
Undergraduate Topics in Computer Science

A Beginners
Guide to Python 3
Programming
Second Edition

John Hunt

Undergraduate Topics in Computer Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky , Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin , Department of Computing, Imperial College London, London,
UK

Mike Hinchey , Lero – The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA

Andrew Pitts , Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK

Hanne Riis Nielson , Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA

Iain Stewart , Department of Computer Science, Durham University, Durham,
UK

Joseph Migga Kizza, College of Engineering and Computer Science, The
University of Tennessee-Chattanooga, Chattanooga, TN, USA

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971

‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality instruc-
tional content for undergraduates studying in all areas of computing and information
science. From core foundational and theoretical material to final-year topics and
applications, UTiCS books take a fresh, concise, and modern approach and are ideal
for self-study or for a one- or two-semester course. The texts are all authored by
established experts in their fields, reviewed by an international advisory board, and
contain numerous examples and problems, many of which include fully worked
solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275–300 pages. For undergraduate textbooks that are likely
to be longer, more expository, Springer continues to offer the highly regarded Texts
in Computer Science series, to which we refer potential authors.

John Hunt

A Beginners Guide to Python
3 Programming
Second Edition

John Hunt
Midmarsh Technology Ltd.
Chippenham, Wiltshire, UK

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-031-35121-1 ISBN 978-3-031-35122-8 (eBook)
https://doi.org/10.1007/978-3-031-35122-8

1st edition: © Springer Nature Switzerland AG 2019, corrected publication 2020
2nd edition: © Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-35122-8

This book is simply for Denise, the love of my
life.

Preface the Second Edition

I am writing this preface to the second edition of this book in the middle of 2023,
and I am reflecting on what has happened to Python over the last 4 to 5 years.
Python itself has gone from strength to strength, its popularity has not diminished
and if anything has increased. I increasingly come across organizations in all walks
of life that are actively using the language. This is true whether they are schools,
colleges or universities, charities, governmental organization, research institutions
or commercial enterprises. The uses being made of Python keeps on growing and
the ecosystem of supporting libraries available keeps on growing.

This edition represents a significant update from Python 3.7 (which was the current
version when the first edition of the book was written) to Python 3.11 (and a look
ahead to Python 3.12). It also represents a significant extension to the original book
with an additional eight chapters. These chapters represent topics and questions that
those learning Python have expressed an interest in such as frozensets, enumer-
ated types and sorting functions to Python virtual environments. It also reflects new
features in the language such as pattern matching introduced in Python 3.10 and
Exception Groups handling and Exception Notes introduced in Python 3.11.

The book also now includes a chapter entitled ‘Python Bites Back’ which high-
lights for someone learning Python, 14 of the most common mistakes made by a
Python beginner. This chapter can be dropped into at any time but covers the whole
of the language discussed in this book so some sections may be more relevant once
the whole book has been read.

Chippenham, UK John Hunt

vii

Preface to the First Edition

There is currently huge interest in the Python programming language. This is driven
by several factors; its use in schools with the Raspberry Pi platform, its ability to be
used for DevOps scripts, its use in Data Science and Machine Learning and of course
the language itself. Plus of course it is free! So anyone anywhere can download and
install Python and get started.

There are many books on Python; however, most assume previous programming
experience or are focused on particular aspects of Python use such as Data Science
or Machine Learning or have a scientific flavor.

The aim of this book is to introduce Python to those with little or very little
programming knowledge, but to take them through to become an experienced Python
developer.

As such the earlier parts of the book introduce fundamental concepts such as
what a variable is and how a for loop works. In contrast the later chapters intro-
duce advanced concepts such as Functional Programming, object orientation and
exception handling.

In between a wide range of topics are introduced and discussed from a Python
point of view including functions, recursion, operators, Python properties, modules
and packages, protocols and monkey patching, etc.

After the core elements of Python are established each new subject area is intro-
duced by way of an introductory chapter presenting the topic in general, providing
background on that subject, why it is of importance, etc. These introductions cover
structure analysis, functional programming and object orientation.

Some of the key aspects of this book are:

1. It assumes very little knowledge or experience of Python or programming.
2. It provides a basic introduction to Python as well as advanced topics such as

generators and coroutines.
3. This book provides extensive coverage of object orientation and the features in

Python 3 supporting classes, inheritance and protocols.
4. Pythons’ support for functional programming is also presented.

ix

x Preface to the First Edition

5. Following on from introducing the basic ideas behind functional programming,
the book presents how advanced functional concepts such as closures, currying
and higher-order functions work in Python.

6. The book includes exercises at the end of most chapters with online solutions
7. There are several case studies spread through the book that broaden understanding

of preceding topics.
8. All code examples (and exercise solutions) are provided online in a GitHub

repository.

Chapter Organization

Each chapter has a brief introduction, the main body of the chapter, followed by a
list of (typically) online references that can be used for further reading.

Following this there is typically an Exercises section that lists one or more
exercises that build on the skills you will have learnt in that chapter.

Sample solutions to the exercises are available in a GitHub online repository that
supports this book.

What You Need

You can of course just read this book; however following the examples in this book
will ensure that you get as much as possible out of the content.

For this you will need a computer.
Python is a cross platform programming language and as such you can use Python

on a Windows PC, a Linux box or a Apple Mac, etc. So you are not tied to a particular
type of operating system; you can use whatever you have available.

However you will need to install some software on that computer. At a minimum
you will need Python.

This book focuses on Python 3 so you will need that. Some guidance on this is
provided in Chap. 2 on setting up your environment.

You will also need some form of editor in which to write your programs. There
are numerous generic programming editors available for different operating systems
with VIM on Linux, Notepad++ on Windows and Sublime Text on Windows and
Macs being popular choices.

However, using a Integrated Development Environment (IDE) editor such as
PyCharm or potential Visual Studio Code will make writing and running your
programs much easier.

Preface to the First Edition xi

Using an IDE

The IDE I prefer for Python is PyCharm, it is not the only IDE for Python by any
means, but it is a very widely used one.

Other IDEs available for Python include:

● Spyder which is an IDE often used by scientists and engineers see https://www.
spyder-ide.org/.

● Jupiter Notebook which is a web-based IDE and is particularly good for data
scientists https://jupyter.org/.

● Visual Studio Code. This is a very good free editor from Microsoft that has really
useful features https://code.visualstudio.com.

● Sublime Text is more of a text editor that color codes Python; however for a simple
project it may be all you need https://www.sublimetext.com.

Mostly this book is editor or IDE agnostic only Chap. 3 ‘Setting up the Python
Environment’ and Chap. 42 ‘Python Virtual Environments’ really focus on PyCharm.
You can therefore use whatever editor you wish to use.

Conventions

Throughout this book you will find a number of conventions used for text styles.
These text styles distinguish different kinds of information.

Code words, variables and Python values, used within the main body of the text,
are shown using a Courier font. For example:

This program creates a top level window (the wx.Frame) and gives it a title. It also creates
a label (a wx.StaticText object) to be displayed within the frame.

In the above paragraph wx.Frame and wx.StaticText are classes available in a
Python graphical user interface library.

A block of Python code is set out as shown here:

num = int(input(’Enter another number: ’))
if num > 0:
print(num, ’is positive’)
print(num, ’squared is ’, num * num)

print(’Bye’)

Note that keywords and points of interest are shown in bold font.

Any command line or user input is shown in italics and is also bold:

https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://jupyter.org/
https://code.visualstudio.com
https://www.sublimetext.com

xii Preface to the First Edition

> python hello.py

Or

Hello, world
Enter your name:John
Hello John

Example Code and Sample Solutions

The examples used in this book (along with sample solutions for the exercises at the
end of most chapters) are available in a GitHub repository. GitHub provides a web
interface and a server environment hosting Git.

Git is a version control system typically used to manage source code files (such
as those used to create systems in programming languages such as Python but also
Java, C#, C++, Scala, etc.). Systems such as Git are very useful for collaborative
development as they allow multiple people to work on an implementation and to
merge their work together. They also provide a useful historical view of the code
(which also allows developers to roll back changes if modifications prove to be
unsuitable).

If you already have Git installed on your computer then you can clone (obtain a
copy of) the repository locally using:
git clone https://github.com/johnehunt/beginnerspython

3_2nd
If you do not have git then you can obtain a zip file of the examples using
https://github.com/johnehunt/beginnerspython3_2nd/arc

hive/master.zip
You can of course install Git yourself if you wish. To do this see https://git-scm.

com/downloads. Versions of the Git client for Mac OS, Windows and Linux/Unix
are available here.

However, many IDEs such as PyCharm come with Git support and so offer another
approach to obtaining a Git repository.

For more information on Git see http://git-scm.com/doc. This Git guide provides
a very good primer and is highly recommended.

Bath, UK John Hunt

https://github.com/johnehunt/beginnerspython3_2nd
https://github.com/johnehunt/beginnerspython3_2nd
https://github.com/johnehunt/beginnerspython3_2nd/archive/master.zip
https://github.com/johnehunt/beginnerspython3_2nd/archive/master.zip
https://git-scm.com/downloads
https://git-scm.com/downloads
http://git-scm.com/doc

Contents

1 Introduction . 1
1.1 What is Python? . 1
1.2 Python Versions . 2
1.3 Python History . 3
1.4 Python Programming . 4
1.5 Python Libraries . 4
1.6 Python Execution Model . 5
1.7 Running Python Programs . 6

1.7.1 Interactively Using the Python Interpreter 6
1.7.2 Running a Python File . 7
1.7.3 Executing a Python Script . 9
1.7.4 Using Python in an IDE . 11

1.8 Jupyter Notebooks . 12
1.9 Useful Resources . 13

2 Where is Python Used . 15
2.1 Introduction . 15

2.1.1 Data Analytics . 15
2.1.2 Machine Learning and AI . 17
2.1.3 Database Work . 18
2.1.4 Python for Animation . 19
2.1.5 Python for Film Making . 19
2.1.6 Cross Platform UIs . 19
2.1.7 Games Programming . 20
2.1.8 Integration Testing Framework 20
2.1.9 Academic Research . 20
2.1.10 Web Services . 21

2.2 Useful Resources . 21

xiii

xiv Contents

3 Setting up the Python Environment . 23
3.1 Introduction . 23
3.2 Check to See if Python is Installed . 23
3.3 Installing Python on a Windows PC . 25

3.3.1 Step 1: Downloading Python . 25
3.3.2 Step 2: Running the Installer . 26
3.3.3 Step 3: Set up the PATH (Optional) 27
3.3.4 Step 4: Verify the Installation . 29
3.3.5 Step 5: Run Some Python . 30
3.3.6 Step 6: Exit the Python Interpreter 30

3.4 Setting up on a Mac . 31
3.5 Setting up an IDE . 33

3.5.1 Downloading the PyCharm IDE 33
3.5.2 Setting up the IDE . 35

3.6 Writing Python Programs . 37
3.7 A Note on Filenames . 39
3.8 Online Resources . 40

4 A First Python Program . 41
4.1 Introduction . 41
4.2 Hello World . 41
4.3 Interactive Hello World . 42
4.4 Variables . 44
4.5 Naming Conventions . 45
4.6 Assignment Operator . 46
4.7 Python Statements . 47
4.8 Comments in Code . 47
4.9 Scripts Versus Programs . 48
4.10 Online Resources . 48
4.11 Exercises . 49

5 Python Strings . 51
5.1 Introduction . 51
5.2 What Are Strings? . 51
5.3 Representing Strings . 52
5.4 What Type is String? . 53
5.5 What Can You Do with Strings? . 53

5.5.1 String Concatenation . 54
5.5.2 Length of a String . 54
5.5.3 Accessing a Character . 54
5.5.4 Accessing a Subset of Characters 55
5.5.5 Repeating Strings . 55
5.5.6 Splitting Strings . 55
5.5.7 Counting Strings . 56
5.5.8 Replacing Strings . 57
5.5.9 Finding Sub Strings . 57

Contents xv

5.5.10 Converting Other Types into Strings 57
5.5.11 Remove Prefix and Suffix . 58
5.5.12 Comparing Strings . 58
5.5.13 Other String Operations . 59

5.6 Hints on Strings . 60
5.6.1 Python Strings are Case Sensitive 60
5.6.2 Function/Method Names . 60
5.6.3 Function/Method Invocations . 60

5.7 String Formatting . 61
5.8 String Templates . 63
5.9 Formatting Using f-strings . 66
5.10 Online Resources . 67
5.11 Exercises . 67

6 Numbers, Booleans and None . 69
6.1 Introduction . 69
6.2 Types of Numbers . 69
6.3 Integers . 70

6.3.1 Converting to Ints . 71
6.4 Floating Point Numbers . 71

6.4.1 Converting to Floats . 72
6.4.2 Converting an Input String into a Floating Point

Number . 72
6.5 Complex Numbers . 73
6.6 Boolean Values . 73
6.7 Arithmetic Operators . 74

6.7.1 Integer Operations . 75
6.7.2 Negative Number Integer Division 77
6.7.3 Floating Point Number Operators 77
6.7.4 Integers and Floating Point Operations 78
6.7.5 Complex Number Operators . 78

6.8 Assignment Operators . 79
6.9 None Value . 80
6.10 Online Resources . 81
6.11 Exercises . 81

6.11.1 General Exercise . 81
6.11.2 Convert Kilometers to Miles . 81

7 Flow of Control Using if Statements . 83
7.1 Introduction . 83
7.2 Comparison Operators . 83
7.3 Logical Operators . 84
7.4 The If Statement . 84

7.4.1 Working with an If Statement . 85
7.4.2 Else in an If Statement . 86
7.4.3 The Use of elif . 86

xvi Contents

7.5 Nesting if Statements . 87
7.6 If Expressions . 88
7.7 A Note on True and False . 89
7.8 Hints . 89
7.9 Online Resources . 89
7.10 Exercises . 90

7.10.1 Check Input is Positive or Negative 90
7.10.2 Test if a Number is Odd or Even 90
7.10.3 Kilometers to Miles Converter . 90

8 Iteration/Looping . 93
8.1 Introduction . 93
8.2 While Loop . 93
8.3 For Loop . 95

8.3.1 Python for Loops . 96
8.3.2 Looping by Non-default Increments 97
8.3.3 Anonymous Loop Variables . 98

8.4 Negative Loops . 98
8.5 Break Loop Statement . 99
8.6 Continue Loop Statement . 100
8.7 For Loop with Else . 102
8.8 A Note on Loop Variable Naming . 103
8.9 Dice Roll Game . 103
8.10 Online Resources . 104
8.11 Exercises . 104

8.11.1 Calculate the Factorial of a Number 104
8.11.2 Print All the Prime Numbers in a Range 105

9 Number Guessing Game . 107
9.1 Introduction . 107
9.2 Setting up the Program . 107

9.2.1 Create a New Python File . 107
9.2.2 Add a Welcome Message . 108
9.2.3 Running the Program . 109

9.3 What Will the Program Do? . 110
9.4 Creating the Game . 111

9.4.1 Generate the Random Number . 111
9.4.2 Obtain an Input From the User 111
9.4.3 Check to See if the Player Has Guessed

the Number . 112
9.4.4 Check They Haven’t Exceeded Their Maximum

Number of Guess . 112
9.4.5 Notify the Player Whether Higher or Lower 113
9.4.6 End of Game Status . 114

9.5 The Complete Listing . 114
9.6 Hints . 116

Contents xvii

9.6.1 Initializing Variables . 116
9.6.2 Blank Lines Within a Block of Code 116

9.7 Exercises . 116

10 Recursion . 117
10.1 Introduction . 117
10.2 Recursive Behaviour . 117
10.3 Benefits of Recursion . 118
10.4 Recursively Searching a Tree . 118
10.5 Recursion in Python . 119
10.6 Calculating Factorial Recursively . 120
10.7 Disadvantages of Recursion . 122
10.8 Online Resources . 122
10.9 Exercises . 123

11 Introduction to Structured Analysis . 125
11.1 Introduction . 125
11.2 Structured Analysis and Function Identification 125
11.3 Functional Decomposition . 126

11.3.1 Functional Decomposition Terminology 127
11.3.2 Functional Decomposition Process 128
11.3.3 Calculator Functional Decomposition Example 128

11.4 Functional Flow . 130
11.5 Data Flow Diagrams . 130
11.6 Flowcharts . 131
11.7 Data Dictionary . 133
11.8 Online Resources . 134

12 Functions in Python . 135
12.1 Introduction . 135
12.2 What are Functions? . 135
12.3 How Functions Work . 136
12.4 Types of Functions . 137
12.5 Defining Functions . 137

12.5.1 An Example Function . 138
12.6 Returning Values from Functions . 139
12.7 Docstring . 140
12.8 ReStructured Text . 141
12.9 Function Parameters . 146

12.9.1 Multiple Parameter Functions . 146
12.9.2 Default Parameter Values . 147
12.9.3 Named Arguments . 148
12.9.4 Arbitrary Arguments . 149
12.9.5 Positional and Keyword Arguments 150

12.10 Anonymous Functions . 151

xviii Contents

12.11 Online Resources . 152
12.12 Exercises . 152

13 Scope and Lifetime of Variables . 155
13.1 Introduction . 155
13.2 Local Variables . 155
13.3 The Global Keyword . 157
13.4 Nonlocal Variables . 158
13.5 Hints . 160
13.6 Online Resources . 160
13.7 Exercise . 160

14 Implementing a Calculator Using Functions . 161
14.1 Introduction . 161
14.2 What the Calculator Will Do . 161
14.3 Getting Started . 162
14.4 The Calculator Operations . 162
14.5 Behaviour of the Calculator . 163
14.6 Identifying Whether the User has Finished 164
14.7 Selecting the Operation . 166
14.8 Obtaining the Input Numbers . 168
14.9 Determining the Operation to Execute . 169
14.10 Running the Calculator . 170
14.11 Exercises . 170

15 Introduction to Functional Programming . 171
15.1 Introduction . 171
15.2 What is Functional Programming? . 171
15.3 Advantages to Functional Programming . 173
15.4 Disadvantages of Functional Programming 175
15.5 Referential Transparency . 175
15.6 Further Reading . 177

16 Higher-Order Functions . 179
16.1 Introduction . 179
16.2 Recap on Functions in Python . 179
16.3 Functions as Objects . 180
16.4 Higher-Order Function Concepts . 182

16.4.1 Higher-Order Function Example 183
16.5 Python Higher-Order Functions . 184

16.5.1 Using Higher-Order Functions . 185
16.5.2 Functions Returning Functions 186

16.6 Online Resources . 187
16.7 Exercises . 188

Contents xix

17 Curried Functions . 189
17.1 Introduction . 189
17.2 Currying Concepts . 189
17.3 Python and Curried Functions . 190
17.4 Closures . 191
17.5 Online Resources . 194
17.6 Exercises . 194

18 Introduction to Object Orientation . 195
18.1 Introduction . 195
18.2 Classes . 195
18.3 What Are Classes for? . 196

18.3.1 What Should a Class Do? . 197
18.3.2 Class Terminology . 197

18.4 How is an OO System Constructed? . 198
18.4.1 Where Do We Start? . 199
18.4.2 Identifying the Objects . 200
18.4.3 Identifying the Services or Methods 201
18.4.4 Refining the Objects . 202
18.4.5 Bringing It All Together . 203

18.5 Where Is the Structure in an OO Program? 205
18.6 Further Readings . 207

19 Python Classes . 209
19.1 Introduction . 209
19.2 Python and Classes . 209
19.3 Class Definitions . 210
19.4 Creating Examples of the Class Person . 212
19.5 Be Careful with Assignment . 213
19.6 Printing Out Objects . 214

19.6.1 Accessing Object Attributes . 214
19.6.2 Defining a Default String Representation 215
19.6.3 Defining a Default Storage Representation 216

19.7 Providing a Class Comment . 217
19.8 Adding a Birthday Method . 218
19.9 Defining Instance Methods . 219
19.10 Person Class Recap . 220
19.11 The Del Keyword . 221
19.12 Automatic Memory Management . 222
19.13 Intrinsic Attributes . 223
19.14 Online Resources . 224
19.15 Exercises . 224

xx Contents

20 Class Side and Static Behaviour . 227
20.1 Introduction . 227
20.2 Class-Side Data . 227
20.3 Class-Side Methods . 228

20.3.1 Why Class-Side Methods? . 229
20.4 Static Methods . 229
20.5 Hints . 230
20.6 Online Resources . 230
20.7 Exercises . 231

21 Class Inheritance . 233
21.1 Introduction . 233
21.2 What is Inheritance? . 233
21.3 Defining Inheritance Between Classes . 234
21.4 Terminology Around Inheritance . 237

21.4.1 Types of Hierarchy . 237
21.5 The Class Object and Inheritance . 239
21.6 The Built-in Object Class . 240
21.7 Purpose of Subclasses . 240
21.8 Overriding Methods . 241
21.9 Extending Superclass Methods . 243
21.10 Inheritance-Oriented Naming Conventions 243
21.11 Python and Multiple Inheritance . 244
21.12 Multiple Inheritance Considered Harmful 246
21.13 Summary . 250
21.14 Online Resources . 251
21.15 Exercises . 251

22 Why Bother with Object Orientation? . 253
22.1 Introduction . 253
22.2 The Procedural Approach . 253

22.2.1 Procedures for the Data Structure 254
22.2.2 Packages . 254

22.3 Does Object Orientation Do Any Better? 255
22.3.1 Packages Versus Classes . 255
22.3.2 Inheritance . 257

22.4 Summary . 258

23 Operator Overloading . 259
23.1 Introduction . 259
23.2 Operator Overloading . 259

23.2.1 Why Have Operator Overloading? 259
23.2.2 Why not Have Operator Overloading? 260
23.2.3 Implementing Operator Overloading 260

23.3 Numerical Operators . 262
23.4 Comparison Operators . 264

Contents xxi

23.5 Logical Operators . 266
23.6 Summary . 266
23.7 Online Resources . 266
23.8 Exercises . 267

24 Python Properties . 269
24.1 Introduction . 269
24.2 Python Attributes . 269
24.3 Setter and Getter Style Methods . 270
24.4 Public Interface to Properties . 272
24.5 More Concise Property Definitions . 273
24.6 Online Resources . 275
24.7 Exercises . 275

25 Abstract Base Classes . 277
25.1 Introduction . 277
25.2 Abstract Classes as a Concept . 277
25.3 Abstract Base Classes in Python . 278

25.3.1 Subclassing an ABC . 278
25.3.2 Defining an Abstract Base Class 280

25.4 Defining an Interface . 282
25.5 Virtual Subclasses . 282
25.6 Mixins . 284
25.7 Online Resources . 286

26 Error and Exception Handling . 287
26.1 Introduction . 287
26.2 Errors and Exceptions . 287
26.3 What is an Exception? . 288
26.4 What is Exception Handling? . 289
26.5 Handling an Exception . 291

26.5.1 Accessing the Exception Object 293
26.5.2 Jumping to Exception Handlers 294
26.5.3 Catch Any Exception . 296
26.5.4 The Else Clause . 296
26.5.5 The Finally Clause . 297

26.6 Raising an Exception . 298
26.7 Defining an Custom Exception . 299
26.8 Chaining Exceptions . 301
26.9 Exception Groups . 302
26.10 Exception Group Handling . 303
26.11 Exception Notes . 305
26.12 Generate a Traceback Programmatically . 306
26.13 Online Resources . 307
26.14 Exercises . 308

xxii Contents

27 Python Modules and Packages . 309
27.1 Introduction . 309
27.2 Modules . 309
27.3 Python Modules . 310
27.4 Importing Python Modules . 312

27.4.1 Importing a Module . 312
27.4.2 Importing from a Module . 313
27.4.3 Importing Aliases . 314
27.4.4 Hiding Some Elements of a Module 315
27.4.5 Importing Within a Function . 315

27.5 Module Properties . 316
27.6 Standard Modules . 316
27.7 Python Module Search Path . 317
27.8 Modules as Scripts . 318
27.9 Python Packages . 321

27.9.1 Package Organization . 321
27.9.2 Sub Packages . 322

27.10 Online Resources . 323
27.11 Exercise . 323

28 Protocols, Polymorphism and Descriptors . 325
28.1 Introduction . 325
28.2 Implicit Contracts . 325
28.3 Duck Typing . 326
28.4 Polymorphism . 328
28.5 Protocols . 329
28.6 The Length Protocol . 330
28.7 The Sequence Protocol . 331
28.8 The Context Manager Protocol . 332
28.9 The Descriptor Protocol . 334
28.10 Online Resources . 336
28.11 Exercises . 337

29 Decorators . 339
29.1 Introduction . 339
29.2 What Are Decorators? . 339
29.3 Defining a Decorator . 340
29.4 Using Decorators . 341
29.5 Functions with Parameters . 341
29.6 Stacked Decorators . 342
29.7 Parameterized Decorators . 343
29.8 Method Decorators . 344

29.8.1 Methods Without Parameters . 344
29.8.2 Methods with Parameters . 345

29.9 Class Decorators . 346
29.10 When is a Decorator Executed? . 348

Contents xxiii

29.11 Built-In Decorators . 348
29.12 FuncTools Wrap . 349
29.13 Online Resources . 350
29.14 Book Reference . 350
29.15 Exercises . 350

30 Iterables and Iterators . 353
30.1 Introduction . 353
30.2 Iteration . 353

30.2.1 Iterables . 353
30.2.2 Iterators . 354
30.2.3 The Iteration Related Methods . 354
30.2.4 The Iterable Evens Class . 354
30.2.5 Using the Evens Class with a For Loop 355

30.3 The Itertools Module . 355
30.4 Online Resources . 356

31 Generators and Coroutines . 357
31.1 Introduction . 357
31.2 Generators . 357

31.2.1 Defining a Generator Function . 358
31.2.2 Using a Generator Function in a for Loop 358
31.2.3 When Do the Yield Statements Execute? 358
31.2.4 An Even Number Generator . 359
31.2.5 Nesting Generator Functions . 360
31.2.6 Using Generators Outside a for Loop 360

31.3 Coroutines . 361
31.4 Exercises . 362

32 Collections, Tuples and Lists . 365
32.1 Introduction . 365
32.2 Python Collection Types . 365
32.3 Characterising Collections . 366
32.4 Tuples . 367

32.4.1 Creating Tuples . 367
32.4.2 The Tuple() Constructor Function 367
32.4.3 Accessing Elements of a Tuple 368
32.4.4 Creating New Tuples from Existing Tuples 368
32.4.5 Tuples Can Hold Different Types 369
32.4.6 Iterating Over Tuples . 370
32.4.7 Tuple Related Functions . 370
32.4.8 Checking if an Element Exists . 370
32.4.9 Nested Tuples . 371
32.4.10 Things You Can’t Do with Tuples 371

32.5 Lists . 372
32.5.1 Creating Lists . 372

xxiv Contents

32.5.2 List Constructor Function . 374
32.5.3 Accessing Elements from a List 374
32.5.4 Adding to a List . 375
32.5.5 Inserting into a List . 376
32.5.6 List Concatenation . 376
32.5.7 Removing from a List . 377
32.5.8 The Pop() Method . 377
32.5.9 Deleting from a List . 378
32.5.10 List Methods . 378

32.6 Online Resources . 379
32.7 Exercises . 379

33 Sets . 381
33.1 Introduction . 381
33.2 Creating a Set . 381
33.3 The Set() Constructor Function . 382
33.4 Accessing Elements in a Set . 382
33.5 Working with Sets . 382

33.5.1 Checking for Presence of an Element 382
33.5.2 Adding Items to a Set . 383
33.5.3 Changing Items in a Set . 383
33.5.4 Obtaining the Length of a Set . 383
33.5.5 Obtaining the Max and Min Values in a Set 384
33.5.6 Removing an Item . 384

33.6 Nesting Lists Within Sets . 384
33.7 Set Operations . 385
33.8 Set Methods . 387
33.9 Online Resources . 387
33.10 Exercises . 388

34 Dictionaries . 389
34.1 Introduction . 389
34.2 What is a Dictionary . 389
34.3 Creating a Dictionary . 390

34.3.1 The dict() Constructor Function 390
34.4 Working with Dictionaries . 391

34.4.1 Accessing Items via Keys . 391
34.4.2 Adding a New Entry . 391
34.4.3 Changing a Keys Value . 391
34.4.4 Removing an Entry . 392
34.4.5 Iterating Over Keys . 393
34.4.6 Values, Keys and Items . 393
34.4.7 Checking Key Membership . 394
34.4.8 Obtaining the Length of a Dictionary 394
34.4.9 Nesting Dictionaries . 395
34.4.10 Checking to See if a Key is Present 395

Contents xxv

34.5 Dictionary Operators Added in 3.9 . 395
34.6 A Note on Dictionary Key Objects . 396
34.7 Dictionary Methods . 397
34.8 Online Resources . 398
34.9 Exercises . 398

35 Frozensets . 401
35.1 Introduction . 401
35.2 Frozenset Characteristics . 401
35.3 Creating a Frozenset . 401
35.4 Frozenset Operations . 403
35.5 Using Frozensets with Sets . 404

36 Collection Related Modules . 407
36.1 Introduction . 407
36.2 List Comprehension . 407
36.3 The Collections Module . 408

36.3.1 The Counter Container . 409
36.3.2 The Defaultdict Container . 410
36.3.3 The Namedtuple Container . 412

36.4 The Itertools Module . 413
36.5 Online Resources . 414
36.6 Exercises . 414

37 ADTs, Queues and Stacks . 417
37.1 Introduction . 417
37.2 Abstract Data Types . 417
37.3 Data Structures . 418
37.4 Queues . 418

37.4.1 Python List as a Queue . 419
37.4.2 Defining a Queue Class . 419

37.5 Stacks . 421
37.5.1 Python List as a Stack . 422

37.6 Online Resources . 423
37.7 Exercises . 423

38 Map, Filter and Reduce . 425
38.1 Introduction . 425
38.2 Filter . 425
38.3 Map . 427
38.4 Reduce . 429
38.5 Online Resources . 430
38.6 Exercises . 431

xxvi Contents

39 Sorting and Higher-Order Functions . 433
39.1 Introduction . 433
39.2 The sorted() Function . 433
39.3 Sorting in Reverse Order . 436
39.4 The sort() Method . 437
39.5 Reversing the sort() Method . 438
39.6 Changing the Sort Key . 439
39.7 Sorting Containers of Containers . 440
39.8 Exercises . 442

40 Python Enumerated Values . 445
40.1 Introduction . 445
40.2 What is an Enumeration? . 445
40.3 Creating an Enumeration Using Class Syntax 446
40.4 Enum Values . 447
40.5 Using the Name and Value Attributes . 448
40.6 Creating an Enumeration Using the Function Call Syntax 449
40.7 Creating Enumerations from Automatic Values 450
40.8 Working with Enum Aliases . 451
40.9 Enumerations Unique Values . 452
40.10 Iterating Through Enumeration Values . 453
40.11 Comparing Enumerations . 453
40.12 Integer Enumerations with IntEnum . 454
40.13 Exercises . 455

41 Structural Pattern Matching . 457
41.1 Introduction . 457
41.2 Basic Pattern Matching . 457
41.3 Default Case . 459
41.4 Capture Default Case . 460
41.5 Alternative Values in Case Condition . 461
41.6 Matching Sequences/Containers . 461
41.7 Structural Matching and Lists . 463
41.8 Matching Alternative Sequences/Containers 464
41.9 Matching Multiple Options Within a Container 465
41.10 Guards on a Case Condition . 466
41.11 Exercises . 467

42 Python Virtual Environments . 469
42.1 Introduction . 469
42.2 Third-Party Libraries . 469
42.3 The Pip Tool . 471

42.3.1 Finding the Pip Version . 472
42.3.2 Installing Pip . 472
42.3.3 Updating Pip . 472

42.4 Default Installation . 473

Contents xxvii

42.5 Pip Virtual Environments . 474
42.6 Installing Modules . 476
42.7 Listing and Freezing on Modules . 478

42.7.1 The pip list Command . 478
42.7.2 The pip inspect Command . 479
42.7.3 The pip freeze Command . 479

42.8 Uninstalling Modules . 481
42.9 Module Path Search Order . 482
42.10 Using PyCharm with Virtual Environments 483
42.11 Online Resources . 486

43 Monkey Patching . 487
43.1 Introduction . 487
43.2 What is Monkey Patching? . 487

43.2.1 How Does Monkey Patching Work? 488
43.2.2 Monkey Patching Example . 488
43.2.3 The Self Parameter . 489
43.2.4 Adding New Data to a Class . 490

43.3 Online Resources . 490

44 Attribute Lookup . 491
44.1 Introduction . 491
44.2 Attributes in Python . 491
44.3 Handling Unknown Attribute Access . 494
44.4 Handling Unknown Method Invocations . 495
44.5 Intercepting Attribute Lookup . 496
44.6 Intercepting Setting an Attribute . 497
44.7 Exercises . 498

45 The Python Bites Back . 499
45.1 Fourteen Beginner Mistakes to Avoid in Python 499
45.2 Mistake #1: Indentation . 499
45.3 Mistake #2: Case Sensitivity . 501
45.4 Mistake #3: Default Initialization of Function/Method

Parameters with Mutable Types . 501
45.5 Mistake #4: Default Initialization of Function/Method

Parameters Using a Function . 503
45.6 Mistake #5: Out by 1 Ranges . 504
45.7 Mistake #5: Assignment Operator Versus Equality

Operator . 505
45.8 Mistake #6: Falsey and Truthy . 506
45.9 Mistake #7: Hiding Built-In Functions and Classes 507
45.10 Mistake #8: Hiding Built-In Modules . 508
45.11 Mistake #9: Function Reference Versus Function Call 509
45.12 Mistake #10: Modifying a List While Iterating Over It 510
45.13 Mistake #11: Sets Can Only Contain Immutable Objects 511

xxviii Contents

45.14 Mistake #12: Local Versus Global Variables 512
45.15 Mistake #13: Referencing Nonlocal Variable 514
45.16 Mistake #14: Copying a Mutable Type . 515

46 TicTacToe Game . 517
46.1 Introduction . 517
46.2 Classes in the Game . 517
46.3 Counter Class . 520
46.4 Move Class . 521
46.5 The Player Class . 521
46.6 The HumanPlayer Class . 522
46.7 The ComputerPlayer Class . 523
46.8 The Board Class . 524
46.9 The Game Class . 525
46.10 Running the Game . 527

Chapter 1
Introduction

1.1 What is Python?

Python is a general-purpose programming language in a similar vein to other
programming languages that you might have heard of such as C++ , JavaScript
or Microsoft’s C# and Java.

It has been around for some considerable time having been originally conceived
back in the late 1980s by Guido van Rossum at Centrum Wiskunde and Infor-
matica (CWI) in the Netherlands. The language is named after one of Guido’s favorite
programs “Monty Pythons Flying Circus”, a classic and somewhat anarchic British
comedy sketch show originally running from 1969 to 1974 (but which has been rerun
on various stations ever since) and with several film spin offs. You will even find
various references to this show in the documentation available with Python.

As a language it has gained in interest over recent years, particularly within the
commercial world, with many people wanting to learn the language. This increased
interest in Python is driven by several different factors:

1. Its flexibility and simplicity which makes it easy to learn.
2. Its use by the Data Science community where it provides a more standard

programming language than some rivals such as R.
3. Its suitability as a scripting language for those working in the DevOps field

where it provides a higher level of abstraction than alternative traditionally used
languages.

4. Its ability to run on (almost) any operating system, but particularly the big three
operating systems Windows, MacOS and Linux.

5. The availability of a wide range of libraries (modules) that can be used to extend
the basic features of the language.

6. It is free!

Python itself is now managed by the not-for-profit Python Software Foun-
dation (see https://en.wikipedia.org/wiki/Python_Software_Foundation) which was
launched in March 2001. The mission of the foundation is to foster development of

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_1&domain=pdf
https://en.wikipedia.org/wiki/Python_Software_Foundation
https://doi.org/10.1007/978-3-031-35122-8_1

2 1 Introduction

the Python community; it is also responsible for various processes within the Python
community, including developing the core Python distribution, managing intellectual
rights and supporting developer conferences including PyCon.

1.2 Python Versions

There is now one main version of Python, that is Python 3. However, until the start
of 2020 there were two main supported versions in circulation one called Python 2
as well as Python 3.

● Python 2 was launched in October 2000 and was very widely used. Support for
this version of Python ended on the 1st of January 2020. However, you will
still find examples of code, libraries and tutorials that focus on this version of
the language. This is particularly true of the web so be careful when browser for
examples or help—make sure they relate to Python 3. The more current the article
or suggestion you are looking the more likely that it is Python 3.

● Python 3 was launched in December 2008 and is a major revision to the language
that is not backward compatible. It is current the most widely used version of the
language and represents the version we will use throughout this book.

The issue between the two versions can be highlighted by the simple print facility:

● In Python 2 this is written as print ‘Hello World’
● In Python 3 this is written as print(‘Hello World’)

It may not look like much of a difference but the inclusion of the ‘()’ marks a major
change and means that any code written for one version of Python will probably not
run on the other version. There are tools available, such as the 2–3 utility, that will
(partially) automate translation from Python 2 to Python 3 but in general you are still
left with significant work to do.

A survey of Python Developers carried out by JetBrains (the organization behind
the PyCharm editor) in 2022 found that only 2% of developers now claimed to be
using a Python 2.x version, with 2% unsure which version they used. The rest (96%)
were using a version of the 3.x line mostly 3.8, 3.9 or 3.10. This survey was completed
before 3.11 was made available, and this over 70% of developers were using one of
the three most recent versions of Python. For more information see https://www.jet
brains.com/lp/devecosystem-2022/python/.

Python 3 is the future of the Python language, and it is this version that has
introduced many of the new and improved language and library features (that have
admittedly been back ported to Python 2 in many cases). This book is solely focused
on Python 3.

In the remainder of this book when we refer to Python we will always be referring
to Python 3. Since then there have been numerous point and sub point releases, for
example, as well as Python 3.1, 3.2, etc. there have also been intermediate releases
such as 3.1.1, 3.1.2, etc.

https://www.jetbrains.com/lp/devecosystem-2022/python/
https://www.jetbrains.com/lp/devecosystem-2022/python/

1.3 Python History 3

1.3 Python History

As has been said, Python has been around along time, although for some people
it can seem like Python was an overnight success. In fact Python originates from
the very late 1980s when Guido Van Possum started implementing the first version
of Python. The first release of Python was on 20th February 1991. Guido actually
remained the lead developer on Python until 12 July 2018 when he stepped down as
the “benevolent dictator” of Python. Since January 2019 there has been a five-member
Steering Council that leads the Python project.

Python 2.0 was initially released on October 16th 2000 with its end of life being
the 1st of January 2020. Python 3.0 was initially released 3rd December 2008.

It is worth noting that in the Python World, the major version number represents
an epoch (such that there has been a Python 1, a Python 2 and a Python 3 epoch).
Within this each Python 3 release has a prefix of 3.1, thus 3.1 was the second Python
3 release, etc. This differs from many other programming language such as Java with
Java 18 or Java 19 being the equivalent of 3.11 and 3.12 in Python, etc. The Python
organization does not always release a new version of Python each year, although
recent releases have tended to be yearly. However, although the language is evolving
many of these releases do not represent major changes to the language, and thus there
is relatively little difference between Python 3.10 and Python 3.11 for example. A
quick history of the main Python 3 releases is give below:

● Python 3.0 released 3rd December 2008
● Python 3.1 released 27th June 2009
● Python 3.2 released 20th February 2011
● Python 3.3 released 29th September 2012
● Python 3.4 16th March 2014
● Python 3.5 13th September 2015
● Python 3.6 23rd December 2016
● Python 3.7 27th June 2018
● Python 3.8 14th October 2019
● Python 3.9 5th October 2020
● Python 3.10 4th October 2021
● Python 3.11 24th October 2022.

In general almost all of the features in the book are supported by Python 3.8
onwards. One or two of the features require a later version such as 3.10. Such require-
ments will be noted when each topic is introduced. Personally when teaching Python
I try and use the latest stable version such as 3.11 or 3.12.

4 1 Introduction

1.4 Python Programming

There are several different programming paradigms that a programming language
may allow developers to code in, these are:

● Procedural Programming in which a program is represented as a sequence of
instructions that tell the computer what it should do explicitly. Procedures and /
or functions are used to provide structure to the program with control structures
such as if statements and loop constructs to manage which steps are executed and
how many times. Languages typifying this approach include C and Pascal.

● Declarative Programming languages, such as prolog, that allow developers to
describe how a problem should be solved with the language / environment deter-
mining how the solution should be implemented. SQL (a database query language)
is one of the most common declarative languages that you are likely to encounter
and is introduced at the end of this book.

● Object-Oriented Programming approaches that represent a system in terms of
the objects that form that system. Each object can hold its own data (also known
as state) as well as define behaviour what the object can do. A computer program
is formed from a set of these objects co-operating together. Languages such as
Java and C# typify the object-oriented approach.

● Functional Programming languages decompose a problem into a set of func-
tions. Each function is independent of any external state operating only on the
inputs they received to generate their outputs. The programming language Haskell
is an example of a functional programming language.

Some programming languages are considered to be hybrid languages; that is they
allow developers to utilize a combination of difference approaches within the same
program. Python is an example of a hybrid programming language as it allows you
to write very procedural code, to use objects in an object-oriented manner and to
write functional programs. Each of these approaches is covered in this book.

1.5 Python Libraries

As well as the core language there are very many libraries available for Python. These
libraries extend the functionality of the language and make it much easier to develop
applications. These libraries cover:

● web frameworks such as Django / Flask,
● email clients such as smtplib (a SMTP email client) and imaplib (an IMAP4 email

client),
● content management operations such as the Zope library,
● lightweight concurrency (running multiple operations at the same time) using the

Stackless library,
● the Generation of Microsoft Excel files using the openpyxl library,

1.6 Python Execution Model 5

● graphics libraries such as Matplotlib and PyOpenGL,
● Graphical User Interface (GUI) libraries such as Tkinter or PyQT5,
● Data Analytics using libraries such as Pandas and SciPy and NumPy,
● Machine learning using libraries such as SKLearn and TensorFlow.

A very useful resource to look at, which introduces many of these libraries (also
known as modules), is the ‘Python 3 module of the Week’ web site which can be
found at https://pymotw.com/3. This lists many of the libraries / modules available
and provides a short introduction to what they do and how to use them. The chapter
entitled ‘Python Virtual Environments’ explains how to install such libraries into
your Python runtime environment.

1.6 Python Execution Model

Python is not a precompiled language in the way that some other languages you may
have come across are (such as C++). Instead it is what is known as an interpreted
language (although even this is not quite accurate). An interpreted language is one
that does not require a separate compilation phase to convert the human readable
format into something that can be executed by a computer. Instead the plain text
version is fed into another program (generally referred to as the interpreter) which
then executes the program for you.

Python actually uses an intermediate model in that it actually converts the plain
text English style Python program into an intermediate ‘pseudo’ machine code format
and it is this intermediate format that is executed. This is illustrated below:

The way in which the Python interpreter processes a Python program is broken
down into several steps. The steps shown here are illustrative (and simplified) but
the general idea is correct.

1. First the program is checked to make sure that it is valid Python, that is a check
is made that the program follows all the rules of the language and that each of
the commands and operations, etc. is understood by the Python environment.

https://pymotw.com/3

6 1 Introduction

2. It then translates the plain text, English like commands, into a more concise
intermediate format that is easier to execute on a computer. Python can store this
intermediate version in a file which is named after the original file but with a
‘.pyc’ extension instead of a ‘.py’ extension (the ‘c’ in the extension indicates
it contains the compiled version of the code).

3. The compiled intermediate version is then executed by the interpreter.

When this program is rerun the Python interpreter checks to see if a ‘.pyc’ file
is present. If no changes have been made to the source file since the ‘.pyc’ was
created, then the interpreter can skip steps 1 and 2 and immediately run the ‘.pyc’
version of the program.

One interesting aspect of Python’s usage is that it can be (and often is) used in
an interactive fashion, with individual commands being entered and executed one
at a time, with context information being built up. This can be useful in debugging
situations.

1.7 Running Python Programs

There are several ways in which you can run a Python program, including

● Interactively using the Python interpreter.
● Stored in a file and run using the Python command.
● Run as a script file specifying the Python interpreter to use within the script file.
● From within a Python IDE (Integrated Development Environment) such as

PyCharm.
● Using Jupyter Notebooks in a web browser.

1.7.1 Interactively Using the Python Interpreter

It is quite common to find that people will use Python in interactive mode. This uses
the Python REPL (named after Read Evaluate Print Loop style of operation).

Using the REPL, Python statements and expressions can be typed into the Python
prompt and will then be executed directly. The values of variables will be remembered
and may be used later in the session.

To run the Python REPL, Python must have been installed onto the computer
system you are using. Once installed you can open a Command Prompt window
(Windows) or a Terminal window (Mac) and type Python into the prompt. This is
shown for a Windows machine below:

1.7 Running Python Programs 7

In the above example, we interactively typed in several Python commands and the
Python interpreter ‘Read’ what we have typed in, ‘Evaluated ‘it (worked out what
it should do), ‘Printed’ the result and then ‘Looped’ back ready for further input. In
this case we

● Printed out the string ‘Hello World’.
● Added 5 and 4 together and got the result 9.
● Stored the string ‘John’ in a variable called name.
● Printed out the contents of the variable name.

To leave the interactive shell (the REPL) and go back to the console
(the system shell), press Ctrl-Z and then Enter on Windows, or Ctrl-D on OS X
or Linux. Alternatively, you could also issue the command quit().

You should note that once you have left the session anything you created within
the session will be lost.

1.7.2 Running a Python File

We can of course store the Python commands into a file. This creates a program file
that can then be run as an argument to the python command. It also allows the
program held within the file to be run many times.

For example, given a file containing the following file (called hello.py) with
the 4 commands in it:

8 1 Introduction

To run the hello.py program on a PC using Windows we can use the Python
command followed by the name of the file:

We can also run the same program on a Apple Mac using MacOS via the Python
interpreter. For example on a Mac we can do the following:

This makes it very easy to create Python programs that can be stored in files and
run when needed on whatever platform is required (Windows, Linux or Mac). This
illustrates the cross platform nature of Python and is just one of the reasons why
Python is so popular.

1.7 Running Python Programs 9

1.7.3 Executing a Python Script

It is also possible to transform a file containing a stored Python program into a Script.
A script is a stand-alone file that can be run directly without the need to (explicitly)
use the python command.

This is done by adding a special line to the start of the Python file that indicates
the Python command (or interpreter) to use with the rest of the file. This line must
start with ‘#!’ and must come at the start of the file.

To convert the previous sections file into a Script we would need to add the path
to the python interpreter. Here path refers to the route that the computer must take to
find the specified Python interpreter (or executable).

The exact location of the Python interpreter on your computer depends on what
options upon selected when you (or whoever installed Python) set it up. Typically
on a Windows PC Python will be found in the ‘Program Files’ directory or it might
be installed in its own ‘Python’ directory.

Whatever the location of the Python interpreter to create a script we will need to
add a first line to our hello.py file. This line must start with a #!. This combination
of characters is known as a shebang and indicates to Linux and other Unix like
operating systems (such as MacOS) how the remainder of the file should be executed.

For example, on a Apple Mac we might add:

/Library/Frameworks/Python.framework/Versions/3.11/bin/python3

When added to the hello.py file we now have:

However, we cannot just run the file as it stands. If we tried to run the file without
any changes then we will get an error indicating that the permission to execute the
file has been denied:

$./hello.py
−bash: ./hello.py: Permission denied
$

This is because by default you can’t just run a file. We need to mark it as executable.
There are several ways to do this, however one of the easiest on a Mac or Linux box is

10 1 Introduction

to use the chmod command (which can be used to modify the permissions associated
with the file). To make the file executable we can change the file permissions to include
making it executable by using the following command from a terminal window when
we are in the same directory as the hello.py file:

$ chmod +x hello.py

Where +x indicates that we want to add the executable permission to the file.
Now if we try to run the file directly it executes and the results of the commands

within the file are printed out:

Note the use of the ‘./ ‘ preceding the file name in the above; this is used on Linux
to tell the operating system to look in the current directory for the file to execute.

Different systems will store Python in different locations and thus might need
different first lines, for example on a Linux we might write:

#!/usr/local/bin/python3
print(’Hello, world’)
print(5 + 4)
name = ‘John’
print(name)

By default Windows does not have the same concept. However, to prompt cross
platform portability the Python Launcher for Windows can also support this style of
operation. It allows scripts to indicate a preference for a specific Python version using
the same #! (Shebang) format as Unix style operating systems. We can now indicate
that the rest of the file should be interpreted as a Python script; if multiple versions of
Python are installed this may require Python 3 to be explicitly specified. The launcher
also understands how to translate the Unix version into Windows versions so that /
usr/local/bin/python3 will be interpreted as indicating that python3 is required.

An example of the hello.py script for a Windows or Linux machine is given
below using Notepad++ on a Windows box.

1.7 Running Python Programs 11

When the launcher was installed it should have been associated with Python files
(i.e., files that have a .py extension). This means that if you double-click on one of
these files from the Windows Explorer, then the Python launcher will be used to run
the file.

1.7.4 Using Python in an IDE

We can also use an IDE such as PyCharm to writing and execute our Python program.
The same program is shown using PyCharm below:

In the above figure the simple set of commands are again listed in a file called
hello.py. However, the program has been run from within the IDE and the output
is shown in an output console at the bottom of the display.

12 1 Introduction

1.8 Jupyter Notebooks

An approach favored by many data analysts is to use the Jupyter Notebooks infras-
tructure to run Python commands and programs. To do this they use a web browser
which will automatically display graphs and tabular format within the web page
which is very useful in some domains.

Jupyter notebooks have to be installed into your Python environment, for example
using the command

pip install jupyter

Once installed it is possible to launch a new notebook using the command

jupyter notebook

This starts up a background Python compilation server and runtime as well as
opening a Jupyter notebooks browser window such as that shown below:

You can now type Python statements and expressions into the browser, and the
results generated will be displayed within the browser.

1.9 Useful Resources 13

1.9 Useful Resources

There are a wide range of resources on the web for Python; we will highlight a few
here that you should bookmark. We will not keep referring to these to avoid repetition
but you can refer back to this section whenever you need to:

● https://en.wikipedia.org/wiki/Python_Software_Foundation Python Software
Foundation.

● https://docs.python.org/3/ The main Python 3 documentation site. It contains
tutorials, library references, set up and installation guides as well as Python
how-tos.

● https://docs.python.org/3/library/index.html A list of all the built-in features for
the Python language—this is where you can find online documentation for the
various class and functions that we will be using throughout this book.

● https://pymotw.com/3/ The Python 3 Module of the week site. This site contains
many, many Python modules with short examples and explanations of what the
modules do. A python module is a library of features that build on and expand
the core Python language. For example, if you are interested in building games
using Python then pyjama is a module specifically designed to make this easier.

● http://www.pythonweekly.com/ is a free weekly summary of the latest Python
articles, projects, videos and upcoming events.

https://en.wikipedia.org/wiki/Python_Software_Foundation
https://docs.python.org/3/
https://docs.python.org/3/library/index.html
https://pymotw.com/3/
http://www.pythonweekly.com/

Chapter 2
Where is Python Used

2.1 Introduction

Python is one of the biggest and most popular programming languages in today’s
technology world; whatever index or survey you look at Python is usually in the top
3 (along with Java and JavaScript). However, you might be forgiven for thinking that
Python is a language exclusively used for Data Analytics or Data Science given the
number of times these terms turn up alongside Python. However, Python has a wide
and diverse range of uses. In this chapter we will look at eight uses of Python, some
of which might surprise you.

2.1.1 Data Analytics

This is one of the two largest application areas for Python and may well be why you
are reading this book in the first place. There are several widely used Data Analytics
libraries available for Python including Pandas. Data Analytics (or analysis) is the
practice of taking raw data and analyzing it to either understand that data and/or
look for patterns in the data or to create new systems that can use knowledge gained
from previous data to predict new trends or patterns in the future data. In both cases
the aim is to provide value in some way to an organization or business as illustrated
below.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_2

16 2 Where is Python Used

The approaches to Data Analytics are not completely independent but illustrate
the different purposes. For example, the “Discovery of Data Insight” side typically
involves understanding and trends, patterns or relationships in the data to help an
organization or business to improve their performance. For example, an online sales
shop might use such insights to understand how and where to target specific promo-
tions, a governmental health organization might use their data insights to determine
where and when to target vaccinations, etc.

In contrast the ‘Development of Data Product(s)’ typically involves using infor-
mation with the data to help develop new systems that will be applied to future, as
yet unseen data. For example, analysis of the data might help to identify patterns
of fraudulent behaviour which might be used to develop new monitoring systems to
catch similar fraud earlier and faster.

The techniques used for such analysis are typically oriented around statistical
analysis and data exploration. These are the facilities provided by libraries such
as Pandas (see https://pandas.pydata.org/) which is by far the most widely used
Python data analysis library. However, Pandas does not provide a complete solution
on its own. For example, Pandas builds on other Python libraries such as NumPy
(which provides sophisticated facilities for handling numbers see https://numpy.org/
). Pandas is also often used in combination with other libraries such as SciPy (which
stands for Scientific Python see https://scipy.org/) and Matplotlib (see https://matplo
tlib.org/) which is a graphing library. The relationship between Pandas, Python and
other commonly used data analysis-oriented libraries is shown below.

https://pandas.pydata.org/
https://numpy.org/
https://numpy.org/
https://scipy.org/
https://matplotlib.org/
https://matplotlib.org/

2.1 Introduction 17

In addition several Data Analytics reporting systems and toolkits used outside the
Python world also provide Python APIs allowing the results of any Python analysis
to be incorporated into these systems. For example, the Tableau (https://www.tab
leau.com/) suite of tools provides a Python API allowing results created by Python
to be incorporated into a Tableau dashboard for easy access and availability.

2.1.2 Machine Learning and AI

Following on from the previous section on data analysts it is not uncommon to apply
some machine learning techniques when analyzing data, for example, to perform
some classification of new data using previously seen data. That is, machine learning
is a method of data analysis that automates analytical model building. Using algo-
rithms that iteratively learn from data, machine learning allows computers to find
hidden insights without being explicitly programmed. The general model is shown
below.

This illustrates that training data (which may be what is called supervised or
unsupervised) is fed into a machine learning algorithm and the output from this is a

https://www.tableau.com/
https://www.tableau.com/

18 2 Where is Python Used

system that might be used to classify new data, predict behaviour based on new data
or make some decision based on new data.

Supervised learning tasks involve teaching a learning systems using data that
is tagged or marked with known results. For example, loan data with applications
marked as being either fraudulent or not, etc.

In contrast unsupervised data involves presenting a learning system with data—
with no indications of expected results, and then identifying patterns or clusters
within that data. This allows users to understand or learn more about the data. The
term unsupervised is intended to indicate that there is no known (or at least provided)
correct answers (and hence there is no teacher). In some situations there is a large
amount of data, and only some of that data can be labeled with appropriate results or
conclusions. Such problems are sometimes referred to as semi-structured machine
learning. In many cases a combination of supervised and unsupervised techniques is
required to analyze such data.

Each of the machine learning algorithms commonly used with Python has pros
and cons and situations in which they are best applied. It is therefore useful to have
a toolbox of such algorithms that can be applied as and when appropriate.

There are several commonly used libraries available in Python for this including
SciKitLearn (aka SKLearn), TensorFlow and PyTorch. In general SciKitLearn and
TensorFlow have about the same share of the Python market place with PyTorch
being just behind, although all three are close to 30% in terms of Python developers’
usage.

For further information on machine learning see:

● Harvard Business Review—“What every manager should know about Machine
learning”

– http://hbr.org/2015/07/what-every-manager-should-know-about-machine-lea
rning

● Quick Reference cheat sheet on ML Algorithms/uses

– http://www.lauradhamilton.com/machine-learning-algorithm-cheat-sheet

● 10 Machine Learning Methods that Every Data Scientist Should Know

– https://towardsdatascience.com/10-machine-learning-methods-that-every-
data-scientist-should-know-3cc96e0eeee9

2.1.3 Database Work

Most data is held within some form of database, and Python provides interfaces that
allow a programmer to access that data. These interfaces make it easy to query a
database for information and pull that information back into the Python program for
further progressing. For example, a database of client information may be queried

http://hbr.org/2015/07/what-every-manager-should-know-about-machine-learning
http://hbr.org/2015/07/what-every-manager-should-know-about-machine-learning
http://www.lauradhamilton.com/machine-learning-algorithm-cheat-sheet
https://towardsdatascience.com/10-machine-learning-methods-that-every-data-scientist-should-know-3cc96e0eeee9
https://towardsdatascience.com/10-machine-learning-methods-that-every-data-scientist-should-know-3cc96e0eeee9

2.1 Introduction 19

to retrieve details held about clients. Python could then display this information in a
tabular form via some form of table, graphically in some form of chart or on a map,
etc.

2.1.4 Python for Animation

Python is one of the two programming languages that can be used in the Autodesk
Maya toolkit. Maya is a 3D animation, modeling, simulation and rendering software
systems used by games, film and TV companies. Within Maya, Python can be used for
anything from creating scripts handling common tasks, through to develop complete
plug-ins providing extensions to the core functionality of the tool. Maya currently
supports Python 2 but will be moving toward Python 3 in the near future.

2.1.5 Python for Film Making

Industrial Light and Magic was formed in 1975 by George Lucas to help create special
effects for the original Star Wars film. Since then it has gone on to provide special
effects for a huge range of films and film makers. Back in 1996 it used Unix shell
scripts to help it automate and control its production pipeline. However, they needed
to develop their increasingly complex and computationally expensive production
process and felt that their existing approach was not flexible enough. Although they
looked at several alternatives (including TCL and Perl) they decided to adopt Python.
This allowed for faster development times and greater flexibility. Over the years they
have re-evaluated their decision and considered different alternatives, but Python
remains key to their development processes.

2.1.6 Cross Platform UIs

Python is particularly well served in terms of Graphical User Interface frameworks (or
GUI frameworks). Most of these are cross platform, although a few allow developers
to exploit particular features of an underlying windowing system and are thus tied to
a specific platform. Widely used GUI libraries include the cross platform TKinter,
wxPython and pyQT and the platform specific PythonWin (for Windows) and PyObjc
(for MacOS). As an example, the following ‘Hello World’ GUI application uses
wxPython and is shown running on a Mac OS and Windows system:

20 2 Where is Python Used

2.1.7 Games Programming

Python has also been used for games development with several well-known games
titles depending on it in one way or another. For example, Battlefield 2 by Digital
Illusions CE is a military simulator first-person shooter game. Within this game,
Python is used to handle portions of the game logic for Battlefield Heroes involving
game modes and scoring. Other games that use Python include Civilisation IV, Pirates
of the Caribbean Online and Overwatch. The pygame library is probably the most
widely used library for creating games within the Python world. There are also many
extensions available for pygame that help to create a wide range of different types
of games. Pygame is built on top of the SDL library (or Simple Directmedia Layer).
SDL is a cross platform development library designed to provide access to audio,
keyboards, mouse, joystick and graphics hardware via OpenGL and Direct3D. To
promote portability, pygame also supports a variety of additional backends including
WinDIB, X11, Linux Frame Buffer, etc.

2.1.8 Integration Testing Framework

Morgan Stanley have developed a Python integration testing framework called Test-
plan which they have open sourced and made available through GitHub. Testplan
is designed to simplify the process of configuring and driving integration tests for
a range of programming languages and technologies. It supports driving integration
tests that require messaging services, RESTful services, databases, files for code
written in Python, C/C++, Java, etc.

2.1.9 Academic Research

Python is widely used within the academic community to support research work,
not only within Computer Science departments but also across a range of different
disciplines including Mechanical Engineering, Aerospace Engineering, Architec-
ture, Pharmacology, Medicine, etc. In these settings it has been used to help develop
distributed analysis systems, identify patterns in experiments of laboratory data,

2.2 Useful Resources 21

evolve designs toward optimal solutions, provide natural language frontends to
research applications (e.g., using the Python NLTK library), etc.

2.1.10 Web Services

Python is also widely used as a server-side language for the creation of web services,
whether these are RESTful services or the newer GraphQL-based services. There
are a range of frameworks available to help develop such services including Flask,
Django and CherryPy. Flask and CherryPy are lightweight frameworks that can be
used to create RESTful services, whereas Django is a full-stack web framework
aimed at developing not just web services but full blown websites. A wide range of
organizations used Python in this way for example Reddit, Spotify and Instagram.

2.1.10.1 DevOps

DevOps is another hot trend at the moment; it represents the combination of software
developers and operations working together usually to automate operations processes
that were previously either handled manually or were executed as individual steps.
Python is one of the key programming languages used within the DevOps world. It
can be used as a scripting language to help automate operations activities as well as
a tool to analyze production data and for data visualizations.

2.2 Useful Resources

● https://www.autodesk.co.uk/products/maya/overview for information on
Autodesk Maya computer animation software.

● https://www.pygame.org for information on pygame.
● https://www.python.org/about/success/ilm/ ILM and their use of Python.
● https://github.com/Morgan-Stanley/testplan Testplan Python integration testing

framework.
● https://devops.com/how-python-is-transforming-the-devops-landscape/ Article

on DevOps and Python.

https://www.autodesk.co.uk/products/maya/overview
https://www.pygame.org
https://www.python.org/about/success/ilm/
https://github.com/Morgan-Stanley/testplan
https://devops.com/how-python-is-transforming-the-devops-landscape/

Chapter 3
Setting up the Python Environment

3.1 Introduction

In this chapter we will check to see if you have Python installed on your computer. If
you do not have Python installed then we will step through the process of installing
Python. This is necessary because when you run a Python program it looks for the
python interpreter that is used to execute your program or script. Without the
python interpreter installed on your machine Python programs are just text files!

3.2 Check to See if Python is Installed

The first thing you should do is to see if Python 3 is already installed on your computer.
First check to see that you don’t have Python installed. If it is you don’t need to do
anything unless it is a very old version of Python 3 such as 3.1 or 3.2.

On a Windows 11 machine you can check the version installed by opening a
Command Prompt window (this can be done by searching for Cmd in the ‘Search’
box in Windows).

Once the Command window is open try typing in python. This is illustrated
below:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_3

24 3 Setting up the Python Environment

You may be prompted to look in the Microsoft store, you can ignore that and close
the window.

Note in the above where we have tried both python and python3 in case the
latest version has been installed using that name. This is not an uncommon thing to
do as on some machines you may have both Python 2 and Python 3 available.

On a system such as a Mac you can use the Terminal and do the same thing. You
will probably find that at least Python (2) is pre-installed for you. For example, if
you type in python on a Mac you will get something like this:

This indicates that the above user has version 2.7.15 installed (note you may have
another 2.x version installed).

However, be careful if you find that you have Python 2 installed on your machine;
this book is focused solely on Python 3.

If you have started a Python interpreter then

● Use quit() or exit() to exit the Python interpreter; exit() is an alias for
quit() and is provided to make Python easier to use.

If Python 3 was not available, then the following steps will help you to install it.

3.3 Installing Python on a Windows PC 25

If the correct version of Python is already available on your computer then you
can skip to the next chapter. An example of what might happen if you type in Python
and Python 3 is installed on a Mac is given below:

Here you can see that this machine has Python 3.11.3 installed.

3.3 Installing Python on a Windows PC

3.3.1 Step 1: Downloading Python

Python is available for a wide range of platforms from Windows, to Mac OS and
Linux; you will need to ensure that you download the version for your operating
system.

Python can be downloaded from the main Python web site which can be found at
http://www.python.org/.

As you will see the ‘Downloads’ link is the second from the left on the large
menu bar below the search field. Click on this and you will be taken to the download
page; the current Python 3 version at the time of writing is Python 3.11 which is the
version we will download (if you find that the version is 3.12 or later then that is fine
as well). Click on the ‘Download Python 3.x.x’ link. For example, for a Windows
11 machine, using 3.11.3, you will see:

http://www.python.org/

26 3 Setting up the Python Environment

Click on the ‘Download’ button—this may take you to a page with several different
options on it—look for the ‘Recommended’ option and down load that installer.

Even if a newer version of Python is available (which is likely as the version is
updated frequently) the steps should be fundamentally the same.

3.3.2 Step 2: Running the Installer

Once you have download the install open it. You will now be prompted for the
location to install Python, for example:

3.3 Installing Python on a Windows PC 27

Note that it is easiest if you click on the ‘Add python.exe to PATH’ option as this
will make it available from the command line. If you don’t do this then don’t worry,
we can add Python to the PATH later on (the PATH environment variable is used by
Windows to find the location of programs such as the Python interpreter).

Next select the ‘Install Now’ option and follow the installation steps.
If everything went as expected you should now see a confirmatory dialog such as:

If you are on Windows now close any Command Prompt windows that you have
open (the PATH variable is not updated for existing Commands). This can be done
by typing in ‘exit’ or closing the window.

3.3.3 Step 3: Set up the PATH (Optional)

If you did not select ‘Add python.exe to PATH’ at the start of the installation you
will now need to set up the PATH environment variable. If you did then skip onto
the next step.

You can set the PATH environment variable using the system environment
variables editor.

28 3 Setting up the Python Environment

The easiest way to find this is to type ‘envir’ into the Windows search box, it
will then list all applications which match this pattern including the ‘Edit the system
environment variables’ editor. If you are logged into your machine as a user with
‘admin’ rights use the first one listed, if you are logged in as a user without admin
rights select the ‘Edit environment variables for your account’ option.

One the resulting dialog select the ‘Environment Variables …’ button at the bottom
of the page:

One the next dialog select the PATH environment variable and select Edit:

3.3 Installing Python on a Windows PC 29

Now add the location in which you installed Python, by default this will be
something like.

C:\Users\<username>\AppData\Local\Programs\Python\Python311
C:\Users\<username>\AppData\Local\Programs\Python\Python311\Scripts

Note Python311 should be replaced by the version of Python you are installing if
it is different.

The end result should look something like:

Now click on OK until all the windows are closed.

3.3.4 Step 4: Verify the Installation

Next open a new Command Prompt window and type is python as shown below:

Congratulations you have installed Python and run the python interpreter!

30 3 Setting up the Python Environment

3.3.5 Step 5: Run Some Python

Now at the ‘ >>> ’ prompt type in

print(’Hello World’)

Be careful to make sure you use all lowercase letters for the ‘print’ function;
Python is very case sensitive which means that as far as Python is concerned
print(’Hello World’) and Print(’Hello World’) are completely
different things.

Also make sure that you have single quotes around the Hello World text this makes
it a string. If you get this right then on Windows you should see:

You have now run your first Python program. In this case your program printed
out the message ‘Hello World’ (a traditional first program in most programming
languages).

3.3.6 Step 6: Exit the Python Interpreter

To exit the Python interpreter use exit() or Ctrl-Z plus Return.

3.4 Setting up on a Mac 31

3.4 Setting up on a Mac

Installing Python on a Mac in similar to installing it on a Windows machine in that
you can download the Python installer for the Apple Mac from the Python Software
Foundation web site (https://www.python.org). Of course this time you need to make
sure you select the macOS version of the download as shown below:

From here you can select the macOS 64-bit installer (make sure you select
the appropriate one for your version of the operating system). This will down-
load an Apple package that can be installed (it will have a name similar to
python-3.11.3-macos11.pkg although the version number of Python and
the macOS operating system may be different). You will need to run this installer.

When you run this installer the Python Installer wizard dialog will open as shown
below:

https://www.python.org

32 3 Setting up the Python Environment

Step through the dialogs presented to you by the installer wizard accepting each
option until the installation starts. Once the installation has completed you will be
presented with a summary screen confirming the installation was successful. You
can now close the installer.

This will have created a new folder in your Applications folder for Python 3.11.
Note that on a Mac which already has Python 2 installed (which is installed

by default), Python 3 can be installed along side it and can be accessible via the
python3 command (as shown below). You should confirm that Python has been
installed successfully by opening a Terminal window and entering the Python 3
REPL:

Now at the ‘>>>’ prompt type in

print(’Hello World’)

Be careful to make sure you use all lowercase letters for the ‘print’ function; as on
a Windows machine Python is very case sensitive which means that as far as Python
is concerned print(’Hello World’) and Print(’Hello World’) are
completely different things.

The result should be as shown below:

3.5 Setting up an IDE 33

You can now exit the REPL using the exit() or quit().

3.5 Setting up an IDE

You can use whatever editor you want along with this book, and most chapters are
IDE independent. However, if you wish to use the PyCharm editor to make life easier
then this section outlines downloading, installing and getting started with this editor.
Almost all other chapters are IDE independent apart from one section in the ‘Python
Virtual Environments’ chapter.

3.5.1 Downloading the PyCharm IDE

PyCharm is provided by JetBrains who make tools for a variety of different languages.
The PyCharm IDE can be downloaded from their site—see https://www.jetbrains.
com/. Look for the menu heading ‘Developer Tools’ and select that. You will see a
long list of tools, which should include PyCharm.

Select the PyCharm option.

https://www.jetbrains.com/
https://www.jetbrains.com/

34 3 Setting up the Python Environment

On the next page displayed there should be a large button labelled ‘DOWNLOAD’
select this option:

On the next page there are then two download options available: Professional and
Community.

● the Professional version is the charged for option but included several additional
elements over the free community version,

● the Community version is free.

For most of the work I do in Python the Community version is more than adequate,
and it is therefore the version we will download and install (note with the Professional
version you do get a free trial but will need to either pay for the full version at the
end of the trial or reinstall the Community version at that point).

Assuming you selected the Community edition the installer will now download,
and you will be prompted to run it. Note you can ignore the request to subscribe if
you want). Note that the web browser should select the correct operating system for
you however, if it does not then you can manually select it above the ‘Professional’
and ‘Community’ headings.

You can now run the installer and follow the instructions provided.

3.5 Setting up an IDE 35

3.5.2 Setting up the IDE

You need to first start the PyCharm IDE. Once started the first dialog shown to you
asks if you want to import any settings you may have had for another version of
PyCharm. At this point select ‘Do not import settings’.

Step through the next set of dialogs selecting the look and feel (I like the light
version of the IDE), whether you want to share data with JetBrains, etc. Once you
have completed this click the ‘Start PyCharm’ option.

You should now be presented with the landing screen for PyCharm:

We will now create a project for you to work in. A Project in PyCharm is where
you write your programs and how you configure what version of Python you are
using and any libraries that you might need (such as graphics libraries etc.).

Click on the ‘New Project’ option in the landing dialog.
You will now be asked where you want to create this new project. Again you

can use the default location but you will need to give it a name, we will call ours
python-intro. This is done by changing the last element of the ‘Location’ field to read
‘python-intro’.

It is also worth at this stage making sure that the Python interpreter you installed
has been picked up by the IDE. You can do this by opening the ‘Project Interpreter:
New Virtualenv environment’ option and making sure that the Base interpreter field
is populated with the installation of Python on your machine (this should be picked
up automatically for you). If all is OK then select ‘Create’; if the Base Interpreter is
not specified or is incorrect then click on the ‘…’ button to the right of the field and
browse to the appropriate location.

The ‘New project’ dialog is shown below on the left for Windows 11 and on the
right for an Apple Mac:

36 3 Setting up the Python Environment

Next make sure that the ‘Create a main.py welcome script’ is NOT selected as
this will create a sample program for you which contains far more than a simple
‘Hello World’ message.

On opening the PyCharm project you might see a Welcome message; click ‘Close’
and the project will be set up for you.

When you open the project, you will be shown a blank work space. On the left-hand
side you should see at the top of the thin bar three icons:

Select the top one which looks a bit like a folder—this is the project view. This
will look something like:

This illustrates the structure of your project. You should ignore ‘External
Libraries’ and ‘Scratches and Consoles’ and open the top node. If you called your
project something other than python-intro you will find that this node has the name
you entered rather than python-intro but that is fine.

When you open the top node you will see that it currently contains a directory
called venv—ignore this one as well and close this node so that you should now see:

3.6 Writing Python Programs 37

We are now ready to get started.

3.6 Writing Python Programs

In this section we will use PyCharm to write our first Python program. If you are using
a different IDE then the basic ideas will be the same—create file with a.py extension
and run it—however the menu options and buttons may be (will be) different.

The first step will be to create a new file within PyCharm to store our ‘Hello
World’ program.

First make sure that the selected node in the project tree is the top level node with
the name of your project.

Next select the PyCharm File->New menu option. This will display a ‘New’ menu
with the option to create a new ‘Python File’. Make sure that this is the option you
select, do not select the plain File option. If you don’t select the Python File option
PyCharm will not realize that you want to run the associated file as a Python program.
For example:

When you select the ‘Python File’ option PyCharm will display a new dialog
allowing you to enter the name of the file you want to create. All Python files must
end with a.py extension thus you could enter the name ‘main.py’ into this dialog,
however the ‘.py’ is optional here as PyCharm will add that extension for you, thus
you can merely enter ‘main’ if you wish:

38 3 Setting up the Python Environment

Again make sure you have selected the ‘Python file’ option and neither of the
other options as they will not work with the simple Hello World program we are
creating. Now press enter.

Once you have entered a filename for your program, the enter will create the file
for you, for example called main.py, and display it on the right-hand side of your
editor as an empty file. Note that the editor is divided into two areas, one is the project
tree on the left and one is the editor window on the right, for example:

Within the editor window enter the code to print out ‘Hello World’, for example:

print(’Hello World’)

Now save the file. For example,

You can now run the file. To do this look above the name of the file in the editor
and check that the field next to the little green arrow head say ‘Current File’. This
indicates that the IDE will run the current file when you click on the green arrow, for
example:

3.7 A Note on Filenames 39

Now click on the green arrow head and your program should now run. Below the
left hand screen shot is from running PyCharm on a Windows 11 machine and the
right-hand one is from an Apple Mac. As you can see they are very similar:

The output from the program is displayed in a ‘Run’ window at the bottom of
the IDE. This output shows you what was run (Python and the main.py file), the
output from the program ‘Hello World’ and that the process (that ran the program)
exited successfully with an exit code of ‘0’.

You have now run your first Python program!

3.7 A Note on Filenames

One point to note is that file names in Python need a little care.
Firstly, you should always name your files using all lowercase letters. For

example the filename utils.py is fine but the file Utils.py should be avoided
(by convention).

40 3 Setting up the Python Environment

Secondly, you should try to avoid splitting file names up into constituent words,
such as my_utils.py, this is a style thing mostly, and one that not everyone
(including myself) adheres to. However, if you do need to split a filename up to
make it more readable always use an underbar ‘_’, never use a hyphen ‘-‘. If you
do use a hyphen this will not cause a problem right now, but at some point in the
future it may come back to bite you. This is because if you ever need to reference one
Python file from another the hyphen ‘-‘ will break such an operation as the ‘import’
command parses the ‘-‘ as a minus sign and thus will try to subtract part of the file
name from another part resulting in an error instead of just being the file name.

3.8 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/using/index.html with documentation for Python setup
and usage.

● https://docs.python.org/3/faq/windows.html Python on Windows FAQ.
● https://www.jetbrains.com/pycharm/ The PyCharm IDE home page.

https://docs.python.org/3/using/index.html
https://docs.python.org/3/faq/windows.html
https://www.jetbrains.com/pycharm/

Chapter 4
A First Python Program

4.1 Introduction

In this chapter we will return to the Hello World program from the last chapter and
look at what it is doing. We will also modify it to become more interactive and will
explore the concept of Python variables. We will cover concepts such as naming
conventions comments in code, and what as far as this book is concerned is the
difference between a script and a program.

4.2 Hello World

As mentioned in the previous chapter, it is traditional to get started in a new program-
ming language with writing a Hello World style program. This is very useful as it
ensures that your environment, that is, the interpreter, any environmental settings,
your editor (or IDE), etc. is all set up appropriately and can process (or compile) and
execute (or run) your program. As the ‘Hello World’ program is about the simplest
program in any language, you are doing this without the complexities of the actual
language being used.

Our ‘Hello World’ program has already been presented in the previous chapter of
this book, however we will return to it here and take a closer look at what is going
on.

In Python the simplest version of the Hello World program merely prints out a
string with the welcome message:

print(’Hello World’)

You can use any text editor or Integrated Development Editor (IDE) to create a
Python file. Examples of editors commonly used with Python include Emacs, Vim,
Notepad++, Sublime Text or Visual Studio Code; examples of IDEs for Python
include PyCharm and Eclipse. Using any of these tools we can create file with a py

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_4

42 4 A First Python Program

extension. Such a file can contain one or more Python statements that represent a
Python program or script.

For example, we can create a file called hello.py containing the above
print() function in it.

One question this raises is where does the print() function come from?
In fact, print() is a predefined function that can be used to print things out,

for example to the user. The output is actually printed to what is known as the output
stream. This handles a stream (sequence) of data such as letters and numbers. This
output stream of data can be sent to an output window such as the terminal on a
Mac or command window on a Windows PC. In this case we are printing the string
‘Hello World’.

By predefined here we mean that it is built into the Python environment and is
understood by the Python interpreter. This means that the interpreter knows where
to find the definition of the print() function which tells it what to do when it
encounters the print() function.

You can of course write your own functions, and we will be looking at how to do
that later in this book.

The print() function actually tries to print whatever you give it,

● When it is given a string it will print a string.
● If it is given an integer such as 42 it will print 42.
● If it is a given a real number such as 23.56 then it will print 23.56.

Thus, when we run this program, the string ‘Hello World’ is printed out to the
console window.

Also note that the text forming the Hello World string is wrapped within two
single quote characters; these characters delimit the start and end of the string; if you
miss one of them out then there will be an error.

To run the program, if you are using an IDE such as PyCharm, then you can click
on the green arrow on the top right of the editor window (as long as the ‘Current
File’ option is selected next to the arrow).

If you are running it from the command line type in python followed by the
name of the file, for example:

> python hello.py

This should be done in the directory where you created the file.

4.3 Interactive Hello World

Let us make our program a little more interesting; let’s get it to ask us our name and
say hello to us personally.

The updated program is now listed below:

print(’Hello World’)

4.3 Interactive Hello World 43

user_name = input(’Enter your name: ’)
print(’Hello ’, user_name)

Now after printing the original ‘Hello World’ string, the program then has two
additional statements.

The result of running this program is:

Hello World
Enter your name: John
Hello John

We will look at each of the new statements separately.
The first statement is:

user_name = input(’Enter your name: ’)

This statement does several things. It first executes another function called
input(). This function has passed a string—which is known as an argument—to
use when it prompts the user for input.

This function input() is again a built-in function that is part of the Python
language. In this case it will display the string you provide as a prompt to the user
and wait until the user types something in followed by the return key.

Whatever the user types in is then returned as the result of executing the input()
function. In this case that result is then stored in the variable user_name.

A variable is a named area of the computers’ memory that can be used to hold
things (often referred to as data) such as strings, numbers, Boolean values such as
True/False. In this case the variable user_name is acting as a label for an area of
memory which will hold the string entered by the user. The basic idea is illustrated
in the following diagram:

This simplified picture illustrates how a variable, such as user_name, can refer-
ence an area of memory containing actual data. In this diagram the memory is shown
as a two-dimensional grid of memory locations. Each location has an address asso-
ciated with it. This address is unique within the memory and can be used to return

44 4 A First Python Program

to the data held at that location. This address is often referred to as the memory
address of the data. It is this memory address that is actually held in the variable
user_name; this is why the user_name variable is shown as pointing to the area
in memory containing the string ‘John’.

Thus the variable user_name allows us to access this area of memory easily
and conveniently.

For example, if we want to get hold of the name entered by the user in another
statement, we can do so merely by referencing the variable name. Indeed, this is
exactly what we do in the second statement we added to our program. This is shown
below:

print(’Hello’, user_name)

The last statement again uses the built-in print() function, but this time it takes
two arguments. This is because the print() function can actually take a variable
number of arguments (data items that we pass into it). Each argument is separated
by a comma. In this case we have passed in the string ‘Hello’ and whatever value
is referenced by (present at the memory address indicated by) the variable user_
name.

Something to note is that Python is very case sensitive; thus the variable My_
Name is not the same as my_name! As far as Python is concerned these are two
completely separate variables, and you should therefore be very careful with the case
you use. In general all keywords are lowercase, all variables should be lowercase,
while most built-in types use lowercase names, and there are some built-in types that
may use an initial capital letter.

4.4 Variables

You may wonder why the element holding the user’s name above is referred to as a
variable. It is called a variable because the value it references in memory can vary
during the lifetime of the program.

For example we can modify our Hello World program to ask the user for the name
of their best friend and print out a welcome message to that best friend. If we want
to, we can reuse the variable to hold the name of that best friend. For example:

print(’Hello, world’)
name = input(’Enter your name: ’)
print(’Hello’, name)
name = input(’What is the name of your best friend: ’)
print(’Hello Best Friend’, name)

When we run this version of the program and the user enters ‘John’ for their name
and ‘Denise’ for their best friends’ name we will see:

Hello, world
Enter your name: John

4.5 Naming Conventions 45

Hello John
What is the name of your best friend: Denise
Hello Best Friend Denise

As you can see from this when the string ‘Hello Best Friend’ is printed, it is the
name ‘Denise’ that is printed alongside it.

This is because the area of memory that previously held the string ‘John’ now
holds the string ‘Denise’.

In fact, in Python the variable name is not restricted to hold a string such as ‘John’
and ‘Denise’; it can also hold other types of data such as numbers or the values True
and False. For example:

my_variable = ’John’
print(my_variable)
my_variable = 42
print(my_variable)
my_variable = True
print(my_variable)

The result of running the above example is

John
42
True

As you can see my_variable first holds (or references the area of memory
containing) the string ‘John’, it then holds the number 42, and finally it holds the
Boolean value True (Boolean values can only be True of False).

This is referred to in Python as Dynamic Typing. That is the type of the data held by
a variable can dynamically change as the program executes. Although this may seem
like the obvious way to do things, it is not the approach used by many programming
languages such as Java and C# where variables are instead statically typed. The word
static is used here to indicate that the type of data that a variable can hold will be
determined when the program is first processed (or compiled). Later on it will not be
possible to change the type of data it can hold; thus if a variable is to hold a number
it cannot later on hold a string.

Both approaches have their pros and cons; but for many people the flexibility of
Pythons variables is one of its major advantages.

4.5 Naming Conventions

You may have noticed something about some of the variable names we have intro-
duced above such as user_name and my_variable. Both these variable names
are formed of a set of characters with an underbar between the ‘words’ in the variable
name.

46 4 A First Python Program

Both these variable names highlight a very widely used naming convention in
Python, which is that variable names should:

● be all lowercase,
● be in general more descriptive than variable names such as a or b (although there

are some exceptions such as the use of variables i and j in looping constructs),
● with individual words separated by underscores as necessary to improve read-

ability.

This last point is very important as in Python (and most computer programming
languages) spaces are treated as separators which can be used to indicate where one
thing ends and another starts. Thus it is not possible to define a variable name such
as:

● user name

As the space is treated by Python as a separator and thus Python thinks you are
defining two things ‘user’ and ‘name’.

When you create your own variables, you should try to name then following the
Python accepted style thus name such as:

● my_name, your_name, user_name, account_name
● count, total_number_of_users, percentage_passed,
pass_rate

● where_we_live, house_number,
● is_okay, is_correct, status_flag

are all acceptable but

● A, Aaaaa, aaAAAaa
● Myname, myName, MyName or MYName
● WHEREWELIVE

do not meet the accepted conventions.
However, it is worth mentioning that there are merely commonly adhered to

conventions and even Python itself does not always comply with these conventions.
Thus if you define a variable name that does not conform to the convention Python
will not complain.

4.6 Assignment Operator

One final aspect of the statement shown below has yet to be considered

user_name = input(’Enter your name: ’)

What does exactly is this ‘ = ‘ between user_name variable and the input()
function?

4.8 Comments in Code 47

It is called the assignment operator. It is used to assign the value returned by the
function input() to the variable user_name. It is probably the most widely used
operator in Python. Of course, it is not just used to assign values from functions as
the earlier examples illustrated. For example, we also used it when we stored a string
into a variable directly:

my_variable = ’Jason’

4.7 Python Statements

Throughout this chapter we have used the phrase statement to describe a portion of
a Python program; for example the following line of code is a statement that prints
out a string ‘Hello’ and the value held in user_name.

print(’Hello’, user_name)

So what do we mean by a statement? In Python a statement is an instruction that
the Python interpreter can execute. This statement may be formed of a number of
elements such as the ones above which includes a call to a function and an assignment
of a value to a variable. In many cases a statement is a single line in your program,
but it is also possible for a statement to extend over several lines particularly if this
helps the readability or layout of the code. For example, the following is a single
statement, but it is laid out over 6 lines of code to make it easier to read:

print(’The total population for’,
city,
’was’,
number_of_people_in_city,
’in’,
year)

As well as statements there are also expressions. An expression is essentially a
computation that generates a value, for example:

4 + 5

This is an expression that adds 4 and 5 together and generates the value 9.

4.8 Comments in Code

It is common practice (although not universally so) to add comments to code to help
anyone reading the code to understand what the code does, what its intent was, any
design decisions the programmer made, etc.

