🖹 Методичні рекомендації:

1. Розглянемо приклад розв'язання рівняння:

$$x^2+4\cdot x-100=0$$

Для даного рівняння існує не більше двох коренів. Локалізуємо корні, для чого побудуємо графік лівої частини рівняння попередньо виконавши табулювання на інтервалі [-20, 20] з кроком 5. У комірці В2 введена формула, яка відповідає лівій частині рівняння.

	В2	▼ .	f×	=A2^2+	4*A2-100
	A	В		С	D
1	Х	γ			
2	-20	220,	Į		
3	-15	65	·		
4	-10	-40			
5	-5	-95			
6	0	-100			
7	5	-55			
8	10	40			
9	15	185			
10	20	380			

З рисунку видно, що функція міняє знак на інтервалах [-15,-10] і [5,10], тобто на кожному з цих інтервалів може бути корінь. В якості їх початкових значень, візьмемо середини цих інтервалів: -12,5 і 7,5. Введемо ці числа в діапазон комірок C2:C3. До діапазону комірок D2:D3 введені формули для обчислення значень функції при значеннях аргументу, введеного до комірок C2:C3, відповідно. Команда «Сервис»/«Параметры»/«Вычисления» задає відносну погрішність обчислень і граничне число ітерацій, відповідно це 0,00001 і 1000.

Для того, щоб знайти корінь у діапазоні C2:D2, виконаємо такі дії:

- 1.Команда «Сервис»/«Подбор параметра».
- 2.У вікні «Подбор параметра», задати цільову комірку (D2) в полі «Установить в ячейке:».
- 3.В полі «Значение:» ввести значення, яке необхідно одержати як результат обчислення за формулою. Це значення 0.
- 4.В полі *«Изменяя значение ячейки:»* ввести посилання на комірку **С2**. Натиснути кнопку **«ОК»**.

Подбор параметра		×
Установить в <u>я</u> чейке:	\$D\$2	
Зна <u>ч</u> ение:	0	
<u>И</u> зменяя значение ячейки:	\$C\$2	۰.
ОК	Отмена	

Аналогічні дії були виконані для пари значень у діапазоні **C3:D3**. Екранні копії демонструють розрахунки до і після застосування інструменту Добір параметру. Отже, корні рівняння – значення: -12,198 та 8,198.

		D2	•	∱ x =C2^2+4*C2-100		 D2		•	fx =C2^2+	4*C2-100	
		A	В	С	D		A	В	С	D	Ī
	1	Х	у	Корінь	<u> </u>	1	Х	у	Корінь	γ	Ī
	2	-20	220	-12,5	6,25,	2	-20	220	-12,198	0,00	Į
	3	-15	65	7,5	-13,75	3	-15	65	8,198039	0,00	Γ
	4	-10	-40			4	-10	-40			
	5	-5	-95			5	-5	-95			
	6	0	-100			6	0	-100			
	7	5	-55			7	5	-55			
	8	10	40			8	10	40			
	9	15	185			9	15	185			
	10	20	380			10	20	380			

2. Розглянемо приклад пошуку максимуму цільової функції $\mathbf{Z} = 3000 \mathbf{x}_1 + 2000 \mathbf{x}_2$ при обмеженнях:

$$\begin{cases} \boldsymbol{x}_{1} + 2\boldsymbol{x}_{2} \leq 6 \\ 2\boldsymbol{x}_{1} + \boldsymbol{x}_{2} \leq 8 \\ \boldsymbol{x}_{2} - \boldsymbol{x}_{1} \leq 1 \\ \boldsymbol{x}_{2} \leq 2 \\ \boldsymbol{x}_{1}, \boldsymbol{x}_{2} \geq 0 \end{cases}$$

Комірки **A3** та **B3** відводяться під значення змінних x_1 та x_2^{-1} . У комірку **D4** введена цільова функція. У комірки **A6:A9** введені ліві частини обмежень, у

діапазон В6:В9 знаки ≤ («Вставка»/«Символ» або стрічка «Вставка» кнопка ^{сищол}), а до комірок С6:С9 – праві частини обмежень:

Команда «Сервис»/«Поиск решения» (або стрічка «Данные» кнопка Сонск решения). Заповнюється вікно «Поиск решения» («Параметры поиска

 1 – кількість змінних визначається також з обмежень. Наприклад, у варіанті 15 цільова функція залежить лише від трьох змінних **x**₁, **x**₂, **x**₃, а в обмеженнях присутні змінні **x**₁, **x**₂, **x**₃, **x**₄, **x**₅, **x**₆, тому змінних в цілому шість.

