

Hands-On Python Deep
Learning for the Web

Integrating neural network architectures to build smart web
apps with Flask, Django, and TensorFlow

Anubhav Singh
Sayak Paul

BIRMINGHAM - MUMBAI

Hands-On Python Deep Learning for the
Web
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Ali Abidi
Content Development Editor: Pratik Andrade
Senior Editor: Ayaan Hoda
Technical Editor: Sarvesh Jaywant
Copy Editor: Safis Editing
Project Coordinator: Neil Dmello
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Alishon Mendonsa

First published: May 2020

Production reference: 1150520

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-608-5

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

About the authors
Anubhav Singh, a web developer since before Bootstrap was launched, is an explorer of
technologies, often pulling off crazy combinations of uncommon tech. An international
rank holder in the Cyber Olympiad, he started off by developing his own social network
and search engine as his first projects at the age of 15, which stood among the top 500
websites of India during their operational years. He's continuously developing software for
the community in domains with roads less walked on. You can often catch him guiding
students on how to approach ML or the web, or both together. He's also the founder of The
Code Foundation, an AI-focused start-up. Anubhav is a Venkat Panchapakesan Memorial
Scholarship awardee and an Intel Software Innovator.

My thanks go out to everyone who pushed me toward the completion of this book – my
parents, who kept asking me about it on every call; my friends and professors, who were
lenient on me so I could focus on the book; and the team at Packt, who patiently kept
motivating us throughout the process. A huge thanks to my coauthor, Sayak Paul, who
believed in me and invited me to work with him on this book.

Sayak Paul is currently with PyImageSearch, where he applies deep learning to solve real-
world problems in computer vision and bring solutions to edge devices. He is responsible
for providing Q&A support to PyImageSearch readers. His areas of interest include
computer vision, generative modeling, and more. Previously at DataCamp, Sayak
developed projects and practice pools. Prior to DataCamp, Sayak worked at TCS Research
and Innovation (TRDDC) on data privacy. There, he was a part of TCS's critically acclaimed
GDPR solution called Crystal Ball. Outside of work, Sayak loves to write technical articles
and speak at developer meetups and conferences.

I would like to, first and foremost, thank my parents, Baby Paul and Tapas Kumar Paul,
for their continued support, patience, and encouragement throughout the long process of
writing this book. Thanks to my coauthor Anubhav too, he has been very patient with my
little suggestions and he has tried his best to match them.

About the reviewer
Karan Bhanot is a computer science graduate from Punjab Engineering College, India. He
is a machine learning and data science enthusiast. He has worked on numerous projects
involving Python, Jupiter Notebook, NumPy, pandas, Matplotlib, Flask, Flask-RESTPlus,
neural networks (Keras and TensorFlow), R, Shiny, Leaflet, and ggplot. As a frontend
developer, he has also worked on HTML, CSS, and JavaScript. He is currently pursuing a
PhD in computer science with a research focus on data science and machine learning. He is
active on GitHub and blogs his ideas and learnings on online blogging websites such as
Medium.

I would like to thank my sister, Ms. Naina Bhanot, and my parents, Mr. Arvind Bhanot
and Mrs. Savita Bhanot, for always supporting me in all my endeavors.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

To my father, Shiv Bahadur Singh, who is a teacher and taught me the beauty of sharing
knowledge, and to my mother, Nirmala Singh, who never let me stray from my focus in the face
of adversities.

– Anubhav Singh

To my mother, Baby Paul, and my father, Tapas Kumar Paul, who have always encouraged me
to pursue the things I love and care about. To all my university juniors, who have supported me

tremendously in all of my honest endeavors.

– Sayak Paul

Preface
Deep learning techniques can be used to develop intelligent web apps. Over the last few
years, tremendous growth in the number of companies adopting deep learning techniques
in their products and businesses has been observed. There has been a significant surge in
the number of start-ups providing AI and deep learning-based solutions for niche
problems. This book introduces numerous tools and technological practices used to
implement deep learning in web development using Python.

To start with, you will learn about the fundamentals of machine learning, with a focus on
deep learning and the basics of neural networks, along with their common variants, such as
convolutional neural networks, and how you can integrate them into websites with
frontends built with different standard web tech stacks. You will create your deep learning-
enabled web application using Python libraries such as Django and Flask by creating REST
APIs for custom models. You will set up a cloud environment for deep learning-based web
deployments on Google Cloud and AWS, and get guidance on how to use their battle-
tested deep learning APIs. Further, you will use Microsoft's Intelligent Emotion API, which
can detect human emotions from a picture of a face. You will also get to grips with
deploying real-world websites, and you will get great insights into securing those websites
using reCaptcha and Cloudflare for a robust experience. Finally, you will use natural
language processing to recommend restaurants from user reviews and to integrate a voice
UX on your web pages through Dialogflow.

By the end of this book, you'll be able to deploy your intelligent web apps and websites
with the help of the best tools and practices.

Who this book is for
This book is for data scientists, machine learning practitioners, and deep learning engineers
who are looking to perform deep learning techniques and methodologies on the web. This
book will also be ideal for web developers who want to use smart techniques in the
browser to make it more interactive. You will gain deep insights into browser data using
this handy guide.

Having a working knowledge of the Python programming language and fundamental
machine learning techniques (as covered in the Machine Learning Crash Course by Google,
available at https:/ / developers. google. com/machine- learning/ crash- course) will be
beneficial for reading this book.

https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course
https://developers.google.com/machine-learning/crash-course

What this book covers
Chapter 1, Demystifying Artificial Intelligence and Fundamentals of Machine Learning, briefly
introduces machine learning, deep learning, and other forms of artificial intelligence
methodologies related to web development. This chapter quickly goes over fundamental
topics of the machine learning pipeline, such as exploratory data analysis, data
preprocessing, feature engineering, training and testing, models of evaluation, and more.
Toward the end, a comparison between the interactivity and user experience offered by
websites before AI became popular and how they are in the modern day is presented. We
also study the usage of AI on the web by some of the biggest firms and how AI has
revolutionized their products.

Chapter 2, Getting Started with Deep Learning Using Python, introduces basic concepts and
terminologies related to deep learning and how to use deep learning to build a simple web
app with different deep learning libraries in Python.

Chapter 3, Creating Your First Deep Learning Web Application, discusses several important
concepts regarding the structure of web applications specifically for leveraging deep
learning. It then proceeds to discuss the approaches to understanding a dataset. The
chapter also shows how to implement and improve a simple neural network and how it can
be wrapped into an API for the development of a simple web application. We then proceed
to showcase how the API can be implemented using different standard web tech stacks.

Chapter 4, Getting Started with TensorFlow.js, introduces the most popular JavaScript library
for deep learning—TensorFlow.js (Tf.js). It gives a brief overview of what TensorFlow.js is
and the things it is capable of doing in a browser. Furthermore, this chapter shows how you
can use pre-trained models using TensorFlow.js and build a simple web application with it.

Chapter 5, Deep Learning through APIs, introduces the concept of APIs and their importance
in software development. Further, the chapter proceeds to show examples of different deep
learning APIs. Toward the very end, the chapter presents an approach to choosing deep
learning API providers to suit particular use cases. The deep learning APIs covered are the
Vision API, the Text API, and others.

Chapter 6, Deep Learning on Google Cloud Platform Using Python, introduces the offerings by
Google Cloud Platform for web developers to integrate into their websites. The focus is on
Dialogflow, which can be used to make chatbots and conversational AIs; the Cloud
Inference API, which can be used to build a good recommendation system; and also the
Translation API, which is used to provide users in different locales with website content in
their languages. The chapter discusses their applications at length and also demonstrates a
basic how-to for using them with Python.

Chapter 7, DL on AWS Using Python: Object Detection and Home Automation, introduces
Amazon Web Services and talks briefly about the various offerings, including the Alexa
API and the Rekognition API. The Alexa API can be used to build home automation web
apps and other interactive interfaces, while the Rekognition API can be used to detect
people and objects in photos and videos.

Chapter 8, Deep Learning on Microsoft Azure Using Python, introduces Microsoft Azure
Cloud Services, focusing on the Cognitive Toolkit, which is Microsoft's alternative to
TensorFlow's Emotion API, which can be used to determine the emotion of a person from a
photograph of their face, and the Text-to-Speech API, which can be used to generate
natural-sounding voice from text.

Chapter 9, A General Production Framework for Deep Learning-Enabled Websites, introduces
the general framework to be set up for the efficient deployment of deep learning on the web
in a production environment. Strategies for reducing computing resources, converting raw
datasets to datasets for training deep learning models, and how to make models available
for usage on the web in a minimally resource-intensive way are covered.

Chapter 10, Securing Web Apps with Deep Learning, discusses several tricks and techniques
for securing websites with deep learning with Python. We present reCaptcha and
Cloudflare and discuss how they are used to enhance the security of websites. We also
show how to implement security mechanisms to detect malicious users on websites using
deep learning on the Python backend.

Chapter 11, DIY – A Web DL Production Environment, discusses the methods by which we
update models in production and how we can choose the right method according to
requirements. We begin with a brief overview and then demonstrate some famous tools for
creating deep learning data flows. Finally, we implement a demo of online learning, or
incremental learning, to establish a method of model update in production.

Chapter 12, Creating an E2E Web App Using DL APIs and Customer Support Chatbot,
introduces natural language processing and discusses how to create a chatbot for resolving
general customer support queries using Dialogflow and integrate it into a Django and Flask
website. We explore ways of implementing bot personalities and how to make such system
resources effective. We also introduce a method for implementing a text-to-speech and
speech-to-text-based user interface with Python.

Appendix, Success Stories and Emerging Areas in Deep Learning on the Web, illustrates some of
the most famous websites whose products are based heavily upon leveraging the power of
deep learning. This chapter also discusses some key research areas in web development
that could be enhanced using deep learning. This will help you to delve even deeper into
the fusion of web technologies and deep learning and will motivate you to come up with
your own intelligent web applications.

To get the most out of this book
This book assumes an understanding of the Python language, specifically Python 3.6 and
above. It is strongly recommended to have the Anaconda distribution of Python installed
on your local systems. Any Anaconda distribution with support for Python 3.6 and above is
good for running the examples in this book.

In terms of hardware, this book assumes the availability of a microphone, speaker, and
webcam on your computer.

Software/Hardware covered in the book OS Requirements

Anaconda distribution of Python and other Python
packages

1 GB RAM minimum, 8 GB
recommended
15 GB disk space

Code editor of your choice (Sublime Text 3 recommended) 2 GB RAM

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

It is expected that you will try to implement the samples present in this book by yourself. In
case you run into problems, you can reach out to us by emailing the authors – Sayak Paul
(spsayakpaul@gmail.com) and Anubhav Singh (xprilion@gmail.com). In case you are
unable to run the samples provided in the code repo of the book, you can raise issues on the
repo and we'll get back to you there!

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Python- Deep- Learning- for- Web. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/9781789956085_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We now need to import the saved model and weights from the model training
step. Once we do so, we need to recompile the model and make its predict function using
the make_predict_fuction() method."

A block of code is set as follows:

def remove_digits(s: str) -> str:
 remove_digits = str.maketrans('', '', digits)
 res = s.translate(remove_digits)
 return res

Any command-line input or output is written as follows:

python main.py

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789956085_ColorImages.pdf

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Fill up the entries and click on Continue."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Table of Contents
Preface 8

Section 1: Artificial Intelligence on the Web
Chapter 1: Demystifying Artificial Intelligence and Fundamentals of
Machine Learning 2

Introduction to artificial intelligence and its types 3
Factors responsible for AI propulsion 4

Data 4
Advancements in algorithms 5
Advancements in hardware 6
The democratization of high-performance computing 6

ML – the most popular form of AI 7
What is DL? 7
The relation between AI, ML, and DL 9
Revisiting the fundamentals of ML 10

Types of ML 10
Supervised learning 11
Unsupervised learning 12
Reinforcement learning 12
Semi-supervised learning 13

Necessary terminologies 13
Train, test, and validation sets 14
Bias and variance 14
Overfitting and underfitting 15
Training error and generalization error 16

A standard ML workflow 17
Data retrieval 18
Data preparation 18

Exploratory Data Analysis (EDA) 19
Data processing and wrangling 19
Feature engineering and extraction/selection 19

Modeling 20
Model training 21
Model evaluation 21
Model tuning 22

Model comparison and selection 23
Deployment and monitoring 24

The web before and after AI 25
Chatbots 25
Web analytics 26

Table of Contents

[ii]

Spam filtering 27
Search 28

Biggest web-AI players and what are they doing with AI 30
Google 31

Google Search 32
Google Translate 33
Google Assistant 34
Other products 34

Facebook 35
Fake profiles 35
Fake news and disturbing content 35
Other uses 35

Amazon 36
Alexa 36
Amazon robotics 36
DeepLens 36

Summary 36

Section 2: Using Deep Learning for Web Development
Chapter 2: Getting Started with Deep Learning Using Python 39

Demystifying neural networks 40
Artificial neurons 41

Anatomy of a linear neuron 42
Anatomy of a nonlinear neuron 44

A note on the input and output layers of a neural network 47
Gradient descent and backpropagation 51

Different types of neural network 54
Convolutional neural networks 54
Recurrent neural networks 59

Feeding the letters to the network 61
Initializing the weight matrix and more 62
Putting the weight matrices together 63
Applying activation functions and the final output 64

Exploring Jupyter Notebooks 66
Installing Jupyter Notebook 66

Installation using pip 67
Installation using Anaconda 67

Verifying the installation 67
Jupyter Notebooks 68

Setting up a deep-learning-based cloud environment 70
Setting up an AWS EC2 GPU deep learning environment 71

Step 1: Creating an EC2 GPU-enabled instance 72
Step 2: SSHing into your EC2 instance 73
Step 3: Installing CUDA drivers on the GPU instance 74
Step 4: Installing the Anaconda distribution of Python 75
Step 5: Run Jupyter 75

Deep learning on Crestle 75

Table of Contents

[iii]

Other deep learning environments 76
Exploring NumPy and pandas 76

NumPy 77
NumPy arrays 77
Basic NumPy array operations 79
NumPy arrays versus Python lists 81

Array slicing over multiple rows and columns 81
Assignment over slicing 81

Pandas 82
Summary 83

Chapter 3: Creating Your First Deep Learning Web Application 84
Technical requirements 85
Structuring a deep learning web application 85

A structure diagram of a general deep learning web application 86
Understanding datasets 87

The MNIST dataset of handwritten digits 87
Exploring the dataset 88

Creating functions to read the image files 89
Creating functions to read label files 91
A summary of the dataset 92

Implementing a simple neural network using Python 93
Importing the necessary modules 93
Reusing our functions to load the image and label files 94
Reshaping the arrays for processing with Keras 95
Creating a neural network using Keras 96
Compiling and training a Keras neural network 97
Evaluating and storing the model 98

Creating a Flask API to work with server-side Python 99
Setting up the environment 99
Uploading the model structure and weights 100
Creating our first Flask server 100
Importing the necessary modules 100
Loading data into the script runtime and setting the model 101
Setting the app and index function 102
Converting the image function 102
Prediction APIs 102

Using the API via cURL and creating a web client using Flask 104
Using the API via cURL 104
Creating a simple web client for the API 105

Improving the deep learning backend 108
Summary 108

Chapter 4: Getting Started with TensorFlow.js 109
Technical requirements 110
The fundamentals of TF.js 110

Table of Contents

[iv]

What is TensorFlow? 110
What is TF.js? 110
Why TF.js? 111
The basic concepts of TF.js 111

Tensors 112
Variables 113
Operators 113
Models and layers 114

A case study using TF.js 115
A problem statement for our TF.js mini-project 115
The Iris flower dataset 115

Your first deep learning web application with TF.js 116
Preparing the dataset 116
Project architecture 116
Starting up the project 117
Creating a TF.js model 120
Training the TF.js model 121
Predicting using the TF.js model 123
Creating a simple client 124
Running the TF.js web app 126

Advantages and limitations of TF.js 129
Summary 129

Section 3: Getting Started with Different Deep Learning APIs
for Web Development
Chapter 5: Deep Learning through APIs 131

What is an API? 132
The importance of using APIs 133
How is an API different from a library? 134
Some widely known deep learning APIs 135
Some lesser-known deep learning APIs 137
Choosing a deep learning API provider 138
Summary 139

Chapter 6: Deep Learning on Google Cloud Platform Using Python 140
Technical requirements 140
Setting up your GCP account 141
Creating your first project on GCP 143
Using the Dialogflow API in Python 145

Creating a Dialogflow account 145
Creating a new agent 146
Creating a new intent 148
Testing your agent 149
Installing the Dialogflow Python SDK 150
Creating a GCP service account 151

Table of Contents

[v]

Calling the Dialogflow agent using Python API 153
Using the Cloud Vision API in Python 156

The importance of using pre-trained models 157
Setting up the Vision Client libraries 158
The Cloud Vision API calling using Python 160

Using the Cloud Translation API in Python 162
Setting up the Cloud Translate API for Python 162
Using the Google Cloud Translation Python library 163

Summary 164

Chapter 7: DL on AWS Using Python: Object Detection and Home
Automation 165

Technical requirements 166
Getting started in AWS 166
A short tour of the AWS offerings 169
Getting started with boto3 171

Configuring environment variables and installing boto3 173
Loading up the environment variables in Python 173
Creating an S3 bucket 174
Accessing S3 from Python code with boto3 175

Using the Rekognition API in Python 176
Using the Alexa API in Python 182

Prerequisites and a block diagram of the project 182
Creating a configuration for the skill 183
Setting up Login with Amazon 184
Creating the skill 186
Configuring the AWS Lambda function 187
Creating the Lambda function 189
Configuring the Alexa skill 191
Setting up Amazon DynamoDB for the skill 192
Deploying the code for the AWS Lambda function 192
Testing the Lambda function 199
Testing the AWS Home Automation skill 201

Summary 204

Chapter 8: Deep Learning on Microsoft Azure Using Python 205
Technical requirements 206
Setting up your account in Azure 206
A walk-through of the deep learning services provided by Azure 208
Object detection using the Face API and Python 210

The initial setup 210
Consuming the Face API from Python code 213

Extracting text information using the Text Analytics API and Python 217
Using the Text Analytics API from Python code 218

An introduction to CNTK 219

Table of Contents

[vi]

Getting started with CNTK 220
Installation on a local machine 220
Installation on Google Colaboratory 221

Creating a CNTK neural network model 222
Training the CNTK model 225
Testing and saving the CNTK model 226

A brief introduction to Django web development 227
Getting started with Django 228
Creating a new Django project 228
Setting up the home page template 229

Making predictions using CNTK from the Django project 234
Setting up the predict route and view 235
Making the necessary module imports 235
Loading and predicting using the CNTK model 236
Testing the web app 238

Summary 239

Section 4: Deep Learning in Production (Intelligent Web Apps)
Chapter 9: A General Production Framework for Deep Learning-
Enabled Websites 241

Technical requirements 242
Defining the problem statement 242

Building a mental model of the project 243
Avoiding the chances of getting erroneous data in the first place 246

How not to build an AI backend 248
Expecting the AI part of the website to be real time 249
Assuming the incoming data from a website is ideal 249

A sample end-to-end AI-integrated web application 249
Data collection and cleanup 250
Building the AI model 251

Making the necessary imports 251
Reading the dataset and preparing cleaning functions 251
Slicing out the required data 252
Applying text cleaning 252
Splitting the dataset into train and test parts 253
Aggregating text about products and users 253
Creating TF-IDF vectorizers of users and products 253
Creating an index of users and products by the ratings provided 254
Creating the matrix factorization function 254
Saving the model as pickle 255

Building an interface 256
Creating an API to answer search queries 256
Creating an interface to use the API 258

Summary 260

Chapter 10: Securing Web Apps with Deep Learning 261

Table of Contents

[vii]

Technical requirements 262
The story of reCAPTCHA 262
Malicious user detection 264
An LSTM-based model for authenticating users 265

Building a model for an authentication validity check 265
Hosting the custom authentication validation model 270

A Django-based app for using an API 272
The Django project setup 272
Creating an app in the project 273
Linking the app to the project 273
Adding routes to the website 273
Creating the route handling file in the billboard app 274
Adding authentication routes and configurations 274
Creating the login page 274
Creating a logout view 276
Creating a login page template 276
The billboard page template 278
Adding to Billboard page template 278
The billboard model 279
Creating the billboard view 280
Creating bills and adding views 281
Creating the admin user and testing it 281

Using reCAPTCHA in web applications with Python 282
Website security with Cloudflare 285
Summary 286

Chapter 11: DIY - A Web DL Production Environment 287
Technical requirements 288
An overview of DL in production methods 288

A web API service 290
Online learning 290
Batch forecasting 290
Auto ML 290

Popular tools for deploying ML in production 291
creme 291
Airflow 295
AutoML 297

Implementing a demonstration DL web environment 297
Building a predictive model 299

Step 1 – Importing the necessary modules 299
Step 2 – Loading the dataset and observing 299
Step 3 – Separating the target variable 300
Step 4 – Performing scaling on the features 300
Step 5 – Splitting the dataset into test and train datasets 301
Step 6 – Creating a neural network object in sklearn 301
Step 7 – Performing the training 301

Table of Contents

[viii]

Implementing the frontend 302
Implementing the backend 304

Deploying the project to Heroku 307
Security measures, monitoring techniques, and performance
optimization 310
Summary 312

Chapter 12: Creating an E2E Web App Using DL APIs and Customer
Support Chatbot 313

Technical requirements 314
An introduction to NLP 314

Corpus 315
Parts of speech 315
Tokenization 315
Stemming and lemmatization 316
Bag of words 316
Similarity 317

An introduction to chatbots 318
Creating a Dialogflow bot with the personality of a customer
support representative 319

Getting started with Dialogflow 320
Step 1 – Opening the Dialogflow console 320
Step 2 – Creating a new agent 321
Step 3 – Understanding the dashboard 321
Step 4 – Creating the intents 324

Step 4.1 – Creating HelpIntent 324
Step 4.2 – Creating the CheckOrderStatus intent 327

Step 5 – Creating a webhook 329
Step 6 – Creating a Firebase cloud function 330

Step 6.1 – Adding the required packages to package.json 330
Step 6.2 – Adding logic to index.js 331

Step 7 – Adding a personality to the bot 332
Using ngrok to facilitate HTTPS APIs on localhost 333
Creating a testing UI using Django to manage orders 335

Step 1 – Creating a Django project 336
Step 2 – Creating an app that uses the API of the order management
system 336
Step 3 – Setting up settings.py 337

Step 3.1 – Adding the apiui app to the list of installed apps 337
Step 3.2 – Removing the database setting 337

Step 4 – Adding routes to apiui 338
Step 5 – Adding routes within the apiui app 338
Step 6 – Creating the views required 339

Step 6.1 – Creating indexView 339
Step 6.2 – Creating viewOrder 339

Step 7 – Creating the templates 340

Table of Contents

[ix]

Speech recognition and speech synthesis on a web page using the
Web Speech API 340

Step 1 – Creating the button element 341
Step 2 – Initializing the Web Speech API and performing configuration 341
Step 3 – Making a call to the Dialogflow agent 343
Step 4 – Creating a Dialogflow API proxy on Dialogflow Gateway by
Ushakov 344

Step 4.1 – Creating an account on Dialogflow Gateway 345
Step 4.2 – Creating a service account for your Dialogflow agent project 345
Step 4.3 – Uploading the service key file to Dialogflow Gateway 346

Step 5 – Adding a click handler for the button 347
Summary 347

Appendix: Success Stories and Emerging Areas in Deep Learning on
the Web 348

Other Books You May Enjoy 357

Index 360

1
Artificial Intelligence on the

Web
This section introduces the definition of Artificial Intelligence (AI) and shows how AI is
having an effect on the web to a great extent. It also discusses the fundamentals of machine
learning in brief.

This section comprises the following chapters:

Chapter 1, Demystifying Artificial Intelligence and Fundamentals of Machine Learning

1
Demystifying Artificial

Intelligence and Fundamentals
of Machine Learning

"Just as electricity transformed almost everything 100 years ago, today I actually have a
hard time thinking of an industry that I don't think AI will transform in the next several
years."

 - Andrew Ng

This quote may appear extremely familiar and it's needless to say that, as a statement, it is
really strongly resonant with respect to the current technological disruption. Over the
recent course of time, Artificial Intelligence (AI) has been a great area of interest to almost
every industry. Be it an educational company, a telecommunications firm, or an
organization working in healthcare —all of them have incorporated AI to enhance their
businesses. This uncanny integration of AI and several other industries only promises to
get better with time and solve critical real-world problems in intelligent ways. Today, our
phones can make clinical appointments for us upon our instructions, our phone cameras
can tell us several human-perceived attributes of the images they capture, and our car
alarm systems can detect our driving gestures and can save us from possible accidents. The
examples will only get better and better and will grow as intelligent as possible with
advancements in research, technology, and the democratization of computing power.

As we step into the era of Software 2.0, it is extremely important to understand why a
technology that has existed since the 1950s is making most of the headlines in recent times.
Yes! Artificial intelligence was born in the 1950s when a handful of computer scientists and
mathematicians such as Alan Turing started to think about whether machines could think
and whether they could be empowered with intelligence so that they can answer questions
on their own without being explicitly programmed.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[3]

Soon after this inception, the term artificial intelligence was first coined by John McCarthy
in 1956 in an academic conference. From the question "Can machines think?" (proposed by
Turing in his paper, entitled Computing Machinery and Intelligence) around 1950 to the
current day in the 21st century, the world of AI has shown some never-seen-before results
that we could never have even thought of.

Today, it is almost impossible to think of a day without using the web. It has easily become
one of our fundamental necessities. Our favorite search engines can directly answer our
questions rather than give us a list of relevant links. They can analyze online text and detect
their intent and summarize their content. All of this is possible because of AI.

This book aims to be a hands-on guide to the readers on how they can use AI techniques
such as deep learning to make intelligent web applications based on computer vision,
natural language processing, security, and lots more. This chapter provides the readers
with a quick refresher on AI and its different types and the basic concepts of ML, and
introduces some of the biggest names in the industry and what they are doing by fusing AI
and web technologies. We will be covering the following aspects:

Introduction to AI and its different types
Machine Learning (ML): The most popular AI
A brief introduction to Deep Learning (DL)
The relationship between AI, ML, and DL
Fundamentals of ML
The web before and after AI
The biggest web-AI players and what they are doing

Introduction to artificial intelligence and its
types
In a simpler sense, artificial intelligence is all about giving machines the ability to perform
intelligently. For example, many of us can play chess. Essentially, we do this first by
learning the fundamentals of playing the game and then we engage ourselves in actually
playing the game with others. But can machines do this? Can machines learn on their own
and play the game of chess with us?

AI attempts to make this possible by giving us the power to synthesize what we call
intelligence in terms of some rules and instill it into machines. Machines as mentioned here
can be anything that can compute. For example, it could be software or a robot.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[4]

There are actually several types of AI. The popular ones are the following:

Fuzzy systems
Expert systems
ML systems

The final type sounds the most familiar here. We will get to it in the next section. But before
we proceed with it, it is a good time to take a look at some of the points that enable the AI
advancements we are witnessing today.

Factors responsible for AI propulsion
The major factors that are driving the AI force are the following:

Data
Algorithmic advancements
Computer hardware advancements
The democratization of high-performance computing

Data
The amount of data we have today is enormous—as Hal Varian, Chief Economist at
Google, put it in 2016:

"Between the dawn of civilization and 2003, we only created five exabytes; now we're
creating that amount every two days. By 2020, that figure is predicted to sit at 53
zettabytes (53 trillion gigabytes)—an increase of 50 times."

That's a lot of data. As the number of digital devices grows, this volume of data will only
continue to grow exponentially. Gone are the times when a running car only displayed the
speed on the speedometer. We're in an age where every part of the car can be made to
produce logs at every split second, enabling us to entirely reconstruct any moment of the
car's life.

The more a person gets to learn from life, the wiser the person becomes, and the better they
can predict outcomes of events in the future. Analogically with machines, the greater the
amount of (quality) data that a piece of software gets to train upon, the better it gets at
predicting future unseen data.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[5]

In the last few years, the availability of data has grown manifold due to various factors:

Cheaper storage
Higher data transmission rates
Availability of cloud-based storage solutions
Advanced sensors
The Internet of Things
An increase in the various forms of digital electronic devices
Increased usage of websites and native apps

There are more digital devices now than ever. They are all equipped with systems that can
generate logs at all times and transmit them over the internet to the companies that
manufacture them or any other vendor that buys that data. Also, a lot of logs are created by
the websites or apps people use. All of these are easily stored in cloud-based storage
solutions or in physical storage of high storage capacity, which are now cheaper than
before.

If you look around yourself, you will probably be able to see a laptop on which you
regularly use several pieces of software and websites—all of which may be collecting data
on every action you perform on them. Similarly, your phone acts as such a data-generating
device. With a television with several channels provided by your television service
provider—both the service provider and the channel provider are collecting data about you
to serve you better and to improve their products. You can only imagine the massive
amount of data a single person generates on a daily basis, and there are billions of us on
this planet!

Advancements in algorithms
An algorithm is an unambiguous sequence of steps that leads to the solution of a given
problem. Over time, with the expansion of science and human understanding of the laws of
nature by the aid of mathematics, algorithms have seen improvements. More often than
not, nature has inspired solutions to complex problems. A neural network is probably the
most talked-about, nature-inspired algorithm in the present day.