48 4 A First Python Program

Comments are sections of a program that are ignored by the Python interpreter—
they are not executable code.

A comment is indicated by the ‘#’ character in Python. Anything following that
character to the end of the line will be ignored by the interpreter as it will be assumed
to be a comment, for example:

This is a comment
name = input(’Enter your name: ’)
This is another comment
print(name) # this is a comment to the end of the line

In the above, the two lines starting with a # are comments—they are for our
human eyes only. Interestingly the line containing the print() function also has a
comment—that is fine the command starts with the # and runs to the end of the line,
anything before the # character is not part of the comment.

4.9 Scripts Versus Programs

Python can be run in several ways:

● via the Python interpreter by entering the REPL; the interactive Python session,
● by having the Python interpreter run a file containing stored Python commands,
● by setting up an association at the operating system level so that any files ending

with.py are always run by the Python interpreter,
● by indicating the Python interpreter to use at the start of the Python file. This

is done by including the first line in a file with something similar to ‘#!/usr/
bin/env python’. This indicates that the rest of the file should be passed to
the Python interpreter.

All of these can be defined as a way to run a Python program or indeed a Python
script.

However, for the purposes of this book we will treat a file containing the first line
specifying the Python interpreter to use as a script. All other Python code that repre-
sents some code to execute for a specific purpose will be called a Python program.
However, this is really only a distinction being made here to simplify terminology.

4.10 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/reference/simple_stmts.html For information on state-
ments in Python.

https://docs.python.org/3/reference/simple_stmts.html

4.11 Exercises 49

4.11 Exercises

At this point you should try to write your own Python program. It is probably the
easiest to start by modifying the Hello World program we have already been studying.
The following steps take you through this:

1. If you have not yet run the Hello World program, then do so now. To run your
program you have several options. The easiest if you have set up an IDE such
as PyCharm is to use the ‘run’ menu option. Otherwise if you have set up the
Python interpreter on your computer, you can run it from a command prompt (on
Windows) or a terminal window (on a Mac/Linux box).

2. Now ensure that you are comfortable with what the program actually does. Try
commenting out some lines—what happens; is that the behaviour you expected?
Check that you are happy with what it does.

3. Once you have done that, modify the program with your own prompts to the user
(the string argument given to the input function). Make sure that each string is
surrounded by the single quote characters (‘’); remember these denote the start
and end of a string.

4. Try creating your own variables and storing values into those instead of the
variable user_name.

5. Add a print() statement to the program with your own prompt.
6. Include an assignment that will add two numbers together (e.g., 4 + 5) and then

assign the result to a variable.
7. Now print out that variables value once it has been assigned a value.
8. Make sure you can run the program after each of the above changes. If there is

an error reported attempt to fix that issue before moving on.

You must also be careful with the indentation of your program—Python is very
sensitive to how code is laid out, and at this point all statements should start at the
beginning of the line.

Chapter 5
Python Strings

5.1 Introduction

In the previous chapter we used strings several times, both as prompts to the user
and as output from the print() function. We even had the user type in their name
and store it in a variable that could be used to access this name at a later point in
time. In this chapter we will explore what a string is and how you can work with and
manipulate them.

5.2 What Are Strings?

During the description of the Hello World program we referred to Python strings
several times, but what is a string?

In Python a string is a series, or sequence, of characters in order. In this definition
a character is anything you can type on the keyboard in one keystroke, such as a
letter ‘a’, ‘b’, ‘c’ or a number ‘1’, ‘2’, ‘3’ or a special character such as ‘\’, ‘[‘, ‘$’,
and a space is also a character ‘ ‘, although it does not have a visible representation.

It should also be noted that strings are immutable. Immutable means that once a
string has been created it cannot be changed. If you try to change a string you will in
fact create a new string, containing whatever modifications you made, you will not
affect the original string in anyway. For the most part you can ignore this fact, but it
means that if you try to get a sub string or split a string you must remember to store
the result—we will see this later on in this chapter.

To define the start and end of a string we have used the single quote character ‘;
thus all of the following are valid strings:

• ’Hello’
• ’Hello World’
• ’Hello Andrea2000’

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_5

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_5

52 5 Python Strings

• ’To be or not to be that is the question!’

We can also define an empty string which has no characters in it (it is defined as
a single quote followed immediately by a second single quote with not gap between
them). This is often used to initialize or reset a variable holding a reference to a
string, for example

• some_string = ”

5.3 Representing Strings

As stated above, we have used single quotes to define the start and end of a string,
however in Python single or double quotes can be used to define a string, and thus
both of the following are valid:

• ’Hello World’
• "Hello World"

In Python these forms are exactly the same, although by convention we default to
use single quotes. This approach is often referred to as being more Pythonic (which
implies it is more the convention used by experienced Python programmers), but the
language does not enforce it.

You should note, however, that you cannot mix the two styles of start and end
strings; that is, you cannot start a string with a single quote and end a string with a
double quote, and thus the following are both illegal in Python:

• ’Hello World” # This is illegal
• "Hello World’ # So is this

The ability to use both “ and ‘, however, comes in useful if your string needs to
contain one of the other type of string delimiters. This is because a single quote can
be embedded in a string defined using double quotes and vice versa; thus we can
write the following:

print("It’s the day")
print(’She said "hello" to everyone’)

The output of these two lines is:

It’s the day
She said "hello" to everyone

A third alternative is the use of triple quotes, which might at first hand seem a bit
unwieldy, but they allow a string to support multiline strings, for example:

z = """
Hello
World

"""

5.5 What Can You Do with Strings? 53

print(z)

which will print out

Hello
World

5.4 What Type is String?

It is often said that Python is untyped, but this is not strictly true—as was stated in
the first chapter it is a dynamically typed language with all data having an associated
type.

The type of an item of data (such as a string) determines what it is legal to do with
the data and what the effect of various actions will be. For example, what the effect
of using a ‘ + ’ operator is will depend on the types involved; if they are numbers
then the plus operator will add them together; if however strings are involved then
the strings will be concatenated (combined) together, etc.

It is possible to find out what type a variable currently holds using the built-in
type() function. This function takes a variable name and will return the type of
the data held by that variable, for example:

my_variable = ’Bob’
print(type(my_variable))

The result of executing these two lines of code is the output:

<class ’str’>

This is a shorthand for saying that what is held in my_variable is currently a
class (type) of string (actually string is a class, Python supports ideas from object-
oriented programming such as classes, and we will encounter them later in the book).

5.5 What Can You Do with Strings?

In Python terms this means what operations or functions are their available or built in
that you can use to work with strings. The answer is that there are very many. Some
of these are described in this section.

54 5 Python Strings

5.5.1 String Concatenation

You can concatenate two strings together using the ‘+’ operator (an operator is an
operation or behaviour that can be applied to r = types involved). That is you can
take one string and add it to another string to create a new third string:

string_1 = ’Good’
string_2 = " day"
string_3 = string_1 + string_2
print(string_3)
print(’Hello ’ + ’World’)

The output from this is

Good day
Hello World

Notice that the way in which the string is defined does not matter here, string_
1 used single quote, but string_2 used double quotes; but they are both just
strings.

5.5.2 Length of a String

It can sometimes be useful to know how long a string is; for example if you are
putting a string into a user interface you might need to know how much of the string
will be displayed within a field. To find out the length of a string in Python you use
the len() function, for example:

print(len(string_3))

This will print out the length of the string currently being held by the variable
string_3 (in terms of the number of characters contained in the string).

5.5.3 Accessing a Character

As a string is a fixed sequence of letters, it is possible to use square brackets and an
index (or position) to retrieve a specific character from within a string. For example:

my_string = ’Hello World’
print(my_string[4])

However, you should note that strings are indexed from zero! This means that
the first character is in position 0, the second in position 1, etc. Thus stating [4]
indicates that we want to obtain the fifth character in the string, which in this case is the
letter ‘o’. This form of indexing elements is actually quite common in programming
languages and is referred to a zero-based indexing.

5.5 What Can You Do with Strings? 55

5.5.4 Accessing a Subset of Characters

It is also possible to obtain a subset of the original string, often referred to as a
substring (of the original string). This can again be done using the square brackets
notation but using a ‘:’ to indicate the start and end points of the sub string. If one
of the positions is omitted then the start or end of the string is assumed (depending
upon the omission), for example:

my_string = ’Hello World’
print(my_string[4]) # characters at position 4
print(my_string[1:5]) # from position 1 to 5
print(my_string[:5]) # from start to position 5
print(my_string[2:]) # from position 2 to the end

will generate

o
ello
Hello
llo World

As suchmy_string[1:5] returns the substring containing the 2nd to 6th letters
(that is ‘ello’). In turn my_string[:5] returned the substring containing the
1st to 6th letters and my_string[2:] the sub string containing the 3rd to the last
letters.

5.5.5 Repeating Strings

We can also use the ‘*’ operator with strings. In the case of strings this means repeat
the given string a certain number of times. This generates a new string containing
the original string repeated n number of times. For example:

print(’*’ * 10)
print(’Hi’ * 10)

will generate

HiHiHiHiHiHiHiHiHiHi

5.5.6 Splitting Strings

A very common requirement is the need to split a string up into multiple separate
strings based on a specific character such as a space or a comma.

56 5 Python Strings

This can be done with the split() function that takes a string to be used in
identifying how to split up the receiving string. For example:

title = ’The Good, The Bad, and the Ugly’
print(’Source string:’, title)
print(’Split using a space’)
print(title.split(’ ’))
print(’Split using a comma’)
print(title.split(’,’))

This produces as output

Source string: The Good, The Bad, and the Ugly
Split using a space
[’The’, ’Good,’, ’The’, ’Bad,’, ’and’, ’the’, ’Ugly’]
Split using a comma
[’The Good’, ’ The Bad’, ’ and the Ugly’]

As can be seen from this the result generated is either a list of each word in the
string or three strings as defined by the comma.

You may have noticed something odd about the way in which we wrote the call
to the split operation. We did not pass the string into split() rather we used the
format of the variable containing the string followed by ‘.’ and then split().

This is because split() is actually what is referred to as a method. We will
return to this concept more when we explore classes and objects. For the moment
merely remember that methods are applied to things like string using the dot notation.

For example, given the following code

title = ’The Good, The Bad, and the Ugly’
print(title.split(’ ’))

This means take the string held by the variable title and split it based on the
character space.

5.5.7 Counting Strings

It is possible to find out how many times a string is repeated in another string. This
is done using the count() operation for example

my_string = ’Count, the number of spaces’
print("my_string.count(’ ’):", my_string.count(’ ’))

which has the output

my_string.count(’ ’): 8

indicating that there are 8 spaces in the original string.

5.5 What Can You Do with Strings? 57

5.5.8 Replacing Strings

One string can replace a substring in another string. This is done using the
replace() method on a string. For example:

welcome_message = ’Hello World!’
print(welcome_message.replace("Hello", "Goodbye"))

The output produced by this is thus

Goodbye World!

5.5.9 Finding Sub Strings

You can find if one string is a substring of another string using the find() method.
This method takes a second string as a parameter and checks to see if that string is
in the string receiving the find() method, for example:

string.find(string_to_find)

The method returns −1 if the string is not present. Otherwise it returns an index
indicating the start of the substring. For example

print(’Edward Alun Rawlings’.find(’Alun’))

This prints out the value 7 (the index of the first letter of the substring ‘Alun’)
note strings are indexed from zero; thus the first letter is at position zero, the second
at position one, etc.

In contrast the following call to the find method prints out −1 as ‘Alun’ is no
longer part of the target string:

print(’Edward John Rawlings’.find(’Alun’))

5.5.10 Converting Other Types into Strings

If you try to use the ‘ + ’ concatenation operator with a string and some other type
such as a number then you will get an error. For example if you try the following:

msg = ’Hello Lloyd you are ’ + 21
print(msg)

You will get an error message indicating that you can only concatenate string with
strings not ints with strings. To concatenate a number such as 21 with a string you

58 5 Python Strings

must convert it to a string. This can be done using the str() function. This contests
any type into a string representation of that type. For example:

msg = ’Hello Lloyd you are ’ + str(21)
print(msg)

This code snippet will print out the message:

Hello Lloyd you are 21

5.5.11 Remove Prefix and Suffix

Two new string-related methods were added in Python 3.9. These methods are called
removePrefix() and removeSuffix() and are used to remove a sub string
from the front or the back of a string. For example:

info = ’-John Hunt*’
print(info)
print(info.removeprefix(’-’))
print(info.removesuffix(’*’))

The output from this code snippet is:

-John Hunt*
John Hunt*
-John Hunt

5.5.12 Comparing Strings

To compare one string with another you can use the ‘==’ equality and ‘!=’ not equals
operators. These will compare two strings and return wither True or False indicating
whether the strings are equal or not.

For example:

print(’James’ == ’James’) # prints True
print(’James’ == ’John’) # prints False
print(’James’ != ’John’) # prints True

You should note that strings in Python are case sensitive; thus the string ‘James’
does not equal the string ‘james’. Thus:

print(’James’ == ’james’) # prints False

5.5 What Can You Do with Strings? 59

5.5.13 Other String Operations

There are in fact very many different operations available for strings,
including checking that a string starts or ends with another string, that
is, upper or lowercase tc. It is also possible to replace part of a
string with another string, convert strings to upper, lower or title case,
etc.

Example of these are given below (note all of these operations use the dot notation):

some_string = ’Hello World’
print(’Testing a String’)
print(’-’ * 20)
print(’some_string’, some_string)
print("some_string.startswith(’H’)", some_string.startswith(’H’))
print("some_string.startswith(’h’)", some_string.startswith(’h’))
print("some_string.endswith(’d’)", some_string.endswith(’d’))
print(’some_string.istitle()’, some_string.istitle())
print(’some_string.isupper()’, some_string.isupper())
print(’some_string.islower()’, some_string.islower())
print(’some_string.isalpha()’, some_string.isalpha())

print(’String conversions’)
print(’-’ * 20)
print(’some_string.upper()’, some_string.upper())
print(’some_string.lower()’, some_string.lower())
print(’some_string.title()’, some_string.title())
print(’some_string.swapcase()’, some_string.swapcase())
print(’String leading, trailing spaces’, " xyz ".strip())

The output from this is

Testing a String

some_string Hello World
some_string.startswith(’H’) True
some_string.startswith(’h’) False
some_string.endswith(’d’) True
some_string.istitle() True
some_string.isupper() False
some_string.islower() False
some_string.isalpha() False
String conversions

some_string.upper() HELLO WORLD
some_string.lower() hello world
some_string.title() Hello World
some_string.swapcase() hELLO wORLD
String leading, trailing spaces xyz

60 5 Python Strings

5.6 Hints on Strings

5.6.1 Python Strings are Case Sensitive

In Python the string ‘l’ is not the same as the string ‘L’; one contains the lowercase
letter ‘l’ and one the uppercase letter ‘L’. If case sensitive does not matter to you
then you should convert any strings you want to compare into a common case before
doing any testing; for example, using lower() as in

some_string.lower().startswith(’h’)

5.6.2 Function/Method Names

Be very careful with capitalization of function/method names; in Python
isupper() is a completely different operation to isUpper(). If you use the
wrong case Python will not be able to find the required function or method and will
generate an error message.

5.6.3 Function/Method Invocations

Also be careful of always including the round brackets when you call a function or
method; even if it takes no parameters/arguments. There is a significant difference
between isupper and isupper(). The first one is the name of an operation on
a string, while the second is a call to that operation so that the operation executes.
Both formats are legal in Python, but the result is very different, for example:

print(some_string.isupper)
print(some_string.isupper())

produces the output:

<built-in method isupper of str object at 0x105eb19b0>
False

Notice that the first print out tells you that you are referring to the built-in
method called isupper defined on the type string, while the second actually runs
isupper() for you and returns either True or False.

5.7 String Formatting 61

5.7 String Formatting

Python provides a sophisticated formatting system for strings that can be useful for
printing information out or logging information from a program.

The string formatting system uses a special string known as the format string that
acts as a pattern defining how the final string will be laid out. This format string can
contain placeholders that will be replaced with actual values when the final string is
created. A set of values can be applied to the format string to fill the placeholders
using the format() method.

The simplest example of a format string is one that provides a single placeholder
indicated by two curly braces (e.g., {}). For example, the following is a format string
with the pattern ‘Hello’ followed by a placeholder:

format_string = ’Hello {}!’

This can be used with the format() string method to provide a value (or
populate) the placeholder, for example:

print(format_string.format(’Phoebe’))

The output from this is:

Hello Phoebe!

A format string can have any number of placeholders that must be populated; for
example, the next example has two placeholders that are populated by providing two
values to the format() method:

Allows multiple values to populate the string
name = "Adam"
age = 20
print("{} is {} years old".format(name, age))

In this case the output is:

Adam is 20 years old

It also illustrates that variables can be used to provide the values for the format
method as well as literal values. A literal value is a fixed value such as 42 or the
string ‘John’.

By default the values are bound to the placeholders based on the order that they
are provided to the format() method; however this can be overridden by providing
an index to the placeholder to tell it which value should be bound, for example:

Can specify an index for the substitution
format_string = "Hello {1} {0}, you got {2}%"
print(format_string.format(’Smith’, ‘Carol’, 75))

In this case the second string ‘Carol’ will be bound the first placeholder; note that
the parameters are numbered from zero not one.

62 5 Python Strings

The output from the above example is:

Hello Carol Smith, you got 75%

Of course when ordering the values it is easy to get something wrong either
because a developer might think the strings are indexed from 1 or just because they
get the order wrong.

An alternative approach is to use named values for the placeholders. In this
approach the curly brackets surround the name of the value to be substituted, for
example, {artist}. Then in theformat() method a key = value pair is provided
where the key is the name in the format string; this is shown below:

Can use named substitutions, order is not significant
format_string = "{artist} sang {song} in {year}"
print(format_string.format(artist=’Paloma Faith’,
song=’Guilty’, year=2017))

In this example the order no longer matters as the name associated with the
parameter passed into the format() method is used to obtain the value to be
substituted. In this case the output is:

Paloma Faith sang Guilty in 2017

It is also possible to indicate alignment and width within the format string. For
example, if you wish to indicate a width to be left for a placeholder whatever the
actual value supplied, you can do this using a colon (‘:’) followed by the width to use.
For example to specify a gap of 25 characters which can be filled with a substitute
value you can use {:25} as shown below:

print(’|{:25}|’.format(’25 characters width’))

In the above the vertical bars are merely being used to indicate where the string
starts and ends for reference, and they have no meaning within the format method.
This produces the output:

|25 characters width |

Within this gap you can also indicate an alignment where:

• < indicates left alignment (the default).
• > indicates right alignment.
• ∧ indicates centered.

These follow the colon (‘:’) and come before the size of the gap to use, for
example:

print(’|{:<25}|’.format(’left aligned’)) # The default
print(’|{:>25}|’.format(’right aligned’))
print(’|{:^25}|’.format(’centered’))

which produces:

5.8 String Templates 63

|left aligned |
| right aligned|
| centered |

Another formatting option is to indicate that a number should be formatted with
separators (such as a comma) to indicate thousands:

Can format numbers with comma as thousands separator
print(’{:,}’.format(1234567890))
print(’{:,}’.format(1234567890.0))

Which generates the output:

1,234,567,890
1,234,567,890.0

There are in fact numerous options available to control the layout of a value
within the format string, and the Python documentation should be referenced for
further information.

5.8 String Templates

An alternative to using string formatting is to use string templates. These were intro-
duced into Python 2.4 as a simpler, less error prone, solution to most string formatting
requirements.

A string template is a class (type of thing) that is created via the
string.Template() function. The template contains one or more named vari-
ables preceded with a $ symbol. The template can then be used with a set of values
that replace the template variables with actual values.

For example:

import string

Initialise the template with ¢variables that
will be substitute with actual values
template = string.Template(’$artist sang $song in $year’)

Note that it is necessary to include an import statement at the start of the program
as templates are not provided by default in Python; they must be loaded from a library
of additional string features. This library is part of Python, but you need to tell Python
that you want to access these extra string facilities.

We will return to the import statement later in the book; for now just except that
it is needed to access the template functionality.

The template itself is created via the string.Template() function. The
string passed into the Template() function can contain any characters plus the
template variables (which are indicated by the $ character followed by the name of
the variable such as $artist above).

64 5 Python Strings

The above is thus a template for the pattern ‘some-artist sang some-song in some-
year’.

The actual values can be substituted into the template using the substitute()
function. The substitute function takes a set of key = value pairs, in which the key
is the name of the template variable (minus the leading $ character) and the value is
the value to use in the string.

print(template.substitute(artist=’Freddie Mercury’, song=’The
Great Pretender’, year=1987))

In this example $artist will be replaced by ‘Freddie Mercury’, $song by
‘The Great Pretender’ and $year by 1987. The substitute function will then return
a new string containing

’Freddie Mercury sang The Great Pretender in 1987’

This is illustrated in the following code:

import string

Initialise the template with $variables that
will be substitute with actual values
template = string.Template(’$artist sang $song in $year’)

Replace / substitute template variables with actual values
Can use a key = value pairs where the key is the name of
the template Variable and the value is the value to use
in the string
print(template.substitute(artist=’Freddie Mercury’, song=’The
Great Pretender’, year=1987))

This produces:

Freddie Mercury sang The Great Pretender in 1987

We can of course reuse the template by substituting other values for the template
variables; each time we call the substitute() method it will generate a new string with
the template variables replaced with the appropriate values:

print(template.substitute(artist=’Ed Sheeran’, song=’Galway
Girl’, year=2017))
print(template.substitute(artist=’Camila Cabello’,
song=’Havana’, year=2018))

With the above producing:

Ed Sheeran sang Galway Girl in 2017
Camila Cabello sang Havana in 2018

Alternatively you can create what is known as a dictionary. A dictionary is a
structure comprised of key:value pairs in which the key is unique. This allows a data
structure to be created containing the values to use and then applied to the substitute
function:

d = dict(artist = ’Billy Idol’, song=’Eyes Without a Face’, year =
1984)

5.8 String Templates 65

print(template.substitute(d))

This produces a new string:

Billy Idol sang Eyes Without a Face in 1984

We will discuss dictionaries in greater detail later in the book.
Template strings can contain template variables using the format

$name-of-variable; however there are a few variations that are worth
noting:

• $$ allows you to include a ‘$’ character in the string without Python interpreting
it as the start of a template variable the double ‘$$’ is replaced with a single $.
This is known as escape a control character.

• ${template_variable} is equivalent to $template_variable. It is
required when valid identifier characters follow the placeholder but are not part
of the placeholder, such as “${noun}ification”.

Another point to note about the template.substitute() function is that
if you fail to provide all the template variables with a value then an error will be
generated. For example:

print(template.substitute(artist=’David Bowie’, song=’Rebel
Rebel’))

will result in the program failing to execute and an error message being generated:

Traceback (most recent call last):
File "template_examples.py", line 18, in <module>

print(template.substitute(artist=’David Bowie’, song=’Rebel
Rebel’))
^^^

File "/usr/local/Cellar/python@3.11/3.11.3/Frameworks/
Python.framework/Versions/3.11/lib/python3.11/string.py", line
121, in substitute

return self.pattern.sub(convert, self.template)
^^

File "/usr/local/Cellar/python@3.11/3.11.3/Frameworks/
Python.framework/Versions/3.11/lib/python3.11/string.py", line
114, in convert

return str(mapping[named])
˜˜˜˜˜˜˜ ˜˜˜˜˜˜˜^^^^^^^

KeyError: ’year’

This is because the template variable $year has not been provided with a value.
If you do not want to have to worry about providing all the variables in a template

with a value then you should use the safe_substitute() function:

print(template.safe_substitute(artist=’David Bowie’, song=’Rebel
Rebel’))

66 5 Python Strings

This will populate the template variables provided and leave any other template
variables to be incorporated into the string as they are, for example:

David Bowie sang Rebel Rebel in $year

5.9 Formatting Using f-strings

The simplest approach to string formatting was introduced in Python 3.6. For this
version onward, a formatted string could be indicated by prefixing the string with
the letter ‘f’. This so called f-string is then parsed by the Python runtime and allows
data to be inserted into the string template. The values to be inserted are indicated
using curly brackets {}. Within the curly brackets you can enter any valid Python
expression; thus you can enter the name of a variable, an expression such as 3 + 5
or indeed call a Python function such as len(some_string). For example:

name = "Natalia"
age = 23

message = f"Hello {name}, you are {age}"
print(message)

This code, when run, generates the following output:

Natalia is 23 years old

Another example illustrates the use of expressions within the curly brackets:

welcome = ’Hello’
message = f’The value of 2 + 3 is: {2 + 3}, the len of {welcome} is
{len(welcome)}’
print(message)

The output of this is:

The value of 2 + 3 is: 5, the len of Hello is 5

A variation on this theme can be used to format floating point numbers. This
approach uses format specifiers to indicate the width to use for the number and the
number of decimal places (or precision) to include and a type specifier to indicate
that you are using floating point numbers. This format is:

f’{value:{width}.{precision}f}’

where:

• value is any expression that evaluates to a number.
• width specifies the number of characters used in total to display, but if value needs

more space than the width specifies then the additional space is used. This is an
optional field as leaving it blank indicates that you want whatever space is required
to be used.

5.11 Exercises 67

• precision indicates the number of characters used after the decimal point.
• The f after the precision indicates that you are using fixed point presentation.

For example,

a = 10.1234
message = f’Result: {a:.2f}’
print(message)

The output from this is:

Result: 10.12

5.10 Online Resources

There is a great deal of online documentation available on strings in Python including:

• https://docs.python.org/3/library/string.html which presents common string oper-
ations.

• https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str this
provides information on strings and the str class in Python.

• https://pyformat.info has a simple introduction to Python string formatting.
• https://docs.python.org/3/library/string.html#format-string-syntax which

presents detailed documentation on Python string formatting.
• https://docs.python.org/3/library/string.html#template-strings for documentation

on string templates.

5.11 Exercises

We are going to try out some of the string-related operations.

1. Explore replacing a string
Create a string with words separated by ‘,’ and replace the commas with spaces;
for example replace all the commas in ‘Denyse,Marie,Smith,21,London,UK’
with spaces. Now print out the resulting string.

2. Handle user input
The aim of this exercise is to write a program to ask the user for two strings and
concatenate them together, with a space between them and store them into a new
variable called new_string.

https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
https://pyformat.info
https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#template-strings

68 5 Python Strings

Next:

• Print out the value of new_string.
• Print out how long the contents of new_string is.
• Now convert the contents of new_string to all uppercase.
• Now check to see if new_string contains the string ‘Albus’ as a substring.

Chapter 6
Numbers, Booleans and None

6.1 Introduction

In this chapter we will explore the different ways that numbers can be represented
by the built-in types in Python. We will also introduce the Boolean type used to
represent True and False. As part of this discussion we will also look at both numeric
and assignment operators in Python. We will conclude by introducing the special
value known as None.

6.2 Types of Numbers

There are three types used to represent numbers in Python; these are integers (or
integral) types, floating point numbers and complex numbers.

This begs the question why? Why have different ways of representing numbers;
after all humans can easily work with the number 4 and the number 4.0 and don’t
need completely different approaches to writing them (apart from the ‘.‘ of course).

This actually comes down to efficiency in terms of both the amount of memory
needed to represent a number and the amount of processing power needed to work
with that number. In essence integers are simpler to work with and can take up less
memory than real numbers. Integers are whole numbers that do not need to have a
fractional element. When two integers are added, multiplied or subtracted they will
always generate another integer number.

In Python real numbers are represented as floating point numbers (or floats). These
can contain a fractional part (the bit after the decimal point). Computers can best
work with integers (actually of course only really 1 s and 0 s). They therefore need a
way to represent a floating point or real number. Typically this involves representing
the digits before and after the decimal point.

The term floating point is derived from the fact that there is no fixed number of
digits before or after the decimal point; that is, the decimal point can float.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_6

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_6

70 6 Numbers, Booleans and None

Operations such as addition, subtract, multiplication, etc. will generate new real
numbers which must also be represented. It is also much harder to ensure that the
results are correct as potentially very small and very large fractional parts may be
involved. Indeed, most floating point numbers are actually represented as approxi-
mations. This means that one of the challenges in handling floating point numbers
is in ensuring that the approximations lead to reasonable results. If this is not done
appropriately, small discrepancies in the approximations can snowball to the point
where the final results become meaningless.

As a result, most computer programming languages treat integers such as 4 as
being different from real numbers such as 4.000000004.

Complex numbers are an extension of real numbers in which all numbers are
expressed as a sum of a real part and an imaginary part. Imaginary numbers are real
multiples of the imaginary unit (the square root of −1), where the imaginary part
is often written in mathematics using an ‘i’ while in engineering it is often written
using a ‘j’.

Python has built-in support for complex numbers, which are written using the
engineering notation; that is the imaginary part is written with a j suffix, e.g., 3 + 1j.

6.3 Integers

All integer values, no matter how big or small are represented by the integral (or int)
type in Python 3. For example:

x = 1
print(x)
print(type(x))
x = 1001
print(x)
print(type(x))

If this code is run then the output will show that both numbers are of type int:

1
<class ’int’>
1001
<class ’int’>

This makes it very easy to work with integer numbers in Python. Some program-
ming languages such as C# and Java have different integer types depending on the
size of the number, small numbers having to be converted into larger types in some
situations.

There is no limit to the size of the largest integer that you can represent in Python.

6.4 Floating Point Numbers 71

6.3.1 Converting to Ints

It is possible to convert another type into an integer using the int() function. For
example, if we want to convert a string into an int (assuming the string contains a
integer number) then we can do this using the int() function. For example

total = int(’100’)

This can be useful when used with the input() function.
The input() function always returns a string. If we want to ask the user to

input an integer number, then we will need to convert the string returned from the
input() function into an int. We can do this by wrapping the call to the input
function in a call to the int() function, for example:

age = int(input(’Please enter your age:’))
print(type(age))
print(age)

Running this gives:

Please enter your age: 21
<class ’int’>
21

The int() function can also be used to convert a floating point number into an
int, for example:

i = int(1.0)

6.4 Floating Point Numbers

Real numbers, or floating point numbers, are represented in Python using the IEEE
754 double-precision binary floating point number format; for the most part you do
not need to know this but it is something you can look up and read about if you wish.

The type used to represent a floating point number is called float.
Python represents floating point numbers using a decimal point to separate the

whole part from the fractional part of the number, for example:

exchange_rate = 1.83
print(exchange_rate)
print(type(exchange_rate))

The produces output indicating that we are storing the number 1.83 as a floating
point number:

72 6 Numbers, Booleans and None

1.83
<class ’float’>

The largest floating point number that you can representing using the default built-
in floating point type is 1.7976931348623157e+308 which is quite large, however
if you need to represent larger numbers then there are other Python libraries (aka
modules) that can be used to do this.

6.4.1 Converting to Floats

As with integers it is possible to convert other types such as an int or a string into a
float. This is done using the float() function:

int_value = 1
string_value = ’1.5’
float_value = float(int_value)
print(’int value as a float:’, float_value)
print(type(float_value))
float_value = float(string_value)
print(’string value as a float:’, float_value)
print(type(float_value))

The output from this code snippet is:

int value as a float: 1.0
<class ’float’>
string value as a float: 1.5
<class ’float’>

6.4.2 Converting an Input String into a Floating Point
Number

As we have seen the input() function returns a string; what happens if we want
the user to input a floating point (or real) number? As we have seen above, a string
can be converted into a floating point number using the float() function and
therefore we can use this approach to convert an input from the user into a float:

exchange_rate = float(input("Please enter the exchange rate to
use: "))
print(exchange_rate)
print(type(exchange_rate))

Using this we can input the string 1.83 and convert it to a floating point number:

Please enter the exchange rate to use: 1.83
1.83
<class ’float’>

6.6 Boolean Values 73

6.5 Complex Numbers

Complex numbers are Pythons third type of built-in numeric type. A complex number
is defined by a real part and an imaginary part and has the form a + bi (where i is
the imaginary part and a and b are real numbers):

The real part of the number (a) is the real number that is being added to the pure
imaginary number.

The imaginary part of the number, or b, is the real number coefficient of the pure
imaginary number.

The letter ‘j’ is used in Python to represent the imaginary part of the number, for
example:

c1 = 1j
c2 = 2j
print(’c1:’, c1, ’, c2:’, c2)
print(type(c1))
print(c1.real)
print(c1.imag)

We can run this code and the output will be:

c1: 1j , c2: 2j
<class ’complex’>
0.0
1.0

As you can see the type of the number is ‘complex’ and when the number is
printed directly it is done so by printing both the real and imaginary parts together.

Don’t worry if this is confusing; it is unlikely that you will need to use complex
numbers unless you are doing some very specific coding, for example within a
scientific field.

6.6 Boolean Values

Python supports another type called Boolean; a Boolean type can only be one of
True or False (and nothing else). Note that these values are True (with a capital
T) and False (with a capital F); true and false in Python are not the same thing and
have no meaning on their own.

The equivalent of the int or float class for Booleans is bool.

74 6 Numbers, Booleans and None

The following example illustrates storing the two Boolean values into a variable
all_ok:

all_ok = True
print(all_ok)
all_ok = False
print(all_ok)
print(type(all_ok))

The output of this is

True
False
<class ’bool’>

The Boolean type is actually a sub type of integer (but with only the values True
and False) so it is easy to translate between the two, using the functions int()
and bool() to convert from Booleans to Integers and vice versa. For example:

print(int(True))
print(int(False))
print(bool(1))
print(bool(0))

Which produces

1
0
True
False

You can also convert strings into Booleans as long as the strings contain either
True or False (and nothing else). For example:

status = bool(input(’OK to proceed: ’))
print(status)
print(type(status))

When we run this

OK to proceed: True
True
<class ’bool’>

6.7 Arithmetic Operators

Arithmetic operators are used to perform some form of mathematical operation
such as addition, subtraction, multiplication and division, etc. In Python they are
represented by one or two characters. The following table summarizes the Python
arithmetic operators:

6.7 Arithmetic Operators 75

Operator Description Example

+ Add the left and right values together 1 + 2
− Subtract the right value from the left value 3 − 2
* Multiple the left and right values 3 * 4

/ Divide the left value by the right value 12/3

// Integer division (ignore any remainder) 12//3

% Modulus (aka the remainder operator)—only return any remainder 13% 3

** Exponent (or power of) operator—with the left value raised to the power of
the right

3 ** 4

6.7.1 Integer Operations

Two integers can be added together using+ , for example 10 + 5. In turn two integers
can be subtracted (10 − 5) and multiplied (10 * 4). Operations such as + , − and *
between integers always produce integer results.

This is illustrated below:

home = 10
away = 15
print(home + away)
print(type(home + away))

print(10 * 4)
print(type(10*4))

goals_for = 10
goals_against = 7
print(goals_for - goals_against)
print(type(goals_for - goals_against))

The output from this is

25
<class ’int’>
40
<class ’int’>
3
<class ’int’>

However, you may notice that we have missed out division with respect to integers,
why is this? It is because it depends on which division operator you use as to what
the returned type actually is.

76 6 Numbers, Booleans and None

For example, if we divide the integer 100 by 20 then the result you might
reasonably expect to produce might be 5; but it is not, it is actually 5.0:

print(100 / 20)
print(type(100 / 20))

The output is

5.0
<class ’float’>

And as you can see from this the type of the result is float (that is a floating
point number). So why is this the case?

The answer is that division does not know whether two the integers involved
divide into one another exactly or not (i.e., is there a remainder). It therefore defaults
to producing a floating point (or real) number which can have a fractional part. This
is of course necessary in some situations, for example if we divide 3 by 2:

res1 = 3/2
print(res1)
print(type(res1))

In this case 3 cannot be exactly divided by 2, we might say that 2 goes into 3 once
with a remainder. This is what is shown by Python:

1.5
<class ’float’>

The result is that 2 goes into 3, 1.5 times with the type of the result being a float.
If you are only interested in the number of times 2 does go into 3 and are happy

to ignore the fractional part then there is an alternative version of the divide operator
‘//’. This operator is referred to as the integer division operator:

res1 = 3//2
print(res1)
print(type(res1))

which produces

1
<class ’int’>

But what if you are only interested in the remainder part of a division, the integer
division operator has lost that? Well in that case you can use the modulus operation
(‘%’). This operator returns the remainder of a division operation: for example:

print(’Modulus division 4 % 2:’, 4 % 2)
print(’Modulus division 3 % 2:’, 3 % 2)

Which produces:

6.7 Arithmetic Operators 77

Modulus division 4 % 2: 0
Modulus division 3 % 2: 1

A final integer operator we will look at is the power operator that can be used
to raise a n integer by a given power, for example 5 to the power of 3. The power
operator is ‘**’, this is illustrated below:

a = 5
b = 3
print(a ** b)

Which generates the number 125.

6.7.2 Negative Number Integer Division

It is also worth just exploring what happens in integer and true division when negative
numbers are involved. For example,

print(’True division 3/2:’, 3 / 2)
print(’True division 3//2:’, −3 / 2)
print(’Integer division 3//2:’, 3 // 2)
print(’Integer division 3//2:’, −3 // 2)

The output from this is:

True division 3/2: 1.5
True division 3//2: −1.5
Integer division 3//2: 1
Integer division 3//2: −2

The first three of these might be exactly what you expect given our earlier discus-
sion; however, the output of the last example may seem a bit surprising, why does
3//2 generate 1 but −3//2 generates −2?

The answer is that Python always rounds the result of integer division towards
minus infinity (which is the smallest negative number possible). This means it pulls
the result of the integer division to the smallest possible number, 1 is smaller than
1.5 but −2 is smaller than −1.5.

6.7.3 Floating Point Number Operators

We also have the multiple, subtract, add and divide operations available for floating
point numbers. All of these operators produce new floating point numbers:

print(2.3 + 1.5)
print(1.5 / 2.3)
print(1.5 * 2.3)

78 6 Numbers, Booleans and None

print(2.3 − 1.5)
print(1.5 − 2.3)

These statements produce the output given below:

3.8
0.6521739130434783
3.4499999999999997
0.7999999999999998
−0.7999999999999998

6.7.4 Integers and Floating Point Operations

Any operation that involves both integers and floating point numbers will always
produce a floating point number. That is, if one of the sides of an operation such as
add, subtract, divide or multiple is a floating point number then the result will be a
floating point number. For example, give the integer 3 and the floating point number
0.1 if we multiple them together then we get a floating point number:

i = 3 * 0.1
print(i)

Executing this we get

0.30000000000000004

Which may or may not have been what you expected (you might have expected
0.3); however this highlights the comment at the start of this chapter relating to
floating point (or real) numbers being represented as an approximation within a
computer system. If this was part of a larger calculation (such as the calculation of
the amount of interest to be paid on a very large loan over a 10 year period) then the
end result might well be out by a significant amount.

It is possible to overcome this issue using one of Pythons modules (or libraries).
For example, the decimal module provides the Decimal class that will appropri-
ately handle multiplying 3 and 0.1.

6.7.5 Complex Number Operators

Of course you can use operators such as multiply, add, strict and divide with complex
numbers. For example:

6.8 Assignment Operators 79

c1 = 1j
c2 = 2j
c3 = c1 * c2
print(c3)

We can run this code and the output will be:

(−2+0j)

You can also convert another number or a string into a complex number using the
complex() function. For example:

complex(1) # generates (1+0j)

In addition the math module provides mathematical functions for complex
numbers.

6.8 Assignment Operators

In the Chap. 3 we briefly introduced the assignment operator (‘=’) which was used to
assign a value to a variable. There are in fact several different assignment operators
that could be used with numeric values.

These assignment operators are actually referred to as compound operators as they
combine together a numeric operation (such as add) with the assignment operator.
For example, the + = compound operator is a combination of the add operator and
the = operator such that

x = 0
x += 1 # has the same behaviour as x = x + 1

Some developers like to use these compound operators as they are more concise
to write and can be interpreted more efficiently by the Python interpreter.

The following table provides a list of the available compound operators.

Operator Description Example Equivalent

+= Add the value to the left-hand variable x + = 2 x = x + 2
−= Subtract the value from the left-hand variable x − = 2 x = x – 2

*= Multiple the left-hand variable by the value x * = 2 x = x * 2

/= Divide the variable value by the right-hand value x/= 2 x = x/2
//= Use integer division to divide the variable’s value by

the right-hand value
x // = 2 x = x // 2

%= Use the modulus (remainder) operator to apply the
right-hand value to the variable

x % = 2 x = x % 2

**= Apply the power of operator to raise the variable’s
value by the value supplied

x ** = 3 x = x ** 3

80 6 Numbers, Booleans and None

6.9 None Value

Python has a special type, the NoneType, with a single value, None.
This is used to represent null values or nothingness.
It is not the same as False, or an empty string or 0; it is a non-value. It can be

used when you need to create a variable but don’t have an initial value for it. For
example:

winner = None

You can then test for the presence of None using ‘is’ and ‘is not’, for example:

print(winner is None)

This will print out true if and only if the variable winner is currently set to None.
Alternatively you can also write:

print(winner is not None)

Which will print out True only if the value of winner is not None.
Several example software using the value None and the ‘is’ and is not’ operators

are given below:

winner = None
print(’winner:’, winner)
print(’winner is None:’, winner is None)
print(’winner is not None:’, winner is not None)
print(type(winner))
print(’Set winner to True’)
winner = True
print(’winner:’, winner)
print(’winner is None:’, winner is None)
print(’winner is not None:’, winner is not None)
print(type(winner))

The output of this code snippet is:

winner: None
winner is None: True
winner is not None: False
<class ’NoneType’>
Set winner to True
winner: True
winner is None: False
winner is not None: True
<class ’bool’>

6.11 Exercises 81

6.10 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
Numeric Types.

● https://docs.python.org/3/library/stdtypes.html#truth-value-testing Boolean
values and Boolean testing.

● https://docs.python.org/3/library/decimal.html which provides information on the
Python decimal module.

● https://docs.python.org/3/library/cmath.html which discusses mathematical func-
tions for complex numbers.

If you are interested in how floating point numbers are represented then a good
starting points are:

● https://en.wikipedia.org/wiki/Double-precision_floating-point_format which
provides an overview of floating point representation.

● https://en.wikipedia.org/wiki/IEEE_754 which is the Wikipedia page on the IEEE
754 Double-precision floating point number format.

6.11 Exercises

The aim of the exercises in this chapter is to explore the numeric types we have been
looking at.

6.11.1 General Exercise

Try to explore the different number types available in Python.
You should try out the different numeric operators available and mix up the

numbers being used, for example, 1 and well as 1.0, etc.
Check to see the results you get are what you expect.

6.11.2 Convert Kilometers to Miles

The aim of this exercise is to write a program to convert a distance in kilometers into
a distance in miles.

1. Take input from the user for a given distance in kilometers. This can be done
using the input() function.

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/cmath.html
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/IEEE_754

82 6 Numbers, Booleans and None

2. Convert the value returned by the input() function from a string into an integer
using the int() function.

3. Now convert this value into miles—this can be done by dividing the kilometres
by 0.6214

4. Print out a message telling the user what the kilometers are in miles.

Chapter 7
Flow of Control Using if Statements

7.1 Introduction

In this chapter we are going to look at the if statement in Python. This statement
is used to control the flow of execution within a program based on some condition.
These conditions represent some choice point that will be evaluated too True or False.
To perform this evaluation it is common to use a comparison operator (for example
to check to see if the temperature is greater than some threshold). In many cases these
comparisons need to take into account several values and in these situations logical
operators can be used to combine two or more comparison expressions together.
This chapter first introduces comparison and logical operators before discussing the
if statement itself.

7.2 Comparison Operators

Before exploring if statements and various types of looping mechanism we need to
discuss comparison operators. These are operators that return Boolean values. They
are key to the conditional elements of flow of control statements such as if.

A comparison operator is an operator that performs some form of test and returns
True of False.

These are operators that we use in everyday life all the time. For example, do I
have enough money to buy lunch, or is this shoe in my size, etc.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_7

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_7

84 7 Flow of Control Using if Statements

In Python there are a range of comparison operators represented by typically one
or two characters. These are:

Operator Description Example

== Tests if two values are equal 3 == 3
! = Tests that two values are not equal to each other 2 ! = 3
< Tests to see if the left-hand value is less than the right-hand value 2 < 3

> Tests if the left-hand value is greater than the right-hand value 3 > 2

< = Tests if the left-hand value is less than or equal to the right-hand value 3 < = 4
> = Tests if the left-hand value is greater than or equal to the right-hand value 5 > = 4

7.3 Logical Operators

In addition to comparison operators, Python also has logical operators.
Logical operators can be used to combined Boolean expressions together. Typi-

cally, they are used with comparison operators to create more complex conditions.
Again, we use these every day for example we might consider whether we can afford
an ice cream and whether we will be having our dinner soon, etc.

There are three logical operators in Python these are listed below:

Operator Description Example

and Returns True if both left and right are true (3 < 4) and (5 > 4)

or Returns two if either the left or the right is truce (3 < 4) or (3 > 5)

not Returns true if the value being tested is False not 3 < 2

7.4 The If Statement

An if statement is used as a form of conditional programming; something you prob-
ably do every day in the real world. That is, you need to decide whether you are going
to have tea or coffee or to decide if you will have toast or a muffin for breakfast, etc.
In each of these cases you are making a choice, usually based on some information
such as I had coffee yesterday, so I will have tea today.

In Python such choices are represented programmatically by the if condition
statement.

In this construct if some condition is true some action is performed, optionally if
it is not true some other action may be performed instead.

7.4 The If Statement 85

7.4.1 Working with an If Statement

In its most basic from, the if statement is

if <condition-evaluating-to-boolean>:
statement

Note that the condition must evaluate to True or False. If the condition is True
then we will execute the indented statement.

Note that indentation, this is very important in Python; indeed, layout of the code
is very, very important in Python. Indentation is used to determine how one piece of
code should be associated with another piece of the code.

Let us look at a simple example,

num = int(input(’Enter a number: ’))
if num < 0:

print(num, ’is negative’)

In this example, the user has input a number; if it is less than zero a message
noting this will be printed to the user. If the number is positive; then nothing will be
output.

For example,

Enter a number: −1
−1 is negative

If we wish to execute multiple statements when our condition is true we can indent
several lines; in fact all lines indented to the same level after the if statement will
automatically be part of it. For example,

num = int(input(’Enter another number: ’))
if num > 0:

print(num, ’is positive’)
print(num, ’squared is ’, num * num)

print(’Bye’)

If we now run this program and input 2 then we will see.

Enter another number: 2
2 is positive
2 squared is 4
Bye

However, if we enter the value −1 then we get.

Enter another number: −1
Bye

Note that neither of the indented lines was executed.
This is because the two indented lines are associated with the if statement and

will only be executed if the Boolean condition evaluates (returns) True. However,
the statement print(’Bye’) is not part of the if statement; it is merely the
next statement to executed after the if statement (and its associated print()
statements) have finished.

86 7 Flow of Control Using if Statements

7.4.2 Else in an If Statement

We can also define an else part of an if statement; this is an optional element that
can be run if the conditional part of the if statement returns False. For example:

num = int(input(’Enter yet another number: ’))
if num < 0:

print(’Its negative’)
else:

print(’Its not negative’)

Now when this code is executed, if the number entered is less than zero then
the first print() statement will be run otherwise (else) the second print()
statement will be run. However, we are guaranteed that at least one (and at most
one) of the print() statements will execute.

For example, in run 1 if we enter the value 1:

Enter yet another number: 1
Its not negative

And in run 2 if we enter the value −1:

Enter yet another number: −1
Its negative

7.4.3 The Use of elif

In some cases there may be several conditions you want to test, with each condition
being tested if the previous one failed. This else-if scenario is supported in Python
by the elif element of an if statement.

The elif element of an if statement follows the if part and comes before any
(optional) else part. It has the format:

elif <condition-evaluating-to-boolean>:
statement

For example

savings = float(input("Enter how much you have in savings: "))
if savings == 0:

print("Sorry no savings")
elif savings < 500:

print(’Well done’)
elif savings < 1000:

print(’Thats a tidy sum’)
elif savings < 10000:

7.5 Nesting if Statements 87

print(’Welcome Sir!’)
else:

print(’Thank you’)

If we run this:

Enter how much you have in savings: 500
Thats a tidy sum

Here we can see that the first if condition failed (as savings is not equal to 0).
However, the next elif also must have returned False as savings were greater
than 500. In fact it was the second elif statement that returned True and thus
the associated print(’Thats a tidy sum’) statement was executed. Having
executed this statement the if statement then terminated (the remaining elif and
else parts were ignored).

7.5 Nesting if Statements

It is possible to nest one if statement inside another. This term nesting indicates
that one if statement is located within part of the another if statement and can be
used to refine the conditional behaviour of the program.

An example is given below. Note that it allows some behaviour to be performed
before and after the nested if statement is executed / run. Also note that indentation
is key here as it is how Python works out whether the if statements are nested or
not.

snowing = True
temp = -1
if temp < 0:
print(’It is freezing’)
if snowing:

print(’Put on boots’)
print(’Time for Hot Chocolate’)

print(’Bye’)

In this example, if the temperature if less than Zero then we will enter the if block
of code. If it is not less than zero we will skip the whole If statement and jump to the
print(’Bye’) statement which is after both If statements.

In this case the temperature is set to −1 and so we will enter the if statement.
We will then print out the ‘It is freezing’ string. At this point another if statement
is nested within the first if statement. A check will now be made to see if it is
snowing. Notice that snowing is already a Boolean value and so will be either
True or False and illustrates that a Boolean value on its own can be used here.

As it is snowing, we will print out ‘Put on boots’.
However, statement printing out ‘Time for Hot Chocolate’ is not part of the nested

if. It is part of the outer if (this is where indentation is important). If you wanted it

88 7 Flow of Control Using if Statements

to only be printed out if it was snowing then it must be indented to the same level as
the first statement in the nested if block, for example:

snowing = True
temp = −1
if temp < 0:

print(’It is freezing’)
if snowing:

print(’Put on boots’)
print(’Time for Hot Chocolate’)

print(’Bye’)

This now changes the inner (or nested) if to have two print statements associated
with it.

This may seem subtle, but it is key to how Python uses layout to link together
individual statements.

7.6 If Expressions

An if expression is a short-hand form of an if statement that returns a value. In fact,
the difference between an expression and a statement in a programming language is
just that; expressions return a value; statements do not.

It is quite common to want to assign a specific value to a variable dependent on
some condition. For example, if we wish to decide if someone is a teenager or not
then we might check to see if they are over 12 and under 20. We could write this as:

age = 15
status = None
if (age > 12) and age < 20:

status = ’teenager’
else:

status = ’not teenager’
print(status)

If we run this, we get the string ‘teenager’ printed out.
However, this is quite long and it may not be obvious that the real intent of this

code was to assign an appropriate value to status.
An alternative is an if expression. The format of an if expression is

<result1> if <condition-is-met> else <result2>

That is the result returned from the if expression is the first value unless the
condition fails in which case the result returned will be the value after the else. It
may seem confusing at first, but it becomes easier when you see an example.

7.9 Online Resources 89

For example, using the if expression we can perform a test to determine the value
to assign to status and return it as the result of the if expression. For example:

status = ’teenager’ if age > 12 and age < 20 else ’not teenager’
print(status)

Again, the result printed out is ‘teenager’ however now the code is much more
concise, and it is clear that the purpose of the test is to determine the result to assign
to status.

7.7 A Note on True and False

Python is actually quite flexible when it comes to what actually is used to represent
True and False, in fact the following rules apply.

● 0, ‘’ (empty strings), None equate to False.
● Non-zero, non-empty strings, any object equate to True.

However, we would recommend sticking to just True and False as it is often
a cleaner and safer approach.

7.8 Hints

One thing to be very careful of in Python is layout.
Unlike language such as Java and C# the layout of your program is part of your

program. It determines how statements are associated together and how flow of
control elements such as if statements effect which statements are executed.

Also, be careful with theif statement and its use of the ‘:’ character. This character
is key in separating out the conditional part of the if statement from the statements
that will be executed depending upon whether the condition is True or False.

7.9 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
Boolean Operations.

● https://docs.python.org/3/library/stdtypes.html#comparisons Comparison opera-
tors.

● https://docs.python.org/3/tutorial/controlflow.html the online Python flow of
control tutorial.

https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/tutorial/controlflow.html

90 7 Flow of Control Using if Statements

7.10 Exercises

There are three different exercises in this section, you can select which you are
interested in or do all three.

7.10.1 Check Input is Positive or Negative

The aim of this exercise is to write a small program to test if an integer is positive or
negative.

Your program should:

1. Prompt the user to input a number (use the input() function). You can assume
that the input will be some sort of number.

2. Convert the string into an integer using the int() function.
3. Now check whether the integer is a positive number or a negative number.
4. You could also add a test to see if the number is Zero.

7.10.2 Test if a Number is Odd or Even

The exercises require you to write a program to take input from the user and determine
if the number is odd or even. Again you can assume that the user will enter a valid
integer number.

Print out a message to the user to let them know the result.
To test if a number is even you can use

(num % 2) == 0

which will return True if the number is even (note the brackets are optional but
make it easier to read).

7.10.3 Kilometers to Miles Converter

In this exercise you should return to the kilometers to miles converter you wrote in
the last chapter.

We will add several new tests to your program:

1. Modify your program such that it verify that the user has entered a positive
distance (i.e., they cannot enter a negative number).

2. Now modify your program to verify that the input is a number; if it is not a
number then do nothing; otherwise convert the distance to miles

7.10 Exercises 91

To check to see if a string contains only digits use the method isnumeric()
for example ’42’.isnumeric(); which returns True if the string only contains
numbers. Note this method only works for positive integers; but this is sufficient for
this example.

Chapter 8
Iteration/Looping

8.1 Introduction

In this section we will look at the while loop and the for loop available in Python.
These loops are used to control the repeated execution of selected statements. A
while loop is often referred to as a conditional loop as it will continue to loop while
some condition is true. A for loop is often referred to as a counted loop as it will loop
a specific number of times.

8.2 While Loop

The while loop exists in almost all programming languages and is used to iterative
(or repeat) one or more code statements as long as the test condition (expression) is
True. This iteration construct is usually used when the number of times when we
need to repeat the block of code to execute it not know. For example, it may need to
repeat until some solution is found or the user enters a particular value.

The behaviour of the while loop is illustrated in below.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_8

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_8

94 8 Iteration/Looping

The Python while loop has the basic form:

while <test-condition-is-true>:
statement or statements

As shown both in the diagram and can be inferred from the code; while the test
condition/expression is True then the statement or block of statements in the while
loop will be executed.

Note that the test is performed before each iteration, including the first iteration;
therefore, if the condition fails the first time around the loop the statement or block
of statements may never be executed at all.

As with the if statement, indentation is key here as the statements included in
the while statement are determined by indentation. Each statement that is indented
to the same level after the while condition is part of the while loop.

However, as soon as a statement is no longer following the while block, then it
is no longer part of the while loop, and its execution is no longer under the control
of the test condition.

The following illustrates an example while loop in Python:

count = 0
print(’Starting’)
while count < 10:

print(count, ’ ’, end=”) # part of the while loop
count += 1 # also part of the while loop

print() # not part of the while loop
print(’Done’)

8.3 For Loop 95

In this example while some variable count is less than the value 10 the while
loop will continue to iterate (will be repeated). The while loop itself contains two
statements: one prints out the value of count variable, while the other increments
count (remember count += 1 is equivalent to . Count = count + 1).

We have used the version of print() that does not print a carriage return when it
prints out a value (this is indicated by the end = ‘’ option passed to the print()
function).

The result of running this example is:

Starting
0 1 2 3 4 5 6 7 8 9
Done

As you can see the statements printing the starting and done messages are only
run once. However, the statement printing out the count variable is run 10 times
(printing out the values 0 to 9).

Once the value of count is equal to 10 then the loop finishes (or terminates).
Note that we needed to initialize the count variable before the loop. This is

because it needs to have a value for the first iteration of the while loop. That is
before the while loop does anything the program needs to already know the first
value of count so that it can perform that very first test. This is a feature of the while
loops’ behaviour.

8.3 For Loop

In many cases we know how many times we want to iterate over one or more state-
ments (as indeed we did in the previous section). Although the while loop can be
used for such situations, the for loop is a far more concise way to do this. It is
typically also clearer to another programmer that the loop must iterate for a specific
number of iterations.

The for loop is used to step a variable through a series of values until a given
test is met. The behaviour of the for loop is illustrated in below.

96 8 Iteration/Looping

This flowchart shows that some sequence of values (e.g., all integer values between
0 and 9) will be used to iterate over a block of code to process. When the last item
in the sequence has been reached, the loop will terminate.

Many languages have a for loop of the form:

for i = from 0 to 10
statement or statements

In this case a variable ‘i’ would take the values 0, 1, 2, 3, etc. up to 10.

8.3.1 Python for Loops

In Python the approach is slightly different as the values from 0 up to 10 are repre-
sented by a range. This is actually a function that will generate the range of values
to be used as the sequence in the for loop. This is because the Python for loop is
very flexible and can loop over not only a range of integer values but also a set of
values held in data structures such as a list of integers or strings. We will return to
this feature of the for loop when we look at collections/containers of data in a later
chapter.

8.3 For Loop 97

The format of the Python for loop when using a range of values is

for <variable-name> in range(...):
statement
statement

An example is shown below which equates to the while loop we looked at earlier:

Loop over a set of values in a range
print(’Print out values in a range’)
for i in range(0, 10):

print(i, ’ ’, end=”)
print()
print(’Done’)

When we run this code, the output is:

Print out values in a range
0 1 2 3 4 5 6 7 8 9
Done

As can be seen from the above; the end result is that we have generated a for
loop that produces the same set of values as the earlier while loop. However,

● The code is more concise.
● It is clear we are processing a range of values from 0 to 9 (note that it is up to but

not including the final value).
● We did not need to define the loop variable first.

For these reasons for loops are more common in programs in general than while
loops.

Note that the Python for loop can be described as open-closed. That is the first
number is included in the range (it is open), but the last number is not included in
the range (it is closed), and thus specifying a range(0, 10) actually creates a range of
the numbers 0 through to 9—it does not include the number 10.

8.3.2 Looping by Non-default Increments

One thing you might notice though is that in the while loop we are not constrained to
incrementing the count variable by one (we just happened to do this). For example,
we could have decided to increment count by 2 each time round the loop (a very
common idea). In fact, range allows us to do exactly this; a third argument that can
be provided to the range function is the value to increment the loop variable by each
time round the loop, for example:

Now use values in a range but increment by 2
print(’Print out values in a range with an increment of 2’)
for i in range(0, 10, 2):

print(i, ’ ’, end=”)

98 8 Iteration/Looping

print()
print(’Done’)

When we run this code, the output is

Print out values in a range with an increment of 2
0 2 4 6 8
Done

Thus the value of the loop variable has jumped by 2 starting at 0. Once its value
was 10 or more then the loop terminates. Of course, it is not only the value 2 we
could use; we could increment by any meaningful integer 3, 4, 5, etc.

8.3.3 Anonymous Loop Variables

One interesting variation on the for loop is the use of a wild card (a ‘_’) instead of
a looping variable; this can be useful if you are only interested in looping a certain
number of times and not in the value of the loop counter itself, for example:

Now use an ’anonymous’ loop variable
for _ in range(0,10):

print(’.’, end=”)
print()

In this case we are not interested in the values generated by the range per se only
in looping 10 times; thus there is no benefit in recording the loop variable. The loop
variable is represented by the underbar character (‘_’).

Note that in actual fact this is a valid variable and can be referenced within the
loop; however by convention it is treated as being anonymous.

8.4 Negative Loops

It is also possible to loop from a larger number down to a smaller number by setting
the loop increment to be a negative number. For example:

for i in range(10, 0, -1):
print(f’{i},’, end=”)

print()

This loop will count down from 10 to zero. However, because the Python for loop
is open-closed, this means that the number 10 will be included, but the number zero
will not be included. The expression range(10, 0) actually creates a range of
the numbers 10 through to 1—it does not include the zero. The output from this code
snippet is therefore:

10,9,8,7,6,5,4,3,2,1,

8.5 Break Loop Statement 99

8.5 Break Loop Statement

Python allows programmers to decide whether they want to break out of a loop early
or not (whether we are using a for loop or a while loop). This is done using the
break statement.

The break statement allows a developer to alter the normal cycle of the loop
based on some criteria which may not be predictable in advance (e.g., it may be based
on some user input).

The break statement, when executed, will terminate the current loop and jump
the program to the first line after the loop. The following diagram shows how this
works for a for loop:

100 8 Iteration/Looping

Typically, a guard statement (if statement) is placed on the break so that the
break statement is conditionally applied when appropriate.

This is shown below for a simple application where the user is asked to enter a
number which may or may not be in the range defined by the for loop. If the number
is in the range, then we will loop until this value is reached and then break the loop
(that is terminate early without processing the rest of the values in the loop):

print(’Only print code if all iterations completed’)
num = int(input(’Enter a number to check for: ’))
for i in range(0, 6):

if i == num:
break

print(i, ’ ’, end=”)
print(’Done’)

If we run this and enter the value 7 (which is outside of the range) then all the
values in the loop should be printed out:

Enter a number to check for: 7
0 1 2 3 4 5 Done

However, if we enter the value 3 then only the values 0, 1 and 2 will be printed
out before the loop breaks (terminates) early:

Enter a number to check for: 3
0 1 2 Done

Note that the string ‘Done’ is printed out in both cases as it is the first line after
the for loop that is not indented and is thus not part of the for loop.

Note that the break statement can come anywhere within the block of code
associated with the loop construct (whether that is a for loop or a while loop).
This means that there can be statements before it and after it.

8.6 Continue Loop Statement

The continue statement also affects the flow of control within the looping
constructs for and while. However, it does not terminate the whole loop; rather it
only terminates the current iteration round the loop. This allows you to skip over part
of a loop’s iteration for a particular value, but then to continue with the remaining
values in the sequence.

8.6 Continue Loop Statement 101

A guard (if statement) can be used to determine when the continue statement
should be executed.

As with the break statement, the continue can come anywhere within the
body of the looping construct. This means that you can have some statements that
will be executed for every value in the sequence and some that are only executed
when the continue statement is not run.

This is shown below. In this program the continue statement is executed only
for odd numbers, and thus the two print() statements are only run if the value
of i is even:

for i in range(0, 10):
print(i, ’ ’, end=”)
if i % 2 == 1:

continue
print(’hey its an even number’)
print(’we love even numbers’)

print(’Done’)

When we run this code we get

0 hey its an even number
we love even numbers
1 2 hey its an even number
we love even numbers
3 4 hey its an even number
we love even numbers
5 6 hey its an even number
we love even numbers

102 8 Iteration/Looping

7 8 hey its an even number
we love even numbers
9 Done

As you can see, we only print out the messages about a number being even when
the values are 0, 2, 4, 6 and 8.

8.7 For Loop with Else

A for loop can have an optional else block at the end of the loop. The else part
is executed if and only if all items in the sequence are processed. The for loop may
fail to process all elements in the loop if for some reason an error occurs in your
program (e.g., if you have a syntax error) or if you break the loop.

Here is an example of a for loop with an else part:

Only print code if all iterations completed over a list
print(’Only print code if all iterations completed’)
num = int(input(’Enter a number to check for: ’))
for i in range(0, 6):

if i == num:
break

print(i, ’ ’, end=”)
else:

print()
print(’All iterations successful’)

If we run this code and enter the integer value 7 as the number to check for, then
the else block executes as the if test within the for statement is never True,
thus the loop is never broken, and all values are processed:

Only print code if all iterations completed
Enter a number to check for: 7
0 1 2 3 4 5
All iterations successful

However, if we enter the value 3 as the number to check for; then the if statement
will be True when the loop variable ‘i’ has the value 3; thus only the values 0, 1 and
2 will be processed by the loop. In this situation the else part will not be executed
because not all the values in the sequence were processed:

Only print code if all iterations completed
Enter a number to check for: 3
0 1 2

8.9 Dice Roll Game 103

8.8 A Note on Loop Variable Naming

Earlier in the book we said that variable names should be meaningful and that names
such as ‘a’ and ‘b’ were not in general a good idea. The one exception to this rule
relates to loop variable names used with for loops over ranges. It is very common to
find that these loop variables are called ‘i’, ‘j’, etc.

It is such a common convention that if a variable is called ‘i’ or ‘j’ people expect
it to be a loop variable. As such.

● you should consider using these variable names in looping constructs,
● avoid using them elsewhere.

But this does raise the question why ‘i’ and ‘j’; the answer is that it all goes back
to a programming language called Fortran which was first developed in the 1950s. In
this programming language loop variables had to be called ‘i’, ‘j’, etc. Fortran was
so ubiquitous for mathematical and scientific programming, where loops are almost
di rigour, that this has become the convention in other languages which do not have
this restriction.

8.9 Dice Roll Game

The following short program illustrates how a while loop can be used to control
the execution of the main body of code. In this game we will continue to roll a pair
of dice until the user indicates that they do not want to roll again. When this occurs
the while loop will terminate:

import random

MIN = 1
MAX = 6
roll_again = ’y’
while roll_again == ’y’:

print(’Rolling the dices...’)
print(’The values are....’)
dice1 = random.randint(MIN, MAX)
print(dice1)
dice2 = random.randint(MIN, MAX)
print(dice2)
roll_again = input(’Roll the dices again? (y / n): ’)

When we run this program the results of rolling two dice are shown. The program
will keep looping and printing out the two dice values until the user indicates that
they no longer want to roll the dice:

Rolling the dices...
The values are....

104 8 Iteration/Looping

2
6
Roll the dices again? (y / n): y
Rolling the dices...
The values are....
4
1
Roll the dices again? (y / n): y
Rolling the dices...
The values are....
3
6
Roll the dices again? (y / n): n

8.10 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/tutorial/controlflow.html the online Python flow of
control tutorial.

8.11 Exercises

There are two exercises for this chapter. The first exercise will require a simple for
loop, while the second is more complicated requiring nested for loops and a break
statement.

8.11.1 Calculate the Factorial of a Number

Write a program that can find the factorial of any given number. For example, find
the factorial of the number 5 (often written as 5!) which is 1 * 2 * 3 * 4 *5 and equals
120.

The factorial is not defined for negative numbers, and the factorial of zero is 1;
that is 0! = 1.

Your program should take as input an integer from the user (you can reuse your
logic from the last chapter to verify that they have entered a positive integer value
using isnumeric()).

You should

1. If the number is less than zero return with an error message.
2. Check to see if the number is zero—if it is then the answer is 1—print this out.
3. Otherwise use a loop to generate the result and print it out.

https://docs.python.org/3/tutorial/controlflow.html

8.11 Exercises 105

8.11.2 Print All the Prime Numbers in a Range

A prime number is a positive whole number, greater than 1, that has no other divisors
except the number 1 and the number itself.

That is, it can only be divided by itself and the number 1; for example the numbers
2, 3, 5 and 7 are prime numbers as they cannot be divided by any other whole number.
However, the numbers 4 and 6 are not because they can both be divided by the number
2; in addition the number 6 can also be divided by the number 3.

You should write a program to calculate prime number starting from 1 up to the
value input by the user.

If the user inputs a number below 2, print an error message.
For any number greater than 2 loop for each integer from 2 to that number and

determine if it can be divided by another number (you will probably need two for
loops for this; one nested inside the other).

For each number that cannot be divided by any other number (that is it’s a prime
number) print it out.

Chapter 9
Number Guessing Game

9.1 Introduction

In this chapter we are going to bring everything we have learned so far together to
create a simple number guessing game.

This will involve creating a new Python program, handling user input, using the
if statement as well as using looping constructs.

We will also, for the first time, use an additional library or module, that is not
by default available by default to your program; this will be the random number
generator module.

9.2 Setting up the Program

We want to make sure that we don’t overwrite whatever you have done so far, and
we would like this Python program to be separate from your other work. As such we
will create a new Python file to hold this program. Of course, you don’t have to use
PyCharm for this, but we will assume you are; if you are using a different editor or
IDE then you may have to look up the equivalent steps.

9.2.1 Create a New Python File

We will create a new Python file to hold your program. To do this select the project
node in the left-hand view. Once you have selected this use the right mouse button
menu. On this menu select ‘New’ followed by ‘Python File’, see below:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_9

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_9

108 9 Number Guessing Game

When you do this, you will be prompted to provide a name for the program file;
you can call the file whatever you like, but I am using the name ‘number_guess_
game’ as that is descriptive and will help me find this file again later:

Now click OK, notice I did not need to add.py to the end of the filename; PyCharm
will do that for me (if you did add.py then don’t worry PyCharm will be fine with
that as well).

9.2.2 Add a Welcome Message

To make sure everything is working correctly we will add a simple print()
statement to the file so that we can test out running it.

You can add anything you like, including printing out ‘Hello World’, however the
example shown below shows a welcome message that can be used at the start of the
game:

9.2 Setting up the Program 109

9.2.3 Running the Program

We can now run our embryonic program. To do this we can select the file in the left-
hand view and use the right mouse menu to select the ‘Run’ option. Alternatively
you can click on the green arrow bottom on the top right bar above the editor window
as long as the ‘Current file’ option is displayed next to it::

When we do this the Python console will be opened at the bottom of the IDE and
the output displayed:

From now on you can rerun the number_guess_game program merely by
clicking on the little green arrow at the top right-hand side of PyCharm (it allows
you to rerun the last program that PyCharm executed).

110 9 Number Guessing Game

9.3 What Will the Program Do?

The aim of our number guess game is to guess the number that the program has come
up with.

The main flow of the program is shown in the following diagram:

Essentially the program logic is

● The program randomly selects a number between 1 and 10.
● It will then ask the player to enter their guess.
● It will then check to see if that number is the same as the one the computer

randomly generated; if it is then the player has won.
● If the player’s guess is not the same, then it will check to see if the number is

higher or lower than the guess and tell the player.
● The player will have 4 goes to guess the number correctly; if they don’t guess the

number within this number of attempts, then they will be informed that they have
lost the game and will be told what the actual number was.

9.4 Creating the Game 111

9.4 Creating the Game

9.4.1 Generate the Random Number

We will start off by looking at how we can generate a random number. Up to this
point we have only used the built-in functions that are provided by Python automat-
ically. In actual fact Python comes with very many modules provided by the Python
organization itself, by third-party vendors and by the open source (typically free)
software community.

The Python random module or library is one that is provided with Python as part
of the default environment; but the functions within it are not automatically loaded or
made available to the programmer. This is partly because there are so many facilities
available with Python that it could become overwhelming; so for the most part Python
only makes available by default the most commonly used facilities. Programmers
can then explicitly specify when they want to use some facilities from one of the
other libraries or modules.

Therandom module provides implementations of pseudo-random number gener-
ators for use in application programs. These random number generators are referred
to as pseudo because it is very hard for a computer to truly generate a series of
random numbers; instead it does its best to mimic this using an algorithm; which by
its very nature will be based on some logic which will mean that it is not impossible
to predict the next number—hence it is not truly random. For our purposes this is
fine but there are applications, such as security and encryption, where this can be a
real problem.

To access the random module in Python you need to import it; this makes the
module visible in the rest of the Python file (in our case to our program). This is done
using

import random
number_to_guess = random.randint(1,10)

Once we have imported it, we can use the functions within this module, such as
randint. This function returns a random integer between the first and second value
parameters. In the above example it means that the random number generated will
be between 1 and 10 inclusive.

The variable number_to_guess will now hold an integer which the player of
the game must guess.

9.4.2 Obtain an Input From the User

We now need to obtain input from the user representing their guess. We have already
seen how to do this in previous chapters; we can use the input() function which
returns a string and then the integer function that will convert that string into an

112 9 Number Guessing Game

integer (we will ignore error checking to make sure they have typed in a number at
this point). We can therefore write:

guess = int(input(’Please guess a number between 1 and 10: ’))

This will store the number they guessed into the variable guess.

9.4.3 Check to See if the Player Has Guessed the Number

We now need to check to see whether the player has guessed the correct number.
We could use an if statement for this, however we are going to want to repeat

this test until either they have guessed correctly or until they have run out of goes.
We will therefore use a while loop and check to see if their guess equals the

number to be guessed:

guess = int(input(’Please guess a number between 1 and 10: ’))
while number_to_guess != guess:

The loop above will be repeated if the number they entered did not match the
number to be guessed.

We can therefore print a message telling the player that their guess was wrong:

guess = int(input(’Please guess a number between 1 and 10: ’))
while number_to_guess != guess:

print(’Sorry wrong number’)

Now we need the player to make another guess otherwise the program will never
terminate, so we can again prompt them to enter a number:

guess = int(input(’Please guess a number between 1 and 10: ’))
while number_to_guess != guess:

print(’Sorry wrong number’)
TBD ...
guess = int(input(’Please guess again: ’))

9.4.4 Check They Haven’t Exceeded Their Maximum
Number of Guess

We also said above that the player can’t play forever; they have to guess the correct
number within 4 goes. We therefore need to add some logic which will stop the game
once they exceed this number.

We will therefore need a variable to keep track of the number of attempts they
have made.

9.4 Creating the Game 113

We should call this variable something meaningful so that we know what it repre-
sents, for example we could call it count_number_of_tries and initialize it
with the value 1:

count_number_of_tries = 1

This needs to happen before we enter the while loop.
Inside the while loop we need to do two things

● check to see if the number of tries has been exceeded,
● increment the number of tries if they are still allowed to play the game.

We will use an if statement to check to see if the number of tries has been met; if
it has we want to terminate the loop; the easiest way to this is via a break statement.

if count_number_of_tries == 4:
break

If we don’t break out of the loop we can increment the count using the ‘+=’
operator. We thus now have:

count_number_of_tries = 1
guess = int(input(’Please guess a number between 1 and 10: ’))
while number_to_guess != guess:

print(’Sorry wrong number’)
if count_number_of_tries == 4:

break
TBD ...
guess = int(input(’Please guess again: ’))
count_number_of_tries += 1

9.4.5 Notify the Player Whether Higher or Lower

We also said at the beginning that to make it easier for the player to guess the number;
we should indicate whether their guess was higher or lower than the actual number.
To do this we can again use the if statement; if the guess is lower we print one
message but if it was higher we print another.

At this point we have a choice regarding whether to have a separate if statement
to that used to decide if the maximum goes has been reached or to extend that one
with an elif. Each approach can work but the latter indicates that these conditions
are all related so that is the one we will use.

The while loop now looks like:

count_number_of_tries = 1
guess = int(input(’Please guess a number between 1 and 10: ’))
while number_to_guess != guess:

print(’Sorry wrong number’)
if count_number_of_tries == 4:

114 9 Number Guessing Game

break
elif guess < number_to_guess:

print(’Your guess was lower than the number’)
else:

print(’Your guess was higher than the number’)
guess = int(input(’Please guess again: ’))
count_number_of_tries += 1

Notice that the if statement has a final else which indicates that the guess was
higher; this is fine as by this point it is the only option left.

9.4.6 End of Game Status

We have now covered all the situations that can occur while the game is being played;
all that is left for us to do is to handle the end of game messages.

If the player has guessed the number correctly, we want to congratulate them; if
they did not guess the number, we want to let them know what the actual number
was. We will do this using another if statement which checks to see if the player
guessed the number of not. After this we will print an end of game message:

if number_to_guess == guess:
print(’Well done you won!’)
print(’You took’, count_number_of_tries ,

’goes to complete the game’)
else:

print(’Sorry - you loose’)
print(’The number you needed to guess was’,

number_to_guess)
print(’Game Over’)

9.5 The Complete Listing

For ease of reference the complete listing is provided below:

import random

print(’Welcome to the number guess game’)

Initialise the number to be guessed
number_to_guess = random.randint(1,10)
Initialise the number of tries the player has made
count_number_of_tries = 1
Obtain their initial guess
guess = int(input(’Please guess a number between 1 and 10: ’))
while number_to_guess != guess:

9.5 The Complete Listing 115

print(’Sorry wrong number’)

Check to see they have not exceeded the maximum
number of attempts if so break out of loop otherwise
give the user come feedback
if count_number_of_tries == 4:

break
elif guess < number_to_guess:

print(’Your guess was lower than the number’)
else:

print(’Your guess was higher than the number’)

Obtain their next guess and increment number of attempts
guess = int(input(’Please guess again: ’))
count_number_of_tries += 1

Check to see if they did guess the correct number
if number_to_guess == guess:

print(’Well done you won!’)
print(’You took’, count_number_of_tries , ’goes to complete

the game’)
else:

print("Sorry - you loose")
print(’The number you needed to guess was’,

number_to_guess)

print(’Game Over’)

And a sample run of the program is shown here:

Welcome to the number guess game
Please guess a number between 1 and 10: 5
Sorry wrong number
Your guess was higher than the number
Please guess again: 3
Sorry wrong number
Your guess was lower than the number
Please guess again: 4
Well done you won!
You took 3 goes to complete the game
Game Over

116 9 Number Guessing Game

9.6 Hints

9.6.1 Initializing Variables

In Python it is not necessary to declare a variable before you assign to it; however, it
is necessary to give it an initial value before you reference it. Here reference it refers
to obtaining the value held by a variable. For example

count = count + 1

what this says is obtain the value held by count, add 1 to it and then store the new
value back into count.

If count does not have a value before you try to do this then you are trying to
get hold of nothing and add 1 to it; which you can’t do and thus an error will be
generated in your program, such as:

NameError: name ’count_number_of_tries’ is not defined

This is also true for

count += 1
Remember this is just a shorthand form of count = count + 1 and thus

still relies on count having a value before this statement.
This is why we needed to initialize the count_number_of_tries variable

before we used it.

9.6.2 Blank Lines Within a Block of Code

You may have noticed that we have used blank lines to group together certain lines
of code in this example. This is intended to make it easier to read the code and are
perfectly allowable in Python. Indeed, the Python layout guidelines encourage it.

It is also possible to have a blank line within an indented block of code; the block of
statements is not terminated until another line with valid Python on it is encountered
which is not indented to the same level.

9.7 Exercises

For this chapter the exercises all relate to adding additional features to the game:

1. Provide a cheat mode, for example if the user enters −1 print out the number
they need to guess and then loop again. This does not count as one of their goes.

2. If their guess is within 1 of the actual number tell the player this.
3. At the end of the game, before printing ‘Game Over’, modify your program so

that it asks the user if they want to play again; if they say yes then restart the
whole thing.

Chapter 10
Recursion

10.1 Introduction

Recursion is a very powerful way to implement solutions to a certain class of prob-
lems. This class of problems is one where the overall solution to a problem can
be generated by breaking that overall problem down into smaller instances of the
same problem. The overall result is then generated by combining together the results
obtained for the smaller problems.

10.2 Recursive Behaviour

A recursive solution in a programming language such as Python is one in which a
function calls itself one or more times in order to solve a particular problem. In many
cases the result of calling itself is combined with the functions current state to return
a result.

In most cases the recursive call involves calling the function but with a smaller
problem to solve. For example, a function to traverse a tree data structure might call
itself passing in a sub-tree to process. Alternatively a function to generate a factorial
number might call itself passing in a smaller number to process etc.

The key here is that an overall problem can be solved by breaking it down into
smaller examples of the same problem.

Functions that solve problems by calling themselves are referred to as recursive
functions.

However, if such a function does not have a termination point then the function
will go on calling itself to infinity (at least in theory). In most languages such a
situation will (eventually) result in an error being generated.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_10

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_10

118 10 Recursion

For a recursive function to the useful it must therefore have a termination condi-
tion. That is a condition under which they do not call themselves and instead just
return (often with some result). The termination condition may be because:

● A solution has been found (some data of interest in a tree structure).
● The problem has become so small that it can be solved without further recursion.

This is often referred to as a base case. That is, a base case is a problem that can
be solved without further recursion.

● Some maximum level of recursion has been reached, possibly without a result
being found/generated.

We can therefore say that a recursive function is a function defined in terms of
itself via self-referential expressions. The function will continue to call itself with
smaller variations of the overall problem until some termination condition is met to
stop the recursion. All recursive functions thus share a common format; they have a
recursive part and a termination point which represents the base case part.

10.3 Benefits of Recursion

The key benefit of recursion is that some algorithms (solutions to computer problems)
are expressed far more elegantly and with a great deal less code when implemented
recursively than when using an iterative approach.

This means that the resulting code can be easier to write and easier to read.
These twin ideas are important both for the developers who initially create the

software but also for those developers who must maintain that software (potentially
a significant amount of time later).

Code that is easier to write tends to be less error prone. Similarly code that is
easier to read tends to be easier to maintain, debug, modify and extend.

Recursion is also well suited to producing functional solutions to a problem as by
its very nature a recursive function relies on its inputs and outputs and does not hold
any hidden state. We will return to this in a later chapter on functional programming.

10.4 Recursively Searching a Tree

As an example of a problem that is well suited to a recursive solution, we will example
how we might implement a program to traverse a binary tree data structure.

A binary tree is a tree data structure made up of nodes in which each node has a
value, a left pointer and a right pointer.

The root node is the top most node in the tree. This root node then references a
left and right subtree. This structure is repeated until a leaf node. A leaf node is a
node in which both the right and left pointers are empty (that is they have the value
None).

10.5 Recursion in Python 119

This is shown below for a simple binary tree:

Thus a binary tree is either empty (represented by a null pointer), or is made of a
single node, where the left and right pointers each point to a binary tree.

If we now want to find out if a particular value is in the tree then we can start at
the root node.

If the root node holds the value we print it; otherwise we can call the search
function on the child nodes of the current node. If the current node has no children
we just return without a result.

The pseudo code for this might look like:

search(value_to_find, current_node):
If current_node.value == value_to_find:

print(‘value found:’, current_node.value)
Else If current.node.has_children:

search(value, current_node.left)
search(value, current_node.right)

This illustrates how easy it is to write a recursive function that can solve what
might at first appear to be a complex problem.

10.5 Recursion in Python

Most computer programs support the idea of recursion and Python is no exception. In
Python it is perfectly legal to have a function that calls itself (that is within the body
of the function a call is made to the same function). When the function is executed
it will therefore call itself.

120 10 Recursion

In Python we can write a recursive function such as:

def recursive_function():
print(’calling recursive_function’)
recursive_function()

Here the function recursive_function() is defined such that it prints out
a message and then calls itself. Note that no special syntax is required for this as a
function does not need to have been completely defined before it is used.

Of course in the case of recursive_function() this will result in infi-
nite recursion as there is no termination condition. However, this will only become
apparent at runtime when Python will eventually generate an error:

Traceback (most recent call last):
File “recursion_example.py", line 5, in <module>

RecursionError: maximum recursion depth exceeded while calling a
Python object

However, as already mentioned a recursive function should have a recursive part
and a termination or base case part. The termination condition is used to identify when
the base case applies. We should therefore add a condition to identify the termination
scenario and what the base case behaviour is. We will do this in the following section
as we look at how a factorial for a number can be generated recursively.

10.6 Calculating Factorial Recursively

We have already seen how to create a program that can calculate the factorial of a
number using iteration as one of the exercises in the last chapter; now we will create
an alternative implementation that uses recursion instead.

Recall that the factorial of a number is the result of multiplying that number by
each of the integer values up to that number, for example, to find the factorial of the
number 5 (written as 5!) we can multiple 1 * 2 * 3 * 4 *5 which will generate the
number 120.

We can create a recursive solution to the Factorial problem by defining a function
that takes an integer to generate the factorial number for. This function will return
the value 1 if the number passed in is 1—this is the base case. Otherwise it will
multiple the value passed in to it with the result of calling itself (the factorial()
function) with n − 1 which is the recursive part.

The function is given below:

def factorial(n):
if n == 1: # The termination condition

return 1 # The base case
else:

res = n * factorial(n-1) # The recursive call

10.6 Calculating Factorial Recursively 121

return res

print(factorial(5))

The key to understanding this function is that it has:

1. A termination condition that is guaranteed to execute when the value of n is 1.
This is the base case; we cannot reduce the problem down any further as the
factorial of 1 is 1!

2. The function recursively calls itself but with n − 1 as the argument; this means
each time it calls itself the value of n is smaller. Thus the value returned from
this call is the result of a smaller computation.

To clarify how this works we can add some print statements (and a depth indicator)
to the function to indicate its behaviour:

def factorial(n, depth = 1):
if n == 1:

print(’\t’ * depth, ’Returning 1’)
return 1

else:
print(’\t’*depth,’Recursively calling factorial(’,n-

1,’)’)
result = n * factorial(n-1, depth + 1)
print(’\t’ * depth, ’Returning:’, result)
return result

print(’Calling factorial(5)’)
print(factorial(5))

When we run this version of the program then the output is:

Calling factorial(5)
Recursively calling factorial(4)

Recursively calling factorial(3)
Recursively calling factorial(2)

Recursively calling factorial(1)
Returning 1

Returning: 2
Returning: 6

Returning: 24
Returning: 120

120

Note that the depth parameter is used merely to provide some indentation to the
print statements.

