, V:, h:, W,} are known, and we solve for the 
unknowns in the following order: 

For futher details on this problem, see the paper by Moon and Broschart 
(1 991). 

Planar Impact Dynamics 

The key difference between elementary particle impact dynamics and rigid 
body impact is that the velocities to be used in the impact laws are the local 
contact-point velocities, which must then be related to the rigid body center- 
of-mass velocity, and angular velocity. To outline the basic method consider 
the two bodies shown in Figure 6-20, each with position vectors to their 
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Figure 6-20 Single-point planar impact of two smooth rigid bodies. 

respective centers of mass, rl  , r2 and corresponding center-of-mass velocities 
and angular velocities vl,, v2, w l ,  w2. A fixed reference frame has planar 
orthogonal unit vectors i ,  j, and a unit vector normal to the plane k. We 
assume that the bodies are constrained to move in the plane so that the 
angular velocities take the form 

We also denote the contact force on mass ml by F, and applied forces and 
moments by FY, F;, MT, M i ,  where the applied moments contain the 
moments of the applied forces about the respective center of mass. The 
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Newton-Euler equations of motion during impact then become 

mlvl = F, + FY 

m2v2 = -F, + Ff 

I2W2k = -p2 x F, + Mf (6.99) 

Here I1, I2 are the second moments of mass about the respective centers of 
mass rl , r2. 

The total impulse of the impact force, A, is defined in (6.88). It is implicitly 
assumed that at least one of the surfaces of either ml or m2 has a definable 
normal at the contact point, n. During impact we assume there is no stiction 
or welding so that, A . n < 0. 

Another key assumption is that the impact time is small enough so that 
rl  , r2 and p l ,  p2 are unchanged during the impact time interval t- 5 t 5 t+. 
Integrating the equations of motion during this time interval we obtain the 
impact equation of motion 

ml(vT - vr)  = A 

m2(v,’ - v y )  = - A  

This leads to a linear momentum conservation law 

(6.100) 

(6.101) 

The angular momentum equations become 

1 2 ( ~ 2 +  - w:) = -(p2 x A )  . k (6.102) 

A quick tally shows that we have eight scalar unknowns {v:, v l ,  wT,  w2 + , 
A }  and only six equations of motion. Therefore we require two equations for 
the impact physics. In general this might involve either Newton’s or Poisson’s 
law of impact as well as a friction law (e.g., Coulomb’s law) relating A . n and 
A t. In order to keep the problem simple, we assume smooth, frictionless 
impact and Newton’s impact law. Thus our two additional equations become 

+ (vC1 - v;) . n = - E ( v ~  - v ~ )  . n (6.103) 



6.6 IMPACT PROBLEMS 303 

where the velocities at the contact point rc are given by 

vc2 = v2 + w2 x P2 

and 

rc = r1 +PI  = r2 + PZ (6.104) 

(see Figure 6-20.) 

of-mass velocities tangential to the plane of impact, i.e., 
The zero-friction assumption, (6.103a), leads to the solution of the center- 

(v? - VT) . t = 0 

(v2' - v2) ' t = 0 (6.105) 

This reduces the number of unknowns after impact to five. Writing the set of 
unknowns as a column vector, q =  [w:,, wz,, w:, w:, R,IT, the impact 
equations take the form of a coupled set of linear algebraic equations: 

A q = B  (6.106) 

These equations can be solved and the solution written in the form using 
the notation of Brach (1991) mote, pit = p i .  t, n x t = k ] :  

Here w,, is the initial relative velocity at the contact point: 

The other parameters in the preceding solution are defined by: 

m d t  m:, q =  1+-+- [ 12 I1 ] - I  
(6.109) 
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EXAMPLE 6.9 
Consider the collision of two planar objects (Figure 6-21), a circular disc 
and a six-sided polygonal disc. At the moment before impact, we assume 
that the circular disc has a horizontal velocityv,;, and that the polygon disc 
is stationary. The contact point is at the midpoint of one of the sides of 
length a. Under a frictionless impact assumption, we want to find the post 
impact velocities and angular velocity of the polygonal disc w i .  We also 
want to verify that as the side b +. 0, the angular velocity w i  goes to zero. 
To solve this problem we use the impact equations (6.100), (6.102), as well 
as the Newton impact law (6.87). The linear momentum equations (6.100), 
become 

PLANAR IMPACT OF TWO DISCS 

(6.110) 

The angular momentum equations (6.102) 

l1Wf = 0 

I~W: = Ad 

become 

where the moment arm d = &b/4 for midface impact. 

"0- 

(6.1 11) 

Figure 6-21 Planar impact of a particle with a hexagonal-shaped rigid body 
(Example 6.9). 
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Newton's impact law (6.87) or (6.103), takes the form 

(vf - vz - w2 + ^  k x p 2 )  . n = -cvOi. n (6.112) 

where 

(6.1 13) 

In this last equation, we have used the fact that wf = 0. The number of 
scalar unknowns in this problem is seven, {vf,, vty, vzx, vzy, wf, wi, A}. We 
have seven scalar equations, all linear in the unknowns. 

From the linear-momentum equation (6.10), we deduce that the post 
impact velocity of the center of mass is directed in the 45" direction to the 
horizontal, i.e., 

and we also have that 

A = m2vz 

w i  = m 2 v i d b / 4 I 2  (6.1 14) 

Adding the two linear-momentum equations, we have the result that 

m1vl + = m,voi - m2v,'(i + i)/h (6.1 15) 

Thus we are left with one scalar unknown, v i  which we solve for, using the 
scalar Newton's impact law (6.112). 

+ (1 +&)vO { m2 m2 b2 }-' 
1+-+-- 

d2 ml 12 4 d 2  
vp = (6.116) 

In the case of b = 0, we can see from (6.114) that w; = 0, and the 
preceding result is identical to the central-impact problem. 

Single-body Impact 

In many problems one of the bodies in the impact is much more massive than 
the other, as shown in Figure 6-22. In these problems we do not have 
momentum conservation laws as in the two-body case, but the solution 
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Figure 6-22 Planar impact of a rigid body with a large immovable mass. 

follows using the impulse-momentum laws. Again we consider the planar- 
impact problem. Defining a local coordinate or normal and tangential unit 
vectors at the point of contact, we obtain the following equations: 

m(vl  - v,) = A, 

m(vt  - u,) = A, 

I(w+ - W - )  = ( p  x A) . k (6.1 17) 

Following the analysis of the two-body problem, we use Newton's impact 
law and assume zero friction, i.e., 

A, = 0, or v t  =v; (6.118) 

v;, = -&VTn (6.1 19) 

The velocity at the point of contact is related to the center-of-mass velocity by 
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the equation 

v, = v + w x p (6.120) 

In the planar problem we have three unknowns {u:, w', A,} and three 
algebraic equations linear in the unknowns. Eliminating the impulse, A,,, the 
solution for the kinematic variables [w:, w'] is 

where 

The solution can also be obtained from the two-body impact by letting 
m2 + co, rTz = 1, vy = 0, w z  = 0. 

Elastic-impact Theory 

The study of the impact of elastic solids has a large literature. A classic study 
is the book by Goldsmith (1960). The elastic classic theory of impact by Hertz 
can be used to estimate the time of impact and the stresses involved in the 
contact zone. To summarize the results for a sphere hitting an elastic half- 
space consider the problem defined in Figure 6-23. The impact force F is 
found to be a nonlinear function of the penetration displacement of the 
sphere into the half-space a: 

F = ~a 312 (6.122) 

where 

R is is the radius of the sphere, vi is the Poisson's ratio, and Ej is the elastic 
Young's modules for either the sphere (i = 1) or the half-space (i = 2). The 
impact time duration 7 is found to depend on the initial normal impact 
velocity Vo, 

T = 2.94am/Vo (6.123) 

where 
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Figure 6-23 Impact of an elastic sphere with an elastic half-space (Hertz contact) with 
respective values of Young’s Modules Ei, and Posson’s ratio vi. 

The impact force in this theory is approximated by a half sine wave 

1 . 1 4 ~  V; 1.068 Vot 

F(t) = { ; (6.1 24) 

t > r  

Here a, is the maximum “rigid-body” penetration into the elastic half-space. 
These formulas reveal the following dependence of the contact time 

r N  1/V,  115 (6.l25j 

For materials such as steel on steel, the contact times for small spheres 
(R N 1 cm) range from 10 ps to 100 ps for velocities in the range of 100 mjs 
(Figure 6-24). 

Most impacts generate stresses that exceed the elastic limit, and elastic- 
plastic impact analysis must be used. However, the Hertz theory gives an 
estimate of the contact time that for many problems is very small. This 
justifies the use of the impulse-momentum theory in rigid-body impact 
dynamics. 

Experimental Impact Data 

Elementary physics and mechanics texts list coefficients of restitution for 
different materials for normal impact and moderate- to low-impact velo- 
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Figure 6-24 Values of duration of impact times for Hertz contact of a sphere on a half 
space vs. impact velocity (6.123). 

cities, as illustrated in Table 6-1. However, when tangential relative velocities 
are involved, then the effects of friction (neglected in the previous analysis) 
and angle of incidence become important to the extent that the coefficient of 
restitution depends on the initial velocities and angle of incidence. We again 

TABLE 6.1 
Impact 

Coefficient of Restitution Normal 

Hard sphere on mild steel target 

Normal 
velocity (rn/s) E 

50 0.26 
100 0.17 
200 0.10 

Note: Adapted from Brach (1991), Figure 6.19. (Empiri- 
cal relation, E = k/ (un  + k), k = 19.9 m/s) 
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Ball motion 

I 
Table motion Time 

Figure 6-25 (a) Chaotic bouncing of a sphere on an oscillating surface. (b) Fractal 
Poincare map of impact velocity vs. phase of the moving table a t  the time of contact (see 
Chapter 9, also Moon, 1992). 
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raise the warning that complex impact problems may require a more detailed 
theory than the one based on simple impact contact assumptions of 
coefficients of restitution and friction. 

Impact and Chaos 

In the preceding discussion we considered only a single impact. However, in 
many machine problems, parts in relative motion to one another can undergo 
repeated impacts. Such examples include gear teeth rattling, ball bearings, 
rotating shafts in a loose bearing, and mating parts with play or gaps (see 
Example 6.8). In recent years it has been shown that such problems can 
exhibit chaotic dynamics (see e.g., Pfeiffer, 1994 or Moon, 1992). In these 
problems the solution is very sensitive to initial conditions. Consider, for 
example, the problem shown in Figure 6-25, where one of the rigid bodies is 
constrained to move in a sinusoidal motion. Then it has been observed in 
both experiments as well as numerical simulation, that the motion of the 
second body may not necessarily be sinusoidal. These problems are examples 
of nonlinear dynamics where the output dynamics in time is not similar in 
nature to the input kinematics (see also Chapter 9). When the motion is 
chaotic, the time of impact relative to the phase of the sinusoidal input cannot 
be determined when there is a small uncertainty in the initial conditions. In 
such problems, both the times of impact and the post impact velocities are 
best described by probability distributions even though the input motion is 
not random. These discoveries have shown how random-like noise can be 
generated in machines even when the input motions are deterministic or 
contain only a small amount of noise. There are many introductory books on 
chaotic and nonlinear dynamics which discuss these ideas [see e.g., Moon 
(1 992)]. 
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6.1 

6.2 

6.3 

The four bodies shown in Figure P6-1 {So, S1, S3, S4} are connected 
by four hinges into a 4-bar linkage. Using the graph theory notation of 
Section 6.2, find the incidence matrix [S,] .  Also find the S and T 
matrices defined in (6.1) and (6.5). 

In Figure P6-2, two masses ml and m2 are connected by a homogeneous 
rod of length L and mass m3. Treating the constraints between body So 
and S1, S2 as generalized hinges, find the incidence matrix [S,]. 
Assuming that the constraints are frictionless, use Equations (6.8), 
(6.9) to derive equations of motion for the four-body system in Cartesian 
coordinates (x, y ) .  
Find the incidence matrix [S,] for the four-body mechanism in 
Figure P6-3. 
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n A 

SO 

Figure P6-1 

Figure P6-2 



HOMEWORK PROBLEMS 313 

f 

Figure P6-3 

6.4 In the four-body mechanism shown in Figure P6-3, find the Jacobians 
ax/SB, 6x/Sq5. For what values of q5 does the mechanism have the 
greatest and least kinematic sensitivity, i.e., for what geometric para- 
meter is lax/a+l or lai/aq!l maximum or a minimum? YOU may use 
numerical simulation to obtain an answer. (Answer: dx/% = LCOS 8, 
axla4 = - ( ~ / 2 )  cos e, 28 = - 4)  
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/ \ 
I 

Figure P6-5 

6.5 Consider the four-body mechanism with three moveable links 
(Figure P6-5), where 0 5 c#q < 7r,  0 5 42 < 27r. Find the workspace of 
the end point r. Show that the Jacobian dr/dq!+ is singular on the 
boundary of the workspace. Are there any singular points of the 
Jacobian inside the workspace? (See, e.g., Craig (1986, P146), or 
Asada and Slotine (1986, P65)). 

6.6 Two bodies are connected by a rigid link, as shown in Figure P6-6. 
Assume that ml is constrained to planar translation, while 
m2 = (mo + m3) undergoes rolling in the plane without slip on the 
horizontal surface. Also assume that the connecting link is massless. 
Calculate the Jacobian dQ/dx for the one-degree-of-freedom motion, 
where x is the generalized variable. Determine the singularities of the 
Jacobian. 

1 
0 ’ 

Figure P6-6 
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X 

> 
Y 

X 

Figure P6-8 

- 
Y 

Figure P6-9 

6.7 In Problem 6.6 assume that the mass m2 consists of mass mo with a mass 
at the center of the disc and an unbalanced mass m3 at a radius E ,  as 
shown in Figure P6-6 (m2 = mo + m3). Use the principle of virtual 
power to determine the equation of motion in terms of the generalized 
variable 8. (Hint: In this three-body problem assume that the only active 
work-producing force is gravity force on m3.) 
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6.8 

6.9 
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Consider the two-link, 3-dimensional robot arm in Figure P6-8. Use $1 

and 42 as generalized coordinates and derive the equations for motion 
using the principle of virtual power. Find the mass matrix in (6.26) as 
well as the centripetal/Coriolis terms pijk in (6.26). Show that the 
centripetal acceleration & produces a term in the equation for d1, i.e., 
p122 # 0. Why doesn’t gravity produce a term in the & equation? Why 
is there a Coriolis term pu112$2&? (Answer: p122 = (m2L1L3S~2)/2; 
Pi12 = -m2L3[3Cd)2(2L2 + L3Sh)  - L 3 s h c h 1 / 6 )  
Two rods of equal mass, m, and length, L, are connected at the ends by a 
pin joint (Figure P6-9). Choose the set of generalized coordinates 
{xo, yo, 4,  0) and use the principle of virtual power to derive equa- 
tions of motion for planar motion of the connected rods. Assume that 
there are no active forces (e.g., gravity acts normal to this plane). 

6.10 In the 3-dimensional robotic arm problem of Pfeiffer (1989) (Figure 6- 
13), find the centripetal acceleration term 11322 in (6.61). Derive the rest 
of the &k terms in (6.61) using the method outlined in Example 6.6 
using a symbolic programming code such as MATHEMATICA or 
MAPLE. 

6.11 Another problem from Professor F. Pfeiffer of the Technical University 
of Munich is an analysis of an amusement ride called the “Wild 
Mouse,” sometimes seen in the Octoberfest in Munich (Figure P6- 
1 1). A simple model consists of two connected bodies: the top carries the 

Figure P6-11 
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passengers, while the bottom follows a tortuous path under the force of 
gravity. In this problem we assume the path is sinusoidal and that both 
the tracked mass and the rotating car remain horizontal. Add a viscous 
drag term to the motion of the tracked mass and the rotating car, and 
use Lagrange’s equations to derive equations of motion with general- 
ized coordinates {+, q}. If q is the mean inclined path, then use the 
constraints (zo - z )  = q sin a,  x = A sin(2nq/A). Show that the 
Lagrangian is L = T - V 

1 1 
2 2 

+ m2r,$ ~ ~ [ C O S  a cos + - B sin + cos K. $ 

T = - (ml + +)7i2[1 + B C O S ~  K.$ + - ( I ,  + WI~Y;)$’ 

V = (m1 + rn2)gz 

where B = 27rA/A, K. = 21r/A. Add a Rayleigh dissipation function 
(see (4.89)), R = 4 c1 d 2  + c27i2 and derive the equation of motion. 

6.12 In the Wild Mouse example of Problem 6.1 1, suppose the damping c2 is 
large enough such that z N 0, q = vot. Then show that the limiting 
equation for the rotary motion of the car is given by 

2 z0$ + cl$ = - m 2 ~ , ~ w O ~  sin + sinwot 

where wo = ,w0, Zo = I ,  + rn2vz. Show that this is similar to the 
“spinner toy” of Problem 5.23. Write a MATLAB program to integrate 
the equation $ + c2$ + a sin wot sin 4 = 0, with +(O) = 0.1, $(O) = 0, 
for 0 < t < 50. Show that for c2 = 0.3, a = 10, wo = 1, a chaotic-like 
bounded motion results, while a = 1 .O, wo = 1, produces a modulated 
spin, i.e., > 0. 

6.13 In Chapter 5, Example 5.12, we examined a single vehicle with one pair 
of wheels which exhibited a nonholonomic constraint. Consider the 
problem of two linked vehicles in Figure P6-13, each with wheel 
constraints. Each wheel can rotate independently of the other, subject 
to the no-slip constraint parallel to the axels. Use the principle of 
virtual power to find the equations of motion. Neglect gravity. Use 
Example 5.12 as a guide. 

6.14 A five-bar planar mechanism is shown in Figure P6-14 with four 
moveable links. What is the workspace for 0 5 +1 < n, 0 5 42 < T? 
Find the Jacobian matrix arP/i3& where rp = [x, yIT and find the 
singular points. Show that there are multiple solutions q!+(x, y ) ,  given a 
position vector rp. Find the inverse relation 4i(x, y ) .  

6.15 Consider the three-link serial manipulator arm with two rotary and one 
prismatic joint (Figure P6-15), [see also Asada and Slotine (1986,42)]. 
Find an expression for the Cartesian components of the position vector 
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Figure P6-13 

Y 

Figure P6-14 



HOMEWORK PROBLEMS 319 
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Figure P6-15 

r to the point P in  terms of the generalized joint coordinates { 41 ! &! s> 
and find the inverse functions (r), &(r), s(r). For what values of the 
generalized coordinates is the Jacobian singular? 

6.16 For the normal impact of two spherical particles, solve for the post 
impact velocities using both Newton and Poisson impact laws (6.87) 
and (6.91). Show that in this special case, both laws give the same result. 

6.17 In Figure P6-17, two bodies are about to experience planar impact. The 
rigid body has half-cylinder ends of radius R. Use the method outlined 
in Example 6.9 to determine the post impact velocities of the center of 
masses as well as the angular velocity of the rigid body. Show that for 
the impact angle + = 0, w+ = 0, the solution reduces to the normal 
impact solution between two spherical particles. 
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\ 

Figure P6-18 

6.18 Analyze the rocking oscillations of a rectangular block in planar impact 
on two stops (Figure P6-18). Assume that at each impact the block-stop 
separation is zero or that the local impact is plastic. Find the time 
between impacts when the angle 0 is small. Find the maximum angle 
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Z r 
Figure P6-19 

after each impact for several cycles. Start with 0 = Oo, = 0 for the first 
cycle. Does the block come to rest in a finite number of cycles? 

6.19 Two triangular plates form a square of sides L when aligned. [Figure 
P6.191 The top plate is hinged on a revolute joint along the horizontal 
axis, while the bottom plate is hinged along the diagonal. Use either 
Lagrange’s equation or the principle of virtual power to find the 
equations of motion under gravity. Use the two angles 01, O2 as 
shown as generalized coordinates. For O1 O2 small find the two linearized 
natural frequencies. [Hint: Use the fact that both plates are in pure 
rotation about the origin and w1 = Ole,, w2 = w1 + Ole,]. 

6.20 A two link mechanism, similar to the double pendulum in Example 6.5, 
has an additional prismatic constraint at the end of the second link as 
shown in Figure P6-20. Use the principle of virtual power to derive an 
equation of motion. Write expressions for the forces in the two revolute 
pin joints and for the contact constraint force in the slot. Write a 
MATLAB program to find the forces in the joints as functions of time 
when the mechanism is released from rest with initial condition O = 7r/4. 
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d g  

Figure P6-20 

Figure P6-21 
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6.21 Consider the two link mechanism in Example 6.5 under gravity as 
shown in Figure P6-21. Suppose a nonholonomic constraint is placed at 
the end of the second link in the form of a skate or rolling constraint 
such that the velocity at the end, v2, must be in the radial er2 direction, 
i.e., v2 . e02 = 0. Show that the kinematic constraint is given by, 
LIOl cos02+ L2(& + b2) = 0. Derive the equation of motion. [See 
also Lesser (1966) for a similar problem.] 

6.22 Consider the equilibrium problem of the two-link arm in Example 6.5, 
T~ + G1 = 0, T~ + G2 = 0. (a) Given two fixed applied moments at the 
joints (usually through servo motors), find expressions for the equili- 
brium angles 01, 02.  (b) Write a MATLAB program to look at the 
dynamics when constant moments Mi', M ;  are suddenly applied. Add a 
torsional damper to each joint. Choose Mf, M ;  such that the equili- 
brium or final, state is O l ( t  -+ m) = T ,  62( t  -+ m) = 0, with initial 
conditions O1 (0) = n/2, Q2(0) = 0. 

6.23 Leibniz (1646-1716) was a codiscoverer of the calculus along with 
Newton. His name is also associated with one of the first multibody 
dynamics problems shown in Figure P6-23. According to Szabo (1987, 
Appendix), this problem was posed by Mariotte (1620-1684) and a 
solution was discussed by Leibinz. The lower pendulum is assumed to 
remain vertical but can rotate about point A normal to the plane. The 
equation of motion can be derived by Lagrange's equations with {+, $} 
as generalized coordinates. Show that the equation takes the form 

M2 

Y 

Y 

1 

Figure P6-23 
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Figure P6-24 

m11 

-(psin#cos$) m22 

r,g sin 4 
0 

] = o .  

6.24 An elliptically shaped plate is dropped from a height ho at an angle Q 

with zero angular momentum. Given the Newton impact coefficient of 
restitution of E ,  with no friction, find the resulting velocity of the center 
of mass and post impact angular velocity. 

6.25 Suppose the body in Figure P6-24 is an oblate spheroid of radius a and 
the figure shows the cross section through the diameter of the perimeter 
circle. Suppose the material is steel and the half space is granite. Find the 
time of impact duration using the Hertz impact model, for a = 4 cm, 
b = 2 cm, ho = 10 cm, a = 0. 



7 
ORBITAL AND SATELLITE 
DYNAMICS 

7.1 INTRODUCTION 

In the age of the communication revolution and the information superhigh- 
way, it is often forgotten that satellite technology plays an essential role in 
this revolution. In the design of satellite systems (Figure 7-1), the principles of 
dynamics are important in three phases; earth-to-orbit launch, orbit-to-orbit 
transfer, and attitude stability. In this chapter we present only an introduc- 
tion to these problems. The reader who wants a more advanced discussion of 
these topics should consult such monographs as Wiesel (1989), Kane et a1 
(1983), and Rimrott (1988). In addition, there are many books on the physics 
and dynamics of the solar system that treat the dynamics of planets, moons, 
comets, and other natural objects in our solar system. (See e.g., Burns and 
Mathews, 1986). 

Modern dynamics of orbiting bodies in our solar system began with the 
work of Nicolaus Copernicus (1473- 1543), Galileo Galilei (1 564- 1642) and 
Johannes Kepler (1 571 - 1630). Kepler succeeded the Dane, Tycho Brahe 
(1 546- 160 I), as court mathematician in Prague in 160 1. Kepler was fortunate 
to have inherited Tycho’s astronautical observations, and in 1609 he pub- 
lished two laws of orbital motion: the first that the planets had elliptical paths 
around the sun, and the second that the radius vector swept out equal areas 
around the ellipse. Later in 1619 he added a third law relating the period of the 
orbits to the major diameter of the ellipse. As we all know, Sir Isaac Newton 
(1 642- 1727) proposed his famous laws of motion as well as the inverse square 
law of gravitational force with which he was able to derive Kepler’s three laws. 
This legacy is the foundation of modern applied orbital dynamics. 

325 
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W 

Figure 7-1 
Complete Encyclopedia o j  Space Satellites, 1986, p. 173.) 

Sketch of satellite with solar panels and antenna (From G. Caprara, The 

As already discussed in the introduction to Chapter 1, the modern science 
of gravity was changed dramatically by the ideas of Albert Einstein (1879- 
1955), who proposed in his general theory of relativity (1905-1916) that the 
so-called “force of gravity” could be replaced by a curvature of space-time 
induced by gravitational masses. It is interesting to note that Einstein 
developed part of this theory in Prague, 1911-1912, where Kepler and 
Tycho Brahe had worked 300 years earlier. Although this radical revision 
of the theory of gravity changed physics, it has not altered significantly the 
methods of calculation of orbital dynamics based on the Newtonian concept 
of force. The modern theory of gravity, however, did replace the “action at a 
distance” nature of Newtonian theory. Modern theories presume that 
gravitational “forces” propagate at the speed of light, though to date, 
gravitational waves have yet to be measured in our solar system. The 
interested reader should consult the text Gravitation, by Misner, Thorne, 
and Wheeler (1973), or Zee (1989). 