решения»), у відповідності з рисунком:

	Параметры поиска решения
Поиск решения Установить целевую ячейку: Ф0\$4 Равной: О дассикальному значению О значению О значению О значению Изменда ячейки:	Оптинизировать целевую функцию: \$D\$4 55 До: © Максинум Оминиям Эначения: 0 Изиеняя ячейки переменных: \$A\$3:\$B\$3 55 В доответствии с ограничениями:
\$А\$3:\$B\$3 Предположить	Адбавить
Ограничения:	Изменить
Добавить	Удалить
Узменить Далить Справка	Сбросить

Для додавання обмежень натиснули кнопку [Добавить] і в діалоговому вікні «Добавление ограничений» вказали комірки та знаки обмежень:

Добавление ограничения		Добавление ограничения
Ссылка на дчейку: \$A\$6:\$A\$9 💽 <=	<u>О</u> граничение: • \$C\$6:\$C\$9	Ссылка на ячейки: Ограничение: \$A\$6:\$A\$9 € ▼ =\$C\$6:\$C\$9 €€€
ОК Отмена	До <u>б</u> авить <u>С</u> правка	О <u>К</u> Д <u>о</u> бавить О <u>т</u> мена

У MS Excel 2003 в діалоговому вікні «Параметры» (кнопка [Параметры]) необхідно встановити прапорці «Линейная модель» и «Неотрицательные значения». У MS Excel 2007/2010 для цього використовуються прапорець «Сделать переменные без ограничений неотрицательными» та значення «Поиск решения линейных задач симплекс-методом» зі списку «Выберите метод решения».

		Параметры поиска решения
Параметры поиска решения		Оптинизировать целевую функцию: 5054 55 До: © Максинун Омиевнун Эзначения: 0 Изменяя ячейки переменных: 5453:5853 56
		В соответствии с ограничениями:
Максимальное время: 100 сек	унд ОК	\$A\$6:\$A\$9 <= \$C\$6:\$C\$9
Предельное число итераций: 100	Отмена	стинны
Относительная погрешность: 0,000001	Загрузить модель	Удалить
Допустимое отклонение: 5	% Сохр <u>а</u> нить модель	Сброонть
Сходимость: 0,0001	<u>С</u> правка	
🗸 Линейная модель 🗌 Авт	оматическое масштабирование	Выберите нетод решения: Поиск решения линейных задач симплекс-нетодом 💌 Параметры
		Метод решения
Оценки Разности	Метод поиска	Для гладких нелинейных задач используйте поиск решения нелинейных задач методом ОПГ, для линейных задач - поиск решения линейных задач симплекс-методом, а для негладких
• линейная	<u> <u> </u> </u>	задач - эволюционныя поиск решения.
О квадратичная	О сопряженных градиентов	Справка Найти решение Закрыть

Після натискання кнопки [Выполнить] ([Найти решение]) відкриється вікно «Результаты поиска решения», яке повідомляє про результат роботи Пошуку рішення. Результати розрахунків представлені на рисунку:

	А	В	С	D	E
1	Змінні				
2	x1	x ₂			
3	3,333333	1,333333			
4	Цільова ф	ункція	Z=	12666,67	
5	Обмежен	ня			
6	6	≤	6		
7	8	5	8		
8	-2	≤	1		
9	1,333333	≤	2		
10					

Отже, лінійна функція $Z = 3000x_1 + 2000x_2$ досягає максимуму при $x_1=3,333$ та $x_2=1,333$.