From the output we can see that each call to the factorial program results in a
simpler calculation until the point where we are asking for the value of 1! which is
1. This is returned as the result of calling factorial(1). This result is multiplied
with the value of n prior to that; which was 2. The causes factorial(2) to return
the value 2 and so on.

122 10 Recursion

10.7 Disadvantages of Recursion

Although recursion can be a very expressive way to define how a problem can be
solved, it is not as efficient as iteration. This is because a function call is more
expensive for Python to process that a for loop. In part this is because of the
infrastructure that goes along with a function call; that is the need to set up the stack
for each separate function invocation so that all local variables are independent of
any other call to that function. It is also related to associated unwinding the stack
when a function returns. However, it is also affected by the increasing amount of
memory each recursive call must use to store all the data on the stack.

In some languages optimizations are possible to improve the performance of a
recursive solution. One typical example relates to a type of recursion known as tail
recursion. A tail recursive solution is one in which the calculation is performed before
the recursive call. The result is then passed to the recursive step, which results in the
last statement in the function just calling the recursive function.

In such situations the recursive solution can be expressed (internally to the
computer system) as an iterative problem. That is the programmer writes the solution
as a recursive algorithm but the interpreter or compiler converts it into an iterative
solution. This allows programmers to benefit from the expressive nature of recursion
while also benefiting from the performance of an iterative solution.

You might think that the factorial function presented earlier is tail recursive;
however it is not because the last statement in the function performs a calculation
that multiples n by the result of recursive call.

However, we can refactor the factorial function to be tail recursive. This
version of the factorial function passes the evolving result along via the
accumulator parameter. It is given for reference here:

def tail_factorial(n, accumulator=1):
if n == 0:

return accumulator
else:

return tail_factorial(n - 1, accumulator * n)

print(tail_factorial(5))

However, it should be noted that Python currently does not perform tail recursion
optimization; so this is a purely a theoretical exercise.

10.8 Online Resources

The following provides some references on recursion available online:

● https://en.wikipedia.org/wiki/Recursion_(computer_science) Provides
Wikipedias introduction to recursion.

● https://www.sparknotes.com/cs/recursion/whatisrecursion/section1/ Provides an
introduction to the concept of recursion.

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://www.sparknotes.com/cs/recursion/whatisrecursion/section1/

10.9 Exercises 123

10.9 Exercises

In this set of exercises you will get the chance to explore how to solve problems
using recursion in Python.

1. Write a program to determine if a given number is a Prime Number or not. Use
recursion to implement the solution. The following code snippet illustrates how
this might work:

print(’is_prime(3):’, is_prime(3)) # True
print(’is_prime(7):’, is_prime(7)) # True
print(’is_prime(9):’, is_prime(9)) # False
print(’is_prime(31):’, is_prime(31)) # True

1. Write a function which implements Pascal’s triangle for a specified number of
rows. Pascals triangle is a triangle of the binomial coefficients. The values held
in the triangle are generated as follows: In row 0 (the topmost row), there is a
unique nonzero entry 1. Each entry of each subsequent row is constructed by
adding the number above and to the left with the number above and to the right,
treating blank entries as 0. For example, the initial number in the first (or any
other) row is 1 (the sum of 0 and 1), whereas the numbers 1 and 3 in the third
row are added together to generate the number 4 in the fourth row. An example
of Pascals triangle for 4 rows is given below:

For example, your function might be called pascals_traingle() in which
case the following application illustrates how you might use it:

triangle = pascals_triangle(5)
for row in triangle:

print(row)

The output from this might be:

[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]

Chapter 11
Introduction to Structured Analysis

11.1 Introduction

In the preceding chapters what we have seen is typical of the procedural approach to
programming. In the next chapter we will begin to explore the definition of functions
which allow a more modular style of programming.

In this chapter we will introduce an approach to the analysis and design of software
systems called structured analysis/design. Within this area there are many specific
and well-documented methods including Structured Systems Analysis and Design
Method (SSADM) and the Yourden structured method. However, we will not focus
on any one specific approach; instead we will outline the key ideas and the two basic
elements of most structured analysis methods: functional decomposition and data
flow analysis. We will then present flowcharts for designing algorithms.

11.2 Structured Analysis and Function Identification

The structured analysis methods typically employ a process-driven approach (with
a set of prescribed steps or stages) which in one way or another consider what the
inputs and outputs of the system are and how those inputs are transformed into
the outputs. This transformation involves the application of one or more functions.
The steps involved in structured analysis identify these functions and will typically
iteratively break them down into smaller and smaller functions until an appropriate
level of detail has been reached. This process is known as functional decomposition.

Although simple Python programs may only contain a sequence of statements
and expressions, any program of a significant size will need to be structured such
that it can be:

● understood easily by other developers,
● tested to ensure that it does what is intended,
● maintained as new and existing requirements evolve,

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_11

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_11&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_11

126 11 Introduction to Structured Analysis

● debugged to resolve unexpected or undesirable behaviour.

Given these requirements it is common to want to organize your Python program
in terms of functions and sub functions.

Functional decomposition supports the analysis and identification of these
functions.

11.3 Functional Decomposition

Functional decomposition is one way in which a system can be broken down into its
constituent parts. For example, for a computer payroll system to calculate how much
an hourly paid employee should receive it might be necessary to:

1. load the employee’s details from some form of permanent storage (such as a file
or a database),

2. load how many hours the employee has worked for that week (possibly from
another system that records the number of hours worked),

3. multiple the hours worked by the employee’s hourly rate,
4. record how much the employee is to be paid in a payroll database or file,
5. print out the employee’s pay slip,
6. transfer the appropriate funds from the company’s bank account to the employees

bank account,
7. record in the payroll database the everything has been completed.

Each of the above steps could represent a function performed by the system.
These top-level functions could themselves be broken down into lower-level func-

tions. For example, printing out the employees payroll slip may involve printing their
name and address in a particular format, printing the employee number, social secu-
rity number, etc., as well as printing historical information such as how much they
have been paid in the current financial year, how much tax they have paid, all in
addition to printing the actual amount they are being paid.

This process of breaking down higher-level functions into lower-level functions
helps with:

● testing the system (functions can be tested in isolation),
● understanding the system as the organization of the functions can give meaning

to the code, as well as allowing each function to be understood in isolation from
the rest of the system,

● maintaining the system as only those functions that need to be changed may be
affected by new or modified requirements,

● debugging the system as issues can be isolated to specific functions which can be
examined independently of the rest of the application.

11.3 Functional Decomposition 127

It is also known as a top-down refinement approach. The term top-down refinement
(also known as stepwise design) highlights the idea that we are breaking down a
system into the sub-systems that make it up.

It is common to represent the functions identified in the form of a tree illustrating
the relationships between the higher-level functions and lower-level functions. This
is illustrated below:

This diagram illustrates how a credit card approval process can be broken down
into sub functions.

11.3.1 Functional Decomposition Terminology

The key terms used within functional decomposition are:

● Function. This is a task that is performed by a device, system or process.
● Decomposition. This is the process by which higher-level functions are broken

down into lower-level functions where each function represents part of the
functionality of the higher-level function.

● Higher-Level Function. This is a function that has one or more sub functions. This
higher-level function depends on the functionality of the lower-level functions for
its behaviour.

● Sub Function. This is a function that provides some element of the behaviour
of a higher-level function. A sub function can also be broken down into its own
sub functions in a hierarchical manner. In the above diagram the Review for
Compliance function is both a sub function and has its own sub functions.

128 11 Introduction to Structured Analysis

● Basic Function. A basic function is a function that has no smaller sub functions.
The Perform Credit Check and Review Against internal Rules functions are both
basic functions.

11.3.2 Functional Decomposition Process

At a very high level, functional decomposition consists of a series of steps such as
those outlined below:

1. Find/identify the inputs and outputs of the system.
2. Define how the inputs are converted to the outputs. This will help identify the

top most, high-level function(s).
3. Look at the current function(s) and try to break them down into a list of sub

functions. Identify what each sub function should do, and what its inputs and
outputs are.

4. Repeat Step 2 for each function identified until the functions identified can’t or
should not be decomposed further.

5. Draw a diagram of the function hierarchy you have created. Viewing the func-
tions and their relationships is a very useful thing to do as it allows developers
to visualize the system functionally. There are many computer-aided software
engineering (CASE) tools that help with this but any drawing tool (such as Visio)
can be used.

6. Examine the diagram for any repeating functions. That is, functions that do the
same thing but appear in different places in the design. These are probably more
generic functions that can be reused. Also examine the diagram to see if you can
identify any missing functions.

7. Refine/design the interfaces between one function and another. That is, what
data/information is passed to and from a function to a sub function as well as
between functions.

11.3.3 Calculator Functional Decomposition Example

As an example of functional decomposition let us consider a simple calculator
program.

We want this program to be able to perform a set of mathematical operations on
two numbers, such as add, subtract, multiple and divide. We might therefore draw a
functional decomposition diagram (or FDD) such as:

11.3 Functional Decomposition 129

This illustrates that the calculator function can be decomposed into add, subtract,
multiply and divide functions.

We might then identify the need to enter the two numbers to be operated on. This
would result in one or more new functions being added:

We might also identify the need to determine which numerical operation should be
performed based on user input. This function might sit above the numerical functions
or alongside them. This is in fact an example of a design decision that the designer/
developer must make based on their understanding of the problem and how the
software will be developed/tested/used, etc.

In the following version of the functional decomposition diagram the operation
selection function is placed at the same level as the numerical operations as it provides
information back to the top-level function.

130 11 Introduction to Structured Analysis

11.4 Functional Flow

Although the decomposition hierarchy presented in the functional decomposition
diagram illustrates the functions and their hierarchical relationships, it does not
capture how the data flows between the functions or the order in which the functions
are invoked.

There are several approaches to describing the interactions between the functions
identified by functional decomposition including the use of pseudo-code, data flow
diagrams and sequence diagrams:

● Pseudo-code. This is a form of structured English that is not tied to any particular
programming language but which can be used to express simple ideas including
conditional choices (similar to if statements) and iteration (as typified by looping
constructs). However, as it is a pseudo-language, developers are not tied to a
specific syntax and can include functions without the need to define those functions
in detail.

● Data Flow Diagrams. These diagrams are used to chart the inputs, processes
and outputs of the functions in a structured graphical form. A data flow diagram
typically has no control flow; there are no decision rules and no loops. For each data
flow, there must be at least one input and one end point. Each process (function)
can be refined by another lower-level data flow diagram, which subdivides this
process into sub-processes.

● Sequence Diagrams. These are used to represent interactions between different
entities (or objects) in sequence. The functions invoked are represented as being
called from one entity to another. Sequence diagrams are more typically used with
object-oriented systems.

11.5 Data Flow Diagrams

A data flow diagram consists of a set of inputs and outputs, processes (functions),
flows, data stores (also known as warehouses) and terminators.

● Process. This is the process (or function or transformation) that converts inputs
into outputs. The name of the process should be descriptive indicating what it
does.

● Data Flow. The flow indicates the transfer of data/information from one element
to another (that is a flow has a direction). The flow should have a name that
suggests what information/data is being exchanged. Flows link processes, data
stores and terminators.

● Data Store/Warehouse. A data store (which may be something such as a file,
folder, database or other repository of data) is used to store data for later use. The
name of the data store is a plural noun (e.g., employees). The flow from the data
store usually represents the reading of the data stored in the data store, and the flow

11.6 Flowcharts 131

to the waredata storehouse usually expresses data entry or updating (sometimes
also deleting data).

● Terminator. The terminator represents an external entity (to the system) that
communicates with the system. Examples of entities might be human users or
other systems, etc.

An example of a data flow diagram is given below using the functions identified
for the calculator:

In this diagram the hierarchy of DFDs is indicated by the levels which expand on
how the function in the previous level is implemented by the functions at the next
level. This DFD also only presents the data flow for the situation where the user
selects the add function as the numerical operation to apply.

11.6 Flowcharts

A flowchart is a graphical representation of an algorithm, workflow or process for a
given problem.

Flowcharts are used in the analysis, design and documentation of software
systems. As with other forms of notation (such as DFDs) flowcharts help designers
and developers to visualize the steps involved in a solution and thus aid in
understanding the processes and algorithms involved.

The steps in the algorithm are represented as various types of boxes. The ordering
of the steps is indicated by arrows between the boxes. The flow of control is
represented by decision boxes.

There are a number of common notations used with flowcharts, and most of those
notations use the following symbols:

132 11 Introduction to Structured Analysis

The meaning of these symbols is given below:

● Terminal. This symbol is used to indicate the start or end of a program or subpro-
cess. They usually contain the words ‘Start’, ‘End’ or ‘Stop’ or a phrase indicating
the start or end of some process such as ‘Starting Print Run’.

● Process. This symbol represents one or more operations (or programming state-
ments/expressions) that in some way apply behaviour or change the state of the
system. For example they may add two numbers together, run some form of
calculation or change a Boolean flag, etc.

● Decision. This represents a decision point in the algorithm; that is it represents
a decision point which will alter the flow of the program (typically between two
different paths). The decision point is often represented as a question with a ‘yes’/
‘no’ response, and this is indicated on the flowchart by the use of ‘yes’ (or ‘y’)
and ‘no’ (or ‘n’) labels on the flowchart. In Python this decision point may be
implemented using an if statement.

● Input/Output. This box indicates the input or output of data from the algorithm.
This might represent obtaining input data from the user or printing out results to
the user.

● Flow. These arrows are used to represent the algorithms order of execution of the
boxes.

● Predefined Process. This represents a process that has been defined elsewhere.
● Stored Data. Indicates that data is stored in some form of persistent storage

system.
● Off page connector. A labeled connector for use when the target is on another

page (another flowchart).

Using the above symbols we can create a flowchart for our simple integer
calculator program:

11.7 Data Dictionary 133

The above flowchart shows the basic operation of the calculator; the user selects
which operation to perform, enters the two numbers and then depending upon the
operation the selected operation is performed. The result is then printed out.

11.7 Data Dictionary

Another element commonly associated with structured analysis/design is the data
dictionary. The data dictionary is a structured repository of data elements in the
system. It stores the descriptions of all data flow diagram data elements. That is it
records details and definitions of data flows, data stores, data stored in data stores and
the processes. The format used for a data dictionary varies from method to method
and project to project. It can be as simple as an Excel spreadsheet to an enterprise-
wide software system such as Semanta (https://www.semantacorp.com/data-dictio
nary).

https://www.semantacorp.com/data-dictionary
https://www.semantacorp.com/data-dictionary

134 11 Introduction to Structured Analysis

11.8 Online Resources

There are many online resources available that discuss functional decomposition,
both from a theoretical and a practical Python-oriented point of view including:

● https://en.wikipedia.org/wiki/Structured_analysis Wikipedia Structured Analysis
Page.

● https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design Wikipedia page
on Top Down and Bottom Up design.

● https://en.wikipedia.org/wiki/Edward_Yourdon#Yourdon_Structured_Method
Wikipedia page on the Yourden method.

● https://en.wikipedia.org/wiki/Structured_systems_analysis_and_design_method
Wikipedia page on SSADM.

● https://en.wikipedia.org/wiki/Functional_decomposition The Wikipedia page on
Functional Decomposition.

● https://docs.python.org/3/howto/functional.html The Python standard documen-
tation on functional decomposition.

● https://en.wikipedia.org/wiki/Data-flow_diagram Wikipedia page on Data Flow
Diagrams (DFDs)

● https://en.wikipedia.org/wiki/Sequence_diagram Wikipedia page on Sequence
Diagrams.

● https://en.wikipedia.org/wiki/Data_dictionary Wikipedia page on Data Dictio-
naries.

● https://en.wikipedia.org/wiki/Flowchart Wikipedia Flowchart page.

https://en.wikipedia.org/wiki/Structured_analysis
https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
https://en.wikipedia.org/wiki/Edward_Yourdon#Yourdon_Structured_Method
https://en.wikipedia.org/wiki/Structured_systems_analysis_and_design_method
https://en.wikipedia.org/wiki/Functional_decomposition
https://docs.python.org/3/howto/functional.html
https://en.wikipedia.org/wiki/Data-flow_diagram
https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Data_dictionary
https://en.wikipedia.org/wiki/Flowchart

Chapter 12
Functions in Python

12.1 Introduction

As discussed in the last chapter, when you build an application of any size you will
want to break it down into more manageable units, these units can then be worked
on separately, tested and maintained separately. One way in which these units can
be defined is as Python functions.

This chapter will introduce Python functions, how they are defined, how they
can be referenced and executed. It also considers how parameters work in Python
functions and how values can be returned from functions. It also introduces lambda
or anonymous functions.

12.2 What are Functions?

In Python functions are groups of related statements that can be called together, that
typically perform a specific task and which may or may not take a set of parameters
or return a value.

Functions can be defined in one place and called or invoked in another. This helps
to make code more modular and easier to understand.

It also means that the same function can be called multiple times or in multiple
locations. This helps to ensure that although a piece of functionality is used in multiple
places, it is only defined once and only needs to be maintained and tested in one
location.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_12

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_12

136 12 Functions in Python

12.3 How Functions Work

We have said what they are and a little bit about why they might be good but not
really how they work.

When a function is called (or invoked) the flow of control a program jumps from
where the function was called to the point where the function was defined. The body
of the function is then executed before control returns back to where it was called
from.

As part of this process, all the values that were in place when the function was
called are stored away (on something called the stack) so that if the function defines
its own versions, they do not overwrite each other.

The invocation of a function is illustrated below:

Each time when the call is made to function_name() the program flow jumps
to the body of the function and executes the statements there. Once the function
finishes it returns to the point at which the function was called.

In the above this happens twice as the function is called at two separate points in
the program.

12.5 Defining Functions 137

12.4 Types of Functions

Technically speaking there are two types of functions in Python: built-in functions
and user-defined functions.

Built-in functions are those provided by the language, and we have seen several
of these already. For example, both print() and input() are built-in functions.
We did not need to define them ourselves as they are provided by Python.

In contrast user-defined functions are those written by developers. We will be
defining user-defined functions in the rest of this chapter, and it is likely that in many
cases, most of the programs that you will write will include user-defined functions
of one sort or another.

12.5 Defining Functions

The basic syntax of a function is illustrated below:

def function_name(parameter list):
"""docstring"""
statement
statement(s)

This illustrates several things:

1. All (named) functions are defined using the keyword def; this indicates the start
of a function definition. A keyword is a part of the syntax of the Python language
and cannot be redefined and is not a function.

2. A function can have a name which uniquely identifies it; you can also have
anonymous functions, but we will leave those until later in this chapter.

3. The naming conventions that we have been adopting for variables are also applied
to functions, and they are all lowercase with the different elements of the function
name separated by ‘_’.

4. A function can (optionally) have a list of parameters which allow data to be passed
into the function. These are optional as not all functions need to be supplied with
parameters.

5. A colon is used to mark the end of the function header and the start of the function
body. The function header defines the signature of the function (what is called
and the parameters it takes). The function body defines what the function does.

6. An optional documentation string (the docstring) can be provided that
describes what the function does. We typically use the triple double quote string
format as this allows the documentation string to go over multiple lines if required.

7. One or more Python statements make up the function body. These are indented
relative to the function definition. All lines that are indented are part of the
function until a line which is intended at the same level as the def line.

8. It is common to use 4 spaces (not a tab) to determine how much to indent the
body of a function by.

138 12 Functions in Python

12.5.1 An Example Function

The following is one of the simplest functions you can write; it takes no parameters
and has only a single statement that prints out the message ’Hello World’:

def print_msg():
print(’Hello World!’)

This function is called print_msg, and when called (also known as invoked)
it will run the body of the function which will print out the string, for example,

print_msg()

will generate the output

Hello World!

Be careful to include the round brackets () when you call the function. This
is because if you just use the function’s name then you are merely referring to the
location in memory where the function is stored, and you are not invoking it.

We could modify the function to make it a little more general and reusable by
providing a parameter. This parameter could be used to supply the message to be
printed out, for example:

def print_my_msg(msg):
print(msg)

Now the print_my_msg function takes a single parameter, and this parameter
becomes a variable which is available within the body of the function. However, this
parameter only exists within the body of the function; it is not available outside of
the function.

This now means that we can call the print_my_msg function with a variety of
different messages:

print_my_msg(’Hello World’)
print_my_msg(’Good day’)
print_my_msg(’Welcome’)
print_my_msg(’Ola’)

The output from calling this function with each of these strings being supplied as
the parameter is:

Hello World
Good day
Welcome
Ola

12.6 Returning Values from Functions 139

12.6 Returning Values from Functions

It is very common to want to return a value from a function. In Python this can be
done using the return statement. Whenever a return statement is encountered
within a function then that function will terminate and return any values following
the return keyword.

This means that if a value is provided, then it will be made available to any calling
code.

For example, the following defines a simple function that squares whatever value
has been passed to it:

def square(n):
return n * n

When we call this function, it will multiply whatever it is given by itself and then
return that value. The returned value can then be used at the point that the function
was invoked, for example:

Store result from square in a variable
result = square(4)
print(result)
Send the result from square immediately to another function
print(square(5))
Use the result returned from square in a conditional expression
if square(3) < 15:

print(’Still less than 15’)

When this code is run, we get:

16
25
Still less than 15

It is also possible to return multiple values from a function; for example, in this
swap function the order in which the parameters are supplied is swapped when they
are returned:

def swap(a, b):
return b, a

We can then assign the values returned to variables at the point when the function
is called:

a = 2
b = 3
x, y = swap(a, b)
print(x, ’,’, y)

which produces

3 , 2

140 12 Functions in Python

In actual fact the result returned from the swap function is what is called a tuple
which is a simple way to grouping data together. This means that we could also have
written:

z = swap(a, b)
print(z)

which would have printed the tuple out:

(3, 2)

We will look at tuples more when we consider collections of data.

12.7 Docstring

So far our example functions have not included any documentation strings (the
docstring). This is because the docstring is optional, and the functions we have
written have been very simple.

However, as functions become more complex and may have multiple parameters
the documentation provided can become more important.

The docstring allows the function to provide some guidance on what is expected
in terms of the data passed into the parameters, potentially what will happen if the
data is incorrect, as well as what the purpose of the function is in the first place.

In the following example, the docstring is being used to explain the behaviour of
the function and how the parameter is used.

def get_integer_input(message):
"""
This function will display the message to the user
and request that they input an integer.

If the user enters something that is not a number
then the input will be rejected
and an error message will be displayed.

The user will then be asked to try again."""

value_as_string = input(message)
while not value_as_string.isnumeric():

print(’The input must be an integer’)
value_as_string = input(message)

return int(value_as_string)

12.8 ReStructured Text 141

When used, this method will guarantee that a valid integer will be returned to the
calling code:

age = get_integer_input(’Please input your age: ’)
print(’age is’, age)

An example of what happens when this is run is given below:

Please input your age: John
The input must be an integer
Please input your age: 21
age is 21

The docstring can be read directly from the code but is also available to IDEs
such as PyCharm so that they can provide information about the function. It is even
available to the programmer via a very special property of the function called __
doc__ that is accessible via the name of the function using the dot notation:

print(get_integer_input.__doc__)

which generates

This function will display the message to the user
and request that they input an integer.

If the user enters something that is not a number
then the input will be rejected
and an error message will be displayed.

The user will then be asked to try again.

12.8 ReStructured Text

It is also possible to place formatting commands within a docstring that can be picked
up by a tool such as PyCharm to improve the layout and information presented. There
are several options available for this such as Google style docstrings and NumPy
style docstrings (see https://betterprogramming.pub/3-different-docstring-formats-
for-python-d27be81e0d68). However we are going to look at reStructured Text style
docstrings as this is the style recommended by the Python organization itself.

ReStructured Text (aka ReST) is intended to be an easy-to-read markup syntax
used to add additional meaning to the text within a docstring. Like many other simple
markup languages it uses inline markup such as ‘*’ or a ‘#’ to indicate emphasis or
lists, etc. and as such is intended to be much simpler and easier to use than more
complex markup languages such as HTML.

https://betterprogramming.pub/3-different-docstring-formats-for-python-d27be81e0d68
https://betterprogramming.pub/3-different-docstring-formats-for-python-d27be81e0d68

142 12 Functions in Python

As a simple example, consider the following code:

def get_integer_input(message):
"""
This function will display the message to the user
and request that they input an integer.

:param message: The message to print
:returns: the integer entered by the user

"""
value_as_string = input(message)
while not value_as_string.isnumeric():

print(’The input must be an integer’)
value_as_string = input(message)

return int(value_as_string)

This function has a docstring containing some reStructured Text formatting,
namely the :param and :returns directives.

A directive is an item of meta information that will be used by the ReST parser
to generate the formatted output.

● In this case the :param directive indicates that message is a parameter to
the function and the information after the final : provides a description of that
parameter.

● In turn the :returns: directive indicates that this function returns a value and
the text after this described the meaning of the returned value.

PyCharm uses this information and generates reference documentation that can
be viewed in the pop-up displayed when the programmer hovers over a call to the
get_integer_input function. This is displayed below:

12.8 ReStructured Text 143

As you can see the params and returns directives are displayed in such a way
as to make it easy to read and understand the information provided.

It is also possible to use ReST markup to emphasize text or to make the text bold
or to indicate that a value is a literal:

● Emphasis is indicated using an asterisk ‘*’, for example: *emphasis*.
● Bold is indicated using a double asterisk ‘**’, for example: **strong**.
● Literal values, variables and small code samples can be indicated using two back

quotes, for example: “literal“.

For example:

def get_input(prompt):
"""This function is primarily used to illustrate ReST, for

example:
This is used for *emphasis* while this is used for **bold**.

Finally
this is used for a literal “result“.
"""
result = input(prompt)
return result

This is rendered by PyCharm as shown below:

Note that if asterisks or back quotes appear within the text and could be confused
with inline markup delimiters, they should be escaped with a backslash, for example:
*.

There are a few additional restrictions on this markup that you should be aware
of, including:

● The markup cannot be nested; that is, you cannot nest a bold element within an
emphasis element.

● The content may not start or end with whitespace: * text* is wrong, as is *text *.
● It must be separated from surrounding text by non-word characters. It is

thus necessary to use a backslash escaped space to work around that for
example: thisis\ *one*\ word.

144 12 Functions in Python

It is also possible to create lists within ReST, bulleted lists are represented by
placing an asterisk at the start of a line, and numbered lists are represented by a ‘#.’;
it is also possible to explicitly number a list. Examples of these are shown below:

* This is a bulleted list.
* It has two items, the second

item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items too.

For example, when used in a function docstring:

def get_more_input(prompt):
"""This function is used to illustrate lists, for example:

* This is a bulleted list.
* It has two items, the second item uses two lines.

1. This is a numbered list.
2. It has two items too.

#. This is a numbered list.
#. It has two items as well.

"""
result = input(prompt)
return result

Nested lists are possible, but be aware that they must be separated from the parent
list items by blank lines, for example:

* this is
* a list

* with a nested list
* and some subitems

* and here the parent list continues

As an example, lists and sub lists are used below within a function docstring that
also uses a couple of directives for the parameter and the return value.

def get_something(prompt):
"""

12.8 ReStructured Text 145

We can use lists:

* this is
* a list

* with a nested list
* and some subitems

* and here the parent list continues

:param prompt: the input prompt
:return: the value entered by the user
"""
result = input(prompt)
return result

This is illustrated below:

Section headers are created by underlining the section title with a punctuation
character, at least as long as the text:

This is a heading
=================

Finally, if you want to embed some source code as an example within a docstring
you can use the special marker ::. This creates a literal block that will not be processed
as formatted text but must be indented and with a gap following the ::. For example:

def get_another_thing(prompt):
"""

146 12 Functions in Python

To use this function see the code block::

result = get_another_thing("please input data: ")
print(result)

This is back to normal text
"""
result = input(prompt)
return result

PyCharm renders this as:

12.9 Function Parameters

Before we go any further it is worth clarifying some terminology associated with
passing data into functions. This terminology relates to the parameters defined as part
of the function header and the data passed into the function via these parameters:

● A parameter is a variable defined as part of the function header and is used to
make data available within the function itself.

● An argument is the actual value or data passed into the function when it is called.
The data will be held within the parameters.

Unfortunately many developers use these terms interchangeably, but it is worth
being clear on the distinction.

12.9.1 Multiple Parameter Functions

So far the functions we have defined have only had zero or one parameter; however
that was just a choice. We could easily have defined a function which defined two or
more parameters. In these situations, the parameter list contains a list of parameter
names separated by a comma.

12.9 Function Parameters 147

For example,

def greeter(name, message):
print(’Welcome’, name, ’-’, message)

greeter(’Eloise’, ’Hope you like Rugby’)

Here the greeter function taken defines two parameters: name and message. These
parameters (which are local to the function and cannot be seen outside of the function)
are then used within the body of the function.

The output is

Welcome Eloise - Hope you like Rugby

You can have any number of parameters defined in a function (prior to Python 3.7
there was a limit of 256 parameters—although if you have this many then probably
you have a major problem with the design of your function—however this limit has
now gone).

12.9.2 Default Parameter Values

Once you have one or more parameters you may want to provide default values for
some or all of those parameters, particularly for ones which might not be used in
most cases.

This can be done very easily in Python; all that is required is that the default value
must be declared in the function header along with the parameter name.

If a value is supplied for the parameter, then it will override the default. If no value
is supplied when the function is called, then the default will be used.

For example, we can modify the greeter() function from the previous section
to provide a default message such as ‘Live Long and Prosper’.

def greeter(name, message = ’Live Long and Prosper’):
print(’Welcome’, name, ’-’, message)

greeter(’Eloise’)
greeter(’Eloise’, ’Hope you like Rugby’)

Now we can call the greeter() function with one or two arguments.
When we run this example, we will get:

Welcome Eloise - Live Long and Prosper
Welcome Eloise - Hope you like Rugby

148 12 Functions in Python

As you can see from this in the first example (where only one argument was
provided) the default message was used. However, in the second example where a
message was provided, along with the name, then that message was used instead of
the default.

Note we can use the terms mandatory and optional for the parameters in
greeter(). In this case

● name is a mandatory field/parameter.
● message is an optional field/parameter (as it has a default value).

One subtle point to note is that any number of parameters in a function’s parameter
list can have a default value; however once one parameter has a default value all
remaining parameters to the right of that parameter must also have default values.
For example, we could not define the greeter function as

def greeter(message = ’Live Long and Prosper’, name):
print(’Welcome’, name, ’-’, message)

As this would generate an error indicating that name must have a default value
as it comes after (to the right) of a parameter with a default value.

12.9.3 Named Arguments

So far we have relied on the position of a value to be used to determine which
parameter that value is assigned to. In many cases this is the simplest and cleanest
option.

However, if a function has several parameters, some of which have default values,
it may become impossible to rely on using the position of a value to ensure it is given
to the correct parameter (because we may want to use some of the default values
instead).

For example, let us assume we have a function with four parameters

def greeter(name,
title = ’Dr’,
prompt = ’Welcome’,
message = ’Live Long and Prosper’):

print(prompt, title, name, ’-’, message)

This now raises the question how do we provide the name and the message
arguments when we would like to have the default title and prompt?

The answer is to use named arguments (or keyword arguments). In this approach
we provide the name of the parameter we want an argument/value to be assigned to;
position is no longer relevant. For example:

greeter(message = ’We like Python’, name = ’Lloyd’)

12.9 Function Parameters 149

In this example we are using the default values for title and prompt and have
changed the order of message and name. This is completely legal and results in
the following output:

Welcome Dr Lloyd - We like Python

We can actually mix positional and named arguments in Python, for example:

greeter(’Lloyd’, message = ’We like Python’)

Here ‘John’ is bound to the name parameter as it is the first parameter, but ‘We
like Python’ is bound to message parameter as it is a named argument.

However, you cannot place positional arguments after a named argument, so we
cannot write:

greeter(name=’John’, ’We like Python’)

As this will result in Python generating an error.

12.9.4 Arbitrary Arguments

In some cases, you do not know how many arguments will be supplied when a
function is called. Python allows you to pass an arbitrary number of arguments into
a function and then process those arguments inside the function.

To define a parameter list as being of arbitrary length, a parameter is marked with
an asterisk (*). For example:

def greeter(*args):
for name in args:

print(’Welcome’, name)

greeter(’John’, ’Denise’, ’Phoebe’, ’Adam’, ’Gryff’, ’Jasmine’)

This generates

Welcome John
Welcome Denise
Welcome Phoebe
Welcome Adam
Welcome Gryff
Welcome Jasmine

Note that this is another use of the for loop; but this time it is a sequence of
strings rather than a sequence of integers that is being used.

150 12 Functions in Python

12.9.5 Positional and Keyword Arguments

Some functions in Python are defined such that the arguments to the methods can
either be provided using a variable number of positional or keyword arguments. Such
functions have two arguments *args and **kwargs (for positional arguments and
keyword arguments).

They are useful if you do not know exactly how many of either position or keyword
arguments are going to be provided.

For example, the function my_function takes both a variable number of
positional and keyword arguments:

def my_function(*args, **kwargs):
for arg in args:

print(’arg:’, arg)
for key in kwargs.keys():

print(’key:’, key, ’has value: ’, kwargs[key])

This can be called with any number of arguments of either type:

my_function(’John’, ’Denise’, daughter=’Phoebe’, son=’Adam’)
print(’-’ * 50)
my_function(’Paul’, ’Fiona’, son_number_one=’Andrew’, son_
number_two=’James’, daughter=’Joselyn’)

which produces the output:

arg: John
arg: Denise
key: son has value: Adam
key: daughter has value: Phoebe
--
arg: Paul
arg: Fiona
key: son_number_one has value: Andrew
key: son_number_two has value: James
key: daughter has value: Joselyn

Also note that the keywords used for the arguments are not fixed.
You can also define methods that only use one of the *args and **kwargs

depending on your requirements (as we saw with the greeter() function above),
for example:

def named(**kwargs):
for key in kwargs.keys():

print(’arg:’, key, ’has value:’, kwargs[key])

named(a=1, b=2, c=3)

12.10 Anonymous Functions 151

In this case, the named function only supports the provision of keyword
arguments. Its output in the above case is:

arg: a has value: 1
arg: c has value: 3
arg: b has value: 2

In general, these facilities are most likely to be used by those creating libraries as
they allow for great flexibility in how the library can be used.

12.10 Anonymous Functions

All the functions we have defined in this chapter have had a name that they can be
referenced by, such as greeter or get_integer_input. This means that we
can reference and reuse these functions as many times as we like.

However, in some cases we want to create a function and use it only once; giving
it a name for this one time can pollute the namespace of the program (i.e., there
are lots of names around) and also means that someone might call it when we don’t
expect them to.

Python therefore has another option when defining a function; it is possible to
define an anonymous function. In Python an anonymous function is one that does
not have a name and can only be used at the point that it is defined.

Anonymous functions are defined using the keyword lambda, and for this reason
they are also known as lambda functions.

The syntax used to define an anonymous function is:

lambda arguments: expression

Anonymous functions can have any number of arguments but only one expression
(that is a statement that returns a value) as their body. The expression is executed,
and the value generated from it is returned as the result of the function.

As an example, let us define an anonymous function that will square a number:

double = lambda i : i * i

In this example the lambda definition indicates that there is one parameter to
the anonymous function (‘i’) and that the body of the function is defined after the
colon ‘:’ which multiples i * i; the value of which is returned as the result of the
function. The whole anonymous function is then stored into a variable called double.

We can store the anonymous function into the variable as all functions are instances
of the class function and can be referenced in this way (we just haven’t done this so
far).

152 12 Functions in Python

To invoke the function, we can access the reference to the function held in the
variable double and then use the round brackets to cause the function to be executed,
passing in any values to be used for the parameters:

print(double(10))

When this is executed the value 100 is printed out.
Other examples of lambda/anonymous functions are given below (illustrating that

an anonymous function can take any number of arguments):

func0 = lambda: print(’no args’)
func1 = lambda x: x * x
func2 = lambda x, y: x * y
func3 = lambda x, y, z: x + y + z

These can be used as shown below:

func0()
print(func1(4))
print(func2(3, 4))
print(func3(2, 3, 4))

The output from this code snippet is:

no args
16
12
9

12.11 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/library/functions.html for a list of built-in functions in
Python.

● https://www.w3schools.com/python/python_functions.asp the W3 Schools brief
introduction to Python functions.

● https://www.w3schools.com/python/python_lambda.asp a short summary of
lambda functions.

● https://devguide.python.org/documentation/markup for information on reStruc-
tured Text style docstrings.

12.12 Exercises

For this chapter the exercises involve the number_guess_game you created in the last
chapter:

https://docs.python.org/3/library/functions.html
https://www.w3schools.com/python/python_functions.asp
https://www.w3schools.com/python/python_lambda.asp
https://devguide.python.org/documentation/markup

12.12 Exercises 153

Take the number guess game and break it up into a number of functions. There is
not necessarily a right or wrong way to do this; look for functions that are meaningful
to you within the code, for example:

1. You could create a function to obtain input from the user.
2. You could create another function that will implement the main game playing

loop.
3. You could also provide a function that will print out a message indicating if the

player won or not.
4. You could create a function to print a welcome message when the game starts

up.

Chapter 13
Scope and Lifetime of Variables

13.1 Introduction

We have already defined several variables in the examples we have been working
within this book. In practice, most of these variables have been what are known as
global variables. That is they are (potentially) accessible anywhere (or globally) in
our programs.

In this chapter we will look again at local variable as defined within a function,
at global variable and how they can be referenced within a function, and finally we
will consider nonlocal variables.

13.2 Local Variables

In practice developers usually try to limit the number of global variables in their
programs as global variables can be accessed anywhere and can be modified
anywhere, and this can result in unexpected behaviours (and has been the cause
of many, many bugs in all sorts of programs over the years).

However, not all variables are global. When we define a function, we can create
variables which are scoped only to that function and are not accessible or visible
outside of the function. These variables are referred to as local variables (as they are
local to the function).

This is a great help in developing more modular code which has been proven to
be easier to maintain and in fact develop and test.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_13

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_13

156 13 Scope and Lifetime of Variables

In the following function local variable called a_variable has been created
and initialized to hold the value 100.

def my_function():
a_variable = 100
print(a_variable)

my_function()

When this function is called a_variable will be initialized to 100 and will
then be printed out to the console:

100

Thus when we ran the my_function() it successfully printed out the value
100 which was held in the local (to the function) variable a_variable.

However if we attempt to access a_variable outside the function, then it will
not be defined and we will generate an error, for example:

my_function()
print(a_variable)

When we run this code, we get the number 100 printed out from the call my_
function(). However, an error is then reported by Python:

100
Traceback (most recent call last):

File "localvars.py", line 7, in <module>
print(a_variable)

NameError: name ’a_variable’ is not defined

This indicates that a_variable is undefined at the top level (which is the global
scope). Thus, we can say that a_variable is not globally defined.

This is because a_variable only exists and only has meaning inside my_
function; outside of that function it cannot be seen.

In fact, each time the function is called, a_variable comes back into existence
as a new variable, so the value in a_variable is not even seen from one invocation
of the function to another.

This raises the question what happens if a global variable called a_variable
is defined? For example, if we have the following:

a_variable = 25
my_function()
print(a_variable)

Actually, this is fine and is supported by Python. There are now two versions of
a_variable in the program: one of which is defined globally and one of which is
defined within the context of the function.

13.3 The Global Keyword 157

Python does not get confused between these and treats then as completely sepa-
rately. This is just like having two people called John in the same class in school.
If they were only called John this might cause some confusion, but if they have
different surnames then it is easy to distinguish between them via their full names
such as John Jones and John Smith.

In this case we have global a_variable and my_function a_variable.
Thu if we run the above code we get

100
25

The value 100 does not overwrite the value 25 as they are completely different
variables.

13.3 The Global Keyword

But what happens if what you want is to reference the global variable within a
function.

As long as Python does not think you have defined a local variable then all will
be fine. For example

max = 100
def print_max():

print(max)
print_max()

This prints out the value 100.
However, things go a bit astray if you try to modify the global variable inside the

function. At this point Python thinks you are creating a local variable. If as part of
the assignment you try to reference the current value of that (now) local variable you
will get an error indicating that it currently does not have a value. For example, if we
write:

def print_max():
max = max + 1
print(max)

print_max()

And then run this example, we will get

Traceback (most recent call last):
File "localvars.py", line 17, in <module>
print_max()

File "localvars.py", line 14, in print_max
max = max + 1

UnboundLocalError: local variable ’max’ referenced before assign-
ment

158 13 Scope and Lifetime of Variables

Indicating that we have referenced max before it was assigned a value—even
though it was assigned a value globally before the function was called!

Why does it do this? To protect us from ourselves—Python is really saying ‘Do
you really want to modify a global variable here?’. Instead it is treating max as a
local variable, and as such it is being referenced before a value has been assigned to
it.

To tell Python that we know what we are doing and that we want to reference the
global variable at this point we need to use the keyword global with the name of
the variable. For example:

max = 100
def print_max():

global max
max = max + 1
print(max)

print_max()
print(max)

Now when we try to update the variable max inside the function print_max(),
Python knows we mean the global version of the variable and uses that one. The result
is that we now print out the value 101, and max is updated to 101 for everyone
everywhere!

13.4 Nonlocal Variables

It is possible to define functions inside other functions, and this can be very useful
when we are working with collections of data and operations such as map() (which
map a function to all the elements of a collection of data).

However, local variables are local to a specific function; even functions defined
within another function cannot modify the outer function’s local variable (as the inner
function is a separate function). They can reference it, just as we could reference the
global variable earlier; the issue is again modification.

The global keyword is no help here as the outer function’s variables are not
global, they are local to a function.

For example, if we define a nested function (inner) inside the parent outer
function (outer) and want the inner function to modify the local field we have a
problem:

def outer():
title = ’original title’

def inner():
title = ’another title’

13.4 Nonlocal Variables 159

print(’inner:’, title)

inner()

print(’outer:’, title)

outer()

In this example both outer() and inner() functions modify the title
variable. However, they are not the same title variable and as long as this is what
we need then that is fine; both functions have their own version of a title local
variable.

This can be seen in the output where the outer function maintains its own value
for title:

inner: another title
outer: original title

However, if what we want is for the inner() function to modify the outer()
function’s title variable then we have a problem.

This problem can be solved using the nonlocal keyword. This indicates that a
variable is not global but is also not local to the current function, and Python should
look within the scope in which the function is defined to fund a local variable with
the same name:

If we now declare title as nonlocal in the inner() function, then it will
use the outer() functions version of title (it will be shared between them), and
thus when the inner() function changes the title it will change the it for both
functions:

def outer():
title = ’original title’
def inner():

nonlocal title
title = ’another title’
print(’inner:’, title)

inner()
print(’outer:’, title)

outer()

The result of running this is

inner: another title
outer: another title

160 13 Scope and Lifetime of Variables

13.5 Hints

Points to note about the scope and lifetime of variables

1. The scope of a variable is the part of a program where the variable is known.
Parameters and variables defined inside a function are not visible from outside.
Hence, they have a local scope.

2. The lifetime of a variable is the period throughout which the variable exits in the
memory of your Python program. The lifetime of variables inside a function is
as long as the function executes. These local variables are destroyed as soon as
the function returns or terminates. This means that the function does not store
the values in a variable from one invocation to another.

13.6 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-
and-global-variables-in-python which provides further information on the Python
rules for local and global variables.

13.7 Exercise

Return to the number guess game—did you have to make any compromises with the
variables to overcome the global variable issue? If so can you resolve them now with
the use of the global?

https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python
https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python

Chapter 14
Implementing a Calculator Using
Functions

14.1 Introduction

In this chapter we will step through the development of another Python program; this
time the program will be to provide a simple calculator which can be used to add,
subtract, multiple and divide numbers. The implementation of the calculator is based
on the Function Decomposition performed earlier in the book in the Introduction to
Structured Analysis chapter.

The calculator will be implemented using Python functions to help modularize
the code.

14.2 What the Calculator Will Do

This will be a purely command-driven application that will allow the user to specify

● the operation to perform,
● the two numbers to use with that operation.

When the program starts up it can use a loop to keep processing operations until
the user indicates that they wish to terminate the application.

We can also use an if statement to select the operation to perform, etc.
As such it will also build on several other features in Python that we have already

been working with.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_14

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_14

162 14 Implementing a Calculator Using Functions

14.3 Getting Started

The first step will be to create a new Python file. If you are using the PyCharm IDE
you can do it using the New > PythonFile menu option (look back at the Number
Guess Game chapter if you can’t remember how to do this). The file can be called
anything you like, but calculator seems like a reasonable name.

In the newly created (and empty) calculator.py file type in a welcome print
message such as:

print(’Simple Calculator App’)

Now run the calculator.py program (again if you don’t remember how to do
that look back at the Number Guess Game chapter).

You should see the message printed out in the Python console. This verifies that
the file has been created properly and that you can run the Python code you will
define in it.

14.4 The Calculator Operations

We are going to start by defining a set of functions that will implement the add,
subtract, multiply and divide operations.

All of these functions take two numbers and return another number. We have
also given each function a docstring to illustrate their use, although in practice the
functions are so simple and self-describing that the docstring is probably redundant.

The functions are listed below; you can now add them to the calculator.py
file:

def add(x, y):
"""" Adds two numbers """
return x + y

def subtract(x, y):
""" Subtracts two numbers """
return x - y

def multiply(x, y):
""" Multiples two numbers """
return x * y

def divide(x, y):
"""Divides two numbers"""
return x / y

We now have the basic functions needed by the calculator.

14.5 Behaviour of the Calculator 163

14.5 Behaviour of the Calculator

We can now explore what the operation of the calculator program should be.
Essentially, we want to allow the user to be able to select the operation they want

to perform and provide the two numbers to use with the operation and then for the
program to call the appropriate function. The result of the operation should then be
presented to the user.

We then want to ask the user whether they want to continue to use the calculator
or to exit the program. This is illustrated below in flowchart form:

Based on this flowchart we can put in place the skeleton of the logic for the
calculator’s processing cycle.

We will need a while loop to determine whether the user has finished or not and
a variable to hold the result and print it out.

164 14 Implementing a Calculator Using Functions

The following code provides this skeleton:

finished = False
while not finished:

result = 0
Get the operation from the user
Get the numbers from the user
Select the operation
print(’Result:’, result)
print(’=================’)
Determine if the user has finished

print(’Bye’)

If you try to run this right now then you will find that this code will loop forever
as the user is not yet prompted to say if they wish to continue or not. However, it
does provide the basic framework; we have

● a variable, finished, with a Boolean flag in it to indicate if the user has finished
or not. This is referred to as a flag because it is a Boolean value and because it is
being used to determine whether to terminate the main processing loop or not,

● a variable to hold the result of the operation and the two numbers,
● the while loop representing the main processing loop of the calculator.

14.6 Identifying Whether the User has Finished

We could address several of the remaining areas next; however, we will select the
last step—that of determining if the user has finished or not. This will allow us to
start to run the application so that we can test out the behaviour.

To do this we need to prompt the user to ask them if they want to continue using
the calculator.

At one level this is very straight forward; we could ask the user to input ‘y’ or ‘n’
to indicates yes I have finished or no I want to keep going.

We could therefore use the input function as follows:

user_input = input(’Do you want to finish (y/n): ’)

We could then check to see if they have entered a ‘y’ character and terminate the
loop.

However, anytime if we take any input from something outside of our program
(such as the user) we should verify the input. For example, what should the program
do if the user enters ‘x’ or the number ‘1’? One option is to treat anything that is
not a ‘y’ as being—I want to keep going. However, this is opening up our simple
program to bad practices and (in a much larger system) to potential security issues
and certainly to potential hacker attacks.

It is a much better idea to verify that the input is what is expected and to reject
any input until it is either a ‘y’ or an ‘n’.

14.6 Identifying Whether the User has Finished 165

This means that the code is more complex than a single input statement; there is,
for example, an implied loop here and as well as some idea of input validation.

This means that this is an ideal candidate for a function that will encapsulate
this behaviour into a separate operation. We can then test this function which is
always a good idea. It also means that where we use the function, we have a level
of abstraction. That is we can name the function appropriately which will make it
easier to see what we intended, instead of having a mass of code in one place.

We will call the function check_if_user_has_finished; this name makes
it very clear what the purpose of the function is. It also means that when we use it in
our main processing loop its role in that loop will be obvious.

The function is given below:

def check_if_user_has_finished():
"""
Checks that the user wants to finish or not.
Performs some verification of the input."""
ok_to_finish = True
user_input_accepted = False
while not user_input_accepted:

user_input = input(’Do you want to finish (y/n): ’)
if user_input == ’y’:

user_input_accepted = True
elif user_input == ’n’:

ok_to_finish = False
user_input_accepted = True

else:
print(’Response must be (y/n), please try again’)

return ok_to_finish

Notice the use of two variables that are local to the function:

● The first variable (ok_to_finish) holds the result of the function; whether it
is OK to finish or not. It is given a default value of True; this follows the fail
closed approach—which suggests that it is always better to fail by closing down
an application or connection. In this case it means that if something goes wrong
with the code (if it contains a software bug or logic error) the user will not keep
looping forever.

● The second variable (user_input_accepted) is used to indicate whether
the user has provided an acceptable input or not (i.e., have they entered ‘y’ or ‘n’)
until they do the loop inside the function will repeat.

The loop itself is interesting as we are looping while the user input has not been
accepted; note that we can (almost) read the while loop as plain English text. This is
both a feature of Python (it is intended to be easily readable) and also of the use of
a meaningful name for the variable itself.

Within the loop we obtain the input from the user; check to see if it is ‘y’ or ‘n’.
If it is either of these options, we set the user_input_accepted flag to True.
Otherwise the code will print out a message indicating that the only acceptable input
is a ‘y’ or ‘n’.

166 14 Implementing a Calculator Using Functions

Notice that we only set the ok_to_finish variable to False if the user inputs
a ‘n’; this is because the ok_to_finish variable by default has a value of True
and thus there is no need to reassign True to it if the user select ‘n’.

We can now add this function into our main processing loop in place of the last
comment:

finished = False
while not finished:

result = 0
Get the operation from the user
Get the numbers from the user
Select the operation
print(’Result:’, result)
print(’=================’)
finished = check_if_user_has_finished(()

print(’Bye’)

We can now run the application.
You may wonder why we would do this at this point as it does not yet do any

calculations for us; the answer is that we can verify that the overall behaviour of the
main loop works and that the check_if_user_has_finished() function
operates correctly.

14.7 Selecting the Operation

Next let us implement the function used to obtain the operation to perform.
Again, we want to name this function in such a way as to help with the comprehen-

sibility of our program. In this case we are asking the user to select which operation
they want to perform, so let’s call the function get_operation_choice.

This time we need to present a list of options to the user and then ask them to make
a selection. Again, we want to write our function defensively, so that it makes sure
the user only inputs a valid option; if they do not then the function prompts them for
another input. This means our function will have a loop and some validation code.

There are four options available to the user: add, subtract, multiply and divide.
We will therefore number them 1–4 and ask the user to select an option between 1
and 4.

There are several ways in which we can verify that they have entered a number
in this range, including

● converting the string entered into a number and using numerical comparison (but
then we need to check that they entered an integer),

● having multiple if and elif statements (but that seems a bit long winded),
● by checking that the entered character is one of a set of values (which is the

approach we will use).

14.7 Selecting the Operation 167

To check that a value is in a set of other value (that it is one of the values in the
set) you can use the ‘in’ operator, for example:

user_selection in (’1’, ’2’, ’3’, ’4’)

This will return True if (and only if) user_selection contains one of the
strings ‘1’, ‘2’, ‘3’ or ‘4’.

We can therefore use it in our function to verify that the user entered a valid input.
The get_operation_choice function is shown below:

def get_operation_choice():
input_ok = False
while not input_ok:

print(’Menu Options are:’)
print(’\t1. Add’)
print(’\t2. Subtract’)
print(’\t3. Multiply’)
print(’\t4. Divide’)
print(’-----------------’)
user_selection = input(’Please make a selection: ’)
if user_selection in (’1’, ’2’, ’3’, ’4’):

input_ok = True
else:

print(’Invalid Input (must be 1 - 4)’)
print(’-----------------’)
return user_selection

Work through this function and make sure you are comfortable with all its
elements. The ‘\t’ character is a special character denoting a Tab.

We can now update our main calculator loop with this function:

finished = False
while not finished:

result = 0
menu_choice = get_operation_choice()
Get the numbers from the user

Select the operation
print(’Result:’, result)
print(’=================’)
finished = check_if_user_has_finished(()

print(’Bye’)

168 14 Implementing a Calculator Using Functions

14.8 Obtaining the Input Numbers

Next we need to obtain two numbers from the user to use with the selected operation.
In our introduction to Functions in Python chapter we looked at a function (the

get_integer_input() function) that could be used to take input from the user
and convert it (safely) into an integer; if the user entered a non-number then this
function would prompt them to enter an actual number. We can reuse the function
here.

However, we need to ask the user for two numbers; we will therefore create a
function which uses the get_integer_input() function to prompt the user for
two numbers and then return both numbers. Both functions are shown here:

def get_numbers_from_user():
num1 = get_integer_input(’Input the first number: ’)
num2 = get_integer_input(’Input the second number: ’)
return num1, num2

def get_integer_input(message):
value_as_string = input(message)
while not value_as_string.isnumeric():

print(’The input must be an integer’)
value_as_string = input(message)

return int(value_as_string)

Having one function call another function is very common, and indeed we have
already been doing this; the input() function has been used several times; the
only difference here is that we have written the get_integer_input() function
ourselves.

When we can the get_numbers_from_user() function we can store the
results returned into two variables: one for each result; for example:

n1, n2 = get_numbers_from_user()

We can now add this statement to the main calculator loop:

finished = False
while not finished:

result = 0
menu_choice = get_operation_choice()
n1, n2 = get_numbers_from_user()
Select the operation
print(’Result:’, result)
print(’=================’)
finished = check_if_user_has_finished(()

print(’Bye’)

14.9 Determining the Operation to Execute 169

14.9 Determining the Operation to Execute

We are now almost there and can update our main calculation loop with some logic
to determine the actual operation to invoke. To do this we will use an if statement
with the optional elif parts. The if statement will be conditional on the operation
selected and will then call the appropriate function (such as add and subtract) as
shown here:

if menu_choice == ’1’:
result = add(n1, n2)

elif menu_choice == ’2’:
result = subtract(n1, n2)

elif menu_choice == ’3’:
result - multiply(n1, n2)

elif menu_choice == ’4’:
result = divide(n1, n2)

Each part of the if statement calls a different function, but they all store the value
returned into the result variable.

We can now add this to the calculation loop to create our fully functional calculator
loop:

finished = False
while not finished:

result = 0
menu_choice = get_operation_choice()
n1, n2 = get_numbers_from_user()
if menu_choice == ’1’:

result = add(n1, n2)
elif menu_choice == ’2’:

result = subtract(n1, n2)
elif menu_choice == ’3’:

result - multiply(n1, n2)
elif menu_choice == ’4’:

result = divide(n1, n2)
print(’Result:’, result)
print(’=================’)
finished = check_if_user_has_finished(()

print(’Bye’)

170 14 Implementing a Calculator Using Functions

14.10 Running the Calculator

If you now run the calculator you will be prompted as appropriate for input. You
can try and break the calculator by entering characters when numbers are requested
or values out of range for the operations, etc., and it should be resilient enough to
handle these erroneous inputs, for example:

Simple Calculator App
Menu Options are:

1. Add
2. Subtract
3. Multiply
4. Divide

Please make a selection: 5
Invalid Input (must be 1 - 4)
Menu Options are:

1. Add
2. Subtract
3. Multiply
4. Divide

Please make a selection: 1

Input the first number: 5
Input the second number: 4
Result: 9
=================
Do you want to finish (y/n): y
Bye

14.11 Exercises

For this chapter the exercises relate to extensions to the calculator:

1. Add an option to apply the modulus (%) operator to the two numbers input by
the user. This will involve defining an appropriate function and adding this as an
option to the menu. You will also need to extend the main calculator control loop
to handle this option.

2. Add a power of (**) option to the calculator.
3. Modify the program to take floating point numbers instead of simple integers.
4. Allow the choice of division operator or integer division operator (this have both

‘/’ and ‘//’) available.

Chapter 15
Introduction to Functional Programming

15.1 Introduction

There has been much hype around Functional Programming in recent years. However,
Functional Programming is not a new idea and indeed goes right back to the 1950s
and the programming language LISP. However, many people are not clear as to what
Functional Programming is and instead jump into code examples and never really
understand some of the key ideas associated with Functional Programming such as
Referential Transparency.

This chapter introduces Functional Programming (also known as FP) and the key
concept of Referential Transparency (or RT).

One idea to be aware of is that Functional Programming is a software coding style
or approach and is separate from the concept of a function in Python.

Python functions can be used to write functional programs but can also be used to
write procedural style programs; so do not get too hung up on the syntax that might
be used or the fact that Python has functions just yet. Instead explore the idea of
defining a functional approach to your software design.

15.2 What is Functional Programming?

Wikipedia describes Functional Programming as:

… a programming paradigm, a style of building the structure and elements of computer
programs, that treats computation as the evaluation of mathematical functions and avoids
state and mutable data.

There are a number of points to note about this definition. The first is that it
is focused on the computational side of computer programming. This might seem
obvious but most of what we have looked at so far in Python would be considered
procedural in nature.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_15

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_15

172 15 Introduction to Functional Programming

Another thing to note is that the way in which the computations are represented
emphasizes functions that generate results based purely on the data provided to them.
That is these functions only rely on their inputs to generate a new output. They do not
rely on any side effects and do not depend on the current state of the program. As an
example of a side effect, if a function stored a running total in a global variable and
another function used that total to perform some calculation, then the first function
has a side effect of modifying a global variable and the second relies on some global
state for its result.

Taking each of these in turn:

1. Functional Programming aims to avoid side effects. A function should be
replaceable by taking the data it receives and in lining the result generated (this
is referred to as Referential Transparency). This means that there should be
no hidden side effects of the function. Hidden side effects make it harder to
understand what a program is doing and thus make comprehension, development
and maintenance harder. Pure functions have the following attributes:

2. The only observable output is the return value.
3. The only output dependency is the arguments.
4. Arguments are fully determined before any output is generated.

5. Functional Programming avoids concepts such as state. Let us take these as
separate issues. If some operation is dependent upon the (potentially hidden)
state of the program or some element of a program, then its behaviour may differ
depending upon that state. This may make it harder to comprehend, implement,
test and debug. As all of these impact on the stability and probably reliability
of a system, state-based operations may result in less reliable software being
developed. As functions do not (should not) rely on any given state (only upon
the data they are given) they should as a result be easier to understand, implement,
test and debug.

6. Functional Programming promotes immutable data. Functional Program-
ming also tends to avoid concepts such as mutable data. Mutable data is data that
can change its state. By contrast immutability indicates that once created, data
cannot be changed. In Python strings are immutable. Once you create a new string
you cannot modify it. Any functions that apply to a string that might conceptu-
ally alter the contents of the string and result in a new string being generated.
Many developers take this further by having a presumption of immutability in
their code; that means that by default all data holding types are implemented as
immutable. This ensures that functions cannot have hidden side effects and thus
simplifies programming in general.

7. Functional Programming promotes declarative programming which means
that programming is oriented around expressions that describe the solution
rather than focus on the imperative approach of most procedural program-
ming languages. Imperative languages emphasize aspects of how the solution is

15.3 Advantages to Functional Programming 173

derived. For example, an imperative approach to looping through some container
and printing out each result in turn would look like this:

int sizeOfContainer = container.length
for (int i = 1 to sizeOfContainer) do

element = container.get(i)
print(element)

enddo

Whereas a Functional Programming approach would look like:

container.foreach(print)

Functional Programming has its roots in the lambda calculus, originally developed
in the 1930s to explore computability. Many Functional Programming languages
can thus be considered as elaborations on this lambda calculus. There have been
numerous pure Functional Programming languages including Common Lisp, Clojure
and Haskell. Python provides some support for writing in the functional style, partic-
ularly where the benefits of it are particularly strong (such as in processing various
different types of data).

Indeed, when used judiciously, Functional Programming can be a huge benefit
for, and an enhancement to, the toolkit available to developers.

To summarize then:

● Imperative Programming is what is currently perceived as traditional program-
ming. That is, it is the style of programming used in languages such as C, C++,
Java and C#. In these languages a programmer tells the computer what to do. It
is thus oriented around control statements, looping constructs and assignments.

● Functional Programming aims to describe the solution, that is, what the program
needs to do (rather than how it should be done).

15.3 Advantages to Functional Programming

There are a number of significant advantages to Functional Programming compared
to imperative programming. These include:

1. Less code. Typically, a Functional Programming solution will require less code
to write than an equivalent imperative solution. As there is less code to write,
there is also less code to understand and to maintain. It is therefore possible that
functional programs are not only more elegant to read but easier to update and
maintain. This can also lead to enhanced programmer productivity as they spend
less time writing reams of code as well as less time reading those reams of code.

2. Lack of (hidden) side effects (Referential Transparency). Programming
without side effects is good as it makes it easier to reason about functions (that
is a function is completely described by the data that goes in and the results that
come back). This also means that it is safe to reuse these functions in different

174 15 Introduction to Functional Programming

situations (as they do not have unexpected side effects). It should also be easier
to develop, test and maintain such functions.

3. Recursion is a natural control structure. Functional languages tend to empha-
size recursion as a way of processing structures that would use some form of
looping constructs in an imperative language. Although you can typically imple-
ment recursion in imperative languages, it is often easier to do in functional
languages. It is also worth noting that although recursion is very expressive and a
great way for a programmer to write a solution to a problem, it is not as efficient
at runtime as iteration. However, any expression that can be written as a recursive
routine can also be written using looping constructs. Functional Programming
languages often incorporate tail end recursive optimizations to convert recursive
routines into iterative ones at runtime. A util end recursive function is one in
which the last thing a function does before it returns to call itself. This means
that rather than actually invoking the function and having to set up the context for
that function, it should be possible to reuse the current context and to treat it in
an iterative manner as a loop around that routine. Thus the programmer benefits
from the expressive recursive construct and the runtime benefits of an iterative
solution using the same source code. This option is typically not available in
imperative languages.

4. Good for prototyping solutions. Solutions can be created very quickly for algo-
rithmic or behaviour problems in a functional language, thus allowing ideas and
concepts to be explored in a rapid application development style.

5. Modular functionality. Functional Programming is modular in terms of func-
tionality (where object-oriented languages are modular in the dimension of
components). They are thus well suited to situations where it is natural to want
to reuse or componentize the behaviour of a system.

6. The avoidance of state-based behaviour. As functions only rely on their inputs
and outputs (and avoid accessing any other stored state) they exhibit a cleaner and
simpler style of programming. This avoidance of state-based behaviour makes
many difficult or challenging areas of programming simpler (such as those in
concurrent applications).

7. Additional control structures. A strong emphasis is on additional control
structures such as pattern matching, managing variable scope, tail recursion
optimizations, etc.

8. Concurrency and immutable data. As Functional Programming systems advo-
cate immutable data structures it is simpler to construct concurrent systems.
This is because the data being exchanged and accessed is immutable. Therefore,
multiple executing thread or processes cannot affect each other adversely. The
Akka Actor model builds on this approach to provide a very clean model for
multiple interacting concurrent systems.

9. Partial evaluation. Since functions do not have side effects, it also becomes
practical to bind one or more parameters to a function at compile time and to reuse
these functions with bound values as new functions that take fewer parameters.

15.5 Referential Transparency 175

15.4 Disadvantages of Functional Programming

If Functional Programming has all the advantages previously described, why isn’t
it the mainstream force that imperative programming languages are? The reality is
that Functional Programming is not without its disadvantages, including:

● Input–Output is harder in a purely functional language. Input–Output flows
naturally align with stream style processing, which does not neatly fit into the
data in, results out, nature of functional systems.

● Interactive applications are harder to develop. Interactive applications are
constructed via request response cycles initiated by a user action. Again, these do
not naturally sit within the purely functional paradigm.

● Continuously running programs such as services or controllers may be more
difficult to develop, as they are naturally based upon the idea of a continuous loop.

● Functional Programming languages have tended to be less efficient on current
hardware platforms. This is partly because current hardware platforms are not
designed with Functional Programming in mind and also because many of the
systems previously available were focused on the academic community where
out and out performance was not the primary focus. However, this has changed
to a large extent with modern functional languages such as Scala and Heskell.

● Not data oriented. A pure functional language does not really align with the
needs of the primarily data-oriented nature of many of today’s systems. Many
(most) commercial systems are oriented around the need to retrieve data from a
database, manipulate it in some way and store that data back into a database. Such
data can be naturally represented via objects in an object-oriented language.

● Programmers are less familiar with Functional Programming concepts and thus
find it harder to pick up function-oriented languages.

● Functional Programming idioms are often less intuitive to (traditional) proce-
dural programmers than imperative idioms which can make debugging and
maintenance harder. Although with the use of a functional approach in many
other languages now becoming more popular (including in Python) this trend is
changing.

● Many Functional Programming languages have been viewed as Ivory tower
languages that are only used by academics. This has been true of some older
functional languages but is increasingly changing with the advent of languages
such as Scala and with the facilities provided in more mainstream programming
languages such as Python.

15.5 Referential Transparency

An important concept within the world of Functional Programming is that of
Referential Transparency.

176 15 Introduction to Functional Programming

An operation is said to be Referentially Transparent if it can be replaced with its
corresponding value, without changing the program’s behaviour, for a given set of
parameters.

For example, let us assume that we have defined the function increment as shown
below.

def increment(num):
return num + 1

If we use this simple example in an application to increment the value 5:

print(increment(5))
print(increment(5))

We can say that the function is Referentially Transparent (or RT) if it always
returns the same result for the same value (i.e., that increment(5) always returns
6):

Any function that references a value which has been captured from its surrounding
context and which can be modified cannot be guaranteed to be RT. This can have
significant consequences for the maintainability of the resulting code. This can
happen if for example the increment function did not add 1 to the parameter but
added a global value. If this global value is changed then the function would suddenly
start to return different values for the previously entered parameters. For example,
the following code is no longer Referentially Transparent:

amount = 1
def increment(num):

return num + amount
print(increment(5))
amount = 2
print(increment(5))

The output from this code is not 6 and 7—as the value of amount has changed
between calls to the increment() function.

15.6 Further Reading 177

A closely related idea is that of No Side Effects. That is, a function should not
have any side effects, it should base its operation purely on the values it receives, and
its only impact should be the result returned. Any hidden side effects again makes
software harder to maintain.

Of course, within most applications there is a significant need for side effects;
for example, any logging of the actions performed by a program has a side effect of
updating some logged information somewhere (typically in a file), and any database
updates will have some side effect (i.e., that of updating the database). In addition
some behaviour is inherently non-RT; for example, a function which returns the
current time can never be Referentially Transparent.

However, for pure functions it is a useful consideration to follow.

15.6 Further Reading

There is a large amount of material on the web that can help you learn more about
Functional Programming including:

● https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f6
9aa109569 intended as a friendly introduction to Functional Programming.

● https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-fun
ctional-programming-a2c2a15c84 which provides an introduction to the basic
principles of Functional Programming.

● https://www.tutorialspoint.com/functional_programming which provides a good
grounding in the basic concepts of Functional Programming.

● https://docs.python.org/3/howto/functional.html which is the Python standard
library tutorial on Functional Programming.

https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://www.tutorialspoint.com/functional_programming
https://docs.python.org/3/howto/functional.html

Chapter 16
Higher-Order Functions

16.1 Introduction

In this chapter we will explore the concept of high-order functions. These are func-
tions that take as a parameter, or return (or both), a function. To do this we will
first look into how Python represents functions in memory and explore what actually
happens when we execute a Python function.

16.2 Recap on Functions in Python

Let us first recap a few things regarding functions in Python:
Functions (mostly) have a name, and when invoked (or executed) the body of

code associated with the function name is run.
There are some important ideas to remember when considering functions:

● Functions can be viewed as named blocks of code and are one of the main ways
in which we can organize our programs in Python.

● Functions are defined using the keyword def and constitute a function header
(the function name and the parameters, if any, defined for that function) and the
function body (what is executed when the function is run).

● Functions are invoked or executed using their name followed by round brackets
‘()’ with or without parameters depending on how the function has been defined.

This means we can write a function such as the following get_msg function:

def get_msg():
return ’Hello Python World!’

We can then call it by specifying its name and the round brackets:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_16

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_16

180 16 Higher-Order Functions

message = get_msg()
print(message)

This of course prints out the string ’Hello Python World!’ which is what
you should expect by now.

16.3 Functions as Objects

A few chapters back we threw in something stating that if you forgot to include the
round brackets then you were referencing the function itself rather than trying to
execute it!

What exactly does that mean? Let’s see what happens if we forgot to include the
round brackets:

message = get_msg
print(message)

The output generated now is:

<function get_msg at 0x10ad961e0>

which might look very confusing at first sight.
What this is actually telling you is that you have referenced a function called

get_msg that is located at a (hexidecimal) address in memory.
It is interesting to note that just as data has to be located in memory so does

program code (so that it can be found and run), although typically data and code are
located in separate areas of memory (as data tends to be short lived).

Another interesting thing to do is to find out what the type of get_msg is—hey
it’s a function—but what does that mean?

If we issue this statement and run it in Python:

print(type(get_msg))

Then we will get the following:

<class ’function’>

This means that it is of the class of things that are functions just as 1 is of the class
of things called integers, ’John’ is of the class of things called strings, and 42.6
is of the class of things called floating point numbers.

Taking this further it actually means that the thing being referenced by get_msg
is a function object (an example or instance of the function class). This get_msg is
really a type of variable that references (or points at) at the function object in memory
which we can execute using the round brackets.

This is illustrated by the following diagram:

16.3 Functions as Objects 181

This means that when we run get_msg() what actually happens is we go to the
get_msg variable and following the reference (or pointer) there to the function and
then because we have the round brackets we run that function.

This has two implications:

1. We can pass the reference to a function around.
2. We can make get_msg reference (point) at a different function.

Let us look at the first of these implications. If we assign the reference represented
by get_msg to something else, then in effect we have an alias for this function. This
is because another variable now also references the same function. For example, if
we write:

another_reference = get_msg
print(another_reference())

Then the result is that the string ‘Hello Python World!’ is again printed out.
What this has done is to copy the reference held in get_msg into another_

reference (but it is a copy of that reference and that is the address of the function
in memory). Thus, we now have in memory:

So just to emphasize this—we did not make a copy of the function; only its address
in memory. Thus the same value is held in both get_msg and another_reference, and
both these values are references to the same function object in memory.

What does this mean and why should we care? Well it means that we can pass
references to functions around within our program which can be a very useful feature
that we will look at later in this chapter.

Now let us go back to the second implication mentioned above; we can reassign
another function to get_msg.

For example, let’s say we wrote this next:

182 16 Higher-Order Functions

def get_some_other_msg():
return ’Some other message!!!’

get_msg = get_some_other_msg
print(get_msg())

Now get_msg no longer references the original functions; it now references the
new function defined by get_some_other_msg. It means that in memory we
now have

which means the result of calling print(get_msg()) will be that the
string ’Some other message!!!’ is returned and printed out (rather than the
’Hello Python World!’).

However, notice that we did not overwrite the original function; it is still being
referenced by the another_reference variable and indeed can still be called
via this variable. For example, the code:

print(get_msg())
print(another_reference())

now generates the output:

Some other message!!!
Hello Python World!

This illustrates some of the power but also the potential confusion that comes
from how functions are represented and can be manipulated in Python.

16.4 Higher-Order Function Concepts

Given that we can assign a reference into a function to a variable, then this might
imply that we can also use the same approach to pass a reference to a function as an
argument to another function.

16.4 Higher-Order Function Concepts 183

This means that one function can take another function as a parameter. Such
functions are known as higher-order functions and are one of the key constructs in
Functional Programming.

That is, a function that takes another function as a parameter is known as a higher-
order function.

In fact, in Python, higher-order functions are functions that do at least one of the
following (and may do both):

● Take one or more functions as a parameter.
● Return as a result a function.

All other functions in Python are first-order functions.
Many of the functions found in the Python libraries are higher-order functions. It

is a common enough pattern that once you are aware of it you will recognize it in
many different libraries.

16.4.1 Higher-Order Function Example

As an abstract example, consider the following higher-order function apply. This
function (written in pseudo-code—not a real programming language) takes an integer
and a function. Within the body of the function being defined, the function passed in
as a parameter is applied to the integer parameter. The result of the function being
defined is then returned:

def apply(x, function):
result = function(x)
return result

The function apply is a higher-order function because its behaviour (and its
result) will depend on the behaviour defined by another function—the one passed
into it.

We could also define a function that multiplies a number by 10.0, for example:

def mult(y):
return y * 10.0

Now we can use the function mult with the function apply, for example:

apply(5, mult)

This would return the value 50.0.

184 16 Higher-Order Functions

16.5 Python Higher-Order Functions

As we have already seen when we define a function it actually creates a function
object that is referenced by the name of the function. For example, if we create the
function mult_by_two:

def mult_by_two(num):
return num * 2

Then this has created a function object referenced by the name multi_by_two
that we can invoke (execute) using the round brackets ‘()’.

It is also a one parameter function that takes a number and returns a value which
is twice that number.

Thus, a parameter that expects to be given a reference to a function that takes a
number and returns a number can be given a reference to any function that meets
this (implied) contract. This includes our mult_by_two function but also any of
the following:

def mult_by_five(num):
return num * 5

def square(num):
return num * num

def add_one(num):
return num + 1

All of the above could be used with the following higher-order function:

def apply(num, func):
return func(num)

For example:

result = apply(10, mult_by_two)
print(result)

The output from this code is:

20

The following listing provides a complete set of the earlier sample functions and
how they may be used with the apply function:

print(apply(10, mult_by_five))
print(apply(10, square))
print(apply(10, add_one))
print(apply(10, mult_by_two))

The output from this is:

50
100
11
20

16.5 Python Higher-Order Functions 185

16.5.1 Using Higher-Order Functions

Looking at the previous section you may be wondering why you would want to use a
higher-order function or indeed why define one. After all, could you not have called
one of the functions (multi_by_five, square, add_one or mult_by_two)
directly by passing in the integer to used? Yes, we could have, for example, we could
have done:

square(10)

And this would have exactly the same effect as calling:

apply(10, square)

The first approach would seem to be both simpler and more efficient.
The key to why higher-order functions are so powerful is to consider what would

happen if we know that some function should be applied to the value 10, but we do
not yet know what it is. The actual function will be provided at some point in the
future. Now we are creating a reusable piece of code that will be able to apply an
appropriate function to the data we have when that function is known.

For example, let us assume that we want to calculate the amount of tax someone
should pay based on their salary. However, we do not know how to calculate the tax
that this person must pay as it is dependent on external factors. The calculate_
tax function could take an appropriate function that performs that calculation and
provides the appropriate tax value.

The following listing implements this approach. The function calculate_tax
does not know how to calculate the actual tax to be paid, instead a function must be
provided as a parameter to the calculate_tax function. The function passed in
takes a number and returns the result of performing the calculation. It is used with
the salary parameter also passed into the calculate_tax function.

import math

def simple_tax_calculator(amount):
return math.ceil(amount * 0.3)

def calculate_tax(salary, func):
return func(salary)

print(calculate_tax(45000.0, simple_tax_calculator))

The simple_tax_calculator function defines a function that takes a
number and multiplies it by 0.3 and then uses the math.ceil function (imported
from the math library/module) to round it up to a whole number. A call is then made
to the calculate_tax function passing in the float 45000.0 as the salary and
a reference to the simple_tax_calculator function. Finally, it prints out the
tax calculated. The result of running this program is:

186 16 Higher-Order Functions

Thus, the function calculate_tax is a reusable function that can have
different tax calculation strategies defined for it.

16.5.2 Functions Returning Functions

In Python as well as passing a function into another function, functions can be
returned from a function. This can be used to select among a number of different
options or to create a new function based on the parameters.

For example, the following code creates a function that can be used to check
whether a number is even, odd or negative based on the string passed into it:

def make_checker(s):
if s == ’even’:

return lambda n: n%2 == 0
elif s == ’positive’:

return lambda n: n >= 0
elif s == ’negative’:

return lambda n: n < 0
else:

raise ValueError(’Unknown request’)

Note the use of the raise Value Error; for the moment we will just say that
this is a way of showing that there is a problem in the code which may occur if this
function is called with an in appropriate parameter value for ‘s’.

This function is a factory for functions that can be created to perform specific
operations. It is used below to create three functions that can be used to validate what
type a number is:

f1 = make_checker(’even’)
f2 = make_checker(’positive’)
f3 = make_checker(’negative’)
print(f1(3))
print(f2(3))
print(f3(3))

Of course, it is not only anonymous functions that can be returned from a function;
it is also possible to return a named function. This is done by returning just the name
of the function (i.e., without the round brackets).

16.6 Online Resources 187

In the following example, a named function is defined within an outer function
(although it could have been defined elsewhere in the code). It is then returned from
the function:

def make_function():
def adder(x, y):

return x + y
return adder

We can then use this make_function to create the adder function and store it into
another variable. We can now use this function in our code, for example:

f1 = make_function()
print(f1(3, 2))
print(f1(3, 3))
print(f1(3, 1))

which produces the output

5
6
4

16.6 Online Resources

Further information on higher-order functions in Python can be found using the
following online resources:

1. https://en.wikipedia.org/wiki/Higher-order_function Wikipedia page on higher-
order functions.

2. https://docs.python.org/3.1/library/functools.html A module to support the
creation and use of higher-order functions.

3. https://www.tutorialspoint.com/functional_programming/functional_program
ming_higher_order_functions.htm A tutorial on higher-order functions.

https://en.wikipedia.org/wiki/Higher-order_function
https://docs.python.org/3.1/library/functools.html
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm

188 16 Higher-Order Functions

16.7 Exercises

The aim of this exercise is to explore higher-order functions.
You should write a higher-order function called my_higher_order_

function(i, func). This function takes a parameter and a second function
to apply to the parameter.

Now you should write a sample program that uses the higher-order function you
just created to perform. An example of the sort of thing you might implement is
given below:

print(my_higher_order_function(2, double))
print(my_higher_order_function(2, triple))
print(my_higher_order_function(16, square_root))
print(my_higher_order_function(2, is_prime))
print(my_higher_order_function(4, is_prime))
print(my_higher_order_function(’2’, is_integer))
print(my_higher_order_function(’A’, is_integer))
print(my_higher_order_function(’A’, is_letter))
print(my_higher_order_function(’1’, is_letter))

If you are using the above code as your test application then you should write
each of the supporting functions; each should take a single parameter.

Sample output from this code snippet is:

4
8
4.0
True
False
True
False
True
False

Note a simple way to find the square root of a number is to use the exponent (or
power of) operator and multiply by 0.5.

Chapter 17
Curried Functions

17.1 Introduction

Currying is a technique which allows new functions to be created from existing
functions by binding one or more parameters to a specific value. It is a major source
of reuse of functions in Python which means that functionality can be written once,
in one place and then reused in multiple other situations.

The name currying may seem obscure, but the technique is named after Haskell
Curry (for whom the Haskell programming language is also named).

This chapter introduces the core ideas behind currying and explores how currying
can be implemented in Python. The chapter also introduces the concept of closures
and how they affect curried functions.

17.2 Currying Concepts

At an abstract level, consider having a function that takes two parameters. These two
parameters x and y are used within the function body with the multiply operator in
the form x * y. For example, we might have:

operation(x, y): return x * y

This function operation() might then be used as follows

total = operation(2, 5)

Which would result in 5 being multiplied by 2 to give 10. Or it could be used:

total = operation(10, 5)

Which would result in 5 being multiplied by 10 to give 50.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_17

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_17

190 17 Curried Functions

If we needed to double a number, we could thus reuse theoperation() function
many times, for example:

operation(2, 5)
operation(2, 10)
operation(2, 6)
operation(2, 151)

All of the above would double the second number. However, we have had to
remember to provide the 2 so that the number can be doubled. However, the number
2 has not changed between any of the invocations of operation() function. What
if we fixed the first parameter to always be 2, thus would mean that we could create
a new function that apparently only takes one parameter (the number to double). For
example, let us say we could write something like:

double = operation(2, *)

Such that we could now write:

double(5)
double(151)

In essence double() is an alias for operation(), but an alias that provides
the value 2 for the first parameter and leaves the second parameter to be filled in by
the future invocation of the double function.

17.3 Python and Curried Functions

A curried function in Python is a function where one or more of its parameters have
been applied or bound to a value, resulting in the creation of a new function with
one fewer parameters than the original. For example, let us create a function that
multiplies two numbers together:

def multiply(a, b):
return a * b

This is a general function that does exactly what it says; it multiplies any
two numbers together. These numbers could be any two integers or floating-point
numbers, etc.

We can thus invoke it in the normal manner:

print(multiply(2, 5))

The result of executing this statement is:

10

17.4 Closures 191

We could now define a new method that takes a function and a number and returns a
new (anonymous) function that takes one new parameter and calls the function passed
in with the number passed in and the new parameter:

def multby(func, num):
return lambda y: func(num, y)

Look carefully at this function; it has used or bound the number passed into the
multby function to the invocation of the function passed in, but it has also defined
a new variable ‘y’ that will have to be provided when this new anonymous function
is invoked. It then returns a reference to the anonymous function as the result of
multby.

The multby function can now be used to bind the first parameter of the multiply
function to anything we want. For example, we could bind it to 2 so that it will
always double the second parameter and store the resulting function reference into
a property double:

double = multby(multiply, 2)

We could also bind the value 3 to the first parameter of multiple to make a function
that will triple any value:

triple = multby(multiply, 3)

Which means we can now write:

print(double(5))
print(triple(5))

which produces the output

10
15

You are not limited to just binding one parameter; you can bind any number of
parameters in this way.

Curried functions are therefore very useful for creating new functions from
existing functions.

17.4 Closures

One question that might well be on your mind now is what happens when a function
references some data that is in scope where it is defined but is no longer available
when it is evaluated? This question is answered by the implementation of a concept
known as closure.

Within Computer Science (and programming languages in particular) a closure
(or a lexical closure or function closure) is a function (or more strictly a reference to
a function) together with a referencing environment. This referencing environment

192 17 Curried Functions

records the context within which the function was originally defined and if necessary,
a reference to each of the non-local variables used by that function. These non-local
or free variables allow the function body to reference variables that are external to
the function, but which are utilized by that function. This referencing environment
is one of the distinguishing features between a functional language and a language
that supports function pointers (such as C).

The general concept of a lexical closure was first developed during the 1960s but
was first fully implemented in the language Scheme in the 1970s. It has since been
used within many functional programming languages including LISP and Scala.

At the conceptual level, a closure allows a function to reference a variable available
in the scope where the function was originally defined, but not available by default
in the scope where it is executed.

For example, in the following simple programme, the variable more is defined
outside the body of the function named increase. This is permissible as the vari-
able is a global variable. Thus, the variable more is within scope at the point of
definition.

more = 100
def increase(num):

return num + more
print(increase(10))
more = 50
print(increase(10))

Within our program we then invoke the increase function by passing in the
value 10. This is done twice with the variable more being reset to 50 between the
two. The output from this program is shown below:

110
60

Note that it is the current value of more that is being used when the function
executes and not the value of more present at the point that the function was defined.
Hence the output is 110 and 60 that is 100 + 10 and then 50 + 10.

This might seem obvious as the variable more is still in scope within the same
function as the invocations of the function referenced by increase.

However, consider the following example:

def increment(num):
return num + 1

def reset_function():
global increment

addition = 50
increment = lambda num: num + addition
print(increment(5))
reset_function()
print(increment(5))

17.4 Closures 193

In the above listing the function increment initially adds 1 to whatever value
has been passed to it. Then in the program this function is called with the value 5
and the result returned by the function is printed. This will be the value 6.

However, after this a second function, reset_function() is invoked. This
function has a variable that is local to the function. That is, normally it would
only be available within the function reset_function. This variable is called
addition and has the value 50.

The variable addition is, however, used within the function body of a new
anonymous function definition. This function takes a number and adds the value of
addition to that number and returns this as the result of the function. This new
function is then assigned to the name increment. Note that to ensure we reference
the global name increment we must use the keyword global (otherwise we
will create a local variable that just happens to have the same name as the function).

Now, when the second invocation of increment occurs, the reset_
function()method has terminated and normally the variable additionwould
no longer even be in existence. However, when this program runs the value 55 is
printed out from the second invocation of increment. That is the function being
referenced by the name increment, when it is called the second time, is the one
defined within reset_function() and which uses the variable addition.

The actual output is shown below:

So, what has happened here? It should be noted that the value 50 was not copied
into the second function body. Rather it is a concrete example of the use of a reference
environment with the closure concept. Python ensures that the variable addition
is available to the function, even if the invocation of the function is somewhere
different to where it was defined by binding any free variables (those defined outside
the scope of the function) and storing them so that they can be accessed by the
function’s context (in effect moving the variable from being a local variable to one
which is available to the function anywhere; but only to the function).