However, the equivalence of inertia and gravitational masses, originally 
proposed by Newton following the observation of Galileo, were confirmed in 
experiments by the Hungarian Baron Roland Eotvos in 1922 to five parts in a 
billion. This equivalence has formed one of the cornerstones of modern 
gravitational theory (see, e.g., Lederman, 1993, 94-95). 

In this chapter we review the Newtonian theory of orbital mechanics. The 
Lagrangian formulation is employed to develop the idea of an equivalent 
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potential energy, using the ignorable angular variable. Orbit transfer is 
discussed next. Finally, rigid-body motions of satellites and their attitude 
or pointing stability will be introduced, as well as tethered satellite dynamics. 

7.2 CENTRAL-FORCE DYNAMICS 

We consider the dynamics of a mass under a vector force always directed 
toward a fixed center (Figure 7-2) .  This assumption approximates the case of 
a small mass near a large spherically symmetric gravitational mass. We 
further assume that the force F can be written in the form 

F = - f ( r ) e ,  

where the position vector is given by r = re,. Newton’s law for this problem is 
given by 

mii = - f ( r ) e ,  

Taking the moment (r x [ 1 )  of both sides of this equation, we arrive at the 

Figure 7-2 Mass particle motion under a central-force attractor. 
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result that the angular momentum H about the force center is conserved, i.e., 

d 
dt r x - mv = r x f ( r ) e r  = 0 

H = r x rnv = constant (7.3) 

The consequence of this result is that the vector direction of H, as well as its 
scalar magnitude, is fixed. Using cylindrical coordinates with the e, axis 
aligned with H, this result states that 

HZ = mrve = constant 

We see that the motion of a mass under a central force is planar. The relation 
in (7.4), however, does not prescribe ZI, = i. To determine i, we must make a 
further assumption about the central-force lawf(r). Central forces in nature 
occur in gravitational problems as well as in the motion of electrical charges 
[See e.g., (4.80b)l. Electrical forces on charged particles may be repulsive or 
attractive, depending on the sign of the change. In the remainder of this 
chapter we focus on gravitational-force problems, which in Newton’s theory 
are always attractive, and follow an inverse-square law, i.e., 

(7.4) 

GMm 
f ( r )  = y2 (7.5) 

where G is the gravitational constant, and M is the mass of the attracting 
fixed-mass center. 

The key to deriving Kepler’s law of elliptic orbits lies in Newton’s 
assumption of an inverse-square force law for gravitation between bodies. 
In the case of a small mass orbiting a large mass, we can use the central-force 
model. Also we can use the fact that the motion is planar and write Newton’s 
law in polar coordinates (see (2.8)), where the position vector of the orbiting 
mass is given by r = rer ,  as shown in Figure 7-2: 

.. mGM 
er mr = -- 

r 2  
or 

(7.6a) 

r 8 + 2 i B = 0  (7.6b) 

The second equation is just the conservation of angular momentum, which 
we can integrate to obtain the scalar form of (7.3), 

(7.7) 
2 ’  r e = h o  
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It is easy to show that ho/2 is the area swept out per unit time. Thus, (7.7) 
states that the area swept out by the radius is a constant, which is another of 
Kepler’s laws. The constant is the angular momentum per unit mass of the 
orbiter. Substituting this expression into (7.6a), we obtain 

.. h i  GM r - T + - = O  
r r2 

This is a nonlinear, second-order differential equation. However, there is a 
dependent variable transformation that will yield a linear differential equa- 
tion, namely, u = l / r .  In order to derive the equation of an ellipse and other 
conic sections, we also have to change the independent variable from time to 
the angle 0, i.e., 

Y = - - = - U ( r O )  . drd0 I 2 .  

d0 dt 
or 

d2r 2 d 2 u  
= -hou 2 d0 (7.9) 

Substituting this expression into (7.8), the radial component of Newton’s law 
becomes 

(7.10) 

where the dependent variable is now the angle 0. This equation has trigono- 
metric solutions that can be written 

(7.11) 

The constants A , &  are determined by the initial radius and angle. This 
equation describes curves that belong to the family of conic sections; circles, 
ellipses, parabolas, and hyperbolas. These curves can be obtained from the 
intersection of a plane and a cone, as shown in Figure 7-3. 

Circular Orbits 

When the orbit is a circle, a much more direct derivation of orbit parameters 
can be obtained using high school physics. In circular motion, the radial 
acceleration, r e 2  = v2/r, must balance the gravitational force per unit mass, 
i.e., 

v 2  GMm m-=- 
r2 
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Figure 7-3 (a) Conic sections, circular, elliptic, hyperbolic orbits under gravitational 
inverse-square law. (b) Geometric parameters of an elliptic orbit about a fixed gravita- 
tional attractor. 
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or 

u = (GM/r) ’ I2  

331 

(7.12) 

Thus the orbiting velocity decreases as the diameter of the circle increases. 
We can also determine the period of the motion T ,  from the law of angular 
momentum. In one orbit, the area swept out is A = m2, so that 

or using (7.12) 

(7.13) 

Thus T 2  is proportional to r 3 ,  which is Kepler’s third law of orbital motion of 
the planets. 

EXAMPLE 7.1 
For the case of a satellite in a circular orbit about the earth we wish to find 
the orbit velocity and period. To remember the gravitational constant GM, 
a clever trick is to set the gravitational force equal to its value on the 
surface of the Earth, i.e., 

GM 
2 m  = mg 
re 

or 

(7.14) 2 GM = gr, 

For re = 6.38 lo6 m, GM = 3.99 lOI4 m3/s2. Thus the velocity for a circular 
orbit using (7.12) is given by 

(7.15) 

Close to the earth’s surface r = re, and 

v = (gre)’’2 = 7906 m/s = 28,460 km/h (17,790 mph) (7.16) 

The period of an orbit at the earth’s surface is T = 84 min. An interesting 
exercise is to find the orbit radius for a geosynchronous orbit where 
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T = 24 h. Thus, we solve for 

GMT* ' I3 
rgeo = (F) 

= 42,260 km (26,410 mi) (7.17) 

Of course rgeo is measured from the earth's center and not the surface. 

Effective Potential of Orbiting Masses 

The orbit problem can be recast in Lagrangian dynamics by expressing the 
gravitational force in terms of a potential function, i.e., 

mGM - d V ( r )  
r 2  dr 

mGM V ( r )  = -- r 

F = - -  - -- 

The Lagrangian then becomes 

C = T - V ( r )  

1 
2 T = - m ( i 2  + r 2 e 2 )  

(7.18) 

(7.19) 

Before deriving the equations of motion, we can first assert that in the 
absence of any dissipation, the total energy and angular momentum are 
conserved, i.e., 

E = T + V = meo = constant 

ho = r 2 e  

or 

(7.20) 

. 2  h i  2GM 2eo=r  $1-- 
r r (7.21) 
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The two terms, V ( r )  + mhi/2r2 can be defined as an effective potential V * ( r ) .  
The effective potential is plotted in Figure 7-4. The energy per unit mass eo is 
related to the value of r at the perigee rp,  where f p  = 0: 

h i  2GM 2eo = - - 
Y P  rP 

(7.22) 

Lagrange's equations have the form 

In the case of a single mass orbiting a fixed gravity center we have 
q1 = r ,  q2 = 8. The two equations of motion, so derived are identical to 
the r ,  0 components of Newton's equations (7.6). From the conservation of 
angular momentum (7.7), we obtain a relationship between d, r .  

In general, when one has an ignorable coordinate, (i.e., dC/% = 0), one 
can define a new Lagrangian in the reduced coordinates (see Goldstein, 198 1, 
p. 352). This new Lagrangian, C*, called a Routhian, now satisfies the 
equation 

= o  (7.24) d dC* dC* 
dt d i  dr  
___-__ 

where 

and 

Thus by using the conservation of angular momentum, we have reduced the 
problem to a single degree of freedom, one with an effective potential energy 
V * ( r ) .  This potential is shown in Figure 7-4. The potential well results from 
the competing 1/r and 1/r2 singularities in V*. The latter dominates near 
r = 0, while the gravitational potential term dominates as r --f oc). The total 
energy per unit mass, eo, satisfies the equation 

m i 2  = 2(meo - v*) >_ o (7.26) 

The effective potential energy is always less than meo, so the orbit is confined 
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Figure 7-4 
curve). 

Effective potential for a particle mass in an inverse-square law attractcr (solid 

to the shaded area in Figure 7-4. This implies the following classification: 

eo < 0; bounded motion (elliptic orbits) 

eo = 0; minimum energy for escape (parabolic orbit) 

eo > 0; unbounded motion (hyperbolic orbit). 

EXAMPLE 7.2 ESCAPE VELOCITY 
The condition for escape from a bounded orbit around the earth is, eo = 0, 
according to Figure 7-4. If we launch a satellite at an altitude A above the 
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surface of the earth, with f = 0, one can use (7.21), along with v,,, = ho / r  
to find the escape velocity, or 

2 2GM 
Vesc = - 

R + A  

(7.27) 

Thus the difference between a tangential velocity for escape and that for a 
circular orbit is a factor of 1.41 or a 41 % increase in velocity. The value of 
the escape velocity for earth when A << R is found using the expression 
for GM: 

GM = gR2 

vesc = (2gRp2 (7.28) 

This value decreases as the launch altitude A is increased relative to R. 
The escape velocities for a number of planetary bodies given in Table 7.1. 

One can also show that the escape velocity for a vertical launch, i.e., 
vo = 0,  is given by the same value as for a tangential launch: 

(7.29) 

TABLE 7-1 Planetary Parameters* 

Escape Relative 
Mean Orbit Mass Velocity Surface Rotation Period 
Radius (AV) kg) (km/s) Gravity (h, days) 

Mercury 
Venus 
Earth 
Mars 
Jupiter 
Saturn 
Uranis 
Neptune 
Pluto 

0.387 
0.723 
1 .ooo 
1.524 
5.203 
9.539 

19.182 
30.058 
39.44 

0.3303 
4.870 
5.976 
0.6421 

1900 
568.8 

102.0 
86.87 

0.013(?) 

4.25 0.38 
10.4 0.88 
11.2 1 .o 
5.02 0.38 

59.6 2.65 
35.5 1.17 
21.3 1.05 
23.3 1.23 

l.l(?) 0.16(?) 

58.65 d 
243.01 d 
23,9345 h 
24.6299 h 
9.841 h (equator) 

10.233 h (equator) 
17.24 h 
16.10 h 
6.387 d 

*Sources: J.A. Burns and M.S. Matthews, Eds., (1986) Satellites, Univ. Arizona Press, Tucson, 
Encyclopedia Britannica, 1964 ed. 
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TABLE 7-2 Solar System Satellite Parameters 

Orbital Semimajor Orbital Period 
Axis (lo6 m) (days) 

Moon (Earth) 
Phobos (Mars) 
Deimos (Mars) 
Metis (Jupiter) 
Ganymede (Jupiter) 
Atlas (Saturn) 
Hyperion (Saturn) 
Triton (Neptune) 

~ ~~ 

384.4 
9.378 

23.459 
127.96 

1070 
137.64 

1481.1 
354.3 

~~ ~ 

27.3217 
0.319 
1.263 
0.2948 
7.155 
0.602 

21.277 
5.877 (Retrograde) 

Orbit-to-Orbit Transfer 

We have seen that a number of orbit problems can be solved using the two 
principles of conservation of energy and angular momentum. Another 
important problem concerns the transfer between two circular coplanar 
orbits, as shown in Figure 7-5. The problem was solved by Walter Hohmann 
in 1925 (see, e.g., Wiesel, 1989). The key idea to transfer from either the 
circular orbit to the ellipse or vice versa is to use an impulsive burn at the 
perigee and apogee points of the ellipse. The thrust capabilities of the satellite 
rockets are assumed to be large enough so that the burn time is very small 
compared to the orbit time N lo2 min. 

To describe the problem in mathematical terms, we define the following 
variables. The radii of the inner and outer circular orbits are rl  , r2 respec- 
tively which are also the perigee and apogee, respectively, of the elliptic orbit. 
The velocities of the two circular orbits are then given by 

u2 = (gR2/r2)Il2 (7.30) 

where R is the radius of the earth or other mass center and g is the 
acceleration of gravity on the surface. 

While the inner circular orbit and the ellipse share the same radius at the 
perigee, the tangential velocities are different. We denote the perigee velocity 
of the ellipse by up, and the apogee velocity by u,. These two velocities are 
related by the conservation of angular momentum on the ellipse, i.e., 

r lup = r2u, = ho (7.31) 

where ho is the specific angular momentum of the ellipse. 
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Figure 7-5 Hohmann orbit-transfer geometry (Example 7.3). 

To determine the specific angular momentum of the elliptic orbit, we can 
use the conservation-of-energy principle; 

= 2eo v, + vg - ~ 

2 2 2gR2 
r 

(7.32) 

At the perigee and apogee points, v, = 0. Also, Vg = up or v, can be replaced 
by ho/r.  Equating the energy at the two exchange points, we can determine ho: 

h i  2gR2 - h2  2gR2 
r!  rl r!  r2 

h i  = 2v:r:jl - p][l - p2]-' 

- 
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or 

ho = JZqr1 [l + p1-ll2 (7.33) 

where, p = rl/r2. Finally, we can calculate the specific impulse (impulse per 
unit mass) 

(?J - q)  = 0 h - u1 = V l ( J Z ( 1  + p p 2  - 11 
r1 P 

(7J2 - w,) = v2 - - h0 = w2[1 - JZP 1/2 ( 1 + p)-'/2] (7.34) 
r2 

EXAMPLE 7.3 HOHMANN TRANSFER 
Find the orbit parameters and specific impulse for a transfer from an earth 
orbit of rl = 6600 km to an orbit of r2 = 7000 km. 

The radius of the earth is assumed to be 6.48 l o6  m, from which we can 
calculate vl, v2. 

v1 = 7.77 km/s, vp = 7.55 km/s (7.35) 

Using the ratio ,B = r l / r 2  = 0.943, determine the specific angular momen- 
tum ho, from which we can calculate the perigree and apogee velocities: 

and the specific impulse per unit mass is, 

(vP - v,) = 0.0146~1 

Similarly, 

and 

Vp - V, = O.OI48Vp (7.36) 

7.3 TWO-BODY PROBLEMS 

In the previous sections, the gravity force center was assumed to be 
immovable, unperturbed by the orbiting mass. This assumption is a reason- 
able one in a two-body problem where one of the masses is orders of 
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Figure 7-6 Two-mass problem with mutual gravitational forces. 

magnitude larger than the other, as in the earth and artificial satellites, or the 
sun and its smaller planets. In this section, we explore the consequences when 
both masses can affect the dynamics of the other. In our solar system, two 
examples are the earth-moon system, and the sun-Jupiter system. 

The geometry of the two-body problem is shown in Figure 7-6. Each mass 
has a position vector r l  , r2 ,  from a fixed reference. The initial gravitational 
forces act along the vector difference r = r l  - r2. The resulting equations of 
motion become 

.. Grnlm:! 
m2r2 = ~ er r 2  

(7.37) 

The center of mass of the system is defined by (m, + m2)rc = mlr l  + m2r2. 
It is easy to see that by adding the two equations of motion the mass center 
must have either a zero or fixed velocity relative to an inertial reference frame. 
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The position vectors p l ,  p2 from the mass center are defined by 

rl = rc + P1, r2 = rc + P2 (7.38) 

These vectors must satisfy 

mlPl  + m2P2 = 0 (7.39) 

.. . 
Further, if we subtract the two equations of motion in the form, rl  - r2 = r, It 
is easy to show that the difference vector r satisfies an equation of motion 
identical to that of a one-body problem 

(7.40) 

Using the definition of the position vectors p l ,  p2, this equation is also 
equivalent to 

(7.41) 

Thus, while each mass is coupled to the other throughout the motion of the 
center of mass, the dynamical equations only involve coordinates of one 
body. Thus, the results of the one-body problem are applicable to the two- 
body case, as illustrated in the following example. 

EXAMPLE 7.4 
To illustrate the application (7.40), assume that the distance between the 
two bodies is a constant, i.e., i = 0. Then we are asked to find the motions 
of the two masses. 

If i = 0, then we have bl = b2 = 0, or the masses orbit in circular paths 
relative to the mass center. Using the equation of motion for r in polar 
coordinates (2.8), it is easy to show that the angular velocity of r or e, is 
given by 

CIRCULAR ORBITS OF TWO BODIES 

G(ml + m2) 
a=( r3 ) (7.42) 

where r = p1 + p2. Using the vector equations for p , ,  p2 in polar coordi- 
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Figure 7-7 Motion of two mutually attracting masses. 

nates, (7.41) we can also show that the two circular velocities are 

A sketch of the two orbits is shown in Figure 7-7. 
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Gravity Force of Extended Bodies 

(7.43) 

The discussion thus far has assumed that each attracting particle is a point 
mass. The analysis of the gravitational dynamics of extended bodies is 
usually dealt with in advanced tests (see, e.g., Wiesel, 1989, or Meirovitch, 
1970), however, a few remarks and an example are worth noting here. First i t  
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can be shown that a spherically symmetric mass distribution acts like a point- 
mass attractor when the other mass center or test mass is outside the sphere. 

An interesting problem results when we consider the test mass to be inside 
the sphere of the extended mass center (Figure 7-8). This can occur if the 
extended mass is gaseous or fluid, or in the case of a long tunnel in a solid- 
mass sphere. This problem has been treated in a classic text on potential 
theory (Kellogg, 1929). He divided the problem of calculating the force on 
the test mass by looking at two subproblems: the force of the mass shell that 
surrounds the test mass, and the force on the test mass due to the sphere 
bounded by the radius of the test mass. Kellogg’s results are succinct enough 
to quote: 

. . . a homogeneous shell attracts a particle at  an exterior point as if the mass of the 
shell were concentrated at  its center, and exercises no force on a particle in its 
interior. 

Figure 7-8 Mass particle m inside a uniform distribution of mass density, p. Separation 
of the problem into an attracting sphere of radius, r ,  and a mass shell with inner and outer 
radii, r ,  R. 
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Figure 7-9 Potential energy of a mass particle inside and outside of a homogeneous 
sphere of mass density, p. 

To make this statement clear, consider a homogeneous sphere of radius R 
and mass density p. The mass is then, M = p47rR3/3, and the force on a 
test mass m is given by 

pG4m 
3 '  -m- . r < R  - - (7.44) 

The force potential is shown in Figure 7-9, and suffers a discontinuity at 
r = R, i.e., 

G 2 n  2 
V ( Y )  = mp-r ; r < R 

3 
(7.45) 

Two applications to gravity dynamics in tunnels in the earth are presented in 
two examples. 
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EXAMPLE 7.5 
Imagine a tunnel dug into the earth from city A to city B such that the path 
forms a straight line as shown in Figure 7-10. Suppose an evacuated tube 
is built, and a vehicle is suspended using magnetic levitation such that 
there is no friction or aerodynamic losses. Then we are asked to find the 
time of travel between A and B and the maximum velocity at the 
midpoint. 

To analyze the problem, we draw a great circle between A, B (assumed 
to lie on a spherical earth). When the vehicle mass is below the surface, 
i.e., r < R,  the gravitational force follows the linear law given in (7.44) and 

THE GRAVITY GRADE TUNNEL 

\ "  

Figure 7-10 Geometry of a vehicle mass in a gravity-grade tunnel in a homogeneous 
sphere (Example 7 . 5 ) .  
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(7.45) and has a potential energy 

mpG2nr2 
3 

V ( r )  = 

r 2  
= mg- 

2R 
(7.46) 

where we have used the identity GM = gR2 and g is the acceleration of 
gravity at r = R. At the midpoint of the trip, the minimum value of r is given 
by 

r m i n  = R cos = R cos - (2) (7.47) 

where So is the trip length at the earth's surface. The maximum velocity is 
then determined from an energy balance: 

or 

(7.48) 

To determine the time of the trip between A and B we can use D'Alem- 
bert's principle of virtual work (4.38) where the vehicle position x is used 
as a generalized coordinate: 

The projection or Jacobian vector is found from the constraint 

r = xe, + (R - A)e ,  

= ex 
ar 
dX 
._ 

The resulting equation of motion, using e, . ex = sin 6, is given by 

g 
R 

X+- r s i n6=0  

(7.49) 

or 

g x + - x = o  
R 

(7.50) 
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Thus the equation of motion is a harmonic oscillator similar to the small 
motion pendulum [see (1.7), (1.8)]. The period is given by T = 2 ~ ( R / g ) ’ / ~ ,  
and it is independent of the distance between A and B. 

For the earth R = 6.4 lo6 m, and r = 84.4 min. However, the trip time 
between A and B is only r /2,  so that the one-way trip time is 42.2 min. 

This calculation was made by Robert Goddard, the rocket pioneer, in 
his design for a magnetically levitated tunnel train to go between several 
east coast cities in the United States. He published this in Scientific 
American in 1909 and applied for a patent much later in the 1940s. 

EXAMPLE 7.6 
There exist several drop tunnels to perform experiments under weight- 
lessness. One facility is at the NASA-Lewis Research Center in Cleveland. 
Suppose we are given a test time to. Then how deep will we have to drill 
the tunnel (Figure 7-1 1) to achieve this specification without additional 
braking depth? 

DESIGN OF FREE FALL TUNNEL 

For radial motion, Newton’s law becomes 

r mi: = -mg- 
R 

t 

(7.51) 

Figure 7-11 
(Example 7.6). 

Geometry in a free fall tunnel in a homogeneous gravitational spehere 
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Starting at r = R at t = 0, the solution is given by 

Thus the tunnel depth is given by 

d = R -  Rcos /; to 

(7.52) 

(7.53) 

For to much smaller than the period 7- = 84 s 

d N g t g / 2  (7.54) 

Thus for to = 1.4 s ,  d = 9.8-m deep or about the height of a three-story 
building. However, for to = 14 s, d = 980 m, without additional depth for 
braking. Such a tunnel exists in an old mine in Hokkaido, Japan, with a 
depth of 2 km. 

Gravitational Torque and Attitude Stability 

This section describes two problems, one theoretical and the other practical. 
The first concerns the gravitational force on an extended nonspherically 
symmetric body (Figure 7-12). Such problems lead to a gravitational torque 
in addition to an attractive force. The second problem of importance to the 
design of orbiting rigid bodies is to determine which orientations are stable 
with respect to the orbit plane. These subjects are discussed in more detail in 
advanced books on space dynamics, such as Rimrott (1988) and Wiesel 
(1989). For the student at the intermediate dynamics level, it is important to 
understand the basic phenomena of attitude stability through a couple of 
examples and to learn some of the mathematical difficulties. 

The reader should be warned that our discussion of stability is based on 
linearized dynamics of a nonlinear system. In many nonlinear systems with 
dissipation there are theorems that validate linear stability theory. However, 
for nondissipative problems, sometimes called Hamiltonian systems, one 
must be careful to deduce long term stability predictions based on lineariza- 
tion, without looking at the nonlinear dynamics. 

Another caution here is the assumption of decoupled rigid body dynamics 
from the orbital problem found even in the advanced books. For short-term 
stability, this assumption may be valid, but the weak coupling between the 
orbit dynamics and the attitude orientation might manifest itself over many 
orbit periods. 

Finally, gravity-gradient attitude stabilization is only one of the tools 
available to the spacecraft engineer. One can also use active methods using 
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Figure 7-12 Motion of a rigid body (satellite) about a gravitational mass attractor. 

pulsed thrusters or torques created by the earth’s magnetic field. Also at low 
orbits, one must take into account high atmospheric drag and drag induced 
torques on the spacecraft. 

With these caveats we examine a few simple examples of a two-mass, 
dumbbell satellite, then look at the results for an orbiting rod, and finally 
derive equations for the torque on a more complex rigid body satellite. 

Center of Gravity 

Consider first the planar motion of a two mass, rigid satellite in the plane of 
the circular orbit shown in Figure 7-13. We make the assumptions that the 
orbit radius r is constant and is unperturbed by the angular motion +( t ) .  (In a 
more advanced analysis this assumption would be relaxed.) It is easy to see in 
this example that the gravitational force on the inner mass rnl, is greater than 
the force on the outer mass m2. This means that the center of gravity is not 
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Figure 7-13 Geometry of a dumbbell satellite in a circular orbit about a gravitational 
attractor. 

located at the center of mass. Thus when q5 # 0, the net gravitational force, 
acting through the center of gravity, produces a torque or force moment 
about the center of mass. 