When computer logic began with multiple if-else ladders, no one would ever have thought
that one day we'd have computer programs that would learn to produce results similar to
the if-else ladder without the need to write conditions manually. What's more, we have
computer programs today that generate other programs that can simulate AI!

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[6]

Surely, with each passing day, algorithms developed by humans and now, by machines
too, are getting smarter and more powerful at performing their tasks. This has directly
impacted the rise of neural networks, which, in their rudimentary form, seem to be a time-
consuming super-nesting of loops to solve matrices and vector arithmetic problems.

Advancements in hardware
When Intel revealed its first Dynamic RAM module in 1970, it was capable of holding 1 KB
of data. Approximately 50 years later, we've 128 GB RAM modules available in the market.
That's nearly 1.28 x 108 times as much memory space.

A similar trend has been exhibited by hard disks. With the first hard disk for personal
computers being able to store a precious 5 megabytes, 2016 saw Seagate announcing a 60-
terabyte storage on a solid-state drive. That's a 1.2 x 107 fold increase.

But we've only yet talked about direct individual computing comparisons, without
considering the effect of technological growth since the first computers were introduced.
Today, with the advent of cloud computing, it's become common to hear someone talking
about unlimited cloud storage.

AI has greatly benefited from this exponential increase in computing speed and data
storage.

The democratization of high-performance computing
With the reducing costs of commodity hardware and their increasing performance
capabilities, high-performance computing is not something exclusive to tech giants these
days. Today, it is very easily possible for any single person to set up for their personal use a
network of computing devices to facilitate high-performance computing if they're not
already satisfied with the exceptional performance that can be delivered through single
devices. However, investing in hardware is not the only way of availing high-performance
computing. The emergence of cloud-based computing solutions has resulted in very high-
speed computing infrastructure available with click-deploy methods. Users can, at any
moment, launch a cloud-based instance over the network and run their performance-
intensive software on it at minimal charges.

With high-performance computing becoming readily available to individual developers,
the development of AI solutions has come into the hands of a wide community of
developers. This has led to a boom in the number of creative and research-based
applications of AI.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[7]

Let's now unravel the most popular form of AI as of the time of writing and discuss some
important concepts regarding it.

ML – the most popular form of AI
Without taking any mathematical notations or too many theoretical details, let's try to
approach the term Machine Learning (ML) from an intuitive perspective. For doing this,
we will have to take a look at how we actually learn. Do you recollect, at school, when we
were taught to identify the parts of speech in a sentence? We were presented with a set of
rules to identify the part of the speeches in a sentence. We were given many examples and
our teachers in the first place used to identify the parts of speeches in sentences for us to
train us effectively so that we could use this learning experience to identify the parts of
speeches in sentences that were not taught to us. Moreover, this learning process is
fundamentally applicable to anything that we learn.

What if we could similarly train the machines? What if we could program them in such a
way that they could learn from experiences and could start answering questions based on
this knowledge? Well, this has already been done, and, knowingly or unknowingly, we are
all taking the benefits yielded by this. And this is exactly what ML is when discussed
intuitively. For a more formal, standard understanding, let's take a look at the following
definition by Tom Mitchell in his book, Machine Learning:

"A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with
experience E."

The preceding definition is a more precise version of what we just discussed about ML
from an intuitive perspective. It is important to note here that most AI wizardry that we see
today is possible due to this form of AI.

We now have a fair idea of what ML is. Now, we will move to the next section, which
discusses the most powerful subfield of ML—DL. We will not go into the bone-breaking
mathematical details. Instead, we will break it down intuitively, as in this section.

What is DL?
Now comes the most exciting part and probably the hottest technical term of this century.
Reality apart, we now understand the learning to some extent, so let's get to the first part of
the term deep learning—deep.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[8]

DL is a type of machine learning but it is purely based on neural networks. We will take a
look at neural networks too but in the next chapter. The basic objective of any machine
learning system is to learn useful representations of the data given to it. But what makes DL
different? It turns out that DL systems treat data as a representation of layers. For example,
an image can be treated as a representation of layers of varying properties such as edges,
contours, orientation, texture, and gradients. The following diagram from the book, Deep
Learning with Python, by François Chollet captures this idea nicely:

In the preceding diagram, a DL system is being employed to classify an image of a hand-
written digit. The system takes the image of the handwritten digit as its input and tries to
learn its underlying representations. In the first layer, the system learns generic features
such as strokes and lines. As the layers increase, it learns about the features that are more
specific to the given image. The more the number of layers, the deeper the system gets. Let's
take a look at the following definition, which is given by François Chollet in his book, Deep
Learning with Python:

"The deep in deep learning isn't a reference to any kind of deeper understanding achieved
by the approach; rather, it stands for this idea of successive layers of representations. How
many layers contribute to a model of the data is called the depth of the model. [...] In deep
learning, these layered representations are (almost always) learned via models called
neural networks, structured in literal layers stacked on top of each other."

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[9]

The definition quite aptly captures all of the necessary ingredients of DL and beautifully
introduces the concept of treating data as a layered representation. So, a DL system, in a
broad sense, breaks down the data into simple representations in a layered fashion, and to
learn these representations, it often makes use of many layers (which is referred to as deep).
We will now take a look at the big picture, which tells us how AI, ML, and DL are related to
each other.

The relation between AI, ML, and DL
To make sure that our basics are clear regarding the distinction between AI, ML, and DL,
let's refer to the following diagram, which elegantly captures the relationship between these
three big names:

The diagram is quite self-explanatory and it has been referred to in many books in the field
of DL. Let's try drawing an interesting conclusion from this diagram.

All DL systems are ML systems and therefore all DL systems are AI
systems as well. But the converse is not true—not all AI systems are DL
systems.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[10]

The statement may appear slightly confusing at first glance, but if we got our basics right,
then this captures the distinction between AI, ML, and DL beautifully. We will proceed
toward revisiting some of the necessary ML terminologies and concepts that will be
required in the latter parts of this book.

Revisiting the fundamentals of ML
We have already seen what is meant by ML. In this section, we will focus on several
terminologies such as supervised learning and unsupervised learning, and we will be
taking a look at the steps involved in a standard ML workflow. But you may ask: why ML?
We are supposed to learn about the applications of DL in this book. We just learned that DL
is a type of ML only. Therefore, a quick overview of the basic ML-related concepts will
certainly help. Let's start with several types of ML and how they differ from each other.

Types of ML
ML encompasses a multitude of algorithms and topics. While every such algorithm that
makes up an ML model is nothing but a mathematical computation on given data, the form
of data that is provided and the manner of the task to be performed on it might hugely
vary. Sometimes, you might want your ML model to predict future house prices based on
the data of previous house prices with respect to details of the house such as the number of
rooms and number of stories it has, and at other times, you might want your ML model to
learn how to play computer games against you. You can easily expect the input data for the
first task to be in tabular format, but for the second example, you might not be able to come
up with the same. Hence, ML algorithms branch into three major categories and another
form that derives from them, based on the input data they receive and the kind of output
they are supposed to produce, namely, the following:

Supervised learning
Unsupervised learning
Reinforcement learning
Semi-supervised learning

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[11]

The following diagram captures the three major types of ML, along with the hybrid form as
a fourth type, and a very brief summary on each type:

You may have heard of the fourth form of ML—semi-supervised learning, which fuses both
the worlds of supervised and unsupervised learning.

Let's now understand these types of ML in greater depth, according to how they function
and the types of problems they can be used to solve.

Supervised learning
In this form of ML, the algorithm is presented with a huge number of training samples,
which contain information about all of the parameters, or features, that would be used to
determine an output feature. This output feature could be a continuous range of values or a
discrete collection of labels. Based on this, supervised ML algorithms are divided into two
parts:

Classification: Algorithms that produce discrete labels in the output feature,
such as normal and not normal or a set of news categories
Regression: When the output feature has real values, for example, the number of
votes a political party might receive in an election, or the temperature of a
material at which it is predicted to reach its melting point

Most ML enthusiasts, when they begin their study of machine learning, tend to familiarize
themselves with supervised learning first due to its intuitive simplicity. It has some of the
simplest algorithms, which are easy to understand without a deep knowledge of
mathematics and are even derived from what mathematics students learn in their final
years at schools. Some of the most well known supervised learning algorithms are linear
regression, logistic regression, support vector machines, and k-nearest neighbors.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[12]

Unsupervised learning
Unsupervised learning presents itself in scenarios where the training samples do not carry
with them output feature(s). You could wonder then, what are we supposed to learn or
predict in such situations? The answer is similarity. In more elaborate terms, when we have
a dataset for unsupervised learning, we're usually trying to learn the similarity between the
training samples and then to assign classes or labels to them.

Consider a crowd of people standing in a large field. All of them have features such as age,
gender, marital status, salary range, and education level. Now, we wish to group them
based on their similarities. We decide to form three groups and see that they arrange
themselves in a manner of gender—a group of females, a group of males, and a group of
people who identify with other genders. We again ask them to form subgroups within
those groups and see what people make groups based on their age ranges—children,
teenagers, adults, and senior citizens. This gives us a total of 12 such subgroups. We could
make further smaller subgroups based on the similarity any two individuals exhibit. Also,
the manner of grouping discussed in the preceding example is just one among several
manners of forming groups. Now, say we have 10 new members joining the crowd. Since
we already have our groups defined, we can easily sort these new members into those
groups. Hence, we can successfully apply group labels to them.

The preceding example demonstrates just one form of unsupervised learning, which can be
divided into two types:

Clustering: This is to form groups of training samples based on the similarity of
their features.
Association: This is to find abstract associations or rules exhibited between
features or training samples. For example, on analyzing a shop's sales logs, it was
found that customers buy beer mostly after 7 p.m.

K-means clustering, DBSCAN, and the Apriori algorithm are some of the best-known
algorithms used for unsupervised learning.

Reinforcement learning
Reinforcement learning (RL), is a form of ML wherein a virtual agent tries to learn how to
interact with its surroundings in such a way that it can achieve the maximum reward from
it for a certain set of actions.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[13]

Let's try to understand this with a small example—say you build a robot that plays darts.
Now, the robot will get a maximum reward only when it hits the center of the dartboard. It
begins with a random throw of dart and lands on the outermost ring. It gets a certain
amount of points, say x1. It now knows that throwing near that area will yield it an
expected value of x1. So, in the next throw, it makes a very slight change of angle and
luckily lands in the second outermost right, fetching it x2 points. Since x2 is greater than x1,
the robot has achieved a better result and it will learn to throw nearby this area in the
future. If the dart had landed even further out than the outermost ring, the robot would
keep throwing it near the first throw that it made until it got a better result.

Over several such trials, the robot keeps learning the better places to throw and makes
small detours from those positions until it gets the next better place to throw at. Eventually,
it finds the bull's eye and meets the highest points every time.

In the preceding example, your robot is the agent who is trying to throw a dart at the
dartboard, which is the environment. Throwing the dart is the action the agent performs on
the environment. The points the agent gets act as the reward. The agent, over multiple
trials, tries to maximize the reward that it gets by performing the actions.

Some well-known RL algorithms are Monte Carlo, Q-learning, and SARSA.

Semi-supervised learning
While we have discussed the three major types of ML, there exists yet another type, which
is semi-supervised learning. By the name of the term, you could guess that it would have to
do something with a mix of labeled and unlabeled training samples. In most cases, the
number of unlabeled training samples exceeds the number of labeled samples.

Semi-supervised learning has been used successfully to produce more efficient results
when some labeled samples are added to a problem entirely belonging to unsupervised
learning. Also, since only a few samples are labeled, the complexity of supervised learning
is avoided. With this approach, we can produce better results than we would get from a
purely unsupervised learning system and incur lesser computational cost than a pure
supervised learning system.

Necessary terminologies
We have made ourselves familiar with different types of ML systems. Now, we will learn
about some extremely important terminologies related to ML that will help us in the later
chapters of this book.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[14]

Train, test, and validation sets
Any ML system is to be given data. Without data, it is practically impossible to design an
ML system. We are not concerned about the quantity of the data as of now, but it is
important to keep in mind that we need data to devise an ML system. Once we have that
data, we use it for training our ML systems so that they can be used to predict something on
the new data (something is a broad term here and it varies from problem to problem). So, the
data that is used for training purposes is known as a train set and the data on which the
systems are tested is known as a test set. Also, before actually employing the model on the
test data, we tend to validate its performance on another set of data, which is called
a validation set. Sometimes, we don't get the data in these nice partitions; we just get the
data in a raw unfathomable format, which we further process and make these partitions
with accordingly.

Technically, all of the instances in these three different sets are supposed to vary from each
other while the distribution in the data is supposed to be the same. Nowadays, many
researchers have found critical issues regarding these assumptions and have come up with
something called adversarial training, which is out of the scope of this book.

Bias and variance
Bias and variance are very intrinsic to any ML model. Having a good understanding of
them really helps in the further assessment of the models. The trade-off between the two is
actually used by the practitioners to assess the performance of machine learning systems.

You are encouraged to see this lecture by Andrew Ng to learn more about
this trade-off, at https:/ /www. youtube. com/watch? v=fDQkUN9yw44 t=
293s.

Bias is the set of assumptions that an ML algorithm makes to learn the representations
underlying the given data. When the bias is high, it means that the corresponding
algorithm is making more assumptions about the data and in the case of low bias, an
algorithm makes as little an amount of assumptions as possible. An ML model is said to
have a low bias when it performs well on the train set. Some examples of low-bias ML
algorithms are k-nearest neighbors and support vector machines while algorithms such as
logistic regression and naive Bayes are generally high-bias algorithms.

https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s
https://www.youtube.com/watch?v=fDQkUN9yw44&t=293s

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[15]

Variance in an ML context concerns the information present in the data. Therefore, high
variance refers to the quality of how well an ML model has been able to capture the overall
information present in the data given to it. Low variance conveys just the opposite.
Algorithms such as support vector machines are generally high on variance and algorithms
such as naive Bayes are low on variance.

Overfitting and underfitting
When an ML model performs very well on the training data but poorly on the data from
either the test set or validation set, the phenomenon is referred to as overfitting. There can
be several reasons for this; the following are the most common ones:

The model is very complex with respect to the data. A decision tree with very
high levels and a neural network with many layers are good examples of model
complexity in this case.
The data has lots of features but very few instances of the population.

In ML literature, the problem of overfitting is also treated as a problem of high
variance. Regularization is the most widely used approach to prevent overfitting.

We have already discussed the concept of bias. A model has a low bias if it performs well
on the training data, that is, the model is not making too many assumptions on the data to
infer its representation. If the model fails miserably on the training data, it is said that the
model has a high bias and the model is underfitting. There can be many reasons for
underfitting as well. The following are the most common ones in this case:

The model is too simple to learn the underlying representation of the data given
to it.
The features of the data have not been engineered well before feeding them to
the ML model. The engineering part is very popularly known as feature
engineering.

Based on this discussion, we can draw a very useful conclusion: an ML
model that is overfitting might be suffering from the issue of high
variance whereas an underfitting model might be suffering from the issue
of high bias.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[16]

The discussion of overfitting and underfitting remains incomplete without the following
diagram (shown by Andrew Ng during his flagship course, Machine Learning):

The preceding diagram beautifully illustrates underfitting and overfitting in terms of
curvea fitting through the data points. It also gives us an idea of a model that generalizes
well, that is, performs well on both the train and test sets. The model prediction line in blue
is way off the samples, leading to underfitting, while in the case of overfitting, the model
captures all points in the training data but does not yield a model that would perform well
on data outside training data.

Often, the idea of learning representations of the data is treated as a
problem of approximating a function that best describes the data. And a
function can easily be plotted graphically like the previous one, hence, the
idea of curve fitting. The sweet spot between underfitting and overfitting
where a model generalizes well is called a good fit.

Training error and generalization error
The mistakes that a model makes while predicting during its training phase are collectively
referred to as its training error. The mistakes that model makes when tested on either the
validation set or the test set are referred to as its generalization error.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[17]

If we were to draw a relationship between these two types of error and bias and variance
(and eventually overfitting and underfitting), this would look something like the following
(although the relationship may not be linear every time as depicted in the diagrams):

If an ML model is underfitting (high bias), then its training error has to be
high. On the other hand, if the model is overfitting (high variance), then
its generalization error is high.

We will look at a standard ML workflow in the following section.

A standard ML workflow
Any project starts with a problem in mind and ML projects are no exception. Before starting
an ML project, it is very important to have a clear understanding of the problem that you
are trying to solve using ML. Therefore, problem formulation and mapping with respect to
the standard ML workflow serve as good starting points in an ML project. But what is
meant by an ML workflow? This section is all about that.

Designing ML systems and employing them to solve complex problems requires a set of
skills other than just ML. It is good to know that ML requires knowledge of several things
such as statistics, domain knowledge, software engineering, feature engineering, and basic
high-school mathematics in varying proportions. To be able to design such systems, certain
steps are fundamental to almost any ML workflow and each of these steps requires a
certain skill set. In this section, we are going to take a look at these steps and discuss them
briefly.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[18]

This workflow is inspired by CRISP-DM, which stands for Cross
Industry Standard Process for Data Mining and is extremely widely used
across many industries pertaining to data mining and analytics.

Data retrieval
As mentioned earlier in this chapter, ML systems need data for functioning. It is not
available all of the time, in fact, most of the time, the data itself is not available in a format
with which we can actually start training ML models. But what if there is no standard
dataset for a particular problem that we are trying to solve using ML? Welcome to reality!
This happens for most real-life ML projects. For example, let's say we are trying to analyze
the sentiments of tweets regarding the New Year resolutions of 2018 and trying to estimate
the most meaningful ones. This is actually a problem for which there is no standard dataset
available. We will have to scrape it from Twitter using its APIs. Another great example is
business logs. Business logs are treasures of knowledge. If effectively mined and modeled,
they can help in many decision-making processes. But often, logs are not available directly
to the ML engineer. So, the ML engineer needs to spend a considerable amount of time
figuring out the structure of the logs and they might write a script so that the logs are
captured as required. All of these processes are collectively called data retrieval or data
collection.

Data preparation
After the data collection phase, we tend to prepare the data to feed it to the ML systems and
this is known as data preparation. It is worth mentioning that this is the most time-
consuming part of an ML workflow/pipeline. Data preparation includes a series of steps
and they are as follows:

Exploratory data analysis
Data processing and wrangling
Feature engineering and extraction
Feature scaling and selection

This is one of the most time-consuming parts of an ML project. When we
take a broader look at the process, we find that data identification and
collection are also sometimes really important aspects as the correct
format, as mentioned previously, might not always be available.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[19]

Exploratory Data Analysis (EDA)
After the data is collected, the first step in the data preparation stage is Exploratory Data
Analysis, which is very popularly known as EDA. EDA techniques allow us to know the
data in a detailed manner for better understanding. This is an extremely vital step in the
overall ML pipeline because without good knowledge about the data itself, if we blindly fit
an ML model to the data, it most likely will not produce good results. EDA gives us a
direction in which to proceed and helps us to decide further steps in the pipeline. EDA
involves many things such as calculating useful statistics about the data and determining
whether the data suffers from any outliers. It also comprises effective data visualization,
which helps us to interpret the data graphically and therefore helps us to communicate
vital facts about the data in a meaningful way.

In short, EDA is all about getting to know about the data better.

Data processing and wrangling
We have performed some statistical analyses on the data. Now what? Most of the time, the
data that is collected from several data sources is present in its raw form, which cannot be
fed to an ML model, hence the need for further data processing.

But you might ask, why not collect the data in a way so that it gets
retrieved with all of the necessary processing done? This is typically not a
good practice as it breaks the modularity of the workflow.

This is why to make the data consumable in the later steps in the workflow, we need to
clean, transform, and persist it. This includes several things such as data normalization,
data standardization, missing value imputation, encoding from one value to another, and
outlier treatment. All of these are collectively named data wrangling.

Feature engineering and extraction/selection
Consider a situation where an employee from an analytics firm is given the company's
billing data and is asked by their manager to build a machine learning system with it so the
company's overall financial budget could be optimized. Now, this data is not in a format
that can be given directly to an ML model since ML models expect data in the form of
numeric vectors.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[20]

Although the data might be in good shape, the employee will still have to do something to
convert that data into a favorable form. Given that the data is already wrangled, they still
need to decide what features he is they are going to include in the final dataset. Practically,
anything measurable can be a feature here. This is where good domain knowledge comes.
This knowledge can help the employee to choose the features that have high predictive
power. It may sound a bit light-weight, but it requires a lot of skills and it is definitely a
challenging task. This is a classic example of feature engineering.

Sometimes, we employ several techniques that help us in the automatic extraction of the
most meaningful features from a given dataset. This is particularly useful when the data is
very high dimensional and the features are hard to interpret. This is known as feature
selection. Feature selection not only helps to develop an ML model with the data that has
the most relevant features but it also helps to enhance the model's predictive performance
and to reduce its computation time.

Apart from feature selection, we might want to reduce the dimensionality of the data
to better visualize it. Besides, dimensionality reduction is also employed to capture a
representative set of features from the complete set of data features. Principal Component
Analysis (PCA) is one such very popular dimensionality reduction technique.

It is important to keep in mind that feature selection and dimensionality
reduction are not the same.

Modeling
We have finally come to the step that appears to be the most exciting one—the ML
modeling part. But it is worth noting here that a good ML project is not just about this part.
All of the previously mentioned parts contribute equally to the standard of the project. In
fact, it matters a lot how the data is being collected for the project, and for this, we are
helped by powerful data engineers. For now, let's leave that part aside.

We already have the data in pretty good shape by now. In the process of modeling the data,
we feed the training data to ML models for training them, we monitor their training
progress and tune different hyperparameters so their performance is optimized, and we
evaluate the model on the test set. Model comparison is also a part of this phase. It is indeed
an iterative process and involves trial and error to some extent.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[21]

The main objective here is to come up with an ML model that best represents the data, that
is, it generalizes well. Computation time is another factor we must consider here because we
want a model that performs well but within a feasible time frame and thereby optimizing a
certain business outcome.

Following are the parts that constitute the core of modeling:

Model training
Model evaluation
Model tuning

Model training
This is the fundamental part of modeling as we introduce the data to different ML models
and train the model so that it can learn the representations of the data holistically. We can
see how a model is making progress during its training using training error. We often bring
validation error (which means we validate the model training simultaneously) into this
picture as well, which is a standard practice. Most of the modern libraries today allow us to
do this and we will see it in the upcoming chapters of this book. We will now discuss some
of the most commonly used error metrics.

Model evaluation
We have trained an ML model but how well will the model perform on the data it has
never seen before? We answer this question using model evaluation.

Different machine learning algorithms call for different evaluation metrics.

For supervised learning methods, we usually use the following:

The confusion matrix, which is a matrix consisting of four values: True Positive,
False Positive, True Negative, and False Negative
Accuracy, precision, recall, and F1-score (these are all byproducts of the
confusion matrix)
The Receiver Operator Characteristic (ROC) curve and the Area Under Curve
(AUC) metric
R-square (coefficient of determination), Root Mean Square Error (RMSE), F-
statistic, Akaike Information Criterion (AIC), and p-values specifically
for regression models

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[22]

Throughout this book, we will be incorporating these metrics to evaluate our models.
Although these are the most common evaluation metrics, be it for ML or DL, there are more
specific evaluation metrics that correspond to different domains. We will get to that as well
as we go along.

It worth mentioning here that we often tend to fall into the trap of
the accuracy paradox in the case of classification problems where the data
is imbalanced. In these cases, classification accuracy only tells one part of
the story, that is, it gives the percentage of correct predictions made out of
the total number of predictions made. This system fails miserably in the
case of imbalanced datasets because accuracy does not capture how well a
model is performing at predicting the negative instances of the dataset
(which is originally the problem—predicting the uncommon class(es)).

Following are the most commonly used metrics for evaluating unsupervised methods such
as clustering:

Silhouette coefficients
Sum of squared errors
Homogeneity, completeness, and the V-measure
The Calinski-Harabasz index

The evaluation metrics/error metrics remain the same for a train set, a test
set, or a validation set. We cannot just jump to a conclusion just by looking
at the performance of a model on the train set.

Model tuning
By this phase, we should have a baseline model with which we can go further for tuning
the model to make it perform even better. Model tuning corresponds to hyperparameter
tuning/optimization.

ML models come with different hyperparameters that cannot be learned from model training.
Their values are set by the practitioners. You can compare the hyperparameter values to the
knobs of an audio equalizer where we manually adjust the knobs to have the perfect aural
experience. We will see how hyperparameter tuning can drastically enhance the
performance of a model in later chapters.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[23]

There are several techniques for tuning hyperparameters and the most popularly
incorporated are the following:

Grid searching
Random searching
Bayesian optimization
Gradient-based optimization
Evolutionary optimization

Model comparison and selection
After we are done with the model tuning part, we would definitely want to repeat the
whole modeling part for models other than the current one in the hope that we might get
better results. As ML practitioners, it is our job to ensure that the model we have finally
come up with is better than the other ones (obviously in various aspects). Naturally,
comparing different ML models is a time-consuming task and we may not be able to
always afford to do this when we need to meet short deadlines. In cases like this, we
incorporate the following aspects of an ML model:

Explainability, which answers a given question (how interpretable is the model
and how easily it can be explained and communicated?)
In-memory versus out-of-memory modeling
The number of features and instances in the dataset
Categorical versus numerical features
The nonlinearity of the data
Training speed
Prediction speed

These metrics are the most popular ones but it hugely depends on the
problem at hand. When these metrics do not apply, a good rule of thumb
is to see how a model is performing on the validation set.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[24]

Deployment and monitoring
After a machine learning model is built, it is merged with the other components of an
application and is taken into production. This phase is referred to as model deployment.
The true performance of the developed ML model is evaluated after it is deployed into real
systems. This phase also involves thorough monitoring of the model to figure out the areas
where the model is not performing well and which aspects of the model can be improved
further. Monitoring is extremely crucial as it provides the means to enhance the model's
performance and thereby enhance the performance of the overall application.

So, that was a kind of a primer of the most important terminologies/concepts required for
an ML project.

For a more rigorous study of the basics of ML, you are encouraged to go
through these resources: Machine Learning Crash Course by Google
(https:/ /developers. google. com/machine- learning/ crash- course/
) and Python Machine Learning by Sebastian Raschka (https:/ /india.
packtpub. com/ in/ big- data-and- business- intelligence/ python-
machine- learning).

For easy reference, you may refer to the following diagram as given in the book, Hands-on
Transfer Learning with Python (by Dipanjan et. al), which depicts all of the preceding steps
pictorially:

Practically, ML has brought about a lot of enhancements across a wide range of sectors and
almost none are left to be impacted by it. This book is focused on building intelligent web
applications. Therefore, we will start the next section by discussing the web in general and
how it has changed since the advent of AI from a before-and-after perspective. Eventually,
we will study some big names and how they are facilitating AI for building world-class
web applications that are not only intelligent but also solve some real problems.

https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://developers.google.com/machine-learning/crash-course/
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning
https://india.packtpub.com/in/big-data-and-business-intelligence/python-machine-learning

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[25]

The web before and after AI
If you have been a regular user of the World Wide Web since 2014, you'd agree to a visible
rapid flurry of changes in websites. From solving ReCaptcha challenges of increasingly
illegible writing to being automatically marked as human in the background, web
development has been one of the forerunners in the display of the wealth of artificial
intelligence that has been created over the last two decades.

Sir Tim Berners-Lee, attributed as the inventor of the internet, has put forward his views on
a Semantic Web:

"I have a dream for the Web [in which computers] become capable of analyzing all the data
on the Web – the content, links, and transactions between people and computers. A
"Semantic Web", which makes this possible, has yet to emerge, but when it does, the day-
to-day mechanisms of trade, bureaucracy, and our daily lives will be handled by machines
talking to machines. The "intelligent agents" people have touted for ages will finally
materialize."

From serving static pages with tons of information visible in them and links that
permanently take you to related resources, the web is now an ever-changing portal of
information generated dynamically. You might never see the same view of a web page
again if you refresh it.

Let's understand some of the most important shifts in web development that have come
about due to the rise of AI.

Chatbots
If you have ever wondered how some web pages provide 24/7 live help through chat on
their websites, the answer would almost always be a chatbot is answering your queries
from the other end. When in 1966 Joseph Weizenbaum's ELIZA chatbot created waves
across the world by beating the Turing Test, we would never have thought of the impact
chatbots would create in the World Wide Web (a reason for this, though, could be that
ARPANET was itself only created in 1969).

Today, chatbots are everywhere. Many Fortune 500 companies are pursuing research in the
domain and have come out with implementations of chatbots for their products and
services. In a recent survey done by Oracle, featuring responses from 800 top executives of
several companies and startups, it was found that nearly 80% of them said they had already
used or were planning to use a chatbot in their customer-facing products by 2020.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[26]

Before AI began powering chatbots, as in the case with ELIZA (and its successor ALICE),
chatbots were mostly about a fixed set of responses mapped to several input patterns.
Coming across the word mother or father in a sentence entered by the user would almost
certainly produce a response asking about the family of the user or their well-being. This
clearly wasn't the response desired if the user wrote something like "I do not want to talk
about XYZ's family".