194 17 Curried Functions

17.5 Online Resources

Further information on currying see:

● https://en.wikipedia.org/wiki/Currying Wikipedia page on currying.
● https://wiki.haskell.org/Currying A page introducing currying (based on the

Haskell language but still a useful reference).
● https://www.python-course.eu/currying_in_python.php A tutorial on currying in

Python.

17.6 Exercises

This exercise is about creating a set of functions to perform currency conversions
based on specified rates using currying to create those functions.

Write a function that will curry another function and a parameter in a similar
manner to multby in this chapter—call this function curry().

Now define a function that can be used to convert an amount into another amount
based on a rate. The definition of this conversion function is very straight forward
and just involves multiplying the number by the rate.

Now create a set of functions that can be used to convert a value in one currency
into another currency based on a specific rate. We do not want to have to remember
the rate, only the name of the function. For example:

dollars_to_sterling = curry(convert, 0.77)
print(dollars_to_sterling(5))

euro_to_sterling = curry(convert, 0.88)
print(euro_to_sterling(15))

sterling_to_dollars = curry(convert, 1.3)
print(sterling_to_dollars(7))

sterling_to_euro = curry(convert, 1.14)
print(sterling_to_euro(9))

If the above code is run the output would be:

3.85
13.2
9.1
10.26

https://en.wikipedia.org/wiki/Currying
https://wiki.haskell.org/Currying
https://www.python-course.eu/currying_in_python.php

Chapter 18
Introduction to Object Orientation

18.1 Introduction

This chapter introduces the core concepts in Object Orientation. It defines the
terminology used and attempts to clarify issues associated with hierarchies. It also
discusses some of the perceived strengths and weaknesses of the object-oriented
approach. It then offers some guidance on the approach to take in learning about
objects.

18.2 Classes

A class is one of the basic building blocks of Python. It is also a core concept in
a style of programming known as Object-Oriented Programming (or OOP). OOP
provides an approach to structuring programs/applications so that the data held, and
the operations performed on that data are bundled together into classes and accessed
via objects.

As an example, in an OOP style program, employees might be represented by a
class Employee where each employee has an id, a name, a department and a desk_
number, etc. They might also have operations associated with them such as take_
a_holiday() or get_paid().

In many cases classes are used to represent real-world entities (such as employees),
but they do not need to, they can also represent more abstract concepts such as a
transaction between one person and another (for example, an agreement to buy a
meal).

Classes act as templates which are used to construct instances or examples of a
class of things. Each example of the class Person has a name, an age, an address,
etc., but they have their own values for their name, age and address. For example, to
represent the people in a family we might create a class Person with the name Paul,
the age 52 and the address set to London. We may also create another Person object

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_18

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_18&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_18

196 18 Introduction to Object Orientation

(instance) with the name Fiona, the age 48 and the address also of London and so
on.

An instance or object is therefore an example of a class. All instances/objects of
a class possess the same data variables but contain their own data. Each instance of
a class responds to the same set of requests.

Classes allow programmers to specify the structure of an object (i.e., its attributes
or fields, etc.) and the its behaviour separately from the objects themselves.

This is important, as it would be extremely time-consuming (as well as inefficient)
for programmers to define each object individually. Instead, they define classes and
create instances or objects of those classes.

They can then store related data together in a named concept which makes it much
easier to structure and maintain code.

18.3 What Are Classes for?

We have already seen several types of data in Python such as integer, string, Boolean,
etc. Each of these allowed us to hold a single item of data (such as the integer 42 or
the string ‘John’ and the value True). However, how might we represent a Person,
a Student or an Employee of a firm? One way we can do this is to use a class to
represent them.

As indicated above, we might represent any type of (more complex) data item
use a combination of attributes (or fields) and behaviours. These attributes will use
existing data types, these might be integers, strings, Booleans, floating-point numbers
or other classes.

For example, when defining the class Person we might give it:

● a field or attribute for the person’s name,
● a field or attribute for their age,
● a field or attribute for their email,
● some behaviour to give them a birthday (which will increment their age),
● some behaviour to allow us to send them a message via their email,
● etc.

In Python classes are thus used:

● as a template to create instances (or objects) of that class,
● define instance methods or common behaviour for a class of objects,
● define attributes or fields to hold data within the objects,
● be sent messages.

Objects (or instances), on the other hand, can:

● be created from a class,
● hold their own values for instance variables,
● be sent messages,

18.3 What Are Classes for? 197

● execute instance methods,
● may have many copies in the system (all with their own data).

18.3.1 What Should a Class Do?

A class should accomplish one specific purpose; it should capture only one idea.
If more than one idea is encapsulated in a class, you may reduce the chances for
reuse, as well as contravene the laws of encapsulation in object-oriented systems.
For example, you may have merged two concepts together so that one can directly
access the data of another. This is rarely desirable.

The following guidelines may help you to decide whether to split the class with
which you are working. Look at the comment describing the class (if there is no class
comment, this is a bad sign in itself). Consider the following points:

● Is the description of the class short and clear? If not, is this a reflection on the
class? Consider how the comment can be broken down into a series of short clear
comments. Base the new classes around those comments.

● If the comment is short and clear, do the class and instance variables make sense
within the context of the comment? If they do not, then the class needs to be re-
evaluated. It may be that the comment is inappropriate, or the class and instance
variables inappropriate.

● Look at how and where the attributes of the class are used. Is their use in line with
the class comment? If not, then you should take appropriate action.

18.3.2 Class Terminology

The following terms are used in Python (and other languages that support object
orientation):

● Class A class defines a combination of data and behaviour that operates on that
data. A class acts as a template when creating new instances.

● Instance or object An instance also known as an object is an example of a class.
All instances of a class possess the same data fields/attributes but contain their
own data values. Each instance of a class responds to the same set of requests.

● Attribute/field/instance variable The data held by an object is represented by its
attributes (also sometimes known as a field or an instance variable). The “state”
of an object at any particular moment relates to the current values held by its
attributes.

● Method A method is a procedure defined within an object.
● Message A message is sent to an object requesting some operation to be performed

or some attribute to be accessed. It is a request to the object to do something or
return something. However, it is up to the object to determine how to execute that
request. A message may be considered akin to a procedure call in other languages.

198 18 Introduction to Object Orientation

18.4 How is an OO System Constructed?

At this point you may be wondering how a system can be built from classes and
objects instantiated from those classes? What would such an application look like?
It is clear it is different to writing functions and free-standing application code that
calls those functions?

Let’s use a real-world (physical) system to explore what an OOP application might
look like.

This system aims to provide a diagnosis tutor for the equipment illustrated above.
Rather than use the wash–wipe system from a real car, students on a car mechanics
diagnosis course use this software simulation. The software system mimics the actual
system, so the behaviour of the pump depends on information provided by the relay
and the water bottle.

The operation of the wash–wipe system is controlled by a switch which can be
in one of five positions: off, intermittent, slow, fast and wash. Each of these settings
places the system into a different state:

Switch setting System state

Off The system is inactive

Intermittent The blades wipe the windscreen every few seconds

Slow The wiper blades wipe the windscreen continuously

Fast The wiper blades wipe the windscreen continuously and quickly

Wash The pump draws water from the water bottle and sprays it onto the
windscreen

For the pump and the wiper motor to work correctly, the relay must function
correctly. In turn, the relay must be supplied with an electrical circuit. This electrical

18.4 How is an OO System Constructed? 199

circuit is negatively fused, and thus, the fuse must be intact for the circuit to be made.
Cars are negatively switched as this reduces the chances of short circuits leading to
unintentional switching of circuits.

18.4.1 Where Do We Start?

This is often a very difficult point for those new to object-oriented systems. That is,
they have read the basics and understand simple diagrams, but do not know where to
start. It is the old chestnut, “I understand the example but don’t know how to apply
the concepts myself”. This is not unusual and, in the case of object orientation, is
probably normal.

The answer to the question “where do I start?” may at first seem somewhat obscure;
you should start with the data. Remember that objects are things that exchange
messages with each other. The things possess the data that is held by the system and
the messages request actions that relate to the data. Thus, an object-oriented system
is fundamentally concerned with data items.

Before we go on to consider the object-oriented view of the system, let us stop
and think for a while. Ask yourself where could I start; it might be that you think
about starting “with some form of functional decomposition” (breaking the problem
down in terms of the functions it provides) as this might well be the view the user has
of the system. As a natural part of this exercise, you would identify the data required
to support the desired functionality. Notice that the emphasis would be on the system
functionality.

Let us take this further and consider the functions we might identify for the
example presented above:

Function Description

Wash Pump water from the water bottle to the windscreen

Wipe Move the windscreen wipers across the windscreen

We would then identify important system variables and sub-functions to support
the above functions.

Now let us go back to the object-oriented view of the world. In this view, we place
a great deal more emphasis on the data items involved and consider the operations
associated with them (effectively, the reverse of the functional decomposition view).
This means that we start by attempting to identify the primary data items in the
system; next, we look to see what operations are applied to, or performed on, the
data items; finally, we group the data items and operations together to form objects.
In identifying the operations, we may well have to consider additional data items,
which may be separate objects or attributes of the current object. Identifying them is
mostly a matter of skill and experience.

200 18 Introduction to Object Orientation

The object-oriented design approach considers the operations far less important
than the data and their relationships. In the next section we examine the objects that
might exist in our simulation system.

18.4.2 Identifying the Objects

We look at the system as a whole and ask what indicates the state of the system. We
might say that the position of the switch or the status of the pump is significant. This
results in the data items shown below

Data item States

switch setting Is the switch set to off, intermittent, wipe, fast wipe or wash?

wiper motor Is the motor working or not?

pump state Is the pump working or not?

fuse condition Has the fuse blown or not?

water bottle level The current water level

relay status Is current flowing or not?

The identification of the data items is considered in greater detail later. At this
point, merely notice that we have not yet mentioned the functionality of the system
or how it might fit together, we have only mentioned the significant items. As this
is such a simple system, we can assume that each of these elements is an object and
illustrate it in a simple object diagram:

Notice that we have named each object after the element associated with the data
item (e.g., the element associated with the fuse condition is the fuse itself) and that
the actual data (e.g., the condition of the fuse) is an instance variable of the object.
This is a very common way of naming objects and their instance variables. We now
have the basic objects required for our application.

18.4 How is an OO System Constructed? 201

18.4.3 Identifying the Services or Methods

At the moment, we have a set of objects each of which can hold some data. For
example, the water bottle can hold an integer indicating the current water level.
Although object-oriented systems are structured around the data, we still need some
procedural content to change the state of an object or to make the system achieve
some goal. Therefore, we also need to consider the operations a user of each object
might require. Notice that the emphasis here is on the user of the object and what
they require of the object, rather than what operations are performed on the data.

Let us start with the switch object. The switch state can take a number of values. As
we do not want other objects to have direct access to this variable, we must identify
the services that the switch should offer. As a user of a switch we want to be able to
move it between its various settings. As these settings are essentially an enumerated
type, we can have the concept of incrementing or decrementing the switch position.
A switch must therefore provide a move_up and a move_down interface. Exactly
how this is done depends on the programming language; for now, we concentrate on
specifying the required facilities.

If we examine each object in our system and identify the required services, we
may end up with the following table:

Object Service Description

switch move_up Increment switch value

move_down Decrement switch value

State? Return a value indicating the current switch state

fuse working? Indicate if the fuse has blown or not

wiper motor working? Indicate whether the wipers are working or not

relay working? Indicate whether the relay is active or not

pump working? Indicate whether the pump is active or not

water bottle fill Fill the water bottle with water

extract Remove some water from the water bottle

empty Empty the water bottle

We generated this table by examining each of the objects in isolation to identify
the services that might reasonably be required. We may well identify further services
when we attempt to put it all together.

Each of these services should relate to a method within the object. For example,
the moveUp and moveDown services should relate to methods that change the state
instance variable within the object. Using a generic pseudo-code, the move_up
method, within the switch object, might contain the following code:

def move_up(self):
if self.state = = "off" then

self.tate = "wash"
else if self.state = = "wash" then

202 18 Introduction to Object Orientation

self.state = "wipe"

This method changes the value of the state variable in switch. The new value of
the instance variable depends on its previous value. You can define moveDown in a
similar manner. Notice that the reference to the instance variable illustrates that it is
global to the object. The moveUp method requires no parameters. In object-oriented
systems, it is common for few parameters to be passed between methods (particularly
of the same object), as it is the object that holds the data.

18.4.4 Refining the Objects

If we look back to able table, we can see that fuse, wiper motor, relay and pump
all possess a service called working?. This is a hint that these objects may have
something in common. Each of them presents the same interface to the outside world.
If we then consider their attributes, they all possess a common instance variable. At
this point, it is too early to say whether fuse, wiper motor, relay and pump are all
instances of the same class of object (e.g., a Component class) or whether they are
all instances of classes which inherit from some common superclass (see below).
However, this is something we must bear in mind later.

18.4 How is an OO System Constructed? 203

18.4.5 Bringing It All Together

So far, we have identified the primary objects in our system and the basic set of
services they should present. These services were based solely on the data the objects
hold. We must now consider how to make our system function. To do this, we need
to consider how it might be used. The system is part of a very simple diagnosis tutor;
a student uses the system to learn about the effects of various faults on the operation
of a real wiper system, without the need for expensive electronics. We therefore wish
to allow a user of the system to carry out the following operations:

● change the state of a component device
● ask the motor what its new state is

The move_up and move_down operations on the switch change the switch’s
state. Similar operations can be provided for the fuse, the water bottle and the relay.
For the fuse and the relay, we might provide a change_state interface using the
following algorithm:

define change_state(self)
if self.state = = "working" then

self.tate = "notWorking"
else

self.state = "working"
Discovering the state of the motor is more complicated. We have encountered a

situation where one object’s state (the value of its instance variable) is dependent
on information provided by other objects. If we write down procedurally how the
value of other objects affect the status of the pump, we might get the following
pseudo-code:

if fuse is working then
if switch is not off then

if relay is working then
pump status = "working"

This algorithm says that the pump status depends on the relay status, the switch
setting and the fuse status. This is the sort of algorithm you might expect to find in
your application. It links the sub-functions together and processes the data.

In an object-oriented system, well-mannered objects pass messages to one another.
How then do we achieve the same effect as the above algorithm? The answer is that
we must get the objects to pass messages requesting the appropriate information.
One way to do that is to define a method in the pump object that gets the required
information from the other objects and determines the motor’s state. However, this
requires the pump to have links to all the other objects so that it can send them
messages. This is a little contrived and loses the structure of the underlying system.
It also loses any modularity in the system. That is, if we want to add new components
then we have to change the pump object, even if the new components only affect the
switch. This approach also indicates that the developer is thinking too procedurally
and not really in terms of objects.

204 18 Introduction to Object Orientation

In an object-oriented view of the system, the pump object only needs to know the
state of the relay. It should therefore request this information from the relay. In turn,
the relay must request information from the switches and the fuse.

The above illustrates the chain of messages initiated by the pump object:

1. pump sends a working? message to the relay,
2. relay sends a state? message to the switch, the switch replies to the relay,
3. relay sends a second working? message to the fuse:
4. The fuse replies to the relay
5. the relay replies to the motor
6. If the pump is working, then the pump object sends the final message to the water

bottle
7. pump sends a message extract to the water bottle

In step four, a parameter is passed with the message because, unlike the previous
messages that merely requested state information, this message requests a change
in state. The parameter indicates the rate at which the pump draws water from the
water bottle.

The water bottle should not record the value of the pump’s status as it does not
own this value. If it needs the motor’s status in the future, it should request it from
the pump rather than using the (potentially obsolete) value passed to it previously.

In the above figure we assumed that the pump provided the service working?
which allows the process to start. For completeness, the pseudo-code of the
working? method for the pump object is:

def working?(self)
self.status = relay.working()
if self.status = = "working" then

water_bottle.extract(self.status)

This method is a lot simpler than the procedural program presented earlier. At no
point do we change the value of any variables that are not part of the pump, although
they may have been changed as a result of the messages being sent. Also, it only shows
us the part of the story that is directly relevant to the pump. This means that it can

18.5 Where Is the Structure in an OO Program? 205

be much more difficult to deduce the operation of an object-oriented system merely
by reading the source code. Some Python environments (such as the PyCharm IDE)
alleviate this problem, to some extent, through the use of sophisticated browsers.

18.5 Where Is the Structure in an OO Program?

People new to object orientation may be confused because they have lost one of the
key elements that they use to help them understand and structure a software system:
the main program body. This is because the objects and the interactions between
them are the cornerstone of the system. In many ways, the following figure shows
the object-oriented equivalent of a main program. This also highlights an important
feature of most object-oriented approaches: graphical illustrations. Many aspects
of object technology, for example object structure, class inheritance and message
chains, are most easily explained graphically.

Let us now consider the structure of our object-oriented system. It is dictated by the
messages that are sent between objects. That is, an object must possess a reference
to another object in order to send it a message. The resulting system structure is
illustrated below.

In Python, this structure is achieved by making instance variables reference the
appropriate objects. This is the structure which exists between the instances in the
system and does not relate to the classes, which act as templates for the instances.

206 18 Introduction to Object Orientation

We now consider the classes that create the instances. We could assume that
each object is an instance of an equivalent class (see above (a)). However, as has
already been noted, some of the classes bear a very strong resemblance. In particular,
the fuse, the relay, the motor and the pump share a number of common features.
Table following table compares the features (instance variables and services) of
these objects.

fuse relay motor pump

instance variable state state state state

services working? working? working? working?

From this table, the objects differ only in name. This suggests that they are
all instances of a common class such as Component. This class would possess an
additional instance variable, to simplify object identification.

If they are all instances of a common class, they must all behave in exactly the
same way. However, we want the pump to start the analysis process when it receives
the message working? so it must possess a different definition of working? from fuse
and relay. In other ways it is very similar to fuse and relay, so they can be instances
of a class (say Component) and pump and motor can be instances of classes that
inherit from Component (but redefine working?). This is illustrated in the previous
figure (c). The full class diagram is presented in the Figure below.

18.6 Further Readings 207

18.6 Further Readings

If you want to explore some of the ideas presented in this chapter in more detail here
are some online references:

● https://en.wikipedia.org/wiki/Object-oriented_programming This is the
Wikipedia entry for Object-Oriented Programming and thus provides a quick
reference to much of the terminology and history of the subject and acts as a
jumping off point for other references.

● https://dev.to/charanrajgolla/beginners-guide---object-oriented-programming
which provides a light-hearted look at the four concepts within object orientations
namely abstraction, inheritance, polymorphism and encapsulation.

● https://www.tutorialspoint.com/python/python_classes_objects.htm A Tutorials
Point course on Object-Oriented Programming and Python.

https://en.wikipedia.org/wiki/Object-oriented_programming
https://dev.to/charanrajgolla/beginners-guide{-}{-}-object-oriented-programming
https://www.tutorialspoint.com/python/python_classes_objects.htm

Chapter 19
Python Classes

19.1 Introduction

In Python everything is an object and as such is an example of a type or class
of things. For example, integers are an example of the int class, real numbers
are examples of the float class, etc. In this chapter we will look at what a class
is in Python, how it is defined, how instances of a class can be created, how
attributes (data) and methods (behaviour) can be defined for a class and outline
how memory is managed within Python with respect to instance creation and
deletion.

19.2 Python and Classes

As mentioned above everything in Python is an object! This is illustrated below for
a number of different types within Python:

print(type(4))
print(type(5.6))
print(type(True))
print(type(’Natalia’))
print(type([1, 2, 3, 4]))

This prints out a list of classes that define what it is to be an int, or a float or
a bool etc. in Python:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_19

209

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_19&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_19

210 19 Python Classes

<class ’int’>
<class ’float’>
<class ’bool’>
<class ’str’>
<class ’list’>

That is the number 4 is an example or instance of the class int representing how
integers work in Python. In turn the number 5.6 is an instance of the class float
(representing floating-point numbers). The value True is an instance of the class
bool and the string ‘Natalia’ is an instance of the class str (representing for strings in
Python). Finally [1, 2, 3, 4] is an instance of a type of collection called a list (which
is discussed later in this book).

However, you are not just restricted to the built-in types (aka classes); it is also
possible to define user defined types (classes). These can be used to create your own
data structures, your own data types, your own applications, etc.

Three remainder of this chapter considers the constructs in Python used to create
user defined classes.

19.3 Class Definitions

In Python, a class definition has the following format

class nameOfClass(SuperClass):
__init__
attributes
methods

Although you should note that you can mix the order of the definition of attributes,
and methods as required within a single class.

The following code is an example of a class definition:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

Although this is not a hard and fast rule, it is common to define a class in a file
named after that class. For example, the above code would be stored in a file called
Person.py; this makes it easier to find the code associated with a class. This is
shown below using the PyCharm IDE:

19.3 Class Definitions 211

The Person class possesses two attributes (or instance variables) called name and
age.

There is also a special method defined called __init__. This is an initializer
(also known as a constructor) for the class. It indicates what data must be supplied
when an instance of thePerson class is created and how that data is stored internally.

In this case a name and an agemust be supplied when an instance of the Person
class is created.

The values supplied will then be stored within an instance of the class (represented
by the special variable self) in instance variables/attributes self.name and
self.age. Note that the parameters to the __init__ method are local variables
and will disappear when the method terminates, but self.name and self.age
are instance variables and will exist for as long as the object is available.

Let us look for a moment at the special variable self . This is the first parameter
passed into any method. However, when a method is called we do not pass a value
for this parameter ourselves; Python does. It is used to represent the object within
which the method is executing. This provides the context within which the method
runs and allows the method to access the data held by the object. Thus self is the
object itself.

You may also be wondering about that term method. A method is the name given
to behaviour that is linked directly to the Person class; it is not a free-standing
function rather it is part of the definition of the class Person.

Historically, it comes from the language Smalltalk; this language was first used to
simulate a production plant and a method represented some behaviour that could be
used to simulate a change in the production line; it therefore represented a method
for making a change.

212 19 Python Classes

19.4 Creating Examples of the Class Person

New instances/objects (examples) of the class Person can be created by using
the name of the class and passing in the values to be used for the parameters of the
initialization method (with the exception of the first parameter self which is provided
automatically by Python).

For example, the following creates two instances of the class Person:

p1 = Person(’John’, 36)
p2 = Person(’Phoebe’, 21)

The variable p1 holds a reference to the instance or object of the class Person
whose attributes hold the values ‘John’ (for the name attribute) and 36 (for the age
attribute). In turn the variable p2 references an instance of the class Person whose
name and age attributes hold the values ‘Phoebe’ and 21. Thus in memory we have:

The two variables reference separate instances or examples of the class Person.
They therefore respond to the same set of methods/operations and have the same set
of attributes (such as name and age); however, they have their own values for those
attributes (such as ‘John’ and ‘Phoebe’).

Each instance also has its own unique identifier—that shows that even if the
attribute values happen to be the same between two objects (for example, there happen
to be two people called John who are both 36); they are still separate instances of the
given class. This identifier can be accessed using the id() function, for example:

print(’id(p1):’, id(p1))
print(’id(p2):’, id(p2))

When this code is run p1 and p2 will generate different identifiers, for example:

id(p1): 4547191808
id(p2): 4547191864

Note that actual number generated may vary from that above but should still be
unique (within your program).

19.5 Be Careful with Assignment 213

19.5 Be Careful with Assignment

Given that in the above example, p1 and p2 reference different instances of the class
Person; what happens when p1 or p2 are assigned to another variable? That is,
what happens in this case:

p1 = Person(’John’, 36)
px = p1

What does px reference? Actually, it makes a complete copy of the value held
by p1; however, p1 does not hold the instance of the class Person; it holds the
address of the object. It thus copies the address held in p1 into the variable px. This
means that both p1 and px now reference (point at) the same instance in memory;
we there have this:

This may not be obvious when you print p1 and px:

print(p1)
print(px)

As this could just imply that the object has been copied:

John is 36
John is 36

However, if we print the unique identifier for what is referenced by p1 and px
then it becomes clear that it is the same instance of class Person:

print(’id(p1):’, id(p1))
print(’id(px):’, id(px))

which prints out

id(p1): 4326491864
id(px): 4326491864

As can be seen the unique identifier is the same.

214 19 Python Classes

Of course, if p1 is subsequently assigned a different object (for example, if we
ran p1 = p2) then this would have no effect on the value held in px; indeed, we
would now have:

19.6 Printing Out Objects

If we now use the print() function to print the objects held by p1 and p2, we
will get what might at first glance appear to be a slightly odd result:

print(p1)
print(p2)

The output generated is

<__main__.Person object at 0x10f08a400>
<__main__.Person object at 0x10f08a438>

What this is showing is the name of the class (in this case Person) and a hexadec-
imal number indicates where it is held in memory. Neither of which is particularly
useful and certainly doesn’t help us in knowing what information p1 and p2 are
holding.

19.6.1 Accessing Object Attributes

We can access the attributes held by p1 and p2 using what is known as the dot
notation. This notation allows us to follow the variable holding the object with a dot
(‘.’) and the attribute we are interested in access. For example, to access the name of
a person object we can use p1.name or for their age we can use p1.age:

19.6 Printing Out Objects 215

print(p1.name, ’is’, p1.age)
print(p2.name, ’is’, p2.age)

The result of this is that we output

John is 36
Phoebe is 21

Which is rather more meaningful.
In fact, we can also update the attributes of an object directly, for example we can

write:

p1.name = ’Bob’
p1.age = 54
If we now run

print(p1.name, ’is’, p1.age)

then we will get

Bob is 54

We will see in a later chapter (Python Properties) that we can restrict access to
these attributes by making them into properties.

19.6.2 Defining a Default String Representation

In the previous section we printed out information from the instances of class
Person by accessing the attributes name and age.

However, we now needed to know the internal structure of the class Person to
print out its details. That is, we need to know that there are attributes called name
and age available on this class.

It would be much more convenient if the object itself knew how to convert its self
into a string to be printed out!

In fact we can make the class Person do this by defining a method that can be
used to convert an object into a string for printing purposes.

This method is the __str__ method. The method is expected to return a string
which can be used to represent appropriate information about a class.

The signature of the method is

def __str__(self)

Methods that start with a double underbar (‘__’) are by convention considered
special in Python and we will see several of these methods later on in the book. For
the moment we will focus only on the __str__() method.

We can add this method to our class Person and see how that affects the output
generated when using the print() function.

216 19 Python Classes

We will return a string from the __str__ method that provides and the name
and age of the person:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

Note that in the __str__ method we access the name and age attributes using
the self parameter passed into the method by Python. Also note that it is necessary
to convert the age number attribute into a string. This is because the ‘+’ operator
will do string concatenation unless one of the operands (one of the sides of the ‘+’)
is a number; in which case it will try and do arithmetic addition which of course will
not work if the other operand is a string!

If we now try to print out p1 and p2:

print(p1)
print(p2)

The output generated is:

John is 36
Phoebe is 21

Which is much more useful.

19.6.3 Defining a Default Storage Representation

Somewhat confusingly Python provides two ways in which an instance of a class
can be converted into a String. One approach is the __str__() method described
in the previous section. The other is __repr()__ method. An example of a __
repr__() string representation function is given below:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __repr__(self):
return f’Person(name = {self.name}, age = {self.age})’

If we now use the following code to print an instance of the class Person:

19.7 Providing a Class Comment 217

p1 = Person(’John’, 36)
print(p1)

The output that is generated is

Person(name=John, age=36)

So what’s the difference between __str__() and __repr__()? The answer
is that:

● __str__() is intended dot be used to create a string version of an object that
can be used for printing and logging purposes.

● __repr__() is intended to generate a string representation of an object that can
be used to recreate the object - hence the format used above that would allow you
to use Person(name = John, age = 36) to recreate an instance of the
person John.

Which is used by Python depends on what you have define. If you print an object
out then Python first tries to use the __str__() method, if that does not exist it
uses the __repr__()method. You can therefore choose to just use the __repr_
_() method. However, if instances of a class are contained within for example a
list, then when the list is printed out it will always use the __repr__() method.
For this reason it is quite common to find that a class has both a __str__() and a
__repr__() method using slightly different formats. Alternative, one of the two
methods may call the other one.

For example we might define the class Person as:

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
print(’init called with’, name, age)
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age).

def __repr__(self):
return f’Person(name = {self.name}, age = {self.age})’

19.7 Providing a Class Comment

It is common to provide a comment for a class defining what that class does, its
purpose and any important points to note about the class.

218 19 Python Classes

This can be done by providing a docstring for the class just after the class decla-
ration header; you can use the triple quotes string ("""…""") to create multiple line
docstrings, for example:

class Person:
""" An example class to hold a

persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

The docstring is accessible through the __doc__ attribute of the class. The
intention is to make information available to users of the class, even at runtime. It
can also be used by IDEs to provide information on a class.

Note that a class comment can also contain reStructured Text formatting
commands and directives. This is a common practice as it provides improved
information layout over a basic comment.

19.8 Adding a Birthday Method

Let us now add some behaviour to the class Person. In the following example, we
define a method called birthday() that takes no parameters and increments the
age attribute by 1:

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

def birthday(self):
print (’Happy birthday you were’, self.age)
self.age += 1
print(’You are now’, self.age)

Note that again the first parameter passed into the method birthday is self.
This represents the instance (the example of the class Person) that this method will
be used with.

19.9 Defining Instance Methods 219

If we now create an instance of the class Person and call birthday() on it,
the age will be incremented by 1, for example:

p3 = Person(’Adam’, 19)
print(p3)
p3.birthday()
print(p3)

When we run this code, we get

Adam is 19
Happy birthday you were 19
You are now 20
Adam is 20

As you can see Adam is initially 19; but after his birthday he is now 20.

19.9 Defining Instance Methods

The birthday() method presented above is an example of what is known as an
instance method; that is, it is tied to an instance of the class. In that case the method
did not take any parameters, nor did it return any parameters; however, instance
methods can do both.

For example, let us assume that the Person class will also be used to calculate
how much someone should be paid. Let us also assume that the rate is £7.50 if you
are under 21 but that there is a supplement of 2.50 if you are 21 or over.

We could define an instance method that will take as input the number of hours
worked and return the amount someone should be paid:

class Person:
""" An example class to hold a persons name and age"""
#...
def calculate_pay(self, hours_worked):

rate_of_pay = 7.50
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

We can invoke this method again using the dot notation, for example:

pay = p2.calculate_pay(40)
print(’Pay’, p2.name, pay)
pay = p3.calculate_pay(40)
print(’Pay’, p3.name, pay)

Running this shows that Phoebe (who is 21) will be paid £400 while Adam who
is only 19 will be paid only £300:

220 19 Python Classes

Pay Phoebe 400.0
Pay Adam 300.0

Another example of an instance method defined on the class Person is the is_
teenager() method. This method does not take a parameter, but it does return a
Boolean value depending upon the age attribute:

class Person:
""" An example class to hold a persons name and age"""
#...
def is_teenager(self):

return self.age < 20

Note that the implicitly provided parameter ‘self’ is still provided even when
a method does not take a parameter.

19.10 Person Class Recap

Let us bring together the concepts that we have looked at so far in the final version
of the class Person.

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

def birthday(self):
print (’Happy birthday you were’, self.age)
self.age += 1
print(’You are now’, self.age)

def calculate_pay(self, hours_worked):
rate_of_pay = 7.50
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

def is_teenager(self):
return self.age < 20

This class exhibits several features we have seen already and expands a few others:

● The class has a two-parameter initializer that takes a String and an Integer.
● It defines two attributes held by each of the instances of the class; name and age.
● It defines a __str__ method so that the details of the Person object can be easily

printed.

19.11 The Del Keyword 221

● It defines three methods birthday(), calculate_pay() and is_
teenager().

● The method birthday() does not return anything (i.e., it does not return
a value) and is comprised of three statements, two print statements and an
assignment.

● is_teenager() returns a Boolean value (i.e., one that returns True or
False).

An example application using this class is given below:

p1 = Person(’John’, 36)
print(p1)
print (p1.name, ’is’, p1.age)
print(’p1.is_teenager’, p1.is_teenager())
p1.birthday()
print(p1)
p1.age = 18
print(p1)

This application creates an instance of the Person class using the values ‘John’
and 36. It then prints out p1 using print (which will automatically call the __
str__()method on the instances passed to it). It then accesses the values of name
and age properties and prints these. Following this it calls the is_teenager()
method and prints the result returned. It then calls the birthday() method. Finally,
it assigns a new value to the age property. The output from this application is given
below:

John is 36
John is 36
p1.is_teenager False
Happy birthday you were 36
You are now 37
John is 37
John is 18

19.11 The Del Keyword

Having at one point created an object of some type (whether that is a bool, an int
or a user defined type such as Person) it may later be necessary to delete that object.
This can be done using the keyword del. This keyword is used to delete objects
which allows the memory they are using to be reclaimed and used by other parts of
your program.

For example, we can write

222 19 Python Classes

p1 = Person(’John’, 36)
print(p1)
del p1.

After the del statement the object held by p1 will no longer be available and any
attempt to reference it will generate an error.

You do not need to use del as setting p1 above to the None value (representing
nothingness) will have the same effect. In addition, if the above code was defined
within a function or a method then p1 will cease to exist once the function or method
terminates and this will again have the same effect as deleting the object and freeing
up the memory.

19.12 Automatic Memory Management

The creation and deletion of objects (and their associated memory) is managed by the
Python Memory Manager. Indeed, the provision of a memory manager (also known
as automatic memory management) is one of Python’s advantages when compared
to languages such as C and C++. It is not uncommon to hear C++ programmers
complaining about spending many hours attempting to track down a particularly
awkward bug only to find it was a problem associated with memory allocation or
pointer manipulation. Similarly, a regular problem for C++ developers is that of
memory creep, which occurs when memory is allocated but is not freed up. The
application either uses all available memory or runs out of space and produces a run
time error.

Most of the problems associated with memory allocation in languages such as
C++ occur because programmers must not only concentrate on the (often complex)
application logic but also on memory management. They must ensure that they
allocate only the memory which is required and deallocate it when it is no longer
required. This may sound simple, but it is no mean feat in a large complex application.

An interesting question to ask is “why do programmers have to manage memory
allocation?”. There are few programmers today who would expect to have to manage
the registers being used by their programs, although 30 or 40 years ago the situation
was very different. One answer to the memory management question, often cited
by those who like to manage their own memory, is that “it is more efficient, you
have more control, it is faster and leads to more compact code”. Of course, if you
wish to take these comments to their extreme, then we should all be programming
in assembler. This would enable us all to produce faster, more efficient and more
compact code than that produced by Python or languages such as Java.

The point about high level languages, however, is that they are more produc-
tive, introduce fewer errors, are more expressive and are efficient enough (given
modern computers and compiler technology). The memory management issue is
somewhat similar. If the system automatically handles the allocation and deallo-
cation of memory, then the programmer can concentrate on the application logic.

19.13 Intrinsic Attributes 223

This makes the programmer more productive, removes problems due to poor
memory management and, when implemented efficiently, can still provide acceptable
performance.

Python therefore provides automatic memory management. Essentially, it allo-
cates a portion of memory as and when required. When memory is short, it looks
for areas which are no longer referenced. These areas of memory are then freed up
(deallocated) so that they can be reallocated. This process is often referred to as
Garbage Collection.

19.13 Intrinsic Attributes

Every class (and every object) in Python has a set of intrinsic attributes set up by the
Python runtime system. Some of these intrinsic attributes are given below for classes
and objects.

Classes have the following intrinsic attributes:

● __name__ the name of the class
● __module__ the module (or library) from which it was loaded
● __bases__ a collection of its base classes (see inheritance later in this book)
● __dict__ a dictionary (a set of key-value pairs) containing all the attributes

(including methods)
● __doc__ the documentation string

For objects:

● __class__ the name of the class of the object
● __dict__ a dictionary containing all the object’s attributes

Notice that these intrinsic attributes all start and end with a double underbar—this
indicates their special status within Python.

An example of printing these attributes out for the class Person and a instance
of the class are shown below:

print(’Class attributes’)
print(Person.__name__)
print(Person.__module__)
print(Person.__doc__)
print(Person.__dict__)
print(’Object attributes’)
print(p1.__class__)
print(p1.__dict__)

The output from this is:

Class attributes
Person
__main__
An example class to hold a persons name and age

224 19 Python Classes

{’__module__’: ’__main__’, ’__doc__’: ’ An example class to hold a
persons name and age’, ’instance_count’: 4, ’increment_instance_
count’: <classmethod object at 0x105955588>, ’static_function’:
<staticmethod object at 0x1059555c0>, ’__init__’: <function
Person.__init__ at 0x10595d268>, ’__str__’: <function Person._
_str__ at 0x10595d2f0>, ’birthday’: <function Person.birthday
at 0x10595d378>, ’calculate_pay’: <function Person.calculate_
pay at 0x10595d400>, ’is_teenager’: <function Person.is_teenager
at 0x10595d488>, ’__dict__’: <attribute ’__dict__’ of ’Person’
objects>, ’__weakref__’: <attribute ’__weakref__’ of ’Person’
objects>}
Object attributes
<class ’__main__.Person’>
{’name’: ’John’, ’age’: 36}

19.14 Online Resources

See the following for further information on Python classes:

● https://docs.python.org/3/tutorial/classes.html the Python Standard library Class
tutorial.

● https://www.tutorialspoint.com/python3/python_classes_objects.htm The tuto-
rials point tutorial on Python 3 classes.

19.15 Exercises

The aim of this exercise is to create a new class called Account.

1. Define a new class to represent a type of bank account.
2. When the class is instantiated you should provide the account number, the name

of the account holder, an opening balance and the type of account (which can be
a string representing ‘current’, ‘deposit’ or ‘investment’, etc.). This means that
there must be an __init__ method and you will need to store the data within the
object.

3. Provide three instance methods for the Account; deposit(amount),
withdraw(amount) and get_balance(). The behaviour of these
methods should be as expected, deposit will increase the balance, withdraw will
decrease the balance and get_balance() returns the current balance.

4. Define a simple test application to verify the behaviour of your Account class.

It can be helpful to see how your class Account is expected to be used. For this
reason a simple test application for the Account is given below:

acc1 = Account(’123’, ’John’, 10.05, ’current’)
acc2 = Account(’345’, ’John’, 23.55, ’savings’)

https://docs.python.org/3/tutorial/classes.html
https://www.tutorialspoint.com/python3/python_classes_objects.htm

19.15 Exercises 225

acc3 = Account(’567’, ’Phoebe’, 12.45, ’investment’)

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print(’balance:’, acc1.get_balance())

The following output illustrates what the result of running this test application
might look like:

Account[123] - John, current account = 10.05
Account[345] - John, savings account = 23.55
Account[567] - Phoebe, investment account = 12.45
balance: 21.17

Chapter 20
Class Side and Static Behaviour

20.1 Introduction

Python classes can hold data and behaviour that is not part of an instance or object;
instead they are part of the class.

This chapter introduces class-side data, behaviour and static behaviour. Note that
in Python the concept of class-side data and behaviour is separate for the concept of
static behaviour and so care should be taken when looking at these two aspects of a
class.

20.2 Class-Side Data

In Python classes can also have attributes; these are referred to as class variables or
attributes (as opposed to instance variables or attributes).

In Python variables defined within the scope of the class, but outside of any
methods, are tied to the class rather than to any instance and are thus class variables.

For example, we can update the class Person to keep a count of how many
instances of the class are created:

class Person:
""" An example class to hold a persons name and age"""

instance_count = 0
def __init__(self, name, age):

Person.instance_count += 1
self.name = name
self.age = age

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_20

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_20&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_20

228 20 Class Side and Static Behaviour

The variable instance_count is not part of an individual object, rather it is
part of the class and all instances of the class can access that shared variable by
prefixing it with the class name.

Now each time a new instance of the class is created, the instance_count is
incremented, thus if we write:

p1 = Person(’Jason’, 36)
p2 = Person(’Carol’, 21)
p3 = Person(’James’, 19)
p4 = Person(’Tom’, 31)
print(Person.instance_count)

The output will be:

4

This is because 4 instances have been created and thus __init__() has been
run 4 times and instance_count has been incremented four times.

20.3 Class-Side Methods

It is also possible to define behaviour that is linked to the class rather than an
individual object; this behaviour is defined in a class method.

Class methods are written in a similar manner to any other method but are deco-
rated with @classmethod and take a first parameter which represents the class
rather than an individual instance. This decoration is written before the method
declaration.

An example of a class method is shown below:

class Person:
""" An example class to hold a persons name and age"""
instance_count = 0
@classmethod
def increment_instance_count(cls):

cls.instance_count += 1
def __init__(self, name, age):

Person.increment_instance_count()
self.name = name
self.age = age

In this case the class method increments the instance_count variable; note
that the instane_count variable is accessed via the cls parameter passed into
the increment_instance_countmethod by Python. As this is a class method
you do not need to prefix the class attribute with the name of class; instead the first
parameter to the class method, cls, represents the class itself.

20.4 Static Methods 229

The class method can be accessed by prefixing it with the name of the class and
using the dot notation to indicate which method to call. This is illustrated in the body
of the __init__() method.

20.3.1 Why Class-Side Methods?

It may at first seem unclear what should normally go in an instance method as opposed
to what should go in a class method. After all, they are both defined in the class.
However, it is important to remember that

● Instance methods define the behaviour of the instance or object
● Class methods define the behaviour of the class.

Class-side methods should only perform one of the following roles:

● Instance creation This role is very important as it is how you can use a class as
a factory for objects and can help hide a whole load of set up and instantiation
work.

● Answering enquiries about the class This role can provide generally useful objects,
frequently derived from class variables. For example, they may return the number
of instances of this class that have been created.

● Instance management In this role, class-side methods control the number of
instances created. For example, a class may only allow a single instance of the
class to be created; this is termed a singleton class. Instance management methods
may also be used to access an instance (e.g., randomly or in a given state).

● Examples Occasionally, class methods are used to provide helpful examples which
explain the operation of a class. This can be very good practice.

● Testing Class-side methods can be used to support the testing of an instance of a
class. You can use them to create an instance, perform an operation and compare
the result with a known value. If the values are different, the method can report
an error. This is a very useful way of providing regression tests.

● Support for one of the above roles

Any other tasks should be performed by an instance method.

20.4 Static Methods

There is one more type of method that can be defined on a class; these are static
methods.

Static methods are defined within a class but are not tied to either the class nor any
instance of the class; they do not receive the special first parameter representing either
the class (cls for class methods) or the instances (self for instance methods).

230 20 Class Side and Static Behaviour

They are in effect, the same as free standing functions but are defined within a
class often for convenience or to provide a way to group such functions together.

A static method is a method that is decorated with the @staticmethod deco-
rator.

An example of a static method is given below:

class Person:

@staticmethod
def static_function():

print(’Static method’)

Static methods are invoked via the name of the class they are defined in, for
example:

Person.static_function()

A note for Java and C# programmers; in both Java and C# the term class side and
static are used interchangeably (not helped by the use of the keyword static for these
methods). However, in both cases those methods are the equivalent of class-side
methods in Python. In Python class methods and static methods are two very, very
different things—do not use these terms interchangeably.

20.5 Hints

There are a range of special methods available in Python on a class.
All of these special methods start and end with a double underbars (‘__’).
In general, in Python anything that starts and ends with these double underbars is

considered special and so care should be taken when using them.
You should never name one of your own methods or functions __

<something>__ unless you intend to (re)define some default behaviour.

20.6 Online Resources

There is surprisingly little information available on Python’s static and class methods
(which in part explains why many developers are confused by them); however the
following are available:

● https://python-reference.readthedocs.io/en/latest/docs/functions/staticmethod.
html documentation on static methods.

● https://python-reference.readthedocs.io/en/latest/docs/functions/classmethod.
html?highlight=classmethod documentation on class methods.

● https://www.tutorialspoint.com/class-method-vs-static-method-in-python
tutorial on class methods versus static methods.

https://python-reference.readthedocs.io/en/latest/docs/functions/staticmethod.html
https://python-reference.readthedocs.io/en/latest/docs/functions/staticmethod.html
https://python-reference.readthedocs.io/en/latest/docs/functions/classmethod.html?highlight=classmethod
https://python-reference.readthedocs.io/en/latest/docs/functions/classmethod.html?highlight=classmethod
https://www.tutorialspoint.com/class-method-vs-static-method-in-python

20.7 Exercises 231

20.7 Exercises

The aim of this exercise is to add housekeeping style methods to the Account class.
You should follow these steps:

1. We want to allow the Account class from the last chapter to keep track of the
number of instances of the class that have been created.

2. Print out a message each time a new instance of the Account class is created.
3. Print out the number of accounts created at the end of the previous test program.

For example add the following two statements to the end of the program:

print(’Number of Account instances created:’,
Account.instance_count)

Chapter 21
Class Inheritance

21.1 Introduction

Inheritance is a core feature of Object-Oriented Programming. It allows one class
to inherit data or behaviour from another class and is one of the key ways in which
reuse is enabled within classes.

This chapter introduces inheritance between classes in Python. It explains what
inheritance is, how it is defined in Python, considers the purpose of inheritance
and addresses the issues around single and multiple inheritance (both of which are
supported by Python).

21.2 What is Inheritance?

Inheritance allows features defined in one class to be inherited and reused in the
definition of another class. For example, a Person class might have the attributes
name and age. It might also have behaviour associated with a Person such as
birthday().

We might then decide that we want to have another class Employee and that
employees also have a name and an age and will have birthdays. However, in
addition an Employee may have an employee Id attribute and a calculate_
pay() behaviour.

At this point we could duplicate the definition of the name and age attributes
and the birthday() behaviour in the class Employee (for example by cutting
and pasting the code between the two classes).

However, this is not only inefficient; it may also cause problems in the future.
For example we may realize that there is a problem or bug in the implementation of
birthday() and may correct it in the class Person; however, we may forget to
apply the same fix to the class Employee.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_21

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_21&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_21

234 21 Class Inheritance

In general, in software design and development it is considered best practice to
define something once and to reuse that something when required.

In an object-oriented system we can achieve the reuse of data or behaviour via
inheritance. That is one class (in this case the Employee class) can inherit features
from another class (in this case Person). This is shown pictorially below:

In this diagram the Employee class us shown as inheriting from the Person
class. This means that the Employee class obtains all the data and behaviour of
the Person class. It is therefore as though the Employee class has defined three
attributes name, age and id and two methods birthday() and calculate_
pay().

A class that is defined as extending a parent class has the following syntax:

class SubClassName(BaseClassName):
class-body

Note that the parent class is specified by providing the name of the class in round
brackets after the name of the new (child) class.

21.3 Defining Inheritance Between Classes

We can define the class Person in Python as before:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def birthday(self):
print(’Happy birthday you were’, self.age)
self.age += 1
print(’You are now’, self.age)

21.3 Defining Inheritance Between Classes 235

We could now define the class Employee as being a class whose definition builds
on (or inherits from) the class Person:

class Employee(Person):
def __init__(self, name, age, id):

super().__init__(name, age)
self.id = id

def calculate_pay(self, hours_worked):
rate_of_pay = 7.50
if self.age >= 21:

rate_of_pay += 2.50
return hours_worked * rate_of_pay

Here we do several things:

1. The class is called Employee but it extends Person. This is indicated by
including the name of the class being inherited in parentheses after the name of
the class being defined (e.g., Employee(Person)) in the class declaration.

2. Inside the __init__ method we reference the __init__() method defined
in the class Person and used to initialize instances of that class (via the
super().__init__() reference. This allows whatever initialization is
required for Person to happen. This is called from within theEmployee class’s
__init__() which then allows any initialization required by the Employee
to occur. Note that the call to the super().__init__() initializer can come
anywhere within the Employee.__init__() method; but by convention it
comes first to ensure that whatever the Person class does during initialization
does not over write what happens in the Employee class.

3. All instances of the class Person have a name, and age and have the behaviour
birthday().

4. All instances of the class Employee have a name, and age and an id and have
the behaviours birthday() and calculate_pay(house_worked).

5. The method calculate_pay() defined in the Employee class can access
the attributes name and age just as it can access the attribute id. In fact, it uses
the employee’s age to determine the rate of pay to apply.

We can go further, and we can subclass Employee, for example with the class
SalesPerson:

class SalesPerson(Employee):
def __init__(self, name, age, id, region, sales):

super().__init__(name, age, id)
self.region = region
self.sales = sales

def bonus(self):
return self.sales * 0.5

236 21 Class Inheritance

Now we can say that the class SalesPerson has a name, an age and an id as
well as a region and a sales total. It also has the methods birthday(),
calculate_pay(hourse_worked) and bonus().

In this case the SalesPerson.__init__() method calls the Employee._
_init__() method as that is the next class up the hierarchy and thus we want to
run that classes initialization behaviour before we set up the SalesPerson class
(which of course in turn runs the Person classes initialization behaviour).

We can now write code such as:

print(’Person’)
p = Person(’John’, 54)
print(p)
print(’-’ * 25)

print(’Employee’)
e = Employee(’Denise’, 51, 7468)
e.birthday()
print(’e.calculate_pay(40):’, e.calculate_pay(40))
print(’-’ * 25)

print(’SalesPerson’)
s = SalesPerson(’Phoebe’, 21, 4712, ’UK’, 30000.0)
s.birthday()
print(’s.calculate_pay(40):’, s.calculate_pay(40))
print(’s.bonus():’, s.bonus())

With the output being:

Person
John is 54

Employee
Happy birthday you were 51
You are now 52
e.calculate_pay(40): 400.0

SalesPerson
Happy birthday you were 21
You are now 22
s.calculate_pay(40): 400.0
s.bonus(): 15000.0

It is important to note that we have not done anything to the class Person by
defining Employee and SalesPerson; that is it is not affected by those class
definitions. Thus, a Person does not have an employee id. Similarly, neither an
Employee nor a Person have a region or a sales total.

In terms of behaviour, instances of all three classes can run the method
birthday(), but

● only Employee and SalesPeron objects can run the method calculcate_
pay() and

● only SalesPerson objects can run the method bonus().

21.4 Terminology Around Inheritance 237

21.4 Terminology Around Inheritance

The following terminology is commonly used with inheritance in most object-
oriented languages including Python:

Class A class defines a combination of data and procedures that operate on that
data.

Subclass A subclass is a class that inherits from another class. For example, an
Employee might inherit from a class Person. Subclasses are, of course, classes
in their own right. Any class can have any number of subclasses.

Superclass A superclass is the parent of a class. It is the class from which the
current class inherits. For example, Personmight be the superclass of Employee.
In Python, a class can have any number of superclasses.

Single or multiple inheritance Single and multiple inheritance refer to the number
of super classes from which a class can inherit. For example, Java is a single inheri-
tance system, in which a class can only inherit from one class. Python by contrast is
a multiple inheritance system in which a class can inherit from one or more classes.

Note that a set of classes, involved in an inheritance hierarchy, such as those shown
above is often named after the class at the root (top) of the hierarchy; in this case it
would make these classes part of the Person class hierarchy.

21.4.1 Types of Hierarchy

In most object-oriented systems there are two types of hierarchy; one refers to inher-
itance (whether single or multiple) and the other refers to instantiation. The inheri-
tance hierarchy has already been described. It is the way in which one class inherits
features from a superclass.

238 21 Class Inheritance

The instantiation hierarchy relates to instances or objects rather than classes and
is important during the execution of the object.

There are two types of instance relationships: one indicates a part-of relationship,
while the other relates to a using relationship (it is referred to as an is-a relationship).
This is illustrated below:

The difference between an is-a relationship and a part-of relationship is often
confusing for new programmers (and sometimes for those who are experienced in
non object-oriented languages). The above figure illustrates that a Student is-a type
of Person whereas an Engine is part-of a Car. It does not make sense to say that a
student is part-of a person or that an engine is-a type of car!

In Python, inheritance relationships are implemented by the sub-classing mech-
anism. In contrast, part-of relationships are implemented using instance attributes in
Python.

The problem with classes, inheritance and is-a relationships is that on the surface
they appear to capture a similar concept. In the following figure the hierarchies all
capture some aspect of the use of the phrase is-a. However, they are all intended to
capture a different relationship.

The confusion is due to the fact that in modern English we tend to overuse the
term is-a. For example, in English we can say that an Employee is a type of Person or
that Andrew is a Person; both are semantically correct. However, in Python classes
such as Employee and Person and an object such as Andrew are different things.
We can distinguish between the different types of relationship by being more precise
about our definitions in terms of a programming language, such as Python.

21.5 The Class Object and Inheritance 239

21.5 The Class Object and Inheritance

Every class in Python extends one or more superclasses. This is true even of the class
Person shown below:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

This is because if you do not specify a superclass explicitly Python automatically
adds in the class object as a parent class. Thus the above is exactly the same as the
following listing which explicitly lists the class object as the superclass of Person:

class Person(object):
def __init__(self, name, age):

self.name = name
self.age = age

Both listings above defines a class called Person that extends the class object.
In fact, between Python 2.2 and Python 3 it was required to use the long hand

form to ensure that the new style classes were being used (as opposed to an older
way in which classes were defined pre Python 2.2). As such it is common to find that
Python developers still use the long hand (explicit) form when defining classes that
directly extend object.

240 21 Class Inheritance

The fact that all class eventually inherit from the class object means that
behaviour defined in object is available for all classes everywhere.

21.6 The Built-in Object Class

The class object is the base (root) class for all classes in Python. It has methods
that are therefore available in all Python objects. It defines a common set of special
methods and intrinsic attributes. The methods include the special methods __str__(),
__jnit()__, __eq__() (equals) and __hash__() (hash method). It also defines attributes
such as __class__, __disct__, __doc__ and __module__.

21.7 Purpose of Subclasses

Subclasses are used to refine the behaviour and data structures of a superclass.
A parent class may define some generic/shared attributes and methods; these can

then be inherited and reused by several other (sub) classes which add subclass specific
attributes and behaviour.

In fact, there are only a small number of things that a subclass should do relative
to its parent or super class. If a proposed subclass does not do any of these then your
selected parent class is not the most appropriate super class to use.

A subclass should modify the behaviour of its parent class or extend the data held
by its parent class. This modification should refine the class in one or more of these
ways:

● Changes to the external protocol or interface of the class, that is it should extend
the set of methods or attributes provided by the class.

● Changes in the implementation of the methods; i.e., the way in which the behaviour
provided by the class are implemented.

● Additional behaviour that references inherited behaviour.

If a subclass does not provide one or more of the above, then it is incorrectly
placed. For example, if a subclass implements a set of new methods, but does not
refer to the attributes or methods of the parent class, then the class is not really a
subclass of the parent (it does not extend it).

21.8 Overriding Methods 241

As an example, consider the class hierarchy illustrated above. A generic root
class has been defined. This class defines a Conveyance which has doors, fuel
(both with default values) and a method, start_up(), that starts the engine of the
conveyance. Three subclasses of Conveyance have also been defined: Dinghy,
Car and Tank. Two of these subclasses are appropriate, but one should probably
not inherit from Conveyance. We shall consider each in turn to determine their
suitability.

● The class Tank overrides the number of doors inherited, uses the start_
up method within the method move, and provides a new attribute. It therefore
matches all three of our criteria.

● Similarly, the class Car overrides the number of doors and uses the method
start_up(). It also uses the instance variable fuel within a new method
accelerate(). It also, therefore, matches our criteria.

● The class Dinghy defines a new attribute sails and a new method
set_sail(). As such, it does not use any of the features inherited from
Conveyance. However, we might say that it has extended Conveyance by
providing this attribute and method. We must then consider the features provided
by Conveyance. We can ask ourselves whether they make sense within the
context of Dinghy. If we assume that a dinghy is a small sail-powered boat, with
no cabin and no engine, then nothing inherited from Conveyance is useful. In
this case, it is likely that Conveyance is misnamed, as it defines some sort of a
motor vehicle, and the Dinghy class should not have extended it.

21.8 Overriding Methods

Overriding occurs when a method is defined in a class (for example, Person) and
also in one of its subclasses (for example, Employee). It means that instances of
Person and Employee both respond to requests for this method to be run but each
has their own implementation of the method.

242 21 Class Inheritance

For example, let us assume that we define the method __str__() in these
classes (so that we have a string representation of these objects to use with the
print function). The pseudo code definition of this in Person might be:

def __str__(self):
return ’Person ’ + self.name + ’ is ’ + str(self.age)

In Employee, it might be defined as:

def __str__(self):
return ’Eemployee(’ + str(self.id) + ’)’

The method in Employee replaces the version in Person for all instances of
Employee. If we ask an instance of Employee for the result of __str__(),
we get the string ‘Employee(<some_id>)’. If you are confused, think of it this
way:

If you ask an object to perform some operation, then, to determine which version of the
method is run, look in the class used to create the instance. If the method is not defined there,
look in the class’s parent. Keep doing this until you find a method which implements the
operation requested. This is the version which is used.

As a concrete example, see the classes Person and Employee below; in which
the __str__() method in Person is overridden in Employee.

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

class Employee(Person):
def __init__(self, name, age, id):

super().__init__(name, age)
self.id = id

def __str__(self):
return self.name + ’ is ’ + str(self.age) + ’ - id(’ +

str(self.id) + ’)’
Instances of these classes will both be convertible to a string using __str__

() but the version used by instances of Employee will differ from that used with
instances of Person, for example:

p = Person(’John’, 54)
print(p)
e = Employee(’Denise’, 51, 1234)
print(e)

Generates as output:

John is 54
Denise is 51 - id(1234)

As can be seen from this the Employee class prints the name, age and id of
the Employee while the Person class only prints the name and age.

21.10 Inheritance-Oriented Naming Conventions 243

21.9 Extending Superclass Methods

However, in the previous section we had to duplicated the code in Person down in
Employee so that we could convert the name and age attributes into strings.

However we can avoid this duplication by invoking the parent class’s method from
within the child class version (as we in fact did for the __init__() initializer).

For example:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ’ is ’ + str(self.age)

class Employee(Person):
def __init__(self, name, age, id):

super().__init__(name, age)
self.id = id

def __str__(self):
return super().__str__() + ’ - id(’ + str(self.id) + ’)’

In this version of the code the Employee classes version of the __str__()
method first calls the parent classes version of this method and then adds the location
information to the string returned from that. This means that we only have one
location that converts name and age into a string.

The output from the code

p = Person(’John’, 54)
print(p)
e = Employee(’Denise’, 51, 1234)
print(e)

remains exactly the same:

John is 54
Denise is 51 - id(1234)

21.10 Inheritance-Oriented Naming Conventions

There are two naming conventions to be aware of with respect to Python classes and
inheritance. These are that

● Single underbar convention. Methods or instance variables/attributes (those
accessed via self) whose names start with a single under bar are considered to
be protected that is they are private to the class but can be accessed from any
subclass. Their scope is thus the class and any subclasses (either direct subclasses
or any level of sub subclass).

244 21 Class Inheritance

● Double underbar convention. Method or instance variables/attributes (those
accessed via self) whose names start with a double under bar should be consid-
ered private to that class and should not be called from outside of the class. This
includes any subclasses; private means private to the class and only to that class.

Any identifier of the form __somename (at least two leading underscores
and at most one trailing underscore) is textually replaced with _classname__
somename, where classname is the current class name with leading underscore(s)
stripped.

Python does what is called name mangling to provide some support for methods
that start with a double under bar. This mangling is done without regard to the
syntactic position of the identifier, so it can be used to define class-private instance
and class variables, methods, variables stored in globals, and even variables stored
in instances.

21.11 Python and Multiple Inheritance

Python supports the idea of multiple inheritance; that is a class can inherit from one
or more other classes (many object-oriented languages limit inheritance to a single
class such as Java and C#).

This idea is illustrated by the following diagram:

In this case the class ToyCar inherits from the class Car and the class Toy. In
turn the Car and Toy classes inherit from the (default) base class object.

21.11 Python and Multiple Inheritance 245

The syntax for defining multiple inheritance in Python allows multiple super-
classes to be listed in the parent class list (defined by the brackets following the class
name). Each parent class is separated by a comma. The syntax is thus:

class SubClassName(BaseClassName1, BaseClassName2, …
BaseClassNameN):

class-body

For example:

class Car:
""" Car """

class Toy:
""" Toy """

class ToyCar(Car, Toy):
""" A Toy Car """

We can say that the class ToyCar inherits all the attributes (data) and methods
(behaviour) defined in classes Car, Toy and object.

One of the fundamental questions that this raises is how is inheritance of behaviour
managed within a multiple inheritance hierarchy. The challenge that multiple inher-
itance possesses is illustrated by adding a couple of methods to the class hierarchy
we are looking at. In this example we have added the method move() to both the
class Car and the class Toy:

The question here is which version of the method move() will be run when an
instance of the ToyCar class is instantiated and we call toy_car.move()?

This illustrates (a simple version of) the so-called “diamond inheritance” problem.

246 21 Class Inheritance

The issue is that with multiple base classes from which attributes or methods may
be inherited, there is often ambiguity that must be resolved. Here, when we create
an instance of the class ToyCar, and call the move() method, does this invoke the
one inherited from the Car base class or from the Toy base class?

The answer is that in Python 3, a breadth first search is used to find methods
defined in parent classes; this means that when the method move() is called on
ToyCar, it would first look in Car; it would then only look in Toy if it could not
find a method move() in Car. If it cannot find the method in either Car or Toy it
would then look in the class object.

As a result, it will find the version in Car first and use that version.
This is shown below:

class Car:
def move(self):

print(’Car - move()’)

class Toy:
def move(self):

print(’Toy - move()’)

class ToyCar(Car, Toy):
""" A Toy Car """

tc = ToyCar()
tc.move()

The output of this is

Car - move()

However, if we alter the order in which the ToyCar inherits from the parent
classes such that we swap Toy and Car around:

class ToyCar(Toy, Car):
""" A Toy Car """

Then the Toy class is searched first and the output is changed to Toy—move().
This shows that the order in which a class inherits from multiple classes is

significant In Python.

21.12 Multiple Inheritance Considered Harmful

At first sight multiple inheritance in Python might appear to be particularly useful;
after all it allows you to mix together multiple concepts into a single class very easily
and quickly. This is certainly true, and it can be a very flexible feature if used with
care. However, the word care is used here and should be noted.

21.12 Multiple Inheritance Considered Harmful 247

Multiple inheritance can also be very dangerous and is quite a contentious topic
for programmers and for those designing programming languages. Few things in
programmer are inherently bad but multiple inheritance can result in a level of
complexity (and unexpected behaviour) that can tie developers in knots.

Part of the problem highlighted by those protesting against multiple inheritance
is down to the increased complexity and ambiguity that can occur with multiple
inheritance trees that may interconnect between the different classes. One way to
think of this is that if a class inherits from multiple classes, then that class may
have the same classes in the class hierarchy multiple times, this can make it hard to
determine which version of a method may execute and this may allow bugs to go
untouched or indeed introduce expected issues due to different interactions between
methods. This is exacerbated when inherited methods call super() using the same
method name such as:

def get_data(self):
return super().get_data() + ’FData’

The following diagram presents a somewhat convoluted multiple inheritance
examples where the class names A–X have been used so that there is no semantic
meaning attributable to the inherited classes. Different classes define several common
methods (print_info() and get_data()).

All the classes in the hierarchy define a __str__() method that returns the
class name; if the class extends a class other than object, then the super version of _
_str__() is also invoked:

248 21 Class Inheritance

The code for this class hierarchy is given at the end of the section to avoid breaking
up the flow.

We can now use the X class in a simple Python program:

x = X()
print(’print(x):’, x)
print(’-’ * 25)
x.print_info()

The question now is what is the output from this program?
What is the string printed to represent X? What is printed out as a result of calling

the method print_info()?
The output from this simple code is:

print(x): CGFHJX

HCDataGDataFData

However, if we change the order of inheritance for the class ‘H’ from (F, G) to
(G, F) then the output changes:

print(x): CFGHJX

HCDataFDataGData

This is of course because the search order, back up through the class hierarchy, is
now different.

Note that this change came about not because of a modification we made to the
class we instantiated (that is the class X), but from the order of the classes that one
of its parents inherited from. This can be one of the unintended consequences of
multiple inheritance; changing something in the multiple class hierarchy at one level
can break some behaviour further down the hierarchy in a class that is unknown to
the developer. Making the change.

Also note that the class inheritance diagram we presented earlier did not state
what order the parent classes were listed in for any specific class (this was left to the
discretion of the programmer).

Of course Python is not ambiguous nor does it get confused; it is the human
developer that can get confused and be surprised with the behaviour that is then
presented. Indeed, if you try and define a class hierarchy which Python cannot resolve
into a consistent structure it will tell you so, for example:

Traceback (most recent call last):
File "multiple_inheritance_example.py", line 65, in <module>
class Z(H, J):

TypeError: Cannot create a consistent method resolution
order (MRO) for bases F, G

What can be confusing is that Python’s ability to produce a consistent structure
can also be dependent on the order of inheritance. For example, if we modify the
classes that ‘X’ inherits from such that the order is I and J:

class X(I, J):

21.12 Multiple Inheritance Considered Harmful 249

def __str__(self):
return super().__str__() + ’X’

Then this compiles and can be used with the previous code (albeit with different
output):

print(x): AIX

A

However, if we change the order of the parent classes such that we swap I and J:

class X(J, I):
def __str__(self):

return super().__str__() + ’X’
We now get a TypeError exception raised:

Traceback (most recent call last):
File "multiple_inheritance_example.py", line 73, in <module>
class X(J, I):

TypeError: Cannot create a consistent method resolution
order (MRO) for bases J, I

Therefore, in general care needs to be taken when utilising multiple inheritance;
but that is not to say that such situations are not useful. In some cases you want a class
to inherit from parents that have complete different hierarchies and are completely
separate from each other; in such situations multiple inheritance can be very useful—
these so called orthogonal behaviours are one of the best uses of multiple inheritance
and should not be ignored merely due to concerns of increased complexity.

The class definitions used for the multiple inheritance class hierarchy are given
below:

class A:
def __str__(self):

return ’A’
def print_info(self):

print(’A’)

class B:
def __str__(self):

return ’B’

class C:
def __str__(self):

return ’C’
def get_data(self):

return ’CData’

class D:
def __str__(self):

return ’D’
def print_info(self):

print(’D’)

250 21 Class Inheritance

class E:
def __str__(self):

return ’E’
def print_info(self):

print(’E’)

class F(C, D, E):
def __str__(self):

return super().__str__() + ’F’
def get_data(self):

return super().get_data() + ’FData’
def print_info(self):

print(’F’ + self.get_data())
class G(C, D, E):

def __str__(self):
return super().__str__() + ’G’

def get_data(self):
return super().get_data() + ’GData’

class H(F, G):
def __str__(self):

return super().__str__() + ’H’
def print_info(self):

print(’H’ + self.get_data())
class J(H):

def __str__(self):
return super().__str__() + ’J’

class I(A, J):
def __str__(self):

return super().__str__() + ’I’
class X(J, H, B):

def __str__(self):
return super().__str__() + ’X’

21.13 Summary

To recap on the concept of inheritance. Inheritance is supported between classes in
Python. For example, a class can extend (subclass) another class or a set of classes.
A subclass inherits all the methods and attributes defined for the parent class(es) but
may override these in the subclass.

In terms of the inheritance we say:

● A subclass inherits from a super class.
● A subclass obtains all code and attributes from the super class.
● A subclass can add new code and attributes.
● A subclass can override inherited code and attributes.
● A subclass can invoke inherited behaviour or access inherited attributes.

21.15 Exercises 251

21.14 Online Resources

There are many resources available online relating to class inheritance including:

● https://docs.python.org/3/tutorial/classes.html#inheritance The Python software
foundation tutorial on class inheritance.

● https://en.wikipedia.org/wiki/Multiple_inheritance which provides a discussion
on multiple inheritance and the potential challenges it can introduce.

21.15 Exercises

The aim of these exercises is to extend the Account class you have been developing
from the last two chapters by providing DepositAccount, CurrentAccount
and InvestmentAccount subclasses.

Each of the classes should extend the Account class by:

1. CurrentAccount adding an overdraft limit as well as redefining the withdraw
method.

2. DepositAccount by adding an interest rate.
3. InvestmentAccount by adding an investment type attribute.

These features are discussed below:
The CurrentAccout class can have an overdraft_limit attribute. This

can be set when an instance of a class is created and altered during the lifetime of
the object. The overdraft limit should be included in the __str__() method used
to convert the account into a string.

The CurrentAccount withdraw() method should verify that the balance never
goes below the overdraft limit. If it does then the withdraw() method should not
reduce the balance instead it should print out a warning message.

The DepositAccount should have an interest rate associated with it which is
included when the account is converted to a string.

The InvestmentAccount will have a investment_type attribute which
can hold a string such as ‘safe’ or ‘high risk’.

This also means that it is no longer necessary to pass the type of account as a
parameter—it is implicit in the type of class being created.

For example, given this code snippet:

CurrentAccount(account_number, account_holder,
opening_balance, overdraft_limit)
acc1 = CurrentAccount(’123’, ’John’, 10.05, 100.0)
DepositAccount(account_number, account_holder, opening_
balance,
interest_rate)
acc2 = DepositAccount(’345’, ’John’, 23.55, 0.5)
InvestmentAccount(account_number, account_holder, opening_
balance,

https://docs.python.org/3/tutorial/classes.html#inheritance
https://en.wikipedia.org/wiki/Multiple_inheritance

252 21 Class Inheritance

investment_type)
acc3 = InvestmentAccount(’567’, ’Phoebe’, 12.45, ’high risk’)

acc1.deposit(23.45)
acc1.withdraw(12.33)

print(’balance:’, acc1.get_balance())
acc1.withdraw(300.00)
print(’balance:’, acc1.get_balance())

Then the output might be:

balance: 21.17
Withdrawal would exceed your overdraft limit
balance: 21.17

Chapter 22
Why Bother with Object Orientation?

22.1 Introduction

The previous four chapters have introduced the basic concepts behind object orienta-
tion, the terminology and explored some of the motivation. This chapter looks at how
object orientation addresses some of the issues that have been raised with procedural
languages. To do this it looks at how a small extract of a program might be written
in a language such as C, considers the problems faced by the C developer and then
looks at how the same functionality might be achieved in an object-oriented language
such as Python. Do not worry too much about the syntax you will be presented with;
it is mostly a form of pseudo-code, and it should not detract from the legibility of
the examples.

22.2 The Procedural Approach

Consider the following example:

record Date {
int day
int month
int year

}

This defines a data structure for recording dates. There are similar structures in
many procedural languages such as C, Ada and Pascal.

So, what is wrong with a structure such as this? Nothing, apart from the issue of
visibility? That is, what can see this structure and what can update the contents of
the structure? Any code can directly access and modify its contents. Is this problem?
It could be, for example, some code could set the day to – 1, the month to 13 and the
year to 9999.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_22

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_22&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_22

254 22 Why Bother with Object Orientation?

As far as the structure is concerned the information it now holds is fine (that is
day = 01, month = 13, year = 9999). This is because the structure only knows it is
supposed to hold integers; it knows nothing about dates per se. This is not surprising,
it is only data.

22.2.1 Procedures for the Data Structure

This data is associated with procedures that perform operations on it. These
operations might be to

● test whether the date represents a date at a weekend or part of the working week.
● change the date (in which case the procedure may also check to see that the date

is a valid one).

For example:

is_day_of_week(date)
in_month(date, 2)
next_day(date)
set_day(date, 9, 3, 1946)

How do we know that these procedures are related to the date structure we have
just looked at? By the naming conventions of the procedures and by the fact that one
of the parameters is a data (record).

The problem is that these procedures are not limited in what they can do to the
data (for example the setDay procedure might have been implemented by a Brit who
assumes that the data order is day, month and year. However, it may be used by an
American who assumes that date order is month, day, year. Thus the mean of set_
day(date, 9, 3, 1946) will be interpreted very differently. The American
views this as the 3rd of September 1946, while the Brit views this as the 9th of March,
1946. In either case, there is nothing to stop the date record being updated with both
versions. Obviously the set_day() procedure might check the new date to see it
was legal, but then again it might not. The problem is that the data is naked and has
no defense against what these procedures do to it. Indeed, it has no defense against
what any procedures that can access it, may do to it.

22.2.2 Packages

One possibility is of course to use a package construct. In languages such as Ada,
packages are common place and are used as a way of organizing code and restricting
visibility. For example,

22.3 Does Object Orientation Do Any Better? 255

package Dates is
type Date is ….
function is_day_of_week(d: Date) return Boolean;
function in_month(d: Date, m: Integer) return Boolean;

…

The package construct provides some ring fencing of the data structure and a
grouping of the data structure with the associated procedures. In order to use this
package a developer must import the package. They can then access the procedures
and work with data of the specified type (in this case Date).

There can even be data that is hidden from the user within a private part. This
therefore increases the ability to encapsulate the data (hide the data) from unwelcome
attention.

22.3 Does Object Orientation Do Any Better?

This is an important question “Does object orientation do any better?” than the
procedural approach described above? We will first consider classes then inheritance.

22.3.1 Packages Versus Classes

It has been argued (to me at least) that an Ada package is just like a class. It provides
a template from which you can create executable code, it provides a wall around your
data with well-defined gateways etc. However, there are a number of very significant
differences between packages and classes.

Firstly, packages tend to be larger (at least conceptually) units than classes. For
example, the TextIO package in Ada is essentially a library of textual IO facilities,
rather than a single concept such as the class string in Python. Thus packages are
not used to encapsulate a single small concept such as string or Date, but rather
a whole set of related concepts (as indeed they are used in Python). Thus, a class is
a finer level of granularity than a package.

Secondly, packages still provide a relatively loose association between the data
and the procedures. An Ada package may actually deal with very many data structures
with a wide range of methods. The data and the methods are related primarily via
the related set of concepts represented by the package. In contrast a class tends to
closely relate data and methods in a single concept. Indeed, one of the guidelines
relating to good class design is that if a class represents more than one concept, then
you should split it into two classes.

Thus, this close association between data and code means that the resulting
concept is more than just a data structure (it is closer to a concrete realization of
concept). For example:

256 22 Why Bother with Object Orientation?

class Date:

def __init__(self, day, month, year):
self.day = day
self.month = month
self.year = year

def is_day_of_week(self):
"""Check if date is a week day"""
… To be defined

def in_month(self, month_index):
"""Check if month is in month_index"""
return self.month == month_index

Anyone using an instance of Date now gets an object which can tell you whether
it is a day of the week or not and can hold the appropriate data. Note that the is_
day_of_week() method takes no parameters other than self, it doesn’t need
to as it and the date information are part of the same thing. This means that a user of
a Date object will never need to get their hands on the actual data holding the date
(i.e., the integers day, month and year). Instead, they should go via the methods.
This may only seem a small step, but it is a significant one, nothing outside the object
should need to access the data within the object. In contrast the data structure in the
procedural version, is not only held separately to the procedures, the values for day,
month or year it must also be modified directly.

For example, compare the differences between an excerpt from a program to
manipulate dates (using a procedural programming language):

d: Date;
setDay(d, 28);
setMonth(d, 2);
setYear(d, 1998);
isDayOfWeek(d);
inMonth(d, 2);

Note that it was necessary to first create the data and then to set the fields in the
data structure. Here we have been good and have used the interface procedures to do
this. Once we had the data set up we could then call methods such as IsDayOfWeek
and InMonth on that data.

In contrast the Python code uses a constructor to pass in the appropriate initializa-
tion information. How this is initialized internally is hidden from the user of the class
Date. We then call method such as is_day_of_week() and is_month(12)
directly on the object date.

date = Date(12, 2, 1998)
date.is_day_of_week()
date.in_month(12)

The thing to think about here is where would code be defined?

22.3 Does Object Orientation Do Any Better? 257

22.3.2 Inheritance

Inheritance is a key element in an object-oriented language allowing one class to
inherit data and methods from another.

One of the most important features of inheritance (ironically) is that it allows the
developer to get inside the encapsulation bubble in limited and controlled ways.

This allows the sub-class to take advantage of internal data structures and methods,
without compromising the encapsulation afforded to objects. For example, let us
define a subclass of the class Date:

class Birthday(Date):
name = ”
age = 0
def is_birthday():

… Check to see if it is their birthday

The method is_birthday() could check to see if the current date, matched
the birthday represented by an instance of Birthday and return true if it does and false
if it does not.

Note however, that the interesting thing here is that not only have we not had to
define integers to represent the date, nor have we had to define methods to access
such dates. These have both been inherited from the parent class Date.

In addition, we can now treat an instance of Birthday as either a Date or as
a Birthday depending on what we want to do!

What would you do in languages such as C, Pascal or Ada? One possibility is that
you could define a new package Birthday, but that package would not extend Dates,
it would have to import Dates and add interfaces to it, etc.? However, you certainly
couldn’t treat a Birthday package as a Dates package.

In languages such as Python, because of polymorphism, you can do exactly that.
You can reuse existing code that only knew about Date, for example:

birthday = Birthday(12, 3, 1974)

def test(date):
Do something that works with a date

t.test(birthday)

This is because birthday is indeed a type of Date as well as being a type of
Birthday.

You can also use all of the features defined for Date on Birthdays:

birthday.is_day_of_week()

Indeed, you don’t actually know where the method is defined. This method could
be defined in the class Birthday (where it would override that defined in the class
Date). However, it could be defined in the class Date (if no such method is defined
in Birthday); without looking at the source code there is no way of knowing!

258 22 Why Bother with Object Orientation?

Of course, you can also use the new methods defined in the class Birthday on
instance (objects) of this class. For example:

birthday.is_birthday()

22.4 Summary

Classes in an object-oriented language provide a number of features that are not
present in procedural languages. To summarize, the main points to be noted from
this chapter on object orientation are:

1. Classes provide for inheritance.
2. Inheritance provides for reuse.
3. Inheritance provides for extension of a data type.
4. Inheritance allows for polymorphism.
5. Inheritance is a unique feature of object orientation.

Chapter 23
Operator Overloading

23.1 Introduction

It can be convenient when defining a user-defined class (type) to define operators that
can make working with instance of those classes easier. Such operators might include
the ‘+’ plus operator or the ‘−’ operator. This allows two instance of a class to be
added together or subtracted. In this chapter we will explore operator overloading;
what it is, how it works and why we want it.

23.2 Operator Overloading

23.2.1 Why Have Operator Overloading?

Operator overloading allows user defined classes to appear to have a natural way of
using operators such as +, -, <, > or == as well as logical operators such as &
(and) and | (or).

This leads to more succinct and readable code as it is possible to write code such
as:

q1 = Quantity(5)
q2 = Quantity(10)
q3 = q1 + q2

It feels more natural for both developers and those reading the code. The alternative
would be to create methods such as add and write code such as

q1 = Quantity(5)
q2 = Quantity(10)
q3 = q1.add(q2)

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_23

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_23&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_23

260 23 Operator Overloading

Which semantically might mean the same thing but feel less natural to most
people.

23.2.2 Why not Have Operator Overloading?

If operator overloading is such a good idea, why don’t all programming languages
support it? Interestingly Java, a very widely used programming language, does not
support operator overloading!

One answer is because it can be abused! For example, what is the meaning of the
following code:

p1 = Person(’John’)
p2 = Person(’Denise’)
p3 = p1 + p2

It is not clear what ‘+’ means in this context; in what way is Denise being added
to John; does it imply they are getting married? If so, what is the result that is held
in p3?

The problem here is that from a design perspective (which in this case may be
purely intuitive but in other cases may relate to the intention of an application) the
plus operator does not make sense for the type Person. However, there is nothing in
the Python language to indicate this and thus anyone can code any operator into any
class!

As a general design principle, developers should follow the semantics of built in
types and thus should only implement those operators which are appropriate for the
type being developed. For example, for arithmetic value types such as Quantity it
makes perfect sense to provide a plus operator but for domain specific data-oriented
types such as Person it does not.

23.2.3 Implementing Operator Overloading

To implement operators such as ‘+’ in a user-defined class it is necessary to implement
specific methods that are then mapped to the arithmetic or logical operators used by
users of the class.

These methods are considered special in that they start with and end with a double
underscore (‘__’). Such methods are considered private and usually restricted for
Python-oriented implementations (we have seen these already with methods such as
__init__() and __str__()).

As an example, let us assume that we want to implement the ‘+’ and ‘-’
operators for our Quantity type. We also want our Quantity type to hold an
actual value and be able to be converted into a string for printing purposes.

23.2 Operator Overloading 261

To implement the ‘+’ and ’-’ operators we need to provide two special methods
one will provide the implementation of the ‘+’ operator and one will provide the
implementation of the ‘-’ operator:

● ‘+’ operator is implemented by a method with the signature def __add__
(self, other):

● ’-’ operator is implemented by a method with the signature def __sub__
(self, other):

Where other represents another Quantity or other suitable type which will
be either added to, or subtracted from, the current Quantity object.

The methods will be mapped by Python to the operators ‘+’ and ‘-’; such that
if someone attempts to add to quantities together then the __add__() method will
be called, etc.

The definition of the class Quantity is given below; note that the class actually
just wraps a number held in the attribute value.

class Quantity:
def __init__(self, value=0):

self.value = value
def __add__(self, other):

new_value = self.value + other.value
return Quantity(new_value)

def __sub__(self, other):
new_value = self.value - other.value
return Quantity(new_value)

def __str__(self):
return ’Quantity[’ + str(self.value) + ’]’

Using this class definition, we can create two instances of the type Quantity and
add them together:

q1 = Quantity(5)
q2 = Quantity(10)
print(’q1 =’, q1, ’, q2 =’, q2)

q3 = q1 + q2
print(’q3 =’, q3)

If we run this code snippet we get:

q1 = Quantity[5] , q2 = Quantity[10]
q3 = Quantity[15]

Note that we have made the class Quantity immutable; that is once a
Quantity instance has been created its value cannot be changed (it is fixed).

This means that when two quantities are added tougher a new instance of the
class Quantity is created. This is analogous to how integers work, if you add together
2+3 then you get 5; neither 2 or 3 are modified however; instead a new integer 5
is generated—this is an example of the general design principle; developers should
follow the semantics of built in types; Quantity objects act like number objects.

262 23 Operator Overloading

23.3 Numerical Operators

There are nine different numerical operators that can be implemented by special
methods; these operators are listed in the following table:

Operator Expression Method

Addition q1 + q2 __add__(self, q2)

Subtraction q1 – q2 __sub__(self, q2)

Multiplication q1 * q2 __mul__(self, q2)

Power q1 ** q2 __pow__(self, q2)

Division q1 / q2 __truediv__(self, q2)

Floor Division q1 // q2 __floordiv__(self, q2)

Modulo (Remainder) q1% q2 __mod__(self, q2)

Bitwise Left Shift q1 << q2 __lshift__(self, q2)

Bitwise Right Shift q1 >> q2 __rshift__(self, q2)

We have already seen examples of add and subtract; this table indicates how we
can also provide operators for multiplication and division etc.

The above table also presents Bitwise shift operators (both left and right). These
operate at the bit level used to represent numbers under the hood and can be a very
efficient way of manipulating numeric values; however, we do not want to support
these operators for our Quantity class therefore we will only implement the core
numeric operators of multiplication, division and power.

Also note that the names of the division methods are not div but __truediv__
() and __floordiv__() indicating the difference in behaviour between ‘/’ and
‘//’.

The updated Quantity class is given below:

class Quantity:
def __init__(self, value=0):

self.value = value
def __add__(self, other):

new_value = self.value + other.value
return Quantity(new_value)

def __sub__(self, other):
new_value = self.value - other.value
return Quantity(new_value)

def __mul__(self, other):
new_value = self.value * other.value
return Quantity(new_value)

def __pow__(self, other):
new_value = self.value ** other.value

23.3 Numerical Operators 263

return Quantity(new_value)

def __truediv__(self, other):
new_value = self.value / other.value
return Quantity(new_value)

def __floordiv__(self, other):
new_value = self.value // other.value
return Quantity(new_value)

def __mod__(self, other):
new_value = self.value % other.value
return Quantity(new_value)

def __str__(self):
return ’Quantity[’ + str(self.value) + ’]’

This means that we can now extend our simple application that uses the
Quantity class to include some of these additional numerical operators:

q1 = Quantity(5)
q2 = Quantity(10)
print(’q1 =’, q1, ’, q2 =’, q2)

q3 = q1 + q2
print(’q3 =’, q3)
print(’q2 - q1 =’, q2 - q1)

print(’q1 * q2 =’, q1 * q2)
print(’q1 / q2 =’, q1 / q2)

The output from this is now:

q1 = Quantity[5] ,q2 = Quantity[10]
q3 = Quantity[15]
q2 - q1 Quantity[5]
q1 * q2 = Quantity[50]
q1 / q2 = Quantity[0.5]

One interesting point to note is that given the multiple and divide style methods,
we might want to multiple a Quantity by an integer or divide a Quantity by an inter.
There is nothing to stop us doing this and indeed this might be a very useful behaviour.
This would allow a Quantity to be multiple by 2 or divided by 2, for example:

print(’q1 * 2’, q1 * 2)
print(’q2 / 2’, q2 / 2)

At the moment if we tried to run the above code we would generate an error
telling us that an int does not have a value attribute. However, we can test to see if
the argument passed into the __mult__() and __truediv__() methods is an
int or not using the is instance function. This function takes a variable and the name
of a class and returns a new Quantity. To do this it either adds the values of two
Quantities together (if the other value is a Quantity) or an integer to the self.value
integer (if the other value is an int), for example:

264 23 Operator Overloading

class Quantity:
Code omitted for brevity

def __mul__(self, other):
if isinstance(other, int):

new_value = self.value * other
else:

new_value = self.value * other.value
return Quantity(new_value)

def __truediv__(self, other):
if isinstance(other, int):

new_value = self.value / other
else:

new_value = self.value / other.value
return Quantity(new_value)

Now when we run the earlier print statements we generate the output:

q1 * 2 Quantity[10]
q2 / 2 Quantity[5.0]

23.4 Comparison Operators

Numerical types (such as integers and real numbers) also support comparison opera-
tors such as equals, not equals, greater than, less than as well as greater than or equal
to and less than or equal to.