In this example the center of gravity, YG, is easily calculated for the 
alignment q!~ = 0. The center of gravity is defined by the equation 

(7.55) 
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The center of mass, however, is defined by 

If we define local coordinates r1 = r, - p l ,  r2 = r,  + p2, the center-of-mass 
definition is equivalent to 

mlPl = m2p2 (7.57) 

Expanding l / r i  to second order in p l ,  p2, it is straightforward to arrive at 
the expression 

PPl(P1 + P2) (:>’= 1- 3  r, 2 

where P = ml/(ml + m2). 
For equal masses ,B = 1/2, p1 = p2 = L/2, 

3 L 2  
(:)2=1-&) 

(7.58) 

(7.59) 

For distributed mass in a satellite, the center of mass and center of gravity 
are defined by 

m r dm 
-r r ;  =fT (7.60) 

The example of a rod-shaped satellite of length L is given in Rimrott (1988) 
(see Figure 7-14). When q5 is 0, i.e., the rod is aligned with the radius, 

(7.61) 

This produces a stable restoring moment when q5 # 0, but small. 
However, when q5 = n/2, the center of gravity is behind the satellite-mass 

center and a slight disturbance will produce a 
torque. In this case, the center of gravity is given 

destablizing gravitational 
by 

(7.62) 
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Figure 7-14 Geometry of a rod-shaped rigid body in circular orbit. 

Stability of a Dumbbell Satellite 

The equations of motion for a two-mass satellite in a circular orbit (Figure 
7-130) can be derived using Lagrange’s equations, noting that the motion of 
the satellite occurs in a moving reference frame of the circular orbit. The case 
of unequal masses is left as an exercise. For this example ml  = m2 = m; 
p1 = p2 = L. For a rigid body the kinetic energy is 

1 1 T = - ( 2 m ) ~ : + - H . w  
2 2 

or 

T = m( i :  + r : e 2 )  + mL2(8 - d)2 
The potential energy follows from (7.18) 

(7.63) 
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where 
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r :  = L ~ + Y ~ - ~ ~ , L C O S ~  

r i  = L * + Y ~ + ~ ~ , L C O S ~  (7.64) 

Here we make the assumption that i, = 0, e = 0. However, in a full 
nonlinear analysis, we would include the change in the orbit parameters 
induced by the rigid-body motions. With these assumptions, 4 becomes the 
only generalized coordinate and its equation of motion follows from 
Lagrange’s equation 

or 

(7.65) 

The bracketed term also depends on the angle 4, which for small L/r, is given 
by 

(7.66) 

Substituting this expression into (7.65), we obtain 

sin24 = 0 
3GM 
2r: 

o+-  
For small motions about 4 = 0, we have 

4 = 0  3 GM 4+- 
rf 

or 

4 + 3fl&i5 = 0 (7.67) 

where fl; = GM/r :  is the square of the frequency of the orbit. Thus when the 
satellite is aligned with the radius, its dynamics is neutrally stable and it 
oscillates with a frequency f i  times the orbital frequency. 

When $ = 7r/2, the equation of motion is similar to (7.67), but the sign of 
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the gravitational torque is positive, which leads to an exponentially growing 
solution or instability. 

Rimrott (1988) shows in his book that the same results are obtained for a 
rod-shaped rigid satellite. 

Out of Plane Motion 

It is left as an exercise to derive the linearized equation of motion for small 
motion of the rigid, rod shaped satellite out of the orbital plane. The results 
for out of plane libration, and 4 = 0, for a rod-shaped body are given in 
Rimrott (Figure 7-14): 

4+4R$1C, = 0 (7.68) 

Thus, the libration frequency is twice the orbital frequency of the satellite. 

EXAMPLE 7.7 STABILITY OF A FOUR-MASS CROSS SATELLITE 
It is instructive to investigate the linear stability of the four-mass rigid 
cross satellite (Figure 7-15). We already know that the ml mass pair by 
itself is stable and the m2 mass pair with ml = 0 is unstable near q5 = 0. 
Therefore we determine the combination of { m l ,  m2, L1, L2} ,  for which 
the four-cross is stable. We will show that the equation that governs the 
planar motion is given by 

1 3 4  + 3 ~ : ( / 2  - / I )  cos 4 sin 4 = 0 (7.69) 

where {II,  
In this example, we use the method of D’Alembert’s virtual work, (2.61) 

or (4.38). Since there is only one degree of freedom, 4, this principle takes 
the form 

13 }  are the principal moments of inertia. 

where pi = ari/84. In this example, the position vectors are given by 

rl = rc + L2e2, r2 = rc - L2e2 

r3 = rc - Llel, r4 = rc + Lle2 

The gravity forces all take the form 
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Figure 7-15 Geometry of a four-mass, rigid body satellite in a circular orbit 
(Example 7 .7 ) .  

Using the fact that ael/dq5 = e2 and de,/dq5 = - e l ,  the projection vectors 
are given by 

P1 = 42e11 P2 = L2e1 

P 3  = +en1 P4 = L1e2 

Combining these equations, we arrive at an expression for the general- 
ized force 
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c Fi . pi = GMrcm2L2 cos 4 - - - [ r17 r’i ] 
+ GMr,ml L1 sin 4 - - - [ r’i r’;] 

Using approximations as in (7.66) for Li/rc << 1, 

3GM .pi = --cos4sin4{2ml~: - 
r: 

To compare this to the expression at the beginning of this example, we 
note that /2 = 2m1L:, /1 = 2m2L;, 0; = Gmo/rz. 

Finally, to find the inertial term in D’Alembert’s principle of virtual work, 
we use relations of the form 

v, = vc - ~ ~ 4 e ~  - ~ ~ q j ~ e ~  

m2vl .p ,  = m,~;4 

where l3 = 2mlL: + 2m2L$ is the second moment of inertia about the axis 
normal to the plane. 

Thus we see that for small motions 

(7.70) 

and stability requires l2 - I l  > 0 or 

The general case of (7.69) for a distributed mass rigid body may be found 
in Mierovitch (1970), Rimrott (1988), or Wiesel (1989). 

Dual Spin Satellite Dynamics 

The use of gravitational moments to achieve pointing stability of orbiting 
satellites is only one of several technologies. We recall that a spinning rigid 
body can maintain orientation of the spin axis in a gimbal mounted gyro. To 
achieve both a nonspin platform for instruments and antennas, and gyro 
stabilization, engineers sometimes use a dual spin concept illustrated in 
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Figure 7-16 Sketch of a dual-spin satellite system. 

Figure 7.16. This device consists of a slowly rotating platform, orbiting the 
earth, and an angular momentum storage wheel with a relatively high rate of 
spin. This system can be viewed as a two-body or multi-rigid body system as 
in Chapter 6. 

Dual spin satellites, sometimes called gyrostats [see also Rimrott (1988), 
Chapter 111, have been used on dozens of spacecraft. According to Kinsey et 
al. (1996), a typical size is of the order of a ton with dimensions on the order 
of 2-3 meters in diameter and up to 8 meters in length. 

In operation, the platform and rotor initially have identical spin. Then a 
motor places equal and opposite torques on the two bodies, such that the 
platform despins and the rotor spins up. However, there are known cases 
where a tumbling instability can occur, i.e., nutation, and precession can 
grow in a dynamic instability. This coning motion can cause vibrations that 
can either damage the equipment or prevent stable communication or 
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operation of the satellite. One recent paper which analyzes these instabilities 
is by Kinsey et al. (1996) based on work at UCLA and Cornell University. 

In this section we derive the equations of motion for two-symmetric 
rotors. The case of cross inertias and imbalance in the spin rotor can be found 
in Kinsey et al. (1996). 

Because both bodies share a common axis of rotation we can write the two 
angular velocity vectors 

A 

B 

w = wlel + w2e2 + w ~ e 3  

w = wle l  + w2e2 + wBe3 

Where { e 1 , e 2 , e 3 }  are fixed to the rotor or body B. We consider the two 
motions to be pure rotation about the center of mass of the two bodies. The 
equation of motion can be derived in several ways, Newton-Euler, Lagran- 
ge’s equation, or virtual power. In the case of virtual power, we can use a 
generalization due to Kane in which the generalized velocities are chosen to 
be the set { u j }  = { w l ,  w2, wA ,  wB} and the principle takes the form, 

where 

The { ui} are sometimes called “quasi coordinates” because they cannot be 
integrated to obtain generalized coordinates. Instead, one must use the 
kinematic equations, for example Euler angles in Chapter 5 ,  to relate the 
{ u i }  to angles that give the global orientation. Whatever the method, the 
resulting equations become for equal and opposite torques N = Ne3, 

( H A  f H E )  ’ el = 0 

(HA + H E )  ‘e2 = 0 

H A .  €3 + N = 0 

H E e e 3 - N = 0  

where the last two equations can be replaced by 



358 ORBITAL AND SATELLITE DYNAMICS 

These equations become (with I l  = If i  + I:) 

If the bodies are initially at wo, and the torque N is constant, then the last 
two equations can be integrated to obtain 

N 
= wo +-?/ t ,  

I33 

Thus the first two equations become coupled linear, first order equations with 
time varying coefficients. The rates wl, w2 determine the extent of nutation 
and coning. 

7.5 TETHERED SATELLITES 

Artificial earth satellites have become more complex since the launch of the 
first spherically shaped sputnik in 1957. Deploying antenna, folded solar 
panels, trusslike structures, gyro, and attitude stability wheels have all added 
dynamic complexities to satellite design (see Figure 7-1). One of the latest 
configurations is the tethered satellite pair shown in Figure 7-17. Applica- 
tions for tethered satellites include: 

Orbiting antenna and interferometer 
Upper-atmosphere probes 
Electric power source 
Refueling platform 
Artificial-gravity platform 
Microgravity platform 

This section can only provide an introduction to the dynamics of tethered 
satellites. The interested reader should consult the excellent monograph by 
two Russian experts, Beletsky and Levin (1993). They trace the history of the 
tethered concept back to Tsidkovskii in 1895 and provide detailed analysis of 
modern tethered satellite design. 
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Earth i 
Figure 7-17 Tethered satellite on a cable in orbit. 

An early test of a tethered pair in orbit was the U.S. Gemini I1 tethered to 
an Agena rocket stage in 1966. The pair was set into a rotation rate 13.5 times 
the orbital rate, which produced an artificial gravity. More recently a US.- 
Italian space shuttle experiment deployed a satellite several kilometers from 
the shuttle tethered by a small-diameter cable that transmitted electrical 
power to the shuttle. The cable eventually failed, however. The cause of this 
failure was not known at the time of writing of this book. But it shows that 
designing multibody satellites is still a developing field today. 

Dynamics is not the only problem the designer of a tethered pair must 
consider. According to Beletsky and Levin, other design concerns include: 

0 Tether-cable material strength 
0 Solar and vehicle attraction 
0 Tether bending stiffness 
0 Waves on the tether and tangling 
0 Cable deployment and retrieval 
0 Residual stresses 
0 Internal friction in multifiber or strained cables 
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0 Electrostatic charge effects 
0 Plasma drag 
0 Electric currents in the tether 
0 Air drag 
0 Tether heating 
0 Meteor impact 

Again the reader is guided to the work of Beletsky and Levin, who also 
include 21 5 references on tether research and design. 

Our goal in this section is to show how simple dynamics tools can be used 
to analyze the most elementary motions of an orbiting tethered pair. In this 
task we necessarily make simplifying assumptions. In practice we must 
consider the tether elasticity. Two types of tether motions are related to 
tether deformation: extensional waves, and string or transverse waves. The 
string wave speed v, is related to the tension in the tether, T ,  and the mass 
density per unit length y : 

U, = (T/y) '12 

The extensional wave speed, we, is related to the composite cable Young's 
modulus, Y ,  and the cross-sectional area A; 

v, = ( Y A / Y ) ' / *  

According to Beletsky and Levin, a stainless-steel tether with a tension stress 
equal to 1/10 of the rupture stress would yield v, = 5.0 km/s and 
vt = 0.16 km/s. For a Kevlar composite cable, v, = 9.5 km/s, ut = 0.44 
kmjs. Thus we can see that motions associated with tether deformations 
occur on time scales much smaller than the orbital or libration periods for 
cable lengths of 1-10 km. 

We consider next the simplified problem of a straight, inextensible-cable 
tethered pair. This problem is similar to those studied in Section 7.4, and in 
particular the dumbbell satellite. Further if we neglect the rigid-body 
orientation of the mother ship and the subsatellite, the tethered-pair 
dynamics is identical to rigid-body dynamics of an unequal mass dumbbell 
satellite as long as the cable tension remains positive. In this problem we 
neglect the gravitational force between mA, mB. 

Circular Orbit of a Large Base Satellite 

There are two further assumptions that can be made to obtain a first-order 
analysis of the dynamics of a tethered pair of masses. First if the masses of the 
two coupled satellites are comparable, then a reference system centered at the 
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center of mass would be appropriate. But if one mass is very much larger than 
the subsatellite, as in the U.S.-Italian 1996 space shuttle experiment, then the 
center of mass is almost identical to that of the larger satellite. In this case we 
assume that the orbit of the large mass is not disturbed significantly by the 
smaller tethered mass. 

Second as a matter of mathematical convenience, we examine only the 
case of a circular orbit of the base satellite. The case of an elliptical orbit may 
be found in Beletsky and Levin (1993). We assume that a base satellite of 
mass mB orbits the earth E in the circular orbit shown in Figure 7-1 8 such that 
the following balance law is valid 

G M E  rB rB = -____ 
R 3  

(7.72) 

where rB = -Re,. The mass mB is in circular motion with rotation vector no 
given by 0, = Cloe,, 0; = G M E / R 3 .  We further assume a deployed tethered 
subsatellite of mass mA on an inextensible cable of length p. The equation of 

X 
-. .--- 

Y, Orbit of rn, 
Y 

Figure 7-18 Geometry of earth, base satellite inB, and tethered satellite, M A .  Base satellite 
in a circular orbit. 
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motion of the subsatellite is given by Newton's law 

(7.73) 

where T is the cable-tension vector. 
Our goal in this analysis is to write this equation in rotating coordinates 

moving with the mother ship {ex, ey, ez}. It is also convenient to express the 
vectors in the spherical set of basic vectors { epr  e4, e,} shown in Figure 7-18. 
To rewrite (7.73) in a moving frame of reference, we use the relation (3.18) 
and note that rA = rg + p = Re, + pep. Noting that ho = 0, we obtain, 

a,+ 0, x (no x p)  + 2 n 0  x vp = - q r A  - i 5 + ~  (7.74) 
Y A  

In this equation, a,, and vp are measured with respect to the mother satellite 
reference system. The first two terms on the right represent the gravity 
gradient force f. The term T = -Te, is the cable tension. Using the equation 
of motion for m5 (7.72), this force has the form 

In practical applications, p << R. In this case, Beletsky and Levin (1993) show 
that f is approximately given by 

Using mixed-basis vectors, this takes the form 

(7.75) 

(7.76) 

Using transformation matrices, we can show that the two sets of basis 
vectors are related by the matrix equation 

The equations of motion based on (7.74) can be represented in spherical 
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coordinates using 

P = pep 

v = bep + pqisinye4 + pqe, 

ap = ( f i  - p+ - pd2 sin y)ep 2 2 

+ (p~siny+2bqisiny+2pj.qicosy)e4 

+ ( p y  + 2 j q  - p$2sinycosy)e, (7.78) 

We now have assembled all the equations to derive a set of three coupled 
differential equations for the motion of the tethered mass mA with respect to 
the mother ship mB. The unknowns in this problem are 
{ p ( t ) ,  T ,  y( t ) ,  4( t )} .  If we neglect the elasticity of the cable, then p( t )  is 
prescribed during deployment or reel-in. Once deployed, we can set 
b = f i  = 0, in the preceding equations. The cable tension T ( t )  will vary in 
time with the motion. However, we must check that T > 0 during integration 
of the equations. In the radial equilibrium state we have a balance of the 
gravity-gradient force, the tension, and the centripetal acceleration in (7.74) 

(7.79) 

Thus we see that the cable tension is proportional to the deployed cable 
length. 

It serves no pedagogical purpose to write out the equations of motion, 
given their complexity. There is an exercise in the Problems to use 
MATHEMATICA or other symbolic codes to write out the complete 
equations. 

For small angle y, one can expect pendulum-type motions of the kind we 
examined in Section 7.4 on the dumbbell satellite. Further details of tether 
dynamics may be found in Beletsky and Levin (1993). 

HOMEWORK PROBLEMS 

7.1 The orbit geometry of a central-force, inverse-square-force law includes 
the circle, ellipse, parabolia, and hyperbolia. These curves are often 
referred to as “conic sections” because they result from slicing a right 
circular cone with a plane. 

The geometry of an ellipse is shown in Figure P7- 1. The conic section 
is defined by the constant ratio of r /PD = E ,  where E is called the 
eccentricity. (The origin of r is called thefocus, and the line from which 
PD is measured is called the directrix.) Show that E = 0 for a circle; 
E > 1 for a hyperbola. 
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7.2 

7.3 

7.4 

7.5 

D 

F 
Directrix 

P 

perigee 

b 

1- ‘p +- ‘a - 
Figure P7-1 

)gee 

a 
b 

and perigee For an elliptic orbit (Figure P7-1) show that the apogee 
radii are given by ra = a( 1 + c ) ,  rp = a( 1 - c ) ,  where E is the eccen- 
tricity (see Problem 7-1) and 2a is the major diameter of the ellipse. 

One of Kepler’s laws of orbital motion states that the area swept out per 
unit time is a constant. Use this fact to derive the relation between the 
period of the orbit T and the angular momentum per unit mass h: 

T = 2rrabIh 

(Note that Tab is the area of the ellipse; see Figure P7-1.) 

Electric charges also experience an inverse-square-force law with the 
radial force between two point charges given by 

Assuming that an infinite wire contains a distributed charge of 6 
coulombs per meter (Cjm), derive the force law between a charge Q 
and the distributed charged wire (Figure P7-4). 

For the example of Problem 7-4, assume that the charged wire and point 
charge Q are of opposite charge. Examine the equations of motion of 
the point charge in a plane normal to the wire. Do the equations admit 
closed orbits? 
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7.6 Imagine a satellite in a low-altitude earth orbit with the plane of the 
oribit inclined to the equitorial plane at an angle 4 (see Figure P7-6). 
For small $, show that the radial projection of the orbit onto the earth’s 
surface (or ground-plane projection) is approximately sinusoidal. Cal- 
culate the distance between the points that the orbit shadow crosses the 
equator between two successive orbits. 

7.7 The sun’s diameter is approximately 109 times the diameter of the earth. 
Calculate the center of mass of the sun-Jupiter system as a ratio of the 
sun’s radius. Given the masses and separation distance of the sun and 
Jupiter, find their mutual rotation orbit as a two-body problem, 
assuming circular orbits. (See Example 7.4) 

7.8 Suppose a small satellite is launched from the surface of the earth in 
an equatorial orbit with orbit insertion velocities TJ, = vo sin a,  
v g  = vo cos Q relative to the surface of the earth (Figure P7-8). Find 
the orbit parameters, including the angle of the major axes relative to 
the original launch radius in a fixed frame of reference. 

7.9 For numerical integration of the orbit equations (7.6), using MATLAB, 
it is convenient to use nondimensional variables. Let the radial variable 
r be normalized with respect to the earth’s radius re and the time 
be normalized by the period of a circular orbit near the earth’s 

Figure P7-8 
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surface, i.e., T = 2 ~ ( r 2 / G M ) ’ / ~  [see (7.13)]. Then show that the non- 
dimensional equations of motion become 

‘ 2  2 2  ) : = r e  - 4 ~  / r  

e = -2di/r  

7.10 The following MATLAB program will integrate the orbit equations in 
Problem 7.9. In this code the two second-order polar equations of 
motion are rewritten as a set of first-order equations in time. The 
components of the state vector x are defined by x1 = Y, x2 = i ,  
x3 = 8, x4 = 4, where r ,  8 are defined in Problem 7.9. Examine the 
cases of a circular orbit for x0 = (1, 0 ,  0 ,  27rIT, and an elliptical orbit 
for x0 = [2, 0 ,  0 ,  2IT with a time of integration given by 
t O  = 0, tf = 4. (Note: the code may take too large a time step in the 
case of a circular orbit.) Run the case x0 = [ 1.5, 1 .O, 0 ,  41‘ (Figure P7- 
10). Why does this case give an inclined elliptic orbit? 

MATLAB function 0rbit.m 

function dx = orbit(t,x) 
dx = zeros(4,l); 

dx(2) = x(l) . *  ~ ( 4 1 . ~ 2  - 4 .* pi.-2 . /  x(1).-2; 
dx(3) = x(4); 
dx(4) = -2 .* ~ ( 4 )  .* ~ ( 2 )  . /  ~ ( 1 ) ;  
MATLAB integration program P1otorbit.m 
to = 0; tf =4; 
x0 = [1.5,0,0,41’; 
[t,x] = ode45(’0rbit’,tO,tf,xO); 

dx(1) = x(2); 

polar(x(: ,3) ,x(: ,111 

904 

270 

Figure P7-10 
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7.11 Suppose the gravity-grade tunnel system described in Example 7-5, is a 
circular arc curve instead of a straight chord. Compare the time of travel 
between points A ,  and B on the surface of a homogeneous planet for the 
arc and the straight tunnel (see Figure P7-11). 

7.12 Examine the attitude equilibrium, stability, and vibration of a two-mass 
dumbbell satellite in a circular orbit with unequal masses, ml # m2 
(Figure P7- 12). Consider only planar motions. 

7.13 Analyze the out-of-plane stability and vibrations of the two-mass 
dumbbell satellite with the axis of rotation in the plane of the circular 
orbit (Figure P7-13). Show that the equation of motion is given by (7- 
68). 

7.14 Consider the three-mass orbiting satellite shown in Figure P7- 14. 
Assume that the satellite is in a circular orbit that remains unaffected 
by the satellite oscillations. Determine the planar equilibrium orienta- 
tion of the satellite in orbit. Using the perturbation methods presented 
for the two-mass and four-mass satellite examples, determine the stable 
configurations and natural frequencies for planar oscillations. 

f! 

Figure P7-11 
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Figure P7-12 

Figure P7-13 
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Figure W-14 

7.15 A satellite is in an elliptical orbit about the earth where the apogee and 
perigee are known (Figure P7-15). Find a transfer orbit to get into a 
circular orbit of radius r3. Find expressions for the two Av burns in 
terms of r l ,  r2 ,  r3 ,  r,, g, where re is the radius of the earth. 

Calculate for 

r, = 6400 km. 

r1 = 6600 km, 

r3 = 7000 km. 

r2 = 8000 km. 

7.16 Rendevous Transfer Orbit In Figure P7-16, two satellites are in 
circular orbits r l ,  r2 .  Find a Hohmann transfer orbit and impulse 
rocket burns such that ml will rendezvous with m2. (Hints: (1) Find 
the phase angle between m l ,  and m2 such that they both arrive at the 
same point on orbit, r2 .  (2) Use the relation between the time of orbit 
and area of the elliptic orbit). See Problems 7-1, 7-2, and 7-3. 
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I 

Figure P7-15 

Figure P7-16 
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7.17 A special case of the three-body gravitational dynamics problem is the 
motion of a small mass near the circular orbit of two larger masses 
ml ,  m2 shown in Figure P7-17. In this problem assume that the small 
mass gravity forces have negligible effect on the co-rotating large 
masses. As a further assumption the small mass motions are restricted 
to the orbiting plane of the large masses. Examine the planar dynamics 
of m using a coordinate system located at the center of mass of ml , m2 
and rotating with the two masses with angular velocity given by 
w2 = G(MI + m2)/d3 ,  where d is the separation of the masses 
m l ,  m2. Using Lagange's equations, show that the equations of 
planar motion are given by 

2 2  where U = V - hmw ( x  + y 2 )  and V is the gravitational potential 

V=- Gm -+- (;: ;:I 

Figure P7-17 
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where p: = (x + a)2 + y 2 ,  p: = (x - b)2 + y 2 .  For a complete three- 
dimensional analysis, see Mierovitch, 1970, Chap. 1 1. 

7.18 Using the equations for the restricted three-body problem in Problem 7- 
17, write a MATLAB program to integrate the equations of motion and 
plot the orbits in the rotating x - y plane. Let ml be the earth and m2, 
earth’s moon. Choose initial conditions near the moon and examine 
how far a body can stray from the moon before the earth’s gravitational 
field affects the moon-satellite orbits. 

7.19 In the restricted three-body problem of Problem 7-17, there are five 
equilibrium points known as the Lagrange points { L l ,  L2, L3, L4, L5}. 
Set 2 = j = x = j ,  = 0 in the equation of motion and show that three 
points L 1 ,  L2,  L3 lie on the axis connecting the two larger masses, and 
two other points L4, L5 lie off axis at points forming an equilateral 
triangle with ml, m2. For the earth-moon case, use MATLAB or other 
numerical tools to find {Li}. (See also Mierovitch 1970, chap. 11.) 

7.20 Use MATHEMATICA or other symbolic code to derive equations of 
motion for the tethered satelite described by (7.73)-(7.78). Linearize the 
equations about y = 0 (see Figure 7- 17) and find the natural frequency 
of the tethered satellite. 