3. Розглянемо приклад пошуку мінімуму функції y = cosx на інтервалі [0;6,5]:

Для цього протабулюємо функцію з кроком 0,5 та побудуємо її графік.

Для табулювання функції скористаємося таблицею підстановки. На початковому етапі у діапазоні **А1:В2** були підготовлені вихідні дані для таблиці підстановки:

Потім у діапазоні A4:B18 будуємо таблицю функції. Для цього у діапазон A5:A18 було проведено табулювання змінної x від 0 до 6,5 з кроком 0,5. У комірку B5 введена формула =B2. Виділено діапазон A5:B18 (де буде розташована таблиця) і виконано команду: «Данные»/«Таблица подстановки» (MS Excel 2003) або стрічка «Данные»/«Анализ "что если"»/«Таблица данных» (MS Excel 2007/2010). Відкриється діалогове вікно «Таблица подстановки» (MS Excel 2003) «Таблица данных» (MS Excel 2007/2010). В якому в полі «Подставлять значения по строкам в:»² необхідно вказати комірку B1³ і натиснути кнопку [OK].

Таблица подстановки	Таблица данных
Подставлять значения по столбцам в:	Подставлять значения по столбцам в:
ОК Отмена	ОК Отмена

Результат табулювання та побудови графіка наведений на рисунку⁴:

² Якщо в таблиці значення х знаходяться в рядку (тобто змінюються по стовпцям), то необхідно обрати варіант «Подставлять значения по столбцам в:»

³ Це комірка з діапазону **A1:B2**, в якій знаходиться вихідне значення x

⁴ Зверніть увагу на формулу в комірці **В6**

Як видно з графіку приблизно у точці x=3 функція (y) приймає мінімальне значення, тому x=3 – перше наближення:

Скористуємося надбудовою **Пошук рішення** для того, щоб знайти мінімум функції y = cosx. У вікні «**Поиск решения**» цільовою буде комірка, що утримує значення функції (**E2**), а змінюватися буде вміст комірки **D2**:

		Параметры поиска решения
		Оптимизировать целевую функцию: \$E\$2
		До: 🔘 Максимум 🔘 Минимум 🔘 <u>Э</u> начения: 0
		Изменяя ячейки переменных:
		\$D\$2
		В соответствии с ограничениями:
		Адбавить
Поиск решения		Изменить
Установить целевую ячейку: 🛛 \$E\$2 💽	Выполнить	Удалить
Равной: Омаксимальному значению Означению: 0		
	Закрыть	Сбросить
минимальному значению		
Измендя ячейки:		⊸Загрузить/сохранить
		Сделать переменные без ограничений неотрицательными
		Выберите
Ограничения:	Параметры	
Лобавить		Метод решения
Додовить		Для гладких нелинейных задач используйте поиск решения нелинейных задач методом ОПГ, пля личейных задач - поиск решения личейных задач симплекс-истором - а для негозоких
Изменить		задач - эволюционный поиск решения.
	Восс <u>т</u> ановить	
Удалить		
	Справка	Справка Найти решение Закрыть

<u>Примітка!</u> У даному випадку **Пошуку рішення** не задаються обмеження і ця задача не є лінійною моделлю.

Результат роботи Пошуку рішення наведено на рисунку:

	E2	•	<i>f</i> x =C	OS(I	D2)							
	А	В	C		D	E	F	G	н	I	J	
1	x=	0)		х	y(x)						
2	v(x) =	1	min		3,141593	-1						
3												
4	x	v(x)										
5	. 0	1 000			Результат	гы поиска	решения				X	
6	0.5	0.878			_			_				
7	1	0.540			Поиск свел	Поиск свелся к текущему решению. Все ограничения выполнены. Тип отчета						
, ,	1 6	0,540			DBITOTITOTIC							
0	1,5	0,071			Covp				Уст	ультаты Ойчивость		
9	2	-0,416	-			Сохранить наиденное решение Пределы						
10	2,5	-0,801			BOCCT	О Восстановить исходные значения						
11	3	-0,990			OK							
12	3,5	-0,936						co <u>s</u> paninto e	.gonaphrini		<u> </u>	
_			'									
_	A	В	С		DE	F	G	H	1	J	K	
1	x=	0		x	y(x)							
2	y(x)=	1 r	nin	3,	141593	-1						
3				_		_	_					
4	X	y(x)	-	Pea	ультаты поисн	ка решения				×		
5	0.5	0.878	-									
7	1	0.540	-		Поиск сошело	я к текущему	решению. Вс	e				
8	1.5	0.071	_		ограничения і	выполнены.			Результаты Результаты			
9	2	-0,416	_		O Coxpanie	ь найденное ре	ешение		Устойчивос	ть		
10	2,5	-0,801			0				Пределы			
11	. 3	-0,990			О Восстанов	ить исходные	значения					
12	3,5	-0,936										
13	3 4	-0,654			вернуть <u>с</u> я	в диалоговое	окно парам	erhos				
14	4,5	-0,211	_	ſ	04	1			Coversion		1	
15	5 5	0,284	_		0 <u>n</u>				Сохрани	ю сцепарий	1	
16	5,5	0,709	_		Поиск сошело	я к текушему	решению. В	се ограничени	ия выполнен	ы.		
17	6	0,960	_				pemennio, D	ee or punniten				
18	6,5	0,977	-		При поиске ре	шения было в	ыполнено 5 и	тераций, во вр	емя которых	значение		
19	, ,		-		целевой функц значение пара	ии существен метра схоли	но не измени/ лости или доvi	пось. Попытайт гую начальную	гесь задать м оточку.	еньшее		
20	,		_									
21												

Отже функція y = cosx приймає мінімальне значення y=-1,0 у точці $x \approx 3,141593$.

4. Розглянемо приклад розв'язання системи нелінійних рівнянь:

$$\begin{cases} x^{2} + y^{2} = 3 \\ 2x + 3y = 1 \end{cases}$$
(*)

Пара (*x*, *y*) є розв'язком системи тільки і тільки тоді, коли вона є рішенням наступного рівняння з двома невідомими:

$$(x2 + y2 - 3)2 + (2x + 3y - 1)2 = 0$$
 (**)

Рівняння (**) має не більше двох різних рішень.

Протабулюємо ліву частину рівняння (**) за змінними **x** та **y** на відрізку [-3,3] з кроком 1,5 за допомогою таблиці підстановки з двома змінними.

Для цього в діапазон A1:B3 введено підготовчу таблицю:

	пи	-	· (= × 🗸	∫ <i>f</i> ∗ =(B1	^2+B2^2-3)	^2+(2* <mark>B1</mark> +	3*B2-1)^2	
	А	В	С	D	E	F	G	
1	x=	-3						
2	y=	-3						
3	f(x,y)=	=(B1^2+B2						
4								

У діапазон **B5:N5** введені значення для змінної x (числа від -3 до 3), а в діапазон A6:A18 – значення змінної y (числа від -3 до 3). На перетині двох цих діапазонів (у комірку A5) введена формула =**B3**:

Виділили діапазон A5:N18 і виконали команду «Данные»/«Таблица подстановки» (MS Excel 2003) або стрічка «Данные»/«Анализ "что если"»/«Таблица данных» (MS Excel 2007/2010). У вікні, що відкрилося вказати комірки B1 та B2 відповідно у полях «Подставлять значения по столбцам в:» і «Подставлять значения по строкам в:»:

Таблица данных	? X
Подставлять значения по ст <u>о</u> лбцам в:	\$B\$1 💽
Подставлять значения по строкам в:	\$B\$2
ОК	Отмена

Результат табуляції функції наведен на рисунку:

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	x=	-3												
2	y=	-3												
3	f(x,y)=	481												
4														
5	481	-3	-2,5	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3
6	-3	481	375,06	296	237,06	193	160,06	136	120,06	113	117,06	136	175,06	241
7	-2,5	360,31	272,5	208,81	162,5	128,31	102,5	82,813	68,5	60,313	60,5	72,813	102,5	156,31
8	-2	269	196,56	146	110,56	85	65,563	50	37,563	29	26,563	34	56,563	101
9	-1,5	200,31	140,5	100,81	74,5	56,313	42,5	30,813	20,5	12,313	8,5	12,813	30,5	68,313
10	-1	149	99,063	68	49,063	37	28,063	20	12,063	5	1,0625	4	19,063	53
11	-0,5	111,31	68,5	43,813	30,5	23,313	18,5	13,813	8,5	3,3125	0,5	3,8125	18,5	51,313
12	0	85	46,563	26	16,563	13	11,563	10	7,5625	5	4,5625	10	26,563	<mark>61</mark>
13	0,5	69,313	32,5	13,813	6,5	5,3125	6,5	7,8125	8,5	9,3125	12,5	21,813	42,5	81,313
14	1	65	27,063	8	1,0625	1	4,0625	8	12,063	17	25,063	40	67,063	113
15	1,5	74,313	32,5	10,813	2,5	2,3125	6,5	12,813	20,5	30,313	44,5	66,813	102,5	158,31
16	2	101	52,563	26	14,563	13	17,563	26	37,563	53	74,563	106	152,56	221
17	2,5	150,31	92,5	58,813	42,5	38,313	42,5	52,813	68,5	90,313	120,5	162,81	222,5	306,31
18	3	229	159,06	116	93,063	85	88,063	100	120,06	149	189,06	244	319,06	421
10														

З цього рисунку видно, що найменших значень (0,5 та 1) функція f(x,y) набуває при наступних парах значень (1,5;-0,5) та (-1;1). Отже ці значення обрані в якості перших наближень до корнів.

Для визначення першого розв'язку системи відведемо під змінні x и y комірки **E2** и **F2** відповідно, та введемо до них начальні наближення **1,5** та **-0,5**. У комірку **G2** ввели формулу, яка обчислює значення лівої частини рівняння (**) для цих значень невідомих:

=(E2^2+F2^2-3)^2+(2*E2+3*F2-1)^2

Аналогічні дії виконано для іншої пари наближень:

f _x	fx =(E2^2+F2^2-3)^2+(2*E2+3*F2-1)^2								
	Е	F	G	Н	I.				
	х	у	f(x,y)						
	1,5	-0,5	0,5						
	-1	1	1						

Після цього викликали Пошук рішення. У вікні «Поиск решения» необхідно вказати цільову комірку (G2), яка має досягти значення 0 і комірки, що змінюються (діапазон E2:F2):

	Параметры поиска решения
	Оптимизировать целевую функцию: \$G\$2 🔢 До: Омакомум Минимум © Эначения: 0 Изменяя ячейки переменчных:
	SES2:SFS2
Понск решения Установить целевую ячейку: \$G\$3 Равной:	Ддбавить Ддбавить Изнентрь Удалить Сброонть Загрузить/сохранить Выберите метод решения: Покос решения неличейных задач методон ОПГ таранетры Метод решения Для гладоки неличейных задач используйте покос решения неличейных задач методон ОПГ, для гладоки неличейных задач используйте покос решения неличейных задач методон ОПГ, для ладоки неличейных задач используйте покос решения неличейных задач методон ОПГ, для ладоки неличейных задач используйте покос решения неличейных задач методон ОПГ, для ладокия неличейных задач используйте покос решения неличейных задач методон ОПГ, для ладоки неличейных задач используйте покос решения неличейных задач методон ОПГ, для ладоки неличейных задач используйте покос решения неличейных задач во общество общест

Аналогічні дії було виконано для комірки G3 та діапазону E3:F3. У результаті отримані наступні корні:

E	F	G	
х	У	f(x,y)	
1,5764	-0,717	0,00	Į
-1,269	1,1791	0,00	ſ

Отже, система рівнянь має такі пари розв'язків (1,576; -0,717) та (-1,269; 1,179).