Python allows these comparison operators to be defined for user-defined types/
classes as well.

Just as numerical operators such as ‘+’ and ‘-’ are implemented by special
methods so are comparison operators. For example the ‘<’ operator is implemented
by a method called __lt__(self, other).

The complete list of comparison operators and the associated special methods is
given in the following table:

Operator Expression Method

Less than q1 < q2 __lt__(q1, q2)

Less than or equal to q1 <= q2 __le__(q1, q2)

Equal to q1 == q2 __eq__(q1, q2)

Not Equal to q1 != q2 __ne__(q1, q2)

Greater than q1 > q2 __gt__(q1, q2)

Greater than or equal to q1 >= q2 __ge__(q1, q2)

23.4 Comparison Operators 265

We can add these definitions to our Quantity class to provide a more complete
type that can be used in comparison style tests (such as if statements).

The updated Quantity class is given below (with some of the numerical
operators omitted for brevity):

class Quantity:
def __init__(self, value=0):

self.value = value
def __add__(self, other):

new_value = self.value + other.value
return Quantity(new_value)

remaining numerical operators omitted for brevity ...

def __eq__(self, other):
return self.value == other.value

def __ne__(self, other):
return self.value != other.value

def __ge__(self, other):
return self.value >= other.value

def __gt__(self, other):
return self.value > other.value

def __lt__(self, other):
return self.value < other.value

def __le__(self, other):
return self.value <= other.value

def __str__(self):
return ’Quantity[’ + str(self.value) + ’]’

This now means that we can update out sample application to take advantage of
these comparison operators:

q1 = Quantity(5)
q2 = Quantity(10)
print(’q1 =’, q1, ’,q2 =’, q2)
q3 = q1 + q2
print(’q3 =’, q3)
print(’q1 < q2: ’, q1 < q2)
print(’q3 > q2: ’, q3 > q2)
print(’q3 == q1: ’, q3 == q1)

The output from this is now:

q1 = Quantity[5] ,q2 = Quantity[10]
q3 = Quantity[15]
q1 < q2: True
q3 > q2: True
q3 == q1: False

266 23 Operator Overloading

23.5 Logical Operators

The final category of operators that can be defined on a class are logical operators.
These are operators that can be used with and/or type tests; they typically return the
values True or False.

As with the numerical operators and the comparison operators; the logical
operators are implemented by a set of special methods.

The following table summarizes the logical operators and the methods used to
implement them:

Operator Expression Method

And q1 & q2 __and__(q1, q2)

OR q1 | q2 __or__(q1, q2)

XOR q1 ^ q2 __xor__(q1, q2)

NOT ~ q1 __invert__()

As these operators do not really make sense for the Quantity type, we will not
define them. For example, what would it mean to say:

q1 | q2

In what way is q1 an alternative to q2?

23.6 Summary

Only use operators when they make sense and only implement those operators that
work with the type you are defining. In general, this means

● Arithmetic operators should only be used for values types with a numeric property.
● Comparison operators typically only make sense for classes that can be ordered.
● Logical operators typically work for types that are similar in nature to Booleans.

23.7 Online Resources

Some online resources on operator overloading include:

● https://docs.python.org/3/reference/datamodel.html for information on operator
overloading in Python.

● https://pythonprogramming.net/operator-overloading-intermediate-python-tut
orial/ Tutorial on operator overloading.

● http://cafe.elharo.com/programming/operator-overloading-considered-harmful/
An article on why operagoer overloading may be harmful to good programming
style.

https://docs.python.org/3/reference/datamodel.html
https://pythonprogramming.net/operator-overloading-intermediate-python-tutorial/
https://pythonprogramming.net/operator-overloading-intermediate-python-tutorial/
http://cafe.elharo.com/programming/operator-overloading-considered-harmful/

23.8 Exercises 267

23.8 Exercises

The aim of this exercise is to create a new numeric style class.
You should create a new user defined class called Distance. It will be very

similar to Quantity.
You should be able to add two distances together, subtract one distance from

another, divide a distance by an integer, multiply a distance by an integer etc.
You should therefore be able to support the following program:

d1 = Distance(6)
d2 = Distance(3)
print(d1 + d2)
print (d1 - d2)
print (d1 / 2)
print(d2 // 2)
print(d2 * 2)

Note that the division and multiplication operators work with a distance and an
integer; you will therefore need to think about how to implement the special methods
for these operators.

The output from this might be:

Distance[9]
Distance[3]
Distance[3.0]
Distance[1]
Distance[6]

Chapter 24
Python Properties

24.1 Introduction

Many object-oriented languages have the explicit concept of encapsulation; that is
the ability to hide data within an object and only to provide specific gateways into
that data. These gateways are methods defined to get or set the value of an attribute
(often referred to as getters and setters). This allows more control over access to the
data; for example, it is possible to check that only a positive integer above zero, but
below 120, is used for a person’s age, etc.

In many languages such as Java and C# attributes can be hidden from external
access using specific keywords (such as private) that indicate the data should be made
private to the object.

Python does not explicitly have the concept of encapsulation; instead it relies
on two things; a standard convention used to indicate that an attribute should be
considered private and a concept called a property which allows setters and getters
to be defined for an attribute.

24.2 Python Attributes

All object attributes are publicly available in Python; that is, they are all visible to
any code using the object.

For example, given the following definition of the class Person both name and
age are part of the public interface of the class Person;

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_24

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_24&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_24

270 24 Python Properties

def __str__(self):
return ’Person[’ + str(self.name) + ’] is ’ +

str(self.age)

Because name and age are part of the class’s public interface it means that we
can write:

person = Person(’John’, 54)
person.name = 42
person.age = -1
print(person)

Which is of course a bit bizarre as the person now has the name ‘42’ and an age
of − 1, thus the output from this is:

Person[42] is -1

We can indicate that we want to treat age and name as being private to the object
by prefixing the attribute names with an underbar (‘_’) as shown below:

class Person:
def __init__(self, name, age):

self._name = name
self._age = age

def __str__(self):
return ’Person[’ + str(self._name) +’] is ’ + s

str(self._age)

This tells Python programmers that we want to consider _name and _age as
being private. However, it should be noted that this is only a convention; albeit a very
strongly adhered to convention. There is still nothing here that would stop someone
writing:

person = Person(’John’, 54)
person._age = -1
print(person)

However, the developer of the class Person is at liberty to change the internals
of the class (such as _age) without notice and most would consider that anyone who
had ignored the convention and now had a problem had only themselves to blame.

24.3 Setter and Getter Style Methods

This of course raises the question; how should we now get hold of a Persons’ name
and age in an acceptable way?

The answer is that a developer should provide getter methods and setter methods
that can be used to access the values.

24.3 Setter and Getter Style Methods 271

We can update the Person class with some getter methods and a single setter
method:

class Person:
def __init__(self, name, age):

self._name = name
self._age = age

def get_age(self):
return self._age

def set_age(self, new_age):
if isinstance(new_age,int) & new_age > 0 & new_age < 120:

self._age = new_age
def get_name(self):

return self._name

def __str__(self):
return ’Person[’ + str(self._name) +’] is ’ + str(self._age)

The two getter methods have the format of get_ followed by the name of the
attribute they are getting. Thus, we have get_age and get_name. Typically, all
that getters do is to return the attribute being used (as is the case here).

The single setter method is a little different; it validates the data that has
been provided to check that it is appropriate (i.e., that it is an Integer using
isinstance(new_age,int) and that it is a value over zero but under 120).
Only if the data passes these checks is it used as the new value of the person’s age,
for example if we try to set a persons age to − 1:

person = Person(’John’, 54)
person.set_age(-1)
print(person)

Then this is ignored, and the person’s age remains as it was, thus the output of
this is:

Person[John] is 54

It should be noted that this might be considered silent failure; that is we tried to set
the age and it failed but no one knows this. In many cases rather than fail silently we
would prefer to notify someone of the error by throwing some form of Error object;
this will be discussed in the next chapter on Error and Exception handling.

You might well ask at this point where is the setter for the _name attribute? The
answer is that we want to make the _name attribute a read only attribute and therefore
we have not provided a setter style method. This is a common idiom followed in
Python—you can have read–write attributes and read-only attributes depending on
whether they have getter and setter methods or not. It is also possible to a write-only
attribute, but this is very rare and only has a few use cases.

272 24 Python Properties

24.4 Public Interface to Properties

Although we now have a more formal interface to the attributes held by an instance
of the class Person; it is rather ungainly:

person = Person(’John’, 54)
print(person)
print(person.get_age())
print(person.get_name())

We end up having to write more code and although there is an argument that it
makes the code more obvious (i.e., person.get_age() can be read as get the age
of the person object); it is somewhat verbose and you have to remember to include
the parentheses (‘()’).

To get around this a concept known as Properties was introduced in Python 2.2.
In the original syntax for this it was possible to add an addition line of code to the
class that told Python that you wanted to provide a new property and that specific
methods were to be used to set and get the values of this property.

The syntax for defining a property in this way is:

<property_name> = property(fget=None, fset=None, fdel=None,
doc=None)

Where fget indicates the getter function, fset the setter function fdel the
function to be used to delete a value and doc provides documentation on the property.

We can modify our Person class so that age is now a property (note a common
convention is that if the attribute is named _age, the methods are named get_age
and set_age and the property will be called age):

class Person:
def __init__(self, name, age):

self._name = name
self._age = age

def get_age(self):
return self._age

def set_age(self, new_age):
if isinstance(new_age,int) & new_age > 0 & new_age < 120:

self._age = new_age
age = property(get_age, set_age, doc="An age property")

def get_name(self):
return self._name

name = property(get_name, doc="A name property")

def __str__(self):
return ’Person[’ + str(self._name) +’] is ’ +

str(self._age)

24.5 More Concise Property Definitions 273

We can now write:

person = Person(’John’, 54)
print(person)
print(person.age)
print(person.name)
person.age = 21
print(person)

Notice how we can now write person.age and person.age = 21; in both
these cases we are accessing the property age that results in the method get_age()
and set_age() being executed respectively. Thus, the setter is still protecting the
update to the underlying _age attribute that is actually used to hold the actual value.

Also note that if a method is not provided for one of the fget, fset, fdel
methods then this is not an error; it merely indicates that the property does not
support that type of accessor. Thus, the name property is a read_only property as it
does not define a setter method.

A delete method can be used to release the memory associated with an attribute;
in the case of an int it is not required but it may be required for a more complex,
user-defined type.
We could therefore write:

def del_name(self):
del self._name

name = property(get_name, fdel=del_name, doc="A name property")

Note that we are using a keyword reference for the delete method as we have
skipped the setter and cannot therefore rely on positional arguments.

24.5 More Concise Property Definitions

The example shown in the previous section works but it is still quite verbose itself;
while this is on the class writers’ side it still seems somewhat heavyweight.

To overcome this a more concise option has been available since Python 2.4. This
approach uses what are known as decorators. Decorators represent meta data (that
is information about your code that the Python interpreter can use to work out what
you want it to do with certain things).

Python 2.6 introduced three new decorators @property,
@<propertyname>.setter and @<propertyname>.deleter. These
decorators are added to the start of a method definition to indicate that the method
should be used to provide access to a property (and define that property), define a
setter for the property or a deleter for the property.

274 24 Python Properties

We will now update our Person class to use the decorators:

class Person:
def __init__(self, name, age):

self._name = name
self._age = age

@property
def age(self):

""" The docstring for the age property """
print(’In age method’)
return self._age

@age.setter
def age(self, value):

print(’In set_age method’)
if isinstance(value,int) & value > 0 & value < 120:

self._age = value
@property
def name(self):

print(’In name’)
return self._name

@name.deleter
def name(self):

del self._name

def __str__(self):
return ’Person[’ + str(self._name) +’] is ’ +

str(self._age)

Notice three important things about this example:

● The name of the methods is no longer a set_age and get_age; instead both
methods are now just age and the decorator distinguishes their role. Also notice
that we no longer have a separate statement that declares the property—it is now
implicit in the use of the @property decorator and the name of the associated
method.

● The @property decorator is used to define the name of the property (in this
case age) and to define further decorators which will be named after the property
with a .setter or .deleter element e.g. @age.setter.

● The documentation string is now defined in the method associated with the
@property decorator (providing this documentation string is usually considered
good practice).

However, we do not need to change the program that used the class Person, as
the interface to the class remained the same.

24.7 Exercises 275

24.6 Online Resources

Some online resources on properties are:

● https://www.python-course.eu/python3_properties.php a discussion on Python
properties versus getters and setters.

● https://www.journaldev.com/14893/python-property-decorator A short introduc-
tion to the @property decorator.

24.7 Exercises

In this exercise you will add properties to an existing class.
Return to the Account class that you created several chapters ago; convert the

balance into a read only property using decorators, then verify that the following
program functions correctly:

acc1 = CurrentAccount(’123’, ’John’, 10.05, 100.0)
acc2 = DepositAccount(’345’, ’John’, 23.55, 0.5)
acc3 = acc3 = InvestmentAccount(’567’, ’Phoebe’, 12.45, ’high
risk’)

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print(’balance:’, acc1.balance)

print(’Number of Account instances created:’
, Account.instance_count)

print(’balance:’, acc1.balance)
acc1.withdraw(300.00)
print(’balance:’, acc1.balance)

The output from this might be:

Creating new Account
Creating new Account
Creating new Account
Account[123] - John, current account = 10.05overdraft limit: -100.0
Account[345] - John, savings account = 23.55interest rate: 0.5
Account[567] - Phoebe, investment account = 12.45
balance: 21.17
Number of Account instances created: 3
balance: 21.17
Withdrawal would exceed your overdraft limit
balance: 21.17

https://www.python-course.eu/python3_properties.php
https://www.journaldev.com/14893/python-property-decorator

Chapter 25
Abstract Base Classes

25.1 Introduction

This chapter presents Abstract Base Classes (also known as ABCs) which were
originally introduced in Python 2.6.

An Abstract Base Class is a class that you cannot instantiate and that is expected
to be extended by one or more subclassed. These subclasses will then fill in any the
gaps left the base class.

Abstract Base Classes are very useful for creating class hierarchies with a high
level of reuse from the root class in the hierarchy.

25.2 Abstract Classes as a Concept

An abstract class is a class from which you cannot create an object. It is typically
missing one or more elements required to create a fully functioning object.

In contrast a non-abstract (or concrete) class leaves nothing undefined and can be
used to create a working object.

You may therefore wonder what use an abstract class is?
The answer is that you can group together elements which are to be shared among

a number of classes, without providing a complete implementation. In addition, you
can force subclasses to provide specific methods ensuring that implementers of a
subclass at least supply appropriately named methods. You should therefore use
abstract classes when:

● you wish to specify data or behaviour common to a set of classes, but insufficient
for a single instance,

● you wish to force subclasses to provide specific behaviour.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_25

277

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_25&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_25

278 25 Abstract Base Classes

In many cases, the two situations go together. Typically, the aspects of the class
to be defined as abstract are specific to each class, while what has been implemented
is common to all classes.

25.3 Abstract Base Classes in Python

Abstract Base Classes (or ABCs as they are sometimes referred to) cannot be instanti-
ated themselves but can be extended by subclasses. These subclasses can be concrete
classes or can themselves be Abstract Base Classes (that extend the concept defined
in the root Abstract Base Class).

Abstract Base Classes can be used to define generic (potentially abstract)
behaviour that can be mixed into other Python classes and act as an abstract root of
a class hierarchy. They can also be used to provide a more formal way of specifying
behaviour that must be provided by a concrete class.

Abstract Base Classes can have:

● Zero or more abstract methods or properties (but are not required to)
● Zero or more concrete methods and properties.
● Both private and protected attributes (following the single underscore and double

underscore conventions).

ABCs can also be used to specify a specific interface or formal protocol. If an
ABC defines any abstract methods or abstract properties, then the subclasses must
provide implementations for all such abstract elements.

There are many built-in ABCs including (but not limited to):

● Data structures (collection module),
● Numbers module,
● Streams (IO module).

In fact, ABCs are widely used internally within Python itself, and many developers
use ABCs without ever knowing they exist or understanding how to define them.

Indeed, ABCS are not widely used by developers building systems with Python
although this is in part because they are most appropriate to those building libraries,
particularly those that are expected to be extended by developers themselves.

25.3.1 Subclassing an ABC

Typically, an Abstract Base Class will need to be imported from the module in which
it is defined; of course, if the ABC is defined in the current module then this will not
be necessary.

As an example, the collections.MutableSequence class is an ABC; this
is an ABC for a sequence of elements that can be modified (mutable) and iterated

25.3 Abstract Base Classes in Python 279

over. We can use this as the base class for our own type of collection which we will
call a Bag, for example:

from collections import MutableSequence

class Bag(MutableSequence):
pass

In this example we are importing the MutableSequence from the
collections module. We then define the class Bag as extending the
MutableSequenceAbstract Base Class. For the moment we are using the special
Python keyword pass as a place holder for the body of the class.

However, this means that the Bag class is actually also an abstract class as it does
not implement any of the abstract methods in the MutableSequence ABC.

Python, however, does not validate this at import time; instead it validates it at
runtime when an instance of the type is to be created.

In this case, the Bag class does not implement the abstract methods in
MutableSequence and thus if a program attempts to create an instance of Bag,
then the following error would be raised:

Traceback (most recent call last):
File "/pythonintro/abstract/Bag.py", line 10, in <module>

main()
File "/pythonintro/abstract/Bag.py", line 7, in main

bag = Bag()
TypeError: Can’t instantiate abstract class Bag with abstract

methods __delitem__, __getitem__, __len__, __setitem__, insert

As can be seen this is a rather more formal requirement than we saw with protocols;
if you don’t implement all the methods defined as abstract in the parent class then
you can’t create an instance of the class you are defining (because it is also abstract).

We can define a method for each of the abstract classes in the Bag class and then
we will be able to create an instance of the class, for example:

from collections import MutableSequence

class Bag(MutableSequence):

def __getitem__(self, index):
pass

def __delitem__(self, index):
pass

def __len__(self):
pass

def __setitem__(self, index, value):
pass

def insert(self, index, value):
pass

280 25 Abstract Base Classes

This version of Bag meets all the requirements imposed on it by the ABC
MutableSequence; that is, it implements each of the special methods listed and
the insert method. The class Bag can now be considered to be a concrete class.

However, in this case the methods themselves don’t do anything (they again use
the Python keyword pass which acts as a placeholder for the code to implement
each method). However, we can now write:

bag = Bag()

And the application will not generate an error message.
At this point we could now progress to implementing each method such that it

provides an appropriate implementation of the Bag.

25.3.2 Defining an Abstract Base Class

An Abstract Base Class can be defined by specifying that the class has a metaclass;
typically, ABCMeta. The ABCMeta metaclass is provided by the abc module.

The metaclass is specified using the metaclass attribute of the parent class list.
This will create a class that can be used as an ABC.

This is exactly how the ABCs in the _collections_abc.py file are
implemented.

The following code snippet illustrates this idea. The ABCMeta class is imported
from the abc module. It is then used with the class Shape via the metaclass
attribute of the class inheritance list:

from abc import ABCMeta

class Shape(metaclass=ABCMeta):

def __init__(self, id):
self.id = id

Note that at this point although Shape is an ABC, it does not define any abstract
elements and so can actually be instantiated just like any other concrete class.
However, we will next define some abstract methods for the Shape ABC.

To define an abstract method, we need to also import the abstractmethod
decorator from the abc module (if we want to define an abstract property then
we need to add @property to an appropriate abstract method). Import the
abstractmethod decorator is illustrated below:

from abc import ABCMeta, abstractmethod

25.3 Abstract Base Classes in Python 281

We can now expand the definition of our Shape class:

from abc import ABCMeta, abstractmethod

class Shape(metaclass=ABCMeta):
def __init__(self, id):

self._id = id
@abstractmethod
def display(self): pass

@property
@abstractmethod
def id(self): pass

The class Shape is now an Abstract Base Class and requires that any subclass
must provide an implementation of the method display() and the property id
(otherwise the subclass will automatically become abstract).

The class Circle is a concrete subclass of the Shape ABC; it thus provides
a __init__() initialization method, a display method and an id property (the
__init__() method is used to allow the _id attribute in the base class to be
initialized).

class Circle(Shape):
def __init__(self, id):

super().__init__(id)

def display(self):
print(’Circle: ’, self._id)

@property
def id(self):

""" the id property """
return self._id

We can now use the class Circle in an application:

c = Circle("circle1")
print(c.id)
c.display()

We can instantiate the Circle class as it is concrete and we know we can call
the method display() and access the property id on instances of Circle. The
output from the above code is thus:

circle1
Circle: circle1

282 25 Abstract Base Classes

Alternatively you can just use the super class ABC instead of the long hand
metaclass = ABCMeta, for example:

from abc import ABC

class Shape(ABC):

def __init__(self, id):
self._id = id

@abstractmethod
def display(self): pass

@property
@abstractmethod
def id(self): pass

This is a more concise form and is typically used in modern Python.

25.4 Defining an Interface

Many languages such as Java and C# have the concept of an interface definition;
this is a contract between the implementors of an interface and the user of the
implementation guaranteeing that certain facilities will be provided.

Python does not explicitly have the concept of an interface contract (note here
interface refers to the interface between a class and the code that utilizes that class).

However, it does have Abstract Base Classes.
Any Abstract Base Class that only has abstract methods or properties in it can be

treated as a contract that must be implemented (it can of course also have concrete
methods, properties and attributes; it is up to the developer). However, as we know
that Python will guarantee that any instances can only be created from concrete
classes, we can treat an ABC has behaving like a contract between a class and those
using that class.

This is an approach that is adopted by numerous frameworks and libraries within
Python.

25.5 Virtual Subclasses

In most object-oriented programming languages, for one class to be treated as a
subclass of another class it is necessary for the subclass to extend the parent class.
However, Python has a more relaxed approach to typing, as is illustrated by the idea
of Duck Typing.

In some situations however, it is useful to be able to confirm that one type is a
subclass of another or that an instance is an instance of a specific type (which may
come from the object’s class hierarchy) at runtime.

25.5 Virtual Subclasses 283

Indeed, in Python, it is not necessary to be an actual subclass of a parent class to
be considered a subclass—instead Virtual subclasses allow one class to be treated as
a subclass of another even though there is no direct inheritance relationship between
them. The key here is that the virtual subclass must match the required interface
presented by the virtual parent class.

This is done by registering one class as a Virtual Subclass of an Abstract Base
Class. That is, the virtual parent class must be an ABC and then the subclass can be
registered (at runtime) as a virtual subclass of the ABC. This is done using a method
called register().

Once a class is registered as a subclass of an ABC the issubclass() and
isintance() methods will return True for that class with respect to the virtual
parent class.

For example, given the following two currently independent classes:

from abc import ABC

class Person(ABC):
def __init__(self, name, age):

self.name = name
self.age = age

def birthday(self):
print(’Happy Birthday’)

class Employee(object):
def __init__(self, name, age, id):

self.name = name
self.age = age
self.id = id

def birthday(self):
print(’Its your birthday’)

If we now check to see if Employee is a subclass of Person we will get the
value False returned. We will of course also get False if we check to see an
instance of Employee is actually an instance of the class Person:

print(issubclass(Employee, Person))
e = Employee(’Megan’, 21, ’MS123’)
print(isinstance(e, Person))

This will generate the output:

False
False

However, if we now register the class Employee as a virtual subclass of the class
Person, the two test methods will return True:

Person.register(Employee)
print(issubclass(Employee, Person))
e = Employee(’Megan’, 21, ’MS123’)
print(isinstance(e, Person))

284 25 Abstract Base Classes

Which now generates the output:

True
True

This provides a very useful level of flexibility that can be exploited when using
existing libraries and frameworks.

25.6 Mixins

A mixin is a class that represents some (typically concrete) functionality that has the
potentially to be useful in multiple situations but on its own is not something that
would be instantiated.

However, a mixin can be mixed into other classes and can extend the data and
behavior of that type and can access data and methods provided by those classes.

Mixins are a common category of Abstract Base Classes; although they are
implicit in their use (and naming) rather than being a concrete construct within
the Python language itself.

For example, let us define a PrinterMixing class that provides a utility method
to be used with other classes. It is not something that we want developers to instantiate
itself so we will make it an ABC, but it does not define any abstract methods or
properties (so there is nothing for a subclass to have to implement).

from abc import ABC

class PrinterMixin(ABC):
def print_me(self):

print(self)

We can now use this with a class Employee that extends the class Person and
mixes in the PrinterMixin class:

class Person(object):
def __init__(self, name):

self.name = name
class Employee(Person, PrinterMixin):

def __init__(self, name, age, id):
super().__init__(name)
self.age = age
self.id = id

def __str__(self):
return ’Employee(’ + self.id + ’)’ + self.name

+ ’[’ + str(self.age) + ’]’

25.6 Mixins 285

This now means that when we instantiate the class Employee we can call the
print_me() method on the Employee object:

e = Employee(’Megan’, 21, ’MS123’)
e.print_me()

which will print out.

Employee(MS123)Megan[21]

One point to note about the PrinterMixin is that it is completely independent
of the class it is mixed into. However, mixins can also impose some constraints on
the classes they will be missed into. For example, the IDPrinterMixin shown
below assumes that the class it will be mixed into has an attribute or property called
id.

class IDPrinterMixin(ABC):
def print_id(self):

print(self.id)

This means that it cannot be mixed successfully into the class Person—if it was
then when the print_id() method was called an error would be generated.

However, the class Employee does have an id attribute and thus the
IDPrinterMixin can be mixed into the Employee class:

class Employee(Person, PrinterMixin, IDPrinterMixin):

def __init__(self, name, age, id):
super().__init__(name)
self.age = age
self.id = id

def __str__(self):
return ’Employee(’ + self.id + ’)’ + self.name

+ ’[’ + str(self.age) + ’]’

Which means that we can now call write:

e = Employee(’Megan’, 21, ’MS123’)
e.print_me()
e.print_id()

Which will generate:

Employee(MS123)Megan[21]
MS123

286 25 Abstract Base Classes

25.7 Online Resources

Some online references for Abstract Base Classes include:

● https://docs.python.org/3/library/abc.html The standard Library documentation
on Abstract Base Classes.

● https://pymotw.com/3/abc/index.html The Python Module of the Week page for
Abstract Base Classes.

● https://www.python.org/dev/peps/pep-3119/ Python PEP 3119 that introduced
Abstract Base Classes.

https://docs.python.org/3/library/abc.html
https://pymotw.com/3/abc/index.html
https://www.python.org/dev/peps/pep-3119/

Chapter 26
Error and Exception Handling

26.1 Introduction

This chapter considers exception and error handling and how it is implemented in
Python. You are introduced to the object model of exception handling, to the throwing
and catching of exceptions, and how to define new exceptions and exception-specific
constructs. It also considers exception groups and exception notes.

26.2 Errors and Exceptions

When something goes wrong in a computer program someone needs to know about
it. One way of informing other parts of a program (and potentially those running
a program) is by generating an error object and propagating that through the code
until either something handles the error and sorts thing out or the point at which the
program is entered is found.

If the error propagates out of the program, then the user who ran the program
needs to know that something has gone wrong. They are notified of a problem via
a short report on the error that occurred and a stack trace of where that error can be
found.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_26

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_26&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_26

288 26 Error and Exception Handling

You may have seen these yourself already when writing your own programs. For
example, the following screen dump illustrates a programming error where someone
has tried to concatenate a string and a number together using the ‘ + ’ operator. This
error has propagated out of the program and a stack trace of the code that was called
is presented (in this case the function print used the __str__() method of the
class Person). Note the line numbers are included which helps with debugging the
problem.

In Python the terms error and exception are used inter-changeably; although from
a style point of view exceptions might be used to represent issues with operations
such as arithmetic exceptions and errors might be associated with functional issues
such as a file not being found.

26.3 What is an Exception?

In Python, everything is a type of object, including integers, strings, Booleans and
indeed exceptions and errors. In Python the Exception/Error types are defined in a
class hierarchy with the root of this hierarchy being the BaseException type. All
built-in errors and exceptions eventually extend from the BaseException type. It
has a subclass Exception which is the root of all user defined exceptions (as well
as many built-in exceptions). In turn ArithmeticException is the base class
for all built-in exceptions associated with arithmetic errors.

26.4 What is Exception Handling? 289

The above diagram illustrates the class hierarchy for some of the common types
of errors and exceptions.

When an exception occurs, this is known as raising an exception and when it is
passed to code to handle this is known as throwing an exception. These are terms
that will hopefully become more obvious as this chapter progresses.

26.4 What is Exception Handling?

An exception moves the flow of control from one place to another. In most situations,
this is because a problem occurs which cannot be handled locally but that can be
handled in another part of the system.

The problem is usually some sort of error (such as dividing by zero), although
it can be any problem (for example, identifying that the postcode specified with an
address does not match). The purpose of an exception, therefore, is to handle an error
condition when it happens at runtime.

It is worth considering why you should wish to handle an exception; after all the
system does not allow an error to go unnoticed. For example, if we try to divide by

290 26 Error and Exception Handling

zero, then the system generates an error for you. This may mean that the user has
entered an incorrect value, and we do not want users to be presented with a dialog
suggesting that they enter the system debugger. We can therefore use exceptions to
force the user to correct the mistake and rerun the calculation.

The following table illustrates terminology typically used with exception/error
handling in Python.

Exception An error which is generated at runtime

Raising an exception Generating a new exception

Throwing an exception Triggering a generated exception

Handling an exception Processing code that deals with the error

Handler The code that deals with the error (referred to as the catch block)

Signal A particular type of exception (such as out of bounds or divide by zero)

Different types of error produce different types of exception. For example, if the
error is caused by dividing an integer by zero, then the exception is a arithmetic
exception. The type of exception is identified by objects and can be caught and
processed by exception handlers. Each handler can deal with exceptions associated
with its class of error or exception (and its subclasses).

An exception is instantiated when it is raised. The system searches back up the
execution stack (the set of functions or methods that have been invoked in reverse
order) until it finds a handler which can deal with the exception. The associated
handler then processes the exception. This may involve performing some remedial
action or terminating the current execution in a controlled manner. In some cases, it
may be possible to restart executing the code.

As a handler can only deal with an exception of a specified class (or subclass), an
exception may pass through a number of handler blocks before it finds one that can
process it.

26.5 Handling an Exception 291

The above figure illustrates a situation in which a divide by zero exception called
ZeroDivisionError is raised. This exception is passed up the execution stack
where it encounters an exception handler defined for an end of file exception. This
handler cannot handle the ZeroDivisionError and so it is passed further up the
execution stack. It then encounters a handler for an out of memory exception. Again, it
cannot deal with a ZeroDivisionError, and the exception is passed further up
the execution stack until it finds a handler defined for the ZeroDivisionError.
This handler then processes the exception.

26.5 Handling an Exception

You can catch an exception by implementing the try–except construct. This
construct is broken into four parts:

● try block. The try block indicates the code which is to be monitored for the
exceptions listed in the except expressions.

● except clause. You can use an optional except clause to indicate what to
do when certain classes of exception/error occur (e.g., resolve the problem or
generate a warning message). There can be any number of except clauses in
sequence checking for different types of error/exceptions.

● else clause. This is an optional clause which will be run if and only if no
exception was thrown in the try block. It is useful for code that must be executed
if the try clause does not raise an exception.

● finally clause. The optional finally clause runs after the try block exits
(whether or not this is due to an exception being raised). You can use it to clean
up any resources, close files, etc.

292 26 Error and Exception Handling

This language construct may at first seem confusing, however, once you have
worked with it for a while you will find it less daunting.

As an example, consider the following function which divides a number by zero;
this will raise the ZeroDivisionError when it is run for any number:

def runcalc(x):
x/0

If we now call this function, we will get the error trackback in the standard output:

runcalc(6)

This is shown below:

However, we can handle this by wrapping the call to runcalc within a try
statement and providing an except clause. The syntax for a try statement with
an except clause is

try:
<code to monitor>

except <type of exception to monitor for>:
<code to call if exception is found>

A concrete example of this is given below for a try statement that will be used
to monitor a call to runcalc:

try:
runcalc(6)

except ZeroDivisionError:
print(’oops’)

which now results in the string ‘oops’ being printed out. This is because when
runcalc is called the ‘/’ operator throws a the ZeroDivisionError which is
passed back to the calling code which has an except clause specifying this type of
exception. This catches the exception and runs the associated code block which in
this case prints out the string ‘oops’.

In fact, we don’t have to be as precise as this; the except clause can be given a
class of exception to look for and it will match any exception that is of that type or
is an instance of a subclass of the exception. We therefore can also write

try:
runcalc(6)

except Exception:

26.5 Handling an Exception 293

print(’oops’)

The Exception class is a grandparent of the ZeroDivisionError, thus
any ZeroDivisionError object is also a type of Exception, and thus the except
block matches the exception passed. This means that you can write one except
clause and that clause can handle a whole range of exceptions.

However, if you don’t want to have a common block of code handling your
exceptions, you can define different behaviours for different types of exception. This
is done by having a series of except clauses; each monitoring a different type of
exception:

try:
runcalc(6)

except ZeroDivisionError:
print(’oops’)

except IndexError:
print(’arrgh’)

except FileNotFoundError:
print(’huh!’)

except Exception:
print(’Duh!’)

In this case the first except monitors for a ZeroDivisionError but the other
excepts monitor for other types of exception. Note that the except Exception
is the last except clause in the list as ZeroDivisionError, IndexError and
FileNotFoundError are all eventual subclasses of Exception, and thus this
clause would catch any of these types of exception. As only one except clause is
allowed to run; if this except handler came fist the other except handers would never
ever be run.

26.5.1 Accessing the Exception Object

It is possible to gain access to the exception object being caught by the except
clause using the as keyword. This follows the exception type being monitored and
can be used to bind the exception object to a variable, for example:

try:
runcalc(6)

except ZeroDivisionError as exp:
print(exp)
print(’oops’)

Which produces

division by zero
oops

294 26 Error and Exception Handling

If there are multiple except clauses each except clause can decide whether to
bind the exception object to a variable or not (and each variable can have a different
name):

try:
runcalc(6)

except ZeroDivisionError as exp:
print(exp)
print(’oops’)

except IndexError as e:
print(e)
print(’arrgh’)

except FileNotFoundError:
print (’huh’)

except Exception as exception:
print(exception)
print(’Duh!’)

In the above example three of the four except clauses bind the exception to a
variable (each with a different name—although they could all have the same name)
but one, the IndexError except clause does not bind the exception to a variable.

26.5.2 Jumping to Exception Handlers

One of the interesting features of exception handling in Python is that when an error
or an exception is raised it is immediately thrown to the exception handlers (the
except clauses). Any statements that follow the point at which the exception is
raised are not run. This means that a function may be terminated early, and further
statements in the calling code may not be run.

As an example, consider the following code. This code defines a function my_
function() that prints out a string and performs a division operation which will
cause a ZeroDivisionError to be raised if the y value is zero, and then it has
a further print statement. This function is called from within a try statement.
Notice that there is a print statement each side of the call to my_function().
There is also a handler for the ZeroDivisionError.

def my_function(x, y):
print(’my_function in’)
result = x / y
print(’my_function out’)
return result

print(’Starting’)

26.5 Handling an Exception 295

try:
print(’Before my_function’)
my_function(6, 2)
print(’After my_function’)

except ZeroDivisionError as exp:
print(’oops’)

print(’Done’)

When we run this the output is

Starting
Before my_function
my_function in
my_function out
After my_function
Done

Which is what would probably be expected; we have run every statement with the
exception of the except clause as the ZeroDivisionError was not raised.

If we now change the call to my_function() to pass in 6 and 0 we will raise
the ZeroDivisionError.

print(’Starting’)

try:
print(’Before my_function’)
my_function(6, 0)
print(’After my_function’)

except ZeroDivisionError as exp:
print(’oops’)

print(’Done’)

Now the output is

Starting
Before my_function
my_function in
oops
Done

The difference is that the second print statement in my_function() has not
been run; instead after print ‘my_function in’ and then raising the error we have
jumped strait to the except clause and run the print statement in the associated
block of code.

This is partly why the term throwing is used with respect to error and exception
handling; because the error or exception is raised in one place and thrown to the point
where it is handled, or it is thrown out of the application if no except clause is found
to handle the error/exception.

296 26 Error and Exception Handling

26.5.3 Catch Any Exception

It is also possible to specify an except clause that can be used to catch any type of
error or exception, for example:

try:
my_function(6, 0)

except IndexError as e:
print(e)

except:
print(’Something went wrong’)

This must be the last except clause as it omits the exception type and thus
acts as a wildcard. It can be used to ensure that you get notified that an error did
occur—although you do not know what type of error it actually was; therefore, use
this feature with caution.

26.5.4 The Else Clause

The try statement also has an optional else clause. If this is present, then it must
come after all except clauses. The else clause is executed if and only if no
exceptions were raised. If any exception was raised the else clause will not be run.
An example of the else clause is shown below:

try:
my_function(6, 2)

except ZeroDivisionError as e:
print(e)

else:
print(’Everything worked OK’)

In this case the output is

my_function in
my_function out
Everything worked OK

As you can see the print statement in the else clause has been executed,
however, if we change the my_function() call to pass in a zero as the second
parameter (which will cause the function to raise a ZeroDivisionError), then
the output is

my_function in
division by zero

As you can see the else clause was not run but the except handler was executed.

26.5 Handling an Exception 297

26.5.5 The Finally Clause

An optional finally clause can also be provided with the try statement. This
clause is the last clause in the statement and must come after any except classes
as well as the else clause.

It is used for code that you want to run whether an exception occurred or not. For
example, in the following code snippet:

try:
my_function(6, 2)

except ZeroDivisionError as e:
print(e)

else:
print(’Everything worked OK’)

finally:
print(’Always runs’)

The try block will run, if no error is raised then the else clause will be executed
and last of all the finally code will run, we will therefore have as output:

my_function in
my_function out
Everything worked OK
Always runs

If, however, we pass in 6 and 0 to my_function():

try:
my_function(6, 0)

except ZeroDivisionError as e:
print(e)

else:
print(’Everything worked OK’)

finally:
print(’Always runs’)

We will now raise an exception in my_function() which means that the try
block will execute, then the ZeroDivisionError wil be raised, it will be handled
by the except clause, and then the finally clause will run. The output is now:

my_function in
division by zero
Always runs

As you can see in both cases the finally clause is executed.
The finally clause can be very useful for general housekeeping type activities

such as shutting down or closing any resources that your code might be using, even
if an error has occurred.

298 26 Error and Exception Handling

26.6 Raising an Exception

An error or exception is raised using the keyword raise. The syntax of this is

raise <Exception/Error type to raise>()

For example:

def function_bang():
print(’function_bang in’)
raise ValueError(’Bang!’)
print(’function_bang’)

In the above function the second statement in the function body will create a new
instance of the ValueError class and then raise it so that it is thrown allowing it
to be caught by any exception handlers that have been defined.

We can handle this exception by writing a try block with an except clause for
the ValueError class. For example:

try:
function_bang()

except ValueError as ve:
print(ve)

This generates the output.

function_bang in
Bang!

Note that if you just want to raise an exception without providing any constructor
arguments, then you can just provide the name of the exception class to the raise
keyword:

raise ValueError # short hand for raise ValueError()

You can also reraise an error or an exception; this can be useful if you merely
want to note that an error has occurred and then rethrow it so that it can be handled
further up in your application:

try:
function_bang()

except ValueError:
print(’oops’)
raise

This will reraise the ValueError caught by the except clause. Note here we
did not even bind it to a variable; however, we could have done this if required.

try:
function_bang()

except ValueError as ve:
print(ve)
raise

26.7 Defining an Custom Exception 299

26.7 Defining an Custom Exception

You can define your own errors and exceptions, which can give you more control
over what happens in particular circumstances. To define an exception, you create a
subclass of the exception class or one of its subclasses.

For example, to define a InvalidAgeException, we can extend the
Exception class and generate an appropriate message:

class InvalidAgeException(Exception):
"" Valid Ages must be between 0 and 120 """

This class can be used to explicitly represent an issue when an age is set on a
Person which is not within the acceptable age range.

We can use this with the class Person that we defined earlier in the book; this
version of the Person class defined age as a property and attempted to validate that
an appropriate age was being set:

class Person:
def __init__(self, name, age):

self._name = name
self._age = age

@property
def age(self):

""" The docstring for the age property """
print(’In age method’)
return self._age

@age.setter
def age(self, value):

print(’In set_age method(’, value, ’)’)
if isinstance(value, int) & (value > 0 & value <

120):
self._age = value

else:
raise InvalidAgeException(value)

@property
def name(self):

print(’In name’)
return self._name

@name.deleter
def name(self):

del self._name

def __str__(self):
return ’Person[’ + str(self._name) + ’]

is ’ + self._age

300 26 Error and Exception Handling

Note that the age setter method now throws an InvalidAgeException, so if
we write

try:
p = Person(’Adam’, 21)
p.age = -1

except InvalidAgeException:
print(’In here’)

We can capture the fact that an invalid age has been specified.
However, in the exception handler we don’t know what the invalid age was.

We can of course provide this information by including it in the data held by the
InvalidAgeException.

If we now modify the class definition such that we provide an initializer to allow
parameters to be passed into the new instance of the InvalidAgeException:

class InvalidAgeException(Exception):
""" Valid Ages must be between 0 and 120 """

def __init__(self, value):
self.value = value

def __str__(self):
return ’InvalidAgeException(’ + str(self.value)

+ ’)’

We have also defined a suitable __str__() method to convert the exception
into a string for printing purposes.

We do of course need to update the setter to provide the value that has caused the
problem:

@age.setter
def age(self, value):

print(’In set_age method(’, value, ’)’)
if isinstance(value,int) & (value > 0 & value < 120):

self._age = value
else:

raise InvalidAgeException(value)

We can now write

try:
p = Person(’Adam’, 21)
p.age = -1

except InvalidAgeException as e:
print(e)

Now if the exception is raised a message will be printed out giving the actual
value that caused the problem:

26.8 Chaining Exceptions 301

In set_age method(-1)
InvalidAgeException(-1)

26.8 Chaining Exceptions

One final feature that can be useful when creating your own exceptions is to chain
them to a generic underlying exception. This can be useful when a generic exception
is raised, for example, by some library or by the Python system itself, and you want
to convert it into a more meaningful application exception.

For example, let us say that we want to create an exception to represent a
specific issue with the parameters passed to a function divide, but we don’t want
to use the generic ZeroDivisionException, instead we want to use our own
DivideByYWhenZeroException. This new exception could be defined as

class DivideByYWhenZeroException(Exception):
""" Sample Exception class"""

And we can use it in a function divide:

def divide(x, y):
try:

result = x /y
except Exception as e:

raise DivideByYWhenZeroException from e

We have used the raise and from keywords when we are instantiating the
DivideByYWhenZeroException. This chains our exception to the original
exception that indicates the underling problem.

We can now call the divide method as below:

def main():
divide(6, 0)

This produces a Traceback as given below:

Traceback (most recent call last):
File "/Users/Shared/workspaces/pycharm/pythonintro/

exceptions/exceptions.py", line 43, in divide
result = x /y

ZeroDivisionError: division by zero
The above exception was the direct cause of the following

exception:
Traceback (most recent call last):

File "/Users/Shared/workspaces/pycharm/pythonintro/
exceptions/exceptions.py", line 136, in <module>

main()
File "/Users/Shared/workspaces/pycharm/pythonintro/

exceptions/exceptions.py", line 79, in main
divide(6, 0)

302 26 Error and Exception Handling

File "/Users/Shared/workspaces/pycharm/pythonintro/
exceptions/exceptions.py", line 45, in divide

raise DivideByYWhenZeroException from e
__main__.DivideByYWhenZeroException

As can be seen you get information about both the (application specific)
DivideByYWhenZeroException and the original ZeroDivisionError
– the two are linked together. This can be very useful when defining such appli-
cation specific exceptions (but where the actual underlying exception must still be
understood).

26.9 Exception Groups

Exception groups are exactly that a group of different exceptions. They thus allow
developers to group together multiple exceptions and raise the whole group as one.

Of course this raises the question ‘why?’ In general the reason for using an
exception group is one of the following:

● In some cases, when an exception is raised, any attempt to handle that exception
may also result in an exception. For example, let us assume that we have opened a
file for reading purposes. While reading the file we suddenly get an exception, we
then attempt to handle the exception and tidying things up by closing the file, which
might then throw another exception. We thus have two exceptions associated with
reading from this file. We might then want to handle both exceptions elsewhere,
then exception groups can be used to raise both exceptions.

● If some type of API is being used, then on a failure, the system may retry some
operation several times until some threshold is met. In this case each retry might
generate a different exception and the user of the API should be notified of all of
the different exceptions. Exception groups allow us to group the exceptions from
each of the retries so that they can be handled individually.

● Finally, if we are running multiple threads or processes at the same time, then
each of these multiple tasks might throw a different exception and we want to
capture all the exceptions and notify invoking code of the group of errors, etc.

It is possible to create an exception group using the ExceptionGroup class.
The parameters to the class are a message explaining the exception group and a tuple
of exceptions to be held by the group.

The syntax is

ExceptionGroup(msg, excs)

For example:

def do_something():
eg = ExceptionGroup("multiple exceptions occurred",

(ValueError("incorrect value"),

26.10 Exception Group Handling 303

ValueError("not a positive value"),
FileNotFoundError("Unknown file

data.txt"),
AttributeError("date")))

raise eg
do_something ()

In this example, the do_something() function creates an
ExceptionGroup with the message ‘multiple exceptions occurred’ and a tuple
of four exceptions made up of two ValueErrors, a FileNotFoundError and
an AttributeError.

Note that an ExceptionGroup is part of the Exception class hierarchy. It
can thus be used within the exception handling mechanism of Python and this it is
possible to raise the exception group using the raise keyword.

When the do_something() function is called it will raise the
ExceptionGroup and as at the moment this is not handled the program
will terminate with a traceback, for example:

+ Exception Group Traceback (most recent call last):

| File "exception_groups_example.py", line 8, in <module>
| do_something()

| File "exception_groups_example.py", line 6, in do_
something

| raise e
| ExceptionGroup: multiple exceptions occurred (4 sub-

exceptions)
+-+---------------- 1 ----------------

| ValueError: incorrect value
+---------------- 2 ----------------
| ValueError: not a positive value
+---------------- 3 ----------------
| FileNotFoundError: Unknown file data.txt
+---------------- 4 ----------------
| AttributeError: date
+------------------------------------

Note that this is an ExceptionGroup Traceback and thus it knows about the excep-
tion group and displays the message associated with the group and each of the
exceptions listed in the tuple used to create the group in the order they were defined
in.

26.10 Exception Group Handling

Exceptions groups can be handled using the standard try except mechanism
used with traditional exceptions and errors. Thus we can write

304 26 Error and Exception Handling

try:
do_something()

except ExceptionGroup as e:
print(e.message)
print(e.exceptions)

If we run this code the output is

multiple exceptions occurred
(ValueError(’incorrect value’), ValueError(’not a posi-

tive value’), FileNotFoundError(’Unknown file data.txt’),
AttributeError(’date’))

And the program does not crash, note that the exceptions property contains a tuple
of the exceptions.

However, if we now wish to do something specific depending upon whether there
was a ValueError in the list of exceptions of not we would need to handle the list
of exceptions ourselves and see if one of them was a ValueError, etc.

In Python 3.11 a new except* keyword was added. This keyword can match
exceptions that are within an ExceptionGroup. We could therefore look to see
what exceptions are within the ExceptionGroup and perform different actions
depending upon the members of the group. For example:

try:
do_something()

except* ValueError as exp_group:
print(’ValueErrors:’)
print(exp_group.exceptions)

except* FileNotFoundError as exp_group:
print(’FileNotFoundErrors:’)
for e in exp_group.exceptions:

print(e)
except* AttributeError as exp_group:

print(’AttributeError’)
print(exp_group.exceptions)

In this example we are handling the ValueErrors, FileNotFoundError
and the AttributeError separately. Note that the result of matching on a partic-
ular exception/error type is another ExceptionGroup containing one or more
exceptions in it. Thus the first except* ValueError will generate an Excep-
tionGroup with two exceptions in it. In turn theexcept* FileNotFoundError
will generate an ExceptionGroup with one exception in it and so on.

The output from this program is therefore

ValueErrors:
(ValueError(’incorrect value’), ValueError(’not a positive

value’))
FileNotFoundErrors:
Unknown file data.txt
AttributeError

26.11 Exception Notes 305

(AttributeError(’date’),)

Note that unlike the traditional try except block more than one except* block can
run as we might want to handle each of the exceptions in the group separately but
within the same try except* structure.

Also note that we have had to handle all of the exceptions in the exception group.
If we had missed one out then at least one exception would not have been handled
and will cause the program to terminate. For example, if we did not include the
AttributeError except* clause then the output of the program would have
been

ValueErrors:
(ValueError(’incorrect value’), ValueError(’not a positive

value’))
FileNotFoundErrors:
Unknown file data.txt

+ Exception Group Traceback (most recent call last):
| File "exception_groups_example.py", line 11, in

<module>
| do_something()

| File "exception_groups_example.py", line 7, in do_
something

| raise eg
| ExceptionGroup: multiple exceptions occurred (1 sub-

exception)
+-+---------------- 1 ----------------

| AttributeError: date
+------------------------------------

As you can see from this both the ValueErrors and the one
FileNotFoundError have been handled but the AttributeError has not,
and thus the program terminates and generates traceback for the unhandled exception.

26.11 Exception Notes

Exception notes are another new feature in Python 3.11. Exception notes are
described in PEP678 (see https://peps.python.org/pep-0678/).

This new feature allows a programmer to add a note to an exception when it is
being handled before rethrowing it. This avoids the need to create application specific
exceptions to allow additional information to be provided.

The note can then be viewed in any error trace back or examined in client code
further up the stack. This can be very useful to anyone trying to debug a problem.

To add a note to an exception the add_note() method is used for example:

https://peps.python.org/pep-0678/

306 26 Error and Exception Handling

def do_something():
try:

code raising a ValueError
raise ValueError(’Value Incorrect’)

except ValueError as err:
err. add_note(’Invalid age’)
raise err

do_something()

In this example the initial ValueError is handled within the function do_
something(0 and a note is added to the error ‘Invalid Age’.

When we run this code the output generated is

Traceback (most recent call last):
File "exception_notes_example.py", line 11, in <module>

do_something()
File "exception_notes_example.py", line 8, in do_something

raise err
File "exception_notes_example.py", line 5, in do_something

raise ValueError(’Value Incorrect’)
ValueError: Value Incorrect
Invalid age

As you can see at the end of this traceback the note added ‘invalid age’ is printed
after the initial ‘Value Incorrect’ message.

We can of course handle this error in the same way as any other error or exception,
for example:

try:
do_something()

except ValueError as err:
print(err)
print(err.__notes__)

Running this code generates

Value Incorrect
[’Invalid age’]

Note that when you print the ValueError instance using print(err) you only see the
original message (‘Value Incorrect’). To access the notes you must used the err.__
notes__ special attribute. This returns a list of any notes that have been added to the
exception.

26.12 Generate a Traceback Programmatically

You may have noted that when you handle an exception in your own code, and
for example, print out the exception all you get is the message associated with the
exception, for example:

26.13 Online Resources 307

try:
print(6 / 0)

except Exception as exp:
print(’oops’)
print(exp)

The following code when run generates this output:

oops
division by zero

Whereas when you allow an exception to escape from your program (i.e., you
don’t handle it) you get a so called traceback which provides information on where
the exception happened, etc. This can be very useful when trying to debug a problem
in your code.

The traceback module provides the print_exc() function that can be used
to print a traceback associated with the current exception. To use this module all you
need to do is to import it (as it comes as part of the Python environment).

For example we can modify our earlier program by importing the traceback
module and calling the print_exc() function within the exception handling code
block:

import traceback

try:
print(6 / 0)

exceptExceptionas exp:
print(’oops’)
print(exp)
traceback.print_exc()

Now when we run this program, we will get a traceback printed out when the
exception is handled:

oops
division by zero
Traceback (most recent call last):

File "traceback-example.py", line 6, in <module>
print(6 / 0)

~~^~~
ZeroDivisionError: division by zero

26.13 Online Resources

For more information on Pythons errors and exceptions sets:

● https://docs.python.org/3/library/exceptions.html The Standard Library docu-
mentation for built-in exceptions

https://docs.python.org/3/library/exceptions.html

308 26 Error and Exception Handling

● https://docs.python.org/3/tutorial/errors.html The Standard Python documenta-
tion tutorial on errors and exceptions.

● https://www.tutorialspoint.com/python/python_exceptions.htm An alternative
tutorial on Python exception handling.

26.14 Exercises

This exercise involves adding error handling support to the CurrentAccount
class.

In the CurrentAccount class it should not be possible to withdraw or deposit
a negative amount.

Define an exception/error class called AmountError. The AmountError
should take the account involved and an error message as parameters.

Next update the deposit() and withdraw() methods on the Account and
CurrentAccount class to raise an AmountError if the amount supplied is
negative.

You should be able to test this using:

try:
acc1.deposit(-1)

except AmountError as e:
print(e)

This should result in the exception ‘e’ being printed out, for example:

AmountError (Cannot deposit negative amounts) on Account[123]
- John, current account = 21.17overdraft limit: -100.0

Next modify the class such that if an attempt is made to withdraw money which
will take the balance below the overdraft limit threshold an error is raised.

The error should be a BalanceError that you define yourself. The
BalanceError exception should hold information on the account that generated
the error.

Test your code by creating instances of CurrentAccount and taking the
balance below the overdraft limit.

Write code that will use try and except blocks to catch the exception you have
defined.

You should be able to add the following to your test application:

try:
print(’balance:’, acc1.balance)
acc1.withdraw(300.00)
print(’balance:’, acc1.balance)

except BalanceError as e:
print(’Handling Exception’)
print(e)

https://docs.python.org/3/tutorial/errors.html
https://www.tutorialspoint.com/python/python_exceptions.htm

Chapter 27
Python Modules and Packages

27.1 Introduction

Modules and packages are two constructs used in Python to organize larger programs.
This chapter introduces modules in Python, how they are accessed, how they are
defined, how Python finds modules, etc. It also explores Python packages and sub-
packages.

27.2 Modules

A module allows you to group together related functions, classes and code in general.
You can think of a module as being like a library of code (although in fact many
libraries are themselves composed of several modules as for example a library may
have optional or extensions to the core functionality).

It is useful to organize your code into modules when the code either becomes
large or when you want to reuse some elements of the code base in multiple projects.

Breaking up a large body of code from a single file helps with simplifying code,
maintenance and comprehensibility of code, testing, reuse and scoping code. These
are explored below:

● Simplicity—Focusing on a subset of an overall problem helps us to develop solu-
tions that work for the subset and can be combined together to solve the overall
problem. This means that individual modules can be simpler than the overall
solution.

● Maintenance—Modules typically make it easier to define logical boundaries
between one body of code and another. This means it is easier to see what
comprises a module and to verify that the module works appropriately even when
modified. It also helps to distinguish one body of code from another so makes it
easier to work out where changes should go.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_27

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_27&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_27

310 27 Python Modules and Packages

● Testing—As one module can be made independent of another module there are
less dependencies and cross overs. This means that a module can be tested in
isolation and even before other modules, and the overall application, have been
written.

● Reusability—Defining a function or class on one module means that it is easier
to reuse that function or class in another module, as the boundaries between the
one module and another are clear.

● Scoping—Modules typically also define a namespace, that is a scope within which
each function or class is unique. Think of a namespace a bit like a surname; within
a classroom there may be several people with the first name ‘John’, but we can
distinguish each person by using their full name, for example ‘John Hunt’, ‘John
Jones’, ‘John Smith’ and ‘John Brown’; each surname in this example provides a
namespace which ensures each John is unique (and can be referenced uniquely).

27.3 Python Modules

In Python a module equates to a file containing Python code. A module can contain.

● Functions
● Classes
● Variables
● Executable code
● Attributes associated with the module such as its name

The name of a module is the name of the file that it is defined in (minus the suffix
‘.py’). For example, the following diagram illustrates a function and a class defined
within a file called utils.py:

Thus, the printer() function and the class Shape are defined in the utils
module. They can be referenced via the name of the utils module.

As an example, let us look at a definition for our utils module defined in the
file util.py:

27.3 Python Modules 311

"""This is a test module"""
print(’Hello I am the utils module’)

def printer(some_object):
print(’printer’)
print(some_object)
print(’done’)

class Shape:
def __init__(self, id):

self._id = id
def __str__(self):

return ’Shape - ’ + self._id
@property
def id(self):

""" The docstring for the id property """
print(’In id method’)
return self._id

@id.setter
def id(self, value):

print(’In set_age method’)
self._id = id

default_shape = Shape(’square’)

The module has a comment which is at the start of the file—this is useful docu-
mentation for anyone working with the module. In some cases, the comment at the
start of the module can provide extensive documentation on the module such as what
it provides, how to use the features in the module and examples that can be used as
a reference.

The module also has some executable code (the print statement just after the
comment) that will be run when the module is loaded / initialized by Python. This
will happen when the module is first referenced in an application.

A variable default_shape is also initialized when the module is loaded and
can also be referenced outside the module in a similar manner to the module’s function
and class. These variables can be useful in setting up defaults or predefined data that
can be used by developers working with the module.

312 27 Python Modules and Packages

27.4 Importing Python Modules

27.4.1 Importing a Module

A user-defined module is not automatically accessible to another file or script; it is
necessary to import the module. Importing a module makes the functions, classes
and variables defined in the module visible to the file they are imported into.

For example, to import all the contents of the utils module into a file called
my_app.py we can use:

import utils

Note that we do not give the file name (i.e. utils.py) instead we give the
module name to import (which does not include the.py).

The result is as shown below:

Once the definitions within the utils module are visible inside my_app.py
we can use them as if they had been defined in the current file. Note that due to
scoping the function, class and variable defined within the utils module will be
prefixed by the name of the module; i.e. utils.printer and utils.Shape
etc.:

import import utils

utils.printer(utils.default_shape)
shape = utils.Shape(’circle’)
utils.printer(shape)

When we run the my_app.py file we will produce the following output:

Hello I am the utils module
printer
Shape - square
done
printer
Shape - circle

Notice that the first line of the output is the output from the print state-
ment in the utils module (i.e., the line print(’Hello I am the utils
module’)) this illustrates the ability in Python to define behaviour that will be run

27.4 Importing Python Modules 313

when a module is loaded; typically this might execute some housekeeping code or
set up behaviour required by the module. It should be noted that the module is only
initialized the first time that it is loaded and thus the executable statements are only
run once.

If we forgot to include the import statement at the start of the file, then Python
would not know to use theutils module. We would thus generate an error indicating
that the utils element is not known: NameError: name ’utils’ is not
defined.

There can be any number of modules imported into a file; these can be both user
defined modules and system provided modules. The modules can be imported via
separate import statements or by supplying a comma separated list of modules:

import utils
import support
import module1, module2, module3

A common convention is to place all import statements at the start of a file;
however, this is only a convention and import statements can be placed anywhere
in a file prior to where the modules features are required. It is a common enough
convention, however, that tools such as PyCharm will indicate a style issue if you do
not put the imports at the start of the file.

27.4.2 Importing from a Module

One issue with the previous example is that we have had to keep referring to the
facilities provided by the utils module as utils. < thing of interest
>; which while making it very clear that these features come from the utils module,
is a little tedious. It is the equivalent of referring to a person via their full name every
time we speak to them. However, if they are the only other person in the room then
we don’t usually need to be so formal; we could just use their first name.

A variant of the import statement allows us to import everything from a partic-
ular module and remove the need to prefix the modules functions or classes with the
module name, for example:

from <module name> import*

Which can be read as from < module name > import everything in that
module and make it directly available.

from utils import *

printer(default_shape)
shape = Shape(’circle’)
printer(shape)

314 27 Python Modules and Packages

As this shows we can reference default_shape, the printer() function
and the Shape class directly. Note the ‘*’ here is often referred to as a wildcard;
meaning that it represents everything in the module.

The problem with this form of import is that it can result in name clashes as it
brings into scope all the elements defined in the utils module. However, we may
only actually be interested in the Shape class; in which case we can choose to only
bring that feature in, for example:

from utils import Shape
s = Shape(’rectangle’)
print(s)

Now only the Shape class has been imported into the file and made directly
available.

27.4.3 Importing Aliases

You can even give an alias for an element being imported from a module using the
import statement. For example, you can alias the whole package:

import <module_name> as <alternative_module_name>

for example:

import utils as utilities
utilities.printer(utilities.default_shape)

In this example, instead of referring to the module we are importing as utils,
we have given it an alias and called it utilities.

We can also alias individual elements of a module, for example, a function can
be given an alias, as can a variable or a class. The syntax for this is.

from <module_name> import <element> as <alias>

For example:

from utils import printer as myfunc

In this case the printer function in the utils module is being aliased to myfunc
and will thus be known as myfunc in the current file.

We can even combine multiple from imports together with some of the elements
being imported having aliases:

from utils import Shape, printer as myfunc
s = Shape(’oval’)
myfunc(s)

27.4 Importing Python Modules 315

27.4.4 Hiding Some Elements of a Module

By default, any element in a module whose name starts with an underbar (‘_’) is
hidden when a wildcard import of the contents of a module is performed.

In this way certain named items can be hidden unless they are explicitly imported.
Thus, if our utils module now included a function:

"""This is a test module"""
print(’Hello I am the utils module’)

as before

def_special_function():
print(’Special function’)

And then tried to import the whole module using the wildcard import and access
_special_function:

from utils import *
_special_function()

We will get an error:

NameError: name ’_special_function’ is not defined

However, if we explicitly import the function then we can still reference it:

from utils import _special_function
_special_function()

Now the code works:

Hello I am the utils module
Special function

This can be used to hide features that are either not intended to be used externally
from a module (developers then use them at their own peril) or to make advanced
features only available to those who really want them.

27.4.5 Importing Within a Function

In some cases, it may be useful to limit the scope of an import to a function; thus,
avoiding any unnecessary use of, or name clashes with, special features.

To do this you merely add an import into the body of a function, for example:

def my_func():
from util import Shape
s = Shape(’line’)

In this case the Shape class is only accessible within the body of my_func().

316 27 Python Modules and Packages

27.5 Module Properties

Every module has a set of properties that can be used to find what features it provides,
what its name is, what (if any) its documentation string is etc.

These properties are considered special as they all start, and end, with a double
underbar (‘__’). These are:

● __name__ the name of the module
● __doc__ the documentation for the module
● __file__ the file in which the module was defined.

You can also obtain a list of the contents of a module once it has been imported
using the dir(<module-name >) function. For example:

import utils
print(utils.__name__)
print(utils.__doc__)
print(utils.__file__)
print(dir(utils))

Which produces:

Hello I am the utils module
utils
This is a test module
utils.py

[’Shape’, ’__builtins__’, ’__cached__’, ’__doc__’, ’__
file__’, ’__loader__’, ’__name__’, ’__package__’, ’__spec__’, ’_
special_function’, ’default_shape’, ’printer’]

Note that the executable print statement is still executed as this is run when the
module is loaded into Python’s current runtime; even though all we do it then access
some of the module’s properties.

Mostly module properties are used by tools to help developers; but they can be a
useful reference when you are first encountering a new module.

27.6 Standard Modules

Python comes with many built-in modules as well as many more available from third
parties.

Of particular use is the sys module, which contains a number of data items and
functions that relate to the execution platform on which a program is running.

Some of the sys module’s features are shown below, including sys.path(),
which lists the directories that are searched to resolve a module when an import

27.7 Python Module Search Path 317

statement is used. This is a writable value, allowing a program to add directories
(and hence modules) before attempting an import.

import sys

print(’sys.version: ’, sys.version)
print(’sys.maxsize: ’, sys.maxsize)
print(’sys.path: ’, sys.path)
print(’sys.platform: ’, sys.platform)

which produces the following output on a Mac:

sys.version: 3.11.3 (main, Apr 7 2023, 19:25:52) [Clang 14.0.0
(clang-1400.0.29.202)]

sys.maxsize: 9223372036854775807
sys.path: [’/beginnerspython3_2nd/chapter27_modules_

and_packages’, ’/beginnerspython3_2nd’, ’/usr/local/Cellar/
python@3.11/3.11.3/Frameworks/Python.framework/Versions/
3.11/lib/python311.zip’, ’/usr/local/Cellar/python@3.11/
3.11.3/Frameworks/Python.framework/Versions/3.11/lib/
python3.11’, ’/usr/local/Cellar/python@3.11/3.11.3/Frameworks/
Python.framework/Versions/3.11/lib/python3.11/lib-dynload’, ’/
Users/Shared/workspaces/pycharm/beginnerspython3_2nd/venv/lib/
python3.11/site-packages’]

sys.platform: darwin

27.7 Python Module Search Path

One point that we have glossed over so far is how does Python find these modules?
The answer is that it uses a special environment variable called the PYTHONPATH.
This is a variable that can be set up prior to running Python that tells it where to look
for to find any named modules.

It is hinted at in the previous section where the sys module’s path variable is
printed out. On the machine that this code was run on the output of this variable was:

sys.path: [’/beginnerspython3_2nd/chapter27_modules_and_
packages’, ’/beginnerspython3_2nd’, ’/usr/local/Cellar/
python@3.11/3.11.3/Frameworks/Python.framework/Versions/
3.11/lib/python311.zip’, ’/usr/local/Cellar/python@3.11/
3.11.3/Frameworks/Python.framework/Versions/3.11/lib/
python3.11’, ’/usr/local/Cellar/python@3.11/3.11.3/Frameworks/
Python.framework/Versions/3.11/lib/python3.11/lib-dynload’, ’/
Users/Shared/workspaces/pycharm/beginnerspython3_2nd/venv/lib/
python3.11/site-packages’]

This is actually a list of the locations that Python would look in to find a module;
these include the PyCharm project holding the modules related to the examples used
in this book (which is the current directory), then a top level PyCharm location and
a series of Python locations (where locations equal directories on the host machine).

318 27 Python Modules and Packages

Python will search though each of these locations in turn to find the named module;
it will use the first module it finds. The actual search algorithm is:

● The current directory.
● If the module isn’t found, Python then searches each directory in the shell variable
PYTHONPATH.

● If all else fails, Python checks the default path. On Unix / Linux this default path
is normally /usr/local/lib/python/.

One point to note about this search order is that it is possible to hide a system
provided module by creating a user defined on and giving it the same name as the
system module; this is because your own module will be found first and will hide
the system provided one.

In this case the PYTHONPATH will be used to find built in Python modules under
the Python installation, while our own user defined modules will be found within the
PyCharm project workspace directories.

It is also possible to override the default PYTHONPATH variable. It is what is
known as an environment variable and so it can be set as a Unix / Linux or Windows
operating system environment variable which can then be picked up by your Python
environment. The syntax used to set the PYTHONPATH depends on whether you are
using Windows or Unix/Linux as it is set at the operating system level:

Here is a typical PYTHONPATH from a Windows system:

set PYTHONPATH = c:\python20\lib;
And here is a typical PYTHONPATH from a Unix /Linux system:

set PYTHONPATH = /usr/local/lib/python

27.8 Modules as Scripts

Any Python file is not only a module but also a Python script. This means that it can
be executed directly if required. For example, the following is the contents of a file
called module1.py:

"""This is a test module"""
print(’Hello I am module 1’)

def f1():
print(’f1[1]’)

def f2():
print(’f2[1]’)

27.8 Modules as Scripts 319

x = 1 + 2
print(’x is’, x)
f1()
f2()

When this file is run directly, or loaded into the Python REPL, then the free-
standing code will be executed and the output generated will be:

Hello I am module 1
x is 3
f1[1]
f2[1]

This looks fine until you try to use module1 with your own code; the free-
standing code will still execute this if we now write:

import module1

module1.f1()

where you might expect only to see the result of running the f1() function from
module1 you actually get:

Hello I am module 1
x is 3
f1[1]
f2[1]
f1[1]

The first 4 lines are run when module1 is loaded as they are free standing
executable statements within the module.

We can of course remove the free-standing code; but what if we sometimes want
to run module1 as a script and sometimes use it as a module imported into other
modules?

In Python we can distinguish between when a file is loaded as a module and when
it is being run as a standalone script. This is because Python sets the module property
__name__ to the name of the module when it is being loaded as a module; but if
a file is being run as a standalone script (or the entry point of an application) then
the __name__ is set to the string __main__. This is partly because historically
main() has been the entry point for applications in numerous other languages such
as C, C + + , Java and C#.

We can now determine whether a module is being loaded or run as a script / main
application by checking the __name__ property of the module (which is directly
accessible from within a module). If the module is the __main__ entry point run
some code; if it is not then do something else.

For example,

320 27 Python Modules and Packages

"""This is a test module"""
print(’Hello I am module 1’)

def f1():
print(’f1[1]’)

def f2():
print(’f2[1]’)

if __name__ == ’__main__’:
x = 1 + 2
print(’x is’, x)
f1()
f2()

Now the code within the if statement will only be executed when this module is
loaded as the starting point for an application / script. Note that the print statement
at the top of the module will still be executed in both scenarios; this can be useful as
it allows set up or initialization behaviour to still be executed where appropriate.

A common pattern, or idiom is to place the code to be run when a file is being
loaded directly (rather than as a module) in a function called main() and to call
that function from within the if statement. This helps to clarify which behaviour is
intended to run when, thus our module’s final version is:

"""This is a test module"""
print(Hello I am module 1’)

def f1():
print(’f1[1]’)

def f2():
print(’f2[1]’)

def main():
x = 1 + 2
print(’x is’, x)
f1()
f2()

if__name__ == ’main__’:
main()

This version is what would now be called idiomatic Python or Pythonic in style.

27.9 Python Packages 321

27.9 Python Packages

27.9.1 Package Organization

Python allows developers to organize modules together into packages, in a hierar-
chical structure based on directories.

A package is defined as.

● A directory containing one or more Python source files and
● An optional source file named __init__.py. This file may also contain code

that is executed when a module is imported from the package.

For example, the following picture illustrates a package utils containing two
modules classes and functions.

In this case the __init__.py file contains package level initialization code:

print(’utils package’)

The contents of the __init__.py file will be run once, the first time either
module within the package is referenced.

The functions module then contains several function definitions; while the
classes module contains several class definitions.

We refer to elements of the package relative to the package name—as shown
below:

from utils.functions import *
f1()
from utils.classes import *
p = Processor()

Here we are importing both the functions module and the classes module
from the utils package. The function f1() is defined in the functions module
while the Processor class is defined within the classes module.

You can use all the from and import styles we have already seen, for example,
you can import a function from a module in a package and give it an alias:

from util.functions import f1 as myfunc
myfunc()

322 27 Python Modules and Packages

It is possible to import all the modules from a package by simply importing the
package name. If you wish to provide some control over what is imported from a
package when this happens you can define a variable all in the __init__.py
file that will indicate what will be imported in this situation.

27.9.2 Sub Packages

Packages can contain sub packages to any depth you require. For example, the
following diagram illustrates this idea:

In the above diagram utils is the root package, this contains two sub packages
file_utils and network_utils. The file_utils package has an initial-
ization file and a file_support module. The network_utils package also
has a package initialization file and two modules network_monitoring and
network_support. Of course, the root package also has its own initialization
file and its own modules classes and functions.

To import the sub package, we do the same as before but each package in the path
to the module is separate by a dot, for example:

import utils.file_utils.file_support

or

from utils.file_utils.file_support import file_logger

27.11 Exercise 323

27.10 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/tutorial/modules.html#standard-modules the standard
modules.

● https://docs.python.org/3/tutorial/modules.html#packages packages.
● https://docs.python.org/3/tutorial/stdlib.html brief tour of the standard library part

1.
● https://docs.python.org/3/tutorial/stdlib2.html brief tour of the standard library

part 2.
● https://pymotw.com/3/ The Python Module of the Week site listing very many

modules and an extremely useful reference.

27.11 Exercise

The aim of this exercise is to create a module for the classes you have been developing.
You should move your Account, CurrentAccount, DepositAccount

and BalanceError classes into a separate module (file) called accounts. Save
this file into a new Python package called fintech.

Separate out the test application from this module so that you can import the
classes from the package.

Your test application will now look like:

import fintech.accounts as accounts

acc1 = accounts.CurrentAccount(’123’, ’John’, 10.05, 100.0)
acc2 = accounts.DepositAccount(’345’, ’John’, 23.55, 0.5)

acc3 = accounts.InvestmentAccount(’567’, ’Phoebe’, 12.45, ’high
risk’)

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print(’balance:’, acc1.balance)

print(’Number of Account instances created:’,
accounts.Account.instance_count)

try:
print(’balance:’, acc1.balance)
acc1.withdraw(300.00)
print(’balance:’, acc1.balance)

except accounts.BalanceError as e:
print(’Handling Exception’)
print(e)

https://docs.python.org/3/tutorial/modules.html#standard-modules
https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/tutorial/stdlib.html
https://docs.python.org/3/tutorial/stdlib2.html
https://pymotw.com/3/

324 27 Python Modules and Packages

You could of course also use from accounts import * to avoid prefixing
the accounts related classes with accounts.

Chapter 28
Protocols, Polymorphism and Descriptors

28.1 Introduction

In this chapter we will explore the idea of an implicit contract between an object
and the code that uses that object. As part of this discussion we will explore what is
meant by Duck Typing. Following this we will introduce the Python concept called
a protocol. We will explore its role within Python programming and look at two
commonly occurring protocols; the Context Manager Protocol and the Descriptor
Protocol.

28.2 Implicit Contracts

Some programming languages (most notable Java and C#) have the idea of an explicit
contract between a class and the user of that class; this contract provides a guarantee
of the methods that will be provided and the types that will be used for parameters
and return values from these methods. In these languages it helps to guarantee that
a method is only called with the appropriate type of values and only in appropriate
situations. Slightly confusingly these contracts are referred to as interfaces in Java
and C# but are intended to describe the application programming interface presented
by the class.

Python is a much more flexible and free flowing language than either Java or C#
and so has no explicit concept of an interface. This can however make things more
complex at times; for example, consider the very simple Calculator class given
below:

class Calculator:
def add(self, x, y):

return x + y
What are the valid values that can be passed into the add method and used for the

parameters x and y?

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_28

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_28&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_28

326 28 Protocols, Polymorphism and Descriptors

Initially it might seem that numeric values such as 1, 2 and 3.4, 5.77, etc., would
be the only things that can be used with the add method:

calc = Calculator()
print(’calc.add(3, 4):’, calc.add(3, 4))
print(’calc.add(3, 4.5):’, calc.add(3, 4.5))
print(’calc.add(4.5, 6.2):’, calc.add(4.5, 6.2))
print(’calc.add(2.3, 7):’, calc.add(2.3, 7))
print(’calc.add(-1, 4):’, calc.add(-1, 4))

This generates the following output:

calc.add(3, 4): 7
calc.add(3, 4.5): 7.5
calc.add(4.5, 6.2): 10.7
calc.add(2.3, 7): 9.3
calc.add(-1, 4): 3

However, this actually represents a contract that the values passed in to a calculator
method will support the plus operator. In an earlier chapter we explored a class
Quantity which implemented this operator (among others) and this we can also
use quantity objects with the calculator’s add() method:

q1 = Quantity(5)
q2 = Quantity(10)
print(calc.add(q1, q2))

Which prints out

Quantity[15]

This implied contract says that the Calculator.calc() method will work
with anything that supports the numeric add operator (or to put it another); anything
that is numeric like.

This is also known as Duck Typing; this is described in the next section.

28.3 Duck Typing

This rather strange term comes from an old saying:

if it walks like a duck, swims like a duck and quacks like a duck then it’s a Duck!

In Python Duck Typing (also known as shape typing or structural typing) implies that
if a object can perform the required set of operations that it’s a suitable thing to use
for what you want. For example, if your type can be used with the add, multiply,
divide and subtract operators than it can be treated as a Numeric type (even if it isn’t).

28.3 Duck Typing 327

This is a very powerful feature of Python and allows code originally written to
work with a specific set of types, to also be used with a completely new set of types;
as long as they meet the implicit contract defined within the code.

It is also interesting to note, that a particular set of methods may have a super set
of requirements on a particular type, but you only need to implement as much as is
required for the functionality you will actually use.

For example, let us modify the Calculator class a bit and add some more
methods to it:

class Calculator:
""" Simple Calculator class"""
def add(self, x, y):

return x + y
def subtract(self, x, y):

return x - y

def multiply(self, x, y):
return x * y

def divide(self, x, y):
return x/y

At first sight this may indicate that anything being used with the Calculator
must implement all four operators ‘ + ’, ‘−’, ‘/’ and ‘*’. However, this is only true
if you need to execute all four of the methods defined in the class.

For example, consider the type Distance:

class Distance:
def __init__(self, d):

self.value = d
def __add__(self, other):

return Distance(self.value + other.value)
def __sub__(self, other):

return Distance(self.value - other.value)
def __str__(self):

return ’Distance[’ + str(self.value) + ’]’

This defines a class that implements only the __add__() and __sub__()
methods and will thus only support the ‘ + ’ and ‘−’ operators.

Can instances of Distance be used with the Calculator class? The answer
is that they can but only with the add and subtract methods (as they only meet part of
the implied contract between the Calculator class and any types used with that
class).

We can thus write

d1 = Distance(6)
d2 = Distance(3)
print(calc.add(d1, d2))
print(calc.subtract(d1, d2))

328 28 Protocols, Polymorphism and Descriptors

And obtain the output:

Distance[9]
Distance[3]

However, if we try to use the multiply() or divide() methods, we will get
an error, for example:

print(calc.divide(d1, d2))

Then we will get an error stack trace:

Traceback (most recent call last):
File "Calculator.py", line 46, in <module>

print(calc.divide(d1, d2))
File "Calculator.py", line 15, in divide

return x / y
TypeError: unsupported operand type(s) for /: ’Distance’ and

’Distance’

You may well have already encountered these while exploring Python. Basically,
it is telling you that the operator ‘/’ is not supported when used with the Distance
type.

28.4 Polymorphism

Polymorphism is the ability to send the same message (request to run a method) to
different objects, each of which appear to perform the same function. However, the
way in which the message is handled depends on the object’s class.

Polymorphism is a strange sounding word, derived from Greek, for a relatively
simple concept. It is essentially the ability to request that the same operation be
performed by a wide range of different types of things. How the request is processed
which depends on the thing that receives the request. The programmer need not worry
about how the request is handled, only that it is. This is illustrated below.

def night_out(p):
p.eat()
p.drink()
p.sleep()

In this example, the parameter passed into the night_out() function expects
to be given something that will respond to the methods eat(), drink() and
sleep(). Any object that meets this requirement can be used with the function.

We can define multiple classes that meet this informal contract, for example we
can define a class hierarchy that provides these methods, or completely separate
classes that implement the methods. In the case of the class hierarchy the methods
may or may not override those from the parent class.

28.5 Protocols 329

Effectively, this means that you can ask many different things to perform the same
action. For example, you might ask a range of objects to provide a printable string
describing themselves. In fact in Python this is exactly what happens. For example,
if you ask an instance of a Manager class, a compiler object or a database object to
return such a string, you use the same method name call (__str__(), in Python).

The name polymorphism is unfortunate and often leads to confusion. It makes
the whole process sound rather grander than it actually is.

Note this is one of the most significant and flexible features of Python; it does
not tie a variable to a specific type; instead via Duck Typing as long as the object
provided meets the implied contract, then we are good.

The following classes all meet the contract implied by the night_out()
function:

class Person:
def eat(self): print(’Person - Eat’)
def drink(self): print(’Person - Drink’)
def sleep(self): print(’Person - Sleep’)

class Employee(Person):
def eat(self): print(’Employee - Eat’)
def drink(self): print(’Employee - Drink’)
def sleep(self): print(’Employee - Sleep’)

class SalesPerson(Employee):
def eat(self): print(’SalesPerson - Eat’)
def drink(self): print(’SalesPerson - Drink’)

class Dog:
def eat(self): print(’Dog - Eat’)
def drink(self): print(’Dog - Drink’)
def sleep(self): print(’Dog - Sleep’)

This means that instances of all of these classes can be used with the night_
out() function.

Note that the SalesPerson class meets the implied contract partly via
inheritance (the sleep() method is inherited from Employee).

28.5 Protocols

As mentioned above, Python does not have any formal mechanism for stating what
is required between the supplier of some functionality and the user or consumer of
that functionality. Instead a far less formal approach termed Duck Typing is adopted
instead.

This, however, raises the question; how do you know what is required? How do
you know that you must provide the numeric operators for an object to be used with
the Calculator class?

330 28 Protocols, Polymorphism and Descriptors

The answer is that a concept known as a protocol is used.
A protocol is an informal description of the programmer interface provided by

something in Python (for example a class but it could also be a module or a set of
stand-alone functions).

It is defined solely via documentation (and thus the Calculator class should
have a class documentation string defining its protocol).

Based on the information provided by the protocol if a function or method requires
an object to provide a specific operation (or method) then if it all works great; if not
an error will be thrown, and the type is not compatible.

It is one of the key elements in Python which allows the Object-Oriented concept
of Polymorphism to operate.

28.6 The Length Protocol

There are many types that can be used with the len() function to determine their
length, for example strings, tuples, lists, dictionaries can all be used with the len()
function. How is it that this works? This is where a protocol comes in; there is the
length (or __len__) protocol. This protocol is used by the len() function. It
assumes that whatever has been given to it will support the __len__() protocol,
in other words, that whatever it is given has a method on it called __len__(). This
means we can write

name = ’John’ # string
data = [1, 2, 3, 4] # list
info =(’a’, ’b’, ’c’) # tuple
cities = cities = {’Wales’: ’Cardiff’, ’England’: ’London’} #

Dictionary

print(f’len(name): {len(name)}’)
print(f’len(data): {len(data)}’)
print(f’len(info): {len(info)}’)
print(f’len(cities): {len(cities)}’)

The output from this code block is

len(name): 4
len(data): 4
len(info): 3
len(cities): 2

However, if we create a simple class Bag and try and find out its length:

class Bag:
def __init__(self, owner, items):

self.owner = owner
self.items = items

bag1 = Bag(’John’, [])

28.7 The Sequence Protocol 331

print(f’len(bag1): {len(bag1)}’)

Then when we run this code we will be too that there is a TypeError and that
the object does not have (support) the len() function:

Traceback (most recent call last):
File "len_protocl_example.py", line 18, in <module>

print(f’len(bag1): {len(bag1)}’)
^^^^^^^^^

TypeError: object of type ’Bag’ has no len()

To overcome this and make the custom Bag type (class) work with the len()
function it is necessary to implement the __len__() function. The revised class
Bag is given below with a __len__() function that uses the length of the items
list as the length of the Bag:

class Bag:
def __init__(self, owner, items):

self.owner = owner
self.items = items

def __len__(self):
return len(self.items)

Now when we rerun the code the output of the print statement is

len(bag1): 0

And no error is raised.

28.7 The Sequence Protocol

There are numerous commonly occurring protocols that can be found in Python. For
example, there is a protocol for defining sequences, such as a container that can be
accessed an item at a time.

This protocol requires that any type that will be held in the container must provide
the __len__() and __getitem__() methods.

Thus any class that implements these two methods meets the requirements of the
protocol.

However, because protocols are informal and unenforced in Python it is not actu-
ally necessary to implement all the methods in a protocol. For example, if it is known
that a class will only be used with iteration then it may only be necessary to implement
the __getitem__() method.

332 28 Protocols, Polymorphism and Descriptors

28.8 The Context Manager Protocol

Another concrete example of a protocol is that of the Context Manager Protocol.
This protocol was introduced in Python 2.5 so is very well established by now.

It is associated with the ‘with as’ statement. This statement is typically used
with classes which will need to allocate and release so called resources.

These resources could be files, or database connections, etc. In each of these
cases a connection needs to be made (for example to a file or a database) before the
associated object can be used.

However, the connection should then be closed and released before we finish using
the object. This is because dangling connection to things such as files and databases
can hang around and cause problems later on (typically only a limited number of
concurrent connections are allowed to a file or a database at one time and if they are
not closed properly a program con run out of available connections).

The ‘with as’ statement ensures that any setup steps are performed before an
object is available for use and that any shot down behaviour is invoked when it is
finished with.