ELECTROMECHANICAL 
DYNAMICS: AN INTRODUCTION 
TO MECHATRONICS 

8.1 INTRODUCTION AND APPLICATIONS 

The design of modern machines involves dynamics, control, and intelligence. 
The so-called “smart machine” obtains information about both itself and its 
operating environment, processes this information into commands for 
control, and produces actuation forces and torques to enable the machine 
to move dynamically in space and time to accomplish some desirable goal. 
Examples of smart machines include VCRs, automatic cameras, cruise 
control and air-bag systems in automobiles, robots, flight control systems 
on aircraft, as well as most satellite systems. The control of machines goes 
back to water clocks in the Renaissance and speed controllers on steam 
engines in the nineteenth century. The study of “automatic controlled” 
machines is quite old. However, the modern computer and microchip era has 
introduced a greater capacity for processing information. Also modern 
electronics has enabled both sensing and information-processing hardware 
to be embedded into the machines, whereas in the past they were often 
separate systems, larger than the machines they were supposed to control. 

The integration of dynamic and kinematic elements with sensing, actua- 
tion, and information processing has acquired the name mechatronics. The 
ultimate mechatronics device is the human and animal machine. 

Two applications of mechatronics that span the extremes of scale are 
microelectromechanical systems (MEMS) and magnetically levitated (Mag- 
Lev) trains. MEMS devices have a size scale on the order of one micron 
( 1OP6m) (Figure 8-1), while Mag-Lev vehicles have a scale on the order of 
tens of meters (Figure 8-2). 

374 
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Figure 8-1 Microelectromechanical actuator photo etched in silicon for a turnable 
microaccelerometer. (From S. G. Adams, Design of Electrostatic Actuators to Time the 
Effective StifJess of Micro-Electromechanical Sys tem,  1996.) 

Although controlled machines often contain hydraulic or pneumatic 
actuators, electromagnetic sensors and actuators are increasingly becoming 
important components in the design of smart machines or structures. Yet, 
there are very few textbooks on dynamics that incorporate electromagnetic 
forces (see, e.g., Crandal et al., 1968, or Woodson and Melcher, 1968). In this 
chapter we define several types of electromagnetic forces and demonstrate 
their use in dynamic analysis using either the Newton-Euler or Lagrange 
formulation. The complete study of mechatronics must include sensor 
theory, control theory, microelectronics, and information processing. We 
do not attempt to cover all of these elements. However, a principal 
component of mechatronic design is to be able to incorporate actuation 
forces into the dynamics. Thus, the goal of this chapter is to understand how 
to model several electromagnetic forces and to derive them along with the 
dynamical equations. We also see how an understanding of electromechani- 
cal dynamics can lead to some insights into the design of several application 
devices. 
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Figure 8-2 German Mag-Lev 450-km/h passenger vehicle suspended by feedback 
control magnetic fields. (Moon, 1994.) 

8.2 ELECTRIC AND MAGNETIC FORCES 

There are many different types of electric and magnetic forces. However, 
many books on electromagnetics focus mainly on electric and magnetic fields 
and not very deeply on forces. Oddly, some of the more detailed discussions 
of electromagnetic forces are in old or out-of-print books such as Roter 
(1932) (on magnetic actuators) and Cady (1948) (piezoelectric forces). 

In this chapter we encourage the student to review electromagnetic 
concepts and principles using a good introductory physics book. The basic 
objects upon which electromagnetic forces act are electrons, electric current, 
electric dipoles or polarization, and magnetic dipoles or magnetization. One 
should also review the concepts of electric and magnetic fields, as well as 
electric and magnetic circuit theory. In this book, we use the meter-kilo- 
gram-second-coulomb (MKSC) system of units. In this set of units, forces, 
energy, and power are expressed in newtons, joules and watts respectively. 
Electric units are expressed in amperes, volts, tesla, etc. (see Table 8-1). 
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TABLE 8-1 Electromagnetic Units 

Symbol Physical Quantity MKS Unit 

B 
C 
D 
E 
H 
I 
J 
L 
M 
m 
P 
Q 
9 
R 
V 
EO 

PO 
r 

4 
Q, 

X 

~ ~ ~~ 

Magnetic flux density 
Capacitance 
Electric displacement 
Electric-field intensity 
Magnetic-field intensity 
Electric current 
Current density 
Inductance 
Magnetization density 
Magnetic dipole 
Electric polarization density 
Electric charge 
Electric-charge density 
Electrical resistance 
Electrical voltage 
Permittivity of vacuum 
Magnetic permeability of vacuum 
Electrical conductivity 
Magnetic flux linkages 
Magnetic flux 
Magnetic susceptibility 

tesla 
farad 
coulom bs/meter2 
volts/meter 
ampereslmeter 
amperes or Coulombs/s 
amperes/meter2 
henrys 
amperes/meter 
amperes/meter2 
coulombs/meter2 
coulombs 
coulombs/meter3 
ohms 
volts 
8.854 x 10-l2 farad/meter 
47r lo-' henry/meter 
(ohm. meter)-' 
webers - turns 
webers 
dimensionless 

A special feature of electromechanical dynamics is the introduction of 
additional state variables that describe the state of the electric or magnetic 
circuit. It is often through these added state variables, such as a voltage 
across a capacitor or a magnetic field in an actuator, that control is effected. 
An understanding of the mutual interaction of the mechanical and electrical 
subsystems is the key to optimizing the design of electromechanical systems. 

In electromagnetic systems, we can use either mass-based measures such as 
charge or dipole strength or force measures such as voltage or magnetic-field 
strength as state variables. In a continuum description we often uses char e 

and magnetization density M (A/m). The long-range forces on charges, 
currents, and dipoles are described with auxiliary variables E, D, B, H, 
called, respectively, the electric field, electric displacement, magnetic-field 
density, and magnetic-field strength. Thus, the body force acting on a volume 
element Av with charge density q, is given by 

density q (C/m3), current density J (A/m2), polarization density P (C/m B ), 

or 

AF = qAwE 

f = gE ( N / m 3 )  
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Similarly, the body force per unit volume on a volume element carrying 
current, J, in a magnetic field, B, is given by 

where the force, current, and magnetic field directions are related by f acting 
normal to the plane of J and B. 

The total charge in a finite volume is denoted by Q, and the total force on Q 
in an electric field uniform throughout this volume is given by 

F = Q E  (8.3) 

Thus we can see that the unit for electric field, E is newtons/coulomb. 
Similarly, the total force on a wire element carrying current I (coulombs/s) 
of unit length is 

~ = I X B  (8.4) 

Here, however, the unit o f f  is Njm. If I flows in a closed circuit as shown 
in Figure 8-3, then the total force is given by the integral of I around the 
circuit 

We note in the figure that if B is uniform, then F in (8.5) is zero. Thus a non 
zero force on a closed circuit must involve an inhomogeneous magnetic field. 
The electric force between two charges is given in Chapter 4, (4.80b) as well as 
the force between parallel current filaments (4.80a). 

Motion-induced Voltages 

It is a well-known law of electromagnetics that the motion of an object in a 
magnetic field will produce an electric field and hence a voltage sometimes 
known as a back electromotive force or back emf (Lenz’s law): 

E = v x B  

V, = 1 E . d . t  

For a wire of length t moving perpendicular to a magnetic field 

If the wire carries current I ,  such that the magnetic force is in the same 
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Figure 8-3 Magnetic force on a current element in an electric circuit. 

direction as v, then 

Thus the minus sign in V, indicates that the induced voltage is opposite to the 
voltage that would produce the current I .  Another basic fact is that the 
constant 7, in Vb, F are the same, which can also be shown using Lagrange’s 
equations below. 

EXAMPLE 8.1 VOICE COIL ACTUATOR 
A typical linear magnetic actuator is found in conventional acoustic 
speakers that can also be used as an actuator in other electromechanical 
systems. In this configuration, shown in Figure 8.4, a radial magnetic field 
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Back emf. 

Figure 8-4 Voice-coil actuator and its equivalent circuit showing a velocity-induced 
back-emf voltage source (Example 8.1). 

is produced by a permanent magnet and confined to a magnetic circuit by 
soft iron. In this figure we show only one turn, but in practice the number of 
turns is quite large, e.g., lo3. To derive the equations of motion of the 
coupled system we assume that a voltage applied to the coil produces a 
current 1. Using (8.5) the force on the wire is 

F = f I x B d-t = 27rr~,/e, 

However, once the coil begins to move with velocity x ,  a back emf will be 
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induced according to Lenz’s law, (8.7): 

Adding damping to the moving mass and resistance to the coil circuit, 
Newton’s law and Kirchhoff’s law become 

L i+  R/  = -yX+ V (8.10) 

where y = 27rrB, for one turn and y = 27rrNb for a multiturn coil with an 
average radial field b. This is a linear, third-order system and as such we 
can determine the modes of the system by setting V = 0 and 

The eigenvalues of the system are found to be solutions of 

(ms’ + bs)(Ls + R )  + 7‘s = 0 

When b,  R are small, we find s = 0, s = i i (y2/rnL)’I2. The root s = 0 
implies that x is constant, and the second two roots correspond to an 
oscillatory solution of frequency ( y ’ / n ~ L ) ’ / ~  radians per second (radls). 
Another interesting property of this system can be found by multiplying 
Newton’s law by the velocity x ,  and the circuit equation by the current 1. 
Adding the resulting equations one obtains 

(8.1 1) 

Thus the change in the kinetic plus magnetic energies is increased by the 
applied voltage and decreased by the dissipation losses in the resistor 
and the damper. 

EXAMPLE 8.2 MAGNETIC ACCELERATOR 
Imagine a one-meter-long wire carrying 100 A on a moveable mass of 
rn = 1 kg (Figure 8-5). Suppose a nearby wire receives a sudden large 
current, of the opposite sense to the first, say 10,00OA, which is typical of a 
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Figure 8-5 Simple model of a magnetic-force accelerator. 

small lightning strike. What is the velocity that the mass could attain? The 
equation of motion is given by 

(8.12) 

where a is the length of the wire. 
If we multiply each side of the equation by v = dx/df and integrate with 

respect to time, we obtain a relation between the velocity (assuming a 
zero velocity start) and the initial and final distance between the wires 
(essentially this is a form of conservation of energy): 

or using = IOOA, /2 = -10,00OA, a = 1, rn = 1 

v 2  = 0.4 In(x/xo) 

(8.13) 

If x/xo = 10, then v = 0.96 m/s. 

devices and magnetic rail guns (see, e.g., Moon, 1984). 
This example illustrates the basic principle in magnetic-forming 
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8.3 ELECTROMECHANICAL MATERIAL PROPERTIES 

Some electromechanical devices are based on multicomponent machines 
such as servomotors, generators, solenoid actuators, interferometers, while 
others are based on electromechanical material properties. Devices in this 
category include a large class of sensors such as strain gauges, thermoelectric 
devices, piezoelectric, and magnetostrictive devices. In this section we review 
the basic electric and magnetic material properties and present an introduc- 
tion to a few electromechanical material-based devices. In recent years 
electro-optical, especially solid state laser devices, have become important 
in mechatronic applications. We can only review a few of the more common 
material behavior-based properties here. 

Dielectric and Magnetic Materials 

Electromagnetic materials can not only support charge storage and charge 
transport but also involve electric and magnetic dipoles, sometimes called 
electric polarization or magnetization, respectively. A dipole can be repre- 
sented by a positive and negative charge separated by a small distance, as 
shown schematically in Figure 8-6a. When an electric field is placed across a 
dielectric material, a dipole field, P, is assumed to be induced, and the sum of 
the applied and induced fields are called the electric displacement D: 

D = & o E + P  (8.14) 

In a nondielectric material, D and E are essentially the same fields, related by 
the constant E~ called the electric permittivity of vacuum. For a linear 
nonconducting, dielectric material, the electric polarization is related to the 
applied field, E: 

P = eoqE or D = E ~ (  1 + q)E (8.15) 

Here 7 is called the electric susceptibility. 
In a magnetic material, the magnetic dipole has two models, as shown in 

Figure 8-6b and c. One model is based on the bar magnet in which positive 
and negative magnetic monopoles are imagined to exist at each end of the 
small magnet. In another model, the dipole field is assumed to be generated 
by small current loops or vortices. It is a peculiarity of magnetics that both 
models yield the same magnetic-field structure far from the bar magnet or the 
closed circuit. However, the isolated magnetic monopole is not believed to be 
a real physical object. The dipole model is considered a useful concept. 

The volume dipole magnetization density in a material is denoted by M 
and in linear materials is assumed proportional to the applied field, H: 

M = x H  or B = p o ( l + x ) H  (8.16) 
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1 
( a )  

Figure 8-6 Models for (a) an electric dipole; (b) electric current dipole; (c) a magnetic 
dipole. (Moon, 1994.) 

The constant x is called the magnetic susceptibility and p,. = (1 + x) is 
called the relative permeability. In nonferromagnetic metals such as alumi- 
num or copper, x - O( whereas for linear ferromagnetic silicon-iron 
x N lo3 - lo5. Materials with a large p,., or x, are often compounds or alloys 
of iron, nickel, or cobalt. Many ferromagnetic materials are nonlinear and 
hysteretic, i.e., the relation M(H) is not unique. An example of a nonlinear 
ferromagnetic material is shown in Figure 8-7 for a neodymium-iron-boron 
material. If a strong magnetization exists when H is zero, i.e. M(0) # 0, the 
material is called a permanent magnetic material. However, so-called perma- 
nent magnets can be demagnetized in a large applied field. Permanent 
magnets based on rare-earth and ferromagnetic elements make very strong 
magnetic-field sources of B N 0.5 tesla (T) in free space and B - 1 .O T in a 
closed magnetic circuit. These materials have made possible some very small 
motors and magnetomechanical actuators in mechatronic devices. 

Both dielectric and ferromagnetic materials are sensitive to temperature. 
Thus, for example, rare-earth magnets can suffer spontaneous demagnetiza- 
tion above a critical Curie temperature, which may only be around 1OZoC. 

Recently, materials scientists have developed superconducting permanent 
magnets that can carry fields up to 5 T. 

Resistors and Diodes 

Classic resistive electric materials are assumed to be linear in the relation 
between current density, J, and applied electric field, E: 

E = pJ (8.17) 

where p is called the resistivity. The inverse, 0 = 1 / p ,  is called the electrical 
conductivity. For a lumped-material system we often write a relation between 
the electric voltage, V ,  and the current, I :  

V = RI (8.18) 



8.3 

d 

ELECTROMECHANICAL MATERIAL PROPERTIES 

B 

I I I I I 

H 

3 / 

/ 
/ Neodym ium-iron-boron 

/ 
/ 

/ 
/ 

/ 
/ 

/ M versus H 
/ 

/ Bversus H 
/ 

/ 
/ 

385 

resla 

1.2 

1 .o 

0.8 

0.6 

0.4 

0.2 

Figure 8-7 (a) Magnetic flux density, B, vs. magnetic-field strength, H, for a typical 
ferromagnetic material. (b) B vs. H and M vs. H magnetization curve for commerical rare- 
earth magnet neodymium-iron-boron. 

For a cylinder of length e and cross-sectional area A, 

V = Ee, 

R = $ / A  (8.19) 

Materials that restrict the flow of electricity have values of R in the range of 
1-106 ohms (a). Materials that easily permit the flow of charge, like 

I = J A  
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aluminum and copper are called normal conductors and have resistivity p 
in the range lo-' R . m. These properties also depend on temperature. 

Diodes, Semiconductors, and Superconductors 

Many materials that support charge transport do not fall into the simple 
categories of linear normal conductor or resistor. Exceptions include non- 
linear devices such as diodes or semiconductors and superconductors. 
Diodes are often bilayer composite semiconductor devices that permit 
conduction for a negative voltage and restrict conduction for positive 
voltage. An example of a V(Z) curve for a diode is shown in Figure 8-8. 

Figure 8-8 Current-voltage properties of an ideal diode. 
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Figure 8-9 Electrical resistivity of low-temperature ( T  < 20 K) superconducting wires 
and oxygen-free appear. 

Many other multilayer electric composites are used in modern electronics, 
including numerous transistor devices. (See e.g., Figure 8-1 2). 

Another nonlinear material is the superconductor. This material is 
characterized by the disappearance of resistance at a nonzero temperature, 
usually well below the freezing of water (see Figure 8-9). However, a new 
class of materials called high-temperature superconductors has zero resis- 
tance at the temperature of liquid nitrogen ( T  = 78 K). These materials 
include a compound yttrium-barium-copper-oxide (Y BCO) and are brit- 
tle, ceramic like materials. Metal-like superconductors include niobium- 
titanium, which require a temperature near liquid helium ( T  = 4.2 K). 
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Figure 8-10 Photograph of a magnetically levitated rare-earth magnet with a turbine 
disc above a high-temperature superconducting material at 78 K (YBa, Cu3 0,). 

These materials not only exhibit perfect conductivity (zero resistance) but 
can also trap magnetic flux and are useful for levitation devices, super- 
conducting permanent magnets, and flux-shielding devices (see Figure 8- 10). 

Piezoelectric Materials 

Piezoelectric materials are dielectrics whose electrical properties depend on 
the applied mechanical stresses and strains and whose stress-strain behavior 
depends on the applied electric field or voltage. These materials are widely 
used in so-called “smart structures” for both sensors and actuation. Several 
configurations are shown in Figure 8-1 1. These materials behave anisotro- 
pically in their stress-strain-voltage properties. We do not describe the 
general theory here. One of the most popular materials is lead zirconate 
titanate or PZT. For the simple configuration in Figure 8-1 la, a voltage V is 
applied to the 3 direction and a stress T1 is applied in the horizontal direction. 
We assume that the strain S2 = 0 and that the stress in the vertical direction is 
zero (i.e., T3 = 0). For these conditions a linear relation between stress T 1 ,  
voltage V = E3A,  strain S1, and electric displacement D3 can be found: 

T I  = CS1 - e13E3 

D3 = e13Sl + ~ 3 E 3  (8.20) 

Thus, a voltage can produce a transverse mechanical displacement that can 
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Figure 8-11 (a) Vector components of stress T I ,  elastic strain S,, and electric field E3 in a 
piezoelectric actuator-sensor. (b) Piezoelectric stack actuator. (c) Piezoelectric bender 
actuator. 

serve as an electric piston. Piezo materials come in three forms: 

0 Piezoceramic (e.g., PZT or BaTiOJ 
0 Piezofiber composites 
0 Piezopolymer films (e.g., polyvinyl difluoride or PVDF) 

Piezoceramics are manufactured in so-called “piezostacks,” shown in 
Figure 8-1 Ib, which can produce axial displacement of the order of 400 pm, 
and piezobimorphs or benders (Figure 8-1 lc), which can produce bending 
displacements. Piezopolymer film is easily attached to platelike structures, 
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and can act as a sensor of mechanical motion, but PVDF produces very small 
forces, which are only suitable for small devices. 

8.4 DYNAMIC PRINCIPLES OF ELECTROMAGNETICS 

The basic principles of electromagnetics are embodied in a set of partial 
differential equations called Maxwell’s’ equations. They govern the spatial 
and temporal dynamics of continuous charge, current, polarization and 
magnetization densities as well as the electric- and magnetic-field quantities 
defined earlier. These equations are used to describe phenomena such as wave 
propagation in space, detailed field distributions in and around magnets, and 
capacitor elements. However, in many applications the charges, currents, and 
magnetic fields are confined to material geometries with high aspect ratios 
that we call circuits. Technical systems with electric and magnetic circuits 
constitute an important class of devices in mechatronics, including wire and 
lumped-element circuits, relays, magnetic actuators, and some piezoelectric 
and magnetostrictive devices. Thus, we describe the principles of electro- 
mechanics for circuit systems in the remainder of this chapter. 

One of the consequences of the localization of electric and magnetic fields 
in circuits is that the dynamic principles can be written in the form of 
ordinary differential equations similar to Newton’s laws or Lagrange’s 
equations. However, whereas the electromagnetic forces have clear defini- 
tions in a continuum field problem [as in (8.2) and (8.3)], in circuits the 
determination of these forces is not so direct and often an energy method is 
employed. In the following, we see how such forces can be related to electric- 
and magnetic-energy functions and incorporated in Lagrange’s equations. 

Circuit Elements 

The most primitive circuit elements are resistors, capacitors, and inductors. 
Their respective graphical symbols are shown in Figure 8-12. Intermediate- 
level circuit elements include diodes and transistors. Higher level circuit 
devices include many kinds of amplifiers, switches, and logic circuits. These 
so-called integrated-circuit devices often contain tens and even hundreds of 
the primitive and intermediate-level elements. The dynamical behavior of the 
primitive elements can be formulated using the basic principles of electro- 
magnetics. However, intermediate-level devices are often so complex that 
their behavior is only understood with empirical properties relating input 
variables to output variables. 

Dynamical Equations of Electric and Magnetic Circuits 

The dynamical equations of lumped electromagnetic systems are similar in 
structure to Newton’s laws for mechanical systems. In simple one-degree-of- 

’ Named after British physicist James Clerk Maxwell (1831-1879). 
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Figure 8-12 Basic-electric circuit symbols for lumped electromagnetic components. (a) 
Capacitor. (b) Resistor. (c) Inductor. (d) Ideal diode. (e)  Transistor. (f) Field-effect 
transistor (FET). 

freedom mechanics we have a kinematic relation and a dynamical law, as 
shown below: 

dx 
- = u (Kinematic relation) 
dt 

d - (mu) = F ( x ,  u, t )  
dt 

(Dynamical law) (8.21) 

Electric and magnetic circuits have an analogous structure. Consider, for 
example, the circuit shown in Figure 8-13. The capacitor C, stores electric 
energy and is analogous to the elastic spring. The voltage V across the 
capacitor is related to the electric field, E ,  and the resulting stored charge, Q, 
is related to the voltage by the equation 

V = / E . d l  

Q = C V  (8.22) 
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Figure 8-13 Classic LCR electric circuit with applied voltage. Analog to a spring-mass- 
damper mechanical oscillator. 

The inductor, L, is usually a multiturn-coil-wound device that stores 
magnetic energy and is analogous to the mechanical inertia or kinetic energy 
storage. 

Magneticflux Q, is defined as the integral of the normal component of the 
magnetic field over an area 

Q, = 1 B . n  da (8.23) 

MagneticJRux linkages, 6, in a multiturn coil with N turns is defined by 
d = N @ .  The basic laws for an electric circuit take the form: 

(8.24) dQ - = Z 
dt 

ddJ 
- = V ( 4 ,  I ,  t )  dt 

(Conservation of charge) 

(Faraday-Henry law of flux change) 

Clearly, there are one too many state variables. If we apply Ampere’s law to 



8.4 DYNAMIC PRINCIPLES OF ELECTROMAGNETICS 393 

the inductive device, we can often relate the magnetic flux linkages in the 
magnetic-circuit to the current in the electric circuit, i.e., 

4 = f ( O  (8.25) 

In the case of a linear system 

4 = L I  (8.26) 

where L is called the inductance and in measured in henrys. When the 
magnetic circuit is coupled to a mechanical circuit, the inductance is some- 
times a nonlinear function of the mechanical displacement. 

To close the system, the voltage across the inductor must be related to the 
voltages in the rest of the circuit, e.g., across the resistive, capacitive, and 
applied-voltage device. In electromechanical systems the force on the 
mechanical system must 
For the one-dimensional 
equations takes the form 

relate to the electromechanical state variables. 
system shown in Figure 8-14a the closed set of 

dx 
dt = v  - 

= I  dt 

d (L (x ) r )  = V ( Q ,  I ,  X ,  t )  
dt (8.27) 

This is the basic form of the equations of motion for an electro-mechanical 
or mechatronic system. 

Kirchhofs Circuit Laws Multiloop circuits with passive elements contain- 
ing many inductors and capacitors, are governed by two basic principles, 
called Kirchhofs laws; 

1. The sum of all the currents entering a circuit node must equal zero. 
2. The sum of all the voltage drops around each circuit loop must equal 

the applied voltage sources. 

In the following section we show how these laws can be derived from 
Lagrange’s equations by identifying a magnetic-energy storage function and 
an electric-energy storage function. 
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I 

Figure 8-14 (a) Ferromagnetic, linear magnetic actuator. (b) Geometric arrangement of 
an electromagnet and guideway for a feedback-stabilized Mag-Lev suspension. 
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8.5 LAGRANGE'S EQUATIONS FOR MAGNETIC SYSTEMS 

The direct formation of equations of motion using Newton's law and the 
circuit laws requires explicit knowledge of electromagnetic forces and 
motion-induced voltages. In Chapter 4 we saw how equations of motion 
could be derived from potential- and kinetic-energy functions. In electro- 
mechanical systems we have to identify a set of generalized displacement and 
velocity variables. For electric and magnetic systems the choice of these 
variables is guided by the generalization of the principal of virtual work to 
electromechanical problems [see also Crandall et al, (1968)l. 

In order to formulate a variational principle for magnetomechanical 
systems, we must first outline the concept of a magnetic energy function. 
Consider the system in Figure 8-14a, in which a voltage source V( t )  pumps 
current into multiturn coil wrapped around a ferromagnetic core. 

