Лабораторна робота №4. Створення сітки скінченних елементів. Процесор Solution

Мета: вивчити основи методу скінченних елементів і засоби побудови скінченно-елементної сітки в ANSYS.

🕏 Теоретичні відомості

Задачі визначення напружено-деформованого стану конструкцій розв'язуються в ANSYS за допомогою методу скінченних елементів. Метод скінченних елементів – це чисельний метод розв'язання інтегральних і диференціальних рівнянь. Одним із етапів застосування методу скінченних елементів є дискретизація досліджуваного об'єкта. Тобто, представлення геометричної моделі об'єкта у вигляді сітки скінченних елементів (рис. 4.1). При цьому, можливе визначення рівномірної (рис. 4.1, а) або нерівномірної (рис. 4.1, б).

Рис. 4.1 – Сітка скінченних елементів

В основі скінченно-елементної сітки, що генерується спеціальною програмою генератором можу бути різноманітні 2D\3D елементи: трикутники (рис. 4.2, а); чотирикутники (рис. 4.2, б); гексаедри (рис. 4.2, в); тетраедри (рис. 4.2, г); призми (рис. 4.2, д); піраміди (рис. 4.3, е).

Програмна оболонка Ansys Workbench предоставляє можливість роботи з наступними генераторами сіток:

- Ansys Meshing універсальний 2D\3D генератор сіток, який дозволяє генерувати сітки на основі гекса-, тетра- та призматичних елементів. Для 2D областей використовуються чотири- та трикутні елементи;
- Ansys TurboGrid генератор, призначений для автоматизованої побудови сіток на основі гексаедрів для лопатей машин (гребні гвинти, лопаті турбін тощо);
- Ansys ICEM CFD потужний генератор сіток, який використовується для розширення функціоналу програм Ansys Meshing Design Modeler.

Робота з Ansys Meshing

Препроцесор Ansys Meshing інтегровано в Ansys Workbench. Розглянемо далі основні етапи роботи з програмою.

Для завантаження програми необхідно викликати меню Mesh з Toolbox (рис. 4.3, а) або редагувати рядок Mesh/Model в шаблоні задачі (рис. 4.3, б).

Рис. 4.3

Інтерфейс програми містить дерево проектів, графічне вікно, вікно налаштувань та панель інструментів (рис. 4.4).

Рис. 4.4

Перед генерацією сітки, можна попередньо переглянути результат дискретизації за допомогою меню **Previw Surface Mesh** (рис. 4.5)

Рис. 4.5

Налаштування генератора сіток

Вікно Details of Mesh містить різноманітні налаштування якості сітки. Розділ Defaults містить налаштування типу фізичної задачі (Physics Preference); фактор густини сітки (Relevance), який змінюється в діапазоні від -100 до 100 (-100 – рис. 4.6,а; 0 – рис. 4.6,б; 100 – рис. 4.6,в).

Рис. 4.6

Розділ **Statics** містить відомості про кількість елементів та відповідних узлів (рис. 4.7)

OL	utine				ф.		
E	Project Model (A Geor Coord Mesh	4) ietry dinate S ic Strue	ystems ctural (A	5)	* *		
De	tails of "Mesh"				4		
Ξ	Defaults						
	Physics Preference	Mecha	inical				
	Relevance	0			_		
ŧ	Sizing						
ŧ	Inflation						
Inflation Advanced							
Ŧ	Pinch						
6	Statistics						
	Nodes	986					
	Elements	492					
-	Mesh Metric	None					
1	Mesh Metric	None Рис	. 4.7		_		

Густина сітки впливає на точність подальших розрахунків. При цьому, слід враховувати, що дуже детальна сітка призводить до збільшення часу генерації сітки та розрахунків. Отже, необхідно обрати оптимальний варіант параметрів густини сітки, розміру скінченного елементу, якості сітки тощо. Крім параметру **Relevance**, можна використовувати його середнє значення **Relevance Center** з розділу **Sizing.** Можливі значення цього параметру: **Coarse(груба сітка), Medium(середня сітка), Fine(мала сітка).**

Співвідношення між параметрами **Relevance та Relevance Center** можна побачити на рис. 4.8.