The syntax for the use of the ‘with as’ statement is

with <managed object> as <localname>:
Code to use managed object via <localname>

For example:

with ContextManagedClass() as cmc:
print(’In with block’, cmc)
print(’Existing’)

Note that in this case the object referenced by cmc is only in scope within the
lines indented after the ‘with as’ statement; after this the cmc variable is no longer
accessible.

How does this work? In fact what the ‘with as’ statement does is to call a
special method when the ‘with as’ statement is entered (just after the ‘:’ above);
this method is the __enter__() method. It then also calls another special method
just as the ‘with as’ statement is exited (just after the last indented statement).
This second method is the __exit__() method.

● The __enter__() method is expected to do any setup/resource allocation/
making connections, etc. It is expected to return an object that will be used within
the block of statements that form that ‘with as’ statement. It is common to
return self although it is not a requirement to do so (this flexibility allows the
< managed object > to act as a factory for other objects if required).

● The__exit__() method is called on the < managed object > and is passed infor-
mation about any exceptions that might have been generated during the body of the
‘with as’ statement. Note that the __exit__() method is called whether
an exception has been thrown or not. The __exit__() method returns a bool,
if it returns True then the exception is swallowed (that is it is suppressed and

28.8 The Context Manager Protocol 333

not passed onto the calling code). If it returns False then the exception is also
passed back to whatever code called the ‘with as’ statement.

A class that can be used with the ‘with as’ statement (that meets the Context
Manager Protocol requirements) is given below:

class ContextManagedClass(object):
def __init__(self):

print(’__init__’)

def __enter__(self):
print(’__enter__’)
return self

Args exception type, exception value and traceback
def __exit__(self, *args):

print(’__exit__:’, args)
return True

def __str__(self):
return ’ContextManagedClass object’

The above class implements the Context Manager Protocol in that it defines both
the __enter__() method and the __exit__() method.

We can now use this class with the with as statement:

print(’Starting’)

with ContextManagedClass() as cmc:
print(’In with block’, cmc)
print(’Exiting’)

print(’Done’)

The output from this is

Starting
__init__
__enter__
In with block ContextManagedClass object
Exiting
__exit__: (None, None, None)
Done

From this you can see that the __enter__() method is called before the code
in the block and __exit__() is called after the code in the block.

334 28 Protocols, Polymorphism and Descriptors

28.9 The Descriptor Protocol

Another protocol that you may come across is the descriptor protocol that was
introduced back in Python 2.2.

Descriptors can be used to create what are known as managed attributes. A
managed attribute is an object attribute that is managed (or protected) from direct
access by external code via the descriptor. The descriptor can then take whatever
action is appropriate such as validating the data, checking the format, logging the
action, updating a related attribute, etc.

The descriptor protocol defines four methods (as usual they are considered special
methods and thus start with a double underbar ‘__’):

● __get__(self, instance, owner) This method is called when the
value of an attribute is accessed. The instance is the instance being modi-
fied, and the owner is the class defining the object. This method should return
the (computed) attribute value or raise an AttributeError exception.

● __set__(self, instance, value) This is called when the value of an
attribute is being set. The parameter value is the new value being set.

● __delete__(self, instance) Called to delete the attribute.
● __set_name__(self, owner, name) Called at the time the owning

class owner is created. The descriptor has been assigned to name. This method
was added to the protocol in Python 3.6.

The following classLogger implements the Descriptor protocol. It can therefore
be used with other classes to log the creation, access and update of whatever attribute
it is defined for.

class Logger(object):
""" Logger class implementing the descriptor protocol"""

def __init__(self, name):
self.name = name

def __get__(self, inst, owner):
print(’__get__:’, inst, ’owner’, owner,

’, value’, self.name, ’=’,
str(inst.__dict__[self.name]))

return inst.__dict__[self.name]

def __set__(self, inst, value):
print(’__set__:’, inst, ’-’, self.name, ’=’,

value)
inst.__dict__[self.name] = value

def __delete__(self, instance):
print(’__delete__’, instance)

def __set_name__(self, owner, name):
print(’__set_name__’, ’owner’, owner, ’setting’,

name)

28.9 The Descriptor Protocol 335

Each of the methods defined for the protocol prints out a message so that access
can be monitored.

The Logger class is used with the following Cursor class.

class Cursor(object):
Set up the descriptors at the class level
x = Logger(’x’)
y = Logger(’y’)
def __init__(self, x0, y0):

Initialize the attributes
Note use of __dict__ to avoid using self.x

notation
which would invoke the descriptor behaviour
self.__dict__[’x’] = x0
self.__dict__[’y’] = y0

def move_by(self, dx, dy):
print(’move_by’, dx, ’,’, dy)
self.x = self.x + dx
self.y = self.y + dy

def __str__(self):
return ’Point[’ + str(self.__dict__[’x’]) +
’, ’ + str(self.__dict__[’y’]) + ’]’

There are several points to note about this class definition including:
The Descriptors must be defined at the class level not at the object/instance level.

The x and y attributes of Cursor object are defined as having Logger descriptors
within the class (not within the __init__() method). If you try to define them
using self.x and self.y the descriptors will not be registered.

The Cursor __init__() method uses the __dict__ dictionary to initialize
the instance/object attributes x and y. This is an alternative approach to accessing an
objects’ attributes; it is used internally by an object to hold the actual attribute values.
It by passes the normal attribute look up mechanism invoked when you use the dot
notation (such as curser.x = 10). This means that it will not be intercepted by
the Descriptor. This has been done because the logger uses the __str__() method
to print out the instance holding the attribute which uses the current values of x and
y. When the value of x is initially set there will be no value for y and thus an error
would be generated by the __str__().

The __str__() method also uses the __dict__ dictionary to access the
attributes as it is not necessary to log this access. It would also become recursive if
the Logger also used the method to print out the instance.

We can now use instances of the Cursor object without knowing that the
descriptor will intercept access to the attributes x and y:

336 28 Protocols, Polymorphism and Descriptors

cursor = Cursor(15, 25)
print(’-’ * 25)

print(’p1:’, cursor)
cursor.x = 20
cursor.y = 35
print(’p1 updated:’, cursor)
print(’p1.x:’, cursor.x)
print(’-’ * 25)

cursor.move_by(1, 1)
print(’-’ * 25)

del cursor.x

The output from this illustrates how the descriptors have intercepted access to the
attributes. Note that the move_by() method accesses both the getter and the setter
descriptor methods as this method reads the current value of the attributes and then
updates them.

__set_name__ owner <class ’__main__.Cursor’> setting x
__set_name__ owner <class ’__main__.Cursor’> setting y

p1: Point[15, 25]
__set__: Point[15, 25] - x = 20
__set__: Point[20, 25] - y = 35
p1 updated: Point[20, 35]
__get__: Point[20, 35] owner <class ’__main__.Cursor’> , value

x = 20
p1.x: 20

move_by 1 , 1
__get__: Point[20, 35] owner <class ’__main__.Cursor’> , value

x = 20
__set__: Point[20, 35] - x = 21
__get__: Point[21, 35] owner <class ’__main__.Cursor’> , value

y = 35
__set__: Point[21, 35] - y = 36

__delete__ Point[21, 36]

28.10 Online Resources

The following online resources focusing on Python protocols are available:

● https://ref.readthedocs.io/en/latest/understanding_python/interfaces/existing_
protocols.html Documentation on Pythons default (native) protocols including
the comparison, hash, attribute access and sequence protocols.

● https://docs.python.org/3/library/stdtypes.html#context-manager-types for
context manager types.

https://ref.readthedocs.io/en/latest/understanding_python/interfaces/existing_protocols.html
https://ref.readthedocs.io/en/latest/understanding_python/interfaces/existing_protocols.html
https://docs.python.org/3/library/stdtypes.html#context-manager-types

28.11 Exercises 337

● https://pymotw.com/3/contextlib/index.html The Python module of the week for
context manager utilities.

● https://en.wikipedia.org/wiki/Polymorphism_(computer_science) Wikipedia
page on Polymorphism.

28.11 Exercises

This exercise involves implementing the Context Manager Protocol.
Return to your Account related classes.
Modify the Account class such that it implements the Context Manager Protocol.

This means that you will need to implement the __enter__() and __exit__
() methods.

Place print messages within the methods so that you can see when they are run.
The new methods you have defined will be inherited by each of the

subclasses you have created; namely CurrentAccount, DepositAccount and
InvestmentAccount.

Now test out your modified calculator using:

with accounts.CurrentAccount (’891’, ’Adam’, 5.0, 50.0) as
acc:

acc.deposit(23.0)
acc.withdraw(12.33)
print(acc.balance)

Which should produce output similar to:

Creating new Account
__enter__
15.5
__exit__: (None, None, None)

https://pymotw.com/3/contextlib/index.html
https://en.wikipedia.org/wiki/Polymorphism_(computer_science

Chapter 29
Decorators

29.1 Introduction

The idea behind Decorators comes from the Gang of Four Design Patterns book (so-
called as there were four people involved in defining these design patterns). In this
book numerous commonly occurring object oriented design patterns are presented.
One of these design patterns is the Decorator design pattern.

The Decorator pattern addressed the situation where it is necessary to add addi-
tional behaviour to specific objects. One way to add such additional behaviour is to
decorate the objects created with types that provide the extra functionality. These
decorators wrap the original element but present exactly the same interface to the
user of that element. Thus the Decorator Design pattern extends the behaviour of an
object without using sub classing. This decoration of an object is transparent to the
decorators’ clients.

In Python Decorators are functions that take another function (or callable object)
and return a third function representing the decorated behaviour.

This chapter introduces decorators, how they are defined, how they are used and
presents built-in decorators.

29.2 What Are Decorators?

A Decorator is a piece of code, that is used to mark a callable object (such as
a function, method, class or object) typically to enhance or modify its behaviour
(potentially replacing it). It thus decorates the original behaviour.

Decorators are in fact callable objects themselves and as such behave more like
macros that can be applied to callable objects that then return a new callable object
(typically a new function).

The basic idea is illustrated in the following diagram:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_29

339

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_29&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_29

340 29 Decorators

This diagram illustrates a decorator wrapping a callable object (in this case a
function). Note that the decorator presents exactly the same interface to the user
of the decorator as the original function would present; that is, it takes the same
parameters and either returns nothing (None) or something.

It should also be noted that the decorator is also at liberty to completely replace a
callable object rather than to wrap it; it’s a design decision made by the implementor
of the decorator.

29.3 Defining a Decorator

To define a decorator you need to define a callable object such as a function that
takes another function as a parameter and returns a new function.

An example of the definition of a very simple logger decorator function is given
below.

def logger(func):
def inner():

print(’calling ’, func.__name__)
func()
print(’called ’, func.__name__)

return inner

In this case the logger decorator wraps the original function within a new function,
here called inner. When this function is executed, a statement is logged before and
after the original function is executed.

Every function has an attribute __name__ that provides the functions name and
this is used in the inner() function above to printout the actual function about to
be invoked.

Note that the function inner() is defined inside the logger() function (this
is completely legal). A reference to the inner() function is then returned as the
result of the logger() function. The inner() function is not executed above!

29.5 Functions with Parameters 341

29.4 Using Decorators

To see what the effect of applying a decorator is; it is useful to explore the basic
(explicit) approach to it use. This can be done by defining a function (we will call
target) that prints out a simple message:

def target():
print(’In target function’)

We can explicitly apply the logger decorator to this function by passing the
reference to the target function (without invoking it), for example:

t1 = logger(target)
t1()

When we run this code, we actually execute the inner() function which was
returned by the decorator. This function in turn prints out a message and then calls
the function passed into the logger. Once this passed in function has executed, it
prints another message. The effect of executing the t1() function is this to call the
inner() function which calls the target function, thus printing out:

calling target
In target function
called target

This illustrates what happens when a decorator style function is executed.
Python provides some syntactic sugar that allows the definition of the function

and the association with the decorator to be declared together using the ‘@’ syntax,
for example:

@logger
def target():

print(’In target function’)

target()

This has the same effect as passing target into the logger function; but illustrates
the role of the logger in a rather more Pythonic way. It is thus the more common
use of Decorators.

The output of this function is the same as the previous version:

29.5 Functions with Parameters

Decorators can be applied to functions that take parameters; however the decorator
functions must also take these parameters as well.

For example, if you have a function such as.

@logger

342 29 Decorators

def my_func(x, y):
print(x, y)

my_func(4, 5)

Then the decorator used with this function must also take two parameters, for
example:

def logger(func):
def inner(x, y):

print(’calling ’, func.__name__, ’with’, x, ’and’,
y)

func(x, y)
print(’returned from ’, func.__name__)

return inner

29.6 Stacked Decorators

Decorators can be stacked; that is more than one decorator can be applied to the same
callable object. When this occurs, each function is wrapped inside another function;
this idea is illustrated by the following code:

Define the decorator functions
def make_bold(fn):

def makebold_wrapped():
return "" + fn() + ""

return makebold_wrapped

def make_italic(fn):
def makeitalic_wrapped():

return "<i>" + fn() + "</i>"
return makeitalic_wrapped

Apply decorators to function hello
@make_bold
@make_italic
def hello():

return ’hello world’

Call function hello
print(hello())

In this example, the function hello() is marked with two decorators, @make_
bold and @make_italic.

This means that the function hello() is first passed into the make_italic()
function and wrapped by the makeitalic_wrapped function. This function is
then returned from the make_italic decorator.

29.7 Parameterized Decorators 343

The makeitalic_wrapped is then passed into the make_bold() function
which then wraps it inside the makebold_wrapped function, which is returned
by the make_bold decorator.

This means that the function invoked whenhello() is called is themakebold_
wrapped function which calls two further functions as shown below:

The end result is that the string returned by the function passed in is first wrapped
by <i> and </i> (indicating italics) and then by and (indicating bold)
in HTML.

Thus the output from print(hello()) is:

<i>hello world</i>

29.7 Parameterized Decorators

Decorators can also take parameters; however, the syntax for such decorators is a
little different; there is essentially an extra layer of indirection. The decorator function
takes one or more parameters and returns a function that can use the parameter and
takes the callable object that is being wrapped. For example:

def register(active=True):
def wrap(func):

def wrapper():
print(’Calling ’, func.__name__, ’ decorator param

’, active)
if active:

func()
print(’Called ’, func.__name__)

else:
print(’Skipped ’, func.__name__)

return wrapper
return wrap

@register()
def func1():

print(’func1’)

@register(active=False)

344 29 Decorators

def func2():
print(’func2’)

func1()
print(’-’ * 10)
func2()

In this example, the wrapped function will only be called if the active parameter
is True. This is the default and so for func1() it is not necessary to specify the
parameter (although note that it is now necessary to provide the round brackets).

For func2() the @register decorator is defined with the active parameter
set to False. This means that the wrapper function will not call the provided function.

Note that the usage of the decorator only differs in the need to include the round
brackets even if no parameters are being specified; even though there are now two
inner functions defined within the register decorator.

29.8 Method Decorators

29.8.1 Methods Without Parameters

It is also possible to decorate methods as well as functions (as they are also callable
objects). However, it is important to remember that methods take the special param-
eter self as the first parameter which is used to reference the object that the method
is being applied to. It is therefore necessary for the decorator to take this param-
eter into account, i.e., the inner wrapped function must take at least one parameter
representing self:

def pretty_print(method):
def method_wrapper(self):

return "<p>{0}</p>".format(method(self))

return method_wrapper

The pretty_print decorator defines an inner function that takes as its first
(and in this case only) parameter the reference to the object (which by convention
uses the parameter self). This is then passed into the actual method when it is
called.

The pretty_print decorator can now be used with any method that only takes
the self parameter, for example:

class Person:
def __init__(self, name, surname, age):

self.name = name
self.surname = surname
self.age = age

def print_self(self):

29.8 Method Decorators 345

print(’Person - ’, self.name, ’, ’, self.age)

@pretty_print
def get_fullname(self):

return self.name + " " + self.surname

In the above class the get_fullname() method is decorated with pretty_
print. If we now call get_fullname() on an object, the resulting string will
be wrapped in <p> and </p> (which is HTML markup for a paragraph):

print(’Starting’)
p = Person(’John’, ’Smith’, 21)
p.print_self()
print(p.get_fullname())
print(’Done’)

This generates the output:

Starting
Person - John , 21
<p>John Smith</p>
Done

29.8.2 Methods with Parameters

As with functions, methods that take parameters in addition to self can also be
decorated. In this case the decorator must take not only the self parameter but also
any parameters passed to the method. For example:

def trace(method):
def method_wrapper(self, x, y):

print(’Calling’, method, ’with’, x, y)
method(self, x, y)
print(’Called’, method, ’with’, x, y)

return method_wrapper

Now this trace decorator defines an inner function that takes the parameter self
and two additional parameters. It can be used with any method that also takes two
parameters such as the method move_to() below:

class Point:
def __init__(self, x, y):

self.x = x
self.y = y

@trace
def move_to(self, x, y):

self.x = x
self.y = y

346 29 Decorators

def __str__(self):
return ’Point - ’ + str(self.x) + ’,’ + str(self.y)

When a Point object is created below, we can call the move_to method and see
the result:

p = Point(1, 1)
print(p)
p.move_to(5, 5)
print(p)

The output from this is:

Point - 1,1
Calling <function Point.move_to at 0x110288b70> with 5 5
Called <function Point.move_to at 0x110288b70> with 5 5
Point - 5,5

29.9 Class Decorators

As well as being able to decorate functions and methods; it is possible to decorate
classes.

A class can be decorated to add required functionality that may be external to that
class.

As an example, a common class level operation is to want to indicate that a class
should implement the singleton design pattern. The Singleton Design Pattern (again
from the Gang of Four Design Patterns book) describes a type that can only have
one object constructed for it. That is, unlike other objects it should not be possible to
obtain more than one instance within the same program. Thus, the Singleton design
pattern ensures that only one instance of a class is created. All objects that use an
instance of that type use the same instance.

We can define a decorator that implements the singleton design pattern, for
example:

def singleton(cls):
print(’In singleton for: ’, cls)
instance = None
def get_instance():

nonlocal instance
if instance is None:

instance = cls()
return instance

return get_instance

29.9 Class Decorators 347

This decorator returns the get_instance function. This function checks to see if
the variable instance is set to None or not; if it is set to None it instantiates the class
passed into the decorator and stores this in the instance variable. It then returns the
instance. If the instance is already set it merely returns the instance.

We can apply this decorator to whole classes such as Service and Foo below:

@singleton
class Service(object):

def print_it(self):
print(self)

@singleton
class Foo(object):
pass

We can now use the classes Service and Foo as normal; however only one
instance of Service and one instance of Foo will ever be created in the same
program:

print(’Starting’)
s1 = Service()
print(s1)
s2 = Service()
print(s2)
f1 = Foo()
print(f1)
f2 = Foo()
print(f2)
print(’Done’)

In the above main function, it looks as if we have created two new Service
objects and two Foo objects; however, the @singleton decorator will restrict the
number of instances created to one and will reuse that instance whenever a request
is made to instantiate the given class. Thus when we run this example, we can see
that the hexadecimal number representing the location of the object in memory is
the same for the two Service objects and the same for the two Foo objects:

In singleton for: <class ’__main__.Service’>
In singleton for: <class ’__main__.Foo’>
Starting
<__main__.Service object at 0x10ac3f780>
<__main__.Service object at 0x10ac3f780>
<__main__.Foo object at 0x10ac3f7b8>
<__main__.Foo object at 0x10ac3f7b8>
Done

348 29 Decorators

29.10 When is a Decorator Executed?

An important feature of decorators is that they are executed right after the decorator
function is defined. This is usually at import time (i.e., when a module is loaded by
Python).

def logger(func):
print(’In Logger’)
def inner():

print(’In inner calling ’, func.__name__)
func()
print(’In inner called ’, func.__name__)

print(’Finishing Logger’)
return inner

@logger
def print_it():

print(’Print It’)

print(’Start’)
print_it()
print(’Done’)

For example, the decorator logger shown above prints out ‘In Logger’ and
‘Finished Logger’ when it is executed. If the output is examined, it can be seen
that this output occurs before the main function prints ‘Start’.

In Logger
Finishing Logger
Start
In inner calling print_it
Print It
In inner called print_it
Done

Note that the decorated function and the wrapped function only execute when
they are explicitly invoked.

This highlights the difference between what Pythonistas call import time and
runtime.

29.11 Built-In Decorators

There are numerous built-in decorators in Python 3; some of which we have already
seen such as @classmethod, @staticmethod and @property. We also saw
some decorators when talking about abstract methods and properties. There are also
decorators associated with unit testing and asynchronous operations.

29.12 FuncTools Wrap 349

29.12 FuncTools Wrap

One issue with decorated functions may become apparent when debugging or trying
to trace what is happening. The problem is that by default the attributes associated
with the function being called are actually those of the inner function returned by the
decorator function. That is the name, doc and module of the function are those of
the function returned by the decorator. The name and documentation of the original,
decorated function, have been lost.

For example, returning to the original logger decorator we have:

def logger(func):
def inner():

print(’calling ’, func.__name__)
func()
print(’called ’, func.__name__)

return inner
@logger
def get_text(name):

"""returns some text"""
return "Hello "+name

print(’name:’, get_text.__name__)
print(’doc: ’, get_text.__doc__)
print(’module; ’, get_text.__module__)

When we run this code we get:

name: inner
doc: None
module; __main__

It appears that the get_text function is called inner and has no docstring
associated with it. However, if we look at the function it should be called get_
text() and have a docstring of ‘returns some text’!

Python (since version 2.5) has included the functools module which contains
the functools.wraps decorator which can be used to overcome this problem.

Wraps is a decorator for updating the attributes of the wrapping function(inner)
to those of the original function (in this case get_text()). This is as simple as
decorating the ‘inner’ function with @wraps(func).

from functools import wraps

def logger(func):
@wraps(func)
def inner():

print(’calling ’, func.__name__)
func()
print(’called ’, func.__name__)

return inner

350 29 Decorators

The end result is that in the above example the name and doc are now updated
to the name of the wrapped function and the documentation associated with that
function.

If we now rerun the earlier example, we get:

name: get_text
doc: returns some text
module; __main__

29.13 Online Resources

For further information on decorators see:

● https://www.python-course.eu/python3_decorators.php a short introduction to
Python decorators

● https://www.python.org/dev/peps/pep-0318/ PEP 318 considering decorators for
functions and methods.

● https://www.python.org/dev/peps/pep-3129/ PEP 3129 introducing class decora-
tors.

● https://docs.python.org/3/library/functools.html Python Standard Library docu-
mentation for functoools.

● https://pymotw.com/3/functools/index.html Python module of the Week for
functoools.

● https://github.com/lord63/awesome-python-decorator A useful page that lists
many Python decorators as well as third-party contributions.

● https://wiki.python.org/moin/PythonDecoratorLibrary which provides a central
repository for decorator examples.

29.14 Book Reference

For more information on the Decorator and Singleton design patterns see the “Pat-
terns” book by the Gang of Four (E. Gamma, R. Helm, R. Johnson and J. Vlissades,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley,
1995).

29.15 Exercises

The aim of this exercise is to develop your own decorator.
You will write a timer decorator to be used with methods in a class that take

the first parameter self, followed by one other parameter.

https://www.python-course.eu/python3_decorators.php
https://www.python.org/dev/peps/pep-0318/
https://www.python.org/dev/peps/pep-3129/
https://docs.python.org/3/library/functools.html
https://pymotw.com/3/functools/index.html
https://github.com/lord63/awesome-python-decorator
https://wiki.python.org/moin/PythonDecoratorLibrary

29.15 Exercises 351

The decorator should log how long a method takes to execute.
To do this you can use the time module and import the default_timer.

from timeit import default_timer

You can then obtain a default_timer object for the start and end of a function
call and use these values to generate the time taken, for example:

start = default_timer()
func(self, value)
end = default_timer()

print(’returned from ’, func, ’it took’, end - start, ’seconds’)

You can then apply the decorator to the deposit() and withdraw()methods
defined in the Account class. For example,

@timer
def deposit(self, amount):

self._balance += amount
@timer
def withdraw(self, amount):
self._balance -= amount

These methods will be inherited by the DepositAccount and
InvestmentAccout classes. In the CurrentAccount class the with-
draw method is over written so you will also need to decorate that method with
@timer as well.

Now when you run your sample application you should get timing information
printed out for the deposit and withdraw methods:

calling deposit on Account[123] - John, current
account = 10.05overdraft limit: -100.0 with 23.45
returned from deposit it took 8.009999999999268e-07
seconds
calling withdraw on Account[123] - John, current
account = 33.5overdraft limit: -100.0 with 12.33
returned from withdraw it took 1.141999999999116e-06
seconds

Chapter 30
Iterables and Iterators

30.1 Introduction

There are two protocols that you are very likely to use or will possibly need to
implement at some point or other; these are the iterable protocol and the iterator
protocols.

These two closely related protocols are very widely used and supported by a large
number of types.

One of the reasons that iterators and iterables are important is that they can be
used with for statements in Python; this makes it very easy to integrate an iterable
into code which needs to process a sequence of values in turn.

30.2 Iteration

30.2.1 Iterables

The iterable protocol is used by types where it is possible to process their contents
one at a time in turn. An iterable is something that will supply an iterator that can be
used to perform this processing. As such it is not the iterator itself; but the provider
of the iterator.

There are many iterable types in Python including lists, sets, dictionaries, tuples,
etc. These are all iterable containers that will supply an iterator.

To be an iterable type; it is necessary to implement the __iter__() method
(which is the only method in the iterable protocol). This method must supply a
reference to the iterator object. This reference could be to the data type itself or it
could be to another type that implements the iterator protocol.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_30

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_30&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_30

354 30 Iterables and Iterators

30.2.2 Iterators

An iterator is an object that will return a sequence of values. Iterators may be finite
in length or infinite (although many container-oriented iterators provide a fixed set
of values).

The iterator protocol specifies the __next__() method. This method is
expected to return the next item in the sequence to return or to raise the
StopIteration exception. This is used to indicate that the iterator has finished
supplying values.

30.2.3 The Iteration Related Methods

To summarize then we have

● __iter__() from the iterable protocol which is used to return the iterator
object,

● __next__() from the iterator protocol which is used to obtain the next value
in a sequence of values.

Any data type can be both an iterable and an iterator; but that is not required. An
iterable could return a different object that will be used to implement the iterator or
it can return itself as the iterator—it’s the designers choice.

30.2.4 The Iterable Evens Class

To illustrate the ideas behind iterables and iterators we will implement a simple class;
this class will be an Evens class that is used to supply a set of even values from 0
to some limit. This illustrates that it is not only data containers that can be iterable/
iterators.

It also illustrates a type that is both an iterable and an iterator.

class Evens(object):

def __init__(self, limit):
self.limit = limit
self.val = 0

Makes this class iterable
def __iter__(self):

return self

Makes this class an iterator
def __next__(self):

if self.val > self.limit:
raise StopIteration

30.3 The Itertools Module 355

else:
return_val = self.val
self.val += 2
return return_val

There are a few things to note about this class.

● The __iter__() method returns self; this is a very common pattern and
assumes that the class also implements the iterator protocol

● The __next__() method either returns the next value in the sequence or it
raises the StopIteration exception to indicate that there are no more values
available.

30.2.5 Using the Evens Class with a For Loop

Now that we have implemented both the iterable and iterator protocols for the class
Evens we can use it with a for statement:

print(’Start’)
for i in Evens(6):

print(i, end=’, ’)

print(’Done’)

Which generates the output:

Start
0, 2, 4, 6, Done

This makes it look as if the Evens type is a built-in type as it can be used with
an existing Python structure; however, the for loop merely expects to be given an
iterable; as such Evens is compatible with the for loop.

30.3 The Itertools Module

The itertools module provides a number of useful functions that return iterators
constructed in various ways. It can be used to provide an iterator over a selection of
values from a data type that is iterable; it can be used to combine iterables together,
etc.

356 30 Iterables and Iterators

30.4 Online Resources

See the following for further information.

● https://docs.python.org/3/library/stdtypes.html# iterator-types for iterator types.

https://docs.python.org/3/library/stdtypes.html

Chapter 31
Generators and Coroutines

31.1 Introduction

This chapter introduces generators and coroutines. A generator is a data generator,
and a coroutine is a data consumer. However, many developers get these two construc-
tors confused as they both employ the yield keyword; although the purpose of yield
in a generator is very different to the purpose of yield within a coroutine. This chapter
will discuss both Python language constructs.

31.2 Generators

In many cases it is not appropriate (or possible) to obtain all the data to be processed up
front (for performance reasons, for memory reasons, etc.). Instead lazily creating the
data to be iterated over based on some underlying dataset may be more appropriate.

Generators are a special function that can be used to generate a sequence of
values to be iterated over on demand (that is when the values are needed) rather than
produced up front.

The only thing that makes a generator a generator function is the use of the yield
keyword (which was introduced in Python 2.3).

The yield keyword can only be used inside a function or a method. Upon its
execution the function is suspended, and the value of the yield statement is returned
as the current cycle value. If this is used with a for loop, then the loop runs once
for this value. Execution of the generator function is then resumed after the loop has
cycled once, and the next cycle value is obtained.

The generator function will keep supplying values until it returns (which means
that an infinite sequence of values can be generated).

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_31

357

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_31&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_31

358 31 Generators and Coroutines

31.2.1 Defining a Generator Function

A very simple example of a generator function is given below. This function is called
the gen_numbers() function:

def gen_numbers():
yield 1
yield 2
yield 3

This is a generator function as it has at least one yield statement (in fact it has
three). Each time the gen_numbers() function is called within a for statement
it will return one of the values associated with a yield statement; in this case the
value 1, then the value 2 and finally the value 3 before it returns (terminates).

31.2.2 Using a Generator Function in a for Loop

We can use the gen_numbers() function with a for statement as shown below:

for i in gen_numbers():
print(i)

Which produces 1, 2 and 3 as output.
It is common for the body of a generator to have some form of loop itself. This

loop is typically used to generate the values that will be yielded. However, as is shown
above that is not necessary, and here a yield statement is repeated three times.

Note that gen_numbers() is a function but it is a special function as it returns
a generator object.

This is a generator function returns a generator object which wraps up the
generation of the values required but this is hidden from the developer.

31.2.3 When Do the Yield Statements Execute?

It is interesting to consider what happens within the generator function; it is actually
suspended each time a yield statement supplies a value and is only resumed when
the next request for a value is received. This can be seen by adding some additional
print statements to the gen_numbers() function:

def gen_numbers2():
print(’Start’)
yield 1
print(’Continue’)
yield 2
print(’Final’)

31.2 Generators 359

yield 3
print(’End’)

for i in gen_numbers():
print(i)

When we run this code snippet, we get

Start
1
Continue
2
Final
3
End

Thus the generator executes the yield statements on an as needed basis and not
all at once.

31.2.4 An Even Number Generator

We could have used a generator to produce a set of even numbers up to a specific
limit, as we did earlier with the Evens class, but without the need to create a class
(and implement the two special methods __iter__() and __next__()). For
example:

def evens_up_to(limit):
value = 0
while value <= limit:

yield value
value += 2

for i in evens_up_to(6):
print(i, end=’, ’)

This produces

0, 2, 4, 6,

This illustrates the potential benefit of a generator over an iterator; the evens_
up_to() function is a lot simpler and concise then the Evens class.

360 31 Generators and Coroutines

31.2.5 Nesting Generator Functions

You can even nest generator functions as each call to the generator function is encap-
sulated in its own generator object which captures all the state information needed
by that generator invocation. For example:

for i in evens_up_to(4):
print(’i:’, i)

for j in evens_up_to(6):
print(’j:’, j, end=’, ’)

print(”)

Which generates

i: 0
j: 0, j: 2, j: 4, j: 6,
i: 2
j: 0, j: 2, j: 4, j: 6,
i: 4
j: 0, j: 2, j: 4, j: 6,

As you can see from this the loop variable i is bound to the values produced by
the first call to evens_up_to() (which produces a sequence up to 4) while the
j loop variable is bound to the values produced by the second call to evens_up_
to() (which produces a sequence of values up to 6).

31.2.6 Using Generators Outside a for Loop

You do not need a for loop to work with a generator function; the generator object
actually returned by the generator function supports the next() function. This
function takes a generator object (returned from the generator function) and returns
the next value in sequence.

For example:

evens = evens_up_to(4)
print(next(evens), end=’, ’)
print(next(evens), end=’, ’)
print(next(evens))

This produces

0, 2, 4

Subsequent calls to next(evens) return no value; if required the generator can
throw an error/exception.

31.3 Coroutines 361

31.3 Coroutines

Coroutines were introduced in Python 2.5 but are still widely misunderstood.
Much documentation introduces coroutines by saying that they are similar to

generators, however, there is a fundamental difference between generators and
coroutines:

1. Generators are data producers,
2. Coroutines are data consumers.

That is coroutines consume data produced by something else; whereas a generator
produces a sequence of values that something else can process.

The send() function is used to send values to a coroutine. These data items
are made available within the coroutine; which will wait for values to be supplied
to it. When a value is supplied then some behaviour can be triggered. Thus, when a
coroutine consumes a value it triggers some behaviour to be processed.

Part of the confusion between generators and coroutines is that the yield
keyword is reused within a coroutine; it is used within a coroutine to cause the
coroutine to wait until a value has been sent. It will then supply this value to the
coroutine.

It is also necessary to prime a coroutine using with next() or send(None)
functions. This advances the coroutine to the call to yield where it will then wait
until a value is sent to it.

A coroutine may continue forever unless close() is sent to it. It is possible to
pick up on the coroutine being closed by catching the GeneratorExit exception;
you can then trigger some shut down behaviour if required.

An example of a coroutine is given by the grep() function below:

def grep(pattern):
print(’Looking for’, pattern)
try:

while True:
line = (yield)
if pattern in line:

print(line)
except GeneratorExit:

print(’Exiting the Co-routine’)

This coroutine will wait for input data; when data is sent to the coroutine, then
that data will be assigned to the line variable. It will then check to see if the pattern
used to initialize the coroutine function is present in the line; if it is it will print the
line; it will then loop and wait for the next data item to be sent to the coroutine. If
while it is waiting the coroutine is closed, then it will catch the GeneratorExit
exception and print out a suitable message.

362 31 Generators and Coroutines

The grep() coroutine is used below, notice that the coroutine function returns
a coroutine object that can be used to submit data:

print(’Starting’)
Initialise the coroutine
g = grep(’Python’)
prime the coroutine
next(g)

Send data to the coroutine
g.send(’Java is cool’)
g.send(’C++ is cool’)
g.send(’Python is cool’)

now close the coroutine
g.close()
print(’Done’)

The output from this is

Starting
Looking for Python
Python is cool
Exiting the Co-routine
Done

31.4 Exercises

These exercises focus on the creation of a generator.
Write a prime number generator; you can use the prime number program you

wrote earlier in the book but convert it into a generator. The generator should take a
limit to give the maximum size of the loop you use to generate the prime numbers.
You could call this prime_number_generator().

You should be able to run the following code:

number = input(’Please input the number:’)
if number.isnumeric():
num = int(number)
if num <= 2:

print(’Number must be greater than 2’)
else:

for prime in prime_number_generator(num):
print(prime, end=’, ’)

else:
print(’Must be a positive integer’)

If the user enters 27 then the output would be

Please input the number:27

31.4 Exercises 363

2, 3, 5, 7, 11, 13, 17, 19, 23,

Now create the infinite_prime_number_generator(); this generator
does not have a limit and will keep generating prime numbers until it is no longer
used.

You should be able to use this prime number generator as follows:

prime = infinite_prime_number_generator()
print(next(prime))
print(next(prime))
print(next(prime))
print(next(prime))
print(next(prime))

Chapter 32
Collections, Tuples and Lists

32.1 Introduction

Earlier in this book we looked at some Python built-in types such as string, int
and float as well asbools. These are not the only built-in types in Python; another
group of built-in types are collectively known as collection types. This is because
they represent a collection of other types (such as a collection of strings or integers).

A collection is a single object representing a group of objects (such as a list or
dictionary). That is, they are a collection of other objects. Collections may also be
referred to as containers (as they contain other objects). These collection classes are
often used as the basis for more complex or application specific data structures and
data types.

These collection types support various types of data structures (such as lists and
maps) and ways to process elements within those structures. This chapter introduces
the Python collection types.

32.2 Python Collection Types

There are four classes in Python that provide container like behaviour; that is, data
types for holding collections of other objects, these are

● Tuples A Tuple represents a collection of objects that are ordered and immutable
(cannot be modified). Tuples allow duplicate members and are indexed.

● Lists Lists hold a collection of objects that are ordered and mutable (changeable),
and they are indexed and allow duplicate members.

● Sets Sets are a collection that is unordered and unindexed. They are mutable
(changeable) but do not allow duplicate values to be held.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_32

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_32&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_32

366 32 Collections, Tuples and Lists

● Dictionary A dictionary is an unordered collection that is indexed by a key which
references a value. The value is returned when the key is provided. No dupli-
cate keys are allowed. Duplicate values are allowed. Dictionaries are mutable
containers.

Remember that everything in Python is actually a type of object, integers are
instances/objects of the type int, strings are instances of the type string, etc. Thus,
container types such as Set can hold collections of any type of thing in Python.

32.3 Characterising Collections

Collections, or containers as they are sometimes known, allow multiple values to be
held together, but as indicated in the previous section they have various characteristics
which can be used to help identify the most appropriate collection to use at any one
time. These characteristics are

● Ordered or unordered that is there a maintained order to how the members of the
collection are held.

● Mutable or immutable which means whether the collection can be modified once
out has been created or not.

● Does the collection allow duplicate values to be held or not.
● Are the values held in the collection associated with a numerical index or by a

key.
● Can the size of the collection grow once created or not.

By using these characteristics you can choose an appropriate container type/
collection to use.

Looking at the four collection types introduced in the previous section we can
consider them against these characteristics.

Tuples Sets

Ordered Unordered

Immutable Mutable

Allow duplicates Do not allow duplicates

Indexed Not indexed

Fixed size Growable

Lists Dictionaries

Ordered Ordered (from 3.7)

Mutable Mutable

Allow duplicates Allow duplicate values

Indexed Keyed

Growable Growable

32.4 Tuples 367

32.4 Tuples

Tuples, along with Lists, are probably one of Pythons’ most used container types.
They will be present in almost any non-trivial Python program.

Tuples are an immutable ordered collection of objects; that is, each element in a
tuple has a specific position (its index) and that position does not change over time.
Indeed, it is not possible to add or remove elements from the tuple once it has been
created.

The Python type that represents a tuple is tuple.

32.4.1 Creating Tuples

Tuples are defined using parentheses (i.e., round brackets ‘()’) around the elements
that make up the tuple, for example:

tup1 = (1, 3, 5, 7)

This defines a new tuple which is referenced by the variable tup1. The tuple
contains exactly 4 elements (in this case integers) with the first element in the tuple
(the integer 1) having the index 0 and the last element in the tuple (the integer 7)
having the index 3. This is illustrated below:

32.4.2 The Tuple() Constructor Function

The tuple() function can also be used to create a new tuple from an iterable. An
iterable is something that implements the iterable protocol (see the last chapter).

This means that a new tuple can be created from a set, a list, a dict (as these
are all iterable types) or any type that implements the iterable protocol.

368 32 Collections, Tuples and Lists

The syntax of the tuple() function is

tuple(iterable)

For example:

list1 = [1, 2, 3]
t1 = tuple(list1)
print(t1)

which generates the output:

(1, 2, 3)

Note that in the above the square brackets are used to represent a list of things
(the list container type is described in more detail later in this chapter).

32.4.3 Accessing Elements of a Tuple

The elements of a tuple can be accessed using an index in square brackets. The
index returns the object at that position, for example:

print(’tup1[0]:\t’, tup1[0])
print(’tup1[1]:\t’, tup1[1])
print(’tup1[2]:\t’, tup1[2])
print(’tup1[3]:\t’, tup1[3])

which generates the output

tup1[0]: 1
tup1[1]: 3
tup1[2]: 5
tup1[3]: 7

32.4.4 Creating New Tuples from Existing Tuples

It is also possible to return what is known as a slice from a tuple. This is a new
tuple which is comprised of a subset of the original tuple. This is done by
providing the start and end indexes for the slice, separated by a colon, within the
index square brackets. For example:

print(’tup1[1:3]:\t’, tup1[1:3])

32.4 Tuples 369

Which returns a new tuple of two elements containing the elements from index
1 up to (but not including) element 3. Note that the original tuple is not affected in
any way (remember its immutable so cannot be modified). The output of the above
is thus:

tup1[1:3]: (3, 5)

There are in fact numerous variations on the use of the slicing indices. For example,
if the first index is omitted it indicates that the slice should start from the beginning
of the tuple, while omitting the last index indicates it should go to the end of the
tuple.

print(’tup1[:3]:\t’, tup1[:3])
print(’tup1[1:]:\t’, tup1[1:])

which generates:

tup1[:3]: (1, 3, 5)
tup1[1:]: (3, 5, 7)

You can reverse a tuple using the::-1 notation (again this returns a newtuple
and has no effect on the original tuple):

print(’tup1[::-1]:\t’, tup1[::-1])

This thus produces

tup1[::-1]: (7, 5, 3, 1)

32.4.5 Tuples Can Hold Different Types

Tuples can also contain a mixture of different types; that is, they are not restricted to
holding elements all of the same type. You can therefore write a tuple such as

tup2 = (1, ’John’, Person(’Phoebe’, 21), True, -23.45)
print(tup2)

Which produces the output:

(1, ’John’, <__main__.Person object at 0x105785080>, True, -23.45)

370 32 Collections, Tuples and Lists

32.4.6 Iterating Over Tuples

You can iterate over the contents of a tuple (that is, process each element in the
tuple in turn). This is done using the for loop that we have already seen; however,
it is the tuple that is used for the value to which the loop variable will be applied:

tup3 = (’apple’, ’pear’, ’orange’, ’plum’, ’apple’)
for x in tup3:
print(x)

This prints out each of the elements in the tuple tup3 in turn:

apple
pear
orange
plum
apple

Note that again the order of the elements in the tuple is persevered.

32.4.7 Tuple Related Functions

You can also find out the length of a tuple

print(’len(tup3):\t’, len(tup3))

You can count how many times a specified value appears in a tuple (remember
tuples allow duplicates);

print(tup3.count(’apple’)) # returns 2

You can also find out the (first) index of a value in a tuple:

print(tup3.index(’pear’)) # returns 1

Note that both index() and count() are methods defined on the class
tuple, whereas len() is a function that the tuple is passed into. This is because
len() is a generic function and can be used with other types as well such as strings.

32.4.8 Checking if an Element Exists

You can check to see if a specific element exists in a tuple using the in operator, for
example:

if ’orange’ in tup3:
print(’orange is in the tuple’)

32.4 Tuples 371

32.4.9 Nested Tuples

Tuples can be nested within tuples; that is a tuple can contain, as one of its elements,
another tuple. For example, the following diagram illustrates the nesting of a tree of
tuples:

In code we could define this structure as

tuple1 = (1, 3, 5, 7)
tuple2 = (’John’, ’Denise’, ’Phoebe’, ’Adam’)
tuple3 = (42, tuple1, tuple2, 5.5)
print(tuple3)

The output from this is

(42, (1, 3, 5, 7), (’John’, ’Denise’, ’Phoebe’, ’Adam’), 5.5)

Note the nesting of round brackets in the printout illustrating where one tuple is
contained within another.

This feature of tuples (and other containers) allows for arbitrarily complex data
structures to be constructed as required by an application.

In fact, a tuple can have nested within it not just other tuples but any type of
container, and thus it can contain lists, sets, dictionaries, etc. This provides for a huge
level of flexibility when constructing data structures for use in Python programs.

32.4.10 Things You Can’t Do with Tuples

It is not possible to add or remove elements from a tuple; they are immutable. It
should be particularly noted that none of the functions or methods presented above
actual change the original tuple they are applied to; even those that return a subset
of the original tuple actually return a new instance of the class tuple and have no
effect on the original tuple.

372 32 Collections, Tuples and Lists

32.5 Lists

Lists are mutable ordered containers of other objects. They support all the features
of the tuple but as they are mutable it is also possible to add elements to a list,
remove elements and modify elements. The elements in the list maintain their order
(until modified).

32.5.1 Creating Lists

Lists are created using square brackets positioned around the elements that make up
the list. For example:

list1 = [’John’, ’Paul’, ’George’, ’Ringo’]

In this case we have created a list of four elements with the first element being
indexed from zero, we thus have

As with tuples we can have nested lists and lists containing different types of
elements.

We can this create the following structure of nested Lists:

32.5 Lists 373

In code this can be defined as

l1 = [1, 43.5, Person(’Phoebe’, 21), True]
l2 = [’apple’, ’orange’, 31]
root_list = [’John’, l1, l2, ’Denise’]
print(root_list)

When the root_list is printed we get

[’John’, [1, 43.5, <tuples.Person object at 0x1042ba4a8>, True],
[’apple’, ’orange’, 31], ’Denise’]

Note the square brackets inside the outer square brackets indicating nested lists.
We can of course also nest tuples in lists and lists in tuples. For example, the

following structure shows tuples (the ovals) hold references to lists (the rectangles)
and vice versa:

In code this would look like:

t1 = (1, ’John’, 34.5)
l1 = [’Smith’, ’Jones’]
l2 = [t1, l1]
t2 = (l2, ’apple’)
print(t2)

which produces

([(1, ’John’, 34.5), [’Smith’, ’Jones’]], ’apple’)

374 32 Collections, Tuples and Lists

32.5.2 List Constructor Function

The list() function can be used to construct a list from an iterable; this means
that it can construct a list from a tuple, a dictionary or a set. It can also construct a
list from anything that implements the iterable protocol.
The signature of the list() function is

list(iterable)

For example:

vowelTuple = (’a’, ’e’, ’i’, ’o’, ’u’)
print(list(vowelTuple))

produces

[’a’, ’e’, ’i’, ’o’, ’u’]

32.5.3 Accessing Elements from a List

You can access elements from a list using an index (within square brackets). The
index returns the object at that position, for example:

list1 = [’John’, ’Paul’, ’George’, ’Ringo’]
print(list1[1])

This will print out the element at index 1 which is Paul (lists are indexed from
zero so the first element is the zeroth element).

If you use a negative index such as − 1 then the index is reversed so an index of
− 1 starts from the end of the list (− 1 returns the last element, − 2 the second to
last etc.).

It is also possible to extract a slice (or sublist) from a list. This is done by providing
a starting and end index to within the square brackets separated by a colon. For
example [1:4] indicates a slice starting at the oneth element and extending up to
(but not including) the fourth element. If either of the indexes is missed for a slice
then that indicates the start or end of the list respective.
The following illustrates some of these ideas:

list1 = [’John’, ’Paul’, ’George’, ’Ringo’]
print(’list1[1]:’, list1[1])
print(’list1[-1]:’, list1[-1])
print(’list1[1:3]:’, list1[1:3])
print(’list[:3]:’, list1[:3])
print(’list[1:]:’, list1[1:])

32.5 Lists 375

Which produces

list1[1]: Paul
list1[-1]: Ringo
list1[1:3]: [’Paul’, ’George’]
list[:3]: [’John’, ’Paul’, ’George’]
list[1:]: [’Paul’, ’George’, ’Ringo’]

32.5.4 Adding to a List

You can add an item to a list using the append() method of the list class (this
changes the actual list; it does not create a copy of the list). The syntax of this method
is

<alist>.append(<object>)

As an example, consider the following list of strings, to which we append a fifth
string:

list1 = [’John’, ’Paul’, ’George’, ’Ringo’]
list1.append(’Pete’)
print(list1)

this will generate the output:

[’John’, ’Paul’, ’George’, ’Ringo’, ’Pete’]

You can also add all the items in a list to another list. There are several options
here, we can use the extend() method which will add the items passed to it to the
end of the list or we can use the += operator which does the same thing:

list1 = [’John’, ’Paul’, ’George’, ’Ringo’, ’Pete’]
print(list1)
list1.extend([’Albert’, ’Bob’])
print(list1)
list1 += [’Ginger’, ’Sporty’]
print(list1)

The output from this code snippet is

[’John’, ’Paul’, ’George’, ’Ringo’, ’Pete’]
[’John’, ’Paul’, ’George’, ’Ringo’, ’Pete’, ’Albert’, ’Bob’]
[’John’, ’Paul’, ’George’, ’Ringo’, ’Pete’, ’Albert’, ’Bob’,
’Ginger’, ’Sporty’]

Which approach you prefer to use is up to you.
Note that strictly speaking both extend() and += take what is known as an

iterable.

376 32 Collections, Tuples and Lists

32.5.5 Inserting into a List

You can also insert elements into an existing list. This is done using the insert()
method of the list class. The syntax of this method is

<list>.insert(<index>, <object>)

The insert() method takes an index indicating where to insert the element
and an object to be inserted.

For example, we can insert the string ‘Paloma’ in between the Zeroth and oneth
item in the following list of names:

a_list = [’Adele’, ’Madonna’, ’Cher’]
print(a_list)
a_list.insert(1, ’Paloma’)
print(a_list)

The result is

[’Adele’, ’Madonna’, ’Cher’]
[’Adele’, ’Paloma’, ’Madonna’, ’Cher’]

In other words, we have inserted the string ‘Paloma’ into the index position 1
pushing ‘Madonna’ and ‘Cher’ up one in the index within the list.

32.5.6 List Concatenation

It is possible to concatenate two lists together using the concatenation operator ‘+’:

list1 = [3, 2, 1]
list2 = [6, 5, 4]
list3 = list1 + list2
print(list3)

generates

[3, 2, 1, 6, 5, 4]

32.5 Lists 377

32.5.7 Removing from a List

We can remove an element from a list using the remove() method. The syntax for
this method is

<list>.remove(<object>)

This will remove the object from the list; if the object is not in the list then an
error will be generated by Python.

another_list = [’Gary’, ’Mark’, ’Robbie’, ’Jason’, ’Howard’]
print(another_list)
another_list.remove(’Robbie’)
print(another_list)

The output from this is

[’Gary’, ’Mark’, ’Robbie’, ’Jason’, ’Howard’]
[’Gary’, ’Mark’, ’Jason’, ’Howard’]

32.5.8 The Pop() Method

The syntax of the pop method is

a.pop(index=-1)

It removes an element from the list; however, it differs from the remove()
method in two ways:

● It takes an index which is the index of the item to remove from the list rather than
the object itself.

● The method returns the item that was removed as its result.

An example of using the pop() method is given below:

list6 = [’Once’, ’Upon’, ’a’, ’Time’]
print(list6)
print(list6.pop(2))
print(list6)

Which generates

[’Once’, ’Upon’, ’a’, ’Time’]
a
[’Once’, ’Upon’, ’Time’]

An overload of this method is just.

<list>.pop()

378 32 Collections, Tuples and Lists

Which removes the last item in the list. For example:

list6 = [’Once’, ’Upon’, ’a’, ’Time’]
print(list6)
print(list6.pop())
print(list6)

with the output:

[’Once’, ’Upon’, ’a’, ’Time’]
Time
[’Once’, ’Upon’, ’a’]

32.5.9 Deleting from a List

It is also possible to use the del keyword to delete elements from a list.
The del keyword can be used to delete a single element or a slice from a list.
To delete an individual element from a list use del and access the element via its

index:

my_list = [’A’, ’B’, ’C’, ’D’, ’E’]
print(my_list)
del my_list[2]
print(my_list)

which outputs

[’A’, ’B’, ’C’, ’D’, ’E’]
[’A’, ’B’, ’D’, ’E’]

To delete a slice from within a list use the del keyword and the slice returned
from the list.

my_list = [’A’, ’B’, ’C’, ’D’, ’E’]
print(my_list)
del my_list[1:3]
print(my_list)

which deletes the slice from index 1 up to (but not including) index 3:

[’A’, ’B’, ’C’, ’D’, ’E’]
[’A’, ’D’, ’E’]

32.5.10 List Methods

Python has a set of built-in methods that you can use on lists.

32.7 Exercises 379

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

32.6 Online Resources

See the Python Standard Library documentation for:

● https://docs.python.org/3/tutorial/datastructures.html Python Tutorial on data
structures.

● https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
for lists and tuples.

● https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences the
online tuples tutorial.

● https://docs.python.org/3/tutorial/datastructures.html#lists the online list tutorial.

32.7 Exercises

The aim of this exercise is to work with a collection/container such as a list.
To do this we will return to your account related classes.
You should modify your Account class such that it is able to keep a history of

transactions.
A transaction is a record of a deposit or withdrawal along with an amount.
Note that the initial amount in an account can be treated as an initial deposit.
The history could be implemented as a list containing an ordered sequence to

transactions. A transaction itself could be defined by a class with an action (deposit
or withdrawal) and an amount.

Each time a withdrawal or a deposit is made a new transaction record which should
be added to a transaction history list.

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/tutorial/datastructures.html#lists

380 32 Collections, Tuples and Lists

Now provide support for iterating through the transaction history of the account
such that each deposit or withdrawal can be reviewed. You can do this by imple-
menting the iterable protocol—refer to the last chapter if you need to check how
to do this. Note that it is the transaction history that we want to be able to iterate
through—so you can use the history list as the basis of your iterable.

You should be able to run this following code at the end of your accounts
application:

for transaction in acc1:
print(transaction)

Depending upon the exact set of transactions you have performed (deposits and
withdrawals) you should get a list of those transactions being printed out:

Transaction[deposit: 10.05]
Transaction[deposit: 23.45]
Transaction[withdraw: 12.33]

Chapter 33
Sets

33.1 Introduction

Python provides many different container or collection types. This chapter focuses
on the set collection. This collection is used to hold unique immutable collections
of objects. It is a mutable collection and so the values it holds can change over time
but does not allow duplicate values. It also supports basic set like operations such as
intersection, union and difference.

33.2 Creating a Set

A set is defined using curly brackets (e.g., ‘{}’).
For example,

basket = {’apple’, ’orange’, ’apple’, ’pear’,
’orange’, ’banana’}

print(basket)

When run this code will show that apple is only added once to the set:

{’banana’, ’orange’, ’pear’, ’apple’}

Note that because a set is unordered it is not possible to refer to elements of the
set using an index.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_33

381

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_33&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_33

382 33 Sets

33.3 The Set() Constructor Function

As with tuples and lists Python provides a predefined function that can convert any
iterable type into a set. The function signature is

set(iterable)

Given an iterable object, this function returns a new set based on the values
obtained from the iterable. This means that a set can be easily created from a
list, tuple or dictionary as well as any other data type that implements the iterable
protocol. For example:

set1 = set((1, 2, 3)
print(set1)

which prints out

{1, 2, 3}

33.4 Accessing Elements in a Set

Unlike lists it is not possible to access elements from a set via an index; this
is because they are unordered containers, and thus there are no indexes available.
However, they are iterable containers.

Elements of a set can be iterated over using the for statement:

for item in basket:
print(item)

This applies the print statement to each item in the list in turn.

33.5 Working with Sets

33.5.1 Checking for Presence of an Element

You can check for the presence of an element in a set using the in keyword, for
example:

print(’apple’ in basket)

This will print true if ‘apple’ is a member of the set basket.

33.5 Working with Sets 383

33.5.2 Adding Items to a Set

It is possible to add items to a set using the add() method:

basket = {’apple’, ’orange’, ’banana’}
basket.add(’apricot’)
print(basket)

This generates

{’orange’, ’apple’, ’banana’, ’apricot’, ’pear’}

If you want to add more than one item to a set you can use the update()
method:

basket = {’apple’, ’orange’, ’banana’}
basket.update([’apricot’, ’mango’, ’grapefruit’])
print(basket)

generating

{’orange’, ’apple’, ’mango’, ’banana’, ’apricot’, ’grapefruit’}

The argument to update can be a set, a list, a tuple or a dictionary. The method
automatically converts the parameter into a set if it is not a set already and then adds
the value to the original set.

33.5.3 Changing Items in a Set

It is not possible to change the items already in a set.

33.5.4 Obtaining the Length of a Set

As with other collection/container classes; you can find out the length of a set using
the len() function.

basket = {’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’}
print(len(basket)) # generates 4

384 33 Sets

33.5.5 Obtaining the Max and Min Values in a Set

You can also obtain the maximum or minimum values in a set using the max() and
min() functions:

print(max(a_set))
print(min(a_set))

33.5.6 Removing an Item

To remove an item from a set, use the remove() or discard() functions. The
remove function removes a single item from a set but generates an error if that item
was not in the set. The remove function also removes a single item from a set but
does not throw an error if it was not initially present in the set.

basket = {’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’}
print(basket)
basket.remove(’apple’)
basket.discard(’apricot’)
print(basket)

This generates

{’pear’, ’banana’, ’orange’, ’apple’}
{’pear’, ’banana’, ’orange’}

There is also a method pop() that can be used to remove an item (and return
that item as a result of running the method); however it removes the last item in the
set (although as a set is unordered you will not know which item will be).

The method clear() is used to remove all elements from a set:

basket = {’apple’, ’orange’, ’banana’}
basket.clear()
print(basket)

which prints out

set()

Which is used to represent an empty set.

33.6 Nesting Lists Within Sets

It is not possible to hold a list within a set, this is because lists are mutable objects
and sets can only hold immutable things. Thus it is necessary to convert a list into
an immutable version whenever they are added to a set. This can be done very easily

33.7 Set Operations 385

using the tuple() function. This function can be used to convert any iterable into a
tuple. In effect a tuple is an immutable list. Thus if we need to store a list within a
set all we have to do is convert it into a tuple, for example:

Convert lists into a tuple
list1 = [55, 60, 43, 55, 65]
results_set = {tuple(list1), ’John’, ’CS110’}
print(f’results_set: {results_set}’)

The output from this code snippet is

results_set: {(55, 60, 43, 55, 65), ’CS110’, ’John’}

33.7 Set Operations

The set container also supports set like operations such as (|), intersection (&),
difference (-) and symmetric difference (^). These are based on simple set theory.

Given the two sets:

s1 = {’apple’, ’orange’, ’banana’}
s2 = {’grapefruit’, ’lime’, ’banana’}

For example, the Union of two sets represents the combination of all the values
in the two sets:

print(’Union:’, s1 | s2)

This would print out

Union: {’apple’, ’lime’, ’banana’, ’grapefruit’, ’orange’}

The intersection of two sets represents the common values between two sets:

386 33 Sets

print(’Intersection:’, s1 & s2)

This generates

Intersection: {’banana’}

The difference between two sets is the set of values in the first set that are not in
the second set:

print(’Difference:’, s1 - s2)

which produces the output

Difference: {’apple’, ’orange’}

The symmetric difference represents all the unique values in the two sets (that is
it is the inverse of the intersection:

print(’Symmetric Difference:’, s1 ^ s2)

The output from this final operation is

Symmetric Difference: {’orange’, ’apple’, ’lime’, ’grapefruit’}

33.9 Online Resources 387

In addition to the operators there are also method versions:

● s1.union(s2) is the equivalent of s1 | s2
● s1.interaction(s2) is the equivalent of s1 & s2
● s1.difference(s2) is the equivalent of s1 – s2
● s1.symmetric_difference(s2) is the equivalent of s1 ̂ s2

33.8 Set Methods

Python has a set of built-in methods that you can use on sets.

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two or more
sets

difference_update() Removes the items in this set that are also included in another,
specified set

discard() Remove the specified item

intersection() Returns a set, that is the intersection of two other sets

intersection_update() Removes the items in this set that are not present in other,
specified set(s)

isdisjoint() Returns whether two sets have a intersection or not

issubset() Returns whether another set contains this set or not

issuperset() Returns whether this set contains another set or not

pop() Removes an element from the set

remove() Removes the specified element

symmetric_difference() Returns a set with the symmetric differences of two sets

symmetric_difference_update() Inserts the symmetric differences from this set and another

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

33.9 Online Resources

Online resources on sets are listed below:

● https://docs.python.org/3/tutorial/datastructures.html Python tutorial on data
structures.

https://docs.python.org/3/tutorial/datastructures.html

388 33 Sets

● https://docs.python.org/3/tutorial/datastructures.html#sets the online set tutorial.
● https://www.python-course.eu/python3_sets_frozensets.php A tutorial on sets

and frozen sets.
● https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset for sets.

33.10 Exercises

The aim of this exercise is to use a set.
Create two sets of students, one for those who took an exam and one for those

that submitted a project. You can use simple strings to represent the students, for
example:

set up sets
exam = {’Andrew’, ’Kirsty’, ’Beth’, ’Emily’, ’Sue’}
project = {’Kirsty’, ’Emily’, ’Ian’, ’Stuart’}

Output the basic sets
print(’exam:’, exam)
print(’project:’, project)

Using these sets answer the following questions:

● Which students took both the exam and submitted a project?
● Which students only took the exam?
● Which students only submitted the project?
● List all students who took either (or both) of the exam and the project.
● List all students who took either (but not both) of the exam and the project.

https://docs.python.org/3/tutorial/datastructures.html#sets
https://www.python-course.eu/python3_sets_frozensets.php
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Chapter 34
Dictionaries

34.1 Introduction

A dictionary (technically called a dict in Python) is a set of associations between a
key and a value that is unordered, changeable (mutable) and indexed. This collection
type allows for keyed access to values. That is, a value is stored in a dictionary using
a key. This key is then used to retrieve that value at a later date. Dictionaries are very
widely used in Python programs.

34.2 What is a Dictionary

Pictorially we might view a dictionary as shown below for a set of countries and
their capital cities. Note that in a dictionary the keys must be unique but the values
do not need to be unique.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_34

389

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_34&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_34

390 34 Dictionaries

34.3 Creating a Dictionary

A dict is created using curly brackets (‘{}’) where each entry in the dictionary is
a key:value pair:

cities = {’Wales’: ’Cardiff’,
’England’: ’London’,
’Scotland’: ’Edinburgh’,
’Northern Ireland’: ’Belfast’,
’Ireland’: ’Dublin’}

print(cities)

This creates a dictionary referenced by the variable cities which holds a set of
key: value pairs for the capital cities of the UK and Ireland. When this code is run
we see:

{’Wales’: ’Cardiff’, ’England’: ’London’, ’Scotland’:
’Edinburgh’, ’Northern Ireland’: ’Belfast’, ’Ireland’: ’Dublin’}

34.3.1 The dict() Constructor Function

The dict() function can be used to create a new dictionary object from an iterable
or a sequence of key:value pairs. The syntax of this function is

dict(**kwarg)
dict(mapping, **kwarg)
dict(iterable, **kwarg)

This is an overloaded function with three version that can take different types of
arguments:

● The first option takes a sequence of key: value pairs.
● The second takes a mapping and a (optionally) a sequence of key: value pairs.
● The third version takes an iterable of key-value pairs and an optional sequence of

key: value pairs.

Some examples are given below for reference:

note keys are not strings
dict1 = dict(uk=’London’, ireland=’Dublin’, france=’Paris’)
print(’dict1:’, dict1)
key value pairs are tuples
dict2 = dict([(’uk’, ’London’), (’ireland’, ’Dublin’), (’france’,
’Paris’)])
print(’dict2:’, dict2)
key value pairs are lists
dict3 = dict(([’uk’, ’London’], [’ireland’, ’Dublin’], [’france’,
’Paris’]))

34.4 Working with Dictionaries 391

print(’dict3:’, dict3)

The output printed by these examples is

dict1: {’uk’: ’London’, ’ireland’: ’Dublin’, ’france’: ’Paris’}
dict2: {’uk’: ’London’, ’ireland’: ’Dublin’, ’france’: ’Paris’}
dict3: {’uk’: ’London’, ’ireland’: ’Dublin’, ’france’: ’Paris’}

34.4 Working with Dictionaries

34.4.1 Accessing Items via Keys

You can access the values held in a dict using their associated key. This is specified
using either the square bracket (‘[]’) notation (where the key is within the brackets)
or the get() method:

print(’cities[Wales]:’, cities[’Wales’])
print(’cities.get(Ireland):’, cities.get(’Ireland’))

The output of this is

cities[Wales]: Cardiff
cities.get(Ireland): Dublin

34.4.2 Adding a New Entry

A new entry can be added to a dictionary by providing the key in square brackets
and the new value to be assigned to that key:

cities[’France’] = ’Paris’

34.4.3 Changing a Keys Value

The value associated with a key can be changed by reassigning a new value using
the square bracket notation, for example:

cities[’Wales’] = ’Swansea’

392 34 Dictionaries

print(cities)

which would now show ‘Swansea’ as the capital of wales:

{’Wales’: ’Swansea’, ’England’: ’London’, ’Scotland’:
’Edinburgh’, ’Northern Ireland’: ’Belfast’, ’Ireland’: ’Dublin’}

34.4.4 Removing an Entry

An entry into the dictionary can be moved using one of the methods pop() or
popitem() method or the del keyword.

● The pop(<key>)method removes the entry with the specified key. This method
returns the value of the key being deleted. If the key is not present then a default
value (if it has been set using setdefault()) will be returned. If no default
value has been set an error will be generated.

● The popitem() method removes the last inserted item in the dictionary
(although prior to Python 3.7 a random item in the dictionary was deleted instead!).
The key:value pair being deleted is returned from the method.

● The del keyword removes the entry with the specified key from the dictionary.
This keyword just deletes the item; it does not return the associated value. It is
potentially more efficient than pop(<key>).

Examples of each of these are given below:

cities = {’Wales’: ’Cardiff’,
’England’: ’London’,
’Scotland’: ’Edinburgh’,
’Northern Ireland’: ’Belfast’,
’Ireland’: ’Dublin’}

print(cities)
cities.popitem() # Deletes ‘Ireland’ entry
print(cities)
cities.pop(’Northern Ireland’)
print(cities)
del cities[’Scotland’]
print(cities)

The output from this code snippet is thus:

{’Wales’: ’Cardiff’, ’England’: ’London’, ’Scotland’:
’Edinburgh’, ’Northern Ireland’: ’Belfast’, ’Ireland’: ’Dublin’}
{’Wales’: ’Cardiff’, ’England’: ’London’, ’Scotland’:
’Edinburgh’, ’Northern Ireland’: ’Belfast’}
{’Wales’: ’Cardiff’, ’England’: ’London’, ’Scotland’:
’Edinburgh’}
{’Wales’: ’Cardiff’, ’England’: ’London’}

In addition the clear() method empties the dictionary of all entries:

cities = {’Wales’: ’Cardiff’,

34.4 Working with Dictionaries 393

’England’: ’London’,
’Scotland’: ’Edinburgh’,
’Northern Ireland’: ’Belfast’,
’Ireland’: ’Dublin’}

print(cities)
cities.clear()
print(cities)

Which generates the following output:

{’Wales’: ’Cardiff’, ’England’: ’London’, ’Scotland’:
’Edinburgh’, ’Northern Ireland’: ’Belfast’, ’Ireland’: ’Dublin’}
{}

Note that the empty dictionary is represented by the ‘{}’ above which as the empty
set was represented as set().

34.4.5 Iterating Over Keys

You can loop through a dictionary using the for loop statement. The for loop
processes each of the keys in the dictionary in turn. This can be used to access each
of the values associated with the keys, for example:

for country in cities:
print(country, end=’, ’)
print(cities[country])

Which generates the output:

Wales, Cardiff
England, London
Scotland, Edinburgh
Northern Ireland, Belfast
Ireland, Dublin

If you want to iterate over all the values directly, you can do so using the
values() method. This returns a collection of all the values, which of course
you can then iterate over:

for e in d.values():
print(e)

34.4.6 Values, Keys and Items

There are three methods that allow you to obtain a view onto the contents of a
dictionary, these are values(), keys() and items().

● The values() method returns a view onto the dictionary’s values.

394 34 Dictionaries

● The keys() method returns a view onto a dictionary’s keys.
● The items() method returns a view onto the dictionary’s items ((key, value)

pairs).

A view provides a dynamic window onto the dictionary’s entries, which means
that when the dictionary changes, the view reflects these changes.

The following code uses the cities dictionaries with these three methods:

print(cities.values())
print(cities.keys())
print(cities.items())

The output makes it clear that these are all related to a dictionary by indicating
that the type is dict_values, dict_keys or dict_items, etc:

dict_values([’Cardiff’, ’London’, ’Edinburgh’, ’Belfast’,
’Dublin’])
dict_keys([’Wales’, ’England’, ’Scotland’, ’Northern Ireland’,
’Ireland’])
dict_items([(’Wales’, ’Cardiff’), (’England’, ’London’), (’Scot-
land’, ’Edinburgh’), (’Northern Ireland’, ’Belfast’), (’Ireland’,
’Dublin’)])

34.4.7 Checking Key Membership

You can check to see if a key is a member of a dictionary using the in syntax (and
that it is not in a dictionary using the not in option), for example:

print(’Wales’ in cities)
print(’France’ not in cities)

Which both print out True for the cities dictionary.

34.4.8 Obtaining the Length of a Dictionary

Once again, as with other collection classes; you can find out the length of a dictionary
(in terms of its key:value pairs) using the len() function.

cities = {’Wales’: ’Cardiff’,
’England’: ’London’,
’Scotland’: ’Edinburgh’,
’Northern Ireland’: ’Belfast’,
’Ireland’: ’Dublin’}

print(len(cities)) # prints 5

34.5 Dictionary Operators Added in 3.9 395

34.4.9 Nesting Dictionaries

The key and value in a dictionary must be an object; however, everything in Python
is an object and thus anything can be used as a key or a value.

One common pattern is where the value in a dictionary is itself a container such
as a list, tuple, set or even another dictionary.

The following example uses tuples to represent the months that make up the
seasons:

seasons = {’Spring’: (’Mar’, ’Apr’, ’May’),
’Summer’: (’June’, ’July’, ’August’),
’Autumn’: (’September’, ’October’, ’November’),
’Winter’: (’December’, ’January’, ’February’)}

print(seasons[’Spring’])
print(seasons[’Spring’][1])

The output is

(’Mar’, ’Apr’, ’May’)
Apr

Each season has a Tuple for the value element of the entry. When this Tuple
is returned using the key it can be treated just like any other Tuple.

Note in this case we could easily have used a List or indeed a Set instead of a
tuple.

34.4.10 Checking to See if a Key is Present

To check to see if a key is present within a dictionary use the in keyword, for example
with an if statement as shown below:

if key in dict:
print(’Key is present, value =’, dict[key])

else:
print(’Key not present’)

34.5 Dictionary Operators Added in 3.9

Back in Python 3.9 two additional dictionary operators were added to Python, these
were the merge | and the update |= operators. The merge operator combines two
dictionaries together to form a new third dictionary.

In turn the update operator modifies the left hand dictionary by adding the contents
of the right hand dictionary.

396 34 Dictionaries

Examples of both the merge and the update operator are given below:

offices = {’John’: 1, ’Denise’: 21}
labs = {’Cyber’: 5, ’Games’: 33}
print(’offices’, offices)
print(’labs’, labs)

Merge two dictionaries to create a new one
all_rooms = offices | labs
print(’all_rooms’, all_rooms)

Update one dictionary with contents of another
offices |= labs
print(’offices’, offices)

The output from this program is

offices {’John’: 1, ’Denise’: 21}
labs {’Cyber’: 5, ’Games’: 33}
all_rooms {’John’: 1, ’Denise’: 21, ’Cyber’: 5, ’Games’: 33}
offices {’John’: 1, ’Denise’: 21, ’Cyber’: 5, ’Games’: 33}

34.6 A Note on Dictionary Key Objects

A class whose objects are to be used as the key within a dictionary should consider
implementing two special methods, these are __hash__() and __eq__(). The
hash method is used to generate a hash number that can be used by the dictionary
container, and the equals method (__eq__()) is used to test if two objects are equal.
For example:

print(’key.__hash__():’, key.__hash__())
print("key.__eq__(’England’):", key.__eq__(’England’))

The output from these two lines for an example run is

key.__hash__(): 8507681174485233653
key.__eq__(’England’): True

Python has two rules associated with these methods:

● If two objects are equal, then their hashes should be equal.
● In order for an object to be hashable, it must be immutable.

It also has two properties associated with the hashcodes of an object that should
be adhered to:

● If two objects have the same hash, then they are likely to be the same object.

34.7 Dictionary Methods 397

● The hash of an object should be cheap to compute.

Why do you need to care about these methods?
For built-in type you do not need to worry; however for user defined c lasses/

types then if these types are to be used as keys within a dictionary then you should
consider implementing these methods.

This is because a dictionary uses

● The hashing method to manage how values are organized and
● The equals method to check to see if a key is already present in the dictionary.

As an aside if you want to make a class something that cannot be used as a key
in a dictionary, that is it is not hashable, then you can define this by setting the
__hash__() method to None.

class NotHashableThing(object):
__hash__ = None

34.7 Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and values

get() Returns the value of the specified key

items() Returns a list containing the tuple for each key-value pair

keys() Returns a list containing the dictionary’s keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not exist: insert the key, with
the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all the values in the dictionary

398 34 Dictionaries

34.8 Online Resources

Online resources on dictionaries are listed below:

● https://docs.python.org/3/tutorial/datastructures.html Python tutorial on data
structures.

● https://www.python-course.eu/python3_dictionaries.php A tutorial on dictio-
naries in Python.

● https://docs.python.org/3/library/stdtypes.html#mapping-types-dict for dictio-
naries.

● https://docs.python.org/3/tutorial/datastructures.html#dictionaries the online
dictionary tutorial.

● https://en.wikipedia.org/wiki/Hash_table For more information on defining hash
functions and how they are used in containers such as dictionary.

34.9 Exercises

The aim of this exercise is to use a dictionary as a simple form of data cache.
Calculating the factorial for a very large number can take some time. For example

calculating the factorial of 150,000 can take several seconds. We can verify this using
a timer decorator similar to that we created back in chapter on decorators.

The following program runs several factorial calculations on large numbers and
prints out the time taken for each:

from timeit import default_timer

def timer(func):
def inner(value):

print(’calling’, func.__name__, ’with’, value)
start = default_timer()
func(value)
end = default_timer()
print(’returned from’, func.__name__, ’it took’, int(end -

start), ’seconds’)

return inner

@timer
def factorial(num):

if num == 0:
return 1

else:
Factorial_value = 1
for i in range(1, num + 1):

Factorial_value = factorial_value * i
return factorial_value

https://docs.python.org/3/tutorial/datastructures.html
https://www.python-course.eu/python3_dictionaries.php
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://en.wikipedia.org/wiki/Hash_table

34.9 Exercises 399

print(factorial(150000))
print(factorial(80000))
print(factorial(120000))
print(factorial(150000))
print(factorial(120000))
print(factorial(80000))

An example of the output generated by this program is given below:

calling factorial with 150000
returned from factorial it took 5 seconds
None
calling factorial with 80000
returned from factorial it took 1 seconds
None
calling factorial with 120000
returned from factorial it took 3 seconds
None
calling factorial with 150000
returned from factorial it took 5 seconds
None
calling factorial with 120000
returned from factorial it took 3 seconds
None
calling factorial with 80000
returned from factorial it took 1 seconds
None

As can be seen from this, in this particular run, calculating the factorial of 150,000
took 5 s, while the factorial of 80,000 took just over 1 1/4 s, etc.

In this particular case we have decided to rerun these calculations so that we have
actually calculated the factorial of 150,000, 80,000 and 120,000 at least twice.

The idea of a cache is that it can be used to save the previous calculations and
reuse those if appropriate rather than have to perform the same calculation multiple
times. The use of a cache can greatly improve the performance of systems in which
these repeat calculations occur.

There are many commercial caching libraries available for a wide variety of
languages including Python. However, at their core they are all somewhat dictio-
nary like; that is, there is a key which is usually some combination of the operation
invoked and the parameter values used. In turn the value element is the result of the
calculation.

These caches usually also have eviction policies so that they do not become
overly large; these eviction policies can usually be specified so that they match the
way in which the cache is used. One common eviction policy is the Least Recently
Used (or LRU) policy. When using this policy once the size of the cache reaches a
predetermined limit the Least Recently Used value is evicted, etc.

For this exercise you should implement a simple caching mechanism using a
dictionary (but without an eviction policy).

The cache should use the parameter passed into the factorial() function as
the key and return the stored value if one is present.

400 34 Dictionaries

The logic for this is usually:

1. Look in the cache to see if the key is present
2. If it is return the value
3. If not perform the calculation
4. Store the calculated result for future use
5. Return the value

Note as the factorial() function is exactly that a function; you will need to
think about using a global variable to hold the cache.

Once the cache is used with the factorial() function, then each subsequent
invocation of the function using the previous value should return almost immediately.
This is shown in the sample output before where subsequent method calls return in
less than a second.

calling factorial with 150000
returned from factorial it took 5 seconds
None
calling factorial with 80000
returned from factorial it took 1 seconds
None
calling factorial with 120000
returned from factorial it took 3 seconds
None
calling factorial with 150000
returned from factorial it took 0 seconds
None
calling factorial with 120000
returned from factorial it took 0 seconds
None
calling factorial with 80000
returned from factorial it took 0 seconds
None

Chapter 35
Frozensets

35.1 Introduction

A frozenset is an immutable version of a set. That is, a frozenset is a set that
cannot be modified once created.

Frozensets are useful as a set can only hold an immutable object, thus it is not
possible to nest a set within a set (as sets are mutable things). To get around this it is
possible to convert any set (and in fact any iterable) into a frozenset.

35.2 Frozenset Characteristics

A frozenset has all the characteristics of a set with the exception of being
modifiable. Thus the characteristics of a frozenset are

● Immutable.
● Do not allow duplicates.
● They are not indexed.
● They are of fixed size.

A frozenset can be useful in any situation where you require an immutable
type with a set like set of operations.

35.3 Creating a Frozenset

Frozensets are created using the frozenset() function. This function takes an
(optional) iterable element and creates the new frozenset based on that iterable.
The iterable could be a list, a set, a dict or a tuple, etc.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_35

401

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_35&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_35

402 35 Frozensets

Some examples of these conversions are shown below:

tuple1 = (1, 2, 3, 4, 3, 2)
list1 = [’A’, ’B’, ’C’, ’B’, ’A’]
dict1 = {’Wales’: ’Cardiff’,

’England’: ’London’,
’Scotland’: ’Edinburgh’}

set1 = {’apple’, ’orange’, ’banana’}

fs1 = frozenset(tuple1)
print(f’tuple1: {tuple1}’)
print(f’fs1: {fs1}’)

print(’-’ * 10)

fs2 = frozenset(list1)
print(f’list1: {list1}’)
print(f’fs2: {fs2}’)

print(’-’ * 10)

fs3 = frozenset(dict1)
print(f’dict1: {dict1}’)
print(f’fs3: {fs3}’)

print(’-’ * 10)

fs4 = frozenset(set1)
print(f’set1: {set1}’)
print(f’fs4: {fs4}’)

When this code is run the output generated is

tuple1: (1, 2, 3, 4, 3, 2)
fs1: frozenset({1, 2, 3, 4})

list1: [’A’, ’B’, ’C’, ’B’, ’A’]
fs2: frozenset({’A’, ’B’, ’C’})

dict1: {’Wales’: ’Cardiff’, ’England’: ’London’, ’Scotland’:
’Edinburgh’}
fs3: frozenset({’Wales’, ’Scotland’, ’England’})

set1: {’banana’, ’apple’, ’orange’}
fs4: frozenset({’banana’, ’apple’, ’orange’})

There are a few things to note about this:

● The first is that the frozenset is still a set, and thus duplicates are not allowed.
This is illustrated for tuple1 and list1where both of these containers possess
duplicate values, but the frozensets generated from them do not.

● The second thing to notice is that when a frozenset is created from a dict it
is the keys that are extracted not the values.

● The third point to note is that the frozenset is unordered (just as a set is
unordered). Thus the order that the values are held in a tuple, list or dictionary
may not be the same as the order in which they are held in the frozenset.

35.4 Frozenset Operations 403

35.4 Frozenset Operations

The operations available on a frozenset are similar to the set with the obvious
exception that you cannot modify the frozenset. However, you can copy a
frozenset, apply set like operations such as union and compare frozensets, etc.

Some of these are illustrated below:

frozenset operations
brands = frozenset([’ford’, ’jaguar’, ’bmw’])
manufacturers = brands.copy()
print(f’brands: {brands}’)
print(f’manufacturers: {manufacturers}’)

Equality
print(f’brands == manufacturers: {brands == manufacturers}’)
print(f’brands == fs3: {brands == fs3}’)
print(’-’ * 10)

fruit = frozenset([’apple’, ’pear’, ’banana’])
veg = frozenset([’carrot’, ’cabbage’, ’peas’])
print(f’fruit.union(veg): {fruit.union(veg)}’)

breakfast = frozenset([’apple’, ’strawberry’, ’banana’])
print(f’fruit.intersection(breakfast):
{fruit.intersection(breakfast)}’)

print(f’fruit.difference(breakfast):
{fruit.difference(breakfast)}’)

owner = frozenset([’jaguar’, ’bmw’])
print(f’breakfast.issubset(fruit): {owner.issubset(brands)}’)

The output from this code is

brands: frozenset({’bmw’, ’ford’, ’jaguar’})
manufacturers: frozenset({’bmw’, ’ford’, ’jaguar’})
brands == manufacturers: True
brands == fs3: False

fruit.union(veg): frozenset({’peas’, ’cabbage’, ’apple’, ’pear’,
’carrot’, ’banana’})
fruit.intersection(breakfast): frozenset({’apple’, ’banana’})
fruit.difference(breakfast): frozenset({’pear’})
breakfast.issubset(fruit): True

404 35 Frozensets

In the above example we have used:

● copy returns a new instance of the frozenset containing the same members as
the original.

● union returns the union of frozensets as a new frozenset.
● intersection returns those members in both frozensets as a frozenset.
● difference returns members that are not in either of the frozensets as a

frozenset.
● issubset returns True of False depending upon whether the receiving

frozensets’ members are fully contained within the second frozenset.

In addition there is

● issuperset which indicates whether the receiving frozenset contains all the
members of the second frozenset.

● isdisjoint returns True if the two frozensets have no members in common.
Otherwise returns False.

● symmetric_difference Return the symmetric difference of two frozensets
as a new frozenset.

35.5 Using Frozensets with Sets

The most common usage of a frozenset is when wanting to place a set within a set
(that is to nest sets).

It is possible to hold any immutable object within a set. This means that a set can
contain a reference to a tuple (as that is immutable). We can thus write:

s1 = { (1, 2, 3)}
print(s1)

This prints out

{(1, 2, 3)}

However, we cannot nest lists or other sets within a set as these are not immutable
types. The following would both generate a runtime error in Python:

Can’t have the following
s2 = { {1, 2, 3} }
print(s2)

s3 = { [1, 2, 3] }
print(s3)

35.5 Using Frozensets with Sets 405

However we can use frozensets and nest these within sets. For example:

Need to convert sets and lists into frozensets
s2 = { frozenset({1, 2, 3})}
print(s2)

s3 = { frozenset([1, 2, 3])}
print(s3)

This generates

{frozenset({1, 2, 3})}
{frozenset({1, 2, 3})}

Chapter 36
Collection Related Modules

36.1 Introduction

The chapter introduces a feature known as a list comprehension in Python.
It then introduces the collections and itertools modules.

36.2 List Comprehension

This is a very powerful mechanism that can be used to generate new lists.
The syntax of the list comprehension is

[<expression> for item in iterable <if optional_condition>]

The new list is formed of the results from the expression. Note that the whole
for statement and expression is surrounded by the square brackets normally used
to create a List.

When a list comprehension is executed it generates a new list by applying the
expression to the items in another collection.

For example, given one list of integers, another (new) list can be created using the
list comprehension format:

list1 = [1, 2, 3, 4, 5, 6]
print(’list1:’, list1)

list2 = [item + 1 for item in list1]
print(’list2:’, list2)

which produces the output:

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_36

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_36&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_36

408 36 Collection Related Modules

list1: [1, 2, 3, 4, 5, 6]
list2: [2, 3, 4, 5, 6, 7]

Here the new list is generated by adding 1 to each element in the initial list list1.
Essentially, we iterate (loop) over all the elements in the initial list and bind each
element in the list to the item variable in turn. The result of the expression item
+ 1 is then captured, in order, in the new list.

This feature is not limited to processing values in a list; any iterable collection
can be used such as tuples or sets as the source of the values to process.

Another feature of the list comprehension is the ability to filter the values passed
to the expression using the optional if condition.

For example, if we wish to only consider even numbers for the expression then
we can use the optional if statement to filter out all odd numbers:

list3 = [item + 1 for item in list1 if item % 2 == 0]
print(’list3:’, list3)

The output from these two lines of code is

list3: [3, 5, 7]

Thus only the even numbers were passed to the expression item + 1 resulting in
only the values 3, 5 and 7 being generated for the new list.

A new feature introduced in Python 3.12 allows a variable that will be used in the
list comprehension but will not be modified during the loop to be initialized using
the assignment expressions (:=). For example:

[(b := 1) for a, b.prop in some_iter]

the assignment to b is now allowed. Note that assigning to variables stored to in
the target part of comprehensions (like a) is still disallowed.