To get an energy principle we start with the dynamic equation for the 
circuit, assuming that there is no resistance and no mechanical motion. 
Kirchhofs law of voltages requires 

where V is the voltage source and 4 is the magnetic flux linkage through the 
coil. Multiplying the equation by the current I and integrating with respect to 
time we obtain 

We can view the left-hand side as the energy input (IV has units of power) and 
the integral on the right as a change in stored magnetic energy W ( $ ) ,  in which 
we view the current as a function of the flux linkages, i.e., 

Now consider a static problem for a mechanical system under magnetic 
forces produced by an electromagnet. Such problems occur in magnetic- 
bearing support of machine rotors or in magnetic levitation of vehicles (see 
Figure 8-14b). We assume that there are n mechanical generalized displace- 
ments {qk ;  k = 1, 2 , .  . . , N }  and M magnetic fluxes {c+hj; j = 1, 2, .  . . , M } .  
The generalized mechanical forces are assumed to be derivable from an 
elastic energy function V ( q k ) .  For the present discussion we assume that the 
M circuits contain electromagnets, for which we write a magnetic-energy 
function, W ,  that depends not only on the magnetic fluxes in the electro- 
magnets but also on the mechanical displacements, i.e., W = W(q$, qk)  
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The principle of virtual work for electromechanical systems states: 

The change in both mechanical- andmagnetic-energy functions under small changes of 
the independent variables is equal to the change of work done on the system by external 
forces and voltages. 

When electric currents provide energy input, as in magnetic bearings, the 
work done in a small time, dt, is given by the product of current, voltages and 
time: 

C'jV, dt (8.28) 

Here V, is the voltage that drives the current 4 in the j  th circuit. In a circuit 
with only an electromagnet, Faraday's law relates these voltages to the 
change in flux linkage, i.e., 

d4j Jl. - _. 

dt 
so that 

C ' j q  dt = C'j di$] 

(8.29) 

(8.30) 

Thus in the principle of virtual work we vary the magnetic fluxes under fixed 
currents. Such a variation is denoted by Sqbj. The principle of virtual work for 
magnetomechanical systems is then 

C'j&#Ij  = sw + sv (8.31) 

The right-hand side is expanded as follows, noting the functional depen- 
dence, w(4j;., q k ) ,  v (qk ) :  

Because we have assumed that the small variations 6 q k  and 64j are indepen- 
dent, the terms corresponding to each variation on either side of the (8.21) 
must be equal, i.e., 

(8.33) 

Looking at a single-degree-of-freedom problem, as in Figure 8-14, the second 
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equation (8.33) represents a balance of mechanical and magnetic forces. Thus 
the magnetic force must be given by 

(8.34) 

This formula is a very important result. It says that magnetic forces can be 
determined by observing the change in the magnetic energy of the circuit due 
to mechanical displacement q k .  This can be made even more explicit if we 
consider the form of the magnetic energy function for the inductor element 
shown in Figure 8-14. From (8.26) the magnetic flux linkage 4 is related to the 
current by the relation 

4 = LI (8.35) 

where L is the inductance. For one mechanical degree of freedom q, the 
magnetic energy function can be shown to be 

(8.36) 

Thus if W depends on the displacements, it must be through the dependence 
of the inductance L(q) on the displacement. In practical terms, the magnetic 
force of the electromagnet on the mechanical circuit can be determined 
simply by measuring the change of inductance due to displacement. The 
magnetic force is then 

(8.37) 

In applying the force formula (8.34), we note that since 4, q are assumed to 
be independent, 4 is held fixed when we take the derivative with respect to q. 
We note that if q is in an angle, F"' has units of torque. 

When there are several flux paths and more than one current circuit, the 
flux q5i could depend on more than one current, i.e., 

4j = c L - I .  Y J  (8.38) 

and 

1 
2 

w = - ccLoIj4 

Here the diagonal terms of the inductance matrix, Lii, are called sew- 
inductances, and the off diagonal terms, Lii, are called mutual inductances. 
In many systems it is more convenient to choose the currents { r j }  as the 
generalized variables instead of the fluxes. This requires defining the 
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magnetic energy in terms of currents instead of fluxes. Referring to Figure 8- 
15, if the current and flux are uniquely related, 

I = g(4) (8.39) 

then W can be interpreted as the area under the curve g(4). The difference 
between the area I$  and W ( 4 )  defines an area function W * ( I ) ,  

W * ( I )  = I 4  - W ( 4 )  (8.40) 

Thus, if W is changed by a mechanical displacement, the change is also 
reflected in W * ,  i.e., 

d W * = + d I + I d + -  dW 

or 

" /  

(8.41) 

dl 

Figure 8-15 
and differential comagnetic energy dW *. 

Flux linkage 4 vs. current I ,  showing the differential magnetic energy dW 
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W *  is called the comagnetic energyfunction (see also Crandal et al., 1968). 
For a simple electromagnet it is easy to show that this coenergy is given by 

1 
2 

w* = -L(q)12 

and the magnetic force is given by 

(8.42) 

(8.43) 

It is important to note the sign change in (8.41). Using the flux as a state 
variable leads to a minus sign in the force law, and using current implies the 
positive sign. Thus the choice of magnetic variables is important, though 
either choice will lead to the same answer provided one is consistent in the 
force laws. 

For dynamic problems the principle of virtual work is extended in 
D' Alembert's principle, as discussed in Chapter 4. In electromechanical 
dynamics problems we assume that the kinetic-energy function T(qk,  q k )  
is independent of the electric and magnetic variables, such as the fluxes or 
currents. Using the results just derived for a static magnetomechanical 
problem and the results of Chapter 4, the Lagrangian for a magnetomecha- 
nical problem can be shown to take the following form when we choose the 
fluxes as state variables 

(8.44) 

Applying the variations of the mechanical displacements { q k }  with the 
magnetic fluxes held fixed generates the equations of motion for the 
mechanical subsystem 

d d T  dT dV d W  
+-+-=O; k = l ,  2 ,..., N (8.45) 

dt%k dqk dqk dqk 

When it is convenient to use currents, we replace the term (awl&&) with 
- (dW*/dqk)  in Lagrange's equations as in (8.41). 

However, the preceding equations do not generate the circuit equations. 
While we have chosen the fluxes as generalized circuit displacements, we have 
not identified generalized circuit velocities. To do this we now focus the 
discussion on an electromechanical problem with a charge storage device (a 
capacitor) instead of a flux storage inductor, after the following example. 

EXAMPLE 8.3 VARIABLE FREQUENCY SEISMOGRAPH 
To illustrate the magnetic-energy method for magnetomechanical 
dynamics, consider the pendulum shown in Figure 8-16. Pendulum 
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Figure 8-16 Sketch of an electromechanical variable-frequency seismograph 
(Example 8.3). 

systems are often used in seismographs. In the device shown two current 
filaments are used to change the natural frequency of the pendulum. In 
this system we have two circuits with currents 11, 12. In such cases we 
need only consider that part of the magnetic energy that depends on the 
motion 8. The magnetic coenergy can be shown to be given by the mutual 
inductance L(8): 

where L(8)  represents the magnetic-flux threading circuit 2 due to a unit 
current in circuit 1. The magnetic field due to unit current in 1 is given by 
B = p0/27rz. Integration of this flux in the circular area can be shown to be 

L ( Z )  = po[z - (z2 - a 2 ) 112 ] (8.46) 
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The constraint between z and 0 is 

z = ho + R( I  - C w )  

c = - (J, + R2m)8' + /1/2L(Z(e)) - mgz(e) 

and the Lagrangian is 

1 
2 

(8.47) 

where J, is the moment of inertia of the cylinder mass about the center of 
mass. 

Lagrange's equation can then be found to be 

dL 
dz 

(J, + r n ~ ' ) e  + mgR si n e = I, /' - R sin e 

and 

-=+ dL - (1 
dz 

(8.48) 

To maximize the magnetic force, we assume that the gap A is small 
compared with the coil radius a:  

ho = a + A, A/a << 1 

and 

f/,=,- -Po ( 
For small motions, the linearized equation of motion becomes 

(8.49) 

(8.50) 

Thus by varying the relative sign of Ill2, the natural frequency can be 
increased (/1/2 > 0) or decreased (/1/2 < 0) 

Lagrange's Equations for Electric Field Systems 

To motivate the choice of electromagnetic dynamical state variables consider 
the electric circuit in Figure 8-17, with a series-connected voltage source, 
capacitor, and resistor. The capacitor is a device that contains two platelike 
conductors separated by a dielectric material. When a voltage is applied, 
positive charge piles up on one plate and negative charge on the other so that 
an electric field, E ,  exists in the gap between the plates. The integration of the 
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+ Q  

R 

Figure 8-17 Circuit with electric energy storage (capacitor C), electric-energy dissipator 
(resistor R), and electric energy current source V.  

electric field across the gap defines a voltage on the capacitor proportional to 
the total positive charge, Q,  

Q V, = 1’ E dx  = - C (8.51) 

C is called the capacitance. 
If a charge source device puts out a certain rate of charge, Q,  or current, I, 

then the charge continuity principle equates I and dQ/dt  as discussed in 
Section 8.2. The charge source, sometimes called a signal generator or power 
supply, is usually characterized by a voltage time history, V ( t ) .  The dynamic 
principle for an electric circuit states that the applied voltage V must equal 
the sum of voltage drops across the capacitor and in the case of Figure 8-14, 
the resistor, RI. (This is one of Kirchhoff s circuit laws. See page 393) Thus 
the equations of motion for the R-C circuit are 

Q 0 = -RZ - - + V ( t )  
C 

(8.52) 
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Comparing this equation with that for the mechanical system, (8.21) we 
are tempted to choose the charge, Q,  as a generalized “position” state 
variable, and the current I as the generalized “velocity” state variable. 

However, in this analogy, we can see that there is no analog to momentum 
or kinetic energy. If we add an inductor to the circuit, we must add a voltage 
drop across the inductor d(LI ) /d t  where we write the flux linkages in terms of 
the inductance L and current, (8.26). Then the circuit equation has a form 
more analogous to the mechanical system (8.21) 

9 = I  
dt 

- = - R I - - + V ( t )  dLI Q 
dt C 

(8.53) 

Thus, the capacitor, which stores electric charge, acts as a spring or 
potential energy function, while the inductor, which stores magnetic flux, 
acts as a momentum or kinetic energy device. The resistor in (8.53) is 
analogous to a linear damper. 

It is quite natural, then, to propose an electromagnetic Lagrangian C,, 
with Q as a generalized position variable from which we can derive the circuit 
equation (8.53), 

1 2 1Q2 
2 2 c  

c,, = - L I  

(8.54) 

where R = $ R12 = 1 RQ2 is the electromagnetic Rayleigh dissipation func- 
tion similar to the mechanical analog in Chapter 4, and Q is the generalized 
force that, in the case of (8.53), is the voltage V ( t ) .  It is easy to see that 
application of (8.54) to the circuit will yield the Kirchhoff circuit law (8.53). 

The first term in C,, is just the magnetic coenergy W*(Q) = LQ2/2 while 
the second term can be interpreted as an electric energy function, We@). As 
in the case of the magnetic energies, one can define an electric coenergy 
W k (  V )  which is a function of the voltage across the capacitor, V = Q/C, 
instead of a function of the charge Q; 

Use of a Lagrangian formulation for a simple electric circuit would be 
overkill if it cannot be coupled with the mechanical system. It can be shown 
that for the coupled system in Figure 8-18, we can construct a combined 
mechanical and electromagnetic Lagrangian that will yield both Newton’s 
laws and Kirchhoff s laws. In addition, this formulation produces the proper 
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t 
/ 

I 
I )  

Q 
(b) 

Figure 8-18 (a) Coupled electromechanical system: a spring-mass-damper oscillator 
with magnetic- and electric-force actuators. (b) Electric field vs. charge on the variable 
capacitor. 

form of the electric and magnetic forces, as well as the motion-induced 
voltages on the circuit. 

To carry this out in detail, we choose a mechanical variable x ( t )  and a 
charge Q ( t )  on the capacitor as generalized position variables, and write 

(8 .55)  
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d dC dC 6% 
dt di dx dx 

d 8.C dC d R  
d i d o  dQ dQ 

+ - = Q,(t) 

+ - = Q  Q( t (8.56) 

Carrying this calculation one more step in detail yields the equations of 
motion: 

d 
dt 
-(mi) + kx + 6X = F ( t )  

d Q 
- ( L I )  +-+RI = v dt c (8.57) 

Thus we see that the magnetic force is proportional to the change in 
inductance with mechanical displacement and the electric force is propor- 
tional to the change of capacitance with displacement. As in the case of the 
magnetic force formula (8.41), the electric force in the capacitor-based 
actuator can be calculated from either W , * ( V , x )  or W,(Q,x ) .  Using 
Q = C ( x )  V ,  and (8.57), one can easily see that 

where 

1 1 
e - 2  2 

W *  - - C ( x ) V * ,  We = -Q*/C(x)  

The total Lagrangian for the electromechanical system with change as a 
generalized coordinate becomes 

Hidden in the equation is the back emfor motion-induced voltage in the 
circuit. If we expand the left-hand side of (8.57), recognizing that L ( x ( t ) )  is an 
implicit function of time, we obtain 

d dI dL - L I = L - + I - x  dt dt dx  

The second term represents the velocity-induced voltage on the circuit, 
sometimes called a ‘back emf.’ 

These equations can be extended to multiple mechanical degrees of 



406 ELECTROMECHANICAL DYNAMICS: INTRODUCTION TO MECHATRONICS 

freedom and multiple circuits, and is given as an exercise in the Problems. For 
the novitiate to electromechanical systems, however, it is important to first 
understand the examples given in Section 8.6. 

EXAMPLE 8.4 LINEAR ELECTRIC ACTUATOR 
As an application of the capacitance method of calculating electric forces 
consider the nested cylinders with radii a, b, shown in Figure 8-19. This 
configuration could be used in a MEMS device to produce an out-of-plane 
motion. The capacitance between two nested cylinders with a vacuum (or 
air) gap can be calculated by integrating the electric energy density 
cOE2/2  between the cylinders. The stored coenergy in a capacitor is 

(8.59) 

where V is the voltage across the two cylinders. The capacitance is given 
by 

(8.60) 

where ! is the overlap length, i.e., 4? = d - z.  The relation between the 
force and electric coenergy is [see (8.58)] 

(8.61) 

Figure 8-19 Sketch of a MEMS electric force, nonplanar actuator 
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Thus the force tends to pull the inner cylinder into the outer cylinder. Note 
that the force is quadratic in the voltage and independent of the displace- 
ment z. 

8.6 APPLICATIONS 

Electrodynamic Accelerators: Mass Drivers 

Rotating electromechanical devices were developed in the late nineteenth 
century. Linear motion electromechanical devices have received significant 
development in the late twentieth century. These applications include voice 
coil actuators, magnetic hammers, linear induction and synchronous motors, 
and electromagnetic launchers or mass drivers, which have been proposed as 
spacecraft launch systems for the moon or Mars. 

As an example of the application of Lagrange's equations to electrome- 
chanics, we consider the acceleration of a passive conducting body by a 
neighboring coil with active currents, as shown in Figure 8-20. This simple 
problem incorporates the basic physics of a magnetic hummer. The driven coil 
can be an aluminum plate that is thrown against a die and formed into a 
shape. Here we want to transfer magnetic energy into kinetic energy. 

The two-coil accelerator is modeled as two circuits shown in Figure 8-16. 
The driving circuit is assumed to have a voltage power supply, a resistance R, 
and self-inductance L1 1. The flux generated by the flow of current ZI ( t )  also 
links the passive coil circuit. The moving or passive coil is assumed to have a 
resistance R2 and self-inductance L22. The part of the flux generated by Z 2 ( t )  

Figure 8-20 Two-coil magnetic accelerator. (a) Geometry of physical system. (b) 
Equivalent circuit of driver and accelerating coils. 
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is assumed to link the driven coil. The colinkage of fluxes is described by a 
mutual inductance L12(x),  which depends on the relative distance x ( t )  
between the two coils. The mutual inductance appears as a coefficient in 
the magnetic coenergy function. 

To obtain the equations of motion for the moving coil and the two circuits, 
we choose x(  t )  as a generalized position variable, and Il ( t ) ,  12( t )  as general- 
ized velocity variables. Since we do not have any assumed capacitance 
devices, we can use 11, I2 instead of Q l ,  Q2 in the equations. There are 
also no assumed gravity or elastic forces. The Lagrangian for the system is 
just the kinetic and magnetic energy functions: 

C = T +  W*(I1,12,X) 

where 

(8 .63)  1 . 2  T = - mx 
2 

To account for the resistance or energy dissipation, we write down a Rayleigh 
dissipation function 

(8.64) 

The general form of the equations of motion are 

d d C  dC d R  
+ - = O  

d t a i  ax ai 

d dC aR 
-- +-=v 
dt all all 

d 8 C  aR ---+-=O (8.65)  
dt 81, ar2 

In the second equation, V represents the generalized force corresponding 
to the generalized velocity I I .  This term was obtained using the principle 
developed in Chapter 4 by writing the power input to the system which is 
VI1 = V Q l .  The coefficient of Q is the generalized force in the second 
equation. 

The specific form of the equations can be written provided that we 
recognize that L 1 2 ( x ( t ) )  is an explicit function of x ( t )  and an implicit function 
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of time: 

409 

mx = Z ~ Z ~ L { ~ ( X )  

LllZi + L12i2 +Rlzl + 12L{2X = V ( t )  (8.66) 

L12Zl + L22I2 + R212 + I1 Li2X = 0 

The equation of L12(x) can be obtained from tables of inductance 
functions in handbooks or can be calculated numerically. A typical mutual 
inductance gradient L',~(x) is shown in Figure 8-21. We can see that this 
function is highly nonlinear. Also the terms Z2X and Z l i  are nonlinear terms in 
the second and third equations in (8.49). 

As a special case, we assume that the current ZI ( t )  is specified instead of the 
voltage V( t ) .  This eliminates one of the equations, and we can write the 
equations as a set of first-order differential equations suitable for a numerical 
integration routine. (The student is encouraged to try this using the integra- 
tion routine MATLAB ode23 or ode45 or similar integration software.) 

dx _ -  - v  dt 

"t 

(8.67) 

Figure 8-21 
distance. 

Normalized magnetic force between two coaxial circular coils vs. axial 
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As a special case, we assume a pulsed half-sine wave in the drive coil: 

(8.68) 
. Tt  

TO 
I1 = ZOsin--, 0 5 t 5 T ~ ,  Il = 0, t > ro 

The time history of the coil velocity w ( t )  and the induced current Z2(t) is 
shown in Figure 8-22. It is of interest to note the current reversal at the end of 

I I I I I I I I I I I I I I I l l  I I;. 
Time 

(4 

Figure 8-22 Dynamic response of an accelerated coil (Figure 8-21) due to half-sine 
pulsed current in the driver coil: (a) Induced current in accelerated coil vs. time. (b)  Axial 
velocity of accelerated coil vs. time. 
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the drive-coil pulse. This current reversal decreases the maximum attainable 
terminal mass velocity 

The change in velocity can be calculated using impulse methods discussed 
in Chapter 2: 

(8.69) 

We can see here that if I2 becomes negative, the terminal velocity will be 
reduced. 

Vibrations of a Levitated Superconducting Coil 

One of the exciting transportation technologies to emerge in the late 
Twentieth Century is magnetically levitated vehicles and trains, or Mag- 
Lev (see Figure 8-2). In this example we discuss the vibration dynamics of a 
Mag-Lev vehicle that carries superconducting magnets (see also Moon, 
1994). The levitation forces are generated when a current-carrying super- 
conducting coil moves over a normal conductor. In the example here, we 
assume that the coil moves over a thin conducting sheet, as shown in Figure 8- 
23. The steady design height of the coil above the guideway is ho and the 
perturbed heave displacement is u( t )  so that the total coil-track gap is h( t ) ,  

h ( t )  = ho + u( t )  (8.70) 

Our goal here is to find the natural frequency of the vehicle when it is 

Figure 8-23 Levitated superconducting coil moving above a thin planar conducting 
sheet. 
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disturbed. We show the direct method, which is based on Newton’s law and 
the perturbation of the magnetic-force function. 

In the direct method the magnetic lift force, F ( h ) ,  is approximated by the 
first two terms in a Taylor series. 

The equation of motion for the one-degree-of-freedom problem is 

mh = F ( h )  - m g  
or 

(8.71) 

(8.72) 

where the derivative is evaluated at h = ho. As an example, we consider a 
moving current element of length b and carrying I Ampere-turns of current. 
The levitation force, h as the form 

At equilibrium the lift force should balance the gravitation force: 

Po 2f(blho) = m g  (8.74) 

It is straightforward to show that 

u = o  u - g -  .. dlogf 
dh (8.75) 

If we assume that the perturbed motion is sinusoidal, 

u(t)  = A cos(wt + 9 0 )  (8.76) 

then the natural frequency takes the form 

(8.77) 

or that the natural frequency of a levitated vehicle is independent of the mass. 
For example, the steady levitated force of a moving wire over a thin 
conducting sheet with velocity uo, is given by (see, e.g., Moon, 1994) 

(8.78) 
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where w = 2/(p0aA) is a characteristic velocity, CJ is the sheet conductivity, 
and A is the sheet thickness. Using (8.77), the natural frequency is 

w =  (:)I (8.79) 

This means that the natural frequency of a levitated coil over a sheet 
guideway is the same as a pendulum with length equal to the gap ho. 

Microelectromechanical Accelerometer 

Microelectromechanical systems (MEMS) involve the etching of 1-10 pm 
scale mechanical devices in silicon using photolithography technologies. This 
example is taken from the doctoral thesis of S. G. Adams (1996) at Cornell 
University (see also S. Adams et al., 1995.) The object of this study was to 
design and fabricate a miniature MEMS accelerometer with a tunable 
natural frequency. The small size of the device makes it suitable for 
embedding in a machine or structural component for use as an acceler- 
ometer. 

A photomicrograph of the device is shown in Figure 8-1. 
The platelike arms serve two functions: (1) to provide a plate electrode for 

a capacitor or electric-energy storage, and (2) to provide elastic or mechan- 
ical stiffness. A simplified model of the device is shown in Figure 8-24. The 
stator plates of the capacitor are grounded by a voltage V relative to the 
grounded stator. Although the flexible structure has many modes of vibra- 
tion, we consider a model with only one degree of freedom denoted by x ( t )  
that describes the lateral motion of the center plate m in Figure 8-24. 

According to the electric-energy formulation of electromechanics (8.58), 
the electric force between the positive charge on the moving plate and the 
negative charges on the stator plates of the capacitor is given by 

dW * (  v, x) F e  = 
d X  

and the equation of motion of the moving plate is given by 

8W* 
m x + k x = -  

d X  

The electric energy stored in a capacitor volume is given by 

W *  = / 2 ~ O E 2  1 dv 

(8.80) 

(8.81) 

(8.82) 

where E is the electric field and E is the electric permittivity (see, e.g., Jackson, 
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Figure 8-24 Model for a MEMS electric force actuator (see also Figure 1-8). 

1962). The electric field is related to the voltage by 

V =  E . d C = E d  ( 8 . 8 3 )  s 
where d is the gap between the plates. If the area of the plate is denoted by A ,  
then the expression for W*( V ,  x )  is given by 

w* = - V 2 A [ - + - ]  EO 1 1 
2 d o - x  do+x 

or 

(8.84) 

where E~ is the permittivity of vacuum, and do is the initial gap between the 
plates. The electric force that results is a nonlinear function of the displace- 
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ment x and a quadratic nonlinear function of the voltage V :  

V 2 A  X 
F e  = Eo- 

do (1 - X 2 / d 2 ) 2  
(8.85) 

For small motions compared to the gap we can expand the force in a Taylor 
series and obtain a negative electric stiffness, K :  

mx + kx = KX (8.86) 

where 

2 
K = EO V2A/do = co V 

When the mechanical stiffness is greater than the negative electric stiffness, 
k > K ,  there exists a sinusoidal notion x(t) = Bcoswt, where the natural 
frequency can be tuned, depending on the square of the applied voltage, i.e., 

w 2  = ( k  - coV 2 ) / m  (8.87) 

This behavior was obtained for a MEMS device similar to that shown in 
Figure 8-1, and experimental results are shown in Figure 8-25 (Adams, 1996). 
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Figure 8-25 
Figure 8-1, Equation 8-24, Example 8.5) (Adams, 1986). 

Natural frequency squared vs. voltage squared for a MEMS actuator (see 
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8.7 CONTROL DYNAMICS 

The introduction of control in the dynamics of machines implies that the 
engineer wants to design the dynamical behavior to fit some specifications. 
Among the control objectives control designers often use are: 

0 Maintain position, velocity, or rpm 
0 Damp out unwanted motions 
0 Keep the device close to a given trajectory 
0 Stabilize an otherwise unstable motion 
0 Optimize for minimum time 
0 Optimize for minimum energy or fuel 

The methods to achieve these objectives are different from those used in 
traditional dynamic analysis. That is why dynamics and control are usually 
taught in different courses and textbooks. But in the new age of mecha- 
tronics, knowledge of both systems of analysis in control and dynamics are 
beginning to merge. This section can only give an example of how control and 
dynamics interact. 

The conventional view of a dynamical system from the control analyst is 
captured in Figure 8-26. The uncontrolled machine is represented by the box 
calledplant, while the control engineer’s contribution is contained in the box 
called control. This representation is not always unique. The control box can 
also be split into a sensor system, control law, and actuator power supply. An 
example of a controlled machine is the two link robot arm shown in Figure 8- 
27, shown with a linear magnetic actuator. In practice there would be another 
actuator at the rotary joint, but for simplicity we have replaced the actuator 
with an elastic spring. Thus the plant in this case consists of a two-degree-of- 
freedom mechanical system and a double-loop electric circuit. The two 
systems are connected with a magnetic force and motion-induced back 
emfs in the circuits V b , ,  v b 2 ,  similar to (8.10) in Example 8.1. 