And then, there is the famous "sorry, I did not get that" response of such rule-based
chatbots, which made them appear quite stupid at times. The advent of neural-network-
based algorithms saw chatbots being able to understand and customize responses based on
user emotion and the context of the user input. Also, some chatbots scrape online data in
case of encountering any new query and build up answers in real time about the topics
mentioned in the new, unknown queries. Apart from that, chatbots have been used to
provide alternative interfaces to business portals. It is now possible to book hotels or flights
over a chatbot platform provided by WhatsApp.

Facebook Messenger's bot platform saw over 100,000 bots created in the first 17 months of
its being opened to the public. Hundreds of pages on the social networking giant today
have automated responses for users who send messages to their pages. Several bots are
running on Twitter that can create content, closely mimicking a human user, and can
respond to messages or comments made on their posts.

You can chat with an online version of ELIZA at eliza.botlibre.com.

Web analytics
In the early years of the internet, many websites carried odometer-style counters embedded
in them. These were simple counts of the number of hits the website or a particular page
had received. Then, they grew in their available formats—plain counters, counters per
day/week/month, and even geolocation-based counters.

The collection of data, which is essentially the logs of the interactions of users and how they
interact with a web-based application, processing this data to produce performance
indicators, and then finally to identify measures that can be taken by a company to improve
their web application is collectively known as web analytics.

http://eliza.botlibre.com

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[27]

Since the invention of the internet, web applications today generate a huge amount of logs
every moment. Even leaving your mouse pointer idle on a web page might be getting
reported to a Google Analytics dashboard, from where the webmaster would be able to see
which pages are being viewed by users and how much time they are spending on the
pages. Also, the flow users take between pages would be a very interesting metric.

While the earliest web analytics tools would merely measure page hits, being able to create
a map of how many times a given page was visited and how many times it was a unique
user, they could hardly provide anything about the visiting patterns of users, unless they
were specifically hardcoded, which would be presented in very generalized manners and
were never website specific. The same form of analytics was being provided to a company
doing e-commerce as was being provided to a personal website.

With the revolution that AI brought around in the web analytics domain, tools today that
deploy the power of artificial intelligence can come up with future predictions of website
performance and even suggest removing or adding specific content on a web page to
improve user engagement with that page.

Spam filtering
When half the emails being sent across the world are marked spam, it's an issue. While at
first thought, we associate fraudulent and unnecessary emails promoting businesses and
products as spam, that's only a part of the definition. It is important to realize that even
good, quality content when posted on the same document several times over is spam.
Furthermore, the web has evolved since the term spam was first used in Usenet groups.
What was initially an activity performed with the intention of annoying people, or driving
in messages forcefully to certain target users, spam today is much more evolved and
potentially a lot more dangerous—from being able to track your browser activity to identity
theft, there is a lot of malicious spam on the internet today that compromises user security
and privacy.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[28]

Today, we have spam of various kinds—instant messenger spam, website spam,
advertisement spam, SMS spam, social media spam, and many other forms.

Apart from a few, most types of spam are exhibited on the internet. It is hence critical to be
able to filter spam and take protective measures against it. While the most initial spam-
fighting began as early as the 1990s with identifying the IP addresses that were sending out
spam emails, it was soon realized to be a highly inefficient method to do so as the blacklist
grew large and its distribution and maintenance became a pain.

In the early 2000s, when Paul Graham published a paper titled A Plan for Spam, for the first
time, an ML model—Bayesian filtering—was deployed to fight spam. Soon, several spam-
fighting tools were spun from the paper and proved to be efficient.

Such was the impact of Bayesian filtering method against spam that, at the World Economic
Forum in 2004, the founder of Microsoft, Bill Gates went forward to say that:

"Two years from now, spam will be solved."

Bill Gates, however, as we know today, could not have been more wrong in this one
prediction. Spam evolved, with spammers studying Bayesian filtering and finding out
ways to avoid being marked as spam in the detection phase. Today, neural networks are
deployed on large scale, continuously scanning new emails and taking decisions on
determining spam or non-spam content, which could not have been logically reached by a
human by merely studying logs of email spam.

Search
One of the most strongly impacted domains by the rise of AI has been web search. From its
humble beginnings of having to know the exact wording of the particular web page's title
that you wished to visit, to search engines being able to identify songs that are audible in
your environment, the domain has been entirely transformed due to AI.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[29]

When in 1991, Tim Berners-Lee set up the World Wide Web Virtual Library, it looked
something like this:

It was a collection of manually listed web pages, filterable by the search box, which
appeared at the right-top. Clearly, instead of trying to predict what the user was intending
to find, the user himself/herself had to decide the category to which their search term
would belong to.

The current face of the web search engines was introduced by Johnathan Fletcher in
December 1993, when he created JumpStation, the first search engine to use the modern-
day concepts of crawling, indexing, and searching. The appearance used by JumpStation
was how we see the leading search providers such as Google and Bing today, and made
Johnathan the "Father of the search engine".

Two years later, in December 1995, when AltaVista was launched, it brought a radical shift
in search technology—unlimited bandwidth, search tips, and even allowing natural
language queries—a feature brought in more strongly by Ask Jeeves in 1997.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[30]

Google came around in 1998. And it brought with itself the technology of PageRank.
However, several contenders were present in the market, and Google didn't dominate the
search engine game right then. Five years later, when Google filed its patent for using
neural networks to customize search results based on users' previous search history and
record of visited websites, the game shifted very quickly toward Google becoming the
strongest provider in the search domain.

Today, a huge code base, deploying several deep neural networks working in coherence,
powers Google Search. Natural language processing, which majorly deploys neural
networks, has allowed Google to determine the content relevancy of web pages, and
machine vision thanks to Convolutional Neural Networks (CNNs) has been able to
produce accurate results visible to us in the Google Image Search. It should not come as a
surprise that John Ginnandrea led Google Search and introduced the Knowledge Graph
(the answers Google sometimes comes up with on certain questions such as queries); he's
one of the most sought-after specialists in AI and has now been recruited by Apple, to
improve Siri, which is again a neural network product.

Biggest web-AI players and what are they
doing with AI
The growth spurt of AI saw several contenders running to make the most out of it. Over the
last two decades, several individuals, start-ups, and even huge industrialists have sought to
reap the benefits offered by the applications of AI. There are products in the market to
whom artificial intelligence serves as the very heart of their business.

"War is 90% information."

 - Napoleon Bonaparte, 18th Century A.D.

In the Second World War, the Allied forces deployed bomber aircraft. These were key to the
strategies employed by the Allied forces. But somehow, these bombers failed to deliver due
to them being shot down in large numbers when in enemy territory. It was clear that the
bombers needed more armor. But due to the weight of armor, it was not possible to entirely
cover the aircraft. Hence, it was decided that the most critical areas of the aircraft should be
covered up with extra armor. Abraham Wald, a Jewish mathematician, was asked to come
up with a way to determine which areas of the aircraft had to be armor-plated. He studied
the aircraft that had come back from battle and made note of which areas carried the most
bullet marks.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[31]

It was found that the wings, the nose, and tail were the parts that carried the highest
number of bullet marks, and it was concluded that these were the parts that needed more
armor, while the cockpit and the engines displayed the least bullet holes:

But surprisingly, going against the regular method of thought, Wald suggested that it was
the cockpit and the engines that needed armor because it was those bombers that were not
returning. Bullets in the tail, wings, and nose could not deal fatal damage to the aircraft and
hence they returned successfully.

This is how, working with data and identifying the correct pattern, the entire course of the
Second World War was changed by a mathematician. Data has been termed as the new oil.
What makes it more interesting is that when you have oil, you burn it to produce electricity
and energy, to drive vehicles. But with data, you use it to improve business and make
decisions, which, in the future, produce more data. The companies that realized this and
took the most benefit out of the data available have seen huge growth in recent times. Let's
explore what few of such companies are doing with all of the data available, using AI.

Google
A name that comes to almost every mind as soon as the term AI is mentioned, Google has
revolutionized and pushed the edges of AI continuously.

"We are now witnessing a new shift in computing: the move from a mobile-first to an AI-
first world." -Sundar Pichai, CEO, Google

Google has been using AI across several of its products; let's go through some of them here.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[32]

Google Search
Searching for who is the google ceo on December 14, 2018 brought up a results page
resembling the following screenshot:

The preceding feature, which generates answers to commonly asked questions, is known as
the Google Knowledge Graph, which we mentioned in an earlier section. Besides this one
feature, Google Search has grown exponentially more powerful due to AI techniques such
as natural language processing and information extraction.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[33]

The ability to come up with exact timings in a video that relate to a query made by the user
is possible, all thanks to AI:

Next, we will look at Google Translate.

Google Translate
Supporting over 100 languages, Google Translate is probably the best translation tool
publicly available on the internet. From being able to detect the language being fed into it to
converting it into the desired language as set by the user, there's a deep mesh of neural
networks running in the background to produce the best results. This algorithm, to which
Google switched in November 2016, was named the Google Neural Machine
Translation algorithm. It is available on the web as an API to web developers who wish to
translate their website's content in real time to be able to cater to users of different locales.
Also, the service is integrated with Google Chrome, the browser made by Google, and
provides real-time translations of web pages as soon as the user visits them in the browser.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[34]

Google Assistant
One of the most recent ventures of Google, Google Assistant, is a competitor to Apple's Siri
and Microsoft's Cortana and a successor of Google Now. It is an AI-powered virtual
assistant available on mobile and smart home devices (branded as Google Home). Currently,
it can make searches on the user's Google Drive data, produce results based on the user's
preferences, provide reminders of notes given by the user, dial numbers, send text
messages, and much more as directed by the user either by normal tap-input on touch
screens or by voice input:

Next, we will look at other products.

Other products
AI is one of the primary technologies powering Google Ads. Click baiting or the problem of
fake clicks was solved using neural networks. Further, determining which type of ads
performed best down to the level of each single web page is efficiently facilitated by the use
of AI. These technological advancements of Google's ad services made it rapidly grab the
internet advertisement space from the preexisting advertising platforms.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[35]

Google projects such as Google Lens, self-driving cars, and many others have been
primarily AI-based projects.

Facebook
Being the largest social networking platform on the internet with several profiles, Facebook
generates a huge amount of data on a daily basis. Data of its users posting content, reports
made by the users, logs of the various APIs provided by Facebook, and so on all add up to
nearly 4 petabytes of data generated every day. Needless to say, the tech giant has
capitalized on this data gold and come up with ways to make its platform safer for users
and to boost user engagement.

Fake profiles
A primary issue faced by Facebook was the presence of fake profiles in huge numbers. To
deal with them, Facebook deployed AI-based solutions to automatically mark and
challenge such profiles to confirm their identity. In the first quarter of 2018 alone, Facebook
disabled nearly 583 million fake or clone accounts.

Fake news and disturbing content
Another issue faced by Facebook and their acquired messaging service, WhatsApp, was the
issue of fake news or misleading news. Also, adding to the degradation of user experience
was the presence of visually and/or emotionally disturbing content on the platform. And
finally, there was something that nearly all online platforms had to fight: spam. Facebook's
AI algorithms over the years have become very good at identifying and removing spam. By
the application of computer vision solutions facilitated by the usage of CNNs, Facebook has
been able to come up with a feature that covers/blurs visually disturbing images and videos
and asks for user consent before allowing users to view them.

Work on identifying and taking down fake news is currently under progress and is almost
entirely being done by the application of AI.

Other uses
Facebook provides its own Messenger bot platform, which is hugely used by Facebook
pages and developers to add rich interaction into the instant messaging service provided by
the company.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[36]

Amazon
The leading e-commerce platform on the internet, Amazon has incorporated AI in almost
all of its products and services. While a late-comer to the AI party being enjoyed by Google,
Facebook, Microsoft, and IBM, Amazon quickly grew and attracted attention to the various
uses it put AI to. Let's go through some of the major applications that Amazon came out
with.

Alexa
The AI that powers all Alexa and Echo devices produced by the company, Alexa is the
name given to the virtual assistant AI developed in direct competition with Google Home,
which was powered by Google Assistant (formerly Google Now). Not debating on which is
better, Alexa is a fairly advanced AI, being able to produce answers to questions that many
users have found interesting and witty. Alexa products have recently seen a rise in
adoption with Amazon's move to make Alexa Skills Studio available to developers
publicly, who added greatly to the actions that Alexa can perform.

Amazon robotics
As soon as a user buys a product from the website, a robot sitting in the sprawling huge
855,000 square-foot fulfillment center at Kent, Washington (obviously, only for products
available there) stirs up, lifts a large crate of products, and makes its way toward the site,
carrying the very product sold on the platform, where a worker picks it up from the crates
to further process it. Amazon recently equipped its Milwaukee fulfillment center with the
same technology after a very successful run previously and plans to extend it to 10 other
large centers soon.

DeepLens
An artificial intelligence-enabled video camera would have been the ultimate geek fantasy
in the early 2000s. With the coming of Amazon's DeepLens, which is exactly that, the
possibilities opened up are endless. Imagine a situation where you are a host to a party and
you get notified of every guest who comes in, directly on your phone. Surprisingly enough,
this has been achieved and experiments have even been done on equipping public places
with CCTV cameras that can identify criminals and trigger alerts automatically.

Demystifying Artificial Intelligence and Fundamentals of Machine Learning Chapter 1

[37]

Summary
In this chapter, we briefly introduced many important concepts and terminologies that are
vital to execute an ML project in general. These are going to be helpful throughout this
book.

We started with what AI is and its three major types. We took a look at the factors that are
responsible for the AI explosion that is happening around us. We then took a quick tour of
several components of ML and how they contribute to an ML project. We saw what DL is
and how AI, ML, and DL are connected.

Toward the very end of this chapter, we saw some examples where AI is being merged
with web technologies to make intelligent applications that promise to solve complex
problems. Behind almost all of the AI-enabled applications sits DL.

In the next chapters, we are going to leverage DL to make smart web applications.

2
Using Deep Learning for Web

Development
This section introduces the basic concepts and terminologies related to deep learning and
covers how to use deep learning to build a simple web app with different deep learning
libraries in Python.

This section comprises the following chapters:

Chapter 2, Getting Started with Deep Learning using Python
Chapter 3, Creating Your First Deep Learning Web Application
Chapter 4, Getting Started with TensorFlow.js

2
Getting Started with Deep

Learning Using Python
In the first chapter, we had a very close look at deep learning and how it is related to
machine learning and artificial intelligence. In this chapter, we are going to delve deeper
into this topic. We will start off by learning about what sits at the heart of deep
learning—namely, neural networks and their fundamental components, such as neurons,
activation units, backpropagation, and so on.

Note that this chapter is not going to be too math heavy, but at the same time, we are not
going to cut short the most important formulas that are fundamental to the world of neural
networks. For a more math-heavy study of the subject, readers are encouraged to read the
book Deep Learning (deeplearningbook.org) by Goodfellow et al.

The following is an overview of what we are going to cover in this chapter:

A whirlwind tour of neural networks and their related concepts
Deep learning versus shallow learning
Different types of neural networks
Setting up a deep-learning-based cloud environment
Exploring Jupyter Notebooks

http://deeplearningbook.org

Getting Started with Deep Learning Using Python Chapter 2

[40]

Demystifying neural networks
Let's start this section by finding the answers to the question, “Why are neural networks
called 'neural'?”. What is the significance behind this term?

Our intuition says that it has something to do with our brains, which is correct, but only
partially. Before we get to the reason why it is only partially correct, we need to have some
familiarity with the structure of a brain. For this purpose, let's look at the anatomy of our
own brains.

A human brain is composed of approximately 10 billion neurons, each connected to about
10,000 other neurons, which gives it a network-like structure. The inputs to the neurons are
called dendrites and the outputs are called axons. The body of a neuron is called a soma. So,
on a high level, a particular soma is connected to another soma. The word "neural" comes
from the word "neuron," and in fact, neural is the adjective form of the word "neuron." In
our brains, neurons are the most granular units that form this dense network we just
discussed. We are slowly understanding the resemblance of an artificial neural network to
the brain, and in order to continue our understanding of this similarity, we will briefly
learn about the functionalities of a neuron.

A network is nothing but a graph-like structure that contains a set of
nodes and edges that are connected to each other. In the case of our
brains, or any brain in general, neurons are referred to as nodes and the
dendrites are referred to as the vertices.

A neuron receives inputs from other neurons via their dendrites. These inputs are
electrochemical in nature. Not all the inputs are equally powerful. If the inputs are
powerful enough, then the connected neurons are activated and continue the process of
passing the input to the other neurons. Their power is determined by a predefined
threshold that allows the activation process to be selective so that it does not activate all the
neurons that are present in the network at the same time.

Getting Started with Deep Learning Using Python Chapter 2

[41]

To summarize, neurons receive a collective sum of inputs from other neurons, this sum is
compared to a threshold, and the neurons are activated accordingly. An artificial neural
network (ANN), or simply a neural network (NN), is based on this important fact, hence
the resemblance.

So, what makes a network a neural one? What does it take to form an NN?

The following quote from the book Deep Learning For Computer Vision With Python by
Adrian Rosebrock answers this question in a very commendable way:

Each node performs a simple computation. Each connection then carries a signal (i.e., the
output of the computation) from one node to another, labeled by a weight indicating the
extent to which the signal is amplified or diminished. Some connections have large, positive
weights that amplify the signal, indicating that the signal is very important when making a
classification. Others have negative weights, diminishing the strength of the signal, thus
specifying that the output of the node is less important in the final classification. We call
such a system an Artificial Neural Network if it consists of a graph structure with
connection weights that are modifiable using a learning algorithm.

We have learned about the resemblance of neural networks to brains. We will now take this
information and learn more about the granular units of ANNs. Let's start by learning what
a simple neuron has to do in an ANN.

Artificial neurons
Let's call the neurons that are used in ANNs artificial neurons. Broadly speaking, artificial
neurons can be of two types:

Linear neuron
Nonlinear neuron

Getting Started with Deep Learning Using Python Chapter 2

[42]

Anatomy of a linear neuron
A neuron is the most granular unit in a neural network. Let's look at the second word of
"neural network." A network is nothing but a set of vertices (also called nodes) whose edges
are connected to each other. In the case of a neural network, neurons serve as the nodes.
Let's consider the following neural network architecture and try to dissect it piece by piece:

What we can see in the preceding diagram is a neural network with two hidden layers (in a
neural network, a layer is a set of neurons) with a single output. In fact, this is called a two-
layer neural network. The neural network consists of the following:

One single input
Two hidden layers, where the first hidden layer has three neurons and the
second hidden layer contains two neurons
One single output

There is no deeper psychological significance in calling the layers hidden they are called
hidden simply because the neurons involved in these layers are neither parts of the input
nor output. One thing that is very evident here is that there is a layer before the first hidden
layer. Why are we not counting that layer? In the world of neural networks, that initial
layer and output are not counted in the stack of layers. In simple words, if there are n
hidden layers, it is an n-layer neural network.

Getting Started with Deep Learning Using Python Chapter 2

[43]

The initial layer (also called an input layer) is used for receiving primary input to the neural
network. After receiving the primary input, the neurons present in the input layer pass
them to the next set of neurons that are present in the subsequent hidden layers. Before this
propagation happens, the neurons add weights to the inputs and a bias term to the inputs.
These inputs can be from various domains—for example, the inputs can be the raw pixels
of an image, the frequencies of an audio signal, a collection of words, and so on. Generally,
these inputs are given as feature vectors to the neural network. In this case, the input data
has only one feature.

Now, what are the neurons from the next two layers doing here? This is an important
question. We can consider the addition of weights and biases to the inputs as the first
level/layer of learning (also called the decision making layer). The neurons in the initial
hidden layer repeat this process, but before sending the calculated output to the neurons
that are present in the next hidden layer, they compare this value to a threshold. If the
threshold criteria are satisfied, then only the outputs are propagated to the next level. This
part of the whole neural network learning process bears a solid resemblance to the
biological process that we discussed earlier. This also supports the philosophy of learning
complex things in a layered fashion.

A question that is raised here is, "What happens if no hidden layers are used?". It turns out
that adding more levels of complexity (by adding more layers) in a neural network allows it
to learn the underlying representations of the input data in a more concise manner than a
network with just the input layer and the output. But how many layers would we need? We
will get to that later.

Let's introduce some mathematical formulas here to formalize what we just studied.

We express the input features as x, the weights as w, and the bias term as b. The neural
network model that we are currently trying to dissect builds upon the following rule:

The rule says that after calculating the sum of weighted input and the bias, if the result is
greater than 0, then the neuron is going to yield 1, and if the result is less than or equal to 0,
then the neuron is simply going to produce 0 in other words, the neuron is not going to fire.
In the case of multiple input features, the rule remains exactly the same and the
multivariate version of the rule looks like the following:

Getting Started with Deep Learning Using Python Chapter 2

[44]

Here, i means that we have a total of i input features. The preceding rule can be broken
down as follows:

We take the features individually, and then we multiply them by the weights
After finishing this process for all the individual input features, we take all of the
weighted inputs and sum them and finally add the bias term.

The preceding process is continued for the number of layers we have in
our network. In this case, we have two hidden layers, so the output of one
layer would be fed to the next.

The elements we just studied were proposed by Frank Rosenblatt in the 1960s. The idea of
assigning 0 or 1 to the weighted sum of the inputs based on a certain threshold is also
known as the step-function. There are many rules like this in the literature, these are called
update rules.

The neurons we studied are linear neurons that are capable of learning linear functions.
They are not suited for learning representations that are nonlinear in nature. Practically,
almost all the inputs that neural networks are fed with are nonlinear in nature. In the next
section, we are going to introduce another type of neuron that is capable of capturing the
nonlinearities that may be present in the data.

Some of you might be wondering whether this NN model is called an
MLP (multilayer perceptron). Well, it is. In fact, Rosenblatt proposed this
way back in the 1960s. Then what are neural networks? We are going to
learn the answer to this shortly.

Anatomy of a nonlinear neuron
A nonlinear neuron means that it is capable of responding to the nonlinearities that may be
present in the data. Nonlinearity in this context essentially means that for a given input, the
output does not change in a linear way. Look at the following diagrams:

Getting Started with Deep Learning Using Python Chapter 2

[45]

Both of the preceding figures depict the relationship between the inputs that are given to a
neural network and the outputs that the network produces. From the first figure, it is clear
that the input data is linearly separable, whereas the second figure tells us that the inputs
cannot be linearly separated. In cases like this, a linear neuron will miserably fail, hence the
need for nonlinear neurons.

In the training process of a neural network, conditions can arise where a
small change in the bias and weight values may affect the output of the
neural network in a drastic way. Ideally, this should not happen. A small
change to either the bias or weight values should cause only a small
change in the output. When a step function is used, the changes in weight
and bias terms can affect the output to a great extent, hence the need for
something other than a step function.

Behind the operation of a neuron sits a function. In the case of the linear neuron, we saw
that its operations were based on a step function. We have a bunch of functions that are
capable of capturing the nonlinearities. The sigmoid function is such a function, and the
neurons that use this function are often called sigmoid neurons. Unlike the step function,
the output in the case of a sigmoid neuron is produced using the following rule:

So, our final, updated rule becomes the following:

Getting Started with Deep Learning Using Python Chapter 2

[46]

But why is the sigmoid function better than a step function in terms of capturing
nonlinearities? Let's compare their performance in graphical to understand this:

The preceding two figures give us a clear picture about the two functions regarding their
intrinsic nature. It is absolutely clear that the sigmoid function is more sensitive to the
nonlinearities than the step function.

Apart from the sigmoid function, the following are some widely known and used functions
that are used to give a neuron a nonlinear character:

Tanh
ReLU
Leaky ReLU

In the literature, these functions, along with the two that we have just studied, are called
activation functions. Currently, ReLU and its variants are by far the most successful
activation functions.

We are still left with a few other basic things related to artificial neural networks. Let's
summarize what we have learned so far:

Neurons and their two main types
Layers
Activation functions

We are now in a position to draw a line between MLPs and neural networks. Michael
Nielson in his online book Neural Networks and Deep Learning describes this quite well:

Somewhat confusingly, and for historical reasons, such multiple layer networks are
sometimes called multilayer perceptrons or MLPs, despite being made up of sigmoid
neurons, not perceptrons.

Getting Started with Deep Learning Using Python Chapter 2

[47]

We are going to use the neural network and deep neural network terminologies throughout
this book. We will now move forward and learn more about the input and output layers of
a neural network.

A note on the input and output layers of a neural
network
It is important to understand what can be given as inputs to a neural network. Do we feed
raw images or raw text data to a neural network? Or are there other ways to provide input
to a neural network? In this section, we will learn how a computer really interprets an
image to show what exactly can be given as input to a neural network when it is dealing
with images (yes, neural networks are pretty great at image processing). We will also learn
the ways to show what it takes to feed a neural network with raw text data. But before that,
we need to have a clear understanding of how a regular tabular dataset is given as an input
to a neural network. Because tabular datasets are everywhere, in the form of SQL tables,
server logs, and so on.

We will take the following toy dataset for this purpose:

Take note of the following points regarding this toy dataset:

It has two predictor variables, x1 and x2, and these predictors are generally called
input feature vectors.
It is common to assign x1 and x2 to a vector, X (more on this later).
The response variable is y.

Getting Started with Deep Learning Using Python Chapter 2

[48]

We have 10 instances (containing x1, x2, and y attributes) that are categorized
into two classes, 0 and 1.
Given x1 and x2, our (neural network's) task is to predict y, which essentially
makes this a classification task.

When we say that the neural network predicts something, we mean that it is supposed to
learn the underlying representations of the input data that best approximate a certain
function (we saw what function plotting look like a while ago).

Let's now see how this data is given as inputs to a neural network. As our data has two
predictor variables (or two input vectors), the input layer of the neural network has to
contain two neurons. We will use the following neural network architecture for this
classification task:

The architecture is quite identical to the one that we saw a while ago, but in this case, we
have an added input feature vector. The rest is exactly the same.

To keep it simple, we are not considering the data preprocessing that might be needed
before we feed the data to the network. Now, let's see how the data is combined with the
weights and the bias term, and how the activation function is applied to them.

In this case, the feature vectors and the response variable (which is y) are interpreted
separately by the neural network the response variable is used in the later stage in the
network's training process. Most importantly, it is used for evaluating how the neural
network is performing. The input data is organized as a matrix form, like the following:

Getting Started with Deep Learning Using Python Chapter 2

[49]

The kind of NN architecture that we are using now is a fully connected architecture, which
means that all of the neurons in a particular layer are connected to all the other neurons in
the next layer.

The weight matrix is defined as follows:

For now, let's not bother about the weight values. The dimensions of the weight matrix is
interpreted as the following:

The number of rows equals the number of feature vectors (x1 and x2, in our case).
The number of columns equals the number of neurons in the first hidden layer.

There are some suffixes and superscripts associated with each of the weight values in the

matrix. If we take the general form of the weight as , then it should be interpreted as
follows:

l denotes the layer from which the weight is coming. In this case, the weight
matrix that we just saw is going to be associated with the input layer.
j denotes the position of the neuron in , whereas k denotes the position of the
neuron in the next layer that the value is propagated to.

The weights are generally randomly initialized, which adds a stochastic character to the
neural network. Let's randomly initialize a weight matrix for the input layer:

Now we calculate the values that are to be given to the first hidden layer of the NN. This is
computed as follows:

Getting Started with Deep Learning Using Python Chapter 2

[50]

The first matrix contains all the instances from the training set (without the response
variable y) and the second matrix is the weight matrix that we just defined. The result of
this multiplication is stored in a variable, (this variable can be named anything, and the
superscript denotes that it is related to the first hidden layer of the network).

We are still left with one more step before we send these results to the neurons in the next
layer, where the activation functions will be applied. The sigmoid activation function and
the final output from the input layer would look like the following:

Here, a(1) is our final output for the next layer of neurons. Note that the sigmoid function is
applied to each and every element of the matrix. The final matrix will have a dimension
of 10 X 3, where each row is for each instance from the training set and each column is for
each neuron of the first hidden layer.

The whole calculation that we saw is without the bias term, b, that we initially talked about.
Well, that is just a matter the of addition of another dimension to the picture. In that case,
before we apply the sigmoid function to each of the elements of the matrix, the matrix
itself would be changed to something like this:

After this matrix multiplication process, the sigmoid function is applied and the output is
sent to the neurons in the next layers, and this whole process repeats for each hidden layer
and output layer that we have in the NN. As we proceed, we are supposed to get from
the output layer.

The sigmoid activation function outputs values ranging from 0–1, but we are dealing with a
binary classification problem, and we only want 0 or 1 as the final output from the NN. We
can do this with a little tweak. We can define a threshold at the output layer of the NN—for
the values that are less than 0.5 they should be identified as class 0 and the values that are
greater than or equal to 0.5 should be identified as class 1. Note that this is called forward
pass or forward propagation.

Getting Started with Deep Learning Using Python Chapter 2

[51]

The NN we just saw is referred to as a feed-forward network with no
further optimization in its learning process. But wait! What does the
network even learn? Well, an NN typically learns the weights and bias
terms so that the final output is as accurate as possible. And this happens
with gradient descent and backpropagation.

Gradient descent and backpropagation
Before we start learning about what gradient descent and backpropagation have to do in
the context of neural networks, let's learn what is meant by an optimization problem.