Рис. 4.8

Налаштування розміру елемента (Element Size) визначає розмір елементу всієї моделі. Дана опція не активна, коли використовується функція додаткових налаштувань розміру елемента (Use Advanced Size Function).

De	tails of "Mesh"	And the second second	4 De	tails of "Mesh"		导
-	Defaults		8	Defaults		
	Physics Preference	Mechanical		Physics Preference	Mechanical	
	Relevance	0		Relevance	0	
Ξ	Sizing		E	Sizing		
	Use Advanced Size Function	tionOff		Use Advanced Size Functi	Off	
	Relevance Center	Coarse		Relevance Center	Coarse	
	Element Size	Default		Element Size	5,0 mm	
	Initial Size Seed	Active Assembly		Initial Size Seed	Active Assembly	
	Smoothing	Medium		Smoothing	Medium	
	Transition	Fast		Transition	Fast	
	Span Angle Center	Coarse		Span Angle Center	Coarse	
	Minimum Edge Length	3,23540 m		Minimum Edge Length	3235,40 mm	
+	Inflation Advanced Pinch		÷	Inflation Advanced Pinch		
+			÷			
+			÷			
+	+ Statistics		+	Statistics		

Налаштування вихідного розміру сітки (Initial Size Seed) вказує розмір сітки (Assembly, Part,...), який використовується на початку генерування сітки.

Налаштування згладжування (Smoothing) активні при вимкненій функції додаткових налаштувань розміру елемента (Use Advanced Size Function). Згладжування сітки виконується для покращення якості елементів. Значення згладжування (Low, Medium, High) керують кількістю ітерації згладжування.

Методи побудови сіток

Методи побудови сіток доступні через контекстне меню компонента Mesh в дереві Outline.

Критерії якості сіток

Якісна дискретизація вихідного об'єкту ключовий фактор точності розв'язання задачі. Розділ **Quality** вікна властивостей (рис. 4.11) побудованої

сітки дозволяє розраховувати різноманітні метрики якості і за ними робити висновок про якість побудованої сітки.

Display				
Display Style	Body Color			
Defaults				
Physics Preference	Mechanical			
Relevance	0			
Element Order	Program Controlled			
Sizing				
Quality				
Check Mesh Qua	Yes, Errors			
Error Limits	Standard Mechanical			
Target Quality	Default (0.050000)			
Smoothing	Medium			
Mesh Metric	None	-		
Inflation	None			
Advanced	Element Quality	-		
Statistics	Jacobian Ratio (MAPDL)			
Nodes	Jacobian Ratio (Corner Nodes)			
	Jacobian Ratio (Gauss Points)		ι.	
Liements	Warping Factor			
Aanage Views	Parallel Deviation		>	
	Maximum Corner Angle			
💽 🗙 🖏 🌗 🛛				

Рис. 4.11

Розглянемо деякі основні метрики якості.

Element Quality. Може приймати значення від 0 (низька якість) до 1 (висока якість). Для 2D випадку крітерій засновано на відношенні площі елементу до суми квадратів довжин ребер елементу. Для 3D випадку – на відношенні об'єма елем'нту до квадратного кореня суми квадратів довжин ребер елементу в кубі.

Aspect Ratio. Визначає відношення максимальної і мінімальної довжин сторін елементу. Найкращім співвідношенням є Aspect Ratio=1, однак, для багатьох задач можливо більш високе значення.

«Завдання до лабораторної роботи

Для кожної з геометричних моделей лабораторної роботи №2 згенерувати сітку скінченних елементів.

? Контрольні запитання

- 1. Опишіть процес розв'язання задачі в ANSYS.
- 2. Як відбувається побудова скінченно-елементної сітки в ANSYS?

3. Яким чином задаються зовнішні навантаження та граничні умови?

4. У чому суть процесу моделювання?

5. Як визначається адекватність моделі? Чим вона характеризується?