A simple control objective here would be: given a disturbance of the 
“arm,” damp out the vibration in a shorter time than natural viscous or 
aerodynamic damping. To meet this goal a classic control engineer would 
measure some or all of the state variables in the plant {x, i, 8, 8, I ] ,  12) 
and introduce a control voltage in the circuit V, that is proportional 
to some or all of these variables. Such a method is known as linear, 
analog, state feedback control. Thus, if z is an N-dimensional state vector, 
then 

where G is an N-dimensional control gain vector. 
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Figure 8-26 Input-output model of a mechanical system (plant) with a feedback 
controller (sensor-control electronics-actuators). 
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Figure 8-27 Two-link arm with linear magnetic actuator. 
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The procedure for analysis involves several steps: 

0 Develop physical model for the magnetic force and back emf. 
0 Derive dynamical equations of motion, including the electric drive 

circuit. 
0 Decide on control strategy, e.g., analog, digital, adaptive. 
0 Optimize the control gains to meet specifications. 
0 Check stability of the closed-loop system. 

Obviously the focus of this book is on the first two tasks. However, to give 
an example of the procedure, we write the overall equation for the system in 
Figure 8-27. The dynamics of the system are similar to that in Example 4.7, 
except we have added a torsional spring. The equation takes the form of a 
multibody system, (p2 locates the mass center for m2). 

+m2g[  0 ] = [ "':%] (8.88) 
-p2 sin t3 

These equations were derived using a magnetic energy assumption in 
Lagrange's equations (8.45): 

and Z2 = constant. For simplicity, we assume 

L12 = Lo - Ax (8.89) 

To introduce control we consider two problems: in the first case, the 
position t3 = 0 is stable (k2 > m2gp2) and we wish to introduce active 
damping; in the second case, (k2 < m2gp2) and the 0 = 0 position is statically 
unstable. In this case, control is used to stabilize the system about 0 = 0. In 
either problem, the system as written is nonlinear in the terms e2, sin0. In 
many dynamical systems stability can be established for the linearized 
system. There are exceptions, however, where nonlinear terms are essential 
(see, e.g., Guckenheimer and Holmes, 1983). We make the classic assumption 
and linearize the system about t3 = 0. 

Next we introduce the control law. Many modern technologies use digital 
control methods. We assume analog control and assume that we can produce 
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a control voltage proportional to the state variable, i.e., 

V, = G ~ x  + G2X + G36 + G4b + G511 

Other control laws are possible, including terms proportional to the integral 
of some of the state variables. The gains { G j }  involve both sensor and power- 
supply parameters. 

The job of the control designer is to choose a control law (e.g., pick the 
gains {Gi}) that will produce damping in the system without driving the 
system unstable. For an introduction to some of these methods, review an 
introductory control test such as Ogata (1987). 

In many magnetic actuators the voltage induced by the self-inductance 
LllZl is small compared to RII l  for low enough frequencies. Thus, in this 
approximation we can reduce the order of the system by replacing the current 
Il in the force relation by 

RlIl = V, + Z2XX (8.90) 

If we try a control law V, = G2x + G4b, these linearlized equations become 

(8.91) 

First we see that the induced voltage due to Lenz’s law introduces a 
“natural” damping I ;X2/R1.  Second the control law has introduced an 
“active” damping through the gains G2,  G4. It should be noted that in 
neglecting L l l i l  we must be careful, since at high frequencies this term can 
lead to instabilities in the control system. 

The use of the proportional gains G 1 ,  G3 will introduce control stiffness 
terms into the system. An example is given below. 

EXAMPLE 8.5 
There are two types of magnetic levitation. Passive diamagnetic, super- 
conducting and eddy current systems do not require active control for 
stability. However, electromagnetic levitation systems (EML) are inher- 
ently unstable without control as a consequence of a basic theorem of 
electromagnetics called farnshaw’s theorem (see Moon, 1994). A typical 
EML system is shown in Figure 8-28. The engineer is asked to find a 
control law that will make the suspended mass stable, i.e., the system will 
exhibit positive stiffness and damping. The equations of motion of the 

ACTIVE CONTROLLED MAGNETIC LEVITATION 
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Figure 8-28 Electromagnetic feedback controlled suspension system or magnetic bear- 
ing (Example 8.6). 

suspended mass and the electromagnet circuit are 

rnz = rng + F, 

N 6  = -RI + v, + v, (8.92) 

where V,, V, are dc and control voltages, respectively, and N is the 
number of turns in the circuit. 
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The magnetic flux Q, in the gap can be related to current through an 
application of Ampere’s law: 

In the air gap B = poH, Q, = BA, where A is the area of the magnet pole. 
These equations result in 

Q, = N I / R  

2z 
R=Rt,+- 

PO A 
(8.93) 

R is called the magnetic reluctance and is the sum of the reluctance in the 
iron Rfe and the gap. The magnetic force can be derived from the concept 
of magnetic stress 

(8.94) 

where we integrate across the two gaps. This method leads to the relation 

(8.95) 

In the equation (8.92) Vo provides the gravity equilibrating force where 

mg=- 
POA% 

(8.96) 

where z = zo is the equilibrium position. However, Earnshaw’s theorem 
tells us that with V, = 0, the perturbed system will have negative magnetic 
stiffness and will be unstable. To introduce control we write a linearized 
set of equations and add a state-variable control: 

z = zo + h( t )  

I = I0 + c ( t )  

R = Ro + R,h( t )  (8.97) 
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We also expand the nonlinear force expression 

The coupled linearized equations then take the form 

(8.98) 

(8.99) 

We now introduce the following control law 

V, = GI h + G2h + G3b (8.100) 

(The use of acceleration feedback G3b is equivalent to using the state 
variable I )  

These equations can be rewritten in simplified notation 

C + YC = r , h  + (17, + 6)h + r3b (8.101) 

where {TI, r2, r3} are the control gains. Note that with c = 0, the gap 
variable h(t)  grows exponentially. This system of equations can be solved 
using the Laplace transform, or more simply by looking for a solution of 
the form 

To achieve stability, we choose rl, r2, r3 such that the control force -pE: 
appears as if it were a restoring spring and damper: 

-BE: = - kh - bsh (8.102) 

where k is similar to a spring constant and b is a damping constant. This 
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choice is achieved by setting the gains to the following values: 

rl = kT/P 

r 2  = -6 + ( k  + yb)/P 

r3 = blP (8.103) 

For stability we require that k > a', i.e. the control stiffness k must be 
greater than the negative magnetic stiffness a2. In terms of our original 
physical variables, we require 

(8.104) 

There are many other control schemes that could achieve the same 
objective, including so-called digital control methods. There are also 
control methods that can account for the nonlinear nature of the problem. 

HOMEWORK PROBLEMS 

8.1 

8.2 

8.3 

8.4 

Consider a rectangular coil with current ZI in a uniform magnetic field 
Bo as shown in Figure P8-1. 
(a) Calculate the torque about the x axis. (Note that the current 

elements AD, BC do not create a torque about OO'.) 
(b) Show that the back emf in the coil due to its motion is given by 

2abeBo sin 8. Also show that this voltage can be calculated by using 
either the rate of change of magnetic flux normal to the plane of the 
coil or by using the basic formula for the back emf, (8.6), (8.7). 

In the Problem 8.1, assume that the current II is held fixed. Derive an 
equation of motion near I9 = 0. Find the natural frequency. What is the 
magnetic torsional stiffness? 

In Problem 8.2, assume that the current Il is produced in a circuit with 
constant voltage Vo and resistence R. Derive the coupled equations of 
motion for e ( t ) ,  Il ( t ) .  Neglect the self-inductance. For I9 N 0, find a 
solution for the free vibration. 

Consider two long current filament wires carrying equal and opposite 
currents I,, as shown in Figure P8-4. Nearby a rectangular coil with 
current I I  is constrained to rotate about an axis parallel to the Zo pair. 
Derive an expression for the torque on the coil ABCD due to the long 
current filament pair. (Hint :  The magnetic forces on the elements 
AD, BC do not produce torques about the axis.) 
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Figure P8-1 

z 

Figure PS-4 
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n 
I 

Figure P8-6 

8.5 

8.6 

8.7 

8.8 

Suppose the current Il in Problem 8.4 is produced by a circuit with 
applied voltage V and resistance R. Derive the coupled equations of 
motion for O( t ) ,  I (  t ) .  (Neglect the self inductance.) 

A magnetic actuator is shown in Figure P8-6. The inductance is 
assumed to vary as a linear function of the position of the ferromagnetic 
plunger x( t ) ,  i.e., L = Lo + Llx .  If the magnetic energy is given by 
W = ( 1/2)L12, derive the equations of motion for both the position of 
the actuator mass and the current in the circuit. Assume that the voltage 
V ( t )  is a known function of time. 

In Problem 8.6, suppose V ( t )  is chosen to make the current constant. 
Suppose m = 100 gm, L1 = 2 Him, I = 100 A. Find the accelera- 
tion of the mass. 

Lift Force of a Permanent Magnet Permanent magnets are used in 
many magnetomechanical devices, yet the calculation of the pulling or 
lifting force is not easily obtained from the magnet characteristics. In 
this problem use the magnetization curve in Figure P8-8 for neody- 
mium-iron-boron, which is a popular permanent magnet material. 
Now consider the magnetic circuit shown in Figure P8-8. A soft 
ferromagnetic material (e.g., silicon-iron) guides the magnetic flux so 
that it enters the mass m. The magnetic energy is approximately given by 
W,,, = (1/2p0)BiA,2A, where Bg is the magnetic-field density in the 
gap and A,  is the gap area. Then since there is no current encircling the 
magnetic circuit, Ampere’s law can be shown to relate H,,, in the 
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line \ 

Permanent magnet 

I 

-1 .O T 

Figure PS-8 

VF 

permanent magnet to the field in the gap by 

/,~oH,l, + 2ABg = 0 

This relation is known as the loud line. By the conservation of magnetic 
flux, we also have B A = B,A,. In this problem assume that A, = A,. 

For A ,  = 1 cm , B, = 1.0 T,  pOHc = 1.0 T, A = 1 mm. Find the 
force in the mass. (Hint : Use the load line together with the demagne- 
tization law in Figure P8-8 to eliminate H,.) 

8.9 A model for a direct-current (dc) motor is shown in Figure P8-9. A 
geometric device, known as a commutator switches the current in the 
armature coil when Q > 7r/2, so that the torque is given by T = IB,lu2r, 
where l, is the length of the armature coil. In addition, the moving coil 
element in a magnetic fluid generates a back emf given by 
Vb = -2rdB,e,. If the gap field B, is held fixed, the torque and back 
emf for a multiturn coil may be expressed by T = al ,  Vb = -aQ. Show 
that the equations of motion for the dc motor are given by 

2, 

J e + b e =  a I +  TL 
LZ + RI + ae = V ( t )  

where V ( t )  is the armature drive voltage; L and R, the armature cod 
inductance and resistance; b is the viscous torque; and TL the load 
torque on the rotor. 

8.10 Energy-limited Vibration Excitation A dc motor drives an excentric 
mass mo as it rotates to produce a sinusoidal excitation on the linear 
spring-mass-damper system shown in Figure P8- 10. Derive the 
coupled equations of motion for Q ( t ) ,  x ( t ) ,  I ( t )  when the armature 
circuit for I ( t )  is driven by a constant voltage Vo. (Hint : Find the torque 
on the rotating mass due to the vibration . x ( t ) . )  Under what conditions 
will R = 0 be approximately constant? 
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I Figure P8-9 

rn 

Figure P8-10 

8.11 Consider the circuit in Figure P8-11. Choose the currents in each leg 
I,, I2 as generalized velocities. Write the Lagrangian for the coupled 
loops. Show that the equations of motion are analogous to two masses 
coupled by a spring. (Hint:  Show that C = (1/2)(L1Q; + L2Q:- 
( Q i  - Qd2/c.) 



428 ELECTROMECHANICAL DYNAMICS: INTRODUCTION TO MECHATRONICS 

Figure P8-11 

8.12 Two plates of a capacitor, one rectangular and one triangular shaped, 
separated by a gap, D, act as an electric actuator for a microelectro- 
mechanical mechanism (Figure P8- 12). Assume that the capacitance is 
proportional to the overlap area A ( s ) ,  where s = so + x ( t )  and 
C = E ~ A ( s ) / A .  Using an electric-energy function We = Q2/2C(s), 

Figure PS-12 
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derive the equations of motion using Lagrange's equations for the 
generalized variables x( t ) ,  Q(t ) .  Assume that the capacitor circuit has a 
resistance R and an applied voltage V ( t ) .  (Hint : Show that the electric 
actuation force in the x-direction is given by F, = 2V2~o(so  + x)/A&.) 

8.13 A concentrated mass, with charge Q, is supported by a linear spring. 
The charge is brought close to a grounded conducting surface. The 
induced charge distribution on the surface produces a field near Q that 
is equivalent to an image charge below the surface (Figure P8- 13). If the 
unstretched spring length is zo, derive an equation of motion for the 
motion of the mass with charge. For what values of the spring constant 
is the system statically stable? 

8.14 The electric force between two charges is an inverse-square law. Show 
that the force between two parallel-line distributions of charge with 
el, Q2 cjm vary with the inverse of radial separation r.  [Answer: 
f = QlQ2/2mor] .  (Hint :  Use Gauss' law, J E ~ E  n dA = Q to show 
that the electric field of a line charge distribution decreases with the 
radial distance.) 

8.15 Consider the micromirror tilting device for an optical scanner shown in 
Figure P8-15. The flat metallic conductor is grounded and two parallel 
conductors carry voltages V1, V2 and act like distributed line charges. 
Add a torsional elastic spring to the mirror and derive an approximate 
dynamic model for the rocking motion of the mirror. Assume rolling 

Figure P8-13 
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------- 

Figure P8-15 

pZR -!q 
Figure P8-16 
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without slip. Calculate approximate electric forces by assuming that the 
grounded surface is an infinite plane and use the theory of image charges 
as in Problem 8.13. 

8.16 A MEMS device contains four cantilever beams oriented at right angles 
to one another, as shown in Figure P8-16. The motions of the tips of the 
beams are assumed to be small. Suppose we bias the tips of the beams 
with charges of equal strength, Q. When Q = 0, assume that each of the 
beams can be characterized dynamically by a common modal mass m, 
and modal stiffness k corresponding to the lowest vibration mode. Use 
Lagrange’s equations to derive coupled equations of motion assuming 
that the charges are held constant. 

8.17 In Problem 8.16 determine the coupled-vibration modes. Find the 
frequency spectrum as a function of the charge, Q. 

8.18 Suppose the charges in Problems 8.16 and 8.17 alternate positive and 
negative around the torus. How do the equations of motion change? 
How does the frequency spectrum change with the charge, Q? 



INTRODUCTION TO NONLINEAR 
AND CHAOTIC DYNAMICS 

9.1 INTRODUCTION 

Sources of Nonlinear Dynamics and Chaos 

The goal of this chapter is to describe the range of dynamic motions possible 
in the particle and rigid body systems discussed in this book. In contrast to 
structural dynamics, where motions are usually small and linear differential 
equations result, rigid body and multibody problems often result in non- 
linear differential equations of motion that generate a wider class of 
dynamics problems. 

Sources of nonlinearities in mechanical and electromagnetic systems are 
listed below. Chaotic dynamics are possible whenever systems have strong 
nonlinear elements such as: 

0 Kinematic nonlinear accelerations, as in serial-link mechanisms 
0 Nonlinear damping or friction 
0 Backlash, play, or limiter elements 
0 Fluid-related forces 
0 Nonlinear feedback control forces such as saturation 
0 Nonlinear resistors, inductors, or capacitive elements, especially ferro- 

magnetic elements with hysteresis 
0 Diodes, transistors 
0 Nonlinear optical sensors 
0 Electric and magnetic forces 

432 
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Mechanical systems that are prone to nonlinear behavior, including chaos, 
are: 

0 Vibration of buckled structures 
0 Gear transmission elements with play or backlash 
0 Systems with sliding dry friction 
0 Gyroscopic systems 
0 Fluid-structure dynamics 
0 Magnetomechanical actuators 
0 Multilink systems, such as robots 

Dynamics is the study of how systems change in time. For most of this 
book, we have focused on the derivation of equations of motion of systems 
that are governed by Newton’s laws, and in Chapter 8 on systems that are 
governed by the laws of electromagnetism. In this chapter we review the time 
history behavior of a few nonlinear systems governed by these laws. There are 
three types of mathematical models in dynamics: 

1. Partial differential equations in space and time 
2. Differential equations in time 
3 .  Difference equations or maps that describe a sequence of events 

The solution of partial differential equations is beyond the scope of this 
book but is of great importance to problems in elasticity, fluid mechanics, 
heat transfer, and electromagnetics. However, there is a large class of 
problems for which we can integrate over space and obtain a set of equations 
in time alone; the problems of particle and rigid-body dynamics fall into this 
category. These equations often take the form of 

x = f (x, t )  (9.1) 

There is another class of problems for which we can integrate between events 
in time; e.g., between the impacts of a ball on a rigid surface. For these 
problems it is sometimes possible to write the equations of motion exactly as 
a set of difference equations: 

In the last two decades of the twentieth century, there has been a revolution 
in the understanding of how systems behave in time. This revolution has 
been named chaos theory, but the proper description of this theory is 
nonlinear dynamical systems. As we explain in this chapter, it is the nonlinear 
nature of the equations of motion of either (9.1) or (9.2) that is responsible 
for the complex behavior seen in even simple systems. The variety of 
nonlinear motions are summarized in Table 9-1, 
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TABLE 9-1 Classification of Nonlinear Motions 

Periodic motion 

Subharmonic motion 

The system returns to its state after a finite time T .  The trajectory 
in phase space is a closed curve. 
In addition to a periodic solution of period T ,  the system exhibits 
solutions with multiple primary periods, nT. The trajectory in 
phase space is a closed curve. 
These are motions that exhibit two or more periodic components 
of incommensurate period or frequency, i.e., T, /T2  is not a 
rational number. The trajectory covers a torus in phase space. 
Nonclosed orbit trajectories are generated by the solution of a 
deterministic set of ordinary differential equations. The Fourier 
spectrum has a continuous component. In dissipative systems, 
the trajectory fills a fractal object in phase space. Solutions are 
sensitive to initial conditions. Nearby trajectories diverge on 
average (positive Lyapunov exponent). 

Quasi-periodic 
motions 

Chaotic motions 

Chaotic Dynamics 

Until the late 1970s, most physicists and engineers believed that the classical 
laws of dynamics stemming from Newton led to predictable dynamical 
behavior. However, at the beginning of the twentieth century Henri Poincare 
showed that the three-body problem in celestial mechanics could result in 
unpredictable behaviour sensitive to small changes in initial conditions. To 
quote from his essay on Science and Method in 1908, 

It may happen that small differences in the initial conditions, produce very great 
ones in the final phenomena. A small error in the former will produce an enormous 
error in the latter. Prediction becomes impossible. 

This was largely ignored by practitioners of dynamics until the 1960s when 
Edward Lorenz of MIT observed strange dynamics in the computer simula- 
tion of a model of atmospheric convection. Finally in the late 1970s, evidence 
from applied mathematics, coupled with experiments from physics and 
engineering, began to support the idea of unpredictable deterministic 
dynamics, now called chaos. Classical nonlinear dynamics admitted steady 
nonlinear periodic motions as well as quasi-periodic motions (the sum of two 
or more incommensurate periodic motions). Now chaos theory added a new 
type of motion, the strange attractor. The hallmarks of chaotic dynamics or 
strange attractors include; 

0 Sensitive dependence on initial conditions, 
0 Broad spectrum of frequencies in the Fourier transform, 
0 Fractal structure in the Poincare section in phase space 
0 Transient bursts of irregular motion 
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0 Pattern of increasingly complex dynamics as some parameter is varied., 

One measure of steady-state chaos and the sensitivity to initial conditions 
is the average exponential divergence of nearby trajectories in the phase 
space. This measure is called the Lyapunov exponent A. If A > 0 then the 
system is said to be chaotic. An introduction to Lyapunov exponents may be 
found in Abarbanel(l996) or Moon (1992). 

e.g., period doubling. 

9.2 NONLINEAR RESONANCE 

Resonance in a linear oscillator was discussed briefly in Chapter 1 for the 
system with linear damping and linear stiffness (1.12). When a lightly damped 
linear system experiences a sinusoidal force of frequency w, the steady-state 
response exhibits an amplification near the undamped natural frequency, as 
shown in Figure 1-18. However, many elastic systems exhibit a strong 
nonlinear relation between an applied force and the displacement. Several 
examples are shown in Figure 9-1. 

The one-dimensional dynamics of a driven mass under a nonlinear spring 
with a cubic nonlinearity and linear damping takes the form 

(9.3) 
3 rnx = -b i  - kx - K X  + f ( t )  

A classic nonlinear problem is the periodically forced motion where 
f ( t )  =focoswt. We can divide by the mass to obtain the standard cubic 

A F = a u + b u 3  F 

F 

Figure 9-1 Nonlinear force-displacement elements in mechanical systems. 
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nonlinear oscillator named after the German engineer G. Duffing who first 
studied it in 1918. 

x + 2-yx + w;x + px3 = (Yo cos wt (9.4) 

There are numerous books on nonlinear oscillations that show how to 
analyze this equation, such as Minorsky (1962), Guckenheimer and 
Holmes (1983), and Nayfeh and Balachandran (1996). We summarize the 
results here. 

1. The Linear Oscillator : K = p = 0. 
oscillations are those of a damped oscillator where 

When f o  = cyo = 0, in (9.4) the free 

The damped natural frequency wd = [w; - ~ ~ 1 ’ ’ ~  is independent of the initial 
amplitude. 
2. The Unforced Nonlinear Oscillator with Zero Damping. In this case we 
have 

Although exact solutions to the equations of nonlinear vibrations are not 
generally available, there are numerous perturbation analyses that yield the 
natural frequency of the cubic spring oscillator as a function of vibration 
amplitude. If x( t )  is approximately given by 

x ( t )  = A0 cos wt + A1 cos 3wt + . . . 
perturbation analysis reveals the relation 

3 2  w 2  = w;  + - P A 0  
4 (9.7) 

For a hard spring, ( p  > 0 ) ,  the natural frequency increases with amplitude 
Ao,  while for a soft spring, ( p  < 0 ) ,  the vibration frequency decreases with 
amplitude A. (see Figure 9-2). These results, however, are not valid for 
arbitrarily large Ao. 

The cubic spring oscillator is a member of a larger class of problems 
where the restoring spring force can be derived from a potential function 
V(x), i.e., 

.. dV m x =  -- 
dx 
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For this case we have conservations of energy, 

1 
2 
-mi2 + V ( x )  = Eo 

If we assume that the motion in the phase plane {x, i} is bounded and 
periodic, then an integral expression can be found for the vibration period T : 

dx 

Here we have assumed that the motion is symmetric, i.e., when 
i = 0, x = &Ao. The energy is found from the conservation law, 
V(Ao)  = Eo, when i = 0. In general, this integral must be evaluated using 
either approximate, perturbation, or numerical techniques. 

The change of frequency with amplitude (9.7), is shown in Figure 9-2 for 
the Duffing oscillator. Nonlinear oscillators generally exhibit a continuous 
spectrum of natural frequencies at which forced resonance is possible, in 
contrast to linear systems for which forced resonance is possible only at 
discrete frequencies. 

w2 t 

Figure 9-2 (a) Natural frequency vs. amplitude for hard and soft springs. 
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wo w 

Figure 9-2 (b) Linear resonance curve. 

*' t 

I I t 
w 

WO 

Figure 9-2 (c) Nonlinear resonance curve. 