An optimization problem, briefly, corresponds to the following:

Minimizing a certain cost
Maximizing a certain profit

Let's now try to map this to a neural network. What happens if, after getting the output
from a feed-forward neural network, we find that its performance is not up to the mark
(which is the case almost all the time)? How are we going to enhance the performance of
the NN? The answer is gradient descent and backpropagation.

We are going to optimize the learning process of the neural network with these two
techniques. But what are we going to optimize? What are we going to minimize or
maximize? We require a specific type of cost that we will attempt to minimize.

We will define the cost in terms of a function. Before we define a cost function for the NN
model, we will have to decide the parameters of the cost function. In our case, the weights
and the biases are the parameters of the function that the NN is trying to learn to give us
accurate results (see the information box just before this section). In addition, we will have
to calculate the amount of loss that the network is inculcating at each step of its training
process.

For a binary classification problem, a loss function called a cross-entropy loss function (for
a binary classification problem it is called a binary cross cross-entropy loss function) is
widely used, and we are going to use it. So, what does this function look like?

Here, y denotes the ground truth or true label (remember the response variable, y, in the
training set) of a given instance and denotes the output as yielded by the NN model. This
function is convex in nature, which is just perfect for convex optimizers such as gradient
descent.

Getting Started with Deep Learning Using Python Chapter 2

[52]

This is one of the reasons that we didn't pick up a simpler and nonconvex loss function.
(Don't worry if you are not familiar with terms like convex and nonconvex.)

We have our loss function now. Keep in mind that this is just for one instance of the entire
set of data this is not the function on which we are going to apply gradient descent. The
preceding function is going to help us define the cost function that we will eventually
optimize using gradient descent. Let's see what that cost function looks like.

Here, w and b are the weights and biases that the network is trying to learn. The letter m
represents the number of training instances, which is 10 in this case. The rest seems
familiar. Let's put the original form of the function, L(), and see what J() looks like:

The function may look a bit confusing, so just slow it down and make sure you understand
it well.

We can finally move toward the optimization process. Broadly, gradient descent is trying to
do the following:

Give us a point where the cost function is as minimal as possible (this point is
called the minima).
Give us the right values of the weights and biases so that the cost function
reaches that point.

To visualize this, let's take a simple convex function:

Getting Started with Deep Learning Using Python Chapter 2

[53]

Now, say we start the journey at a random point, such as the following:

So, the point at the top right corner is the point at which we started. And the point (directed
by the dotted arrow) is the point we wish to arrive at. So, how do we do this in terms of
simple computations?

In order to arrive at this point the following update rule is used:

Here, we are taking the partial derivative of J(w,b) with respect to the weights. We are
taking a partial derivative because J(w,b) contains b as one of the parameters. 𝝰 is the
learning rate that speeds up this process. This update rule is applied multiple times to find
the right values of the weights. But what about the bias values? The rule remains exactly
the same only the equation is changed:

These new assignments of weights and biases are essentially referred to as backpropagation,
and it is done in conjunction with gradient descent. After computing the new values of the
weights and the biases, the whole forward propagation process is repeated until the NN
model generalizes well. Note that these rules are just for one single instance, provided that
the instance has only one feature. Doing this for several instances that contain several
features can be difficult, so we are going to skip that part however, those who are interested
in seeing the fully fledged version of this may refer to a lecture online by Andrew Ng.

Getting Started with Deep Learning Using Python Chapter 2

[54]

We have covered the necessary fundamental units of a standard neural network, and it was
not easy at all. We started by defining neurons and we ended with backprop (the nerdy
term of backpropagation). We have already laid the foundations of a deep neural network.
Readers might be wondering whether that was a deep neural net that we just studied. As
Andriy Burkov says (from his book titled The Hundred Page Machine-Learning Book):

Deep learning refers to training neural networks with more than two non-output layers.
… the term “deep learning” refers to training neural networks using the modern
algorithmic and mathematical toolkit independently of how deep the neural network is. In
practice, many business problems can be solved with neural networks having 2-3 layers
between the input and output layers.

In the next sections, we will learn about the difference between deep learning and shallow
learning. We will also take a look at two different types of neural networks—namely,
convolutional neural networks and recurrent neural networks.

Different types of neural network
So far, we have learned what feed-forward neural networks look like and how techniques
such as backpropagation and gradient descent are applied to it in order to optimize their
training process. The binary classification problem we studied earlier appears to be too
naive and too impractical, doesn't it?

Well, there are many problems that a simple NN model can solve well. But as the
complexity of the problem increases, improvements to the basic NN model become
necessary. These complex problems include object detection, object classification, image-
caption generation, sentiment analysis, fake-news classification, sequence generation,
speech translation, and so on. For problems like these, a basic NN model is not sufficient. It
needs some architectural improvements so that it can solve these problems. In this section,
we are going to study two of the most powerful and widely used NN
models—convolutional neural networks and recurrent neural networks. At the heart of the
stunning applications of deep learning that we see nowadays sit these NN models.

Convolutional neural networks
Have you ever uploaded a photo of your friends' group to Facebook? If yes, have you ever
wondered how Facebook detects all the faces in the photo automatically just after the
upload finishes? In short, the answer is convolutional neural networks (CNNs).

Getting Started with Deep Learning Using Python Chapter 2

[55]

A feed-forward network generally consists of several fully connected layers, whereas a
CNN consists of several layers of convolution, along with other types of sophisticated
layers, including fully-connected layers. These fully-connected layers are generally placed
towards the very end and are typically used for making predictions. But what kinds of
predictions? In an image-processing and computer-vision context, a prediction task can
encompass many use cases, such as identifying the type of object present in the image that
is given to the network. But are CNNs only good for image-related tasks? CNNs were
designed and proposed for image-processing tasks (such as object detection, object
classification, and so on) but it has found its use in many text-processing tasks as well. We
are going to learn about CNNs in an image-processing context because CNNs are most
popular for the wonders they can work in the domains of image processing and computer
vision. But before we move on to this topic, it would be useful to understand how an image
can be represented in terms of numbers.

An image consists of numerous pixels and dimensions—height x width x depth. For a color
image, the depth dimension is generally 3, and for a grayscale image, the dimension is 1.
Let's dig a bit deeper into this. Consider the following image:

The dimension of the preceding image is 626 x 675 x 3, and numerically, it is nothing but a
matrix. Each pixel represents a particular intensity of red, green, and blue (according to the
RGB color system). The image contains a total of 422,550 pixels (675 x 626).

Getting Started with Deep Learning Using Python Chapter 2

[56]

The pixels are denoted by a list of three values of red, green, and blue colors. Let's now see
what a pixel (corresponding to the twentieth row and the hundredth column in the matrix
of 422,550 pixels) looks like in coding terms:

12, 24, 10

Each value corresponds to a particular intensity of the colors red, green, and blue. For the
purpose of understanding CNNs, we will look at a much smaller dimensional image in
grayscale. Keep in mind that each pixel in a grayscale image is between 0 and 255, where 0
corresponds to black and 255 corresponds to white.

The following is a dummy matrix of pixels representing a grayscale image (we will refer to
this as an image matrix):

Before we proceed, let's think intuitively about how can we train a CNN to learn the
underlying representations of an image and make it perform some tasks. Images have a
special property inherent to them: the pixels in an image that contain a similar type of
information generally remain close to each other. Consider the image of a standard human
face: the pixels denoting the hair are darker and are closely located on the image, whereas
the pixels denoting the other parts of the face are generally lighter and also stay very close
to each other. The intensities may vary from face to face, but you get the idea. We can use
this spatial relationship of the pixels in an image and train a CNN to detect the similar
pixels and the edges that they create in between them to distinguish between the several
regions present in an image (in an image of a face, there are arbitrary edges in between the
hair, eyebrows, and so on). Let's see how this can be done.

A CNN typically has the following components:

Convolutional layer
Activation layer
Pooling layer
Fully connected layer

At the heart of a CNN sits an operation called convolution (which is also known as cross
relation in the literature of computer vision and image processing). Adrian Rosebrock of
PyImageSearch describes the operation as follows:

In terms of deep learning, an (image) convolution is an element-wise multiplication of two
matrices followed by a sum.

Getting Started with Deep Learning Using Python Chapter 2

[57]

This quote tells us how an (image) convolution operator works. The matrices mentioned in
the quote are the image matrix itself and another matrix known as the kernel. The original
image matrix can be higher than the kernel matrix and the convolution operation is
performed on the image matrix in a left–right top–bottom direction. Here is an example of a
convolution operation involving the preceding dummy matrix and a kernel of size 2 x 2:

The kernel matrix actually serves as the weight matrix for the network, and to keep it
simple, we ignore the bias term for now. It is also worth noting that our favorite image
filters (sharpening, blurring, and so on) are nothing but outputs of certain kinds of
convolution applied to the original images. A CNN actually learns these filter (kernel)
values so that it can best capture the spatial representation of an image. These values can be
further optimized using gradient descent and backpropagation. The following figure
depicts four convolution operations applied to the image:

Getting Started with Deep Learning Using Python Chapter 2

[58]

Note how the kernel is sliding and how the convoluted pixels are being calculated. But if
we proceed like this, then the original dimensionality of the image gets lost. This can cause
information loss. To prevent this, we apply a technique called padding and retain the
dimensionality of the original image. There are many padding techniques, such as replicate
padding, zero padding, wrap around, and so on. Zero padding is very popular in deep
learning. We will now see how zero padding can be applied to the original image matrix so
that the original dimensionality of the image is retained:

Zero padding means that the pixel value matrix will be padded by zero on
all sides, as shown in the preceding image.

It is important to instruct the network how it should slide the image matrix. This is
controlled using a parameter called stride. The choice of stride depends on the dataset and
the correct use of stride 2 is standard practice in deep learning. Let's see how stride 1 differs
from stride 2:

Getting Started with Deep Learning Using Python Chapter 2

[59]

A convoluted image typically looks like the following:

The convoluted image largely depends on the kernel that is being used. The final output
matrix is passed to an activation function and the function is applied to the matrix's
elements. Another important operation in a CNN is pooling, but we will skip this for now.
By now, you should have a good understanding of how a CNN works on a high level,
which is sufficient for continuing to follow the book. If you want to have a deeper
understanding of how a CNN works, then refer to the blog post at https:/ / www.
pyimagesearch.com/ 2018/ 04/ 16/ keras- and- convolutional- neural- networks- cnns/ .

Recurrent neural networks
Recurrent neural networks (RNNs) are another type of neural network, and are
tremendously good at NLP tasks—for example, sentiment analysis, sequence prediction,
speech-to-text translation, language-to-language translation, and so on. Consider an
example: you open up Google and you start searching for recurrent neural networks. The
moment you start typing a word, Google starts giving you a list of suggestions which is
most likely to be topped by the complete word, or the most commonly searched phrase that
begins with the letters you have typed by then. This is an example of sequence prediction
where the task is to predict the next sequence of the given phrase.

https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/
https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/

Getting Started with Deep Learning Using Python Chapter 2

[60]

Let's take another example: you are given a bunch of English sentences containing one
blank per sentence. Your task is to appropriately fill the gaps with the correct words. Now,
in order to do this, you will need to use your previous knowledge of the English language
in general and make use of the context as much as possible. To use previously encountered
information like this, you use your memory. But what about neural networks? Traditional
neural networks cannot do this because they do not have any memory. This is exactly
where RNNs come into the picture.

The question that we need to answer is how can we empower neural networks with
memory? An absolutely naive idea would be to do the following:

Feed a certain sequence into a neuron.
Take the output of the neuron and feed it to the neuron again.

It turns out that this idea is not that naive, and in fact constitutes the foundation of the
RNN. A single layer of an RNN actually looks like the following:

The loop seems to be a bit mysterious. You might already be thinking about what happens
in each iteration of the loop:

In the preceding diagram, an RNN (the figure on the left) is unrolled to show three simple
feedforward networks. But what do these unrolled networks do? Let's find this out now.

Getting Started with Deep Learning Using Python Chapter 2

[61]

Let's consider the task of sequence prediction. To keep it simple, we will look at how an
RNN can learn to predict the next letter to complete a word. For example, if we train the
network with a set of letters, {w, h, a, t}, and after giving the letters w,h, and a sequentially,
the network should be able to predict that the letter should be t so that the meaningful
word "what" is produced. Just like the feed-forward networks we saw earlier, X serves as
the input vector to the network in RNN terminology, this vector is also referred to as the
vocabulary of the network. The vocabulary of the network is, in this case, {w, h, a, t}.

The network is fed with the letters w,h, and a sequentially. Let's try to give indices to the
letters:

→

→

→

These indices are known as time-steps (the superscripts in the figure presenting the
unrolling of an RNN). A recurrent layer makes use of the input that is given at previous
time-steps, along with a function when operating on the current time-step. Let's see how
the output is produced by this recurrent layer step by step.

Feeding the letters to the network
Before we see how a recurrent layer produces the output, it is important to learn how we
can feed the set of letters to the networks. One-hot encoding lets us do this in a very
efficient way:

So, in one-hot encoding, our input vectors/vocabulary of letters are nothing but four 4 x 1
matrices, each denoting a particular letter. One-hot encoding is standard practice for these
tasks. This step is actually a data-preprocessing step.

Getting Started with Deep Learning Using Python Chapter 2

[62]

Initializing the weight matrix and more
When there are neural networks, there are weights. This is true, right? But before we start
to deal with the weights for our RNN, let's see exactly where they are needed.

There are two different weight matrices in the case of an RNN—one for the input neuron
(remember that we feed feature vectors only through neurons) and one for the recurrent
neuron. A particular state in an RNN is produced using the following two equations:

To understand what each term means in the first equation, refer to the following image
(don't worry, we will get to the second equation):

The first pass of the RNN is the letter w. We will randomly initialize the two weight
matrices as present in the equation (1). Assume that the matrix after getting
initialized looks like the following:

Getting Started with Deep Learning Using Python Chapter 2

[63]

The matrix is 3 x 4:

x = 3, as we have three recurrent neurons in the recurrent layer
h = 4, as our vocabulary is 4

The matrix is a 1 x 1 matrix. Let's take its value as 0.35028053. Let's also introduce the
bias term b here, which is also a 1 x 1 matrix, 0.6161462. In the next step, we will put these
values together and determine the value of . (We will deal with the second equation
later.)

Putting the weight matrices together
Let's determine first. is a 4 x 1 matrix representing the letter w, which we
defined earlier. The standard rules of matrix multiplication apply here:

Now we will calculate the term . We will shortly see the significance of the bias
term. Since w is the first letter that we are feeding to the network, it does not have any
previous state therefore, we will take as a matrix of 3 x 1 consisting of zeros:

Getting Started with Deep Learning Using Python Chapter 2

[64]

Note that if we didn't take the bias term, we would have got a matrix consisting of only
zeros. We will now add these two matrices as per the equation (1). The result of this
addition is a 3 x 1 matrix and is stored in (which in this case is):

Following the equation (1), all we need to do is apply the activation function to this matrix.

Applying activation functions and the final output
When it comes to RNNs, is a good choice as an activation function. So, after applying

, the matrix looks like the following:

We have got the result of . ht acts as for the next time-step. We will now calculate
the value of using equation (2). We will require another weight matrix (of shape 4
x 3) that is randomly initialized:

After applying the second equation, the value of becomes a 4 x 1 matrix:

Getting Started with Deep Learning Using Python Chapter 2

[65]

Now, in order to predict what might be the next letter that comes after w (remember, we
started all our calculations with the letter w and we still left with the first pass of the RNN)
to make a suitable word from the given vocabulary, we will apply the softmax function to

. This will output a set of probabilities for each of the letters from the vocabulary:

If anyone is curious about learning what a softmax function looks like,
there is an extremely helpful article at http:/ /bit. ly/ softmaxfunc.

So, the RNN tells us that the next letter after w is more likely to be an . With this, we finish
the initial pass of the RNN. As an exercise, you can play around with the ht value we got
from this pass and apply it (along with the next letter h) to the next pass of the RNN to see
what happens.

Now, let's get to the most important question—what is the network learning? Again,
weights and biases! You might have guessed the next sentence already. These weights are
further optimized using backpropagation. Now, this backpropagation is a little bit different
from what we have seen earlier. This version of backpropagation is referred to as
backpropagation through time. We won't be learning about this. Before finishing off this
section, let's summarize the steps (after one-hot encoding of the vocabulary) that were
performed during the forward pass of the RNN:

Initialize the weight matrices randomly.
Calculate using equation (1).

http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc
http://bit.ly/softmaxfunc

Getting Started with Deep Learning Using Python Chapter 2

[66]

Calculate using equation (2).
Apply the softmax function to to get the probabilities of each of the letters in
the vocabulary.

It is good to know that apart from CNNs and RNNs, there are other types of neural
networks, such as auto-encoders, generative adversarial networks, capsule networks, and
so on. In the previous two sections, we learned about two of the most powerful types of
neural network in detail. But when we talk about cutting-edge deep-learning applications,
are these networks good enough to be used? Or do we need more enhancements on top of
these? It turns out that although these architectures perform well, they fail to scale, hence
the need for more sophisticated architectures. We will get to some of these specialized
architectures in the next chapters.

We have covered a good amount of theory since Chapter 1, Demystifying Artificial
Intelligence and Fundamentals of Machine Learning. In the next few sections, we will be diving
into some hands-on examples.

Exploring Jupyter Notebooks
While working on a project relating to deep learning, you must deal with a huge amount of
variables of various types and arrays of various dimensions. Also, since the data contained
in them is massive and keeps changing after nearly every step, we need a tool that helps us
to observe the output produced by each step so that we can proceed accordingly. A Jupyter
Notebook is one such tool. Jupyter Notebooks are known for their simplicity, and their
wide support of features and platforms are currently the standard tool for developing
deep-learning solutions. The reasons for their popularity can be understood by considering
the fact that several of the top tech giants offer their own version of the tool, such as Google
Colaboratory and Microsoft Azure Notebooks. Moreover, the popular code-hosting website
GitHub has been providing a native rendering of Jupyter Notebook since 2016.

Installing Jupyter Notebook
Let's begin with the installation of Jupyter Notebook.

Getting Started with Deep Learning Using Python Chapter 2

[67]

Installation using pip
If you already have Python installed on your system, you can install the Jupyter package
from the pip repository to start using Jupyter Notebooks quickly.

For Python 3, use the following:

python3 -m pip install --upgrade pip
python3 -m pip install jupyter

For Python 2, use the following:

python -m pip install --upgrade pip
python -m pip install jupyter

For Mac users, if the pip installation is not found, you can download the
latest Python version, which carries pip bundled with it.

Installation using Anaconda
While it is possible to install Jupyter as a single package from pip, it is strongly
recommended that you install the Anaconda distribution for Python, which automatically
installs Python, Jupyter, and several other packages required for machine learning and data
science. Anaconda makes it very easy to deal with the various package versions and update
dependency packages or dependent packages.

Firstly, download the correct Anaconda distribution for your system and requirements
from https://www. anaconda. com/ downloads and then follow the corresponding
installation steps given on the website.

Verifying the installation
To check whether Jupyter has correctly installed, run the following command in Command
Prompt (Windows) or Terminal (Linux/Mac):

jupyter notebook

https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads
https://www.anaconda.com/downloads

Getting Started with Deep Learning Using Python Chapter 2

[68]

You will be able to see some logging output at the terminal (henceforth, the default term for
Command Prompt on Windows and Terminal on Linux or Mac). After that, your default
browser, will open up and you will be taken to a link on the browser which will resemble
the following image:

Under the Files tab, a basic file manager is provided that the user can use to create, upload,
rename, delete, and move files.

The Running tab lists all the currently running Jupyter Notebooks, which can be shut
down from the listing displayed.

The Clusters tab provides an overview of all the available IPython clusters. In order to use
this feature, you are required to install the IPython Parallel extension for your Python
environment.

Jupyter Notebooks
A Jupyter Notebook by default is identified by the .ipynb extension. Upon clicking on the
name of once such notebook in the file manager provided by Jupyter, you'll be presented
with a screen resembling the following:

Getting Started with Deep Learning Using Python Chapter 2

[69]

The topmost section, where you can see a menu bar, a toolbar, and the title of the notebook,
is called the header. On the right side of the header you can see the environment in which
the notebook is executing, and when any task is running, the white circle beside the
environment language's name turns gray.

Below the header is the body of the notebook, which is composed of cells stacked vertically.
Each cell in the body of the notebook is either a block of code, a markdown cell, or a raw
cell. A code cell can have an output cell attached below it, which the user cannot edit
manually. This holds the output produced by the code cell associated with it.

In a Jupyter Notebook, the keyboard behaves differently for different modes of a cell For
this reason, these notebooks are called modal. There are two modes in which a notebook
cell can operate: the command mode and the editx mode.

Getting Started with Deep Learning Using Python Chapter 2

[70]

While a cell is in command mode, it has a gray border. In this mode, the cell contents
cannot be changed. The keys of the keyboard in this mode are mapped to several shortcuts
that can be used to modify the cell or the notebook as a whole.

While in command mode, if you press the Enter key on the keyboard, the cell mode changes
to the edit mode. While in this mode, the contents of the cell can be changed and the basic
keyboard shortcuts that are available in the usual textboxes in the browser can be invoked.

To exit the edit mode, the user can use the Esc key. To run the particular cell, the user has to
input Shift + Return, which will do one of the following in each case:

For a markdown cell, the rendered markdown shall be displayed.
For a raw cell, the raw text as entered shall be visible.
For a code cell, the code will be executed and if it produces some output, an
output cell attached to the code cell will be created and the output will get
displayed there. If the code in the cell asks for an input, an input field will appear
and the cell's code execution stalls until the input is provided.

Jupyter also allows the manipulation of text files and Python script files using its in-built
text editor. It is also possible to invoke the system terminal from within the Jupyter
environment.

Setting up a deep-learning-based cloud
environment
Before we begin setting up a cloud-based deep learning environment, we might wonder
why would we need it or how a cloud-based deep learning environment would benefit us.
Deep learning requires a massive amount of mathematical calculation. At every layer of the
neural network, there is a mathematical matrix undergoing multiplication with another or
several other such matrices. Furthermore, every data point itself can be a vector instead of a
singular entity. Now, to train over several repetitions, such a deep learning model would
require a lot of time just because of the number of mathematical operations involved.

A GPU-enabled machine would be much more efficient at executing these operations
because a GPU is made specifically for high-speed mathematical calculations however,
GPU-enabled machines are costly and may not be affordable to everyone. Furthermore,
considering that multiple developers work on the same software in a work environment, it
might be a very costly option to buy GPU-enabled machines for all the developers on the
team. For these reasons, the idea of a GPU-enabled cloud computing environment has a
strong appeal.

Getting Started with Deep Learning Using Python Chapter 2

[71]

Companies nowadays are increasingly leaning towards the usage of GPU-enabled cloud
environments for their development teams, which can lead to the creation of a common
environment for all of the developers as well as the facilitation of high-speed computation.

Setting up an AWS EC2 GPU deep learning
environment
In this section, we will learn how to set up a deep learning specific instance on AWS. Before
you can begin working with AWS, you will need to create an account on the AWS console.
To do so, go through the following steps:

Visit https:/ / console. aws. amazon. com and you'll be presented with a login/sign1.
up screen.
If you do not already have an AWS account, click on Create a new AWS account2.
and follow the steps to create one, which might require you to enter your
debit/credit card details to enable billing for your account.
Upon logging into your account, on the dashboard, click on EC2 in the All3.
services section, as shown in the following screenshot:

Once you have reached the EC2 management page within the AWS console, you'll need to
go through the steps in the following sections to create an instance for your deep learning
needs.

https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com

Getting Started with Deep Learning Using Python Chapter 2

[72]

Step 1: Creating an EC2 GPU-enabled instance
First, select the Ubuntu 16.04 or 18.04 LTS AMI:

Then, choose a GPU-enabled instance configuration. The g2.2xlarge is a good choice for a
starter deep learning environment:

Getting Started with Deep Learning Using Python Chapter 2

[73]

Next, configure the required instance settings or leave them as their default and proceed to
the storage step. Here, a recommended size of the volume is 30 GB. You can then proceed
to launch the instance with the default options.

Assign an EC2 key pair to your instance so that you can access the instance's terminal over
SSH from your system. If you name the key pair abc, then a file named abc.pem would
download automatically to your browser's default download location.

Step 2: SSHing into your EC2 instance
Open up a terminal on your system and using cd, navigate to the directory that your
abc.pem file is stored in.

If you're unfamiliar with the cd command, consider a scenario in which you are inside a
folder named Folder1, which has the following contents:

Folder1 /
 - Folder2
 - Folder3
 - File1.jpg
 - File2.jpg

To access any files inside the folder named Folder2, you'll have to change your working
directory to that folder. To do so, you can use the following example of the cd command:

cd Folder2

Note that this command only works when you're already inside Folder1,
which can be reached with a similar usage of the cd command from
anywhere on the system.

You can read more about the usage of any command on a Linux system by using the
following command:

man <command>

For example, you can use the following:

man cd

Now, set the permissions required for SSH using the key file by entering the following:

$ chmod 400 abc.pem

Getting Started with Deep Learning Using Python Chapter 2

[74]

Now, to SSH into your instance, you will need its public IP or instance public DNS. For
example, if the public IP is 1.2.3.4, then use the following command:

$ ssh -i abc.pem ubuntu@1.2.3.4

The public IP of the AWS instance can be found on the details panel below the list of
running instances on the AWS console in the EC2 management page.

Step 3: Installing CUDA drivers on the GPU instance
First, update/install the NVIDIA graphics drivers:

$ sudo add-apt-repository ppa:graphics-drivers/ppa -y
$ sudo apt-get update
$ sudo apt-get install -y nvidia-xxx nvidia-settings

Here, xxx can be replaced with the graphics hardware version installed on your instance,
which can be found in the instance details.

Next, download the CUDA deb file (this code is for the latest version at the time of writing,
from Jan, 2019):

$ wget
https://developer.download.nvidia.com/compute/cuda/10.0/secure/Prod/local_i
nstallers/cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb

Then, proceed with the following commands:

$ sudo dpkg -i cuda-repo-ubuntu1804-10-0-
local-10.0.130-410.48_1.0-1_amd64.deb
$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
$ sudo apt-get update
$ sudo apt-get install -y cuda nvidia-cuda-toolkit

To verify whether everything was installed successfully, run the following commands:

$ nvidia-smi
$ nvcc -version

If both the commands produce output without any warnings or errors, then the installation
is successful.

Getting Started with Deep Learning Using Python Chapter 2

[75]

Step 4: Installing the Anaconda distribution of Python
First, download the Anaconda installer script:

$ wget https://repo.continuum.io/archive/Anaconda3-2018.12-Linux-x86_64.sh

Next, set the script to executable:

$ chmod +x Anaconda*.sh

Then, run the installation script:

$./Anaconda3-2018.12-Linux-x86_64.sh

The installer will ask for several options. To verify successful installation, use the following
command:

$ python3

The Python3 REPL loads into the terminal with a banner reflecting the Anaconda
distribution version installed on your instance.

Step 5: Run Jupyter
Use the following command to get the Jupyter Notebook server started on the instance:

$ jupyter notebook

The output on the terminal will contain a URL on opening, with which you will be able to
access the Jupyter Notebook running on your EC2 GPU instance.

Deep learning on Crestle
While a customized deep learning environment can be of use when you need greater
control over the system—such as when you want to have third-party applications working
along with your deep learning model—at other times, you may not have such needs, and
you'll only be interested in performing deep learning on the cloud, quickly and in a
collaborative manner. In such circumstances, paying the cost of an AWS g2.2xlarge
instance would be much higher than that of paying only for computing time or GPU time
used.

Getting Started with Deep Learning Using Python Chapter 2

[76]

Crestle is a service that provides GPU-enabled Jupyter Notebooks online at very affordable
pricing. To begin using Crestle, go through the following steps:

Log on to www.crestle.com.1.
Click on Sign Up and fill up the sign-up form that appears.2.
Check your email for an account confirmation link. Activate your account and3.
sign in.
You'll be taken to the dashboard where you'll find a button reading Start Jupyter.4.
You will have the option of using the GPU or keeping it disabled. Click on the
Start Jupyter button with the GPU option enabled.

You will be presented with a Jupyter environment running on the cloud with GPU support.
While the pricing is subject to change with the passage of time, it is one of the most
affordable solutions available on the internet as of January 2020.

Other deep learning environments
As well as the aforementioned ways of performing GPU-enabled deep learning on the
cloud, you can also, in certain circumstances, choose to use other platforms.

Google Colaboratory is a freely available Jupyter Notebook service that is accessible at
https://colab.research. google. com. Colaboratory notebooks are stored on the user's
Google Drive and so have a storage limit of 15 GB. It is possible to store large datasets on
Google Drive and include them in the project with the help of the Google Drive Python
API. By default, the GPU is disabled on Colaboratory and has to be manually turned on.

Kaggle is yet another platform that was specifically built to carry out contests on data
science. It provides a Jupyter-Notebooks-like environment called a kernel. Each kernel is
provided with a large amount of RAM and free GPU power however, there are more strict
storage limits on Kaggle than on Google Colaboratory, and so it is an effective option when
the computation is intensive but the data that is to be used and the output is not very large.

