Salta al contenido principal

Bloques

Salta Navegación

Navegación

  • Área personal

    • Página principal del sitio

    • Páginas del sitio

      • Mis cursos

      • Marcas

      • ArchivoІнструкція для здобувачів освіти до вибору дисципл...

      • URLВибір дисциплін на 2025-2026 навчальний рік

      • URLВибір дисциплін на 2024-2025 навчальний рік

      • ForoНовини сайту

      • URLІнструкція - основи роботи з системою Moodle

      • URLЦИВІЛЬНИЙ ЗАХИСТ

      • CarpetaНормативна база СЕЗН

      • URLВідновлення пароля

      • ArchivoПам’ятка для користувача системи Moodle

      • ArchivoСистема оцінки курсу

      • EncuestaОцінка якості курсу

    • Mis cursos

    • Cursos

      • Факультети, кафедри

        • Біологічний факультет

        • Економічний факультет

        • Журналістики факультет

        • Інженерний навчально-науковий інститут ім. Ю.М. По...

        • Іноземної філології факультет

        • Математичний факультет

          • Кафедра загальної математики

          • Кафедра загальної та прикладної фізики

          • Кафедра комп'ютерних наук

          • Кафедра прикладної математики і механіки

          • Кафедра програмної інженерії

            • archive

            • Технології Big Data

            • Машинне навчання (Математичні основи машинного нав...

            • Проєктування та аналіз обчислювальних алгоритмів

            • C/к Сучасні СУБД (Плюта Н. В.)

            • 2 Програмне забезпечення наукових досліджень (магі...

            • Автоматизоване тестування (Кудін О.В.)

            • Автоматизоване тестування Web-додатків (Кудін О.В.)

            • Адміністрування комп'ютерних систем (Горбенко В.І.)

            • Алгебра та геометрія Дисципліна вільного вибору ст...

            • Алгоритми та структури даних (Програмна інженерія)

            • Алгоритми шифрування та захисту даних

            • Основи машинного навчання

              • General

              • 1. Пояснювальний аналіз даних.

              • 2. Попередня обробка даних

              • 3. Лінійні моделі прогнозування

              • 4. Моделі інформаційного навчання

              • 5. Моделі на основі схожості та помилок

                • TareaЛабораторна робота №6. Метод опорних векторів

                • URLПриклад SVM

                • TareaЛабораторна робота №7. Метод найближчих сусідів (KNN)

              • 6. Ансамблеві моделі

              • 7. Навчання без вчителя

              • 8. Організація обчислювального процесу моделей маш...

              • Екзамен

          • Кафедра фундаментальної та прикладної математики

          • Практична підготовка математичного факультету

          • Інформація, Статистика Математичного факультету

        • Менеджменту факультет

        • Соціальної педагогіки та психології факультет

        • Соцiологiї та управлiння факультет

        • Факультет історії та міжнародних відносин

        • Факультет фізичного виховання, здоров'я та туризму

        • Філологічний факультет

        • Юридичний факультет

      • Аспірантура

      • Науково-технічна позашкільна освіта

      • Підготовчі курси до ЗНО

      • Адміністративний розділ

      • Центр післядипломної освіти та професійних кваліфі...

      • Школа педагогічної майстерності

  • Cerrar
    Selector de búsqueda de entrada
  • Español - Internacional ‎(es)‎
    • Русский ‎(ru)‎
    • Українська ‎(uk)‎
    • Deutsch ‎(de_old)‎
    • English ‎(de)‎
    • English ‎(en)‎
    • Español - Internacional ‎(es)‎
    • Français ‎(fr)‎
    • Italiano ‎(it)‎
    • Polski ‎(pl)‎
  • Entrar

Основи машинного навчання

Cerrar
Selector de búsqueda de entrada
Вибір дисциплін Colapsar Expandir
Вибір дисциплін Colapsar Expandir
Обрати дисципліни Статистика вибору дисциплін ВМУ
  1. Inicio
  2. Cursos
  3. Факультети, кафедри
  4. Математичний факультет
  5. Кафедра програмної інженерії
  6. Основи машинного навчання
  7. 5. Моделі на основі схожості та помилок
  8. Лабораторна робота №7. Метод найближчих сусідів (KNN)

Лабораторна робота №7. Метод найближчих сусідів (KNN)

Requisitos de finalización

Задача прогнозування відтоку клієнтів (Churn prediction) полягає у визначенні, які клієнти компанії можуть припинити користуватися її послугами або продуктами протягом певного часу.

Факт відтоку зазвичай кодується міткою (0 або 1) та позначає клієнтів, які припинять користуватися продуктом або послугою протягом певного періоду часу. Клієнти відмовляються від користування послугами з різних причин, таких як погане обслуговування, незадоволення продуктом, чутливість до ціни, кращі альтернативи та зміни обставин, наприклад переїзд. Аналітики даних знаходять ознаки, що можуть впливати на відтік, та будуть відповідні прогнозні моделі машинного навчання.

Для набору даних https://www.kaggle.com/datasets/fridrichmrtn/user-churn-dataset 

1. Виконати описовий аналіз даних.

2. На основі описового аналізу даних зробити висновки про необхідні процедури обробки даних та виконати попередню обробку даних.

3. Побудувати моделі класифікації: KNN, Random Forest, SVM, Gradient Boosting.

4. Оцінити якість побудованих моделей за допомогою кросвалідації із використанням метрики https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.matthews_corrcoef.html

Actividad previa
Приклад SVM
Próxima actividad
Презентація. Випадкові ліси
Resumen de retención de datos
Descargar la app para dispositivos móviles