2. The Forced-periodic DufJing Oscillator (9.4) This case is more compli- 
cated than the others in that there are several possible types of motion: 

0 Periodic motion with frequency w 
0 Periodic motion with subharmonic frequency w / n  
0 Chaotic motion 

When the damping, forcing amplitude and nonlinearity are all small, then 
a classic result is the case of nonlinear resonance shown in Figure 9-2c. 
Figure 9-2c shows that the steady state motion for the hard spring (/3 > 0) is 
hysteretic. That is, the amplitude vs. frequency curves are different, depend- 
ing on whether the driving frequency is increasing or decreasing. The sharp 
jumps in amplitude, shown as dashed lines in Figure 9-2c are characteristic of 
forced nonlinear oscillators. 
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9.3 THE UNDAMPED PENDULUM: PHASE-PLANE MOTIONS 

The circular motion of a mass under the force of gravity is a classic problem 
in nonlinear dynamics (Figure 9-3). The equation of motion can be derived 
by either using the law of angular momentum [see (1.6),(1.7)] or using a 
Lagrangian 

1 
2 

c = -mL2d2 - mgL(1- C O S O )  

where g is the gravitational constant. The resulting equation of motion is 

e +  ( g / ~ )  sin0 = 0 (9.9) 

A similar equation of motion results for any rigid body in rotation about a 
fixed axis normal to the direction of gravity (Figure 9-3b). The Newton- 
Euler equation of motion is given by 

Ho = Mo 

where 

H o =  s r x ( w x r ) d m = 8 / r 2 d m e ,  

Mo= r x g d m =  r d m x g  I S  
Here r is the distance from the axis of rotation to the mass element dm. The 
first moment of mass in Mo is simply the vector position of the center of mass, 
r e ,  times the mass. The second moment of mass is related to the radius of 
gyration, Y G ,  i.e., 

H~ = drGmez 2 

Mo = mr, x g 

If 0 is measured from the vertical or gravity direction, as in Figure 9-3, then 
the scalar equation of motion becomes 

r~me+r ,mgsinO=O (9.10) 

or 

" gre 0 = --Z-sinO 
Y G  

which is similar to (9.9) if we let L = r L / r c .  
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d g  

Figure 9-3 (a) Mass-particle pendulum. (b) Rigid body pendulum. (c) Multibody 
pendulum system. 
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In nonlinear systems, it is useful to rewrite this second-order equation as a 
set of two first order differential equations; 

8 = w  

w = -wosin8 2 (9.11) 

where W E  = g / L ,  or wo = g r , / r t .  The motions are then described by curves in 
the { 8, w }  plane or phase plane. Equilibrium points in this plane are defined 
b y 8 = 0 ,  w = O o r  

we = 0 

sin8, = 0 

Three equilibrium points in 0 I 8 5 27r are found: (0, 0}, { -T, 0}, { T ,  O}. 
Motions about the origin are found to be closed curves, and the equilibrium 
point is called a center. The other two points at 8 = fn are known as saddle 
points. At a saddle point there are two trajectories that approach the point 
and two that move away from the point. Motions near the saddle are 
unstable, i.e., they move away from the point for increasing time (see 
Figure 9-4). 

The family of possible motions can be found by integrating the energy 
equation 

(9.12) 
e2 g 
- +- (1 -cos8) = e o  2 L  

The resulting motions are represented by elliptic integrals. A sketch of these 
motions in the phase plane (8, e} shows three types of motions (Figure 9-4a): 

0 Closed periodic orbits inside the separatrix 
0 Infinite time motions between one saddle point at 0 = -7r and the other 

at 8 = T ,  i.e., on the separatrix 
0 Open orbits outside the separatrix representing complete circular 

motions 

The dynamics of the pendulum can also be represented by a cylindrical 
phase space, as shown in Figure 9-4b. In this space, the two saddles at 8 = +T 
become one. [see also Figures 1-1, 1-15, 1-16.] 

EXAMPLE 9.1 
A pendulum system consists of two rigid bodies in rotation about parallel 
axes, as shown in Figure 9-312. Body 1, which rotates about an axis, is at a 
distance rc from its center of mass, and body 2 rotates about an axis that 
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Figure 9-4 (a) Phase plane for free pendulum motions showing center and saddle points. 
(b) Cylindrical phase space for free pendulums. 

contains its center of mass. The two motions are constrained by a gear 
system with radii r l ,  r2 and a teeth ratio of n1/n2.  Are the dynamics similar 
to the simple pendulum, and if  so, what is the effective small angle 
frequency wo? How does the frequency depend on the amplitude for 
moderate angles 0 < 7r/2? 
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To solve this problem we calculate the kinetic energy function and use 
the velocity constraint 

. .  
$ = 0r1/r2 = 0nl /n2 

T = ; ( / I  + /Zn:/n;)8' 

If we use Lagrange's equation, the potential energy will be 

V = mlgr,(l - cos0) 

Thus the Lagrangian is similar in form to both the single-particle or rigid- 
body pendulum (9.10), provided we use the effective inertia in place of the 
moment of inertia I1, i.e., 

+ 12n:/n;)  = r i m l  

Then it is easy to see that the small motion natural frequency is given by 

For moderate angles, the sine function can be expanded in a Taylor 
series. The approximate equation of motion becomes, 

Compare this to (9.6) and use (9.7). One finds ,B = -wi/6, and 

w2 = &(l - Ag/8).  

Thus the period increases with amplitude. 

9.4 SELF-EXCITED OSCILLATIONS: LIMIT CYCLES 

There are many dynamical systems in which a steady energy source can be 
converted into oscillatory motion. Examples include: 

0 Relative motion between two solids 
0 Fluid flow around solid and elastic objects 
a Wind blowing over water 
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0 Rolling objects, e.g., wheel shimmy 
0 Active electronic circuits with feedback 
0 Computer controlled systems 
0 Thermal fluid or thermoelastic systems 
0 Biochemical and chemical reactions. 

When the energy input is balanced by an energy-dissipation mechanism, 
the motion can limit itself onto either a periodic, a quasi-periodic, or chaotic 
attractor. An example of such a limit cycle motion in the phase plane is shown 
in Figure 9-5b. Near an equilibrium point at the origin, the unstable motion 
spirals outward and approaches the limit cycle asymptotically. For a stable 
limit cycle, initial conditions outside the periodic closed orbit spiral inward 
onto the periodic orbit. 

A classic mechanical self-excited oscillator is a solid block moving over a 
belt undergoing stick-slip dry-friction-induced motions shown in Figure 9- 
5a. Another is the fluid-excited motions or flutter around an airfoil whose 
angle of attack depends on an elastic restoring force. Nonlinear, self-excited 
circuits have been known from the time of the vacuum tube, which has a 
nonlinear voltage-current relation. Lord Rayleigh in 1896 and 8. Van der 
Pol in 1927 studied the following differential equation which describes the 
dynamics of a limit cycle 

X-yX(1 -px 2 ) + w o x = O  2 (9.13) 

In this model, the small motions (px2 << 1) are represented by a negative 
damping or positive energy input yx. The linear motion is an unstable spiral, 
as shown in the phase-plane plot in Figure 9-5b. However, as the amplitude 
increases, the nonlinear damping terms take energy out of the motion, 
resulting in a bounded limit-cycle oscillation. 

When the damping term is small, the limit-cycle oscillation is nearly 
sinusoidal with frequency wo. However, when y is large, the motion takes 
the form of a relaxation oscillation shown in Figure 9-5c. 

Dry fr ict ion force 

(3 
Figure 9-5 (a) Sketch of a friction-driven self-excited oscillator. 
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Figure 9-5 (b) Phase-plane trajectories for limit cycles x vs. Y = x. 

Figure 9-5 (c) Relaxation oscillations. 
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I Poincarg plane 

Figure 9-6 Sketch of quasi-periodic orbit in phase space around a torus. 

If sinusoidal forcing is added to the right-hand side of (9.13) (i.e., 
f ( t )  =fo cos w1 t ) ,  the motion can exhibit quasi-periodic oscillations of the 
form: 

x( t )  = A1 C O S W l t  + A 2 C O S W 2 t  

where w2 is close to wo. When w1 and w2 are incommensurate (i.e., w1/w2 is an 
irrational number), the motion is said to be quasiperiodic. We can envision 
this motion as taking place around the surface of a torus in phase space, as 
shown in Figure 9-6. 

9.5 FLOWS AND MAPS: POINCARE SECTIONS 

The dynamics of a system governed by Newton’s laws or the laws of lumped 
circuit elements can be represented as a trajectory in phase space. 

Consider an electromechanical system governed by the equations 

m i  + g(x, i) + f ( x )  = pz2 

(9.14) 

We define the state vector as s = [x, v, I IT ,  where z1 = i. Then the equations 
can be written in the form of a set of first-order differential equations 

dZ L-+RI+PXZ= Vo 
dt 

1 
m i, = - - [g(x ,  v) + f ( x )  - PI2 ]  
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or 

S = F(s) 

We can view the dynamics as a trajectory in a three-dimensional phase space 
(Figure 9-7) {x, y = u, z = I}. When initial conditions are varied, a set of 
nonoverlapping trajectories is drawn in the phase space, which is similar to a 
bundle of particles moving in a fluid. Thus the solutions to a dynamical 
system are sometimes referred to as aflow. At the turn of the twentieth 
century, Henri Poincare (1 854- 19 12) developed a technique to analyze the 
motions of a flow as a set of difference equations. This technique, illustrated 
in Figure 9-7, is now called a Poincare map. To obtain a PoincarC map we 
construct a surface that intersects the trajectories, e.g., we can choose a plane 
ax + by + cz = d. On this plane we define coordinates { X n ,  Yn}. The index n 
marks the cycle or sequential penetrations of the continuous time history 
trajectory with the PoincarC surface. We can see that a three-dimensional 
flow (third- order ordinary differential equations) generates a set of two first- 
order difference equations 

These equations take a contiguous set of points at time 
a distorted set of points at tn+l. 

and map them into 

Figure 9-7 

> 
Y 

Sketch of two-dimensional Poincare section in a three-dimensional phase 
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The advantage of looking at the difference equation generated by the 
PoincarC section rather than the original differential equations is that we can 
more easily see how bundles of trajectories change in time. This is done by 
asking how an area in the [X,, Y,] plane is transformed in one iteration. 
Consider, for example, the following set of equations 

X,,, = 1 - ax; + Y, 

Y,+l = PX, (9.15) 

This is called the Henon map proposed by the French astronomer M. Henon 
in 1976. When p < 1, the map contracts areas in the X = Y plane. It also 
stretches and bends areas in the Poincare phase plane, as illustrated in 
Figure 9-8. This stretching, contraction, and bending or folding of areas in 
phase space is what leads to chaos and unpredictability in nonlinear systems. 
Maps that stretch and fold like the Henon map are called horseshoe maps. 
After many iterations, the original compact area of neighboring initial 
conditions is stretched and folded over and over until it has a fractal 
structure, as shown in Figure 9-8b. 

Fractals and PoincarC Maps 

One of the most singular characteristics of chaotic dynamics is the mazelike, 
multisheeted structure of the Poincare section of the phase-space trajectories. 
When this pattern of points has a similar pattern on finer and finer length 
scales, the termfractal is often applied. There are several measures of a fractal 
set. One of the most intuitive is the fractal dimension or box counting 
dimension d. Fractal dimension is a concept applied to a distribution in an 
n-dimensional space. For example, in three dimensions the number of cubes 

D II A 

Figure 9-8 (a) Stretching and folding operations of the Henon map. 
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Figure 9-8 (b) Iterations of the Henon map showing fractal structure. 

Figure 9-8 (c) Fractal structure of the PoincarC map of a mass in a two-well potential (see 
Moon, 1992). 

of size, E ,  N ~ E ) ,  necessary to cover a uniform distribution of points, scales as 
N ( E )  N E - ~ .  But in a fractal distribution of points there are gaps in the 
pattern at finer and finer scales. Thus the box counting scaling may result in a 
noninteger dependence of N ( E )  on E ,  i.e. 
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1% N ( 4  
E'O log(+) 

d = lim (9.16) 

A basic set of points with fractal dimension is the Cantor sets. This set is 
created by an iterative process. Starting with a uniform distribution and a 
line, say from zero to one, the middle third of points is thrown out, with two 
remaining sets on the line. Then the middle third of the two remaining sets is 
thrown out and the process is repeated. The limiting set of points, called a 
Cantor dust has a fractal dimension of 

log 2 
log 3 

d = -  

This is obtained from the formula ford where at the nth iteration N ( E )  = 2", 
and E = (1/3)". Noninteger dimensions of Poincare sections of a trajectory in 
phase space is characteristic of strange attractors. For example, the motion of 
a particle in a two-well potential can be described by the equation of motion, 
(Guckenheimer and Holmes, 1983) 

i + y x - i ( x - x  3 ) =fcoswt.  

The motion becomes chaotic for the parameter values y = 0.11 5 ,  f = 0.23, 
w = 0.8333. (Figure 9-8c) For this trajectory, the calculated fractal dimen- 
sion of the Poincare section is found to be d = 2.32. (See Moon, 1992). The 
fractal dimension of the Henon map described above is d = 1.26. The fractal 
dimension and the Lyapunov exponent measures of chaos can be related in 
most cases. The reader is referred to advanced books on chaos theory such as 
Abarbanel (1996) for more details. 

One-dimensional Maps: Period Doubling and Chaos 

In many dynamics problems, the motions may be described by a first-order 
difference equation of the form 

(9.17) 

For example, in the HCnon map (9.15), when /3 = 0, F(X,)  is a quadratic 
function. The simplest equation of this form is the linear equation: 

Unlike nonlinear equations, this equation can be solved explicitly by trying a 
solution of the form X,, = AX". This solution is stable (i.e., I x , , ~  -+ 0 as 
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n + 00) if 1x1 < 1, and unstable if 1x1 > I. This equation is sometimes used as 
a model for population growth in biology and chemistry. A population 
model that accounts for limited resources is the so-called logistic equation or 
quadratic map: 

x,,, = XXn(1 - Xn) (9.18) 

The solutions to this equation (sometimes called orbits) can be visualized in 
the cobweb diagram shown in Figure 9-9. Fixed points are defined as 
iterations that return to themselves: 

x,,, = xn = AX,( 1 - X,) (9.19) 

The origin is one fixed point, while the second is given by the intersection of 
the parabola with the identity line, 

x = (A - 1)/X (9.20) 

provided that X > 1, or the slope at the origin is greater than one. 
We can also find period-two fixed points by solving 

(9.21) 

Figure 9-9 Cobweb orbits for a return map with an extremum. 
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X 

Figure 9-10 Bifurcation diagram for the quadratic map showing period doubling and 
chaotic regimes. [X = A ,  Y = X,,, in (9.18)] 

These period-two fixed-point solutions only occur for certain values of the 
control parameter A. There are, in fact, sequences of period-2N orbits (called 
subharmonics in differential equations). The ranges for different subharmo- 
nic solutions are shown in Figure 9-10, called a bifurcation diagram. We can 
see that the higher period two orbits have a narrower range of X than the 
lower period two orbits. Mitchel Feigenbaum (1978) discovered a relation 
between the critical values of X where period-doubling orbits change period: 

lim " - = 4.6692.. 
'~'O0 Xn+1 - X,, 

(9.22) 

This relation is important because it is not only valid for the quadratic map 
(9.18) but is valid for a wide class of one-hump maps. 

In the case of the logistic map, when X = A, = 3.57, . . . , the periodic orbits 
are no longer stable, and a nonrecurring, yet bounded orbit appears that has 
been called a chaotic orbit. 

The following M A  TLAB program will generate a bifurcation diagram 
similar to Figure 9.10 for (9.18). 

Comment % Set  i n i t i a l  condi t ions .  
x = . I ;  
y = .I; 
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a = 2.1;aa = 0;aa = [I ; 

Comment % Loop f o r  d i f f e ren t  values of X = a. 
f o r  j = 1:50; 
a = a + 0.03 ; 

Comment % I t e r a t e  Logis t ic  Map. 
f o r  k = 1:40 ; 
x = y ;  
y = a.*y .*y(l-y) ; 

end 
aa = Caa;al ; 

z = [x,yl ; z z l  = co 0 0 0 0 1 ’ ; z z l  = [ I ;  

z = K.1 .11; 

z = [z  ; x , y l ;  

zz = z (36:40,1) ; 
z z l  = [zzl  221; 
end 
p lo t  (aa, z z l  , ’+b’ 1 

EXAMPLE 9.2 MAGNETIC LEVITATION CHAOS 
To illustrate how a discrete-time map one can be obtained from a 
differential equation, we examine the problem of magnetically suspend- 
ing a mass moving in a viscous fluid under gravity, as shown in Figure 9- 
11. We assume that the viscous drag force is linearly proportional to the 
velocity. Without other forces, the mass would fall under gravity. To 
suspend the mass, we apply a magnetic impulse at discrete times 
{. . . t,, t,+, . . .}. To derive an equation of motion requires two steps: 

1. Determine the motion between impulses by solving the linear 

2. Apply a rule to change the velocity during the magnetic impulse. 
differential equation. 

The equation of motion between impulses is 

dv 
dt 

m- = mg - bv 

or 

v + y v = g  (9.23) 

where y = b / m .  The time between impulses is T ,  and we solve for the 
velocity between r t ~  < t < (n  + 1 ) ~ :  

(9.24) 
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Figure 9-11 
viscous fluid. (b) Return map for the levitation feedback system in part (a). 

(a) Magnetic-levitation device consisting of a ferromagnetic sphere in a 
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The constant B is determined from the initial condition 

or 

V(nT f &) = V,; & -+ 0 

B = v, - gy-l (9.25) 

Thus at the end of the free-fall regime, 

(9.26) 

Next we must make an assumption about the magnetic-impulse-induced 
velocity change, i.e., after the impulse we assume 

- 
v,+~ = gy-’ + (v, - gyp’ )e-” 

Vn+l = vn+1 + F  (9.27) 

We arbitrarily choose a nonlinear feedback law that relates the 
magnetic impulse F to the square of the velocity after the previous impulse 
at t = n ~ ;  

F = - r v ,  2 (9.28) 

If we rescale the gain r = /3e-n, we can now write a relation between the 
velocity after impulse at t = nr to the velocity after impulse at t = ( n  + 1)r ,  
i.e., we obtain a first-order difference equation or iterated map: 

v,+~ = gy-’(l - e-”) + e-17(vn - p v i )  (9.29) 

This map is shown in Figure g- l lb ,  and is similar to the logistic or 
quadratic map (9.18). In this physical problem we can use either the 
control gain p as the variable parameter, or we could change the time 
between impulses T .  In either case, we can ask several questions about 
this map. 

1. What are the possible equilibrium states? 
2. Is the system stable or unstable near equilibrium? 
3. What are the critical values of p or T for which subharmonic motions 

4. At what values of the parameters does the system exhibit chaotic 
can beseen? 

dynamics? 

EXAMPLE 9.3 THE KICKED ROTOR 
As another example of how to obtain an explicit Poincare map or discrete- 
time equations from continuous time dynamics, consider the rotor in 
Figure 9.12~1. We assume that the rotor is subject to impulse forces always 
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Figure 9-12 (a) The kicked rotor with viscous damping and periodically excited torque. 
(b) Iterated Poincare map showing a strange attractor: x represents the angular rotation 
(mod l), and y represents the angular velocity. 

aligned with the vertical axis. The impulse force Fo creates an impulse 
moment Mo = FOR sin Q that increases the angular velocity at the discrete 
times t = n-r. / [ w ( t  = n-r + E )  - w( t  = n-r - E ) ]  = FoRsin B(n-r), where E is 
much smaller than 7. We also assume that a constant torque is applied, 
cwo, as well as viscous damping cw.  The resulting equations of motion are 

Q = w  

/ & + c w  = cwo+FoRsinQC6(t -n-r) (9.30) 

Between impulses, n~ < t < (n  + I ) T ,  the system is linear and exhibits 
damped motions 

The integral of this expression will give Q(t)  between impulses. In this 
problem, the state variables are {Q, w}. We define the discrete-valued 
variables {On, wn} to be the value of the state variables just before the 
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impulse force at nr,  i.e., 

w, = w(f = n r - E )  

To obtain a Poincare map we try to find a relation for { O n + , ,  wn+,} in 
terms of {On ,  wn } .  This is done by using the preceding solution and the 
impulse conditions to relate w(nr  + E )  and w(n7 - E )  = w,. We also use 
the fact that the angles are continuous at the impulse events, i.e., 
Q(n7 + E )  = Q ( ~ T  - E )  = 0,. With these observations, we can show that 
the exact Poincare map is given by 

c r  C 1 
I I 

w,+~ =-wo+w,  -,(On+, -Q,)+-foRsinQ, (9.31) 

on+, = i t o r + ~ , + - ( 1  I - e  -''Ii) (wn +ifORsinQn 1 -wo 
C 

These equations were originally derived by the Soviet physicist George 
Zaslavsky in 1978 to model the nonlinear interaction between two oscilla- 
tors in plasma physics (see Moon, 1992). This two-dimensional map is 
often nondimensionalized, using the definition: 

Qn x, =- (mod 1) 
27r 

The mod 1 means that since the motion is circular, we only plot angles 
between 0 5 6 5 27rand 0 5 x 5 1. Thus, if 6 =  27r+4, 4 < 27r, by mod 1 
we plot 4/27r. In the new variables, the map is written 

R s 2  K r x, +-+- (I  - e-r)y, +- (I  - e- ) sin27rxn 
27r 2nr r 

where the brackets { } indicate the use of only the fractional part or mod 1. 
Also p = foR/lwo, K = p0/27r, r = c7/1, R = war. Here yn measures the 
departure of the speed from the unperturbed equilibrium speed w = wo. 
This set of difference equations is much faster to iterate in time than 
numerically integrating the original differential equations (9.30). What is 
remarkable about such nonlinear maps is the complexity of motions that 
they exhibit. Although the impulses are periodic in time, the output 
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dynamics may be periodic, quasi periodic, or chaotic. For example, it has 
been found that this map may exhibit chaos when 

< K .  1 <- 
I - ePr 

r 

The student might try the following parameters: r = 5, p = 0.3, R = 100, 
K = 9. (See Figure 9-12b) 

9.6 COMPLEX DYNAMICS IN RIGID BODY APPLICATIONS 

Since the discovery in the late 1970s that many complex motions are 
deterministic chaos, many physical systems have been found to exhibit 
chaotic dynamics. A survey of many of these problems in mechanical, 
electrical, optical, and biological systems may be found in Moon 1992. In 
this final section we discuss a few examples from rigid body dynamics. The 
examples were chosen to be similar to some of the examples discussed in the 
earlier chapters. Our goal in this chapter is to show the variety of motions and 
complexity in the dynamic response of rigid body and mechatronic systems 
beyond their linear dynamic behavior. We also wish to emphasize that 
nonlinear dynamics is not a closed area. There are many multibody and 
mechatronic systems for which we do not know the complete range of 
dynamic behavior. Examples include many rolling problems; dynamics 
with friction and fluid forces; human and animal-gait dynamics; walking 
machines; and robots to name a few. The student interested in new research 
areas will find a rich mine of interesting dynamics research in these problems. 

The nonlinear dynamics in the following examples have been explored by 
analytical, numerical and experimental observations: 

0 Torsional-bending vibrations (Chapter 4) 
0 Gear rattling (Chapter 5 )  
0 Multipendula kinetic sculptures (Chapter 6) 
0 Tumbling of Hyperion (Chapter 7) 
0 Printer actuator chaos (Chapter 8) 

Bending-Torsional Oscillations 

The lateral bending of a cantilever beam is a basic paradigm of structural 
dynamics. In conventional structural modeling, the bending vibrations are 
assumed to be uncoupled from the torsional deformations of the torsion- 
beam (Figure 9-13a). However, it has recently been discovered that in thin, 
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plate-like beams, as in Figure 9-13, not only do the lateral and torsional 
modes couple, but this interaction can exhibit chaotic vibration under 
periodic excitation (Cusumano and Moon, 1995). The analysis of continuous 
elastic structures is beyond the scope of this book; however, a two-degree-of- 
freedom model can be used to illustrate the nature of the torsion-lateral 
coupling, as shown in Figure 9-13b. In the model, the lateral bending 
vibrations are captured by the angular motion of the particle on a rod that 
is constrained to vibrate on a horizontal axis with a restoring spring, kg .  The 
torsional vibration is modeled as a rotary inertia, IT ,  rotating about the 
vertical axes with a spring constant, k T .  The uncoupled linear lateral and 
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P 

Figure 9-13 (a) Continuous cantilevered beam showing torsional and bending deforma- 
tions. 
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' t  

Y 

Figure 9-13 
part (a). 

(b) Two-degree-of-freedom model of coupled bending-torsional motions in 

torsional frequencies are found to be 

2 w i  = kB/mL 

W $  = k T / I T  

To derive the nonlinear coupled equations of motion we can use Lagran- 
ge's equation with generalized variables O ( t ) ,  4(t) .  The kinetic and potential 



9.6 COMPLEX DYNAMICS IN RIGID BODY APPLICATIONS 461 

energies may be found to be 

T = -m[x2 1 + 0 ‘ 2  L 2 + d2L2 sin2 0 
2 

1 
2 

- 2 X d ~  sin 0 sin 4 + 2 x 4 ~  cos 0 cos 41 + - 1 ~ 4 ~  

(9.33) 
1 1 
2 2 

v =-kBO2 f-kT(b2 

In this model we neglect the effect of gravity. This is valid if kB is large 
enough. Also we assume that the rectilinear base motion x ( t )  is given, i.e., 
x ( t )  = A coswot, and 2 = -Awo sin wot. 

Carrying out the derivatives in Lagrange’s equations we can show that the 
following equations result: 

(9.34) 

X 
[q + sin2 014 + w$q$ + 2q% sin 0 cos 0 = - sin 0 sin 4 

L 

where q = IT/mL2. 
We can see that the coupling is due to the centripetal acceleration d2 in the 

first equation and the Coriolis acceleration 248 in the second equation. 
Both analysis and experiments show that there exists a nonlinear oscilla- 

tion in which 0 remains either positive or negative, and the torsional motion 
balances the centripetal acceleration. The frequency of this mode, however, 
depends on the amplitude of the oscillation, as is typical in nonlinear 
oscillation (Figure 9-14). When x ( t )  = Acoswot, it has also been observed 
that chaotic oscillations can occur (see Cusumano and Moon, 1995). 