Exploring NumPy and pandas
NumPy and pandas are the backbone of nearly every data-science-related library available
in the Python language. While pandas is built on top of NumPy, NumPy itself is a
wrapping of Python around high-performance C code to facilitate superior mathematical
computing in Python than Python itself in its pure form can provide.

http://www.crestle.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com

Getting Started with Deep Learning Using Python Chapter 2

[77]

Almost all deep learning software developed in Python in one way or another depends
upon NumPy and pandas. It is therefore important to have a good understanding of both
libraries and the features that they can provide.

NumPy
NumPy is an acronym for Numerical Python. Vanilla Python lacks the implementation of
arrays, which are close analogs of the mathematical matrices used to develop machine
learning models. NumPy brings to Python support for multidimensional arrays and high-
performance computing features. It can be included into any Python code by using the
following import statement:

import numpy as np

np is a commonly used convention for importing NumPy.

NumPy arrays
There are several methods to create arrays in NumPy. The following are some notable ones:

np.array: To convert Python lists to NumPy arrays:

Getting Started with Deep Learning Using Python Chapter 2

[78]

np.ones or np.zeros: To create a NumPy array of all 1s or all 0s:

np.random.rand: To generate an array of random numbers:

Getting Started with Deep Learning Using Python Chapter 2

[79]

np.eye: To generate an identity matrix of given square matrix dimensions:

Let's now look at basic NumPy array operations.

Basic NumPy array operations
NumPy arrays are Python analogues of mathematical matrices, and so they support the
arithmetic manipulation of all basic types, such as addition, subtraction, division, and
multiplication.

Let's declare two NumPy arrays and store them as array1 and array2:

array1 = np.array([[10,20,30], [40, 50, 60], [70, 80, 90]])
array2 = np.array([[90, 80, 70], [60, 50, 40], [30, 20, 10]])

Getting Started with Deep Learning Using Python Chapter 2

[80]

Now let's look at some examples of each arithmetic operation on these arrays:

Addition:

Subtraction:

Multiplication:

Division:

Let's now compare NumPy arrays with Python lists.

Getting Started with Deep Learning Using Python Chapter 2

[81]

NumPy arrays versus Python lists
Let's now see how NumPy arrays offer advantages over Python lists.

Array slicing over multiple rows and columns
While it is not possible to slice lists of lists in Python in such a way as to select a specific
number of rows and columns in the list of lists, NumPy array slicing works according to the
following syntax:

Array [rowStartIndex : rowEndIndex, columnStartIndex : columnEndIndex
]

Here's an example:

In the preceding example, we are able to select two rows and all elements of those rows in
NumPy array a.

Assignment over slicing
While it is not possible to assign values to slices of Python lists, NumPy allows the
assignment of values to NumPy arrays. For example, to assign 4 to the third to the fifth
element of a NumPy one-dimensional array, we can use the following:

arr[2:5] = 4

Next, we will be looking at pandas.

Getting Started with Deep Learning Using Python Chapter 2

[82]

Pandas
Built on top of NumPy, pandas is one of the most widely used libraries for data science
using Python. It facilitates high-performance data structures and data-analysis methods.
Pandas provides an in-memory two-dimensional table object called a DataFrame, which in
turn is made of a one-dimensional, array-like structure called a series.

Each DataFrame in pandas is in the form of a spreadsheet-like table with row labels and
column headers. It is possible to carry out row-based or column-based operations, or both
together. Pandas strongly integrates with matplotlib to provide several intuitive
visualizations of data that are often very useful when making presentations or during
exploratory data analysis.

To import pandas into a Python project, use the following line of code:

import pandas as pd

Here, pd is a common name for importing pandas.

Pandas provides the following data structures:

Series: One-dimensional array or vector, similar to a column in a table
DataFrames: Two-dimensional table, with table headers and labels for the rows
Panels: A dictionary of DataFrames, much like a MySQL database that contains
several tables inside

A pandas series can be created using the pd.Series() method, while a DataFrame can be
created using the pd.DataFrame() method—for example, in the following code, we
create a pandas DataFrame object using multiple series objects:

import pandas as pd

employees = pd.DataFrame({ "weight": pd.Series([60, 80, 100],index=["Ram",
"Sam", "Max"]),"dob": pd.Series([1990, 1970, 1991], index=["Ram", "Max",
"Sam"], name="year"),"hobby": pd.Series(["Reading", "Singing"],
index=["Ram", "Max"])})

employees

Getting Started with Deep Learning Using Python Chapter 2

[83]

The output of the preceding code is as follows:

Some of the most important methods available for a pandas DataFrame are as follows:

head(n) or tail(n): To display the top or bottom n rows of the DataFrame.
info(): To display information on all the columns, dimensions, and types of
data in the columns of the DataFrame.
describe(): To display handy aggregate and statistical information about each
of the columns in the DataFrame. Columns that are not numeric are omitted.

Summary
We covered a lot of different things in this chapter. We started by learning the basics of a
neural network and then we gradually proceeded. We learned the two most powerful types
of neural networks used today—CNNs and RNNs—and we also learned about them on a
high level, but without skipping their foundational units. We learned that as the complexity
in a neural network increases, it requires a lot of computational power, which standard
computers may fail to cater for we saw how this problem can be overcome by configuring a
deep learning development environment using two different providers—AWS and Crestle.
We explored Jupyter Notebooks, a powerful tool for performing deep learning tasks. We
learned about the usage of two very popular Python libraries—NumPy and pandas. Both of
these libraries are extensively used when performing deep learning tasks.

In the next chapter, we will be building applications and integrating deep learning to make
them perform intelligently. But before we did this, it was important for us to know the
basics that were covered in this chapter. We are now in a good position to move on to the
next chapter.

3
Creating Your First Deep

Learning Web Application
After developing an understanding of neural networks and their setup for use in real-world
projects, the natural next step is to develop a web-based deep learning application. This
chapter is dedicated to creating a complete web application—albeit a very simplistic
one—that, in a very simple way, demonstrates how the integration of deep learning in
applications is done.

This chapter will introduce several terms that will be used throughout this book, and so it is
a recommended read even for those of you who already have a basic understanding of
deep learning web applications so that you are able to understand the terms used in future
chapters. We will begin by structuring a deep learning web application and learning how to
understand datasets. We will then implement a simple neural network using Python and
create a Flask API to work with server-side Python.

In this chapter, the following topics will be covered:

Structuring a deep learning web application
Understanding datasets
Implementing a simple neural network using Python
Creating a Flask API that works with server-side Python
Using cURL and the web client with Flask
Improving the deep learning backend

Creating Your First Deep Learning Web Application Chapter 3

[85]

Technical requirements
You can access the code used in this chapter at https:/ /github. com/ PacktPublishing/
Hands-On-Python- Deep- Learning- for- web/ tree/ master/ Chapter3.

For this chapter, you'll need the following:

Python 3.6+
Flask 1.1.0+
TensorFlow 2.0+

Structuring a deep learning web application
When solving a jigsaw puzzle, it is important that the parts fit, rather than them being
forced together. Similarly, when developing a software solution, the parts of the solution
must seamlessly work together and their interaction must be simple to understand. Good
software requires proper software planning. Hence, providing a solid structure to the
software is essential for its long-term use and for easy future maintenance.

Before we begin creating our first deep learning application that works on the web, we
must chalk out a blueprint of the solution, keeping in mind the problems we wish to solve
and the solutions to them. This is much like how we plan authentication systems or pass
form values from one page to another during website development.

A general deep learning web solution would need the following components:

A server that can store data and respond with queries
A system that can use the stored data and process it to produce deep learning-
based responses to queries
A client that can send data to the server for storage, send queries with new data,
and finally, accept and use the responses the server sends after querying the deep
learning system

Let's try to visualize this structure using a diagram.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter3

Creating Your First Deep Learning Web Application Chapter 3

[86]

A structure diagram of a general deep learning
web application
The following diagram depicts the interaction between the web client, web server, and the
deep learning model:

We will be creating three software parts—the client, the server, and the deep learning
model—which will all work together. To do so, the client will make HTTP requests to the
server and the server, in return, will produce output fetched from the separately trained
deep learning model. This model may or may not be executed in the files present on the
server that respond to the HTTP requests made by the client. In most cases, the deep
learning model is separated from the file that handles the HTTP requests.

In the example presented in this chapter, we will present the server, the client, and the deep
learning model in separate files. Our client will send simple HTTP requests to the server,
such as a page-load request or a GET request for URLs, which will produce the output from
the deep learning model based on the queries passed. However, it is very common practice
for the client to communicate with the server via REST APIs.

Let's now move on to understanding the dataset that our application will work on.

Creating Your First Deep Learning Web Application Chapter 3

[87]

Understanding datasets
It is of the utmost importance that we properly understand the dataset that we are working
on in order to produce the best results—in terms of execution time and space for the
data—with the most efficient code. The dataset we will be using here is probably the most
popular dataset when it comes to using neural networks with images—the MNIST database
of handwritten digits.

The MNIST dataset of handwritten digits
This dataset was created by a team made up of Yann LeCun, Corinna Cortes, and
Christopher J.C. Burges. It is a large collection of images of handwritten digits, containing
60,000 training samples and 10,000 testing samples. The dataset is publicly available for
download at http:/ / yann. lecun. com/ exdb/mnist/ where it is present in the form of four
.gz compressed files.

The four files are as follows:

train-images-idx3-ubyte.gz: The training set images. These images will be
used to train the neural network classifier.
train-labels-idx1-ubyte.gz: The training set labels. Every image in the
training set will have a label associated with it, which is the corresponding digit
visible in that image.
t10k-images-idx3-ubyte.gz: The test set images. We will use these images to
test our neural network prediction accuracy.
t10k-labels-idx1-ubyte.gz: The labels for the images in the test set. When
our neural network makes predictions on the test set, we will compare them
against these values to check our results.

The images stored in this dataset are not directly available for viewing due to their custom
format. The developer working on the dataset is expected to create their own simple viewer
for the images. Once you have done this, you will be able to see the images, which look
something like this:

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Creating Your First Deep Learning Web Application Chapter 3

[88]

Let's talk about the images in a bit more depth. They are, as you can see, a little over the 25
pixels mark on both axes. To be exact, the images are all in the form of 28 x 28 pixels. Now,
since the images are grayscale, it is possible for them to be stored in a single layer 28 x 28
matrix. Hence, we have a total of 784 values, ranging from 0 to 1, where 0 represents an
entirely dark pixel and 1 represents a white pixel. Anything inside that range is a shade of
black. In the MNIST dataset, these images are present in the form of a flattened array of 784
floating point numbers. In order to view these images, you need to convert the single
dimension array into a two-dimensional array with a 28 x 28 shape and then plot the image
using any self-developed or publicly available tools, such as Matplotlib or the Pillow
library.

Let's discuss this method in the upcoming section.

Exploring the dataset
Let's begin by downloading all four files from the MNIST dataset web page, available at
http://yann.lecun. com/ exdb/ mnist. Once downloaded, extract all the files and you
should have folders that resemble the names in the following list:

train-images.idx3-ubyte

train-labels.idx1-ubyte

t10k-images.idx3-ubyte

t10k-labels.idx1-ubyte

Keep these files in your working directory. We will now create a Jupyter notebook to
perform exploratory data analysis (EDA) on the dataset files we have extracted.

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

Creating Your First Deep Learning Web Application Chapter 3

[89]

Open your Jupyter Notebook environment in your browser and create a new Python
notebook. Let's begin by importing the necessary modules:

import numpy as np
import matplotlib.pyplot as plt

The preceding lines import the numpy module and matplotlib.pyplot to the project. The
numpy module provides high-performance mathematical functions in Python while the
matplotlib.pyplot module provides a simple interface to plot and visualize graphs and
images. In order to view all the output from this library in the Jupyter notebook, add the
following line of code:

%matplotlib inline

If you are on Windows, to extract a .gz file you can use the 7-zip
software, which is an excellent compression/decompression tool that is
available to download for free at https:/ /www. 7-zip. org.

Creating functions to read the image files
As mentioned earlier, it is not possible to directly view the images in your downloaded
image files. So, we will now create a function in Python that the matplotlib module will
be able to use to display the images in the files:

def loadImageFile(fileimage):
 f = open(fileimage, "rb")

 f.read(16)
 pixels = 28*28
 images_arr = []
 while True:
 try:
 img = []
 for j in range(pixels):
 pix = ord(f.read(1))
 img.append(pix / 255)
 images_arr.append(img)
 except:
 break

 f.close()
 image_sets = np.array(images_arr)
 return image_sets

https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org
https://www.7-zip.org

Creating Your First Deep Learning Web Application Chapter 3

[90]

The preceding loadImageFile function takes a single parameter, which is the name of the
file that contains the images. We have two such files available for us in our downloaded
files folder: train-images-idx3-ubyte and t10k-images-idx3-ubyte. The output of
the preceding function is a numpy array of images. We can store the result in a Python
variable, as shown:

test_images = loadImageFile("t10k-images-idx3-ubyte")

Now, to view the images that are in the variable holding the numpy array of images, we can
define another function that takes a single image's pixel array of 784 floating point numbers
and plots them into a single image. The function can be defined as shown:

def gen_image(arr):
 two_d = (np.reshape(arr, (28, 28)) * 255).astype(np.uint8)
 plt.imshow(two_d, interpolation='nearest', cmap='gray')
 plt.show()
 return

Now, say we want to display the first of the test images; because we have stored the numpy
array of images in the test_images variable, we can run the following code:

gen_image(test_images[0])

We are able to see the following output:

Now that we are able to view the images, we can proceed to building a function that will
allow us to extract the corresponding digit from the labels.

Creating Your First Deep Learning Web Application Chapter 3

[91]

Creating functions to read label files
There are two label files available to us in the MNIST dataset: train-labels-idx1-ubyte
and t10k-labels-idx1-ubyte. To view these files, we can use the following function,
which takes input of the filename as an argument and produces an array of one-hot-
encoded labels:

def loadLabelFile(filelabel):
 f = open(filelabel, "rb")

 f.read(8)

 labels_arr = []

 while True:
 row = [0 for x in range(10)]
 try:
 label = ord(f.read(1))
 row[label] = 1
 labels_arr.append(row)
 except:
 break

 f.close()
 label_sets = np.array(labels_arr)
 return label_sets

This function returns a numpy array of labels in one-hot encoding, with the dimensions of
the number of samples in the dataset times by 10. Let's observe a single entry in order to
understand the nature of one-hot encoding. Run the following code, which essentially
makes a print of the one-hot-encoded label set from the first sample in the test set:

test_labels = loadLabelFile("t10k-labels-idx1-ubyte")
print(test_labels[0])

We get the following output:

[0 0 0 0 0 0 0 1 0 0]

We can understand this by noting that since the digit at the seventh index is 1, the label of
the first image in the test dataset is 7.

Creating Your First Deep Learning Web Application Chapter 3

[92]

A summary of the dataset
After a very concise exploration of the available dataset, we are able to come up with the
following results.

The training dataset contains 60,000 images with a dimension of 60,000 x 784, where each
image is 28 x 28 pixels. The distribution of samples among the digits are as follows:

Digit Number of Samples Digit Number of Samples
0 5,923 5 5,421
1 6,742 6 5,918
2 5,958 7 6,265
3 6,131 8 5,851
4 5,842 9 5,949

Observe that digit 5 has a smaller number of samples than digit 1. So, it is quite possible
that a model that isn't finely trained will make mistakes in recognizing digit 5.

The summary of the number of labels present tells us that all 60,000 samples have their
corresponding labels and none of their labels are missing.

Similarly, on the test dataset, we have 10,000 images and labels and the distribution of the
number of samples is as follows:

Digit Number of Samples Digit Number of Samples
0 980 5 892
1 1,135 6 958
2 1,032 7 1,028
3 1,010 8 974
4 982 9 1,009

The number of samples in the test dataset is quite evenly spread.

Creating Your First Deep Learning Web Application Chapter 3

[93]

Implementing a simple neural network using
Python
After doing a very basic data analysis, we can move on to coding our first neural network
in Python. You can revise the concepts of neural networks in Chapter 2, Getting Started
With Deep Learning Using Python, before moving on. We will now be creating a
convolutional neural network (CNN), which will predict the handwritten digit labels.

We start by creating a new Jupyter notebook. You could name this Model.ipynb for
convention. This notebook will be used to develop a pickled version of the deep learning
model, which will later be put in a script that will generate predictions.

Importing the necessary modules
The modules that will be needed for Model.ipynb are imported as follows:

import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.layers.normalization import BatchNormalization

The keras module is required to quickly implement high-performance neural networks
with the TensorFlow backend. We have talked about Keras in earlier chapters. To install
Keras, you can use the following command:

pip3 install keras

The preceding command will install Keras.

Creating Your First Deep Learning Web Application Chapter 3

[94]

Reusing our functions to load the image and
label files
Remember the loadImageFile and loadLabelFile functions we created during the
exploration of the dataset? We will need them again and so we will copy those same
functions into this notebook.

Together, they produce two cells of code for each of the functions:

The loadImageFile() method
The loadLabelFile() method

In a new code cell, we create the loadImageFile() function:

def loadImageFile(fileimage):
 f = open(fileimage, "rb")

 f.read(16)
 pixels = 28*28
 images_arr = []
 while True:
 try:
 img = []
 for j in range(pixels):
 pix = ord(f.read(1))
 img.append(pix / 255)
 images_arr.append(img)
 except:
 break

 f.close()
 image_sets = np.array(images_arr)
 return image_sets

In another new code cell, the loadLabelFile() function is created:

def loadLabelFile(filelabel):
 f = open(filelabel, "rb")
 f.read(8)

 labels_arr = []

 while True:
 row = [0 for x in range(10)]
 try:
 label = ord(f.read(1))

Creating Your First Deep Learning Web Application Chapter 3

[95]

 row[label] = 1
 labels_arr.append(row)
 except:
 break

 f.close()
 label_sets = np.array(labels_arr)
 return label_sets

We can then import the images and label files in the form of numpy arrays by using the
following lines of code:

train_images = loadImageFile("train-images-idx3-ubyte")
train_labels = loadLabelFile("train-labels-idx1-ubyte")

test_images = loadImageFile("t10k-images-dx3-ubyte")
test_labels = loadLabelFile("t10k-labels-idx1-ubyte")

This creates the train_images, train_labels, test_images, and test_labels NumPy
arrays. We can observe their shape and we get the following output for train_images:

(60000, 784)

Next, we will learn how to reshape the arrays for processing with Keras.

Reshaping the arrays for processing with Keras
The current shape of the image arrays are not Keras-friendly. We must convert the image
arrays into a shape of (60000, 28, 28, 1) and (10000, 28, 28, 1), respectively.

To do so, we use the following lines of code:

x_train = train_images.reshape(train_images.shape[0], 28, 28, 1)
x_test = test_images.reshape(test_images.shape[0], 28, 28, 1)

Now, if we observe the shape of x_train, we get an output as follows:

(60000, 28, 28, 1)

Creating Your First Deep Learning Web Application Chapter 3

[96]

We have no changes to make in the labels arrays and so we directly assign them to
y_train and y_test:

y_train = train_labels
y_test = test_labels

Next, we will create a neural network using Keras.

Creating a neural network using Keras
Now, we are ready to proceed with the creation of the neural network:

We will first create a Sequential neural network model in Keras:1.

model = Sequential()

To add a neuron layer to the network, we use the following code:2.

model.add(Conv2D(32, (3, 3), input_shape=(28,28,1)))

This adds a two-dimensional convolutional neuron layer to the network with an
input shape that is the same as the shape of the images.

Now, let's add the activation layer with relu as the activation function:3.

model.add(Activation('relu'))

After adding the activation layer, we can perform a batch normalization. During4.
training, the data passes through several computational layers and may become
too large or too small. This is known as the covariate shift and batch
normalization helps bring back the data to a central region. This helps the neural
network train faster:

BatchNormalization(axis=-1)

Let's now add more hidden layers to the model:5.

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))

BatchNormalization(axis=-1)
model.add(Conv2D(64,(3, 3)))
model.add(Activation('relu'))
BatchNormalization(axis=-1)

Creating Your First Deep Learning Web Application Chapter 3

[97]

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Flatten())

BatchNormalization()
model.add(Dense(512))
model.add(Activation('relu'))
BatchNormalization()
model.add(Dropout(0.2))

At the last layer of the neural network, we need an output of 10 values, in the6.
form of one-hot encoding, to denote the digit that has been predicted. To do this,
we add a final layer of 10 neurons. This will hold 10 values in the continuous
range of 0 to 1:

model.add(Dense(10))

Finally, to convert these 10 floating point values to a one-hot encoding, we use a7.
softmax activation:

model.add(Activation('softmax'))

Let's now compile and train the Keras neural network.

Compiling and training a Keras neural network
We are now ready to compile and train the neural network. To compile the neural network,
we use the following code:

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adam(),
 metrics=['accuracy'])

In our model, which we compiled in the previous block of code, we have set categorical
cross-entropy as the loss function; the optimizer function used is the Adam optimizer and
the metric for evaluation is accuracy.

Creating Your First Deep Learning Web Application Chapter 3

[98]

We then train the neural network with the fit() method of the Keras model object:

model.fit(x_train, y_train,
 batch_size=100,
 epochs=10,
 verbose=2,
 validation_split=0.2)

It is recommended that you perform a split of the training data into
further validation and training data, while leaving the test set untouched
but for this dataset, it is fine.

The training is done for 10 batches and the batch size is of 100 samples.

Evaluating and storing the model
After training the model, we are now ready to evaluate its accuracy. To do so, we will use
the following code:

score = model.evaluate(x_test, y_test, verbose=1)

print('Test loss:', score[0])
print('Test accuracy:', score[1])

We will get the following output for the preceding code:

We get 99% accuracy, which is a very good accuracy score. Now, we can save the model,
which will be used in the future to make predictions for user input through the web portal.
We will split the model into two parts—the model structure and the model weights. To
save the structure, we will use the JSON format, as shown:

model_json = model.to_json()
with open("model.json", "w") as json_file:
 json_file.write(model_json)

Creating Your First Deep Learning Web Application Chapter 3

[99]

Now, to save the weights of the Keras model, we use the save_weights() method for the
object:

model.save_weights('weights.h5')

Next, we will create a Flask API to work with server-side Python.

Creating a Flask API to work with server-
side Python
We have completed our deep learning model and stored its structure in the model.json
file and the weights for the model in the weights.h5 file. We are now ready to wrap the
model data in an API so that we can expose the model to web-based calls via the GET or
POST methods. Here, we will be discussing the POST method. Let's begin with the required
setup on the server.

Setting up the environment
In the server, we will require the Flask module—which will be service requests—which in
turn will be running code that requires Keras (and so, TensorFlow), NumPy, and many
other modules. In order to quickly set up the environment for our project, we follow these
steps:

Install Anaconda.1.
Install TensorFlow and Keras.2.
Install Pillow.3.
Install Flask.4.

You can refer to the following block of commands to install TensorFlow, Keras, Pillow, and
Flask:

pip3 install tensorflow keras pillow flask

We are now ready to start developing our API.

Creating Your First Deep Learning Web Application Chapter 3

[100]

Uploading the model structure and weights
The model structure file, model.json, and the weights file, weights.h5, need to be
present in the working directory. You can copy the files to a new folder—say,
flask_api—or upload them to the correct path if you are using a remote server.

Creating our first Flask server
Create a new file in the working directory and name it flask_app.py. This file will be the
one that handles all requests made to the server. Put the following code in the file:

from flask import Flask
app = Flask(__name__)
@app.route("/")
def index():
 return "Hello World!"
if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80)

The preceding code first imports the necessary modules into the script. Then, it sets the app
as the Flask server object and defines the index function with a directive of handling all the
requests made to the "/" address, regardless of the type of request. At the end of the script,
the run() method of the Flask object app is used to bind the script to a specified port on the
system.

We can now deploy this simple Hello World Flask server. We run the following command in
a Terminal:

python flask_app.py

Now, when we open the http://localhost/ URL in the browser, we are greeted with a
page presenting Hello World. The index function handles the requests made at the root of
the server, since it's route is set to "/". Let's now extend this example toward creating an
API that can handle requests specifically for prediction.

Importing the necessary modules
In the preceding example, we will extend the flask import statement to import an
additional method, request, which will allow us how to handle the POST requests made to
the server. The line then looks as follows:

from flask import Flask, request

Creating Your First Deep Learning Web Application Chapter 3

[101]

We then import the modules necessary for the reading and storing of the images. Also, the
numpy module is imported as in the following code snippet:

from scipy.misc import imread, imresize
import numpy as np

Finally, we import the model_from_json() method of the Keras module to load the saved
model files. We then import tensorflow, as Keras is dependent on it to execute:

from keras.models import model_from_json
import tensorflow as tf

Next, we load data into the script runtime.

Loading data into the script runtime and setting
the model
Once we have imported the necessary modules, we load the saved model JSON and
weights, as in the following code snippet:

json_file = open('model.json','r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)

model.load_weights("weights.h5")
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['ac
curacy'])
graph = tf.get_default_graph()

Note that we have also created a default graph item for the session ahead. This was
implicitly created during the model training but is not carried over in the saved model and
weights files, so we must explicitly create it here.

Creating Your First Deep Learning Web Application Chapter 3

[102]

Setting the app and index function
Now, we set the app variable to a Flask object and set the "/" route to be handled by the
index function, which actually produces no meaningful output. This is because we will be
using the /predict route to serve our prediction API as shown:

app = Flask(__name__)

@app.route('/')
def index():
 return "Oops, nothing here!"

We will cover the convert image function in the next section.

Converting the image function
We might sometimes get images in the form of base64 encoded strings if the user makes
an image POST request with a suitable setting. We can create a function to handle that:

import re
import base64

def stringToImage(img):
 imgstr = re.search(r'base64,(.*)', str(img)).group(1)
 with open('image.png', 'wb') as output:
 output.write(base64.b64decode(imgstr))

We use the re module for regex to determine whether the data passed is in the form of a
base64 string. The base64 module is needed to decode the string and then the file is saved
as image.png.

Prediction APIs
Now, let's define the /predict route, which will be our API to respond to the predicted
digit with:

@app.route('/predict/', methods=['POST'])
def predict():
 global model, graph
 imgData = request.get_data()
 try:
 stringToImage(imgData)
 except:

Creating Your First Deep Learning Web Application Chapter 3

[103]

 f = request.files['img']
 f.save('image.png')
 x = imread('image.png', mode='L')
 x = imresize(x, (28, 28))
 x = x.reshape(1, 28, 28, 1)

 with graph.as_default():
 prediction = model.predict(x)
 response = np.argmax(prediction, axis=1)
 return str(response[0])

Here, the predict() function takes in a POST method input, makes a check on the format
that the file is passed in, and then saves it to the disk with the name of image.png. Then,
the image is read into the program and resized to 28 x 28 dimensions. Next, the image array
is reshaped, such that it can be put into the Keras model for prediction. Then, we use the
predict() method of the Keras model and get a one-hot-encoded output with the
predicted digit's index set to 1, while the rest remains as 0. We determine the digit and
send it to the output of the API.

Now, we must, at the end of the file, add the code to bind the server to a port and set the
required configuration:

if __name__ == "__main__":
 app.run(host='0.0.0.0', port=80)
 app.run(debug=True)

We have set the debug=True parameter in order to be able to see—in the server's
console—whether any error occurs on the server. This is always a good idea during
development but in production, this line of code can be skipped.

A final step before we run the application is to update the code for the '/' route. We will
load the index.html item that we created whenever a person calls this route, as shown:

@app.route('/')
def index():
 return render_template("index.html")

We are now all set to start up the server and check whether it is working correctly. We use
the same command as used previously to start up the server:

python flask_app.py

The preceding command will start up the server.

Creating Your First Deep Learning Web Application Chapter 3

[104]

Using the API via cURL and creating a web
client using Flask
With our server running, we can send POST requests to it with the image content and
expect a predicted digit in the output. Two ways to test any API without any third-party
tools are as follows:

Use cURL.
Develop a client to call the API.

We will be covering both of these methods.

Using the API via cURL
Before we develop a client to send POST requests to the API server, let's test the API via
cURL, which is a command-line tool used to simulate GET and POST requests to URLs.

Use the following command in Terminal or Command Prompt to make a curl request to
your prediction API:

curl -X POST -F img=@"path_to_file" http://localhost/predict/

Here, the -F flag is used to indicate that the POST request will contain files. The name of the
POST variable that will hold the file is img,path_to_file should be replaced with the full
path to the file that you wish to send to the server for the image that the prediction is to be
made on.

Let's see how the API works with an example.

Say we have the following image with the self2.png filename and dimensions of 275 x
275:

Creating Your First Deep Learning Web Application Chapter 3

[105]

Clearly, the image dimensions on the serverside must be adjusted. To make the request, we
use the following command:

The output of the API is a single integer—2. So, the API works successfully.

Creating a simple web client for the API
We will now be creating a bare-bones web Client to call the API. To do so, we must modify
our current code. In flask_app.py, first change the import statement for Flask in order to
extend it to another module—render_template—as shown:

from flask import Flask, request, render_template

Now, we create a folder, templates, in the working directory and add a file, index.html,
to it with the following code:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>MNIST CNN</title>
 </head>

 <body>
 <h1>MNIST Handwritten Digits Prediction</h1>

 <form>
 <input type="file" name="img"></input>
 <input type="submit"></input>
 </form>
 <hr>
 <h3>Prediction: </h3>

 <script
src='http://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/jquery.min.js'></sc
ript>

 <script src="{{ url_for('static',filename='index.js') }}"></script>

</body>
</html>

Creating Your First Deep Learning Web Application Chapter 3

[106]

Essentially, all we do here is create a form with a single input element of the file type, called
img. We then add jQuery to the page and create a link to a static file, index.js, which is
served in the static folder of the server.