36.3 The Collections Module

The collections module extends that basic features of the collection-oriented data
types within Python with high performance container data types. It provides many
useful containers such as

Name Purpose

namedtuple() Factory function for creating tuple subclasses with named fields

deque List-like container with fast appends and pops on either end

ChainMap Dict-like class for creating a single view of multiple mappings

Counter Dict subclass for counting hashable objects

OrderedDict Dict subclass that remembers the order entries were added

Defaultdict Dict subclass that calls a factory function to supply missing values

(continued)

36.3 The Collections Module 409

(continued)

Name Purpose

UserDict Wrapper around dictionary objects for easier dict subclassing

UserList Wrapper around list objects for easier list subclassing

UserString Wrapper around string objects for easier string subclassing

As this is not one of the default modules that are automatically loaded for you by
Python; you will need to import the required collection.

In this section we will look at the Counter, Defaultdict and namedtuple
containers as examples.

36.3.1 The Counter Container

We will start off by looking at the Counter type. It is designed to efficiently hold
multiple copies of the same element. It is efficient because it only holds one copy of
each element but keeps a count of the number of times that element has been added
to the collection:

import collections

fruit = collections.Counter([’apple’, ’orange’, ’pear’, ’apple’,
’orange’, ’apple’])
print(fruit)
print(fruit[’orange’])

The output of this is

Counter({’apple’: 3, ’orange’: 2, ’pear’: 1})
2

Which makes the counting behaviour associated with the Counter class quite
clear.

There are many uses of such a class, for example, it can be used to find out the
most frequently used word in an essay; all you have to do is add each word in an essay
to the Counter and then retrieve the word with the highest count. This can be done
using the Counter class’s most_common() method. This method takes a parameter
n that indicates how many of the most common elements should be returned. If n is
omitted (or set to None) then the method returns an ordered list of elements. Thus
to obtain the most common fruit from the above Counter collection we can use:

print(‘fruit.most_common(1):’, fruit.most_common(1))

Which generates:

fruit.most_common(1): [(’apple’, 3)]

410 36 Collection Related Modules

You can also perform some mathematical operations with multiple Counter
objects. For example, you can add and subtract Counter objects. You can also
obtain a combination of Counters that combines the maximum values from two
Counter objects. You can also generate an intersection of two Counters. These are
all illustrated below:

fruit1 = collections.Counter([’apple’, ’orange’, ’pear’,
’orange’])
fruit2 = collections.Counter([’banana’, ’apple’, ’apple’])

print(’fruit1:’, fruit1)
print(’fruit2:’, fruit2)

print(’fruit1 + fruit2:’, fruit1 + fruit2)
print(’fruit1 - fruit2:’, fruit1 - fruit2)
Union (max(fruit1[n], fruit2[n])
print(’fruit1 | fruit2:’, fruit1 | fruit2)
Intersection (min(fruit1[n], fruit2[n])
print(’fruit1 & fruit2:’, fruit1 & fruit2)

Which produces

fruit1: Counter({’orange’: 2, ’apple’: 1, ’pear’: 1})
fruit2: Counter({’apple’: 2, ’banana’: 1})
fruit1 + fruit2: Counter({’apple’: 3, ’orange’: 2, ’pear’: 1,
’banana’: 1})
fruit1 - fruit2: Counter({’orange’: 2, ’pear’: 1})
fruit1 | fruit2: Counter({’apple’: 2, ’orange’: 2, ’pear’: 1,
’banana’: 1})
fruit1 & fruit2: Counter({’apple’: 1})

Once a Counter object has been created you can test it to see if an item is present
using the in keyword, for example:

print(’apple’ in fruit)

You can also add items to a Counter object by accessing the value using the
item as the key, for example:

fruit[’apple’] = 1 # initializes the number of apples
fruit[’apple’] = + 1 # Adds one to the number of apples
fruit[’apple’] = - 1 # Subtracts 1 from the number of apples

36.3.2 The Defaultdict Container

The standard dict container in Python will throw an exception if you try to access
a key that is not currently in the set of dictionary entries if you use the [] access
operator. In turn it will return None if you use the get() method for a key that is
currently not present.

36.3 The Collections Module 411

The first of these could be dangerous and the second may not be a suitable default
value (although this second issue can be changed in dict).

This is where the collections.Defaultdict comes in. This container is
a subclass of the default dictionary type and provides a similar key-value dictionary
behaviour. However, Defaultdict will never raise a KeyError if a function is
provided to generate the default value. When creating a Defaultdict you should
specify a function that will be used to generate the default value so that you can
customize its behaviour.

Two examples are shown below, one using a lambda function (a very common
approach) and one using a named function:

days = defaultdict(lambda: -1)
days[’Monday’] = 1
days[’Tuesday’] = 2
print(days[’Monday’])
print(days[’Tuesday’])
print(days[’Wednesday’])

def default_value():
return ’Not Known’

Defining the dict
cities = defaultdict(default_value)
cities[’England’] = ’London’
cities[’Wales’] = ’Cardiff’
print(cities[’England’])
print(cities[’Wales’])
print(cities[’Ireland’])

In both cases there is a request to retrieve a value for a missing key—‘Wednesday’
in the first example and ‘Ireland’ in the second example. However, neither will raise
a KeyError as both have a function that will be used to generate the missing value.
In the first example the lambda function will return -1 and in the second example
the default_value() named function will return the string ‘Not Known’.

The output from this code snippet is

1
2
-1
London
Cardiff
Not Known

412 36 Collection Related Modules

36.3.3 The Namedtuple Container

A namedtuple is a type of tuple (and thus immutable) that has a set of names
for each member in the tuple (although the use of positional integer indexes is still
available). As such it has some aspects of a dictionary in that each member is a key:
value pair.

To create a namedtuple you provide the name of the tuple type being created
and then an iterable of a list of names for that tuple, for example:

from collections import namedtuple

Declaring namedtuple()
Student = namedtuple(’Student’, [’name’, ’age’, ’degree’])

Adding values
undergrad_student = Student(’John’, ’21’, ’Computer Science’)
postgrad = Student(name=’Denise’, age=25, degree=’PhD’)

print(undergrad_student)
print(postgrad)

Access using index
print(f’Name via index (student[0]): {undergrad_student[0]}’)

Access using name
print(f’Name via named member (student.name): {undergrad_
student.name}’)

Can field out the field names using_fields
print(undergrad_student._fields)

This code example creates a new namedtuple called ‘Student’ and stores it
into a variable called Student. Note the capitalization, Student here represents
a new namedtuple type and thus follows the capitalization convention for user
defined types.

The Student namedtuple had the members name, age and degree.
When we create a named student instance we use the Student variable (which

contains the newly created named tuple) and provide a value for the name, age and
degree members. The first instance created for the undergraduate uses positional
parameter passing to initialize the member values. The second example uses named
parameter passing to do the same thing.

When the namedtuple is printed out the default representation will illustrate
the name of the type and each of the key-value pairs.

Following this we illustrate how the values in the namedtuple can be accessed
using both positional indexing and named member access. This [0] and .name
both access the name element of the namedtuple Student.

To finish the example, the code illustrates that it is possible to access a tuple of
names in the namedtuple—this can be useful for iteration or display to a user.

36.4 The Itertools Module 413

The output from this program is

Student(name=’John’, age=’21’, degree=’Computer Science’)
Student(name=’Denise’, age=25, degree=’PhD’)
Name via index (student[0]): John
Name via named member (student.name): John
(’name’, ’age’, ’degree’)

It is also possible to iterate over the values in the named tuple using a standard
for loop, for example:

for value in undergrad_student:
print(value)

This produces the expected output of:

John
21
Computer Science

Note if you try to change a value in a named tuple after you have created it, for
example as shown below:

postgrad.name = "Pete"
print(postgrad)

You will generate an AttributeError as named tuples are immutable:

Traceback (most recent call last):
File "namedtuple_example.py", line 25, in <module>
postgrad.name = "Pete"
^^^^^^^^^^^^^

AttributeError: can’t set attribute

36.4 The Itertools Module

The itertools module is another module that it is worth being familiar with.
This module provides a number of useful functions that return iterators constructed
in various ways. As there are many different options available it is worth looking at
the documentation for a complete list of available functions.

To give you a flavor of some of the facilities available look at the following listing:

import itertools

Connect two iterators together
r1 = list(itertools.chain([1, 2, 3], [2, 3, 4]))
print(r1)

Create iterator with element repeated specified number of
times (possibly infinite)

414 36 Collection Related Modules

r2 = list(itertools.repeat(’hello’, 5))
print(r2)

Create iterator with elements from first iterator starting
where predicate function fails
values = [1, 3, 5, 7, 9, 3, 1]
r3 = list(itertools.dropwhile(lambda x: x < 5, values))
print(r3)

Create iterator with elements from supplied iterator between
the two indexes (use ‘None’ for second index to go to end)
r4 = list(itertools.islice(values, 3, 6))
print(r4)

The output from this code is

[1, 2, 3, 2, 3, 4]
[’hello’, ’hello’, ’hello’, ’hello’, ’hello’]
[5, 7, 9, 3, 1]
[7, 9, 3]

36.5 Online Resources

Online resources on the itertools library are listed below:

● https://docs.python.org/3/library/itertools.html The standard library documenta-
tion on the itertools module.

● https://pymotw.com/3/itertools/index.html The Python module of the week page
for itertools.

36.6 Exercises

● The aim of this exercise is to create a concordance program in Python using the
collections.Counter class.

● For the purposes of this exercise a concordance is an alphabetical list of the words
present in a text or texts with a count of the number of times that the word occurs.

● Your concordance program should include the following steps:
● Ask the user to input a sentence.
● Split the sentence into individual words (you can use the split() method of the

string class for this).
● Use the Counter class to generate a list of all the words in the sentence and the

number of times they occur.
● Produce an alphabetic list of the words with their counts. You can obtain a

sorted list of the keys using the sorted() function. You can then use a
collection.OrderedDict to generate a dictionary that maintains the order
in which keys were added.

https://docs.python.org/3/library/itertools.html
https://pymotw.com/3/itertools/index.html

36.6 Exercises 415

● Print out the alphabetically ordered list.

An example of how the program might operate is given below:

Please enter text to be analyzed: cat sat mat hat cat hat cat
Unordered Counter
Counter({’cat’: 3, ’hat’: 2, ’sat’: 1, ’mat’: 1})
Ordered Word Count
OrderedDict([(’cat’, 3), (’hat’, 2), (’mat’, 1), (’sat’, 1)])

Chapter 37
ADTs, Queues and Stacks

37.1 Introduction

There are a number of common data structures that are used within computer
programs that you might expect to see within Python’s list of collection or container
classes; these include queues and stacks. However, in the basic collection classes
these are missing. However, we can either create our own implementations or use
one of the extension libraries that provide such collections. In this chapter we will
explore implementing our own versions.

37.2 Abstract Data Types

The queue and stack are concrete examples of what are known as Abstract Data
Types (or ADTs).

An Abstract Data Type (or ADT) is a model for a particular type of data, where
a data type is defined by its behaviour (or semantics) from the point of view of the
user of that data type. This behaviour is typically defined in terms of possible values,
possible operations on the data of this type and behaviour of the operations provided
by the data type.

An ADT is used to define a common concept that can be implemented by one or
more concrete data structures. These implementations may use different internal
representations of the data or different algorithms to provide the behaviour; by
semantically they meet the descriptions provided by the ADT.

For example, a list ADT may be defined that defines the operations and behaviour
that a list like data structure must provide. Concrete implementations may meet the
semantics of a list using an underlying array of elements, or by linking elements
together with pointers or using some form of hash table (all of which are different
internal representations that could be used to implement a list).

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_37

417

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_37&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_37

418 37 ADTs, Queues and Stacks

37.3 Data Structures

We will look at how the Python collection types can be used as both a queue and a
stack but first we need to define both these ADTs:

● Queue is an ADT that defines how a collection of entities are managed and main-
tained. Queues have what is known as a First-In-First-Out (or FIFO) behaviour
that is the first entity added to a queue is the first thing removed from the queue.
Within the queue the order in which the entities were added is maintained.

● Stack is another ADT but this time it has a Last-In-First-Out (or LIFO) behaviour.
That is the most recently added entity to the stack will be the next entity to be
removed. Within the stack the order that the entities were added in is maintained.

37.4 Queues

Queues are very widely used within Computer Science and in Software Engineering.
They allow data to be held for processing purposes where the guarantee is that the
earlier elements added will be processed before later ones.

There are numerous variations on the basic queue operations but in essence all
queues provide

● Queue creation.
● Add an element to the back of the queue (known as enqueuing).
● Remove an element from the front of the queue (known as dequeuing).
● Find out the length of the queue.
● Check to see if the queue is empty.
● Queues can be of fixed size or variable (growable) in size.

The basic behaviour of a queue is illustrated by

Here there are five elements in the queue, one element has already been removed
from the front and another is being added at the back. Note that when one element is
removed from the front of the queue all other element moved forward one position.
Thus, the element that was the second to the front of the queue becomes the front of
the queue when the first element is dequeued.

37.4 Queues 419

Many queues also allow features such as

● Peek at the element at the front of the queue (that is see what the element is but
do not remove it from the queue).

● Provide priorities so that elements with a higher priority are not added to the back
of the queue but to a point in the middle of the queue related to their priority.

37.4.1 Python List as a Queue

The Python list container can be used as a queue using the existing operations such
as append() and pop(), for example:

queue = [] # Create an empty queue
queue.append(’task1’)
print(’initial queue:’, queue)
queue.append(’task2’)
queue.append(’task3’)
print(’queue after additions:’, queue)
element1 = queue.pop(0)
print(’element retrieved from queue:’, element1)
print(’queue after removal’, queue)

The output of which is

initial queue: [’task1’]
queue after additions: [’task1’, ’task2’, ’task3’]
element retrieved from queue: task1
queue after removal [’task2’, ’task3’]

Note that each task was added to the end of the queue, but the first task obtained
from the queue was task 1.

37.4.2 Defining a Queue Class

In the last sectionweused the List class as a way of providing a queue; this approach
does work but it is not obvious that we are using the list as a queue (with the exception
of the name of the variable that we are holding the List in). For example we have
used pop(0) to dequeue an element from the queue and we have used append()
to enqueue an element. In addition there is nothing to stop a programmer forgetting
to use pop(0) and instead using pop() which is an easy mistake to make and
which will remove the most recently added item from the queue.

It would be better to create a new data type and ensure that this data provides the
queue like behaviour and hide the list inside this data type.

420 37 ADTs, Queues and Stacks

We can do this by defining our own Queue class in Python.

class Queue:

def __init__(self):
self._list = [] # initial internal data

def enqueue(self, element):
self._list.append(element)

def dequeue(self):
return self._list.pop(0)

def __len__(self):
""" Supports the len protocol """
return len(self._list)

def is_empty(self):
return self.__len__() == 0

def peek(self):
return self._list[0]

def __str__(self):
return ’Queue: ’ + str(self._list)

This Queue class internally holds a list. Note we are using the convention that
the internal list instance variable name is preceded by an underbar (‘_’), thereby
indicating that no one should access it directly.

We have also defined methods for dequeuing and enqueuing elements to the queue.
To complete the definition, we have also defined methods for checking the current
length of the queue, whether the queue is empty or not, allowing the element at the
front of the queue to be peeked at and of course proving a string version of the queue
for printing.

Note that the is_empty() method uses the __len__() method when deter-
mining if the queue is empty; this is an example of an important idea; only define
something once. As we want to use the length of the queue to help determine if the
queue is empty, we reuse the __len__() method rather than the code implementing
the length method; thus, if the internal representation changes we will not affect the
is_empty() method.

The following short program illustrates how the Queue class can be used:

queue = Queue()
print(’queue.is_empty():’, queue.is_empty())
queue.enqueue(’task1’)
print(’len(queue):’, len(queue))
queue.enqueue(’task2’)
queue.enqueue(’task3’)
print(’queue:’, queue)
print(’queue.peek():’, queue.peek())
print(’queue.dequeue():’, queue.dequeue())
print(’queue:’, queue)

37.5 Stacks 421

The output from this is:

initial queue: [’task1’]
queue after additions: [’task1’, ’task2’, ’task3’]
element retrieved from queue: task1
queue after removal [’task2’, ’task3’]
queue.is_empty(): True
len(queue): 1
queue: Queue: [’task1’, ’task2’, ’task3’]
queue.peek(): task1
queue.dequeue(): task1
queue: Queue: [’task2’, ’task3’]

This provides a far more explicit and semantically more meaningful implemen-
tation of a Queue than the use of the raw List data structure.

Of course, Python understands this and provides a queue container class in the
collections module called deque. This implementation is optimized to be more
efficient than the basic List which is not very efficient when it comes to popping
elements from the front of the list.

37.5 Stacks

Stacks are another very widely used ADT within computer science and in software
applications. They are often used for evaluating mathematical expressions, parsing
syntax, for managing intermediate results, etc.

The basic facilities provided by a Stack include

● Stack creation.
● Add an element to the top of the stack (known as pushing onto the stack).
● Remove an element from the top of the stack (known as popping from the stack).
● Find out the length of the stack.
● Check to see if the stack is empty.
● Stacks can be of fixed size or a variable (growable) stack.

The basic behaviour of a stack is illustrated by

422 37 ADTs, Queues and Stacks

This diagram illustrates the behaviour of a stack. Each time a new element is
pushed onto the stack, it forces any existing elements further down the stack. Thus
the most recent element is at the top of the stack, and the oldest element is at the
bottom of the stack. To get to older elements you must first pop newer elements off
the top, etc.

Many stacks also allow features such as

● Top which is often an operation that allows you to peek at the element at the top
of the stack (that is see what the element is but do not remove it from the queue).

37.5.1 Python List as a Stack

A List may initially appear particularly well suited to being used as a Stack as the
basic append() and pop() methods can be used to emulate the stack behaviour.
Whatever was most recently appended to the list is the element that will be next
returned from the pop() method, for example:

stack = [] # create an empty stack
stack.append(’task1’)
stack.append(’task2’)
stack.append(’task3’)
print(’stack:’, stack)
top_element = stack.pop()
print(’top_element:’, top_element)
print(’stack:’, stack)

Which produces the output:

stack: [’task1’, ’task2’, ’task3’]
top_element: task3
stack: [’task1’, ’task2’]

This certainly works although when we print out the stack it does not make it
clear that ‘task3’ is at the front of the stack.

37.7 Exercises 423

In addition, as when using the List as a queue ADT it is still possible to apply
any of the other methods defined on a List to this stack and thus we can still write
stack.pop(0) which would remove the very first element added to the stack.

We could therefore implement a Stack class to wrap the list and provide suitable
stack like behaviour as we did for the Queue class.

37.6 Online Resources

For more information on ADTs, queues and stacks see:

● https://en.wikipedia.org/wiki/Abstract_data_type Wikipedia page on Abstract
Data Types (ADTs).

● https://en.wikipedia.org/wiki/Queue_(abstract_data_type) Wikipedia page on the
queue data structure.

● https://en.wikipedia.org/wiki/Stack_(abstract_data_type) Wikipedia page on
stacks.

● https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues Wikibooks
tutorial on stack and queue data structures.

37.7 Exercises

Implement your own Stack class following the pattern used for the Queue class.
The Stack class should provide

● A push(element) method used to add an element to the Stack.
● A pop() method to retrieve the top element of the Stack (this method removes

that element from the stack).
● A top() method that allows you to peek at the top element on the stack (it does

not remove the element from the stack).
● A __len__() method to return the size of the stack. This method also meets

the len protocol requirements.
● An is_empty() method that checks to see if the stack is empty.
● A __str__() method used to convert the stack into a string.

Once completed you should be able to run the following test application:

stack = Stack()
stack.push(’T1’)
stack.push(’T2’)
stack.push(’T3’)
print(’stack:’, stack)
print(’stack.is_empty():’, stack.is_empty())
print(’stack.length():’, stack.length())
print(’stack.top():’, stack.top())
print(’stack.pop():’, stack.pop())

https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikibooks.org/wiki/Data_Structures/Stacks_and_Queues

424 37 ADTs, Queues and Stacks

print(’stack:’, stack)

An example of the type of output this might produce is

stack: [’task1’, ’task2’, ’task3’]
top_element: task3
stack: [’task1’, ’task2’]
stack: Stack: [’T1’, ’T2’, ’T3’]
stack.is_empty(): False
stack.length(): 3
stack.top(): T3
stack.pop(): T3
stack: Stack: [’T1’, ’T2’]

Chapter 38
Map, Filter and Reduce

38.1 Introduction

Python provides three functions that are widely used to implement Functional
Programming style solutions in combinations with collection container types.

These functions are what are known as higher-order functions that take both a
collection and a function that will be applied in various ways to that collection.

This chapter introduces three functions filter(), map() and reduce().

38.2 Filter

The filter() function is a higher-order function that takes a function to be used
to filter out elements from a collection. The result of the filter() function is a
new iterable containing only those elements selected by the test function.

That is, the function passed into filter() is used to test all the elements in the
collection that is also passed into filter. Those where the test filter returns True are
included in the list of values returned. The result returned is a new iterable consisting
of all elements of this list that satisfy the given test function. Note that the order of
the elements is preserved.

The syntax of the filter() function is

filter(function, iterable)

Note that the second argument to the filter function is anything that implements
the iterable protocol which includes all lists, tuples, sets and dictionaries or and many
other types, etc.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_38

425

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_38&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_38

426 38 Map, Filter and Reduce

The function passed in as the first argument is the test function; it can be a lambda
(a function defined in line) or the name of an existing function. The result returned
will be an iterable that can be used to create an appropriate collection.

Here are some examples of using filter with a simple list of integers:

data = [1, 3, 5, 2, 7, 4, 10]
print(’data:’, data)

Filter for even numbers using a lambda function
d1 = list(filter(lambda i: i % 2 == 0, data))
print(’d1:’, d1)

def is_even(i):
return i % 2 == 0

Filter for even numbers using a named function
d2 = list(filter(is_even, data))
print(’d2:’, d2)

The output from this is

Data: [1, 3, 5, 2, 7, 4, 10]
d1: [2, 4, 10]
d2: [2, 4, 10]

One difference between the two examples is that it is more obvious what the
role is of the test function in the second example as it is explicitly named (i.e., is_
even()), that is, the function is testing the integer to see whether it is even or not.
The in-line lambda function does exactly the same, but it is necessary to understand
the test function itself to work out what it is doing.

It is also worth pointing out that defining a named function such as is_even()
may actually pollute the namespace of the module as there is now a function that
others might decide to use even though the original designer of this code never
expected anyone else to use the is_even() function. This is why lambda functions
are often used with filter() (and indeed map() and reduce()).

Of course, you are not just limited to fundamental built-in types such as integers,
or real numbers or indeed strings; any type can be used. For example, if we have a
class Person such as

class Person:

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return ’Person(’+ self.name +

’, ’ + str(self.age) +’)’

38.3 Map 427

Then we can create a list of instances of the class Person and then filter out all
those over 21:

data = [Person(’Alun’, 54), Person(’Niki’, 21), Person(’Megan’,
19)]
for p in data:

print(p, end=’, ’)

print(’\n-----’)

Use a lambda to filter out People over 21
d3 = list(filter(lambda p: p.age <= 21, data))
for p in d3:

print(p, end = ’, ’)

The output from this is

Person(Alun, 54), Person(Niki, 21), Person(Megan, 19),

Person(Niki, 21), Person(Megan, 19),

38.3 Map

Map is another higher-order function available in Python. Map applies the supplied
function to all items in the iterable(s) passed to it. It returns a new iterable of the
results generated by the applied function.

It is the functional equivalent of a for loop applied to an iterable where the results
of each iteration round the for loop are gathered up.

The map function is very widely used within the Functional Programming world
and it is certainly worth becoming familiar with it.

The function signature of map is

map(function, iterable, ...)

Note that the second argument to the filter function is anything that
implements the iterable protocol.

The function passed into the map function is applied to each item in the iterable
passed as the second argument. The result returned from the function is then gathered
up into the iterable object returned from map.

428 38 Map, Filter and Reduce

The following example applies a function that adds one to a number, to a list of
integers:

data = [1, 3, 5, 2, 7, 4, 10]
print(’data:’, data)

Apply the lambda function to each element in the list
using the map function
d1 = list(map(lambda i: i + 1, data))
print(’d1’, d1)

def add_one(i):
return i + 1

Apply the add_one function to each element in the
list using the map function
d2 = list(map(add_one, data))
print(’d2:’, d2)

The output of the above example is

data: [1, 3, 5, 2, 7, 4, 10]
d1 [2, 4, 6, 3, 8, 5, 11]
d2: [2, 4, 6, 3, 8, 5, 11]

As with the filter() function, the function to be applied can either be defined
in line as a lambda or it can be named function as in add_one(). Either can be
used, the advantage of the add_one named function is that it makes the intent of
the function explicit; however, it does pollute the namespace of functions defined.

Note that more than one iterable can be passed to the map function. If multiple
iterables are passed to map, then the function passed in must take as many parameters
as there are iterables. This feature is useful if you want to merge data held in two or
more collections into a single collection.

For example, let us assume that we want to add the numbers in one list to the
numbers in another list, we can write a function that takes two parameters and returns
the result of adding these two numbers together:

data1 = [1, 3, 5, 7]
data2 = [2, 4, 6, 8]

result = list(map(lambda x, y: x + y, data1, data2))
print(result)

The output printed by this is

[3, 7, 11, 15]

38.4 Reduce 429

As with the filter function, it is not only built-in types such as numbers that
can be processed by the function supplied to map; we can also use built-in types such
as the class Person. For example, if we wanted to collect all the ages for a list of
Person we could write:

data = [Person(’John’, 54), Person(’Phoebe’, 21), Person(’Adam’,
19)]
ages = list(map(lambda p: p.age, data))
print(ages)

Which creates a list of the ages of the three people:

[54, 21, 19]

38.4 Reduce

The reduce() function is the last higher-order function that can be used with
collections of data that we will look at.

The reduce() function applies a function to an iterable and combines the result
returned for each element together into a single result.

This function was part of the core Python 2 language but was not included into
the core of Python 3. This is partly because Guido van Rossum believed (prob-
ably correctly) that the applicability of reduce is quite limited, but where it is
useful it is very useful. Although it has to be said that some developers try and
shoe horn reduce() into situations that just make the implementation very hard
to understand—remember always aim to keep it simple.

To use reduce in Python 3 you need to import it from the functools module.
One point that is sometimes misunderstood with reduce() is that the function
passed into reduce takes two parameters, which are the previous result and the next
value in the sequence; it then returns the result of applying some operation to these
parameters.

The signature of the functools.reduce function is

functools.reduce(function, iterable[, initializer])

Note that optionally you can provide an initializer that is used to provide an initial
value for the result.

One obvious use of reduce is to sum all the values in a list:

from functools import reduce

data = [1, 3, 5, 2, 7, 4, 10]
result = reduce(lambda total, value: total + value, data)
print(result)

430 38 Map, Filter and Reduce

The result printed out for this is 32.
Although it might appear that reduce is only useful for numbers such as integers;

it can be used with other types as well. For example, let us assume that we want to
calculate the average age for a list of people, we could use reduce to add together all
the ages and then divide by the length of the data list we are processing:

data = [Person(’John’, 54), Person(’Phoebe’, 21),
Person(’Adam’, 19)]

total_age = reduce(lambda running_total, person: running_total +
person.age, data, 0)

average_age = total_age // len(data)
print(’Average age:’, average_age)

In this code example, we have a data list of three people. We then use the reduce
function to apply a lambda to the data list. The lambda takes a running_total
and adds a person’s age to that total. The value zero is used to initialize this running
total. When the lambda is applied to the data list, we will add 54, 21 and 19 together.
We then divide the final result returned by the length of the data list (3) using the /
/ operator which will use floor division to return a whole integer (rather than a real
number such as 3.11). Finally, we print out the average age:

Average age: 31

38.5 Online Resources

More information on map, filter and reduce can be found using the following online
resources:

● http://book.pythontips.com/en/latest/map_filter.html Summary of map, filter and
reduce.

● https://www.w3schools.com/python/ref_func_map.asp The W3C schoolsmap()
function tutorial.

● https://www.w3schools.com/python/ref_func_filter.asp The W3 schools
filter() function tutorial.

● https://pymotw.com/3/functools/index.html The Python module of the week page
including reduce().

● https://docs.python.org/3/library/functools.html The Python Standard Library
documentation for functors including reduce().

http://book.pythontips.com/en/latest/map_filter.html
https://www.w3schools.com/python/ref_func_map.asp
https://www.w3schools.com/python/ref_func_filter.asp
https://pymotw.com/3/functools/index.html
https://docs.python.org/3/library/functools.html

38.6 Exercises 431

38.6 Exercises

This exercise aims to allow you to use map and filter with your Stack class.
Take the Stack that you developed in the last chapter and make it iterable. This

can be done by implementing the __iter__() method from the iterable protocol.
As a list is held internally to the Stack this could be implemented by returning an
iterable wrapper around the list, for example:

def __iter__(self):
return iter(self._list)

Now define a function that will check to see if a string passed to it starts with
‘Job’; if it does return True if not return False. Call this function is_job().

Also define a function that will prepend the string ‘item’: to the string passed
in and will then return this as the result of the function. Call this function add_
item().

You should now be able to use the filter and map functions with the Stack class
as shown below:

stack = Stack()
stack.push(’Task1’)
stack.push(’Task2’)
stack.push(’Job1’)
stack.push(’Task3’)
stack.push(’Job2’)
print(’stack contents:’, stack)

Apply functions to stack contents using map and filter
new_list = list(map(add_item, stack))
print(’new_list:’, new_list)

filtered_list = list(filter(is_job, stack))
print(’filtered_list: ’, filtered_list)

Chapter 39
Sorting and Higher-Order Functions

39.1 Introduction

There are two built-in ways of sorting within Python: using the sorted() function
and the sort() method. They differ in one significant way, the sort() method
modifies the receiving container, whereas the sorted() function creates a new
sorted container leaving the original unchanged. In addition, both of these functions
have several optional parameters which allow these facilities to be customized to
provide two very powerful features.

In this chapter we will look at both the sorted() function and the sort()
method and then consider how they can be customized using lambda (or indeed
named) functions.

39.2 The sorted() Function

The sorted() function takes an iterable object and returns a sorted list. The values
supplied by the iterable are sorted based on their natural ordering; thus for integers
and floats this is in increasing (by default) numerical order. In turn for strings this is
in increasing alphabetical order.

The basic syntax for the sorted function is:

sorted_list = sorted(iterable)

Some examples are given below.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_39

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_39&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_39

434 39 Sorting and Higher-Order Functions

The first example takes a tuple of integers and sorts them returning a list of the
integers in increasing value:

data = (5, 2, 8, 1, 9, 3)
print(data)

sorted_data = sorted(data)
print(sorted_data)

The effect of running this code is given below:

(5, 2, 8, 1, 9, 3)
[1, 2, 3, 5, 8, 9]

Note that although the iterable provided to the sorted() function is a tuple
the result is a list. This is because the sorted() function always returns a list
(by default in ascending order).

Remember tuples are immutable containers and thus cannot be changed; thus the
sort() method is not appropriate here.

We could repeat the process with any iterable, for example, a list:

data_list = [7, 5, 9, 2, 1, 3]
print(data_list)

sorted_data_list = sorted(data_list)
print(sorted_data_list)

The output from this is now:

[7, 5, 9, 2, 1, 3]
[1, 2, 3, 5, 7, 9]

Again the sorted list is in ascending order. Of course we can also sort floating
point numbers:

data_list_2 = [2.3, 5.6, 1.2, 1.1, 5.5]
print(data_list_2)
sorted_data_list_2 = sorted(data_list_2)
print(sorted_data_list_2)

This produces the following output:

[2.3, 5.6, 1.2, 1.1, 5.5]
[1.1, 1.2, 2.3, 5.5, 5.6]

We can also sort strings as they have a natural ordering:

string_list = ["John", "Denise", "Phoebe", "Adam"]
print(string_list)

sorted_string_list = sorted(string_list)
print(sorted_string_list)

39.2 The sorted() Function 435

This produces this output:

[’John’, ’Denise’, ’Phoebe’, ’Adam’]
[’Adam’, ’Denise’, ’John’, ’Phoebe’]

As you can see the sorted list is in ascending alphabetic order.
All of the above examples have used lists containing values of the same type.

What happens if you mix the types, for example, using integers and floating point
numbers:

mixed_list = [5, 1.2, 7.34, 4]
print(mixed_list)
sorted_mixed_list = sorted(mixed_list)
print(sorted_mixed_list)

This generates the following output:

[5, 1.2, 7.34, 4]
[1.2, 4, 5, 7.34]

Actually, it is fine to mix any types as long as they understand the ‘<’ operator
between those types, and thus the Boolean value True can also be used with integers
and floating point numbers as it has a logical integer value of 1:

mixed_list = [5, 1.2, 7.34, True, 4]
print(mixed_list)
sorted_mixed_list = sorted(mixed_list)
print(sorted_mixed_list)

This produces the output:

[5, 1.2, 7.34, True, 4]
[True, 1.2, 4, 5, 7.34]

However, it is not possible to mix numbers and strings together as it is not possible
to compare a string and an integer or a floating point number using the ‘<’ less than
operator, for example, if you try this:

mixed_list = [5, 1.2, 7.34, True, ’John’, 4]
print(mixed_list)
sorted_mixed_list = sorted(mixed_list)
print(sorted_mixed_list)

You will get a runtime error indicating that the ‘<’ less than operator is not
supported between a string and an int:

Traceback (most recent call last):
File "/Users/Shared/workspaces/pycharm/cern-python-

programming-samples/08-further-functions/sorting_examples.py",
line 26, in <module>

sorted_mixed_list = sorted(mixed_list)
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

TypeError: ’<’ not supported between instances of ’str’ and ’int’

436 39 Sorting and Higher-Order Functions

39.3 Sorting in Reverse Order

The examples in the previous section all show how to sort numbers and strings into
ascending order, what about if you want to sort them into depending order? This
is very simply done with the sorted() function as it takes an optional keyword
parameter reverse. If this is set to True then the resulting sorted lists will be
sorted into descending order.

Thus the syntax for the sorted() function can now be extended to be:

descending_sorted_list = sorted(iterable, reverse=<bool>)

Notice we are using named parameter passing for the reverse parameter, that
is, because there is a third parameter between these two which we will introduce
later in this chapter.

The examples from the previous section are rerun below but with the reverse
parameter set to True (it is False by default).

data = (5, 2, 8, 1, 9, 3)
print(data)

sorted_data = sorted(data, reverse=True)
print(sorted_data)
print(’-’ * 25)

data_list = [7, 5, 9, 2, 1, 3]
print(data_list)

sorted_data_list = sorted(data_list, reverse=True)
print(sorted_data_list)
print(’-’ * 25)

data_list_2 = [2.3, 5.6, 1.2, 1.1, 5.5]
print(data_list_2)
sorted_data_list_2 = sorted(data_list_2, reverse=True)
print(sorted_data_list_2)
print(’-’ * 25)

string_list = ["John", "Denise", "Phoebe", "Adam"]
print(string_list)

sorted_string_list = sorted(string_list, reverse=True)
print(sorted_string_list)
print(’-’ * 25)

The output from running this code is shown below:

(5, 2, 8, 1, 9, 3)
[9, 8, 5, 3, 2, 1]

[7, 5, 9, 2, 1, 3]
[9, 7, 5, 3, 2, 1]

[2.3, 5.6, 1.2, 1.1, 5.5]

39.4 The sort() Method 437

[5.6, 5.5, 2.3, 1.2, 1.1]

[’John’, ’Denise’, ’Phoebe’, ’Adam’]
[’Phoebe’, ’John’, ’Denise’, ’Adam’]

As you can see each of the sorted results lists is now in descending order.
This also works with mixed data types (again along the types support the ‘<’

operator between themselves), for example:

mixed_list = [5, 1.2, 7.34, True, 4]
print(mixed_list)
sorted_mixed_list = sorted(mixed_list, reverse=True)
print(sorted_mixed_list)

Produces:

[5, 1.2, 7.34, True, 4]
[7.34, 5, 4, 1.2, True]

39.4 The sort() Method

As mentioned at the start of this chapter, there is an alternative way to sort (some)
containers, that is, the sort() method. This method is invoked using the dot nation
and is applied directly to the mutable container being used such as a list. It is not
available on immutable containers such as tuples as it is not possible to modify
them. However, on a mutable container such as a list it allows the original list to
be sorted in situ. For example:

data_list = [5, 2, 8, 1, 9, 3]
print(data_list)
data_list.sort()
print(data_list)

Note that it is not necessary to store the result of invoking the sort() method
into a new variable; this avoids additional variables being created. However, the
original list in the variable data_list has now been sorted into ascending order
using the natural ordering of the types held within the list. As these are integers they
will be sorted into ascending numerical order, for example:

[5, 2, 8, 1, 9, 3]
[1, 2, 3, 5, 8, 9]

438 39 Sorting and Higher-Order Functions

It is also possible to sort floating point numbers and strings in this way. For
example a list of floating point numbers can be sorted into ascending order:

data_list_2 = [2.3, 5.6, 1.2, 1.1, 5.5]
print(data_list_2)
data_list_2.sort()
print(data_list_2)

which produces the following output:

[2.3, 5.6, 1.2, 1.1, 5.5]
[1.1, 1.2, 2.3, 5.5, 5.6]

Strings can also be sorted into ascending alphabetical order:

string_list = [’John’, ’Denise’, ’Phoebe’, ’Adam’]
print(string_list)
string_list.sort()
print(string_list)
print(’-’ * 25)

which when run generates:

[’John’, ’Denise’, ’Phoebe’, ’Adam’]
[’Adam’, ’Denise’, ’John’, ’Phoebe’]

We can also mix types again as long as they support the less than operator (‘<’),
for example:

mixed_list = [5, 1.2, 7.34, True, 4]
print(mixed_list)
mixed_list.sort()
print(mixed_list)

which produces:

[5, 1.2, 7.34, True, 4]
[True, 1.2, 4, 5, 7.34]

39.5 Reversing the sort() Method

As with the sorted() function it is possible to get the sort()method to sort the
receiver into descending order using the reverse parameter, for example:

data_list = [5, 2, 8, 1, 9, 3]
print(data_list)
data_list.sort(reverse=True)

39.6 Changing the Sort Key 439

print(data_list)

Note that again we are using the named parameter passing style for the reverse
parameter. This is again because there are other parameters before this one in the
method which we are not using.

The output from this code is:

[5, 2, 8, 1, 9, 3]
[9, 8, 5, 3, 2, 1]

We could repeat this with each of the lists in the previous section, including the
mixed list, for example:

data_list_2 = [2.3, 5.6, 1.2, 1.1, 5.5]
print(data_list_2)
data_list_2.sort(reverse=True)
print(data_list_2)
print(’-’ * 25)

string_list = [’John’, ’Denise’, ’Phoebe’, ’Adam’]
print(string_list)
string_list.sort(reverse=True)
print(string_list)
print(’-’ * 25)

mixed_list = [5, 1.2, 7.34, True, 4]
print(mixed_list)
mixed_list.sort(reverse=True)
print(mixed_list)

This produces:

[5, 1.2, 7.34, True, 4]
[7.34, 5, 4, 1.2, True]

39.6 Changing the Sort Key

So far all our examples have used the natural ordering of the values held in the iterable
to be sorted. What if you want to order based on some other criteria, for example,
based on the length of the string rather than the alphabetical order of strings? You
can do this by specifying a function (either a named function or a lambda function)
to be used to determine the value to be used when comparing elements in the list.

For example, the following code illustrates how a list of strings is sorted by default
as well as how it can be sorted based on string length:

string_list = [’John’, ’Denise’, ’Phoebe’, ’Adam’]
print(f’string list: {string_list}’)
sorted_string_list1 = sorted(string_list)
print(f’default ordering: {sorted_string_list1}’)

440 39 Sorting and Higher-Order Functions

Sorted based on string length
sorted_string_list2 = sorted(string_list, key=lambda s: len(s))
print(f’sorting based on string length: {sorted_string_list2}’)

The output from this code is:

string list: [’John’, ’Denise’, ’Phoebe’, ’Adam’]
default ordering: [’Adam’, ’Denise’, ’John’, ’Phoebe’]
sorting based on string length: [’John’, ’Adam’, ’Denise’,
’Phoebe’]

Note that the key parameter is provided with the function that takes one value
(the value being considered) and returns a value to be used for the ‘<’ (less than)
comparison. The output of the sorted function thus changes from:

[’Adam’, ’Denise’, ’John’, ’Phoebe’]

which is based on the alphabetic ordering of the strings to:

[’John’, ’Adam’, ’Denise’, ’Phoebe’]

which is based on the length of the strings and thus ‘John’ is before ‘Denise’, etc.
This approach can also be used with the sort() method as it also has a key

parameter as shown below:

string_list = [’John’, ’Denise’, ’Phoebe’, ’Adam’]
print(f’string list: {string_list}’)
string_list.sort(key=lambda s: len(s))
print(f’sorting based on string length: {string_list}’)

The output from this is:

string list: [’John’, ’Denise’, ’Phoebe’, ’Adam’]
sorting based on string length: [’John’, ’Adam’, ’Denise’,
’Phoebe’]

39.7 Sorting Containers of Containers

The approach of using the key parameter to sort elements within an iterable can
be very useful where the iterable contains other containers. By default an iterable
will be sorted based on the result of comparing two iterables using the ‘<’ less than
operator. For tuples for examples this will try to compare the tuples using their natural
ordering which is probably not what you want. For example in the following code
the inner tuples represent the marks achieved by a group of students, the instructor
wants to order the inner tuples based on the grade achieved, and however just using
sorted() or indeed sort() does not achieve the desired result:

39.7 Sorting Containers of Containers 441

data = [(’John’, 55), (’Denise’, 90), (’Phoebe’, 76)]
print(data)
sorted_data = sorted(data)
print(sorted_data)

The result of running this code is:

[(’John’, 55), (’Denise’, 90), (’Phoebe’, 76)]
[(’Denise’, 90), (’John’, 55), (’Phoebe’, 76)]

The ordered list is not sorted based on the grades. However, if we now use the
key parameter we can provide a function that will extract the second value in the
tuple (with index 1) which can then be used in the ordering comparison:

sorted_data2 = sorted(data, key=lambda i: i[1])
print(sorted_data2)

The result of these two lines is:

[(’John’, 55), (’Phoebe’, 76), (’Denise’, 90)]

We can of course reverse this as well using the reverse parameter:

sorted_data3 = sorted(data, key=lambda i: i[1], reverse=True)
print(sorted_data3)

With the resulting output:

[(’Denise’, 90), (’Phoebe’, 76), (’John’, 55)]

We could have used the sort() method in exactly the same way:

print(’-’ * 25)
data = [(’John’, 55), (’Denise’, 90), (’Phoebe’, 76)]
print(data)
data.sort(key=lambda i: i[1])
print(data)
data.sort(key=lambda i: i[1], reverse=True)
print(data)

The output from this is:

[(’John’, 55), (’Denise’, 90), (’Phoebe’, 76)]
[(’John’, 55), (’Phoebe’, 76), (’Denise’, 90)]
[(’Denise’, 90), (’Phoebe’, 76), (’John’, 55)]

442 39 Sorting and Higher-Order Functions

39.8 Exercises

The aim of this exercise is to use the sorting function to handle temperature data.
The data you will be working with is a list of temperatures, for example:

temperatures = [12.4, 18.2, 15.4, 17.8, 13.1, 19.0, 12.3]
print(f’temperatures: {temperatures}’)

You should now perform each of the following steps:

● Print out the result of sorting the temperatures into ascending order (without
modifying the original list).

● Print out the result of sorting the temperatures into descending order (without
modifying the original list).

● Print out the result of sorting the original list into ascending order.
● Print out the result of sorting the original list into descending order.

The output from this might look like:

temperatures: [12.4, 18.2, 15.4, 17.8, 13.1, 19.0, 12.3]
sorted temperatures: [12.3, 12.4, 13.1, 15.4, 17.8, 18.2, 19.0]
sorted temperatures descending order: [19.0, 18.2, 17.8, 15.4,
13.1, 12.4, 12.3]
sorted temperatures: [12.3, 12.4, 13.1, 15.4, 17.8, 18.2, 19.0]
sorted temperatures descending order: [19.0, 18.2, 17.8, 15.4,
13.1, 12.4, 12.3]

Next we will record the date and time of the temperature reading within a tuple,
for example:

records = [(’Monday’, ’12:00’, 12.4),
(’Tuesday’, ’12:00’,18.2),
(’Wednesday’, ’13:00’, 15.4),
(’Thursday’, ’11:45’, 17.8),
(’Friday’, ’12:15’, 13.1)]

print(f’records: {records}’)

Now sort the records such that you can:

1. Print out the result of sorting the records into ascending order (without modifying
the original list).

2. Print out the result of sorting the records into descending order (without
modifying the original list).

3. Print out the result of sorting the records list into ascending order.
4. Print out the result of sorting the records list into descending order.

The output from this might look like:

records: [(’Monday’, ’12:00’, 12.4), (’Tuesday’, ’12:00’, 18.2),
(’Wednesday’, ’13:00’, 15.4), (’Thursday’, ’11:45’, 17.8),
(’Friday’, ’12:15’, 13.1)]

39.8 Exercises 443

sorted records: [(’Monday’, ’12:00’, 12.4), (’Friday’, ’12:15’,
13.1), (’Wednesday’, ’13:00’, 15.4), (’Thursday’, ’11:45’, 17.8),
(’Tuesday’, ’12:00’, 18.2)]
sorted records descending order: [(’Tuesday’, ’12:00’, 18.2),
(’Thursday’, ’11:45’, 17.8), (’Wednesday’, ’13:00’, 15.4),
(’Friday’, ’12:15’, 13.1), (’Monday’, ’12:00’, 12.4)]
sorted temperatures: [(’Monday’, ’12:00’, 12.4), (’Friday’,
’12:15’, 13.1), (’Wednesday’, ’13:00’, 15.4), (’Thursday’,
’11:45’, 17.8), (’Tuesday’, ’12:00’, 18.2)]
sorted temperatures descending order: [(’Tuesday’, ’12:00’,
18.2), (’Thursday’, ’11:45’, 17.8), (’Wednesday’, ’13:00’, 15.4),
(’Friday’, ’12:15’, 13.1), (’Monday’, ’12:00’, 12.4)]

Chapter 40
Python Enumerated Values

40.1 Introduction

Introduced in Python 3.4 the enum module provides support for enumerated values
or enums. This facility is a very useful one for creating sets of ordered values. In this
chapter we discuss what an enumeration is, the two ways of creating an enumeration
in Python, how enumerations are used and conclude by introducing IntEnums for
integer-based enumeration.

40.2 What is an Enumeration?

An enumeration is a collection of entities that represent a complete, ordered set of
all of the values in a set. For example, the days of the week could be represented by
an enumeration as there is a finite set of days in the (working) week, and there is an
ordering to the days of the week.

For example, Monday comes before Tuesday, and Wednesday comes after
Tuesday, etc. In most languages it is then possible to create a variable that can
hold a value from an enumeration and perform certain tests on it such as checking
for equality or in equality as well as ordering style tests.

More formally, an enumeration is:

A set of symbolic names (members) bound to a given type (class) where each value has a
unique value, where the values are ordered.

The values in an enumeration can be iterated over to return its members in
definition order.

In Python enumerations can be created in two different ways, either using the
class syntax or using the function call syntax. We will look at both approaches in
this chapter.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_40

445

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_40&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_40

446 40 Python Enumerated Values

40.3 Creating an Enumeration Using Class Syntax

A new enumerated type (class) can be created by subclassing the enum.Enum class.
That is, the enum module provides a class specifically to be used with inheritance,
allowing the programmer to create a concrete enumeration type.

For example, the following code creates a new enumerated type DaysOfWeek
by subclassing the Enum type:

class DaysOfWeek(Enum):
MONDAY = 1
TUESDAY = 2
WEDNESDAY = 3
THURSDAY = 4
FRIDAY = 5

This creates a new type (or class) of things called DayOfWeek. Within this
type there are five values defined representing each of the days of the week. These
elements have an ordering (as indicated by the default values given to them). They
are also constants and thus cannot be changed which is why they are defined using
all uppercase (although the use of all uppercase letters is only a convention). The
result is that you can refer to DaysOfWeek as an enumeration or more typically as
an Enum.

Using the enumeration terminology we would say that DaysOfWeek.Monday
and DaysOfWeek.Tuesday are enumeration (or enum) members. Each member
has a name and a value, and the enum itself contains these enum members.

You can reference the individual members using the dot notation as shown below:

print(DaysOfWeek.MONDAY)
print(DaysOfWeek.TUESDAY)
print(DaysOfWeek.WEDNESDAY)

today = DaysOfWeek.THURSDAY
print(today)

In the above code we are printing out the values for Monday, Tuesday and
Wednesday. We then create a variable today and store the value of Thursday
into that variable and print it out. The output generated may not be what you expect:

DaysOfWeek.MONDAY
DaysOfWeek.TUESDAY
DaysOfWeek.WEDNESDAY
DaysOfWeek.THURSDAY

Notice that what is printed out is not the values 1, 2, 3 and 4 as you might have
expected; instead the name (or label) associated with the enum member is printed
out.

40.4 Enum Values 447

Also notice that an enum member can be assigned to a variable and used within
your program just like any other value such as 43, True or 4.123.

Note if you did try and change the value associated with an enum member you
would generate an AttributeError, for example:

DaysOfWeek.MONDAY = 6

Generates

Traceback (most recent call last):
File "enum_examples.py", line 18, in <module>
DaysOfWeek.MONDAY = 6
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

File "enum.py", line 841, in __setattr__
raise AttributeError(’cannot reassign member %r’ % (name,))

AttributeError: cannot reassign member ’MONDAY’

40.4 Enum Values

It is also possible to create enums where the values used by the enum members are
not 1, 2, 3 but any integer sequence you like. For example:

class Compass(Enum):
NORTH = 0
EAST = 90
SOUTH = 180
WEST = 270

print(Compass.SOUTH)

In this example we have created a Compass enum with four members, and the
values of these members are 0, 90, 180 and 270 (that is the points on a compass).
When we run this code the output of course is just:

Compass.SOUTH

It is also possible to use string values for your Python enums. Here is another
enum using strings:

class Sizes(Enum):
S = "small"
M = "medium"
L = "large"
XL = "extra large"

print(Sizes.XL)

448 40 Python Enumerated Values

The output from this is:

Sizes.XL

Finally, it is also possible to create an enum of Boolean values, for example:

class SwitchPosition(Enum):
ON = True
OFF = False

switch = SwitchPosition.OFF
print(switch)

This produces:

SwitchPosition.OFF

Although it should be noted that this implies an ordering between ON and OFF!
It should also be noted that integer-based values can be in any order, and they do

not need to progress 1, 2, 3 and can be whatever order is required; for example, the
Compass enum could have been defined as:

class Compass(Enum):
NORTH = 0
SOUTH = 180
EAST = 90
WEST = 270

40.5 Using the Name and Value Attributes

Each enum member has an associated name and value property. These can be accessed
and used for example to display options to a user or to use the value for some
operation.

For example, we could access the name and value attributes for the Compass enum
as shown below:

print(Compass.SOUTH.name)
print(Compass.SOUTH.value)

The output from this code is:

SOUTH
180

40.6 Creating an Enumeration Using the Function Call Syntax 449

40.6 Creating an Enumeration Using the Function Call
Syntax

It is not required to subclass the Enum class to create an enumerated type in Python;
you can also use the functional interface. To do this you can use the Enum functional
API from the enum module. This function takes the following parameters:

Enum(
value,
names,
module=None,
qualname=None,
type=None,
start=1

)

This returns a new enumerated type based on the parameters passed to it. The
parameters have the following meaning:

● value (required field) represents the string name of the new enumeration type
(class).

● names (required field) is a list of the member values that will be used for the
enumeration.

● module (optional) takes the name of the module that defines the enumeration
type.

● qualname (optional) holds the location of the module that defines the enumer-
ation type.

● type (optional) holds the class to use as the parent for the enumerated type.
● start (optional) takes the starting value for the enumeration (by default it is 1).

The names argument can take any of the following:

● a string containing member names separated either with spaces or commas,
● an iterable (such as a list) of member names,
● an iterable (such as a list) of name-value pairs.

Most of the time, you’ll just use the first two arguments (and possibly the last) to
the Enum function when creating your enumerations. For example:

Weekend = Enum(’Weekend’, [’SATURDAY’, ’SUNDAY’])

Alternatively if you wanted to start the enumeration from 10 rather than 1 you
could write:

Weekend = Enum(’Weekend’,
[’SATURDAY’, ’SUNDAY’],
start=10)

450 40 Python Enumerated Values

In both cases you can reference the new enum via the variable Weekend and
access the enum members (SATURDAY and SUNDAY) as you will do normally, for
example:

day = Weekend.SATURDAY
print(day)

The output from this is:

Weekend.SATURDAY

It is also possible to specify custom values for each of the members in the enumer-
ated type. This is done using an iterable of name-value pairs (below we are using a
list and a tuple for this). For example:

HTTPStatusCode = Enum(
value="HTTPStatusCode",
names=[

("OK", 200),
("CREATED", 201),
("BAD_REQUEST", 400),
("NOT_FOUND", 404),
("SERVER_ERROR", 500),

],
)

print(HTTPStatusCode.OK)

The output from this is:

HTTPStatusCode.OK

40.7 Creating Enumerations from Automatic Values

The enum module also provides an auto() function that can be used to automati-
cally assign values to enumeration members. It does so by incrementing the previous
value used. This function can be used in combination with user specified values to
fill in the gaps, for example:

class Day(Enum):
MONDAY = 5
TUESDAY = auto()
WEDNESDAY = 9
THURSDAY = auto()
FRIDAY = auto()
SATURDAY = auto()

40.8 Working with Enum Aliases 451

SUNDAY = 15
print(list(Day))

In this example MONDAY, WEDNESDAY and SUNDAY have had explicit integer
literals specified for their values. However, TUESDAY, THURSDAY, FRIDAY and
SATURDAY will all be autogenerated based on an increment of the preceding value.
Thus the values of the enumerated members will be 5, 6, 9, 10, 11, 12 and 15.

To illustrate this all the values in the enumeration are gathered up and stored into
a list which is then printed out. The result is:

[<Day.MONDAY: 5>, <Day.TUESDAY: 6>, <Day.WEDNESDAY: 9>,
<Day.THURSDAY: 10>, <Day.FRIDAY: 11>, <Day.SATURDAY: 12>,
<Day.SUNDAY: 15>]

40.8 Working with Enum Aliases

It is also possible to create enumerations in which two or more members have the
same constant value; the redundant enum member is known as an alias. This can be
useful in situation such as where the different names have the semantic meaning, for
example:

class OperatingSystem(Enum):
UBUNTU = "linux"
MACOS = "darwin"
WINDOWS = "win"
DEBIAN = "linux"

print(OperatingSystem.UBUNTU)
print(OperatingSystem.DEBIAN)
print(OperatingSystem.MACOS)
print(OperatingSystem.WINDOWS)

In this example both DEBIAN and UBUNTU have the value “linux”; this
DEBIAN is an alias for UBUNTU.

The result of running this code is:

OperatingSystem.UBUNTU
OperatingSystem.UBUNTU
OperatingSystem.MACOS
OperatingSystem.WINDOWS

452 40 Python Enumerated Values

40.9 Enumerations Unique Values

The previous section illustrates that two values within an enumeration can have,
by default, the same value. However, what if this is not what you want then this
could happen by accident! To avoid this you can mark the enumeration class with
an @enum.unique decorator. This ensures that each enum member will have a
unique value. If not then a ValueError will be generated, for example:

The following code is legal in Python:

class Lights(Enum):
RED = 1
AMBER = 2
GREEN = 3
RED_AMBER = 1

print(Lights.RED)

However, if we now mark it with @unqiue from the enum module as shown
below:

@unique
class Lights(Enum):

RED = 1
AMBER = 2
GREEN = 3
RED_AMBER = 1

print(Lights.RED)

Then when we now try and run this program we will get a ValueError being
generated:

Traceback (most recent call last):
File "enum_examples.py", line 97, in <module>
@unique
ˆˆˆˆˆˆ

File "enum.py", line 1564, in unique
raise ValueError(’duplicate values found in %r: %s’ %

ValueError: duplicate values found in <enum ’Lights’>: RED_AMBER ->
RED

Thus illustrating that this enum must have unique values for each of its members.

40.11 Comparing Enumerations 453

40.10 Iterating Through Enumeration Values

Python enums are iterable things; this means that you can iterate through all the
enum members very easily.

For example, to iterate through all the members within the DaysOfWeek enum
we can write a for loop as shown below:

for day in DaysOfWeek:
print(day)

The output from this is that each enum member will be printed out in turn, for
example:

DaysOfWeek.MONDAY
DaysOfWeek.TUESDAY
DaysOfWeek.WEDNESDAY
DaysOfWeek.THURSDAY
DaysOfWeek.FRIDAY

40.11 Comparing Enumerations

By default enumerated types support two types of comparison operators:

● Identity, using the is and is not operators.
● Equality, using the == and != operators.

The identity comparison relies on the fact that each enum member is a unique
instance of its enumeration class (in object-oriented design terminology it is a
singleton). This means that very fast identity comparisons can be performed using
the is and is not operators.

For example:

class OperatingSystem(Enum):
UBUNTU = "linux"
MACOS = "darwin"
WINDOWS = "win"
DEBIAN = "linux"

os1 = OperatingSystem.UBUNTU
os2 = OperatingSystem.MACOS
os3 = OperatingSystem.UBUNTU
print(os1 is os3)
print(os1 is os2)
print(os1 is not os2)

The above checks that each of the OperatingSystems enumerated values in the
variables os1, os2 and os3 is with the exact same instance of the OperatingSystem
type or different. This is very fast and efficient.

454 40 Python Enumerated Values

This works because every enum member has its own identity, which is different
from the identity of the other members of the enum. However, this rule doesn’t apply
to member aliases, because they’re just references to existing members and share the
same identity. Thus:

os1 = OperatingSystem.UBUNTU
os4 = OperatingSystem.DEBIAN
print(os1 is os4)

Also generates:

True

We mentioned at the start of this section that enums also support == and ! = this
is because they delegate their operation to is and is not. Thus you can use either
is or == and you can use is not or != to compare enums.

40.12 Integer Enumerations with IntEnum

Integer-based enumerations are so common that there is a special type called
IntEnum that is provided by the enum module. This class is useful if you need
the members of your enumerations to behave like integer numbers with comparison
operators. Using IntEnum allows your enum members to be compared using <, >,
etc. which can be very useful.

For example:

from enum import IntEnum

class Size(IntEnum):
XS = 1
S = 2
M = 3
L = 4
XL = 5
XXL = 6

print(Size.XS < Size.L)
print(Size.XL > Size.S)
print(Size.XL >= Size.S)

The output from this is:

True
True
True

40.13 Exercises 455

40.13 Exercises

Write a short program to create an enumerated type for medals at the Olympics,
that is, Gold, Silver and Bronze. Gold should come before Silver and Silver before
Bronze. You should then extend your code so that an athlete can be awarded one of
these medals. The program should ask the user for each athletes name in turn and
then award the first three athletes with a gold, silver or bronze medal. The program
can terminate when no athlete name is entered (i.e., the user just presses enter).

The output form of this program might look like:

Starting
Please enter the athletes name: Natalia
Natalia obtained Medals.GOLD
Please enter the athletes name: Adam
Adam obtained Medals.SILVER
Please enter the athletes name: Denise
Denise obtained Medals.BRONZE
Please enter the athletes name: John
John obtained no medal
Please enter the athletes name:
Done

Chapter 41
Structural Pattern Matching

41.1 Introduction

A new feature introduced in Python 3.10 was structural pattern matching. In this
chapter we will look at the use of the match keyword and how it can be used with
literal values, variables and containers such as lists and tuples.

41.2 Basic Pattern Matching

In its most basic form the match statement acts very much like match and case
statements from other languages such as Java or JavaScript. That is, it is used to
compare a value (typically held in a variable) with a set of literal (or fixed) values.
As such it is intended as a more concise form of a conditional statement. For example,
let us say that we want to display an appropriate welcome message depending on the
users’ language. To do this we could write a traditional if statement such as:

def greeter(language):
if language == ’English’:

print(’Hello’)
elif language == ’Spanish’:

print(’Hola’)
elif language == ’French’:

print(’Bonjour’)
elif language == ’German’:

print(’Hallo’)

greeter(’Spanish’)

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_41

457

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_41&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_41

458 41 Structural Pattern Matching

In this initial function greeter() an if statement is used to test what the value
of the parameter language is; the appropriate welcome is then printed out. In this
case the greeter function is called with the value ‘Spanish’ and thus the output is:

Hola

However, the if statement is quite long winded, and it’s not immediately obvious
that all of the conditional elements of the if statement relate to the value of the
parameter language. To see this it is necessary to read all the code. In this case that
is not too difficult as each of the behaviours associated with each condition is just
one line, but in some other situations it may be far less clear.

The basic use of the match statement tries to make this more explicit. The
equivalent of the above function rewritten using a match statement is given below:

def greeter2(language):
match language:

case ’English’:
print(’Hello’)

case ’Spanish’:
print(’Hola’)

case ’French’:
print(’Bonjour’)

case ’German’:
print(’Hallo’)

greeter2(’Spanish’)

The behaviour of this greeter2() function is exactly the same as the original
greeter() function, but the implementation now uses the match syntax. The
syntax for the match statement is:

match <value>:
case <test>:

actions
…

Thus it is easy to see that the whole match statement relates to the current value
of the language parameter (as this is what follows the match keyword).

As always with Python, note the indentation! In Python the layout of the match
statement is critical, with all case conditions indented relative to the match
keyword and the actions to be performed when a case condition is met, indented
another level again.

In this situation we can see that if the value of language is ‘English’ we print
‘Hello’, whereas if it is ‘Spanish’ we print ‘Hola’ and so on. Note that at most only
once case condition with be triggered, thus once one case condition has run the
whole match statement terminates, additional case conditions are not evaluated.

41.3 Default Case 459

Also note that there can be any number of statements within the body of the case
condition, for example:

def greeter2a(language):
match language:

case ’English’:
print(’Hello’)

case ’Spanish’:
print(’Hola’)
print(’Buenas’)

case ’French’:
print(’Bonjour’)

case ’German’:
print(’Hallo’)

greeter2a(’Spanish’)

The output from this is:

Hola
Buenas

41.3 Default Case

One issue with the above use of the match statement is that if a value is passed
into the match which is not one of those listed, then nothing happens, there is no
failure but there is also no action. This may of course be what you want, but if you
need to pick up on this (possibly as it is unexpected behaviour) then you can use a
wildcard. A wildcard must be the last case condition in the match statement and is
represented by an underbar ‘_’, for example:

def get_status_message(status):
match status:

case 400:
return ’Bad request’

case 404:
return ’Not found’

case 418:
return "I’m a teapot"

case _:
return ’Something is wrong’

print(get_status_message(404))
print(get_status_message(401))

460 41 Structural Pattern Matching

The output from this example is:

Not found
Something is wrong

In this case the first time get_status_message() is called the string ‘Not
found’ is returned, whereas when it is called with the value 401, there are no explicit
case conditions matching that value and thus the wildcard case condition (the last one)
runs. This means that the string ‘Something is wrong’ is returned (and subsequently
printed out).

41.4 Capture Default Case

In some situations it would be really useful to capture the unknown value in a match
statement and log that (possibly for further investigation at a later date). To do this
instead of using the wildcard from the previous section, you can use a variable. The
variable will be populated with the value that would have been compared in the
case condition and that is then available within the case condition block of code.
For example:

def greeter4(language):
match language:

case ’English’:
print(’Hello’)

case ’Spanish’:
print(’Hola’)

case ’French’:
print(’Bonjour’)

case ’German’:
print(’Hallo’)

case unknown:
print(f’Language {unknown} is not yet known to us’)

greeter4(’Welsh’)

In this case if the language specified is not ‘English’, ‘Spanish’, ‘French’ or
‘German’, then the value used will be bound to the variable unknown, and then this
can be logged in the print statement.

Thus the output from this code example is:

Language Welsh is not yet known to us

Note that the name of the variable used in the case condition can be any legal
Python variable; here we have used ‘unknown’ just as an example.

41.6 Matching Sequences/Containers 461

41.5 Alternative Values in Case Condition

Another option is to use an or condition (represented by a |) to indicate that if a
value equals one or more values then the associated action should be performed. For
example:

def greeter5(language):
match language:

case ’English’ | ’American’:
print(’Hello’)

case ’Spanish’:
print(’Hola’)

case ’French’:
print(’Bonjour’)

case ’German’:
print(’Hallo’)

case unknown:
print(f’Language {unknown} is not yet known to us’)

greeter5(’English’)
greeter5(’American’)

In the above example, if the language is either ‘English’ or ‘American’ then the
string ‘Hello’ will be printed out. The output from running this code is:

Hello
Hello

Note that there can be any number of values so if we wanted to use ‘English’,
‘American’ and ‘Australian’ we could write:

case ’English’ | ’American’ | ’Australian’:

41.6 Matching Sequences/Containers

A sequence is something that contains a set of values such as a container/collection.
A tuple is an example of a sequence or container. The structural aspect of the
match statement allows you to match against the contents of a tuple, but also to
structurally extract values from a tuple.

The following example illustrates several options,

● The first case matches the exact values in a tuple.
● The second matches on the first element of a two value tuple and extracts the

second value and stores it into a local variable y.
● The third case condition does the opposite, it extracts the first value in the tuple

and matches against the 0 in the second position.

462 41 Structural Pattern Matching

● The fourth case condition can extract both the x and y value.
● The final case condition is the wildcard.

Note, however, that only one of these case conditions will actually execute. The
one that does execute will be the first case condition to return True. Thus if a tuple
of two zeros is entered then it will be the first case condition that fires. However, if
the tuple passed in contains a 5 and a zero then it will be the third case condition that
is met and the associated action that is performed.

def locator(point):
match point:

case (0, 0):
print(’Corner’)

case (0, y):
print(f’Left edge at x=0, y={y}’)

case (x, 0):
print(f’Top edge at x={x}, y=0’)

case (x, y):
print(f’Point in grid at x={x}, y={y}’)

case _:
raise ValueError(’Not a point tuple’)

This function can be used by passing in a tuple as a parameter, for example:

cursor = (0, 0)
locator(cursor)
cursor = (0, 10)
locator(cursor)
cursor = (10, 0)
locator(cursor)
cursor = (10, 5)
locator(cursor)

The output from this code snippet is:

Corner
Left edge at x=0, y=10
Top edge at x=10, y=0
Point in grid at x=10, y=5

41.7 Structural Matching and Lists 463

41.7 Structural Matching and Lists

It is also possible to use lists with the match statement (they are also sequences/
containers). Again it is possible to extract one or more values from the list:

def banking_operation1(action):
match action:

case [’balance’]:
print(’Getting the balance’)

case [’deposit’, amount]:
print(f’Depositing {amount}’)

case [’withdraw’, amount]:
print(f’Withdrawing {amount}’)

In the above example their action passed into the function is expected to be a list.
Each of the case conditions checks for a particular pattern and in two cases extracts
a value:

● The first case condition checks for a list containing a single string ‘balance’.
● The second case condition checks for a list containing two values where the first

value is the string ‘deposit’ and the second value will be extracted and stored in
the variable amount. This can then be used in the body of the case condition.

● The third case condition looks for a list containing the string ‘withdraw’ and a
second value which will be extracted into the variable amount which will then
be available in the body of the case condition.

This function can be used by passing in a list of values when the function is
invoked, for example:

banking_operation1([’balance’])
banking_operation1([’deposit’, 12.55])
banking_operation1([’withdraw’, 9.99])

The output from this code snippet is:

Getting the balance
Depositing 12.55
Withdrawing 9.99

We can be a little bit more flexible than this by indicating that a case condition can
match on a list containing one or many values. This is done by preceding the variable
name to be used for the extraction with an asterisk. This indicates that this variable
will be a container that will contain zero or more matched value, for example:

case [’deposit’, *amounts]:
print(f’Depositing multiple amounts - {amounts}’)

This small code sample indicates that this case condition will match onto a list
containing the string ‘deposit’ and zero or more following values.

464 41 Structural Pattern Matching

Placing this within a modified bank_operation function we get:

def banking_operation2(action):
match action:

case [’balance’]:
print(’Getting the balance’)

case [’deposit’, amount]:
print(f’Depositing {amount}’)

case [’withdraw’, amount]:
print(f’Withdrawing {amount}’)

case [’deposit’, *amounts]:
print(f’Depositing multiple amounts - {amounts}’)

Notice it has been placed after the earlier deposit case condition as the new case
condition will match onto a two value list as we as a three four or more value list,
etc.

If we call this with a few different options we can see the behaviour of the case
condition:

banking_operation2([’deposit’, 2.51, 9.44])
banking_operation2([’deposit’, 2.51, 9.44, 3.21, 5.76])
banking_operation2([’deposit’])

The output from this code sample is:

Depositing multiple amounts - [2.51, 9.44]
Depositing multiple amounts - [2.51, 9.44, 3.21, 5.76]
Depositing multiple amounts - []

Note how the last example contains only a string ‘deposit’ but still matches on
this new case condition.

41.8 Matching Alternative Sequences/Containers

It is also possible to match onto two or more list patterns in the same case condition
using the or style case operation ‘|’. For example, if we want to do the same thing
whether a list contains the string ‘help’ or the string ‘info’ we can write:

case [’help’] | [’info’]:
print(’Help information’)

This is shown used in the banking_operation function below:

def banking_operation3(action):
match action:

case [’help’] | [’info’]:
print(’Help information’)

case [’balance’]:
print(’Getting the balance’)

case [’deposit’, amount]:

41.9 Matching Multiple Options Within a Container 465

print(f’Depositing {amount}’)
case [’withdraw’, amount]:

print(f’Withdrawing {amount}’)
case [’deposit’, *amounts]:

print(f’Depositing multiple amounts - {amounts}’)

When used as shown below, both invocations of the function will print out ‘Help
information’:

banking_operation3([’help’])
banking_operation3([’info’])

The output from this code snippet is:

Help information
Help information

Note that in this case both lists had only one element in them, but the list could
contain any number of elements as required.

41.9 Matching Multiple Options Within a Container

In some cases we want to use the same case condition with a container such as a
list but indicate that it can match onto several values. For example, we may wish to
use the same functionality in a case condition in an adventure game. When the user
indicates that want to go somewhere we can indicate that the case condition should
match on north, south, east or west, for example:

def direction(actions):
match actions:

case [’go’, ("north" | "south" | "east" | "west")]:
print(’Going north or south or east or west’)

If we now call this direction function as follows:

direction([’go’, ’north’])

We will see the output:

Going north or south or east or west

Of course we do not yet know which direction they wanted to go in; however we
can bind the actual value the user supplied to a variables using the as keyword. For
example:

466 41 Structural Pattern Matching

def direction2(actions):
match actions:

case [’go’, ("north" | "south" | "east" | "west") as towards]:
print(f’Going {towards}’)

This now captures whatever value was supplied for the second element of the list
(if it’s one of the values listed) and stores it into the variable towards. This variable
is now available within the body of the case condition and can be used to log the
direction the user is going in.

For example, by calling the function as shown below:

direction2([’go’, ’north’])

We will obtain the output:

Going north

41.10 Guards on a Case Condition

In some situations it is useful to be able to put an additional guard onto a case
condition. For example, if we want to check to see that an extracted value is a
member of a group of values that are not hardcoded into the match statement then
we can use a guard.

The following example uses a case condition guard to check that the extracted
direction variable contains a value in a list of VALID_DIRECTIONS:

VALID_DIRECTIONS = ["north", "south", "east", "west"]

def handle_command(command):
match command:

case [’go’, direction] if direction in VALID_DIRECTIONS:
print(f’Going {direction}’)

case _:
print(’Wrong direction’)

When the handle_command() function is invoked using a list of two values,
if the first value is ‘go’ then the case condition will be triggered, the second value will
be extracted into the direction variable, and the value it holds will be checked
against the values in the VALID_DIRECTIONS list.

If the value is a member of this list then the case condition will be activated and the
case condition body will be executed. However, if the value extracted is not a member
of the VALID_DIRECTRIONS list then the case condition will not be activated and
the program will fall through to the wildcard.

41.11 Exercises 467

This is illustrated by the following two lines of code:

handle_command([’go’, ’east’])
handle_command([’go’, ’north-east’])

The output from this code is:

Going east
Wrong direction

41.11 Exercises

Create a program to select the appropriate message for a user for each of a set of
HTTP error codes. The codes you should support include:

● 400 Bad Request,
● 401 Unauthorized,
● 403 Forbidden,
● 404 Not Found,
● 418 I’m a teapot,
● 429 Too Many Requests.

These are all legal error codes (see https://en.wikipedia.org/wiki/List_of_HTTP_
status_codes).

When the user enters an error code, it should tell them the associated message
or that it is current unknown. The program should keep asking the user for an error
code, until the user enters nothing. For example:

Starting
Please enter the error code: 400
Bad Request
Please enter the error code: 401
Unauthorized
Please enter the error code: 403
Forbidden
Please enter the error code: 404
Not Found
Please enter the error code: 418
I’m a teapot
Please enter the error code: 429
Too Many Requests
Please enter the error code: 440
440 - is an unknown error code
Please enter the error code:
Done

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 42
Python Virtual Environments

42.1 Introduction

The Python runtime environment was originally designed a long time ago, and as
such one of the aspects that is still a little old fashioned is how it deals with additional
third-party libraries and how they are installed. In this chapter we will look at what
we mean by third-party libraries, what happens when such a library is installed into
your Python runtime environment, the purpose and use of virtual environments and
the tool pip and conclude by looking at how an IDE such as PyCharm actually
makes working with these environments straight forward.

42.2 Third-Party Libraries

The Python runtime environment comes with many built-in libraries (aka modules)
such as the sys, os, random and math. Information on these can be found online
at the Python Module Index (see https://docs.python.org/3/py-modindex.html). Note
that colloquially we often use the term library to mean a Python module. Why is this?
In the main it’s because a library could be made up of one or more modules (or indeed
packages). The term library is thus a looser (non-technical) term to indicate we are
talking about something that isn’t directly available by default. That is we must use
some form of import statement to access the code. Thus if I want to access the os
module (library) then I need to import it into my program, for example:

import os
print(os.uname())

which will return information on the current operating system, for example:

posix.uname_result(sysname=’Darwin’, nodename=’Johns-

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_42

469

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_42&domain=pdf
https://docs.python.org/3/py-modindex.html
https://doi.org/10.1007/978-3-031-35122-8_42

470 42 Python Virtual Environments

iMac.local’, release=’22.4.0’, version=’Darwin Kernel Version
22.4.0: Mon Mar 6 21:00:17 PST 2023; root:xnu-8796.101.5~3/RELEASE_
X86_64’, machine=’x86_64’)

These modules only require the programmer to import them into their code as
they are provided as part of the Python runtime environment (that is they are available
by default within your Python system). You do not need to do anything else to make
them available to your program other than install Python itself and import them.

However, there are many, many, many other modules/libraries available to the
Python programmer. These are referred to as third-party libraries as they are provided
by people and organizations other than python.org (that is the Python Foundation).

Some of these libraries are extremely well established and provide the foundation
for many of the types of Python application the make it such a popular language. In
fact right back in chapter two we talked about several of these such as those used in
the Data Analytics world including libraries such as Pandas (see https://pandas.pyd
ata.org), NumPy (which represents Numeric Python see https://numpy.org/), SciPy
(which stands for Scientific Python see https://scipy.org/) and Matplotlib (see https:/
/matplotlib.org/) which is a graphing library.

This means that if you are working within the Data Analytics arena and someone
tells you that they are using Python to do their analysis what they really mean is that
they are probably using something like:

● Python,
● Plus Pandas and NumPy,
● and typically with SciPy,
● and some form of graphing tool such as Matplotlib.

Similarly if a developer is using Python to create a set of RESTful services (that
is a remote service accessed over https and supplying some form of data on request),
they are likely to be using Python plus a library such as fastAPI (https://fastapi.tia
ngolo.com/), Flask (https://palletsprojects.com/p/flask/) or Django (https://www.dja
ngoproject.com/).

As such these third-party modules are key to some of the most successful
application areas within which Python is used.

It is perhaps worth noting that anyone can create a third-party module and make
it available to others to use, however not all modules are created equal. Almost all
libraries are made available as open source, free of charge, software. As such it can
be difficult to determine which libraries are appropriate to use and which are not.

In general the longer the module has been around, the larger the number of people
using it, the more plentiful the documentation (both from the module provider but
also in general on the web) and the greater the number of contributors and maintainers
the better the module is likely to be.

https://pandas.pydata.org
https://pandas.pydata.org
https://numpy.org/
https://scipy.org/
https://matplotlib.org/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://palletsprojects.com/p/flask/
https://www.djangoproject.com/
https://www.djangoproject.com/

42.3 The Pip Tool 471

For example, a module called something like, johnsAPI-0.0.1alpha,
supported just by one person and downloaded only by a handful of people is prob-
ably not your best bet, whereas numpy 1.24.3 which has extensive documentation
on the numpy.org website as well as numerous tutorials and examples around the
web, that has an extensive release history, is used by numerous other well-respected
libraries, has 905 contributors (as of April 2023), has been maintained and updated
over the last 17 years, with numerous regular releases over that time, and is a much
better bet.

42.3 The Pip Tool

The Python environment comes with a tool that is designed to help you install third-
party libraries into your runtime. This tool is called pip (which stands for ‘Pip Installs
Python’). It had been a default part of the Python installation since Python 3.4 (prior
to this it was itself considered a third-party tool). This tool is sometimes referred to
as Python’s package manager, module installer or even the pip installer.

Pip can install any third-party library. To do this pip downloads modules by
default from a central repository called pypi.org (which stands for the Python Package
Index—hence pypi—but pronounced pie pie.org). This is useful as it means that
any module provided in this central repository is available to all Python developers
wherever they are in the world.

In fact pip can install modules from

● pypi.org central repository,
● version control system URLs (such as GitHub),
● local project directories,
● local or remote source archives.

In addition, pip can install from a “requirements file” which is a useful way to
specify a whole environment to be installed.

The pip tool is also aware of dependencies between modules. That is if one module
itself relies on another module being installed then it can install both modules. For
example the Pandas module depends on (among others) the NumPy module, and
thus when you install Pandas, then NumPy is installed for you (automatically).

The pip command comes with several options that can be used to install and
uninstall modules, reinstall modules, list currently installed modules, generate a
report on the modules installed and any dependencies for the modules you require.

472 42 Python Virtual Environments

42.3.1 Finding the Pip Version

You can easily check to see if pip is installed in your environment using the pip
--version command, for example, at a Command Prompt or within a terminal
window you can type:

pip --version

depending on your configuration and operating system you should see something
similar to:

% pip --version
pip 23.0.1 from/usr/local/lib/python3.11/site-packages/pip
(python 3.11)
%

This indicates that in the installation on this Apple Mac, that the current version
of pip is version 23.0.1.

42.3.2 Installing Pip

If you do not have pip installed then you can download it and install it yourself
from the pip download page on the pypi.org site (see https://pypi.org/project/pip/).

Interestingly, the pip tool is treated as if it was a separate module by the Python
environment, this means that you can also update the pip tool without updating the
whole Python runtime. This may be useful if a bug fix is released for pip but it is not
included in the current release of Python yet.

42.3.3 Updating Pip

To update pip you can use pip itself! That is pip can be used to install an update
to pip (this may sound confusing but is actually perfectly fine as the pip tool will
update the installation of pip and the next time you run pip the new version will
automatically be picked up).

To update pip itself use:

pip install --upgrade pip

Note that this is the pip command being passed the request to install something,
in this case the upgrade for pip. On Windows you might want to use a variation on
this command as shown below:

python -m pip install --upgrade pip

https://pypi.org/project/pip/

42.4 Default Installation 473

This does exactly the same as the first version but tells Python to run the module
(-m) pip for you. Indeed many people use this style on all operating systems as it
is the recommended approach to running pip. However, in most cases just using the
pip command on its own is sufficient on Linux and Macs.

An example of updating pip is shown below on an Apple Mac:

% pip install --upgrade pip
Requirement already satisfied: pip in /usr/local/lib/python3.11/
site-packages (23.0.1)
Collecting pip
Downloading pip-23.1.2-py3-none-any.whl (2.1 MB)

--2.1/2.1 MB 8.3 MB/s
eta 0:00:00
Installing collected packages: pip
Attempting uninstall: pip
Found existing installation: pip 23.0.1
Uninstalling pip-23.0.1:
Successfully uninstalled pip-23.0.1

Successfully installed pip-23.1.2
%

From this you might see that the result of running this command in this environ-
ment is to update pip from 23.0.1 to 23.1.2. You can see the command downloading
the 23.1.2 version and then uninstalling the old pip and installing the new version of
pip. If we now check the version of pip installed we now see that it is version 23.1.2:

% pip --version
pip 23.1.2 from /usr/local/lib/python3.11/site-packages/pip
(python 3.11)
%

42.4 Default Installation

There is a warning that should be noted with pip; that is that by default it installs
a module into the central Python installation on a machine. This is fine if you are
only ever going to run one program requiring a specific set of modules. However, if
you are going to work with different Python programs, which might require different
modules, and in particular different version of a module, then this can be a problem.

To illustrate the issue it is important to understand that every module has a version
number, such as NumPy 1.24.1; that is this is version 1.24.1 of NumPy, and it will
differ in some way (however small) from version 1.24.0. The version number for
Python packages typically uses something called semantic versioning. In semantic
versioning a version number consists of three integers such that it is made up of
major.minor.patch, that is:

● Major the main release number, 1.0.0, is usually the first release; all subsequent
releases that are part of the release 1 will start 1.x.x. Typically release will be

474 42 Python Virtual Environments

2.x.x, and this indicates a major change in the module, etc. Note that there is no
guarantee of backwards compatibility between one major release and the next.
Backwards compatibility is the idea that code that previously worked should still
work from one release to the next—this guarantee does not exist between one
major version and the next.

● Minor such as 1.1.0 to 1.2.0 where the minor release typically includes larger
new features or bug fixes but ensures backwards compatibility with other older
major release versions (that is version 1.2.0 should be backwards compatible with
version 1.1.0).

● Patch release this is typically used for bug fixes or other technical issues which
should have no effect on the backwards compatibility of the code and do not
change or extend the functionality of the library.

In some cases packages use a year-based number system such as 2020.1 which is
the first release of 2020, although this is actually far less common in Python.

Now let us consider that on your computer you have two Python programs: one
uses Pandas 1.5.0, and the other uses Pandas 2.0.0. Given what has been described
above there is no guarantee that the code which was written to use Pandas 1.5.0 will
work with Pandas 2.0.0. Therefore we want to run one program using one Pandas
library and the other using the newer Pandas library. We could of course update the
old code to work with the new version of Pandas but that could be time-consuming
and non-trivial; and we may just want to run the code.

However, as pip installs these libraries centrally for all Python programs by
default, we cannot have the two libraries installed at the same time!

Of course, this is not a new problem, and the solution comes in the form of pip
virtual environments.

42.5 Pip Virtual Environments

A virtual environment is a configuration of Python modules that can be set up on a
per project basis. That is each individual Python project (or program) can have its
own virtual environment and that virtual environment can be activated as and when
required. The virtual environment is then used to configure all the modules used,
isolating one virtual environment’s configuration from another.

Although it should be noted that there is no reason why several Python programs
cannot share the same virtual environment, it is very common practice to have a
virtual environment per program.

To use a virtual environment it is necessary to first create this virtual environment.
This is done using the python command itself (rather than the pip command). For
example:

python -m venv <name of virtual environment>

42.5 Pip Virtual Environments 475

In the above the python command is being passed the -m option followed by
venv. This indicates that you want Python to run the venv module. The name
venv stands for virtual environment. This is followed by the name of the virtual
environment you wish to create. A common pattern is to call this venv—this is then
created in the current directory. This is fine, but it can be useful to give the virtual
environment a more meaningful name such as genesis_venv—indicating that
this is the virtual environment for the genesis project (whatever that might be).

Whatever name you choose to use, the tool will create a directory within the
current directory called that name.

Let us first check to see what has been installed into the central Python runtime
on a sample Mac computer:

% pip list

Package

pip
setuptools
wheel

Version

23.1.2
67.6.1
0.40.0

This illustrates the typical basic Python installation. All that is contained within the
Python system is the default built-in modules plus the pip module, the setuptools
module and the wheel module. The setuptools module helps with package
handling, and the wheels module supports wheel file which are essentially zip files
with a special file name convention that tells installs what Python versions and
platforms they support.

