Нелинейная регрессия

1. условие

1. На основі статистичних даних показника *Y* і фактора *X* знайти оцінки параметрів лінії регресії $\hat{y} = \frac{b_1}{x} + b_0$ та визначити

основні характеристики.

x	у
1	12
1,5	8,8
2	7
2,5	6
3	5,5
3,5	5
4	4,6
4,5	4,2
5	4
5,5	4
6	4

2. переход к линейной модели заменой $x_1 = \frac{1}{x}$. Линейное уравнение имеет

вид $y = b_1 x_1 + b_0$

3. Определение коэффициентов линейной модели.

Розрахунок за допомогою функції Линейн()

- 1. Виділяємо блок, де повинні знаходитися розрахункові дані: ширина блоку дорівнює числу оцінюваних параметрів (2), а висота дорівнює п'яти рядкам.
- 2. Відкриваємо діалогове вікно *Мастер функцій*, обираємо функцію *ЛИНЕЙН* у полі категорії *СТАТИСТИЧЕСКИЕ* і натискаємо кнопку *Далее*> для переходу в наступне вікно.
- У другому діалоговому вікні вводимо: у перше поле значення у, у друге поле – значення x, у третє поле – значення 1, у четверте поле – значення 1. Якщо необхідно знайти не тільки параметри лінії регресії, а і додаткову регресійну статистику, натискаємо клавішу F2 (у деяких версіях цього робити не треба), а потім Ctrl+Shift+Enter.

Таблиця розрахункових значень додаткової регресійної статистики має вигляд:

	b_1	b_0	
	$\sigma_{\scriptscriptstyle b_1}$	$\sigma_{\scriptscriptstyle b_0}$	
	R^2	S	
	$F_{\Phi i u e p a}$	K	
	$\sum_{i=1}^{n} (y_{i \text{ reop}} - y_{i \text{ серед}})^2$	$\sum_{i=1}^{n} (y_i - y_i_{\text{teop}})^2$	
• (° 🗙 🖌 🕇	=ЛИНЕЙН(B2:B12;C2:C12;1;1)		-

		А	В	С	D	E	F	G	Н	I.	J	К	L	N
1	. x		у	x1=1/x										
2		1	12	1		012;1;1)		Аргум	енты функ	ции				
3		1.5	8.8	0.666667										
4	Ļ	2	7	0.5				Линеин						
5		2.5	6	0.4					Известные_значения_у					
6	;	3	5.5	0.333333					Известные_значения_х					
7	·	3.5	5	0.285714						Конст	1			
8	:	4	4.6	0.25					Статистика		1			
9		4.5	4.2	0.222222										
1	D	5	4	0.2				Bear						
1	1	5.5	4	0.181818				BO3B	возвращает параметры линеиного приолижения по методу наименьших к					х квадре
1	2	6	4	0.166667						0	Статистика	логическое з	начение, кот регрессии (орое ука (ИСТИНА

	E2	(f_{x}	{=ЛИНЕЙН(В2:В12;С2:С12;1;1)}				
	A B		С	D	E	F		
1	x	у	x1=1/x					
2	1	12	1		9.8431737	2.154133		
3	1.5	8.8	0.666667		0.1351482	0.061257		
4	2	7	0.5		0.9983062	0.109074		
5	2.5	6	0.4		5304.5681	9		
6	3	5.5	0.333333		63.109289	0.107074		
7	3.5	5	0.285714					
8	4	4.6	0.25					
9	4.5	4.2	0.222222					
10	5	4	0.2					
11	5.5	4	0.181818					
12	6	4	0.166667					

4. Уравнение нелинейной регрессии имеет вид

$$y = \frac{9,84}{x} + 2,15$$
.

линейн

Прогноз $y(x = 6, 13) = \frac{9,84}{6,13} + 2,15 = 3,76$

Коэффициент детерминации $R^2 = 0,998$.

5. Проверка адекватности модели.

Расчетное значение критерия Фишера $F_{\Phi i u e p a} = 5304, 6$

Табличное значение критерия Фишера

$$F_{\phi_{iuuepa}}(0,05;k_1 = m = 1;k_2 = n - m - 1 = 11 - 2 = 9) = 5,12.$$

 $F_{{\rm \Phi}iuepa,ma{\rm f}a} < F_{{\rm \Phi}iuepa,pospax}$, модель адекватная

6. графики