Let's create the index.js file. First, create a folder, static, in the root directory and then
create a new file, index.js, with the following code:

$("form").submit(function(evt){
 evt.preventDefault();
 var formData = new FormData($(this)[0]);
 $.ajax({
 url: '/predict/',
 type: 'POST',
 data: formData,
 async: false,
 cache: false,
 contentType: false,
 enctype: 'multipart/form-data',
 processData: false,
 success: function (response) {
 $('#result').empty().append(response);
 }
 });
 return false;
});

The preceding jQuery code makes a POST request to the /predict/ route and then updates
the result divide on the page with the value that is returned from the server.

Let's take a sample run on this web client. First, we need to restart the Flask server. Then,
we open http://localhost/ in the browser to get a web page that looks like this:

Creating Your First Deep Learning Web Application Chapter 3

[107]

Say we choose a file named mnist7.png, which is essentially the first image of the test
dataset and looks like this:

The expected output is 7. After clicking Submit, we get the following output on the page:

We can observe that that is the correct output and conclude that the web client works
correctly.

Creating Your First Deep Learning Web Application Chapter 3

[108]

Improving the deep learning backend
The simple model we have trained here is hardly one that we can claim is close to a perfect
model. There are several methods that we can use to extend this model to make it better.
For instance, some of the most basic steps that we can take to improve our deep learning
model are as follows:

Increase training epochs: We have only trained our model for 10 epochs, which
is usually a very small value for any deep learning model. Increasing the number
of training epochs can improve the accuracy of the model. However, it can also
lead to overfitting and so the number of epochs must be experimented with.
More training samples: Our web client currently doesn't do much more than
show the predicted value. However, we could extend it to get feedback from the
user on whether the prediction we made was correct. We can then add the user's
input image to the training samples and train with the user-provided label for
the image. We must, however, take caution against spammy user input images
and labels and only provide this feature to trusted users or beta testers for our
web app.
Create a deeper network: We could increase the number of hidden layers in the
network to make the predictions more accurate. Again, this method is susceptible
to overfitting and must be carefully experimented with.

Summary
This chapter covered, in complete detail, how you can create a deep learning model and
then facilitate its usage through an API via a web client or using cURL. The chapter began
by discussing how deep learning web applications are structured, the various components
of such applications, and how they interact with each other. Then, a short discussion and
exploration of the MNIST handwritten digits dataset was presented. This led us on to the
next section, where we built a deep learning model and stored it in files for future use.
These files were then imported to the server API scripts and executed there whenever the
API was called. Finally, the chapter presented a very basic client for the API and also
instructed you on how to use the API over cURL through the command-line interface.

In the next chapter, we will discuss how deep learning can be performed within the
browser window using TensorFlow.js.

4
Getting Started with

TensorFlow.js
So far, we have gently introduced ourselves to the wonderful world of deep learning and
we have got a fair sense of what deep learning has to offer in terms of making today's web
applications more intelligent. In Chapter 1, Demystifying Artificial Intelligence and
Fundamentals of Machine Learning, we saw a detailed overview of the web applications
before and after AI breakout. In Chapter 3, Creating Your First Deep Learning Web
Application, we built ourselves a simple image classifier-based web application using a
simple neural network.

Web applications are all around us and they have easily become inseparable parts of our
day-to-day lives. When it comes to building web applications, the use of JavaScript is too
hard to ignore. So, what if we built an intelligent web application using JavaScript and no
other scripting language? In this chapter, we are going to see how we can use a JavaScript
library, called TensorFlow.js (TF.js), to build a deep learning-enabled web application—we
are going to do all of this in a web browser.

In this chapter, we will cover the following topics:

The fundamentals of TF.js and its offerings
Developing a deep learning model with TF.js and making inferences
Using the pretrained models directly in the browser
Building a web application to recognize flower species
Advantages and limitations of TF.js

Getting Started with TensorFlow.js Chapter 4

[110]

Technical requirements
You can access the code used in this chapter at https:/ /github. com/ PacktPublishing/
Hands-On-Python- Deep- Learning- for- Web/ tree/ master/ Chapter4.

To work on this chapter, you'll need the following software:

TF.js 0.15.1+
The @tensorflow/tfjs-node 0.3.0+ package from the NPM repository

The fundamentals of TF.js
In this section, we are going to briefly review some of the fundamental concepts of TF.js.
We will start off by introducing TensorFlow and then we will proceed to study different
components of TF.js.

What is TensorFlow?
Before we can begin discussing TF.js, we must understand what TensorFlow is. TensorFlow
is an open source library that is developed and maintained by Google. It is built on a data
structure called tensors. Tensors are the generalized form of scalar and vector. TensorFlow
provides a lot of efficient utilities for high-performance numerical computing across a wide
range of scientific domains. TensorFlow also provides a very flexible suite of utilities for
carrying out machine learning and deep learning development and research. You are
encouraged to visit TensorFlow's official website at https:/ /www. tensorflow. org/ for
more information.

What is TF.js?
TF.js is a JavaScript library that provides an ecosystem to build and deploy machine
learning models. It offers the following functionalities:

Developing machine learning models with JavaScript
Using pretrained machine learning models
Deploying machine learning models

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter4
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

Getting Started with TensorFlow.js Chapter 4

[111]

TF.js provides you with all the elements required for a machine learning project. It has
dedicated modules for data preprocessing, tensor handling, model building, model
evaluation, and much more, but all in JavaScript. Before we move on to digging deeper into
this, let's quickly understand the need for TF.js.

Why TF.js?
As we saw in the previous chapter, it is quite easy and intuitive to simply train and host a
model online, wrap it up in a REST API, and then use the API on any frontend to display
our results. Why, then, would the need to use TF.js arise?

A simple answer to this question would be if there is an AI in the browser! Think of a game
that requires the use of an AI agent that learns from the human player's method of playing
to become tougher or easier as the game progresses. Now, this would be overkill if, at every
split second, the game kept sending requests to the server to transfer data to and from the
game and the server. What's more, it might easily result in a Denial of Service (DoS)
attack.

So, having an AI that can live and learn in the browser itself makes sense when the agent
has to keep learning in real time. It could also be a hybrid in two ways:

If a pretrained model is loaded during the rendering of the agent and, from there,
it begins learning and updating the model on the server at intervals.
If multiple versions of the AI agent run on several systems at once and they learn
from interaction on the system on which they run. Also, if their collective
learning is assimilated on the server and the agents fetch updates from the server
at intervals.

So, using TF.js greatly reduces strong dependence on the page that the human user will
interact with to communicate with the server at every step.

We can now build a mini project that shows the power of TF.js. Don't worry about the TF.js
ecosystem for now—we will cover all the elements of the project as we go along.

The basic concepts of TF.js
The following are the components of TF.js that we will be using in our project:

Tensors
Variables

Getting Started with TensorFlow.js Chapter 4

[112]

Operations
Models
Layers

Let's look at each of them in detail.

Tensors
Like TensorFlow, the central data processing unit in TF.js is tensors. Goodfellow et al. (in
their book on deep learning) make the following observation:

In the general case, an array of numbers arranged on a regular grid with a variable
number of axes is known as a tensor.

Simply described, a tensor is a container of one- or multi-dimensional arrays. The following
are some examples of tensors that you may already know:

Scalar (a rank zero tensor)
Vector (a one-dimensional or rank-one tensor)
Matrix (a two-dimensional or rank-two tensor)

We can create a tensor with respect to a given shape in TF.js as shown:

const shape = [2, 3]; // 2 rows, 3 columns
const a = tf.tensor([4.0, 2.0, 5.0, 15.0, 19.0, 27.0], shape);

a is a tensor that was created and its contents can be printed using the following command:

a.print()

The following output is printed:

Output: [[4 , 2 , 5],
 [15, 19, 27]]

a is a matrix (a rank-two tensor). TF.js also provides dedicated functions, such
as tf.scalar, tf.tensor1d, tf.tensor2d, tf.tensor3d, and tf.tensor4d to create
tensors of specific shapes without having to specify the shape argument explicitly. It also
provides better readability. Tensors are immutable in TF.js.

Getting Started with TensorFlow.js Chapter 4

[113]

Variables
Unlike tensors, variables are mutable in TF.js. Variables are particularly useful during the
training of a neural network as they consist of lots of intermediate data stores and updates.
The following is an example of how variables can be used in TF.js:

const initialValues = tf.ones([5]);
const weights = tf.variable(initialValues); // initialize weights
weights.print(); // output: [1, 1, 1, 1, 1]
const updatedValues = tf.tensor1d([0, 1, 0, 1, 0]);
weights.assign(updatedValues); // update values of weights
weights.print(); // output: [0, 1, 0, 1, 0]

Let's now look at operators.

Operators
Operators let you perform mathematical operations on data. TF.js provides various
operations for manipulating tensors. As tensors are immutable in nature, operators don't
change the data contained in the tensors—they return new tensors as results instead. You
can perform binary operations, such as addition, multiplication, and subtraction, on
tensors. You can even chain multiple operations. The following example shows the use of
two different operators in TF.js using chaining:

const e = tf.tensor2d([[1.0, 2.0], [3.0, 4.0]]);
const f = tf.tensor2d([[3.0, 4.0], [5.0, 6.0]]);
const sq_sum = tf.square(tf.add(e, f));
sq_sum.print();

We first created two two-dimensional tensors and assigned them to e and f. We then
added them and took their squares.

This produces the following output:

// Output: [[16 , 36],
// [64, 100]]

Next, we will cover models and layers.

Getting Started with TensorFlow.js Chapter 4

[114]

Models and layers
In deep learning literature, a model refers to the neural network itself, specifically, the
neural network architecture. As discussed in Chapter 2, Getting Started With Deep Learning
Using Python, a neural network consists of basic components, such as layers, neurons, and
connections, in between layers. TF.js provides two functions with which to create these
models—tf.model and tf.sequential. tf.model helps you to get more sophisticated
architectures, such as skipping certain layers, whereas tf.sequential provides a way to
create linear stacks of layers without skipping, branching, and so on.

TF.js provides different types of dedicated layers for different types of
tasks—tf.layers.dense, tf.layers.dropout, tf.layers.conv1d,
tf.layers.simpleRNN, tf.layers.gru, and tf.layers.lstm. The following example
demonstrates a simple neural network model with the help of tf.sequential and
tf.layers.dense:

const model = tf.sequential();
model.add(tf.layers.dense({units: 4, inputShape: [4], activation:
'relu'}));
model.add(tf.layers.dense({units: 1, activation: sigmoid}));

The preceding example creates a simple neural network that has the following:

Two layers (remember, we don't consider the input layer when counting the total
number of layers). The network takes an input that has four features
(the inputShape argument helps to specify that).
The first layer contains four neurons (hence units: 4). The second layer (the
output layer) has only one neuron.
The relu activation function is used for the first layer, and the sigmoid
activation function is used for the output layer.

You are encouraged to go to https:/ /js. tensorflow. org/ api/ latest/
index. html to learn more about the preceding components of TF.js.

https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html
https://js.tensorflow.org/api/latest/index.html

Getting Started with TensorFlow.js Chapter 4

[115]

A case study using TF.js
We will follow all the steps that are typically involved in a machine learning project (which
we discussed in Chapter 1, Demystifying Artificial Intelligence and Fundamentals of Machine
Learning). A good project starts with a well-defined problem statement. So, let's quickly
take a look at that and decide the subsequent steps accordingly.

A problem statement for our TF.js mini-project
The problem we will look at here is probably one of the most famous challenges you will
come across when starting your journey in machine learning—classifying and predicting
the type of an Iris flower by learning its features from the Iris flower dataset. Training, as
well as the prediction, will be performed in the browser itself.

We have defined the problem statement for our project. What will follow is the data
preparation step. The data is already available to us, so we don't need to collect it ourselves.
But, before we prepare the data, it would be good to know a bit more about the data itself.

The Iris flower dataset
Introduced by Ronald Fisher, the statistician and biologist, in 1936, the Iris flower dataset
contains 150 rows of data and about 3 different varieties of the Iris flower. The columns are
as follows:

Sepal length (cm)
Sepal width (cm)
Petal length (cm)
Petal width (cm)
Variety:

Setosa
Versicolour
Virginica

You can get the raw dataset and learn more about it at http:/ /archive.
ics.uci. edu/ ml/ datasets/ Iris.

http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris
http://archive.ics.uci.edu/ml/datasets/Iris

Getting Started with TensorFlow.js Chapter 4

[116]

Your first deep learning web application with
TF.js
In this section, we are going to develop a web application with the help of TF.js. This
application will include the steps for a standard, full stack, deep learning-enabled web
project. We will begin by preparing the data, we will then study the project architecture
briefly, and then, we will proceed toward building the required components as we go.

Preparing the dataset
The Iris flower dataset, in its original form, is a CSV file containing the data of 150 rows
split into 5 columns in a comma-separated format, with each entry separated by a new line.

However, we will be using a JSON format of the data for easier operability with JavaScript.
The dataset in JSON format can be downloaded from https:/ /gist. github. com/
xprilion/33cc85952d317644c944274ee6071547.

You can use simple functions in any language to convert a CSV file into a JSON file, with
the column names changed as per the following conventions:

Sepal length: sepal_length
Sepal width: sepal_width
Petal length: petal_length
Petal width: petal_width
Variety: species

We will use these property names in JSON while developing the tensors for model
building.

Project architecture
We will be using Node.js in this project to create a server. This is done so that we get the
benefits of faster computational performance of TF.js when used through the Node.js
backend. We will create a very basic frontend that will be able to issue a command to
perform the training of the neural network built using TF.js and another button to issue a
command to predict the class of a hypothetical feature vector of an Iris flower based on
input provided by the user.

The following diagram shows the components of the project, along with their interactions:

https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547
https://gist.github.com/xprilion/33cc85952d317644c944274ee6071547

Getting Started with TensorFlow.js Chapter 4

[117]

Now that we know about the architecture, let's start with the project.

Starting up the project
To start working on the project, you first need to install the latest versions of Node.js
and Node Package Manager (NPM). While a standard way to do this would be to read the
documentation provided on the Node.js website, we would suggest installing Node.js and
NPM using Node Version Manager (NVM).

The setup instructions and files can be found at https:/ /
github.com/creationix/nvm.

Once Node.js and NPM are installed, we're ready to start working on the project itself:

Create a folder called tfjs-iris.1.
Open up a Terminal and use the following command to initiate the package2.
manager for this project:

npm init -y

https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm

Getting Started with TensorFlow.js Chapter 4

[118]

This should create a file, package.json, in your project directory. The output for
the preceding command is as follows:

Notice that the output is in JSON format. The main key defines the file that will be
the entry point for the program if it is imported as a module. The value for main
in this project is set, by default, to index.js. However, this file is not yet created.
Let's work on the index.js file.

We will be using the express module of Node.js to create our server. You can
read more about express at https:/ /expressjs. com.

To use express, we will need to add the module to our project. To do this, use 3.
the following code:

npm install express --save

This will add the express module dependency to the package.json file and
install it in the node_modules directory inside the working directory of the
project.

Create a file called index.js in the root directory of the project repository and4.
add the following code:

var express = require('express');
var app = express();

https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/
https://expressjs.com/

Getting Started with TensorFlow.js Chapter 4

[119]

This creates an express application object. We will now be adding TF.js to the
project. The simplest way to do this is to install it via NPM. The complete setup
instructions can be found at https:/ /js. tensorflow. org/ setup/ .

Use the following command to install the TF.js module in the Terminal:5.

npm install @tensorflow/tfjs --save

We can now proceed to add the module to our index.js file:6.

const tf = require('@tensorflow/tfjs');

We will also require the body-parser module from Express.js to handle the7.
incoming query data from the client side, which will be sent via AJAX POST
requests. To do so, we use the following command:

npm install body-parser --save

We now create a body-parser object and bind it to the application using the8.
following code:

var bodyParser = require('body-parser');
app.use(bodyParser.urlencoded({ extended: false }));

At this stage, package.json should contain the following snippet that lists the
dependencies of your project:

Note that the preceding versions may change. We can now import
the iris.json file, which we will be training our model on:

const iris = require('./iris.json');

With the initial setup done, we can now proceed to write the TF.js code to train on the
available dataset.

https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/
https://js.tensorflow.org/setup/

Getting Started with TensorFlow.js Chapter 4

[120]

Creating a TF.js model
Let's begin by reading the data we have stored in the iris variable to a tensor2d object:

In your index.js file, add the following code:1.

const trainingData = tf.tensor2d(iris.map(item=> [
 item.sepal_length, item.sepal_width, item.petal_length,
item.petal_width
]),[144,4])

We do not have any test data yet; this will be provided by the user.

Next, we create a one-hot encoding of the possible three varieties of flowers:2.

const outputData = tf.tensor2d(iris.map(item => [
 item.species === 'setosa' ? 1 : 0,
 item.species === 'virginica' ? 1 : 0,
 item.species === 'versicolor' ? 1 : 0
]), [144,3])

We are now ready to create the model for training. The following code might
remind you of the code we used in the previous chapter when we were creating a
model for the MNIST handwritten digits dataset. This is simply due to the fact
that we are still using the concepts of TensorFlow, only in a different language!

We first declare a sequential TensorFlow model:3.

const model = tf.sequential();

Next, let's add a layer of neurons to the model:4.

model.add(tf.layers.dense({
 inputShape: 4,
 activation: 'sigmoid',
 units: 10
 }));

The inputShape parameter indicates the shape of the input that will be added to
this layer. The units parameter sets the number of neurons to be used in this
layer. The activation function we are using is the sigmoid function.

Let's now add the output layer: 5.

model.add(tf.layers.dense({
 inputShape: 10,
 units: 3,

Getting Started with TensorFlow.js Chapter 4

[121]

 activation: 'softmax'
}));

Here, we will have 3 neurons in the output layer, and the input to be expected at
this layer is 10, which matches the number of neurons in the previous layer.

Apart from the input layer, we just have one hidden layer and the output
layer. This is acceptable in this application because the dataset is small
and the prediction is simple. Note that we used the softmax activation
function here, which produces class probabilities as outputs.

This is particularly useful in our case as the problem is a multi-class classification
problem.

With this done, we are now ready to compile our model. To do this, we use the6.
following code:

model.compile({
 loss: "categoricalCrossentropy",
 optimizer: tf.train.adam()
});

Since we have a classification problem at hand where there are multiple possible
labels, we use categoricalCrossentropy as the loss function. For
optimization, the adam optimizer is used. You are encouraged to experiment with
other hyperparameter values.

We can generate a summary of the model using the following code:7.

model.summary();

Next, we will train our TF.js model.

Training the TF.js model
We will now write an async function. The reason for doing this is so that the JavaScript on
the client side that invokes our function doesn't get stuck waiting for the result. A function
that will take time to complete in our program is the train_data() function. This function
performs the training of the model:

async function train_data(){
 console.log("Training Started");
 for(let i=0;i<50;i++){
 let res = await model.fit(trainingData, outputData, {epochs: 50});

Getting Started with TensorFlow.js Chapter 4

[122]

 console.log(`Iteration ${i}: ${res.history.loss[0]}`);
 }
 console.log("Training Complete");
}

The train_data() function can be run asynchronously. It also prints out the loss at every
epoch of training to the console where we will run the server from. Let's now create an API
that will invoke the train_data() function.

First, we create a middleware called doTrain, which will be run before the API for training
and will return any data.

You can read more about middlewares at https:/ /expressjs. com/ en/
guide/ using- middleware. html.

The doTrain() middleware accepts, in its arguments, the request made to the Node.js
server, the variable for making the response, and the name of the function that will be used
to forward the execution of the program after executing the block of code defined in the
middleware:

var doTrain = async function (req, res, next) {
 await train_data();
 next();
}

The doTrain middleware calls the train_data() function and awaits its result. The
train_data() function returns a Promise so that the execution continues without freezing.
The next() function runs right after the train_data() function is complete and it merely
passes the execution of the program to the function that is chained next to the middleware,
as shown:

app.use(doTrain).post('/train', function(req, res) {
 res.send("1");
});

We now bind the '/train' route to the express app and then chain the doTrain
middleware to it. Now, for every call made to the '/train' API, the middleware runs first
and then the execution passes to the main block of code for the API. This block of code
simply returns any arbitrary value to denote the completion of training.

https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html

Getting Started with TensorFlow.js Chapter 4

[123]

Predicting using the TF.js model
After the training is done, we also need to create an API to invoke the prediction function
and return the predicted result. We bind the API to the '/predict' route with a POST
method to make a request to this API, as shown:

app.post('/predict', function(req, res) {
 var test = tf.tensor2d([parseFloat(req.body.sepLen),
parseFloat(req.body.sepWid),
parseFloat(req.body.petLen), parseFloat(req.body.petWid)], [1,4]);
 var out = model.predict(test);
 var maxIndex = 0;
 for (let i=1;i<out.size; i++){
 if (out.buffer().get(0, i) > out.buffer().get(0, maxIndex)){
 maxIndex = i;
 }
 }
 ans = "Undetermined";
 switch(maxIndex) {
 case 0:
 ans = "Setosa";
 break;
 case 1:
 ans = "Virginica";
 break;
 case 2:
 ans = "Versicolor";
 break;
 }
 console.log(ans);
 res.send(ans);
});

It is very simple to understand the code for the prediction API. Let's discuss it in parts:

app.post('/predict', function(req, res) {

This line binds the '/predict' route to the POST request method and opens the block of
code for the statements that will handle requests made to this route:

 var test = tf.tensor2d([parseFloat(req.body.sepLen),
parseFloat(req.body.sepWid),
parseFloat(req.body.petLen), parseFloat(req.body.petWid)], [1,4]);
 var output = model.predict(test);

Getting Started with TensorFlow.js Chapter 4

[124]

These lines create a TF.js tensor2d object from the data, which is received from the client
side. It then runs the predict method on the model and stores the result in the output
variable:

 var maxIndex = 0;
 for (let i=1;i<out.size; i++){
 if (out.buffer().get(0, i) > out.buffer().get(0, maxIndex)){
 maxIndex = i;
 }
 }

This block of code merely finds the index that corresponds to the element in the tensor2d
variable output that is highest. Remember that in a softmax activation output, the highest
value corresponds to the predicted index.

After determining the maximum index from the output, we use a simple switch-case
statement to decide what output is to be sent to the client from the API. The request data is
also logged to the console visible on the server. Finally, we bind our Node.js application to
listen to port 3000 using the following code:

app.listen(3000);

We will now create a simple client in the following section.

Creating a simple client
To handle the '/' route in our application, we add the following lines of code to
index.js, which merely renders a static file, index.html, which is placed in the public
folder:

app.use(express.static('./public')).get('/', function (req, res) {
 res.sendFile('./index.html');
});

Now, let's create the static index.html file by following these steps:

First, create a folder, public, and inside it, create index.html. Add the1.
following code to the index.html file:

<html>
 <head>
 <title>TF.js Example - Iris Flower Classficiation</title>
 </head>
 <body>

Getting Started with TensorFlow.js Chapter 4

[125]

 <h1> TF.js Example - Iris Flower Classification </h1>
 <hr>
 <p>
 First, train the model. Then, use the text boxes to try any
dummy data.
 </p>

 <button id="train-btn">Train</button>

 <hr>

 <label for="sepLen">Sepal Length: </label>
 <input type="number" id="sepLen" value="1" />

 <label for="sepWid">Sepal Width: </label>
 <input type="number" id="sepWid" value="1" />

 <label for="petLen">Petal Length: </label>
 <input type="number" id="petLen" value="1" />

 <label for="petWid">Petal Width: </label>
 <input type="number" id="petWid" value="1" />

 <button id="send-btn" disabled="="true">Predict!</button>
 <hr>
 <h3> Result </h3>
 <h4 id="res"></h4>

 <script
src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min
.js"></script>

After setting a simple UI to the client developed to call the APIs we have created2.
using TF.js, we are ready to define the functions to deploy them from the client
side. Notice that both the "/train" and "/predict" APIs will be called by
a POST request:

 <script>

 $('#train-btn').click(function(){
 $('#train-btn').prop('disabled', true);
 $('#train-btn').empty().append("Training...");
 $.ajax({
 type: 'POST',
 url: "/train",
 success: function(result) {
 console.log(result);
 $('#send-btn').prop('disabled', false);
 $('#train-btn').empty().append("Trained!");
 }
 });
 });

Getting Started with TensorFlow.js Chapter 4

[126]

 $('#send-btn').click(function(){
 var sepLen = $('#sepLen').val();
 var sepWid = $('#sepWid').val();
 var petLen = $('#petLen').val();
 var petWid = $('#petWid').val();
 $.ajax({
 type: 'POST',
 url: "/predict",
 data: {sepLen: sepLen, sepWid: sepWid, petLen: petLen, petWid:
petWid},
 success: function(result) {
 console.log(result);
 $('#res').empty().append(result);
 }
 });
 });
 </script>
 </body>
</html>

Let's now run the TF.js web app.

Running the TF.js web app
With all the application coded, we are now ready to run our application. First, open a
Terminal and make the tfjs-iris folder containing the package.json file as your
working directory in it.

Run the following line of code to start the Node.js server:

node index.js

The command produces an output that resembles the following screenshot:

Getting Started with TensorFlow.js Chapter 4

[127]

Now, along with this output, the server starts at port 3000 and we can view the same in the
browser. Open a browser and type http://localhost:3000/ in the address bar to bring
up the following output:

Getting Started with TensorFlow.js Chapter 4

[128]

First, you must click on the Train button to invoke the '/train' API, which begins the
training, and the button changes to a disabled state. Once the Predict! button is enabled, the
training is complete and the user can send dummy data to the server to make predictions.
Say we choose the 50th row of data from the dataset and send it to the server with an
expected output of Setosa.

The following screenshot shows a small section of the final version of our project:

We see that the correct output is generated for the input provided.

Getting Started with TensorFlow.js Chapter 4

[129]

Advantages and limitations of TF.js
Let's now summarize some of the advantages TF.js brings over TensorFlow, besides the
ones we have already talked about in this chapter:

Automatic GPU support: You don't need to install CUDA or GPU drivers
separately with TF.js to benefit from the GPUs present on the system. This is
because the browser itself implements GPU support.
Integration: It is fairly simple to integrate TF.js into a web development project
using Node.js and then import pretrained models to the project and run them in
the browser.

However, it also has several disadvantages that have to be kept in mind whenever
developing for production. Some of these are as follows:

Speed: TF.js is suitable for small datasets. On large-scale datasets, the
computation speed suffers heavily and is nearly 10x slower.
Lack of a tensor board: This great tool, which enables TensorFlow models to be
visualized, is missing in the JavaScript port of the framework since TF.js is only
an API.
Incomplete support of APIs: Not all of the TensorFlow APIs are available on
TF.js, and so you might have to rethink the code logic or create your own
functions to use certain features while developing with TF.js.

Summary
In this chapter, we learned how easy it is to create models with TF.js. You not only get the
whole JavaScript ecosystem to work with, but you also get all the pretrained TensorFlow
models within TF.js. We developed a simple web application using the Iris dataset and,
along the way, we learned about several components that TF.js has to offer. By now, we
have already built two simple end-to-end deep learning-based web applications.

Our progress is indeed apparent. In the upcoming chapters, we will be building our own
deep learning APIs and using them to create intelligent web applications. But before that,
let's make ourselves familiar with the whole concept of APIs in the next chapter.

3
Getting Started with Different
Deep Learning APIs for Web

Development
This section explains the usage of APIs in software development in general and shows how
we can use different state-of-the-art deep learning APIs for building intelligent web
applications. We'll cover areas including Natural Language Processing (NLP) and
computer vision.

This section comprises the following chapters:

Chapter 5, Deep Learning through APIs
Chapter 6, Deep Learning on Google Cloud Platform Using Python
Chapter 7, DL on AWS Using Python: Object Detection and Home Automation
Chapter 8, Deep Learning on Microsoft Azure Using Python

5
Deep Learning through APIs

So far, we have become familiar with the basic pipeline that is followed in a deep learning
project. We have completed two basic end-to-end projects in previous chapters using the
Keras and TensorFlow.js libraries. We have become familiar with Python libraries such as
NumPy, pandas, and Keras, and we have also seen how deep learning models can be
developed using JavaScript. We have also used the Flask framework to create an API out of
a deep learning model. In chapter 4, Getting Started with TensorFlow.js, we used third-party
Application Programming Interfaces (APIs) to create a web application.

In this chapter, we are going to study the whole concept of APIs in detail. Starting with a
more informal definition of APIs, we are going to take a look at all APIs that are relevant to
deep learning. We will first look at some of the most widely known deep learning APIs,
and then we will look at some lesser-known deep learning APIs. We will also learn how to
choose a deep learning API provider.

In this chapter, we will be covering the following topics:

What is an API?
How an API is different from a library?
Some widely known deep learning APIs
Some lesser-known deep learning APIs
Choosing a deep learning API provider

Deep Learning through APIs Chapter 5

[132]

What is an API?
Let's first consider a problem scenario.