For example, let us create a virtual environment called genesis_venv under
a projects directory:

% mkdir projects
% cd projects
projects % ls

projects % python -m venv genesis_venv

In the above terminal/command window session we have created the projects
directory and then moved into that directory. Currently when we list the contents of
the directory, it is empty. We then issue the command:

% python -m venv genesis_venv

If we now look at the contents of the directory we will see a subdirectory has been
created called genesis_venv:

projects % ls
genesis_venv

At the moment this is not that interesting, but we can now activate that envi-
ronment. This is done using the rather awkward incantation which accesses the
activate script within the virtual environment directory’s bin directory. On a
Mac or Linux this would be done using the source command followed by the
<venv_name>/bin/activate path, for example:

% source genesis_venv/bin/activate

476 42 Python Virtual Environments

(genesis_venv) projects %

Note that on this Mac you can see the virtual environment that has been activated
as it is shown before the prompt in round brackets.

On a Windows machine this file will be a bat file and therefore you can activate
it by directly running the activate.bat file, for example:

> genesis_venv\bin\activate.bat

If this is starting to all sound a bit much, don’t worry the PyCharm editor will
handle most of this for you and we will look at this at the end of the chapter; for now
it is useful to see what happens under the hood.

We can also deactivate the virtual environment using the deactivate command
which on Windows is deactivate.bat, for example, on Linux/Macs:

% deactivate
jeh@Johns-iMac projects %

Or on Windows

> deactivate.bat

42.6 Installing Modules

If we reactivate the virtual environment again we can now install modules into
this environment. To do this we use the pip install command which has the
following syntax:

pip install module-name

Let us first review the default installation using pip list:

% source genesis_venv/bin/activate
(genesis_venv) projects % pip list

Package

pip
setuptools

Version

23.1.2
67.6.1

(genesis_venv) %

From this we can see that there are two modules installed into the virtual
environment (wheel is not included in this case).

The following terminal session illustrates what happens when we do this for
Pandas:

(genesis_venv) % pip install pandas
Collecting pandas

Downloading pandas-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl
(11.6 MB)

--11.6/11.6 MB 8.7
MB/s eta 0:00:00

42.6 Installing Modules 477

Collecting python-dateutil>=2.8.2
Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
Collecting pytz>=2020.1
Using cached pytz-2023.3-py2.py3-none-any.whl (502 kB)

Collecting tzdata>=2022.1
Using cached tzdata-2023.3-py2.py3-none-any.whl (341 kB)

Collecting numpy>=1.21.0
Downloading numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl

(19.8 MB)
--19.8/19.8 MB 8.5

MB/s eta 0:00:00
Collecting six>=1.5
Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)

Installing collected packages: pytz, tzdata, six, numpy, python-
dateutil, pandas
Successfully installed numpy-1.24.3 pandas-2.0.1 python-dateutil-
2.8.2 pytz-2023.3 six-1.16.0 tzdata-2023.3

(genesis_venv) projects %

The command used here is pip install followed by the name of the module
to install. In this case we have installed pandas. This will result in the latest version
of pandas being installed. However we could have specified a specific version of
pandas using the ==<version number> option after the name of the module (no
spaces), for example:

pip install pandas==1.5.2

This would install pandas version 1.5.2 rather than the latest version.
It is also worth noting that in addition to installing Pandas (version 2.0.1) several

other modules have been installed, and these include python-dateutil (2.8.2),
pytz (2020.1), tzdata (2022.1), numpy (1.21.0) and six (1.5).

If we now ask pip to list what has been installed we can now see these modules
listed:

(genesis_venv) % pip list

Package

numpy
pandas
pip
python-dateutil
pytz
setuptools
six
tzdata

Version

1.24.3
2.0.1
23.1.2
2.8.2
2023.3
67.6.1
1.16.0
2023.3

(genesis_venv) projects %

Interestingly if we deactivate the virtual environment, which would mean that we
would then return to using the default installation setup and list the modules we will
see that pandas and its associated dependencies are no longer listed, for example:

478 42 Python Virtual Environments

(genesis_venv) % deactivate
projects % pip list

Package

pip
setuptools
wheel
projects %

Version

23.1.2
67.6.1
0.40.0

This is exactly what we should expect, we are no longer using the virtual environ-
ment, and thus the configuration of modules defined within that virtual environment
is no longer available. We can of course reactivate the virtual environment, and we
will get Pandas and its modules back again, etc.

This allows a developer to switch between different virtual environments for
different programs/projects.

42.7 Listing and Freezing on Modules

There are three similar pip tools that can provide information on the modules installed
in a virtual environment. The commands are:

● pip list—this generates a list of installed packages, and the list is ordered in
ascending order based on the case sensitive module names.

● pip inspect—which generates a very detailed output file of all the modules
installed.

● pip freeze—which generates output in requirements format that can be used
to regenerate the configuration of the current virtual environment in another
installation.

Each of these will be discussed below.

42.7.1 The pip list Command

As an example of using this command we will list the modules installed into the
virtual environment we created above:

(genesis_venv) % pip list

Package

numpy
pandas
pip
python-dateutil
pytz
setuptools
six
tzdata

Version

1.24.3
2.0.1
23.1.2
2.8.2
2023.3
67.6.1
1.16.0
2023.3

(genesis_venv) projects %

42.7 Listing and Freezing on Modules 479

This lists all the modules that have been installed and the version that was installed.

42.7.2 The pip inspect Command

If required, the module information can be generated as a JSON report file (JSON
stands for JavaScript Object Notation) which is a widely used data format for infor-
mation exchange and storage. This can be done using the pip inspect command,
for example:

(genesis_venv) % pip inspect
{
"version": "1",
"pip_version": "23.1.2",
"installed": [
{
"metadata": {
"metadata_version": "2.1",
"name": "pip",
"version": "23.1.2",
"summary": "The PyPA recommended tool for installing Python

packages.",
"description": "pip - The Python Package Installer

…

The above illustrates the part of the output of the JSON data as it is quite extensive,
and the above illustrates the point.

42.7.3 The pip freeze Command

The pip freeze command can be used to create a requirements format file. This
file contains information on the installed modules that can be used by the pip
command to configure another virtual environment to include the same modules (and
version of those modules). This allows two users to share their virtual environment
configurations.

For example:

(genesis_venv)% pip freeze
numpy==1.24.3
pandas==2.0.1
python-dateutil==2.8.2
pytz==2023.3
six==1.16.0
tzdata==2023.3
(genesis_venv) %

480 42 Python Virtual Environments

This prints to the output each of the modules installed. If we wish this information
to be stored into a file we can use the redirection arrow, for example:

% pip freeze > johnsenv.txt

If we list the contents of this generated johnsenv.txt file we can see that it
contains the same information as the output above:

% more johnsenv.txt
numpy==1.24.3
pandas==2.0.1
python-dateutil==2.8.2
pytz==2023.3
six==1.16.0
tzdata==2023.3

In the above example, the command more will list the contents of the file to the
output.

We can now use this in another virtual environment to set that environment up to
use the same set of modules, for example:

% python -m venv projvenv
% source projvenv/bin/activate
(projvenv) % pip list

Package

pip
setuptools

Version

23.1.2
67.6.1

(projvenv) jeh@Johns-iMac projects % pip install -r johnsenv.txt
Collecting numpy==1.24.3 (from -r johnsenv.txt (line 1))

Using cached numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
(19.8 MB)
Collecting pandas==2.0.1 (from -r johnsenv.txt (line 2))

Using cached pandas-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl
(11.6 MB)
Collecting python-dateutil==2.8.2 (from -r johnsenv.txt (line 3))
Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
Collecting pytz==2023.3 (from -r johnsenv.txt (line 4))
Using cached pytz-2023.3-py2.py3-none-any.whl (502 kB)

Collecting six==1.16.0 (from -r johnsenv.txt (line 5))
Using cached six-1.16.0-py2.py3-none-any.whl (11 kB)

Collecting tzdata==2023.3 (from -r johnsenv.txt (line 6))
Using cached tzdata-2023.3-py2.py3-none-any.whl (341 kB)

Installing collected packages: pytz, tzdata, six, numpy, python-
dateutil, pandas
Successfully installed numpy-1.24.3 pandas-2.0.1 python-dateutil-
2.8.2 pytz-2023.3 six-1.16.0 tzdata-2023.3
(projvenv) % pip list

42.8 Uninstalling Modules 481

Package

numpy
pandas
pip
python-dateutil
pytz
setuptools
six
tzdata
(projvenv) %

Version

1.24.3
2.0.1
23.1.2
2.8.2
2023.3
67.6.1
1.16.0
2023.3

The result is that projvenv and genesis_venv virtual environments have
exactly the same configuration of the same modules.

42.8 Uninstalling Modules

In some cases it is very useful to be able to uninstall an unwanted package. For
example, if we have installed Pandas by mistake into our virtual environment then
we can remove it using the pip uninstall command:

pip uninstall <module name>

As an example, if we first list the packages installed in our virtual environment
using pip list we will see that we have 8 modules installed:

(genesis_venv) % pip list
Package

numpy
pandas
pip
python-dateutil
pytz
setuptools
six
tzdata

Version

1.24.3
2.0.1
23.1.2
2.8.2
2023.3
67.6.1
1.16.0
2023.3

(genesis_venv) jeh@Johns-iMac projects %

If we now uninstall pandas:

(genesis_venv) jeh@Johns-iMac projects % pip uninstall pandas
Found existing installation: pandas 2.0.1
Uninstalling pandas-2.0.1:
Would remove:

/Users/jeh/projects/genesis_venv/lib/python3.11/site-
packages/pandas-2.0.1.dist-info/*

/Users/jeh/projects/genesis_venv/lib/python3.11/site-
packages/pandas/*

482 42 Python Virtual Environments

Proceed (Y/n)? y
Successfully uninstalled pandas-2.0.1

(genesis_venv) projects %

We can check to see which modules are still installed:

(genesis_venv) projects % pip list
Package

numpy
pip
python-dateutil
pytz
setuptools
six
tzdata

Version

1.24.3
23.1.2
2.8.2
2023.3
67.6.1
1.16.0
2023.3

(genesis_venv) projects %

As you will see there are now 7 modules listed! The pandas module is no longer
installed as part of this virtual environment.

However, the other modules that were installed along with pandas when we ran
pip install pandas have not been removed! What is going on here? This was
a decision taken by the pip developers, although when you install Pandas all of its
dependencies are installed, when you uninstall Pandas you must manually remove
its dependencies.

Why is this? The main reason is that dependency management across modules is
very hard to do. For example, let us say we installed johnsmodule and that johns
module also used numpy version 1.24.3, should pip uninstall remove numpy
in this case? Probably not if we also have pandas installed! This scenario gets more
complicated as we may have module1 using module2 which uses module3 which
then uses numpy, etc.

Therefore the decision was taken to require developers to manually handle unin-
stallation of modules. In this case that means uninstalling numpy, python-dateutil,
putz, six and tzdata.

42.9 Module Path Search Order

An important point to note is that Python will search for module using the following
order:

● local directory,
● installed third-party modules,
● built-in modules.

It is therefore important never to name your own files using the name of a built-in
module nor using the name of a third-party module. As such if you are writing some
code that uses the pandas module do not call your own file pandas.py as that
will hide the pandas you have installed into your virtual environment!

42.10 Using PyCharm with Virtual Environments 483

42.10 Using PyCharm with Virtual Environments

The above in this chapter might all feel a bit daunting as many people are not familiar
with, or indeed comfortable using, a command line set of tools such as pip. Indeed
we have suggested that you use the PyCharm editor to not only write your programs,
but also to run them, yet here we have been describing how to use the pip command
line tool.

The reason for this was to show what happens at the tooling level. However you
will probably interact with all of these tools using an IDE such as PyCharm. In fact
when you create any project in PyCharm you will have had the option to use a virtual
environment!

To see this we will start a new PyCharm project. This is done by starting PyCharm
up and selecting New Project from the ‘Welcome to PyCharm’ dialog, for example:

If you do this you will be presented with the ‘New Project’ dialog. This dialog
has several fields on it, the main one being the location into which the project will be
stored. However, below this is a drop down option for the ‘Python Interpreter: New
Virtualenv environment’. If you open this drop down you will see that it provides a
location for the virtual environment (by default using the name venv in the current
directory) and the option to select which version of Python you wish to use, for
example:

Note under the drop down next to ‘New environment using’ there are several other
options but we are using Virtualenv which is the Python default.

484 42 Python Virtual Environments

If you now click on ‘Create’ you will create the new project workspace. This
workspace will be created with a directory within it called venv, and this virtual
environment will automatically be activated for you. For example:

You can explore the venv directory structure, but do not under any circumstance
edit the contents of this directory or add files to it. Your own code should be at the top
level; be very careful not to accidentally add you own files to the venv directory!

Now if you want to see the modules installed into your virtual environment you
can go to the ‘Settings’ menu option, this is under File on a Windows machine and
under PyCharm menu on a Mac.

When you open the Settings dialog, select the ‘Project: < name of project > ’ node
in the left hand tree, and open the node for example:

In here select the ‘Python Interpreter’ node. You should now see that on the right
hand side of the editor the list of installed packages is presented along with the Python
runtime you are using, for example:

42.10 Using PyCharm with Virtual Environments 485

This shows that we have three modules loaded including pip, setuptools and
wheel. It also lists the version of the module and what the latest version is.

We can add additional modules to this virtual environment using the ‘+’ button.
If you click on the ‘+’ button you will see the available packages dialog. On the
top search bar, if you type in the name of the module you are interested in, then the
modules with that name will be listed. For example, if you type in pandas, you will
see:

You can select whichever module you are interested in. In this case we want to
install the pandas module and that is the one selected, and you can therefore just click
on the ‘Install Package’ button at the bottom of the dialog. Once the module/package
is installed you will see a message indicating that the installation was successful:

486 42 Python Virtual Environments

If you close the dialog and return to the main Settings dialog you should now see
the Pandas module has been installed along with all the modules it depends on, for
example:

You can now close this dialog and can use the Pandas module in your own code,
etc.

42.11 Online Resources

● https://docs.python.org/3/py-modindex.html the Python Module Index
● https://fastapi.tiangolo.com/ FastAPI website
● https://palletsprojects.com/p/flask/ Flask website
● https://www.djangoproject.com/ Django website.

https://docs.python.org/3/py-modindex.html
https://fastapi.tiangolo.com/
https://palletsprojects.com/p/flask/
https://www.djangoproject.com/

Chapter 43
Monkey Patching

43.1 Introduction

Monkey Patching is a term you might well come across when looking into Python
further or when searching the web for Python related concepts. It relates to the ability
in Python to extend the functionality associated with a class/type at runtime.

Although not directly related to Monkey Patching; how Python looks up attributes
and how this process can be managed is a useful aspect to understand. In particular,
how to handle unknown attributes can be very useful in managing situations in which
Monkey Patching might be used to solve an initial attribute incompatibility.

This chapter explores both Monkey Patching and Python attribute lookup.

43.2 What is Monkey Patching?

Monkey Patching is the idea that it is possible to add behaviour to an existing object,
at runtime, to meet some requirement that originally the type did not meet. This can
happen for example as there is no fixed requirement for a class to implement all of
protocol; in many cases a class may only implement as much of a protocol as is
required to meet the current needs; if at a later stage, other elements of a protocol
are required then they can be added.

Of course, if this is likely to be a common occurrence then the features can be
added to the class for use by everyone; but if not, then those features can be added
dynamically at runtime to an object itself. This avoids the public interface of the type
becoming cluttered with rarely used features/functionality.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_43

487

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_43&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_43

488 43 Monkey Patching

43.2.1 How Does Monkey Patching Work?

Python is a dynamic language which allows the definition of a type to change at
runtime. As methods on objects are in essence just another attribute of a class, albeit
one that can be executed, it is possible to add new functionality to a class by defining
new attributes that will hold references to the new behaviour.

43.2.2 Monkey Patching Example

The following class, Bag, implements a initialization method __init__(), __
str__() and the __getitem__() method used to support indexed access to a
container (or collection) type.

class Bag():
def __init__(self):

self.data = [’a’, ’b’, ’c’]

def __getitem__(self, pos):
return self.data[pos]

def __str__(self):
return ’Bag(’ + str(self.data) + ’)’

b = Bag()
print(b)

This creates a Bag object and prints out the contents of the Bag:

Bag([’a’, ’b’, ’c’])

However, if we try to run

print(len(b))

We will get a runtime error:

Traceback (most recent call last):
File "Bag.py", line 12, in <module>
print(len(b))

TypeError: object of type ’Bag’ has no len()

This is because the len() function expects the object passed to it will implement
the __len__() method that is be used to obtain its length. In this case the class
Bag does not implement this method.

However, we can define a stand-alone function that behaves in the way we would
need the Bag to calculate its length, for example:

def get_length(self):

43.2 What is Monkey Patching? 489

return len(self.data)

This function takes a single parameter which we have called self. It then uses
this parameter to reference an attribute called data which itself uses len() to
return the length of the associated data items.

At present this function has no relationship to the Bag class other than the fact that
it assumes that whatever is passed into it will have an attribute called data—which
the Bag class does.

In fact, the get_length() function is compatible with any class that has an
attribute data that can be used to determine its length.

We can now associate it with the Bag class; this can be done by assigning the
function reference (in practice the function name) to an appropriate attribute on the
Bag class. Since the len function expects a class to implement the __len__()
method we can assign the get_length() function to the __len__() attribute.
This effectively adds a new method to the Bag class with the signature __len__
(self):

Monkey patching
Bag.__len__ = get_length

Now when we invoke

print(len(b))

We get the value 3 being printed out.
We have now Monkey Patched the class Bag so that the missing method becomes

available.

43.2.3 The Self Parameter

One of the reasons that Monkey Patching works is because all methods receive the
special first parameter (called self by convention) representing the object itself.
This means that any function that treats the first parameter as being a reference to an
object can potentially be used to define a method on a class.

If a function does not assume that the first parameter is a reference to an object
(the one holding the method) then it cannot be used to add new functionality to a
class.

490 43 Monkey Patching

43.2.4 Adding New Data to a Class

Monkey Patching is not just limited to functionality; it is also possible to add new
data attributes to a class. For example, if we wanted each Bag to have a name then
we could add a new attribute to the class to hold its name:

Bag.name = ’My Bag’
print(b.name)

Which prints out the string ‘My Bag’ which now acts as a default value of the
name of any Bag. Once the attribute is added we can then change the name of this
particular instance of a Bag:

For example, if we extend the above example:

Bag.name = ’My Bag’
print(b.name)

b.name = ’Johns Bag’
print(b.name)

b2 = Bag()
print(b2.name)

We can now generate

My Bag
Johns Bag
My Bag

43.3 Online Resources

For further information on Monkey Patching the following resources may be of
interest:

● https://en.wikipedia.org/wiki/Monkey_patch Wikipedia page on Monkey
Patching.

● http://net-informations.com/python/iq/patching.htm A discussion on whether
Monkey Patching should be considered good or bad practice.

https://en.wikipedia.org/wiki/Monkey_patch
http://net-informations.com/python/iq/patching.htm

Chapter 44
Attribute Lookup

44.1 Introduction

Compared to static compile languages such as Java and C# Python is a dynamic
and flexible language. This is also true of how attributes within a class defini-
tion are handled. In this chapter we will look in more detail about how Python
manages attributes and method lookups, how unknown attribute and method lookup
are handled and how you can intercept such lookups yourself.

44.2 Attributes in Python

As shown in the last chapter, Python is very dynamic and it is easy to add attributes
and methods to a class, but how does this work. It is worth briefly digressing and
considering how Python manages attribute and method lookup for an object.

Python classes can have both class and instance oriented attributes, for example
the following class Student has a class attribute count (that is associated with
the class itself) and an instance or object attribute name. Thus each instance of the
class Student will have its own name attribute.

class Student:
count = 0

def __init__(self, name):
self.name = name
Student.count += 1

Whenever an instance of the class Student is created the Student.count
attribute will be incremented by 1.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_44

491

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_44&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_44

492 44 Attribute Lookup

To manage these attributes Python maintains internal dictionaries; one for class
attributes and one for object attributes. These dictionaries are called __dict__ and
can be accessed either from the class <class>.__dict__ (for class attributes)
or from an instance of the class <instance.>__dict__ (for object attributes).
For example:

student = Student(’John’)
Class attribute dictionary
print(’Student.__dict__:’, Student.__dict__)
Instance / Object dictionary
print(’student.__dict__:’, student.__dict__)

Which produces the output shown below (note that the class dictionary holds more
information than just the class attribute count):

Student.__dict__: {’__module__’: ’__main__’, ’count’: 1, ’__
init__’: <function Student.__init__ at 0x10d515158>, ’__dict__
’: <attribute ’__dict__’ of ’Student’ objects>, ’__weakref__’:
<attribute ’__weakref__’ of ’Student’ objects>, ’__doc__’: None}
student.__dict__: {’name’: ’John’}

To look up an attribute Python does the following for class attributes:

1. Search the class dictionary for an attribute
2. If the attribute is not found in step 1 then search the parent class(es) dictionaries.

For object attributes, Python first searches the instance dictionary and repeats the
above steps, it thus performs these steps:

1. Search the object/instance dictionary
2. If the attribute was not found in step 1, then search the class dictionary for an

attribute
3. If the attribute is not found in step 2, then search the parent class(es) dictionaries.

Thus given the following statements, different steps are taken each time:

student = Student(’John’)
print(’Student.count:’, Student.count) # class lookup
print(’student.name:’, student.name) # instance lookup
print(’student.count:’, student.count) # lookup finds class
attribute

The output as expected is that either attempt to access the class attribute count
will result in the value 1 whereas the object attribute name returns ‘John’.

44.2 Attributes in Python 493

Student.count: 1
student.name: John
student.count: 1

As the dictionaries used to hold the class and object attributes are just that dictio-
naries, they provide another way to access the attributes of a class such as Student.
That is you can write code that will access an attribute value using the appropriate
__dict__ rather than the more usual dot notation, for example the following are
equivalent:

class lookup
print(’Student.count:’, Student.count)
print("Student.__dict__[’count’]:", Student.__dict__[’count’])

Instance/Object Lookup
print(’student.name:’, student.name)
print("student.__dict__[’name’]:", student.__dict__[’name’])

In both cases the end result is that same, either the class attribute count is accessed
or the object/instance attribute name is accessed:

Student.count: 1
Student.__dict__[’count’]: 1
student.name: John
student.__dict__[’name’]: John

However, accessing attributes via the __dict__ does not trigger a search
process; it is instead a direct lookup in the associated dictionary container. Thus
if you try to access a class variable via the objects __dict__ then you will get an
error. This is illustrated below where we attempt to access the count class variable
via the student object:

Attempt to look up class variable via object
print(’student.name:’, student.name)
print("student.__dict__[’count’]:", student.__dict__[’count’])

This will generate a KeyError indicating that the object __dict__ does not hold
a key called ‘count’:

Traceback (most recent call last):
File "Student.py", line 60, in <module>

print("student.__dict__[’count’]:", student.__dict__
[’count’])
KeyError: ’count’

494 44 Attribute Lookup

44.3 Handling Unknown Attribute Access

Monkey Patching is of course very flexible and very useful when you know what
you need to provide; however what happens when an attribute reference (or method
invocation) occurs when it is not expected? By default an error is generated such as
the AttributeError below:

student = Student(’John’)
res1 = student.dummy_attribute
print(’p.dummy_attribute:’, res1)

This generates an AttributeError for the dummy_attribute

Traceback (most recent call last):
File "Student.py", line 51, in <module>
res1 = student.dummy_attribute

AttributeError: ’Student’ object has no attribute ’dummy_
attribute’

You can of course catch the AttributeError if you want; but the means wrapping
your code in a try block. An alternative approach is to define a method called _
_getattr__(); this method will be called when an attribute is not found in the
objects (and classes) __dict__ dictionary. This method can then perform whatever
action is appropriate such as logging a message or providing a default value, etc.

For example, if we modify the definition of the Student class to include a __
getattr__() method such that a default value is returned:

class Student:
count = 0
def __init__(self, name):

self.name = name
Student.count += 1

Method called if attribute is unknown
def __getattr__(self, attribute):

print(’__getattr__: ’, attribute)
return ’default’

Now when we try and access the dummy_attribute on a student object we
will get the string ‘default’ returned:

student = Student(’John’)
res1 = student.dummy_attribute
print(’p.dummy_attribute:’, res1)

44.4 Handling Unknown Method Invocations 495

Now generates

__getattr__: dummy_attribute
p.dummy_attribute: default

Note that the __getattr_() method is only called for unknown attributes as
Python first looks in __dict__ and thus if the attribute is found, no call is made to
the __getattr__() method.

Also note that if an attribute is accessed directly from the __dict__ (for example
student.__dict__[’name’]) then the __getattr__() method is never
invoked.

44.4 Handling Unknown Method Invocations

The __getattr__() method is also invoked if an unknown method is called. For
example, if we call the method dummy_method() on a Student object then an
error is raised (in fact this is again an AttributeError). However, if we define a __
getattr__() method we can return a reference to a method to use as a default. For
example, if we modify the __getattr__() method to return a method reference
(i.e., the name of a method in the Student class):

class Student:
count = 0
def __init__(self, name):

self.name = name
Student.count += 1

Method called if attribute is unknown
def __getattr__(self, attribute):

print(’__getattr__: ’, attribute)
return self.my_default

def my_default(self):
return ’default’

Now when a undefined method is invoked (such as dummy-method()) __
getattr__() will be called. This method will return a reference to the method
my_default. This will be run and the value returned as a side effect of the method
invocation as indicated by the round baskets (the ‘()’) after the call to the original
method:

student = Student(’John’)
res2 = student.dummy_method()

496 44 Attribute Lookup

print(‘student.dummy_method():’, res2)

Which produces the following output: rather than an error message

__getattr__: dummy_method
student.dummy_method(): default

44.5 Intercepting Attribute Lookup

It is also possible to always intercept attribute lookups using the dot nation (e.g.,
student.name) by implementing the __getattribute__() method. This
method will always be called instead of looking the attribute up in the objects dictio-
nary. The __getattr__() method will only be called if an AttributeError is
raised or the __getattribute__() method explicitly calls the __getattr_
_() method.

The __getattribute__() method should therefore return an attribute value
(which may be a default value) or raise an AttributeError if appropriate.

It is important to avoid implementing code that will recursively call itself (for
example calling self.name within __getattribute__() will result in a
recursive call back to __getattribute__()!). To avoid this the implementation
of the method should either access the __dict__ directory or call the base classes
__getattribute__() method.

An example is given below of a simple __getattribute__() method that
logs the call to a method and then passes the invocation onto the base class
implementation:

class Student:
count = 0
def __init__(self, name):

self.name = name
Student.count += 1

Method called if attribute is unknown
def __getattr__(self, attribute):

print(’__getattr__: ’, attribute)
return ’default’

Method will always be called when an attribute
is accessed, will only called __getattr__ if it
does so explicitly or if an AttributeError is raised
def __getattribute__(self, name):

print(’__getattribute__()’, name)
return object.__getattribute__(self, name)

44.6 Intercepting Setting an Attribute 497

def my_default(self):
return ’default’

We can use this version of the class with the following code snippet

student = Student(‘Katie’)
print(’student.name:’, student.name) # instance lookup

res1 = student.dummy_attribute # invoke missing attribute
print(‘student.dummy_attribute:’, res1)

The output from this is now:

__getattribute__() name
student.name: Katie
__getattribute__() dummy_attribute
__getattr__: dummy_attribute
student.dummy_attribute: default

As you can see from this the __getattribute__() method is called for
both student.name and student.dummy_attribute. However the __
getattr__() method is only called when the dummy_attribute is accessed.

Note that __getattribute__() is only invoked for attribute access and not
for method invocation (unlike __getattr__()).

44.6 Intercepting Setting an Attribute

It is also possible to intercept object/instance attribute assignment when the dot
notation (e.g., student.name = ’Bob’) is being used. This can be done by
implementing the __setattr__() method. This method is invoked instead of the
assignment.

The__setattr()__method can perform any action required including storing
the value supplied. However, to do this it should either insert the value directly
into the objects dictionary (e.g., student.__dict__[’name’] = ’Bob’) or
preferably call the base class __setattr__() method, for example object.__
setattr__(self, name, value) as shown below for the Student class:

class Student:
count = 0
def __init__(self, name):

self.name = name
Student.count += 1

Method will always be called when an attribute is set
def __setattr__(self, name, value):

print(’__setattr__:’, name, value)

498 44 Attribute Lookup

object.__setattr__(self, name, value)

If we now define the follow program that uses the Student class:

student = Student(’John’)
student.name = ’Bob’
print(’student.name:’, student.name) # instance lookup

Running this could we generate the following output:

__setattr__: name John
__setattr__: name Bob
student.name: Bob

There are a few things to note about this output:

● Firstly the assignment of the Student’s name within the __init__() method
also invokes the __setattr__() method.

● Secondly, the assignment to the class variable count does not invoke the _
setattr__() method.

● Thirdly the student.name assignment does of course invoke the __
setattr__() method.

44.7 Exercises

This exercises focusses on attribute look up.
You should add a method to the Account class that can be used to handle how

accounts should behave when an attempt is made to access an undefined attribute.
In this case you should log the attempt to access the attribute (which means print

out a warning message) then return a default value of -1.
For example, if you had the following line to your application:

print(’acc1.branch:’, acc1.branch)

Then this should invoke the __getattr__() method for the undefined attribute
branch. Print a warning message and then return the value -1 which will be printed
by the above statement.

The output of this statement should be something like:

__getattr__: unknown attribute accessed - branch
acc1.branch: -1

Chapter 45
The Python Bites Back

45.1 Fourteen Beginner Mistakes to Avoid in Python

Just like other programming languages it has its fair share of gotchas that can trip up
a Python newbie. In this chapter we will look at 14 of the most common mistakes
and how to solve them.

45.2 Mistake #1: Indentation

The very first thing most people notice about Python is that indentation is key to
structuring your program. Unlike free form languages such as Java and C# the way
in which you indent you program is meaningful and part of the program itself. For
example, you indicate the statement or statements that are part of an if statement via
indentation. One of the important things to note about indentation is that statements
should be indented to the same level for the same language construct.

For example, the following code intends to indicate that the four print statements
are all part of the for loop.

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_45

499

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_45&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_45

500 45 The Python Bites Back

However, the first print statement is indented to a different level than the following
print statements (3 spaces vs. 4). This will be an error in Python and if we attempt
to run this program it will result in a runtime error being generated:

% python main.py
File "main.py", line 4
print(i * i)
^

IndentationError: unexpected indent

This indicates that there is an IndentationError at line 4—in other words
the indentations do not match.

One issue that can catch out the unwary is that even if the layout looks correct in
an editor you may still get a runtime error. For example, the following code looks as
if it has been laid out correctly in Emacs:

However, when we run this program, we get

python main.py
File "main.py", line 3
print(i * i)

^
TabError: inconsistent use of tabs and spaces in indentation

This TabError error has been generated because a tab has been used for line 3
while spaces have been used for the other lines. This means that as far as Python is
concerned the indentations are not the same.

By convention Python programmers should always use spaces and not tabs
(although in practice within a single block of code all that is required is that you
are consistent in your use of spaces or tabs). However, programmers should not mix
the two.

To resolve this sort of issue you can replace the tab with the equivalent spaces.
Many IDEs such as PyCharm do this for you either when you hit the tab key or when
you ask the IDE to reformat the code. The above code is being written in EMACS
which does not do any conversion but also does not display any visual difference,
and thus this can be a difficult problem to resolve if it is the first time you encounter
it.

45.4 Mistake #3: Default Initialization of Function/Method Parameters … 501

45.3 Mistake #2: Case Sensitivity

Python is a very case sensitive programming language. In Python a variable with the
name My_Var is a completely different variable to one called my_var. As Python
dynamically declares variables this can cause confusion and lead to unexpected bugs
in programs.

For example, in the following program two similarly named but completely
different variables are declared:

my_var = None
print(my_var)
My_Var = input(’Please input your name:’)
print(my_var)

When the program is run and the user enters the number 5, the output generated
is

None
Please input your name: John
None

This is probably not what the programmer expected. The problem is that the
program declares two variables. One is declared on line 1 and initialized with the
value None. The second is declared on line 3 and is initialized with the string entered
by the user. Whereas the programmer probably planned to reuse the first variable
from line 1 in line 3!

To solve this problem developers should take great care with how they name
variables. In this case if the developer had followed the standard Python conventions
as described by PEP 8—Style Guide for Python Code (note PEP actually stands
for Python Enhancement Proposal), then they would have used lower case for all
variable names and thus would have always referred to the variable as my_var.

45.4 Mistake #3: Default Initialization of Function/Method
Parameters with Mutable Types

Python allows a parameter to a function or a method to have a default value. This
makes the parameter optional and provides a great deal of flexibility in how a function
may be invoked.

For example, the following function takes up to four parameters; the first is a
required parameter, but the remaining parameters are all optional:

502 45 The Python Bites Back

def greeter(name,
title = ’Dr’,
prompt = ’Welcome’,
message = ’Live Long and Prosper’):

print(prompt, title, name, ’-’, message)

When thegreeter() function is invoked we can provide one or more arguments
as shown below:

greeter(’Eloise’)
greeter(’Lloyd’, ’Mr’)
greeter(’Phoebe’, ’Miss’, ’Hi’)
greeter(’Adam’, ’Mr’, ’Hi’, ’May the Force be with you’)

As such default parameters are a valuable part of the language.
However, many programmers new to Python misunderstand when the initial value

for a parameter is evaluated. In the above we used strings to illustrate the use of
default parameters which is ideal as they are immutable types (that is once created
they cannot be changed).

However, many other types in Python are mutable such as Lists. It is perfectly
possible to modify a List after you have created it.

Such types, if used as default values for parameters, can lead to unexpected results.
For example, consider the following function and class with a method:

def do_something(msg, data=[]):
data.append(msg)
print(data)

class Bag:
def do_something(self, msg, data=[]):

data.append(msg)
print(data)

What happens if we run the following program that uses the above function and
class:

do_something(’John’)
do_something(’Paul’)
do_something(’Denise’)

bag = Bag()
bag.do_something(’Adam’)
bag.do_something(’Natalia’)
bag.do_something(’Phoebe’)

45.5 Mistake #4: Default Initialization of Function/Method Parameters … 503

The output from this program is

[’John’]
[’John’, ’Paul’]
[’John’, ’Paul’, ’Denise’]
[’Adam’]
[’Adam’, ’Natalia’]
[’Adam’, ’Natalia’, ’Phoebe’]

This may not be what you expected! The issue is that the default value is evaluated
only once, at the point at which the function or method is defined. As the value
specified for the default value of the data parameter is a list, then the same list
object is reused each time the function is invoked with only the msg parameter being
supplied.

A common work around for this problem is to use an immutable value for the
default. Then within the function or method, the mutable object is assigned to the
parameter if the default immutable value is being used. For example:

def do_something(msg, data=None):
if data is None:

data = []
data.append(msg)
print(data)

class Bag:
def do_something(self, msg, data=None):

if data is None:
data = []

data.append(msg)
print(data)

If we now rerun the program that uses the above function and class we now get

[’John’]
[’Paul’]
[’Bill’]
[’Denise’]
[’Adam’]
[’Jasmine’]
[’Theeban’]

45.5 Mistake #4: Default Initialization of Function/Method
Parameters Using a Function

This mistake is similar to the last one in that it relates to when the default value is
evaluated. It occurs because, if a function is used to initialize a default parameter, it
is also executed/evaluated at the point that the function is declared.

504 45 The Python Bites Back

For example, the following code allows a programmer to log a message with a
time stamp indicating when the message was printed. However, the programmer has
made the time_point parameter optional by providing a default value for it, as
supplied by the call to the datetime.now() function.

from datetime import datetime

def log_it(msg, time_point = datetime.now()):
print(msg, time_point)

log_it(’In here’)
log_it(’Went In here’, datetime.now())
log_it(’Now In here’)

The output generated by this code is

In here 2021-06-29 14:28:25.100567
Went In here 2021-06-29 14:28:25.100793
Now In here 2021-06-29 14:28:25.100567

What you can see from this is that the first and third logged messages have the
same time stamp, and the 2nd message has a different time stamp. This is because the
time_point parameter’s default value is evaluated when the function is defined,
that is, when it is loaded by the Python runtime, and thus the time stamp generated
for the time_point variable is the point in time when the function came into
existence and is thus not related to when the function is called.

The fix for this is like the last mistake in that an immutable value should be used
as the default value. If the default value is present then a new timestamp should be
generated, for example:

def log_it(msg, time_point = None):
if time_point is None:

time_point = datetime.now()
print(msg, time_point)

45.6 Mistake #5: Out by 1 Ranges

In Python ranges are used whenever a sequence of values is required. One typical use
of a range is with a for loop. For example, to loop through a set of integers starting
at zero we might write

for i in range(0, 5):
print(i, end=’, ’)

print()

45.7 Mistake #5: Assignment Operator Versus Equality Operator 505

However, ranges are what are known as open-closed. That is the initial value
specified for the range is included in the range, but the end value is outside or closed
from the range, thus when we run this program the output is

0, 1, 2, 3, 4,

If you want to include the end value in the range a common idiom or pattern that
Python programmers use is to explicitly specify the step value to use with the range
and add that to the final value. For example:

step = 1
for i in range(0, 5 + step, step):

print(i, end=’, ’)
print()

The range function can take several different optional values. In this case we are
including the optional step value which is the third value passed in. We are now
explicitly specifying the step value and adding the step value to the end value for the
range. When we run this version of the program the output is

0, 1, 2, 3, 4, 5,

45.7 Mistake #5: Assignment Operator Versus Equality
Operator

Python has two operators which may look very similar to a non-programmer; these
are the = and the == operators. However, they have very different meanings; one
means assignment and the other means equality. That is the = operator which is used
to assign a value to a variable; while == is used to test for equality. However, it is
possible in some situations to use a = when you meant to use a =. For example:

x = False
x == True
print(x)

The output from this program is

False

This is because the second statement above is a test to see if x has the value
True. The result of this equality test is, however, thrown away as it is not assigned
to anything and of course the value of x is not changed.

Most IDEs will warn you about this as shown below for the PyCharm tool:

506 45 The Python Bites Back

This can help to rectify the error.

45.8 Mistake #6: Falsey and Truthy

Python is actually quite flexible when it comes to what actually is used to represent
True and False, in fact the following rules apply:

● 0, ‘ ’ (empty strings), None equate to False
● Non zero, non empty strings, any object equate to True

This flexibility can, however, lead to mistakes being made. For example, in the
following code tests are performed against the temperature value input by the user:

temp = int(input(’The temperature:’))
if temp and temp < 10:

print(f’Its cold {temp}’)
else:

print(f’Its warm {temp}’)

When this program is run with different inputs for example, 1, 0, and − 1 we get
different outputs:

Run 1 Run 2 Run 3

The temperature: 1
Its cold 1

The temperature: 0
Its warm 0

The temperature: − 1
Its cold − 1

According to this when the temperature is 0 its warm!
The problem is that the conditional part of the if statement will always evaluate

to false when the temperature that is input is 0. This is because 0 is treated as being
equivalent to False.

This is probably not what the programmer intended. They were probably intending
to guard against having a rouge value in temp. It would probably have been better to
test for this directly.

In general, the best way to avoid this error is always to work with Boolean values
directly using True or False. For example:

45.9 Mistake #7: Hiding Built-In Functions and Classes 507

if temp is not None and temp < 10:
print(f’Its cold {temp}’)

else:
print(f’Its warm {temp}’)

45.9 Mistake #7: Hiding Built-In Functions and Classes

Python uses a specific search order to find the definitions of variables, functions or
classes. This search order is known by the acronym LEGB, which stands for:

● (L)ocal within a function or class.
● (E)nclosed within an enclosing scope such as an enclosing function.
● (G)lobal defined at the global or outer most level.
● (B)uilt-in for built-in language elements.

This means that it is possible to hide a built-in function or class by giving
something locally the same name.

For example, in the following code a programmer has decided to store some data
in a local variable called list:

list = [1, 2, 3]
print(list)

If we run this code, then the output generated is

[1, 2, 3]

All seems fine until later in the code we try to convert a set to a List using the
list() constructor function:

data = list((1, 2, 3))
print(data)

When we run this code, we get the following error generated by Python:

Traceback (most recent call last):
File main.py", line 61, in <module>
data = list((1, 2, 3))

TypeError: ’list’ object is not callable

This error indicates that list() is not a callable, that is it is not something that can
be called (or executed). If we look up the Python documentation for the list()
constructor function (see https://docs.python.org/3/library/stdtypes.html#typesseq-
list) we can see that list() can be used to create a list from an iterable thing and sets
are certainly iterable containers. So what is going on?

https://docs.python.org/3/library/stdtypes.html#typesseq-list
https://docs.python.org/3/library/stdtypes.html#typesseq-list

508 45 The Python Bites Back

The problem is that the name of the variable list has hidden (or shadows) the name
of the built-in function list. Thus when we attempt to call list() Python find
the variable list containing the List data structure which it then tries to execute at
which point the error is generated.

Most IDEs will warn you that you are shadowing/hiding a built-in name; you can
use this to change the name of your variable, function or class. For example:

The above uses PyCharm, and the IDE is indicating that we are shadowing the
built-in name list and that we can ‘rename the element’.

45.10 Mistake #8: Hiding Built-In Modules

The way in which Python finds modules to load is by searching a predefined series
of locations. By default, this set of locations looks in the current directory before
searching within the Python installation for built-in modules.

As Python modules are files, for example the module sys is defined in a file
called sys.py, it is possible to create a file in the current directory with the same
name as a system provided module. For example, sys is a built-in module however
if we do have a file called sys.py in the current directory, if our code references
the sys module:

import sys

Python will load the local file instead of the system module. When the programmer
then tries to access the functions and classes defined within sys they would find that
they were not available.

This can be very confusing the first time this happens. However, if the programmer
hangs over the import IDEs will often indicate where the import is coming from:

45.11 Mistake #9: Function Reference Versus Function Call 509

As we had expected sys to be a built-in module, the fact that it is being loaded
from a local directory suggests this is not the correct module. If we renamed the
sys.py file to something else and re-examine the import we can see that we are
now presented with information on the module:

45.11 Mistake #9: Function Reference Versus Function Call

Python supports a lot of Functional Programming concepts. Key to the languages
ability to do this is the fact that functions are callable objects. That is, they are objects
in memory and can be referenced or executed (called).

However, this can lead to some confusion for new developers. For example, the
following code is legal Python:

import random

messages = [’Hi’, ’Hello’, ’Welcome’]

def get_mod():
return messages[random.randint(0, len(messages) - 1)]

x = get_mod()
print(x)
y = get_mod
print(y)

510 45 The Python Bites Back

The output when this code is run is

Welcome
<function get_mod at 0x1079c60d0>

The first line of the output may be the sort of thing you expected; that is one of
the messages is printed out, in this case the 3rd one ‘Welcome’. However, the second
line of output may look very strange indeed.

What has happened is that for the declaration of the variable x we have assigned
the result returned from calling (or executing) the function get_mod(). However,
we have assigned the reference to the function get_mod to the variable y. In effect
the variable y is now an alias for the function get_mod. Thus when we print out
the value of y we get something indicating a reference to a function called get_
mod at a particular location in memory.

From the point of view of the language this is not an error, that is, obtaining a
reference to a function is a valid thing to do. However, it can be confusing for new
programmers and leads to errors such as that seen above.

To correct that it is important to remember to include the () when invoking/
calling a function, for example:

y = get_mod()
print(y)

45.12 Mistake #10: Modifying a List While Iterating Over
It

There are several ways in which Python allows programmers to process each element
in a list in turn. One of these is to use list index access within a for loop, such as

numbers = [1, 2, 3, 4]
for index in range(len(numbers)):

print(index)
if numbers[index] % 2 == 1:

del numbers[index]
print(numbers)

This loop is being used to remove all odd numbers from the list held in the numbers
variable.

When we run this program, however, we get an error generated:

45.13 Mistake #11: Sets Can Only Contain Immutable Objects 511

0
1
2
Traceback (most recent call last):
File "main.py", line 80, in <module>
if numbers[index] %2 == 1:

IndexError: list index out of range

The problem here is that we are changing the list that we are processing and thus
the data in the list and their positions changes.

There are in fact several Pythonic ways to solve this problem including using a
filter function, a list comprehension, iterating over a copy of the numbers list,
etc. Some of these are shown below

numbers = [1, 2, 3, 4]
evens = list(filter(lambda i: i % 2 == 0, numbers))
print(evens)

evens2 = [i for i in numbers if i % 2 == 0]
print(evens2)

for item in numbers.copy():
if item % 2 == 1:

numbers.remove(item)
print(numbers)

The output from these examples is

[2, 4]
[2, 4]
[2, 4]

45.13 Mistake #11: Sets Can Only Contain Immutable
Objects

It is possible to hold any immutable object within a set. This means that a Set can
contain a reference to a Tuple (as that is immutable). We can declare a Set literal
using the {} brackets. We can thus write

s1 = { (1, 2, 3)}
print(s1)

This prints out

{(1, 2, 3)}

However, we cannot nest lists or other sets within a set as these are not immutable
types. The following would both generate a runtime error in Python:

512 45 The Python Bites Back

Can’t have the following
s2 = { {1, 2, 3} }
print(s2)

s3 = { [1, 2, 3] }
print(s3)

To solve this problem, we can use Frozensets and Tuples. That is we can
use Fozensets to nest one Set inside another. A Frozenset is exactly like a
Set except that it is immutable and thus it can be nested within a Set. A Set can
be converted into a Fozenset using the frozenset() constructor function. For
example:

Need to convert sets into frozensets
s2 = { frozenset({1, 2, 3}) }
print(s2)

For lists we can convert a list into a tuple to add them to a set, for example:

s3 = { tuple([1, 2, 3]) }
print(s3)

45.14 Mistake #12: Local Versus Global Variables

Global variables can be referenced from within a function. For example:

max = 100
def print_max():

print(max)
print_max()

This prints out the value 100. However, if Python thinks you are declaring a new
local variable that just happens to have the same name as a global variable it will
create a local version which will shadow the global one. For example:

max = 100
def print_max():

max = 95
print(max)

print_max()
print(max)

45.14 Mistake #12: Local Versus Global Variables 513

The output from this is

95
100

However, if you wish to modify the global variable inside the function, for example
as is done below:

max = 100
def print_max():

max = max + 1
print(max)

print_max()

Then when we try to run this code, we will get a runtime error:

Traceback (most recent call last):
File "main.py", line 101, in <module>
print_max()

File "main.py", line 98, in print_max
max = max + 1

UnboundLocalError: local variable ’max’ referenced before assign-
ment

This is because the variable max is local to the function, and there does not have
a value assigned to when we try to access it to add 1 to the current max.

Why does it do this? To protect us from ourselves—Python is really saying ‘Do
you really want to modify a global variable here?’ Instead, it is treating max as a
local variable and as such it is being referenced before a value has been assigned to
it.

To tell Python that we know what we are doing and that we want to reference the
global variable at this point we need to use the keyword global with the name of the
variable. For example:

max = 100
def print_max():

global max
max = max + 1
print(max)

print_max()
print(max)

Now when we try to update the variable max inside the function print_max(),
Python knows we mean the global version of the variable and uses that one. The
result is that we now print out the value 101 and max is updated to 101 for everyone
everywhere!

514 45 The Python Bites Back

45.15 Mistake #13: Referencing Nonlocal Variable

It is possible to define functions inside other functions, and this can be very useful
when we are working with collections of data and operations such as map() (which
maps a function to all the elements of a collection in turn).

However, local variables are local to a specific function; even functions defined
within another function cannot modify the outer functions local variable (as the inner
function is a separate function). They can reference it, just as we could reference the
global variable earlier; the issue is again modification.

The global keyword is no help here as the outer function’s variables are not global,
they are local to a function.

For example, if we define a nested function (inner) inside the parent outer function
(outer) and want the inner function to modify the local field we have a problem:

def outer():
title = ’original title’

def inner():

title = ’another title’

print(’inner:’, title)

inner()

print(’outer:’, title)

outer()

In this example both outer() and inner() functions modify the title
variable. However, they are not the same title variable and as long as this is what
we need then that is fine; both functions have their own version of a title local
variable.

This can be seen in the output where the outer function maintains its own value
for title:

inner: another title
outer: original title

However, if what we want is for the inner() function to modify the outer()
function’s title variable then we have a problem.

This problem can be solved using the nonlocal keyword. This indicates that a
variable is not global but is also not local to the current function and Python should
look within the scope in which the function is defined to find a local variable with
the same name:

45.16 Mistake #14: Copying a Mutable Type 515

If we now declare title as nonlocal in the inner() function, then it will use
the outer() functions version of title (it will be shared between them) and
thus when the inner() function changes the title it will change the it for both
functions:

def outer():

title = ’original title’

def inner():

nonlocal title

title = ’another title’

print(’inner:’, title)

inner()

print(’outer:’, title)

outer()

The result of running this is

inner: another title
outer: another title

45.16 Mistake #14: Copying a Mutable Type

Care needs to be taken when assigning a mutable type from one variable to another.
For example, a List is a mutable type. When you assign a List from one variable
to another you actually assign a reference to the List from one variable to another.
This means that both variables will reference (point to) the same list. Thus, if the
contents of the list are modified via one variable, then it will also be modified for the
other variable. For example:

516 45 The Python Bites Back

data1 = [1, 2, 3, 4]
data2 = data1
data2.append(5)
print(data1)

This produces the following output:

[1, 2, 3, 4, 5]

To avoid this, you can create a copy of the original list. This will create a new list
and copy the values the original list contains over to the new list. For example:

data1 = [1, 2, 3, 4]
data2 = data1.copy()
data2.append(5)
print(data1)

Now the output from this is

[1, 2, 3, 4]

If the list contains elements that can themselves hold values you may want to use
a deepcopy() for example data1.deepcopy().

Chapter 46
TicTacToe Game

46.1 Introduction

In this chapter we will explore the creation of a simple TicTacToe (or Noughts and
Crosses) game using an Object-Oriented approach. This example utilizes

● Python classes, methods and instance variables/attributes.
● Abstract Base Classes and an abstract method.
● Python properties.
● Python lists.
● A simple piece of game playing logic.
● While loops, for loops and if statements for flow of control behaviour.

The aim of the game is to make a line of 3 counters (either X or O) across a 3 by
3 grid. Each player takes a turn to place a counter. The first player to achieve a line
of three (horizontal, vertically or diagonally) wins.

46.2 Classes in the Game

We will begin by identifying the key classes in the game. Note that there is not
necessarily a right or wrong answer here; although one set of classes may be more
obvious or easier to understand than another.

In our case we will start with what data we will need to represent for our TicTacToe
game as recommended back in the ‘Introduction to Object Orientation’ chapter.

Our key data elements include

● the TicTacToe board itself,
● the players involved in the game (both computer and human),
● the state of the game, i.e., whose go it is and whether someone has won,

© Springer Nature Switzerland AG 2023
J. Hunt, A Beginners Guide to Python 3 Programming, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-031-35122-8_46

517

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35122-8_46&domain=pdf
https://doi.org/10.1007/978-3-031-35122-8_46

518 46 TicTacToe Game

● the moves being made by the players, etc.
● the counters used which are traditionally O and X (hence the alternative name

‘Noughts and Crosses’).

Based on an analysis of the data one possible set of classes is shown below:

In this diagram we have

● Game the class that will hold the board, players and the core game playing logic,
● Board this is a class that represents the current state of the TicTacToe board or

grid within the game,
● Human Player this class represents the human player involved in the game,
● Computer Player this class represents the computer playing the game,
● Move this class represents a particular move made by a player,
● Counter which can be used to represent the counters to play with; this will be

either X or Y.

We can refine this a little further. For example, much of what constituents a player
will be common for both the human and the computer player. We can therefore intro-
duce a new class Player, with both Computer Player and Human Player inheriting
from this class, for example:

46.2 Classes in the Game 519

In terms of the data held by the classes we can say:

● Game has a board, a human and a computer player. It also has links to the current
player and an attribute indicating whether a player has won.

● Board holds a 3 by 3 grid of cells. Each cell can be empty or contains a counter.
● Player Each player has a current counter and can see the board.
● Move represent a players selected move; it therefore holds the counter being

played and the location to put the counter in.
● Counter holds a label indicating either X or O.

We can now update the class diagram with data and links between the classes:

At this point it looks as though the HumanPlayer and ComputerPlayer classes are
unnecessary as they do not hold any data of there own. However, in this case the
behaviour for the HumanPlayer and the ComputerPlayer is quite different.

The HumanPlayer class will prompt the human user to select the next move.
In contrast the ComputerPlayer class must implement an algorithm which will
allow the next move to be generated within the program.

Other behavioural aspects of the classes are

● Game this must hold the overall logic of the game. It must also be able to select
which player will go first. We will also allow the human player to select which
counter they will play with (X or O). This logic will also be placed within the
Game class.

● Board The Board class must allow a move to be made but it must also be able to
verify that a move is legal (as cell is empty) and whether a game has been won or
whether there is a draw. This latter logic could be located within the game instead;
however, the Board holds the data necessary to determine a win or a draw, and
thus we are locating the logic with the data.

520 46 TicTacToe Game

We can now add the behavioural aspects of the classes to the diagram. Note we
have followed the convention here for separating the data and behaviour into different
areas within a class box:

We are now ready to look at the Python implementation of our class design.

46.3 Counter Class

The Counter class is given below; it is a data oriented class, sometimes referred to
as a value type. This is because it holds values but does not include any behaviour.

class Counter:
""" Represents a Counter used on the board """

def __init__(self, string):
self.label = string

def __str__(self):
return self.label

Set up Counter Globals
X = Counter(’X’)
O = Counter(’O’)

We have also defined two constants X and Y to represent the X and O counters
used in the game.

46.5 The Player Class 521

46.4 Move Class

The Move class is given below; it is another a data oriented class or value type.

class Move:
""" Represents a move made by a player """

def __init__(self, counter, x, y):
self.x = x
self.y = y
self.counter = counter.

46.5 The Player Class

The root of the Player class hierarchy is presented below. This class is an abstract
class in which the get_move() method is marked as being abstract. The class
maintains a reference to the board and to a counter.

class Player(metaclass=ABCMeta):
""" Abstract class representing a Player

and their counter """

def __init__(self, board):
self.board = board
self._counter = None

@property
def counter(self):

""" Represents Players Counter - may be X or Y"""
return self._counter

@counter.setter
def counter(self, value):

self._counter = value
@abstractmethod
def get_move(self): pass

def __str__(self):
return self.__class__.__name__ + ’[’ + str(self.counter) +

’]’

Note that counter is defined as a Python property.
The class Player is extended by the classes HumanPlayer and

ComputerPlayer.

522 46 TicTacToe Game

46.6 The HumanPlayer Class

This class extends the abstract Player class and defines the get_move() method.
This method returns a Move object representing the counter to be placed and the
location in the 3 × 3 grid in which to place the counter. Note that the get_move()
method relies on a reference being maintained by the player to the board so that it
can check that the selected location is empty.

To support the get_move() method a _get_user_input() method has
been defined. This method could have been defined as a stand alone function as it
is really independent of the HumanPlayer; however it has been defined within this
class to keep the related behaviour together. It also follows the Python convention
by starting the method name with an underbar (_) which indicates that the method
is private and should not be accessed from outside of the class.

class HumanPlayer(Player):
""" Represents a Human Player and their behaviour """

def __init__(self, board):
super().__init__(board)

def _get_user_input(self, prompt):
invalid_input = True
while invalid_input:

print(prompt)
user_input = input()
if not user_input.isdigit():

print(’Input must be a number’)
else:

user_input_int = int(user_input)
if user_input_int < 1 or user_input_int > 3:

print(’input must be a number in the range 1 to 3’)
else:

invalid_input = False
return user_input_int – 1

def get_move(self):
""" Allow the human player to enter their move """
while True:

row = self._get_user_input(’Please input the row:’)
column = self._get_user_input(’Please input the column:’)
if self.board.is_empty_cell(row, column):

return Move(self.counter, row, column)
else:

print(’That position is not free’)
print(’Please try again’)

46.7 The ComputerPlayer Class 523

46.7 The ComputerPlayer Class

This class provides an algorithmic implementation of the get_move() method.
This algorithm tries to find the best empty grid location in which to place the counter.
If it cannot find one of these locations free then it randomly finds an empty cell to
fill. The get_move()method could be replaced with whatever game playing logic
you want.

class ComputerPlayer(Player):
""" Implements algorithms for playing game """

def __init__(self, board):
super().__init__(board)

def randomly_select_cell(self):
""" Use a simplistic random selection approach
to find a cell to fill. """
while True:

Randomly select the cell
row = random.randint(0, 2)
column = random.randint(0, 2)
Check to see if the cell is empty
if self.board.is_empty_cell(row, column):

return Move(self.counter, row, column)

def get_move(self):
""" Provide a very simple algorithm for selecting a move"""
if self.board.is_empty_cell(1, 1):

Choose the center
return Move(self.counter, 1, 1)

elif self.board.is_empty_cell(0, 0):
Choose the top left
return Move(self.counter, 0, 0)

elif self.board.is_empty_cell(2, 2):
Choose the bottom right
return Move(self.counter, 2, 2)

elif self.board.is_empty_cell(0, 2):
Choose the top right
return Move(self.counter, 0, 2)

elif self.board.is_empty_cell(0, 2):
Choose the top right
return Move(self.counter, 2, 0)

else:
return self.randomly_select_cell()

524 46 TicTacToe Game

46.8 The Board Class

The Board class holds a 3 by 3 grid of cells in the form of a list of lists. It also
defines the methods used to verify or make a move on the board. The check_for_
winner() method determines if there is a winner given the current board positions.

class Board:
""" The ticTacToe board """

def __init__(self):
Set up the 3 by 3 grid of cells
self.cells = [[’ ’, ’ ’, ’ ’], [’ ’, ’ ’, ’ ’], [’ ’, ’ ’, ’ ’]]
self.separator = ’\n’ + (’-’ * 11) + ’\n’

def __str__(self):
row1 = ’ ’ + str(self.cells[0][0]) + ’ | ’ +

str(self.cells[0][1]) + ’ | ’ + str(self.cells[0][2])
row2 = ’ ’ + str(self.cells[1][0]) + ’ | ’ +

str(self.cells[1][1]) + ’ | ’ + str(self.cells[1][2])
row3 = ’ ’ + str(self.cells[2][0]) + ’ | ’ +

str(self.cells[2][1]) + ’ | ’ + str(self.cells[2][2])
return row1 + self.separator + row2 + self.separator + row3

def add_move(self, move):
""" A a move to the board """
row = self.cells[move.x]
row[move.y] = move.counter

def is_empty_cell(self, row, column):
""" Check to see if a cell is empty or not"""
return self.cells[row][column] == ’ ’

def cell_contains(self, counter, row, column):
""" Check to see if a cell contains the provided counter

"""
return self.cells[row][column] == counter

def is_full(self):
""" Check to see if the board is full or not """
for row in range(0, 3):

for column in range(0, 3):
if self.is_empty_cell(row, column):

return False
return True

def check_for_winner(self, player):
""" Check to see if a player has won or not """
c = player.counter
return (# across the top

(self.cell_contains(c, 0, 0) and self.cell_contains(c,
0, 1) and self.cell_contains(c, 0, 2)) or

across the middle
(self.cell_contains(c, 1, 0) and self.cell_contains(c,

1, 1) and self.cell_contains(c, 1, 2)) or

46.9 The Game Class 525

across the bottom
(self.cell_contains(c, 2, 0) and self.cell_contains(c,

2, 1) and self.cell_contains(c, 2, 2)) or
down the left side
(self.cell_contains(c, 0, 0) and self.cell_contains(c,

1, 0) and self.cell_contains(c, 2, 0)) or
down the middle
(self.cell_contains(c, 0, 1) and self.cell_contains(c,

1, 1) and self.cell_contains(c, 2, 1)) or
down the right side
(self.cell_contains(c, 0, 2) and self.cell_contains(c,

1, 2) and self.cell_contains(c, 2, 2)) or
diagonal
(self.cell_contains(c, 0, 0) and self.cell_contains(c,

1, 1) and self.cell_contains(c, 2, 2)) or
other diagonal
(self.cell_contains(c, 0, 2) and self.cell_contains(c,

1, 1) and self.cell_contains(c, 2, 0)))

46.9 The Game Class

The Game class implements the main game playing loop. The play() method will
loop until a winner is found. Each time round the loop one of the players takes a turn
and makes a move. A check is then made to see if the game has been won.

class Game:
""" Contains the Game Playing Logic """

def __init__(self):
self.board = Board()
self.human = HumanPlayer(self.board)
self.computer = ComputerPlayer(self.board)
self.next_player = None
self.winner = None

def select_player_counter(self):
""" Let the player select their counter """
counter = ’ ’
while not (counter == ’X’ or counter == ’O’):

print(’Do you want to be X or O?’)
counter = input().upper()
if counter != ’X’ and counter != ’O’:

print(’Input must be X or O’)
if counter == ’X’:

self.human.counter = X
self.computer.counter = O

else:
self.human.counter = O
self.computer.counter = X

526 46 TicTacToe Game

def select_player_to_go_first(self):
""" Randomly selects who will play first -
the human or the computer."""
if random.randint(0, 1) == 0:

self.next_player = self.human
else:

self.next_player = self.computer
def play(self):

""" Main game playing loop """
print(’Welcome to TicTacToe’)
self.select_player_counter()
self.select_player_to_go_first()
print(self.next_player, ’will play first first’)
while self.winner is None:

Human players move
if self.next_player == self.human:

print(self.board)
print(’Your move’)
move = self.human.get_move()
self.board.add_move(move)
if self.board.check_for_winner(self.human):

self.winner = self.human
else:

self.next_player = self.computer
Computers move
else:

print(’Computers move’)
move = self.computer.get_move()
self.board.add_move(move)
if self.board.check_for_winner(self.computer):

self.winner = self.computer
else:

self.next_player = self.human
Check for a winner or a draw
if self.winner is not None:

print(’The Winner is the’ + str(self.winner))
elif self.board.is_full():

print(’Game is a Tie’)
break

print(self.board)

46.10 Running the Game 527

46.10 Running the Game

To run the game we need to instantiate the Game class and then call the play()
method on the object obtained. For example:

def main():
game = Game()
game.play()

if __name__ == ’__main__’:
main()

A sample output from running the game is given below in which the human users
goes first.

Welcome to TicTacToe
Do you want to be X or O? X
ComputerPlayer[Y] will play first first
Computers move
| |

| Y |

| |

Your move
Please input the row: 1
Please input the column: 1
Computers move
X | |

| Y |

| | Y

Your move
Please input the row: 2
Please input the column: 1
Computers move
X | | Y

X | Y |

| | Y

Your move
Please input the row: 3
Please input the column: 1
The Winner is the HumanPlayer[X]
X | | Y

X | Y |

X | | Y

	Preface the Second Edition
	Preface to the First Edition
	Chapter Organization
	What You Need
	Using an IDE
	Conventions
	Example Code and Sample Solutions

	Contents
	1 Introduction
	1.1 What is Python?
	1.2 Python Versions
	1.3 Python History
	1.4 Python Programming
	1.5 Python Libraries
	1.6 Python Execution Model
	1.7 Running Python Programs
	1.7.1 Interactively Using the Python Interpreter
	1.7.2 Running a Python File
	1.7.3 Executing a Python Script
	1.7.4 Using Python in an IDE

	1.8 Jupyter Notebooks
	1.9 Useful Resources

	2 Where is Python Used
	2.1 Introduction
	2.1.1 Data Analytics
	2.1.2 Machine Learning and AI
	2.1.3 Database Work
	2.1.4 Python for Animation
	2.1.5 Python for Film Making
	2.1.6 Cross Platform UIs
	2.1.7 Games Programming
	2.1.8 Integration Testing Framework
	2.1.9 Academic Research
	2.1.10 Web Services

	2.2 Useful Resources

	3 Setting up the Python Environment
	3.1 Introduction
	3.2 Check to See if Python is Installed
	3.3 Installing Python on a Windows PC
	3.3.1 Step 1: Downloading Python
	3.3.2 Step 2: Running the Installer
	3.3.3 Step 3: Set up the PATH (Optional)
	3.3.4 Step 4: Verify the Installation
	3.3.5 Step 5: Run Some Python
	3.3.6 Step 6: Exit the Python Interpreter

	3.4 Setting up on a Mac
	3.5 Setting up an IDE
	3.5.1 Downloading the PyCharm IDE
	3.5.2 Setting up the IDE

	3.6 Writing Python Programs
	3.7 A Note on Filenames
	3.8 Online Resources

	4 A First Python Program
	4.1 Introduction
	4.2 Hello World
	4.3 Interactive Hello World
	4.4 Variables
	4.5 Naming Conventions
	4.6 Assignment Operator
	4.7 Python Statements
	4.8 Comments in Code
	4.9 Scripts Versus Programs
	4.10 Online Resources
	4.11 Exercises

	5 Python Strings
	5.1 Introduction
	5.2 What Are Strings?
	5.3 Representing Strings
	5.4 What Type is String?
	5.5 What Can You Do with Strings?
	5.5.1 String Concatenation
	5.5.2 Length of a String
	5.5.3 Accessing a Character
	5.5.4 Accessing a Subset of Characters
	5.5.5 Repeating Strings
	5.5.6 Splitting Strings
	5.5.7 Counting Strings
	5.5.8 Replacing Strings
	5.5.9 Finding Sub Strings
	5.5.10 Converting Other Types into Strings
	5.5.11 Remove Prefix and Suffix
	5.5.12 Comparing Strings
	5.5.13 Other String Operations

	5.6 Hints on Strings
	5.6.1 Python Strings are Case Sensitive
	5.6.2 Function/Method Names
	5.6.3 Function/Method Invocations

	5.7 String Formatting
	5.8 String Templates
	5.9 Formatting Using f-strings
	5.10 Online Resources
	5.11 Exercises

	6 Numbers, Booleans and None
	6.1 Introduction
	6.2 Types of Numbers
	6.3 Integers
	6.3.1 Converting to Ints

	6.4 Floating Point Numbers
	6.4.1 Converting to Floats
	6.4.2 Converting an Input String into a Floating Point Number

	6.5 Complex Numbers
	6.6 Boolean Values
	6.7 Arithmetic Operators
	6.7.1 Integer Operations
	6.7.2 Negative Number Integer Division
	6.7.3 Floating Point Number Operators
	6.7.4 Integers and Floating Point Operations
	6.7.5 Complex Number Operators

	6.8 Assignment Operators
	6.9 None Value
	6.10 Online Resources
	6.11 Exercises
	6.11.1 General Exercise
	6.11.2 Convert Kilometers to Miles

	7 Flow of Control Using if Statements
	7.1 Introduction
	7.2 Comparison Operators
	7.3 Logical Operators
	7.4 The If Statement
	7.4.1 Working with an If Statement
	7.4.2 Else in an If Statement
	7.4.3 The Use of elif

	7.5 Nesting if Statements
	7.6 If Expressions
	7.7 A Note on True and False
	7.8 Hints
	7.9 Online Resources
	7.10 Exercises
	7.10.1 Check Input is Positive or Negative
	7.10.2 Test if a Number is Odd or Even
	7.10.3 Kilometers to Miles Converter

	8 Iteration/Looping
	8.1 Introduction
	8.2 While Loop
	8.3 For Loop
	8.3.1 Python for Loops
	8.3.2 Looping by Non-default Increments
	8.3.3 Anonymous Loop Variables

	8.4 Negative Loops
	8.5 Break Loop Statement
	8.6 Continue Loop Statement
	8.7 For Loop with Else
	8.8 A Note on Loop Variable Naming
	8.9 Dice Roll Game
	8.10 Online Resources
	8.11 Exercises
	8.11.1 Calculate the Factorial of a Number
	8.11.2 Print All the Prime Numbers in a Range

	9 Number Guessing Game
	9.1 Introduction
	9.2 Setting up the Program
	9.2.1 Create a New Python File
	9.2.2 Add a Welcome Message
	9.2.3 Running the Program

	9.3 What Will the Program Do?
	9.4 Creating the Game
	9.4.1 Generate the Random Number
	9.4.2 Obtain an Input From the User
	9.4.3 Check to See if the Player Has Guessed the Number
	9.4.4 Check They Haven’t Exceeded Their Maximum Number of Guess
	9.4.5 Notify the Player Whether Higher or Lower
	9.4.6 End of Game Status

	9.5 The Complete Listing
	9.6 Hints
	9.6.1 Initializing Variables
	9.6.2 Blank Lines Within a Block of Code

	9.7 Exercises

	10 Recursion
	10.1 Introduction
	10.2 Recursive Behaviour
	10.3 Benefits of Recursion
	10.4 Recursively Searching a Tree
	10.5 Recursion in Python
	10.6 Calculating Factorial Recursively
	10.7 Disadvantages of Recursion
	10.8 Online Resources
	10.9 Exercises

	11 Introduction to Structured Analysis
	11.1 Introduction
	11.2 Structured Analysis and Function Identification
	11.3 Functional Decomposition
	11.3.1 Functional Decomposition Terminology
	11.3.2 Functional Decomposition Process
	11.3.3 Calculator Functional Decomposition Example

	11.4 Functional Flow
	11.5 Data Flow Diagrams
	11.6 Flowcharts
	11.7 Data Dictionary
	11.8 Online Resources

	12 Functions in Python
	12.1 Introduction
	12.2 What are Functions?
	12.3 How Functions Work
	12.4 Types of Functions
	12.5 Defining Functions
	12.5.1 An Example Function

	12.6 Returning Values from Functions
	12.7 Docstring
	12.8 ReStructured Text
	12.9 Function Parameters
	12.9.1 Multiple Parameter Functions
	12.9.2 Default Parameter Values
	12.9.3 Named Arguments
	12.9.4 Arbitrary Arguments
	12.9.5 Positional and Keyword Arguments

	12.10 Anonymous Functions
	12.11 Online Resources
	12.12 Exercises

	13 Scope and Lifetime of Variables
	13.1 Introduction
	13.2 Local Variables
	13.3 The Global Keyword
	13.4 Nonlocal Variables
	13.5 Hints
	13.6 Online Resources
	13.7 Exercise

	14 Implementing a Calculator Using Functions
	14.1 Introduction
	14.2 What the Calculator Will Do
	14.3 Getting Started
	14.4 The Calculator Operations
	14.5 Behaviour of the Calculator
	14.6 Identifying Whether the User has Finished
	14.7 Selecting the Operation
	14.8 Obtaining the Input Numbers
	14.9 Determining the Operation to Execute
	14.10 Running the Calculator
	14.11 Exercises

	15 Introduction to Functional Programming
	15.1 Introduction
	15.2 What is Functional Programming?
	15.3 Advantages to Functional Programming
	15.4 Disadvantages of Functional Programming
	15.5 Referential Transparency
	15.6 Further Reading

	16 Higher-Order Functions
	16.1 Introduction
	16.2 Recap on Functions in Python
	16.3 Functions as Objects
	16.4 Higher-Order Function Concepts
	16.4.1 Higher-Order Function Example

	16.5 Python Higher-Order Functions
	16.5.1 Using Higher-Order Functions
	16.5.2 Functions Returning Functions

	16.6 Online Resources
	16.7 Exercises

	17 Curried Functions
	17.1 Introduction
	17.2 Currying Concepts
	17.3 Python and Curried Functions
	17.4 Closures
	17.5 Online Resources
	17.6 Exercises

	18 Introduction to Object Orientation
	18.1 Introduction
	18.2 Classes
	18.3 What Are Classes for?
	18.3.1 What Should a Class Do?
	18.3.2 Class Terminology

	18.4 How is an OO System Constructed?
	18.4.1 Where Do We Start?
	18.4.2 Identifying the Objects
	18.4.3 Identifying the Services or Methods
	18.4.4 Refining the Objects
	18.4.5 Bringing It All Together

	18.5 Where Is the Structure in an OO Program?
	18.6 Further Readings

	19 Python Classes
	19.1 Introduction
	19.2 Python and Classes
	19.3 Class Definitions
	19.4 Creating Examples of the Class Person
	19.5 Be Careful with Assignment
	19.6 Printing Out Objects
	19.6.1 Accessing Object Attributes
	19.6.2 Defining a Default String Representation
	19.6.3 Defining a Default Storage Representation

	19.7 Providing a Class Comment
	19.8 Adding a Birthday Method
	19.9 Defining Instance Methods
	19.10 Person Class Recap
	19.11 The Del Keyword
	19.12 Automatic Memory Management
	19.13 Intrinsic Attributes
	19.14 Online Resources
	19.15 Exercises

	20 Class Side and Static Behaviour
	20.1 Introduction
	20.2 Class-Side Data
	20.3 Class-Side Methods
	20.3.1 Why Class-Side Methods?

	20.4 Static Methods
	20.5 Hints
	20.6 Online Resources
	20.7 Exercises

	21 Class Inheritance
	21.1 Introduction
	21.2 What is Inheritance?
	21.3 Defining Inheritance Between Classes
	21.4 Terminology Around Inheritance
	21.4.1 Types of Hierarchy

	21.5 The Class Object and Inheritance
	21.6 The Built-in Object Class
	21.7 Purpose of Subclasses
	21.8 Overriding Methods
	21.9 Extending Superclass Methods
	21.10 Inheritance-Oriented Naming Conventions
	21.11 Python and Multiple Inheritance
	21.12 Multiple Inheritance Considered Harmful
	21.13 Summary
	21.14 Online Resources
	21.15 Exercises

	22 Why Bother with Object Orientation?
	22.1 Introduction
	22.2 The Procedural Approach
	22.2.1 Procedures for the Data Structure
	22.2.2 Packages

	22.3 Does Object Orientation Do Any Better?
	22.3.1 Packages Versus Classes
	22.3.2 Inheritance

	22.4 Summary

	23 Operator Overloading
	23.1 Introduction
	23.2 Operator Overloading
	23.2.1 Why Have Operator Overloading?
	23.2.2 Why not Have Operator Overloading?
	23.2.3 Implementing Operator Overloading

	23.3 Numerical Operators
	23.4 Comparison Operators
	23.5 Logical Operators
	23.6 Summary
	23.7 Online Resources
	23.8 Exercises

	24 Python Properties
	24.1 Introduction
	24.2 Python Attributes
	24.3 Setter and Getter Style Methods
	24.4 Public Interface to Properties
	24.5 More Concise Property Definitions
	24.6 Online Resources
	24.7 Exercises

	25 Abstract Base Classes
	25.1 Introduction
	25.2 Abstract Classes as a Concept
	25.3 Abstract Base Classes in Python
	25.3.1 Subclassing an ABC
	25.3.2 Defining an Abstract Base Class

	25.4 Defining an Interface
	25.5 Virtual Subclasses
	25.6 Mixins
	25.7 Online Resources

	26 Error and Exception Handling
	26.1 Introduction
	26.2 Errors and Exceptions
	26.3 What is an Exception?
	26.4 What is Exception Handling?
	26.5 Handling an Exception
	26.5.1 Accessing the Exception Object
	26.5.2 Jumping to Exception Handlers
	26.5.3 Catch Any Exception
	26.5.4 The Else Clause
	26.5.5 The Finally Clause

	26.6 Raising an Exception
	26.7 Defining an Custom Exception
	26.8 Chaining Exceptions
	26.9 Exception Groups
	26.10 Exception Group Handling
	26.11 Exception Notes
	26.12 Generate a Traceback Programmatically
	26.13 Online Resources
	26.14 Exercises

	27 Python Modules and Packages
	27.1 Introduction
	27.2 Modules
	27.3 Python Modules
	27.4 Importing Python Modules
	27.4.1 Importing a Module
	27.4.2 Importing from a Module
	27.4.3 Importing Aliases
	27.4.4 Hiding Some Elements of a Module
	27.4.5 Importing Within a Function

	27.5 Module Properties
	27.6 Standard Modules
	27.7 Python Module Search Path
	27.8 Modules as Scripts
	27.9 Python Packages
	27.9.1 Package Organization
	27.9.2 Sub Packages

	27.10 Online Resources
	27.11 Exercise

	28 Protocols, Polymorphism and Descriptors
	28.1 Introduction
	28.2 Implicit Contracts
	28.3 Duck Typing
	28.4 Polymorphism
	28.5 Protocols
	28.6 The Length Protocol
	28.7 The Sequence Protocol
	28.8 The Context Manager Protocol
	28.9 The Descriptor Protocol
	28.10 Online Resources
	28.11 Exercises

	29 Decorators
	29.1 Introduction
	29.2 What Are Decorators?
	29.3 Defining a Decorator
	29.4 Using Decorators
	29.5 Functions with Parameters
	29.6 Stacked Decorators
	29.7 Parameterized Decorators
	29.8 Method Decorators
	29.8.1 Methods Without Parameters
	29.8.2 Methods with Parameters

	29.9 Class Decorators
	29.10 When is a Decorator Executed?
	29.11 Built-In Decorators
	29.12 FuncTools Wrap
	29.13 Online Resources
	29.14 Book Reference
	29.15 Exercises

	30 Iterables and Iterators
	30.1 Introduction
	30.2 Iteration
	30.2.1 Iterables
	30.2.2 Iterators
	30.2.3 The Iteration Related Methods
	30.2.4 The Iterable Evens Class
	30.2.5 Using the Evens Class with a For Loop

	30.3 The Itertools Module
	30.4 Online Resources

	31 Generators and Coroutines
	31.1 Introduction
	31.2 Generators
	31.2.1 Defining a Generator Function
	31.2.2 Using a Generator Function in a for Loop
	31.2.3 When Do the Yield Statements Execute?
	31.2.4 An Even Number Generator
	31.2.5 Nesting Generator Functions
	31.2.6 Using Generators Outside a for Loop

	31.3 Coroutines
	31.4 Exercises

	32 Collections, Tuples and Lists
	32.1 Introduction
	32.2 Python Collection Types
	32.3 Characterising Collections
	32.4 Tuples
	32.4.1 Creating Tuples
	32.4.2 The Tuple() Constructor Function
	32.4.3 Accessing Elements of a Tuple
	32.4.4 Creating New Tuples from Existing Tuples
	32.4.5 Tuples Can Hold Different Types
	32.4.6 Iterating Over Tuples
	32.4.7 Tuple Related Functions
	32.4.8 Checking if an Element Exists
	32.4.9 Nested Tuples
	32.4.10 Things You Can’t Do with Tuples

	32.5 Lists
	32.5.1 Creating Lists
	32.5.2 List Constructor Function
	32.5.3 Accessing Elements from a List
	32.5.4 Adding to a List
	32.5.5 Inserting into a List
	32.5.6 List Concatenation
	32.5.7 Removing from a List
	32.5.8 The Pop() Method
	32.5.9 Deleting from a List
	32.5.10 List Methods

	32.6 Online Resources
	32.7 Exercises

	33 Sets
	33.1 Introduction
	33.2 Creating a Set
	33.3 The Set() Constructor Function
	33.4 Accessing Elements in a Set
	33.5 Working with Sets
	33.5.1 Checking for Presence of an Element
	33.5.2 Adding Items to a Set
	33.5.3 Changing Items in a Set
	33.5.4 Obtaining the Length of a Set
	33.5.5 Obtaining the Max and Min Values in a Set
	33.5.6 Removing an Item

	33.6 Nesting Lists Within Sets
	33.7 Set Operations
	33.8 Set Methods
	33.9 Online Resources
	33.10 Exercises

	34 Dictionaries
	34.1 Introduction
	34.2 What is a Dictionary
	34.3 Creating a Dictionary
	34.3.1 The dict() Constructor Function

	34.4 Working with Dictionaries
	34.4.1 Accessing Items via Keys
	34.4.2 Adding a New Entry
	34.4.3 Changing a Keys Value
	34.4.4 Removing an Entry
	34.4.5 Iterating Over Keys
	34.4.6 Values, Keys and Items
	34.4.7 Checking Key Membership
	34.4.8 Obtaining the Length of a Dictionary
	34.4.9 Nesting Dictionaries
	34.4.10 Checking to See if a Key is Present

	34.5 Dictionary Operators Added in 3.9
	34.6 A Note on Dictionary Key Objects
	34.7 Dictionary Methods
	34.8 Online Resources
	34.9 Exercises

	35 Frozensets
	35.1 Introduction
	35.2 Frozenset Characteristics
	35.3 Creating a Frozenset
	35.4 Frozenset Operations
	35.5 Using Frozensets with Sets

	36 Collection Related Modules
	36.1 Introduction
	36.2 List Comprehension
	36.3 The Collections Module
	36.3.1 The Counter Container
	36.3.2 The Defaultdict Container
	36.3.3 The Namedtuple Container

	36.4 The Itertools Module
	36.5 Online Resources
	36.6 Exercises

	37 ADTs, Queues and Stacks
	37.1 Introduction
	37.2 Abstract Data Types
	37.3 Data Structures
	37.4 Queues
	37.4.1 Python List as a Queue
	37.4.2 Defining a Queue Class

	37.5 Stacks
	37.5.1 Python List as a Stack

	37.6 Online Resources
	37.7 Exercises

	38 Map, Filter and Reduce
	38.1 Introduction
	38.2 Filter
	38.3 Map
	38.4 Reduce
	38.5 Online Resources
	38.6 Exercises

	39 Sorting and Higher-Order Functions
	39.1 Introduction
	39.2 The sorted() Function
	39.3 Sorting in Reverse Order
	39.4 The sort() Method
	39.5 Reversing the sort() Method
	39.6 Changing the Sort Key
	39.7 Sorting Containers of Containers
	39.8 Exercises

	40 Python Enumerated Values
	40.1 Introduction
	40.2 What is an Enumeration?
	40.3 Creating an Enumeration Using Class Syntax
	40.4 Enum Values
	40.5 Using the Name and Value Attributes
	40.6 Creating an Enumeration Using the Function Call Syntax
	40.7 Creating Enumerations from Automatic Values
	40.8 Working with Enum Aliases
	40.9 Enumerations Unique Values
	40.10 Iterating Through Enumeration Values
	40.11 Comparing Enumerations
	40.12 Integer Enumerations with IntEnum
	40.13 Exercises

	41 Structural Pattern Matching
	41.1 Introduction
	41.2 Basic Pattern Matching
	41.3 Default Case
	41.4 Capture Default Case
	41.5 Alternative Values in Case Condition
	41.6 Matching Sequences/Containers
	41.7 Structural Matching and Lists
	41.8 Matching Alternative Sequences/Containers
	41.9 Matching Multiple Options Within a Container
	41.10 Guards on a Case Condition
	41.11 Exercises

	42 Python Virtual Environments
	42.1 Introduction
	42.2 Third-Party Libraries
	42.3 The Pip Tool
	42.3.1 Finding the Pip Version
	42.3.2 Installing Pip
	42.3.3 Updating Pip

	42.4 Default Installation
	42.5 Pip Virtual Environments
	42.6 Installing Modules
	42.7 Listing and Freezing on Modules
	42.7.1 The pip list Command
	42.7.2 The pip inspect Command
	42.7.3 The pip freeze Command

	42.8 Uninstalling Modules
	42.9 Module Path Search Order
	42.10 Using PyCharm with Virtual Environments
	42.11 Online Resources

	43 Monkey Patching
	43.1 Introduction
	43.2 What is Monkey Patching?
	43.2.1 How Does Monkey Patching Work?
	43.2.2 Monkey Patching Example
	43.2.3 The Self Parameter
	43.2.4 Adding New Data to a Class

	43.3 Online Resources

	44 Attribute Lookup
	44.1 Introduction
	44.2 Attributes in Python
	44.3 Handling Unknown Attribute Access
	44.4 Handling Unknown Method Invocations
	44.5 Intercepting Attribute Lookup
	44.6 Intercepting Setting an Attribute
	44.7 Exercises

	45 The Python Bites Back
	45.1 Fourteen Beginner Mistakes to Avoid in Python
	45.2 Mistake #1: Indentation
	45.3 Mistake #2: Case Sensitivity
	45.4 Mistake #3: Default Initialization of Function/Method Parameters with Mutable Types
	45.5 Mistake #4: Default Initialization of Function/Method Parameters Using a Function
	45.6 Mistake #5: Out by 1 Ranges
	45.7 Mistake #5: Assignment Operator Versus Equality Operator
	45.8 Mistake #6: Falsey and Truthy
	45.9 Mistake #7: Hiding Built-In Functions and Classes
	45.10 Mistake #8: Hiding Built-In Modules
	45.11 Mistake #9: Function Reference Versus Function Call
	45.12 Mistake #10: Modifying a List While Iterating Over It
	45.13 Mistake #11: Sets Can Only Contain Immutable Objects
	45.14 Mistake #12: Local Versus Global Variables
	45.15 Mistake #13: Referencing Nonlocal Variable
	45.16 Mistake #14: Copying a Mutable Type

	46 TicTacToe Game
	46.1 Introduction
	46.2 Classes in the Game
	46.3 Counter Class
	46.4 Move Class
	46.5 The Player Class
	46.6 The HumanPlayer Class
	46.7 The ComputerPlayer Class
	46.8 The Board Class
	46.9 The Game Class
	46.10 Running the Game