Gear-rattling Chaos 

In Chapter 1 we discussed how noise generated in mechanical systems can be 
a failure mode. One of the recent discoveries of chaos theory is that gear 
transmission systems can be a source of determnistic noise or chaos in 
multibody systems (Pfeiffer, 1994). Kinematic mechanisms are generally 
input-output devices that convert one motion into another, e.g., linear to 
rotary motion or motion at one speed into motion at another speed, as in a 
gear pair. However, in real mechanical devices there exist departures from the 
ideal mechanism due to gaps, play, backlash, elasticity, and inelasticity. In 
these less than ideal mechanisms dynamics enters and the output is no longer 
kinematically determined by the input. 

As an example, consider the two spur gears in Figure 9-1 5a. Without gaps 
or play they have a speed ratio wI /w2 equal to d2/dl. However, when the gear 
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Figure 9-14 Natural frequency vs. amplitude for coupled bending-torsional oscillations 
(see Figure 9-13). (From Cusumano and Moon, 1995.) 

pitches do not exactly match due to play, then the kinematic problem 
becomes a dynamic one. This problem is analogous to the two-body recti- 
linear-motion problem shown in Figure 9-1 5b. When the inner mass is not in 
contact with the outer mass, it conserves linear momentum. However, at 
impact it can either gain or lose linear momentum to the outer mass. Impact 
problems of this kind have been solved by constructing a PoincarC map 
similar to the previous examples. The PoincarC map is constructed when the 
relative motion is zero, x = 0, and the pair {u, = x(t , ) ,  wt,; mod 27r) is 
plotted where t, is the time of contact of the nth impact. An example of such a 
PoincarC map is shown in Figure 9-15c, which is from the work of Li et al. 
(1990). The fractal nature of the PoincarC map is evidence for deterministic 
chaos, i.e., the input frequency, w will generate a broad spectrum of output 
frequencies which we interpret as structure-borne noise. A phase-plane 
trajectory of a chaotic motion is shown in Figure 9-16. 

This system has also been shown to exhibit period doubling or a 
subharmonic route of bifurcations to chaos. 

Professor F. Pfeiffer and his laboratory at the Technical University of 
Munich have pioneered in the application of PoincarC maps and other 
nonlinear analysis methods to predicting deterministic noise in automotive 
and other gear transmission systems. 
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Figure 9-16 Chaotic rattling oscillations in the phase plane for systems in Figure 9-1 5b. 
(From Li et al., 1990.) 

Kinetic Sculpture 

Sculptural art of the twentieth century has taken on a dynamic quality, 
especially in the works of Alexander Calder, Jean Tinguely, and George 
Rickey. Often these works can be seen in public spaces such as museums and 
airports. Part of the fascination of kinetic sculpture is the changing variety of 
patterns. In fact, many kinetic sculptors recognize the need to design in 
unpredictable random or chaotic dynamics if their works are to be successful. 
Both Calder and Rickey use the dynamics of the pendulum and coupled 
pendulums. Mobiles inspired by Calder are a staple of modern art and gift 
shops. 

A chaotic toy that I have seen on many a dynamicist's desk is a two- or 
three-arm coupled pendulum device. Professor N. Rott of Stanford Uni- 
versity some time ago published a paper describing the mechanics and 
construction of these toys (Rott, 1970). The analysis is based on nonlinear 
resonance and, in particular, the 2: 1 resonance. For example, in the two-link 
device shown in Figure 9-17, two angles describe the configuration: a,  y. 

For small motions about the stable equilibrium position, Rott derives 
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equations of motion of the form 

2 6! + w1a = F(a,  y, i / ,  Y) 

+ w$y = G ( a ,  y, d L ,  ti) 

465 

(9.35) 

a Y 

0 

Figure 9-17 
1972.) 

Multibody pendulum systems for kinetic sculpture and toys. (After Rott, 
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where I;, G are nonlinear coupling terms and the constants w:, w ;  are 
related to the geometry. Neglecting the coupling, there are two oscillators 
with frequencies w l ,  w2. Rott adjusts the geometry of his pendulums so that 
w1/w2 =1:2, and optimizes the design so that the relative amplitudes of the 
coupled device are equal. This allows energy to flow easily from one 
pendulum to the other and can result in some transient chaotic behavior. 
He also has designs for two other devices, one of which is a three-pendulum 
device that looks like a puppet (Figure 9-17c). Needless to say, the choice of 
good bearings in these devices is essential. Professor Rott recently (ca. 1992) 
marketed an executive toy called “Pendemonium” based on his principles of 
nonlinear resonances. This example illustrates how knowledge of the possi- 
bilities of nonlinear dynamics can inspire design choices without detailed 
solution of the nonlinear equations of motion. 

Chaotic Tumbling of Hyperion 

Given the success of the Newtonian model of the dynamics of our solar 
system, we have come to accept the predictable nature of Newton’s orbital 
dynamics. The predictable time history of our planet around the sun has been 
used to measure our own history of our world. Now, three centuries after 
publication of Newton’s Principia, some are challenging the notion of 
absolute predictability in the motions of a few of the objects in our solar 
system such as comets and moons of planets. One example is the apparent 
chaotic motion of one of Saturn’s moons. 

The NASA mission of Voyager 2 transmitted pictures of an irregularly 
shaped satellite of Saturn called Hyperion (Figure 9.18). The pioneering 
work of J. Wisdom of M.I.T. (Wisdom et al., 1984) showed how this 
nonsymmetric celestial object could exhibit chaotic tumbling in its elliptical 
orbit around Saturn. Later work may be found in Black et al. (1995), and 
Thomas et al. (1995). 

It is well known that an elongated satellite such as a dumbbell-shaped 
object orbiting in a circular orbit could exhibit oscillating planar rotary 
motions about an axis through the center of mass and normal to the plane of 
the orbit [see (7.67) and (7.68)]. 

When the satellite is asymmetric with three different moments of inertia, 
A < B < C, Wisdom et al. (1984) show that the planar dynamics are 
described by 

d20  wi 
-+,sin2(O-f) = O  
dt2 2r 

(9.36) 

where time is normalized by the orbital period T = 27r and where r( t )  andf( t )  
are 27r periodic. Here w i  = 3(B - A ) / C ,  r is the radius to the center of mass, 
and O ( t )  measures the orientation of the satellite. 
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Figure 9-18 
al., 1995) (b)  Poincare map of model dynamics of Hyperion showing chaotic orbit. 

(a) Computer generated shape of Saturn's moon Hyperion. (From Black et 
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This equation is similar to that of a parametrically forced pendulum that 
has been found to exhibit chaotic dynamics. Wisdom et al. (1984) show that 
these planar motions can become unstable with the possibility of three- 
dimensional tumbling of the satellite in its orbit around Saturn. Imagine 
living on such a world where the Saturn rise and set are unpredictable and 
where definitions of east and west, defined on earth by the fixed axis of 
rotation, would be hard to determine by intuition. 

In Wisdom’s model,f(t) and r ( t )  are periodic in time and are found from 
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Figure 9-19 (a) Sketch of a pin-actuator of a printer mechanism. (b) Displacement of a 
printer actuator as a function of time and different frequencies showing loss of predictable 
output. (From Hendriks, 1983, copyright 1983 by IBM Corporation, reprinted with 
permission.) 
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the elliptic orbit of the satellite about Saturn using an eccentricity of the orbit, 
e = 0.1. Equation (9.36) is similar to a forced pendulum. As an exercise, you 
should assume that r is not time dependent, but that wo = 0.2, f = B0 cos t ,  
and numerically integrate Equation (9.36). To obtain a Poincari map, plot 
(0, 4) whenf(t) = 0. Choose several values of Bo < 7r/2 and several initial 
conditions. The results can be compared with figures 1 and 2 of Wisdom et al. 
(1984). 

Impact-print Hammer 

Impact-type problems have emerged as an obvious class of mechanical 
examples of chaotic vibrations. A practical realization of impact-induced 
chaotic vibrations is the impact-print hammer experiment studied by Hen- 
driks (1983) at IBM (Figure 9-19a). In this printing device, a hammer head is 
accelerated by a magnetic-force actuator and the kinetic energy is absorbed 
in pushing ink from a ribbon onto paper. Hendriks uses an empirical law for 
the impact force vs. relative displacement after impact; u is equal to the ratio 
of displacement to ribbon-paper thickness: 

- A E , U ~ . ~ ,  ti > o 
- A E , P U ~ ~ ,  ti < o 

(9.37) 

where A is the area of hammer-ribbon contact, Ep acts like a ribbon-paper 
stiffness, and pis a constant that depends on the maximum displacement. It is 
clear that this force is extremely nonlinear. 

When the print hammer is excited by a periodic voltage, it will respond 
periodically as long as the frequency is low. But as the frequency is increased, 
the hammer has little time to damp or settle out, and the impact history 
becomes chaotic (see Figure 9-19b). Thus, chaotic vibrations can restrict the 
speed at which the printer can work. One solution that has been explored is 
adding feedback control, but the increased cost has discouraged technical 
implementation of this option. 

HOMEWORK PROBLEMS 

9.1 Sometimes the roll dynamics of a ship can be modeled by a particle of 
mass m moving in a potential field with V ( x )  = ax2 - bx3;  a, b > 0. 
(a) Find the fixed points of the motion and establish the local stability. 
(b) Sketch the flow lines for different initial conditions when there is no 

(c) Sketch the flow lines when there is small linear damping. 
damping. 

(See, for example, the work of Thompson et al., 1990.) 
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9.2 The following equation can be derived from the dynamics of an electron 
or proton in a circular accelerator (e.g., see Helleman, 1980): 

2 
Yn+l + bYn-l = 2% + 2Yn, Ibl i 1 

(a) Rewrite this equation as a set of first-order difference equations. 
(b) For b = 1, show that this equation is equivalent to a special Henon 

(c) For b = 0, show that this equation reduces to the logistic map 

9.3 Suppose that the output of a dynamical system has two frequency 
components, that is, 

map (9.15). 

(9.18). 

x ( t )  = Acoswlt + Bcos(w2t + 4) 

(a) If you take a Poincart map on the phase wl t ,  show that the map 

(b) Describe the map dynamics if wI/w2 = p / q ,  where p and q are 
integers. 
(c) What does the map look like in the phase plane (x, y )  if there is a 

9.4 Pseudo Phase Plane The equation for a linear harmonic oscillator 
(spring and mass or inductor and capacitor circuit) is given by 
x + x = 0. The solutions for this equation can be represented in the 
phase plane by an ellipse written in parametric form: 

(x, y = x) is an ellipse when w1 /w2 is incommensurate. 

third sinusoid of frequency w3? 

x = A s i n t ,  y = x = A c o s t  

Derive an expression for the solution x = A sin t in terms of pseudo- 
phase-plane variables (x, x’), where x’ = x ( t  + T). Plot this expression 
for different values of A .  
[Answer: (x’ - xcos T ) ~  = ( A ~  - x2) sin2 T.] 

9.5 Investigate the properties of the cubic map (see Holmes, 1979) 

Xn+1 = Y n  

Yn+l = -bx,, + dYn - Y: 

Find the fixed points and determine their stability as a function of the 
parameters b, d. Iterate this map for b = 0.2, d = 2.5, 2.65, 2.77. Can 
you find a strange attractor? 

9.6 Consider an inverted pendulum: a spherical mass at the end of a 
massless rod of length L. The pendulum is constrained by two rigid 
walls on each side. At equilibrium the pendulum mass will rest on one of 
the two walls. Assume that the rest angles are small and show that for 
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9.7 

9.8 

9.9 

undamped free vibrations the dynamics are governed by (see Shaw and 
Rand, 1989) 

x - x = o ,  I x / < l  

1x1 = 1 x + -x, 

Show that a saddle point exists at the origin of the phase space (x, i). 
Sketch a few trajectories. 

Consider the two-degree-of-freedom system of a linear spring-mass 
oscillator confined to the diameter of a circular disc with spring 
constant, k,. Assume also that the disc can rotate about its axis with 
a linear torsional spring restraint, k,. Neglecting gravity and dissipa- 
tion, show that the equations of motion take the form 

2 mi: - mr+ + k,r = 0 

J G  + m(r2$ + 2ri+) + k,cp = o 
(Hint: Note that the kinetic energy is given by ;m(i2 + r+2) + J+2.) 
Show that energy is conserved in this problem. 

The Kicked Rotor Equations for the kicked rotor (9.31) were derived 
for a damped system. Derive the two-dimensional map for zero damp- 
ing (c = 0). Iterate this map on a small computer. Do you expect fractal 
structure? 

Tumbling of Hyperion The rigid body tumbling of the irregularly 
shaped satellite of Saturn called Hyperion has been modeled by (9.36) 
by Wisdom et al. (1984), where the perturbing functionsf( t )  and r (  t )  are 
periodic in time. In the original paper,f( t )  and r( t )  were found from the 
elliptic orbit of the satellite using an eccentricity of the orbit of e = 0.1. 
However, (9.36) is analogous to a periodically forced pendulum. As an 
approximation, assume that r = 1 (i.e., not time-dependent), wo = 0.2, 
andf = 6'0 cos t. Numerically integrate these equations on a computer 
and plot 6' vs. 6 whenf(t) = 0 (i.e., a Poincare map). Choose several 
values of 6'0 < 7r/2 and several different initial conditions and compare 
your results with figures 1 and 2 of Wisdom et al. (1984). 

9.10 A magnetic compass needle is assumed to be pivoted at its center and 
subjected to a rotating magnetic field of intensity Bo. Assume that the 
needle carries a magnetic moment M and that the torque about the axis 
is given by the cross product of the moment M and the magnetic field. 
Derive the equation of motion (Croquette and Poitou, 1981) 

~e = -p[sin(O - wt) + sin(@ + wt)] - ye 
When y = 0, show either analytically or computationally that either 
clockwise or counterclockwise motions are solutions. 
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9.11 Period Doubling Use a small computer to enumerate the critical values 
of X in the logitic equation (9.18), and show that the sequences of values 
of A, approach the universal number (9.22). 

9.12 Another first-order iterated map that exhibits period doubling is the 
sine map 

x,+~ = Xsinrx,, 0 I x, < 1 

With a small computer, show that this map exhibits a period-doubling 
sequence. Also show (numerically) that the period-two map, x,+~ = 
X sin r [ X  sin nx,], has a double hump similar to the quadratic or logistic 
map (9.18). 

9.13 Consider the construction of a Cantor set that starts with a uniformly 
dense distribution of points on a line and begins by throwing out the 
middle p percent of the set. Iteration of this process results in a 
Cantor-type fractal set of points. Show that the box-counting or 
capacity fractal dimension (9-16) is given by 

9.14 Define a fractal-creating operation that takes a line element of length L 
and replaces it by eight equal segments of length L/4,  as shown in 
Figure P9-14. Draw at least four iterations on a large piece of graph 
paper. Use the four sides of a square as the initial line elements. 

9.15 Sierpinski Carpet In this construction of a two-dimensional fractal 
set, start with a square that is divided into nine equal squares. Then the 
central square is removed, leaving eight. Repeat this algorithm, dividing 

Figure P9-14 
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each of the eight into nine pieces and removing the central square. 
Sketch several iterations of this process on a large piece of graph 
paper. Show that the box-counting or fractal dimension (9.16) is 
d = log 8/ log 3.  

9.16 Nonlinear lattice models have been used to model many systems, 
ranging from the dynamics of a long string of railroad cars to the 
dynamics of macromolecules, such as DNA. The equations can often be 
written in terms of a nonlinear potential function V(r,), where 
r, = x,+] - x, is the relative displacement between neighboring cells. 
Derive the equation of motion for general V(r,). 

Solitons One nonlinear potential lattice model uses an exponential 
force potential (Toda, 1989) V(r )  = (a/b)edbr + ar(ab > 0). A lattice 
with this potential is known to admit so-called solitary wave or soliton 
solutions, where a given deformation pattern can propagate without 
distortion and where two such waves can interact and preserve their 
identity similar to linear-wave systems. Use MATLAB to plot the 
solitary wave solution for the Toda lattice given by 

1 1 + e 2 ( K n - K * p t )  

b 1 + e2(K,f3t) x, =-In + constant 

Here p = (ab/m) ' I2 sinh K ,  and the width of the wave is proportional to 
l / ~ .  Also show that for the Toda lattice the solitary wave has a speed 
c = p/.. 
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SECOND MOMENTS OF MASS FOR 
SELECTED GEOMETRIC OBJECTS 
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TABLE A1 

Rectangular parallelepiped 
3.1 

Circular solid cylinder 4' 

Sphere 4' 
2 I,, = I v y  = I - - m R 2  

zz - 5 

Y 
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Circular shell 4 z  
I m 

Z.y.y = Iyy = - (L2 + 6R2) 
12 

I,, = mR2 

Half cylinder JY 

X 

4 

(9r2 - 64) 1 
mR2 + -mL2 

3 6 d  12 I,, = 

1 
Zyl, = -m(3R2 + L2) 

12 

( 9 ~ ’  - 32) 
mR2 

1 8 9  I,, = 

Thin circular rod 

1 z,, = lYy = i ; j m ~ 2  

Izz = 0 

1 2  ICE = IT = -mL 
3 



IF 

1 
12 

I.yx = -mb2 

417 

Y 

1 
4 

I,, = Ivy = -mR2 

1 I- - - m R 2  
2 - 2 

/ 

Thin triangular plate' 

Z,yx = -m(a2 + b2 - ab) 1 
18 

J 

't 
I 

1 2  I --mc 
y y  - 18 

1 
Izz = -m(a2 + b2 + c2 - ab) 

18 

1 
ZxJ) = -mc(2a - b) 

36 

"Source: After Ginsberg and Genin, Dynamics, Wiley, New York, 1977. 



APPENDIX B 

COMMERCIAL DYNAMIC ANALYSIS 
AND SIMULATION SOFTWARE 
CODES 

In the last decade, a large number of analysis codes have become available to 
the dynamicist and design engineer. These new tools range from symbolic 
computation codes for deriving equations of motion, such as M A  THEMA- 
TICA or MAPLE; numerical integration and calculation codes, such as 
MATLAB; to sophisticated “full service” codes, which include geometric 
modeling, dynamic equation formulation and analysis, and postprocessing 
simulation and animation. For the first time ever, engineers can easily 
construct three-dimensional dynamic models, calculate dynamic forces, 
and animate motions for complex multibody machines. However, like 
many commercial products, caveat emptor (let the buyer beware). 

There are several hidden sources of potential problems that the user 
should be aware of: 

1. In many codes, the method used to construct/derive the equations of 
motion is not described or is proprietary. 

2. In several codes, the method of numerical integration of the equations 
of motion is not given or is not explicitly revealed to the user. 

3 .  The method used to enforce constraints such as contact or rolling is not 
explicitly described in the user manuals. 

4. The contact physics of impact and friction that are used in the 
simulation are often not described. For example, you would like to 
know whether Newton or Poisson impact laws are used or whether 
Coulomb or more modern state-variable friction laws are used. 

5 .  The most critical feature that most commercial multibody codes lack is 
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documented code verification, either with known analytical or numer- 
ical solutions or with careful laboratory experiments. 

Unlike early finite-element structuraljelasticity codes, which received 
extensive scrutiny in the published research literature, these new codes 
have been largely developed in the proprietary environment of private 
companies, though most had academic precursors. Thus, although many 
of these codes present beautiful color cartoon animation that looks real, the 
user should conduct his or her own verification tests before basing critical 
design decisions on the output of these exciting new design tools. 

Below we list some of the widely available software codes for dynamic 
analysis of rigid bodies. We realize that there are many excellent products 
that we have not listed, and there will no doubt appear many others after the 
publication of this book (early 1998). These products are listed to encourage 
the student to test these new tools against some of the examples in this book. 

M A P L E  

General-purpose symbolic programming code with numerical integration 
and graphics capabilities. 

Source: Waterloo Maple Software, Waterloo, Ontario, Canada. 

Available for IBMjPC and Apple personal-computer systems. 

A. Heck, Introduction to Maple, Springer-Verlag, New York. Reference: 

MATHEMATICA 

General-purpose symbolic programming code with numerical integration 
and graphics capabilities. 

Source: Wolfram Research, Champaign, Illinois. 

Available for IBMjPC and Apple personal-computer systems. 

S. Wolfram, Mathernatica, Addison-Wesley, Reading, Mass. 
1991. 

Reference: 

Auto-Lev 

Uses symbolic programming (computer algebra) to derive equations of 
motion for multibody systems using Kane’s method. Outputs a Fortran 
code for integration. 
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Source: Prof. T. Kane, Stanford University and D. Levinson, Palo 
Alto, California. 

Available for IBMjPC and Apple personal-computer systems. 

Based on T. Kane, D. A. Levinson, Dynamics Theory and 
Applications, McGraw-Hill, New York, 1985. 

Reference: 

NEWEUL 

Uses symbolic programming to derive equations of motion for multibody 
systems. Based on Newton-Euler and virtual power (Jourdain/Kane) meth- 
ods. 

Source: Prof. W. Schiehlen, University of Stuttgart, Stuttgart, Ger- 
many 

Reference: W. Schiehlen, Technische Dynamik, Teubreug Stuttgart, 1990. 

SOPHIA 

Uses symbolic programming (MAPLE or MATHEMA TICA) to derive 
equations of motion for multibody systems using a variation of Kane’s 
method. 

Source: Prof. Martin Lesser, Royal Institute of Technology, Stock- 
holm Sweden. 

Reference: M. Lesser, The Analysis of Computer Nonlinear Mechanical 
Systems: A Computer Algebra Assisted Approach, World 
Scientific, Singapore, 1995. (Floppy disc comes with book, 
or contact Prof. Martin Lesser.) 

MATLAB 

Acronym for “Matrix Laboratory.” A general-purpose numerical code for 
performing operations on matrices, vectors, arrays of data. Includes sub- 
routines to solve coupled differential equations. Also contains symbolic 
programming capability through MAPLE. 

Source: The Math Works, Inc., 24 Pine Parkway, Natick, MA 01760. 

Available for IBMjPC and Apple personal-computer systems. 

R. Pratap, MATLAB - A Quick Introduction for Scientists and 
Engineers, Saunders, Philadelphia, 1996. 

Reference: 
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ADAMS 

This software acronym stands for “Automatic Dynamic Analysis of 
Mechanical Systems.” This professional, general-purpose, multibody code 
is one of the most widely used in industry. The code is based on a form of 
Lagrange’s equations. Besides rigid-body problems, there are options for 
human-body modeling, vehicle dynamics, and flexible-body dynamics using 
a finite-element interface. The computer-assisted design (CAD) interface 
allows preprocessing geometric model development and postprocessing 
animation. The article by Ryan referenced below claims the code has been 
experimentally verified for some vehicle dynamics problems. 

Source: Originally developed by Professor M. A. Chace and others at 
the University of Michigan; now marketed by a commercial 
company; Mechanical Dynamics, 230 1 Commonwealth Bou- 
levard, Ann Arbor, MI 48105. 

See article by R. R. Ryan in W. Schiehlen, Ed., Multibody 
Systems Handbook, Springer-Verlag, Berlin, 1990, pp. 36 1 - 
402. 

Reference: 

DADS 

This acronym stands for “Dynamic Analysis and Design System.” Like 
ADAMS, this general-purpose, professional multibody code is widely used 
in industry. It includes a solid modeling processor, integration package, and 
animation postprocessor. The code is based on direct Newton-Euler for- 
mulation with explicit constraints, which leads to a large number of 
equations that are linear in the increments of the state variables. DADS is 
available on all major workstations and PCs. 

Source: Computer Aided Design Software, Inc., 265 1 Crosspark 
Road, Coralville, IA 52241. 

Reference: The code comes with a text written by Prof. E. J. Haug of the 
University of Iowa, which is based on his text, 
Intermediate Dynamics, Prentice Hall, Englewood Cliffs, N.J., 
1992. The text outlines the computational theory developed by 
Haug, which shuns the use of a minimal set of generalized 
coordinates, as in Lagrange’s equations, Kane’s method, or 
D’Alembert’s method. 
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Pro/MECHANICA MOTION 

This general-purpose professional multibody code is one of a family of design 
codes under the name of Pro/MECHANICA. This specific code performs 
three-dimensional rigid-body simulation and, like ADAMS and DADS, 
includes solid modeling preprocessing and postprocessing. This code uses a 
modified Kane’s method. The program runs on all major UNIX, Windows 
NT, and Windows 95 platforms. 

Source: Parametric Technology Corporation, 128 Technology Drive, 
Waltham, MA 021 54. 

Working Model 

This general-purpose multibody code comes in two- and three-dimensional 
versions. Originally developed for university teaching, this code is quickly 
gaining popularity because of its price relative to the industry-oriented codes 
and its fast learning curve. Like ADAMS, DADS, and Pro/MECHANICA, 
it has solid modeling capabilities to help set up the geometry and animate the 
simulation results. Runs on Windows 95 and Windows NT PC’s with a 
Pentium processor. 

Source: Knowledge Revolution, 66 Bovet Road, San Mateo, CA 
94402. 

Vector Fields Software for Electromagnetics 

For mechatronics applications, this code has general-purpose two and three 
dimension capabilities. The ELEKTRAiTR code in this family calculates 
transient three-dimensional eddy currents in magnetic and electric materials. 
The code includes solid modeling preprocessor and visualization of the 
dynamic magnetic and electric fields. 

Source: Vector Fields Ltd., 24 Bankside, Kidlington Oxford, OX5 lJE, 
England. 
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