Imagine that you are working on a web application that needs an image recognition
module to be integrated into it. But you are not into computer vision and deep learning.
You have a very strict deadline to meet for the project. You cannot afford to commit to
studying deep learning and then complete the project's image recognition module. What
should you do now? Will your project be completed by the specified deadline?

It definitely won't! However, with the power of APIs, you will be able to easily integrate the
image recognition module into your web application. Let's now discuss the concept of APIs
in a bit more detail.

An API is a set of functions (although technically an API can consist of just one function)
that can be integrated into an application to perform certain tasks. Often, as developers,
there are specific utilities from our favorite websites that we wish to integrate into our own
applications. For example, Twitter provides an API for retrieving tweets that match a
certain keyword. We can use this API to collect data, analyze it, and eventually come up
with interesting insights about data.

Companies such as Facebook, Google, Stack Overflow, and LinkedIn provide APIs for
certain tasks, and it is really worth checking them out as a developer. APIs are virtually
analogous to websites. When we click on something in a website, we are redirected to
another page/section. In most cases, we get a web page as the output. But APIs generally do
not produce a good-looking web page as their output. APIs are meant to be used from
within the code, and the output of an API is generally in some popular data interchange
format, such as JSON or XML. The output is then processed accordingly with respect to the
application for which the API is used. An API lets you do the tasks you want to do by
providing a suite of utilities or an ecosystem without you having to worry about the details.

You can test an API nowadays without having to write one bit of code. For example, you
can use an API client such as Postman and test an open API that you really like, and no
code is required to be written in order to do that.

Deep Learning through APIs Chapter 5

[133]

What is even more magical about APIs is that you can write code, for example, in Java and
use an API developed in Python. This is particularly useful when you are working in a
team where people are very particular about the different programming languages they
use. One of your teammates might be very comfortable working with Java while another
teammate may be a Python expert. So, the whole concept of APIs really comes in handy in
these situations.

We are going to discuss some of the deep learning APIs that are provided by Google AI,
Facebook AI Research, and others shortly. We will see how these APIs can be used to
develop intelligent web applications in the upcoming chapters.

The importance of using APIs
Besides saving you a lot of effort in creating and deploying your own deep learning model
when you need a quick production or a minimal working product demo, APIs can provide
several benefits, such as these:

A standard, stable model:
APIs for deep learning are often created by an entire group of
developers working together on industry-standard technology and
research tools that may not be available to all developers. Also, the
models deployed through commercial APIs are often very stable to
use and provide state-of-the-art features, including scalability,
customization, and accuracy. So, if you're facing accuracy issues,
which is a common situation in the production of deep learning
models, choosing an API is a good choice.

High-performance models:
Commercial deep learning APIs often run on very powerful
servers and are optimized to a great degree, such that they can
perform their tasks very quickly. Therefore, such APIs are very
handy if you wish to speed up the learning of your deep learning
ecosystem.

Deep Learning through APIs Chapter 5

[134]

A common platform for developers:
While it is very simple to start coding anything from scratch, it
becomes very tough when the person who coded it in the first
place leaves without producing proper documentation and a new
person has to pick up where they left off. Commercial APIs define
a set standard of operations, and applications built with such APIs
integrated into them are easy to maintain because API providers
also always include extensive documentation, meaning developers
can learn about the APIs beforehand.

Regular and seamless updates:
It is often expensive for a nascent-stage company to afford
development time to improve deep learning models once they
have got a first version running, especially if their entire business
model isn't particularly centered on artificial intelligence. Any such
use case would benefit greatly from API usage because APIs are
maintained by people who push regular updates and new features.

Considering all this, then, using an API provides the latest technology, high performance,
and ever-evolving models that can be plugged into an application once and then be used
for years without ever having to think about the APIs again.

Now, you may ask what the difference is between an API and a library. Let's find out in the
next section.

How is an API different from a library?
Nowadays, the terms library and API are used interchangeably. There are many similarities
between the two, but they are different in many aspects. Much like an API, a library also
provides a collection of functions and classes that can be used as per your needs. The
following are some pointers that will help you to distinguish between a library and an API:

Libraries are generally specific to programming languages. For example, you
cannot use the SciPy Python library if you are using a PHP programming
environment. However, you can develop an API that uses SciPy and then
consume the API using your PHP code.
Developers do not have direct access to an API. APIs are consumed in different
ways to how libraries are. Many APIs enforce some kind of authentication before
a developer can actually use them. We do not see this very often when it comes
to using a library. You can easily override and overload a library function or class
and use it as you will.

Deep Learning through APIs Chapter 5

[135]

Libraries and APIs can be used in conjunction with each other. Many libraries
use different APIs internally and vice versa.

These should give you some sense of the basic differences between a library and an API.
However, if you are still finding it difficult to draw the line, don't worry about it: we will be
looking at lots of examples, and by the time you are done with them, you will definitely be
in a position to differentiate between APIs and libraries.

We will now introduce some of the APIs that are widely used for developing deep
learning-enabled applications, some very widely known and some not that popular.

Some widely known deep learning APIs
In this section, we are going to take a look at some of the most widely used APIs, which are
deployed for a variety of deep learning tasks, such as image recognition, sentiment
detection from an image, sentiment classification, speech-to-text conversion, and so on. To
limit our discussion in this section, we will divide deep learning tasks into two broad
groups:

Computer vision and image processing
Natural language processing

We will then list some of the common tasks related to each of these groups and discuss the
APIs that can be used to accomplish those tasks.

Let's now quickly list some common deep learning tasks and assign them to their
categories:

Computer vision and image processing:
Image search: Just like Google Search, image search engines allow
us to search for images similar to a particular image.
Image detection: This is detecting what an image is about. It is also
known as label detection.
Object localization: Given an image containing a set of different
objects, this involves detecting a particular object in the image.
Content moderation: Given an image, this involves the detection
of inappropriate content.
Image attributing: Given an image, this involves the extraction of
different traits of the image.

Deep Learning through APIs Chapter 5

[136]

Natural language processing:
Parts-of-speech tagging: Given a piece of text, this involves
the extraction of the parts of speech that the text contains.
Topic summarization: Given a piece of text, this
involves determining the topic that the text is about.
Sentiment classification: Given some text, this involves predicting
the sentiment that the text is conveying.
Named entity recognition: This involves the automatic recognition
of different entities present in a given sentence.
Speech-to-text conversion: This involves the extraction of the text
contained in a piece of speech.

All of the tasks listed here are extremely useful in our day-to-day lives and it is exciting to
know that we can make applications that are able to do these tasks for us with the APIs that
we are going to discuss now.

There are other deep learning APIs for making casual inferences at scale,
but for the time being, we can ignore them and focus on the two areas that
are most impacted by deep learning.

The following table is a compilation of some of the most widely used deep learning APIs in
the industry:

Provider API Group

Google

Vision API
Computer vision and image processing

Video Intelligence API
Natural Language API

Natural language processing
Speech-to-Text API
Text-to-Speech API

Translation API
Dialogflow API

Facebook
DensePose

Computer vision and image processing
Detectron

Deep Learning through APIs Chapter 5

[137]

Amazon

Amazon Rekognition Computer vision and image processing
Amazon Comprehend

Natural language processing
Amazon Textract

Amazon Polly
Amazon Translate

Amazon Transcribe

Microsoft

Computer Vision

Computer vision and image processing
Video Indexer

Face
Content Moderator

Text Analytics

Natural language processing
Bing Spell Check
Translator Text

Language Understanding

The APIs shown in the preceding table are the most popular ones when it comes to using
well-tested and scalable deep learning APIs. However, there are some other names that are
yet to grow as popular as those. In the next section, we are going to take a look at them.

Some lesser-known deep learning APIs
The following table gives some details about a few lesser-known APIs:

Provider API Group

IBM Watson

Watson Virtual Recognition Computer vision and image
processing

Watson Text to Speech

Natural language processing
Watson Natural Language Classifier

Watson Conversation
Watson Natural Language Understanding

AT&T AT&T Speech Natural language processing

Wit.ai
Speech

Natural language processingMessage
Entities

Deep Learning through APIs Chapter 5

[138]

Now, among this ocean (well, almost) of APIs, how do you choose a particular provider for
a specific task? It can be tricky and demands a discussion. In this section, we are going to
discuss some of the strategies that can effectively help us to make these decisions.

Choosing a deep learning API provider
With the long list of API providers for deep learning that could be compiled, it can be a
daunting task to decide which API you require. However, there are some simple rules that
you can follow to come up with the most suitable API for your needs, and we'll be
discussing a few of them in detail here:

Platforms:
As simple as it sounds, this is probably the foremost factor that
comes into play when you are choosing your API provider. Most
of the time, if you are developing a product that runs on Google
technologies, for instance, you might want to use the deep learning
APIs that Google provides, simply because they would integrate
seamlessly with the application development interface that you are
working with.
More often than not, a development environment also offers
templated solutions for using its deep learning APIs that are very
simple to set up. Sometimes, the provider may also offer extra
incentives for using their APIs to develop new products.

Performance:
With access to multiple providers' APIs to perform a single task,
you have the option of comparing their performance and then
choosing. In such cases, it's up to you as to the metric to use when
comparing and judging different APIs.

Cost:
Different providers use different methods of costing, and this can
play a huge role in deciding which provider you use. A certain
provider may have a comfortable limit on the number of free API
calls for experimentation and so might be a lucrative option for
you. Often, experimenting developers and students choose to go
with the provider that has the best offering in terms of cost.

Deep Learning through APIs Chapter 5

[139]

Besides these three factors, there could be some other undeniable factors, such as a
company requiring the usage of a certain API or your own inclination toward a certain API
provider. However, unless on a large scale, it mostly matters very little which provider is
used, since they all provide similar performance for small- to medium-scale usage.

Summary
In this chapter, we took a detailed look at the term API. In Chapter 3, Creating Your First
Deep Learning Web Application, we saw how an API can be written in Python using Flask
and we saw how to use that API in a web application. We now know how an API is
different from a language library and how important it is to make use of APIs. We became
familiar with a variety of deep learning APIs that are offered by some top-notch
organizations.

As we progress through the upcoming chapters, we will see how to use these APIs to build
powerful and intelligent web applications. We will start with the deep learning APIs
provided by Google Cloud Platform in the next chapter.

6
Deep Learning on Google

Cloud Platform Using Python
In the previous chapter, we saw a variety of deep learning APIs that are provided by
various organizations. We also saw their applicability broadly grouped into two
categories—the first was computer vision and image processing, and the second was
natural language processing. We are going to continue exploring deep learning APIs in this
chapter as well. This chapter introduces you to Google Cloud Platform (GCP) and three
APIs offered by it in the area of deep learning.

In this chapter, we will cover the following topics:

Setting up your GCP account
Creating your first project on GCP
Using the Dialogflow API in Python
Using the Cloud Vision API in Python
Using the Cloud Translation API in Python

Technical requirements
You can access the code for this chapter from https:/ /github. com/ PacktPublishing/
Hands-On-Python- Deep- Learning- for- Web/ tree/ master/ Chapter6.

To run the code in this chapter, you'll need to have Python 3.6+ on your system.

Other requisite installations will be introduced during the course of this chapter.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter6

Deep Learning on Google Cloud Platform Using Python Chapter 6

[141]

Setting up your GCP account
Before we proceed with using the APIs offered by GCP, you must set up your GCP account.
Assuming that you already have a Google account—first, head to https:/ / cloud. google.
com/. GCP gives you $300 of credit (which you can use for a period of 12 months) if you are
signing up to it for the first time; this credit is sufficient enough to accommodate many
good projects and enable you to try out the offerings of GCP. Once this has been done, we
can follow these steps:

At the top-right corner of GCP's home page, you should be able to locate a Try1.
free button. Just click on it:

If you are not signed in to your Google account, you will be asked to sign in.2.
Select your country accordingly and make sure you check the Terms of service
box. After this, click on AGREE AND CONTINUE. You will see a page as in the
following screenshot:

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/

Deep Learning on Google Cloud Platform Using Python Chapter 6

[142]

Then, you will be asked to enter the details for a payment method of your choice.3.
Even if you have free credits, in order to use GCP's utilities, you need to set up a
valid billing account. But don't worry, you will not be charged from your billing
account unless you allow GCP to do so. During your free trial, all the billable
utilities that you will use on GCP will be deducted from your free credit only.
Once the limit for your free credit ends, GCP will send you a reminder.

Once your billing formalities are done, you should end up at GCP's console page, which
looks like this:

This is actually your GCP dashboard, which gives you an overall summary of your GCP
usage. GCP also lets you customize the tags that appear on your GCP console.

You should now be done with the GCP account setup. To be able to use the utilities in GCP,
you need to create a GCP project with a valid billing account tagged to it. In the next
section, you will see how to do that.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[143]

Creating your first project on GCP
A project helps you organize all your GCP resources systematically. Creating a project on
GCP can be done in just a matter of a few clicks:

After signing in to your Google account, open up your GCP console using1.
https:// console. cloud. google. com. In the top-left corner, you should see
Google Cloud Platform and just beside that, you can see a drop-down list, as
shown:

If you did create any projects while signing up for GCP or previously, then one of2.
your projects will appear in the marked area (fast-ai-exploration and gcp-api are
two projects that I created on GCP). Now, click on the down arrow and a popup
should appear:

Click on NEW PROJECT to proceed. You should end up on a page, shown in the3.
following screenshot, that will ask you to specify the project's name. GCP
automatically generates an ID for the project that you are creating but it also lets
you edit that ID according to your choices:

https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com

Deep Learning on Google Cloud Platform Using Python Chapter 6

[144]

After you are done specifying the initial details of your project, just click on4.
CREATE and the project will be created. Once the project is created, it should
appear in the projects list. You can always navigate to this list using the handy
dropdown that GCP provides on its console page. You can see this in the
following screenshot:

If you want to learn more about GCP projects, you can check the official documentation at
https://cloud.google. com/ storage/ docs/ projects. GCP is equipped with a wide suite
of various utilities that can be found at https:/ /cloud. google. com/ products/ . You are
encouraged to take a look and explore them with respect to your interests.

https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/storage/docs/projects
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/
https://cloud.google.com/products/

Deep Learning on Google Cloud Platform Using Python Chapter 6

[145]

GCP provides us with a wide range of APIs that can be used for a variety of tasks,
including deep learning. In the next couple of sections, we will see how some of the most
widely used deep learning APIs can be consumed using Python code. We will start with
Dialogflow.

Using the Dialogflow API in Python
Before we start to learn how to use the Dialogflow API in Python, let's understand what
Dialogflow is all about.

Dialogflow (formerly known as api.ai) provides a suite of utilities for building natural and
rich conversational interfaces, such as voice assistants and chatbots. It is powered by deep
learning and natural language processing and is used by a large number of companies. It
seamlessly integrates with websites, mobile applications, and many popular platforms,
such as Facebook Messenger, Amazon Alexa, and so on. Dialogflow provides us with three
major components for building a conversational user interface:

The best practices and processes that can easily be applied to any conversational
user interface
Functionalities to add any custom logic that might be required for building a
conversational user interface
Facilities to train agents so as to fine-tune the overall experience of the interface

Now, we will see how Dialogflow can be used to create a simple application in Python. You
can refer to https:/ /dialogflow. com to learn more about Dialogflow.

We will begin with the creation of a Dialogflow account.

Creating a Dialogflow account
Creating a Dialogflow account is simple and easy. The process involves the following steps:

Visit https:/ / console. dialogflow. com/ api- client/ #/login and you will see1.
the following screen:

https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login
https://console.dialogflow.com/api-client/#/login

Deep Learning on Google Cloud Platform Using Python Chapter 6

[146]

After clicking the sign in with Google button, you'll be asked to choose which2.
Google account you want to use with Dialogflow.
On selecting the account, you might be asked to allow Account Permissions for3.
Diagflow and also to accept the Dialogflow terms and conditions.

Creating a new agent
After creating an account, you will be greeted with a dashboard that will either display
your active Dialogflow projects or ask you to create a new agent to be displayed—but what
is an agent?

An agent—in Dialogflow terminology—is a piece of software that performs the task of
receiving input from users, which might be in the format of text, audio, image, or video. It
then tries to determine the intent or the previously defined appropriate action
corresponding to the input. The matched intent might perform an action or it may simply
arrive on a hypertext response to the query made by the user input. Finally, the agent
returns the results to the user.

To create a new agent, in the left-hand side navigation menu of the Dialogflow console,
click on Create Agent.

You will be presented with a screen that looks like this:

Deep Learning on Google Cloud Platform Using Python Chapter 6

[147]

We have named our agent DemoBot and set the default language to English. Further, we
had to select a Google project for the agent.

A Google project—or simply a project—is a term that you encounter in the study of GCP. A
project encompasses the entire array of resources allocated toward any software project that
uses those resources and is financed by a single billing account on GCP. No resources can
be allocated without defining a project for them. Further, no project can be created without
adding a valid billing option to it.

You will now be able to see a screen, as in the following screenshot, with certain default
intents provided for your agent:

On the left, you can see the navigation menu, which provides all the various modules that
can be brought together in your agent for better human-like interaction provided by the
software. In the right-hand side panel, you have the option to test your agent at any
moment with any input you provide. This will come in handy during the development of
responses and when testing the matching of intents with input provided.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[148]

Creating a new intent
To create a new intent for our agent, follow these steps:

Click the Create Intent button at the top-right corner of the middle section.1.
You need to provide a name for this intent—let's say Dummy Intent.2.
We will then need to provide some training phrases that would trigger this3.
intent. Let's say we provide three training phrases, as shown:

Now, we can expect this intent to be called on whenever the system encounters
the phrases (or similar phrases) mentioned in the training.

We can now add some responses that our agent will make when this intent is4.
invoked, as shown:

Deep Learning on Google Cloud Platform Using Python Chapter 6

[149]

At the top-right corner of the middle section, click on the SAVE button to save5.
the new intent and you will be notified that the agent training has started.

For a small agent, the training completes within seconds and you'll be presented with an
Agent training completed notification.

We are now ready to test whether our agent is able to execute this intent.

Testing your agent
On the right-hand side section of your Dialogflow console, you'll be able to test your agent.
In the top text field, enter your query. In our agent, to call Dummy Intent, we'll write Talk
to the dummy.

If the intent matches correctly, you'll be able to see the response from Dummy Intent, as
shown:

Deep Learning on Google Cloud Platform Using Python Chapter 6

[150]

In the previous screenshot, you will observe that the input of the user is Talk to the
dummy and the response generated is one of the two responses we defined in the responses
for Dummy Intent. You can observe that the intent that was matched to the input was
Dummy Intent.

We will now look at how we can invoke the agent using Python.

Installing the Dialogflow Python SDK
In this section, we will demonstrate how you can use the Dialogflow Python API V2 with
your Dialogflow agent to bring interactivity to your application built using Python. Let's
first understand how the several components of the DialogFlow ecosystem interact with the
following diagram:

The user creates the input, which is sent to the agent via integration APIs, websites, or apps.
The agent matches the user input to the available intents and produces a fulfillment of the
query. The response is sent back to the user interface by the means of a webhook and the
response is presented to the user.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[151]

It is quite possible for the integration APIs to include services other than Dialogflow. You
could create an application that could propagate the same user query to multiple agents
and consolidate their response.

Alternatively, the developer can introduce middleware handlers or integrations, which
would preprocess or postprocess the user query and agent response:

To install the Dialogflow Python SDK, we use the following command in the1.
terminal:

pip install dialogflow

It is highly recommended that you create a virtual environment using
virtualenv before using the previous command to have clean and
unbroken dependencies. To learn more about virtualenv, refer to
https:/ /virtualenv. pypa. io/ en/latest/ .

After the installation is complete, you will be able to import the Dialogflow API2.
to your project by using the following import code:

import dialogflow

We'll now create a GCP service account to authenticate our Python script in order to use the
Dialogflow agent we created.

Creating a GCP service account
A GCP service account manages the permissions provided to access a GCP resource. The
Dialogflow agent we created was a GCP resource and so to use it from the Python API,
we'll need a service account:

In the GCP console, from the left-hand side navigation menu, go to APIs |1.
Services | Credentials.
Click the Create credentials button to get the following options:2.

https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/

Deep Learning on Google Cloud Platform Using Python Chapter 6

[152]

Click on Service account key. In the page that comes up next, select Dialogflow3.
Integrations as the service account and JSON as the key type. After clicking
Create, a JSON file is downloaded to your computer.
Note down the address of this JSON file—for example,4.
/home/user/Downloads/service-account-file.json. The file name could
differ, as it is provided by the GCP console when you download the file to your
computer.
Open this file to obtain the project ID.5.
Now, use the following commands—with suitable replacements as present on6.
your system—in the terminal to export the credentials to the environment
variables:

In Linux (Terminal):

export
GOOGLE_APPLICATION_CREDENTIALS="<your_service_account_file_location>"
export DIALOGFLOW_PROJECT_ID="<your_project_id>"

In Windows (Command Prompt):

set GOOGLE_APPLICATION_CREDENTIALS=<your_service_account_file_location>
set DIALOGFLOW_PROJECT_ID=<your_project_id>

With this done, we are now ready to write the Python script that will call our Dialogflow
agent.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[153]

Please note that the preceding commands only set the variables for the
current session. You need to run the commands every time you restart the
session.

Calling the Dialogflow agent using Python API
In this example, we'll be creating a simple Python-based API that calls to the agent we
created in the Dialogflow console to invoke Dummy Intent, as shown:

Firstly, we must import the Dialogflow module to the project. To do so, use the1.
following code:

import dialogflow

To get the project ID into the script, we can fetch it from the runtime2.
environment variables. To do so, use the following code:

import os
project_id = os.getenv("DIALOGFLOW_PROJECT_ID")

We will also declare a unique session ID to store the records of the conversations3.
made in any single session with the user:

session_id="any_random_unique_string"

We'll now create a handy function that will allow us to repeatedly perform a set4.
of preprocessing statements required to call the Dialogflow agent:

def detect_intent(project_id, session_id, text, language_code):

 session_client = dialogflow.SessionsClient()
 session = session_client.session_path(project_id, session_id)
 text_input = dialogflow.types.TextInput(text=text,
language_code=language_code)
 query_input = dialogflow.types.QueryInput(text=text_input)
 response = session_client.detect_intent(session=session,
query_input=query_input)
 return response.query_result.fulfillment_text

In the preceding code, we will first initialize a SessionsClient object. A session
records the complete interaction between the user and the Dialogflow agent
during one uninterrupted conversation. Next, we must set the path of the session,
which is the mapping of the project to a unique session ID.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[154]

The next two lines of the preceding function definition are used to create a
Dialogflow QueryInput object that contains a Dialogflow TextInput object. The
query_input variable holds the message the user inputs for the Dialogflow
agent.

The next line invokes the detect_intent() method of the SessionsClient
object. The session ID-project ID mapping, along with the input, is passed
as the parameter to the method. The response of the Dialogflow agent is stored in
the response variable. The function returns the fulfillment text response.

Let's now use this method. First, declare a message to pass to the Dialogflow5.
agent. Recall the training phrases we provided to our Dialogflow agent for Dummy
Intent. We'll pass a message that is similar to the training phrases:

message = "Can I talk to the dummy?"

fulfillment_text = detect_intent(project_id, session_id, message,
'en')

print(fulfillment_text)

We will get an output that is among the two responses we defined for Dummy
Intent.

Generate the response variable in the detect_intent() method, which can be6.
done by adding the following line of code in the detect_intent() function:

def detect_intent(project_id, session_id, text, language_code):
 ...
 response = session_client.detect_intent(session=session,
query_input=query_input)
 print(response) ### <--- ADD THIS LINE
 return response.query_result.fulfillment_text

You will get the following JSON:

response_id: "d1a7b2bf-0000-0000-0000-81161394cc24"
query_result {
 query_text: "talk to the dummy?"
 parameters {
 }
 all_required_params_present: true
 fulfillment_text: "Congratulations, dummy intent user!"
 fulfillment_messages {
 text {
 text: "Congratulations, dummy intent user!"

Deep Learning on Google Cloud Platform Using Python Chapter 6

[155]

 }
 }
 intent {
 name: "projects/gcp-
api-232806/agent/intents/35e15aa5-0000-0000-0000-672d46bcefa7"
 display_name: "Dummy Intent"
 }
 intent_detection_confidence: 0.8199999928474426
 language_code: "en"
}

You will observe that the name of the matched intent is Dummy Intent and the output that
we had in this call of the agent is Congratulations, dummy intent user!.

There are several other ways of using the Dialogflow API using Python, including—but not
limited to—audio-visual input and sensor-based inputs. The Dialogflow agents can be
integrated with major platforms, such as Google Assistant, Facebook Messenger, Slack,
Telegram, WhatsApp, and several others, as shown:

The Dialogflow ecosystem is rapidly introducing new features and is increasingly moving
toward providing complete AI-based chatbots that can perform several tasks at the same
time.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[156]

In the next section, we'll explore another GCP API that can be used to predict the contents
of images and videos.

Using the Cloud Vision API in Python
Computer vision is the field of making computers understand images and make sense of
them. Common computer vision tasks include image classification, image detection, image
segmentation, and so on. As discussed in earlier chapters, the field of computer vision has
been heavily affected by the effectiveness of deep learning in achieving human-level (and
sometimes even better) performance.

The Cloud Vision API provides us with a lot of utilities for performing computer vision
tasks. Cloud Vision allows us to use the pre-trained models as well as build our own
custom production-ready models that cater to our needs (such as AutoML Vision Beta).
Let's now briefly look at the features that are offered by the Cloud Vision API:

Label detection
Optical character recognition
Handwriting recognition
Landmark detection
Object localization
Image search
Product search

Apart from the previously mentioned features, Cloud Vision also lets us extract different
attributes of a given image. The following screenshot shows this utility:

Deep Learning on Google Cloud Platform Using Python Chapter 6

[157]

As we can see, when given an image, the Cloud Vision API automatically extracts its
attributes. You can also try this by going to https:/ /cloud. google. com/vision/ .

We have been using the term pre-trained models from earlier chapters. We have also seen
how the Cloud Vision API lets us incorporate the pre-trained models. It will be worth
digging a bit deeper into the term pre-trained models in order to understand the
importance of using them.

The importance of using pre-trained models
The use of pre-trained models is commonly referred to as transfer learning. Transfer
learning is not something that is very fundamental to deep learning and it is just a
methodology. It doesn't denote a particular deep learning model but its implications of
transfer learning are very effective, especially in a deep learning context.

We human beings do not learn each and every task from scratch; we try to utilize our past
experiences to do tasks that are similar in nature. This is transfer learning. We tend to
transfer the knowledge of our past experiences to similar tasks that we are met with.

But how is this applicable to deep learning? Let's find out.

When a neural network is trained for a particular task, it tries to estimate the value of the
best possible weight's matrices. Now, when you attempt to train another network on a
similar kind of task, it turns out that you can use the weights from the previous task. The
definition "similarity" is broad here and can be avoided for the time being. But you may
wonder what the advantage here is. Well, the advantages are manifold, but here are a
couple of examples:

You don't need to train your neural network from scratch, which saves you a lot
of time.
It leverages the opportunity to use state-of-the-art results from a problem domain
that is similar to yours.

In literature, the task that you use the network weights from is called a source task and the
task that you apply the weights to is called the target task. The network model that you use
the weights from is referred to as the pre-trained model. Goodfellow et al. gave a very
subtle definition of transfer learning in their book Deep Learning:

"[A] situation where what has been learned in one setting is exploited to improve
generalization in another setting."

https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/

Deep Learning on Google Cloud Platform Using Python Chapter 6

[158]

The use of transfer learning has shown exceptional results in a wide range of deep learning
applications in areas such as Natural Language Processing (NLP), computer vision, and
more. But transfer learning has its limitations as well:

Transfer learning can result in a performance drop when the source task is not
sufficiently related to the task where transfer learning is being used.
It gets difficult sometimes to determine how much transfer is required from the
source task to the target task.

For an in-depth study of transfer learning, you are encouraged to go through the book
Hands-On Transfer Learning with Python by Dipanjan et al. We will now learn—with the help
of an example—how to use the Cloud Vision API using Python.

Setting up the Vision Client libraries
The Cloud Vision API is available through a set of libraries for different languages, called
the Vision Client libraries.

One such library offered in this set is the Python Cloud Vision Client library, which we will
be using in our example:

To install the Python Cloud Vision Client library, we use the following command1.
in the terminal:

pip install --upgrade google-cloud-vision

It is highly recommended that you use a Python virtual environment to
install the Vision Client library.

After the installation is complete, we will need to set up a service account to use2.
the API.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[159]

As discussed previously, the steps to be followed for setting up a service account3.
are as follows:

Open the Google Cloud console.1.
Go to APIs | Services | Credentials.2.
Click on Create credentials.3.
Choose New Service Account in the drop-down menu for selecting the4.
service account.
Fill in any name for the service account.5.
Leave Role unchecked. This is not needed when using the Cloud6.
Vision API.
Click on Create. Confirm any warning boxes that appear.7.
The service account credentials JSON file gets downloaded to8.
your computer.

Now, as we did previously, export this downloaded file to the system4.
environment. To do this, use the following command:

In Linux (Terminal):

export
GOOGLE_APPLICATION_CREDENTIALS="/home/user/Downloads/service-
account-file.json"

In Windows (Command Prompt):

set GOOGLE_APPLICATION_CREDENTIALS=/home/user/Downloads/service-
account-file.json

As a final step before using the Cloud Vision API, we need to enable the API5.
within the project that we created the service account for. To do so, do the
following:

In the Google Cloud console's left-hand side navigation panel, click on1.
APIs and Services.
Click on Enable APIs & Services.2.
Find the Cloud Vision API in the list that appears.3.
Click on Enable.4.

After this, we are ready to use the Cloud Vision API using Python in our script.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[160]

The Cloud Vision API calling using Python
Let's create a new Python script (or Jupyter notebook). In order to use the Cloud Vision
API, we first need to import the Cloud Vision Client library.

To do this, we use the following code:1.

from google.cloud import vision

With this, we're ready to move on and use the client library. In our example, we2.
will annotate an image. The image annotation service is provided by the
imageAnnotatorClient() function in the Vision library. We will create an
object of the method:

client = vision.ImageAnnotatorClient()

Now, let's load the file to be tested for annotation into the program:3.

with open("test.jpg", 'rb') as image_file:
 content = image_file.read()

Note that you should have the test.jpg file in the same working
directory in order for this to work.

The file is currently a raw binary data file for the program. For the Cloud Vision4.
API to work, we need to convert this into a type of image that the Vision Client
will accept:

image = vision.types.Image(content=content)

Finally, we make the call for GCP to annotate the image via the Cloud Vision5.
API:

response = client.label_detection(image=image)
labels = response.label_annotations

Deep Learning on Google Cloud Platform Using Python Chapter 6

[161]

After printing the labels set by the vision API, we will be able to see all the possible objects
and features that the Cloud Vision API is able to detect in the picture provided, as shown:

If you print labels, the result should look like this:

The predicted labels are Sky, Horizon, Atmosphere, Sunrise, Sunset, Morning, Ocean,
Calm, Wing, and Evening.

The preceding predictions are very close to the real scene that is captured in the preceding
photo. It was sunrise and taken from the window of an airplane.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[162]

Using the Cloud Translation API in Python
The Cloud Translation API helps developers to easily integrate language translation
functionalities into their applications. It is powered by state-of-the-art neural machine
translation, which can be thought of as an amalgamation of deep learning and machine
translation. The Cloud Translation API provides programmatic interfaces for using pre-
trained models and building production-ready custom models.

Many developers use the Cloud Translation API's pre-trained models to dynamically
translate a given set of text into a target language. The Cloud Translate API supports more
than 100 languages. But this language library is evolving to empower the developer
community. The following screenshot shows a translation of some text written in English to
Bengali:

You can always try this on https:/ / cloud. google. com/ translate/ . But sometimes, the
language of a given text might be unknown itself. The Cloud Translation API provides a
service called label detection to handle situations like this.

The AutoML variant of the Cloud Translation API lets us build custom models with respect
to language pairs (the source language and target language) according to our needs.

Setting up the Cloud Translate API for Python
To use the Cloud Translation API with Python, we must first install the Google Cloud
Translate Python library.

To do so, use the following pip command in the terminal:1.

pip install google-cloud-translate

Now, as done previously, create a service account and download the credentials2.
file. Export this file to the path for the GOOGLE_APPLICATION_CREDENTIALS
environment variable.
Next, find Cloud Translate API in the list of APIs to enable. Once done, we're3.
ready to make translations directly from Python using GCP.

https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/
https://cloud.google.com/translate/

Deep Learning on Google Cloud Platform Using Python Chapter 6

[163]

Using the Google Cloud Translation Python
library
Create a new Jupyter notebook or a new Python script. We will now import the Google
Cloud Translate API to our project.

To do so, use the following code:1.

from google.cloud import translate_v2 as translate

We would need to create a Cloud Translate API object to make the service calls.2.
We can do so as follows:

translate_client = translate.Client()

Let's now begin with the translation process. First, we need a message to3.
translate:

original = u'नमते'

This creates a Unicode string containing the word Namaste in Hindi. Let's see
what it converts to in English!

We call the API to translate the text into English using the following code:

translation = translate_client.translate(original,
target_language="en")

If you observe the translation variable, you will find that it contains the
following details:

{
 'translatedText': 'Hello',
 'detectedSourceLanguage': 'hi',
 'input': 'नमते'
}

It is simple to infer from this dictionary that the detected language was Hindi (represented
by hi). The input is shown in the format the input was fed in. translatedText holds
Hello, which is the exact translation of Namaste.

Deep Learning on Google Cloud Platform Using Python Chapter 6

[164]

Summary
In this chapter, we explored some of the famous and groundbreaking deep learning-based
services provided by GCP. We learned how to use Dialogflow using Python to build
conversational chatbots that can learn over time. We used the Cloud Vision API to predict
the objects recognized in any image. We could easily extrapolate this to a video and achieve
similar results. We finally covered the Cloud Translate API for performing deep NLP-based
translation using the service. All the major services provided by GCP are accessible over
APIs, which makes them easily replaceable in any project. The accuracy of models created
by highly trained professionals is commendable and makes the life of a web developer
easier when trying to build AI-powered web solutions.

In the next chapter, we will introduce the features offered by Amazon Web Services (AWS)
to integrate AI with web applications using Python.

7
DL on AWS Using Python:

Object Detection and Home
Automation

We familiarized ourselves with a few deep-learning-based offerings from Google Cloud
Platform and learned how they can be used in Chapter 6, Deep Learning on Google Cloud
Platform Using Python. Now that we have a fairly good overview of cloud computing, in this
chapter, we will introduce another cloud computing platform, Amazon Web Services
(AWS), which also offers some high-performing and highly reliable deep-learning-based
solutions to make life easier. In this chapter, we are going to introduce two of them in the
form of APIs and learn how they can be consumed from a Python program.

We will start by setting up our AWS account and configuring boto3 in Python. We will then
learn how to use the Rekognition API and the Alexa API in Python.

In this chapter, we will cover the following topics:

Setting up your AWS account
AWS offerings in brief
Configuring boto3 in Python
Using the Rekognition API in Python
Using the Alexa API in Python

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[166]

Technical requirements
You can access the code for this chapter at https:/ / github. com/ PacktPublishing/ Hands-
On-Python-Deep-Learning- for- Web/ tree/ master/ Chapter7.

To run the code in this chapter, you'll need the following software:

Python 3.6+
The Python PIL library

All other installations will be described during the course of the chapter.

Getting started in AWS
Before using any AWS services or APIs, you will have to create your AWS account. In this
section, we will quickly go through the steps to create an account in AWS:

The first step is to go to https:/ /aws. amazon. com/ . You should land on a page1.
that resembles the following:

Then click on the Create an AWS Account button, which should take you to the2.
following page:

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter7
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[167]

Fill in the fields and click on Continue.3.
The portal will ask for some more mandatory information from you. It will also4.
ask you to register a payment method in order to verify your details.

If you do not provide this, you will not be entitled to use the free tier of
AWS facilities.

Towards the very last step of your registration, you will be asked to choose5.
between three plans—Free, Developer, and Business. Choose whichever is
relevant to your needs and proceed.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[168]

Like Google Cloud Platform, AWS also offers free tier access. When you sign up
for AWS for the first time, you get to use a wide range of AWS services and
products for free, but only up to a certain quota. You can go to https:/ /aws.
amazon.com/ free/ to learn more about this.

You should get a page like the following once you follow the preceding steps:

AWS has this beautiful feature of recommending solutions and services for its
users. In order to make the most of this feature, you need to enter two
things—your role and your subject of interest. You can see this in the preceding
screenshot. Enter these two details and hit Submit for some targeted product
recommendations.

The next step is to click on the Sign In to the Console button.6.

When you are successfully logged in to your AWS console, you should see the
following window:

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/free/

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[169]

The AWS console is the place where you can find all the services and solutions that AWS
has to offer. Feel free to explore the complete set of services by clicking on the Services tab.
You can also search for a particular service from the search bar.

By now, our AWS accounts should be ready enough for us to get our hands dirty. In the
next section, we'll review the offerings of AWS briefly to get a better sense of the platform.

A short tour of the AWS offerings
AWS offers its services and solutions in a variety of domains. The following are the
different types of module that AWS offers (the ones in brackets are the names of the
different services offered by AWS):

Compute (EC2, Lambda, and so on)
Storage (S3, Storage Gateway, and so on)
Machine learning (Amazon SageMaker, AWS DeepLens, and so on)
Database (RDS, DynamoDB, and so on)

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[170]

Migration and transfer (Snowball, DataSync, and so on)
Networking and content delivery (CloudFront, VPC, and so on)
Developer tools (CodeStar, CodeCommit, and so on)
Robotics (AWS RoboMaker)
Blockchain (Amazon Managed Blockchain)
Analytics (Athena, CloudSearch, and so on)

There are also many others, as shown in the following screenshot:

The list is actually pretty extensive, but let's restrict our focus to machine learning (also
known as deep learning) services for the time being.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[171]

The search bar in the AWS console also lets you search for the AWS APIs that you may
already have heard of. Let's type Rekognition in there and hit Enter. You should be
provided with the home page of Rekognition, as shown in the following screenshot:

We will explore the Rekognition API in more detail later in the chapter. In the next section,
we will learn how to use boto3 (an AWS SDK that provides a programming interface in
Python) to interact with different AWS resources.

Getting started with boto3
boto3 is the official library for communicating with AWS APIs, provided by the AWS team.
You can find the library at https:/ /aws. amazon. com/ sdk- for- python/ , and it can be
installed using the following command:

pip install boto3

https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[172]

After installation, you need to configure boto3 for use with your project. To configure boto3
(https://bit.ly/ 2OvXAvb), the first step is to get your AWS access keys from the Identity
and Access Management (IAM) console. Go through the following steps to perform the
configuration:

Go to your AWS IAM console at https:/ / console. aws. amazon. com/ iam. It will1.
look like the following:

On the preceding dashboard, you will be able to see the access keys.

Click on Delete your root access keys and then Manage Security Credentials.2.
You will be presented with the following window:

https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://bit.ly/2OvXAvb
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[173]

Expand the Access keys (access key ID and secret access key) tab and get the3.
access keys from there. You should get the following message once the keys are
generated successfully:

Download the key file and keep it in a secure place, as you will need this in order4.
to configure boto3.

Configuring environment variables and installing
boto3
Once you have the access keys, create two environmental variables, aws_access_key_id
and aws_secret_access_key. Now, assign their values accordingly with the help of the
keys you have. The keys will have information that will help you distinguish between the
key ID and the secret access key. Now that you have configured the necessary environment
variables, we can start off by loading the environment variables in Python.

Loading up the environment variables in Python
Once the library is successfully installed, you can load up the environment variables you
just created with the following lines of code:

import os
aws_access_key_id= os.environ['aws_access_key_id']
aws_secret_access_key = os.environ['aws_secret_access_key']

Once the environment variables are loaded up properly, we can call boto3 to interact with
an AWS resource. Let's say you want to enlist the S3 buckets that you have in your AWS
account and want to upload an image to a particular bucket. S3 is the AWS resource that
you want to access. If you do not have any S3 buckets in your AWS account, no worries;
you can quickly create one.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[174]

Creating an S3 bucket
You can quickly create an S3 bucket by going through the following steps:

Go to the home page of the S3 console at https:/ /s3. console. aws.amazon. com/1.
s3. It should look like the following:

Click on Create bucket. You will be asked to enter the following details:2.

https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3
https://s3.console.aws.amazon.com/s3

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[175]

Give a name for your bucket, leave everything as it is, and click on Create. Once3.
the bucket is successfully created, you will be able to see it from the S3 console:

Next, we will learn how to access S3 from Python code with boto3.

Accessing S3 from Python code with boto3
Now, you can access your S3 bucket from Python code. The following lines of code will
show you the available buckets:

import boto3
s3 = boto3.resource(
 's3',
 aws_access_key_id=aws_access_key_id,
 aws_secret_access_key=aws_secret_access_key
)

You specified that you are interested in accessing S3 in the first argument of the
resource(). You can read the documentation at https:/ /bit. ly/2VHsvnP. You can now
find the available buckets with the following lines of code:

for bucket in s3.buckets.all():
 print(bucket.name)

You should get the list as the output. Now, say you want to upload an image to one of the
buckets. Provided that the image you want to upload is in your current working directory,
the following lines of code should upload an image to a particular S3 bucket:

data = open('my_image.jpeg', 'rb')
s3.Bucket('demo-bucket-sayak').put_object(Key='my_image.jpeg', Body=data)

https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP
https://bit.ly/2VHsvnP

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[176]

The preceding lines of code contain the following features:

my_image.jpeg is the path of the image you want to upload.
Within the Bucket() method is the name of the S3 bucket that the image will be
uploaded to.

If the code is successfully executed, you should receive the following output:

s3.Object(bucket_name='demo-bucket-sayak', key='my_image.jpeg')

You can verify whether the image was uploaded by going to your AWS S3 console and
then entering the bucket that you uploaded the image to. You should see something like the
following in there:

Now that you have configured boto3 successfully in Python, we can now move on to learn
how to use the Rekognition and Alexa API in Python using boto3.

Using the Rekognition API in Python
Amazon Rekognition is a deep-learning-enabled visual-analysis service that can help you
search, verify, and analyze billions of images seamlessly. Let's first review the Recognition
API briefly and then we will jump straight into using it in Python. Let's first go to the home
page of the Rekognition API at https:/ /console. aws. amazon. com/ rekognition/ home. We
have already seen Rekognition's home page in one of the earlier sections of this chapter.

As you might have already noticed from the navigation bar, the Rekognition API has
several things to offer:

Object and scene detection: This lets you automatically label objects, labels, and
scenes from a given image (along with confidence scores).
Image moderation: This allows you to detect explicit or suggestive adult content
in images, along with confidence scores.

https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home
https://console.aws.amazon.com/rekognition/home

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[177]

Celebrity recognition: Using this, you can automatically recognize celebrities in
images (along with confidence scores).
Face comparison: This can be used to see how closely faces match based on a
similarity percentage.

In addition to these features, it has many more.

The solutions offered by the Rekognition API have proven to be extremely useful for a wide
variety of organizations because they genuinely solve some real-world and challenging
problems. You can try a quick demo of any of the solutions mentioned in the preceding list
by clicking on their respective solutions on the API home page. Let's try the celebrity
recognition solution.

First, go to https:/ /console. aws. amazon. com/rekognition/ home? region= us- east- 1#/
celebrity-detection (note that the region may vary). It should look like the following
image:

https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection
https://console.aws.amazon.com/rekognition/home?region=us-east-1#/celebrity-detection

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[178]

The portal will let you upload your own image and test it. Let's test my image (we could
have taken images of media celebrities, but those images are copyright protected). You can
see the result as expected:

Feel free to try the other solutions as well. Let's now see how the Rekognition API can be
used from Python code:

Create a new Jupyter Notebook. First off, you will want to create a new Jupyter1.
notebook with the name of, say, Sample.ipynb. You will have to provide an
image that you want to test for celebrity recognition using the AWS Rekognition
API, as shown in the following directory structure screenshot of Jupyter:

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[179]

Import the environment variables for the credentials in your AWS account. You2.
will need to import your account credentials into your script as you previously
did in the boto3 configuration section. To do this, use the following code:

import os
aws_access_key_id= os.environ['aws_access_key_id']
aws_secret_access_key = os.environ['aws_secret_access_key']

Create an AWS Rekognition API client using boto3. We are now ready to3.
instantiate a boto3 Rekognition API client object. To do this, we need to pass the
API that we wish to use to the boto3 object, along with the AWS region name in
which you wish to use the API. You will also have to pass in the credentials that
you retrieved in the previous step, as shown in the following code:

import boto3
client=boto3.client('rekognition', region_name='us-east-1',
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key)

Read the image from the disk and pass it to the API. There are two methods of4.
posting files to AWS APIs from the boto3 SDK. Firstly, you could send them
directly from an S3 bucket that you have permissions for, or you could send the
image as a Bytes array from your local disk. We have already seen how you can
find images from S3 buckets in the previous section.

We shall now show you an example where we take a number of images from the local disk
and pass them in an API call:

First, read the image into a variable using Python's native method to open a file,1.
as shown in the following code:

image = open("image.jpg", "rb")

Now, to pass it to the API through the client we instantiated earlier, use the2.
following line of code:

response =
client.recognize_celebrities(Image={'Bytes':image.read()})

Observe the response. Once the API call has succeeded, your response variable3.
will hold the information returned by the API. To see it, print the variable:

{'CelebrityFaces': [{'Urls': ['www.imdb.com/name/nm1682433'],
 'Name': 'Barack Obama',
 'Id': '3R3sg9u',
 'Face': {'BoundingBox': {'Width': 0.3392857015132904,

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[180]

 'Height': 0.27056020498275757,
 'Left': 0.324404776096344,
 'Top': 0.06436233967542648},
 'Confidence': 99.97088623046875,
 'Landmarks': [{'Type': 'eyeLeft',
 'X': 0.44199424982070923,
 'Y': 0.17130307853221893},
 {'Type': 'eyeRight', 'X': 0.5501364469528198, 'Y':
0.1697501391172409},
 {'Type': 'nose', 'X': 0.4932120144367218, 'Y':
0.2165488302707672},
 {'Type': 'mouthLeft', 'X': 0.43547138571739197, 'Y':
0.25405779480934143},
 {'Type': 'mouthRight', 'X': 0.552975058555603, 'Y':
0.2527817189693451}],
 'Pose': {'Roll': -1.301725149154663,
 'Yaw': -1.5216708183288574,
 'Pitch': 1.9823487997055054},
 'Quality': {'Brightness': 82.28946685791016,
 'Sharpness': 96.63640594482422}},
 'MatchConfidence': 96.0}],
 'UnrecognizedFaces': [],
 'ResponseMetadata': {'RequestId':
'ba909ea2-67f1-11e9-8ac8-39b792b4a620',
 'HTTPStatusCode': 200,
 'HTTPHeaders': {'content-type': 'application/x-amz-json-1.1',
 'date': 'Fri, 26 Apr 2019 07:05:55 GMT',
 'x-amzn-requestid': 'ba909ea2-67f1-11e9-8ac8-39b792b4a620',
 'content-length': '813',
 'connection': 'keep-alive'},
 'RetryAttempts': 0}}

The API recognizes our image as that of Barack Obama. It gives us a lot of other
useful information, such as the BoundingBox where the face was matched, the
Confidence of the prediction, the location of the eyes, mouth, and nose, and so
on. We can use this information to further operate on the image—say, to simply
crop out the matched part.

Get the matched part of the image. To prepare a cropped version of the image in4.
the places where it was recognized, we can use the following code:

from PIL import Image
from IPython.display import display

im=Image.open('image.jpg')
w, h = im.size

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[181]

celeb = response['CelebrityFaces'][0]['Face']['BoundingBox']

x1 = (celeb["Left"])*w
y1 = (celeb["Top"])*h
x2 = (celeb["Left"] + celeb["Width"])*w
y2 = (celeb["Top"] + celeb["Height"])*h

box=(x1,y1,x2,y2)
im1=im.crop(box)

display(im1)

You should see the following image as the final result, which is the bounding box generated
by the API for performing celebrity recognition:

On further exploration of the boto3 API for AWS, you'll realize that it is capable of handling
all AWS services, and is not just limited to the Rekognition API. This means that, based on
the API specification requirements, the preceding sample code can be used for nearly all the
available APIs, with small modifications.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[182]

In the upcoming section, we'll take a look at Alexa, a flagship offering by Amazon for
building voice interfaces that can span in their capabilities from being a chatbot to a virtual
personal assistant. We'll learn how we can build a simple home automation solution using
Alexa.

Using the Alexa API in Python
Amazon Alexa is a voice-based personal assistant developed by Amazon. The product first
featured as an interface for Amazon Echo devices, which went on to inspire the Google
Home devices by Google, which use Google Assistant. Other competitors of Alexa are
Microsoft's Cortana and Apple's Siri. As a virtual assistant, Alexa can easily set up calls,
schedule meetings, or play songs. The various tasks that Alexa can perform are called skills
in the Alexa terminology, which we'll be following in this section.

Skills in Alexa are the main core of how we can bring functionality to the platform. Each
skill needs to be invoked from the primary interface of Alexa, whereupon the skill takes
over the entire functionality unless the program logic completes or the user explicitly asks
for the skill to end. Skills apply the logic for the task to be performed, and so this logic
needs to be stored somewhere, perhaps also along with a database and execution runtime.
While a lot of skills are hosted over several services, such as Heroku, PythonAnywhere,
GCP, and others, it is very common to host skills, logic code as AWS Lambda functions.

In this section, we shall be creating a sample Home Automation Alexa skill using the
Python SDK for Alexa and will host it on AWS Lambda.

Prerequisites and a block diagram of the project
Before you can jump into building an Alexa skill, you will need the following two types of
accounts on AWS and Amazon Developer respectively:

An AWS account (the free tier works)—aws.amazon.com

An Amazon Developer account (this is free)—developer.amazon.com

Once you have created these accounts—the process of which is beyond the scope of this
book—you can proceed to create our skill for home automation. The architecture of the
Home Automation skill we shall be creating is shown in the following block diagram:

https://aws.amazon.com/
https://developer.amazon.com/

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[183]

In building this skill, we shall be using the following services, which you can read more
about by going to the links in the following list:

Amazon Alexa Skills Kit: https:/ /developer. amazon. com/ alexa- skills- kit

Login with Amazon: https:/ /developer. amazon. com/ docs/ login- with-
amazon/minitoc- lwa- overview. html

AWS CloudWatch: https:/ / aws. amazon. com/ cloudwatch/

Amazon DynamoDB: https:/ /aws.amazon. com/ dynamodb/

AWS Lambda: https:/ /aws. amazon. com/ lambda/

Creating a configuration for the skill
Skills require a certain amount of connection between the services in order to work. In
addition, the skill logic deployed on AWS Lambda needs to be configured to be used by the
skill on Alexa. Create a setup.txt file in the root of your working folder with the
following content. We shall be gradually adding to this content as we progress through the
steps in this section:

[LWA Client ID]
amzn1.application-oa2-client.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

[LWA Client Secret]
XX
[Alexa Skill ID]
amzn1.ask.skill.XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/alexa-skills-kit
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://developer.amazon.com/docs/login-with-amazon/minitoc-lwa-overview.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[184]

[AWS Lambda ARN]
arn:aws:lambda:us-east-1:XXXXXXXXXXXX:function:skill-sample-language-
smarthome-switch

[APIs]
https://pitangui.amazon.com/api/skill/link/XXXXXXXXXXXXXX
https://layla.amazon.com/api/skill/link/XXXXXXXXXXXXXX
https://alexa.amazon.co.jp/api/skill/link/XXXXXXXXXXXXXX

Throughout the following sections, we will be referring to this file as setup.txt. This
essentially only holds information about your skill. Feel free to implement this in any other
text editor as well, such as Google Docs.

Setting up Login with Amazon
For the Home Automation skill, you will need the Login with Amazon service enabled. To
do this, go through the following steps:

Go to https:/ /developer. amazon. com/ lwa/ sp/ overview. html. You will see the1.
page shown in the following screenshot:

https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html
https://developer.amazon.com/lwa/sp/overview.html

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[185]

Click the Create a New Security Profile button on the page that then loads.2.
Set Security Profile Name as Smart Home Automation Profile.3.
Provide a description of the profile.4.
For Content Privacy Notice URL, you will need a valid privacy policy web page5.
to push the skill to production. Create and host a privacy policy and provide the
link to it in this field. A very handy tool for creating privacy policies can be
found at https:/ /app- privacy- policy- generator. firebaseapp. com/ .
Click on Save.6.
Click on the Security Profile option in the gear menu that appears on the next7.
page. You will be taken to the Security Profile Management page, as shown in
the following image:

From the list of security profiles, click the Web Settings tab to the Show Client8.
ID and Client Secret link for the Home Automation Profile.
Copy the displayed Client ID and Client Secret values and save them to the9.
setup.txt file in the working directory, replacing the format example entries
for [LWA Client ID] and [LWA Client Secret] respectively.

Keep this tab open for future steps. Go through the steps in the next section in a new
browser tab.

https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/
https://app-privacy-policy-generator.firebaseapp.com/

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[186]

Creating the skill
We can now proceed with creating the skill:

Log on to https:/ /developer. amazon. com/ alexa/ console/ ask to begin the1.
process. You will be able to see a screen resembling the following:

Click on Create Skill.2.
Set the name to Home Automation Skill, or a name of your choosing.3.
Under the Choose a model to add to your skill section, click on the Smart Home4.
model. Your selections should now resemble the following:

https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask
https://developer.amazon.com/alexa/console/ask

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[187]

Click on Create Skill to complete the initial phase of the skill creation.5.
On the next page that appears, you'll be able to see the Skill ID. Copy this Skill ID6.
to the setup.txt file in the local working directory.

Do not close this tab, as you still have fields to fill in here. Open up a new browser tab to
work in in the next section.

Configuring the AWS Lambda function
Before we can add the ARN for the Lambda function to the skill endpoints configuration,
we must create a configuration for the Lambda function. You can do this by going through
the following steps:

Go to https:/ /console. aws. amazon. com/ iam/home#/ policies. You will be1.
presented with a screen like the one shown in the following screenshot:

Click on Create policy.2.
Enter the following JSON in the JSON tab of the Create policy editor:3.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies
https://console.aws.amazon.com/iam/home#/policies

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[188]

 "logs:CreateLogStream",
 "dynamodb:UpdateItem",
 "logs:CreateLogGroup",
 "logs:PutLogEvents"
],
 "Resource": "*"
 }
]
 }

Click on Review policy and set the name of the policy to4.
HomeAutomationPolicy.
Click on Create policy.5.
Next, on the left-hand navigation menu of the page, click on Roles.6.
Click on Create role.7.
Select AWS service and Lambda, and click on Next: Permissions.8.
Search for HomeAutomationPolicy in the filtering field. Check the policy. Your9.
screen should resemble the following:

Click on Next: Tags.10.
Click on Next: Review.11.
Set the Role name to lambda_home_automation.12.
Click on Create role.13.

Let's now create the Lambda function.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[189]

Creating the Lambda function
With the suitable configuration for the Lambda function in place, we can now create the
Lambda function itself. To do so, in the AWS console, navigate to https:/ /console. aws.
amazon.com/lambda/ home and go through the following steps:

Click on Create function.1.
Set the function name to homeAutomation.2.
Select the Python 3.6 runtime.3.
Choose the lambda_home_automation role from the dropdown in the existing4.
roles in the execution roles.
Click on Create function.5.
Copy the Lambda ARN from the next page that appears, which has a message of6.
congratulations for creating the Lambda function. Put this ARN in the
setup.txt of our local working directory in the [AWS Lambda ARN] field.
At this point, the screen should resemble the following screenshot:

Note that the triggers and destinations displayed on your screen might differ
from the preceding screenshot.

https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[190]

On the left-hand navigation, click on Add trigger to bring up the drop-down list7.
of available triggers for your Lambda function, as shown in the following
screenshot:

Click on Alexa Skills Kit to bring up the configuration dialogue for this trigger.8.
Paste the Alexa Skill ID in the field for Skill ID. We have stored this value in the9.
setup.txt previously, and it will look like amzn1.ask.skill.xxxxxxxx-
xxxx-xxxx-xxxx-xxxxxxxxxxxx.
Click on Add to add the trigger and return to the Lambda function management10.
screen.
Click on Save at the top right of the page.11.

After the final step, the trigger section will display details of the connected Alexa skill. If it
does not, you should check that you have correctly followed the preceding steps.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[191]

Configuring the Alexa skill
Now, we need to configure the skill that we left open in another tab of the browser. We will
do this by going through the following steps:

Return to that tab and fill in the ARN of the Lambda function in the Default1.
endpoint field.
Click on SAVE.2.
Click on Setup Account Linking at the bottom of the page.3.
For the Authorization URL, enter https://www.amazon.com/ap/oa.4.
For the Access Token URL, enter https://api.amazon.com/auth/o2/token.5.
For the Client ID field, copy [LWA Client ID] from the setup.txt file.6.
For the Client Secret field, copy [LWA Client Secret] from the setup.txt7.
file.
Click on Add scope and enter profile:user_id.8.
Copy the Redirect URLs from the bottom of the page and paste them in the9.
setup.txt file under the [APIs] section. The URLs resemble the following:

Click on Save.10.
In the Security Profile Management browser tab, click on the Web Settings tab.11.
Click on Edit, and add the three redirect URLs to the Allowed Return URLs12.
field. You will have to click on Add another to enter multiple URLs.
Click on Save.13.

Let's now set up Amazon DynamoDB for the skill.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[192]

Setting up Amazon DynamoDB for the skill
For the skill to be able to save data from users, it needs a database. We will be using the
Amazon DynamoDB service for this. The steps to set up the service are as follows:

Go to https:/ /console. aws. amazon. com/ dynamodb/ home? region= us-east- 1.1.
Click on the Create table button.2.
Enter the Table name as SmartHome.3.
For the Primary key, enter ItemId.4.
Leave all defaults as they are and click on Create. Your screen should resemble5.
the following screenshot in this step:

You can then go to the DynamoDB dashboard to see the table you just created; however,
this can take a few moments.

Deploying the code for the AWS Lambda function
We're left with the final piece of the setup—the code that provides the logic to the AWS
Lambda function. Go to your Lambda function configuration page and scroll down to the
editor.

https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1
https://console.aws.amazon.com/dynamodb/home?region=us-east-1

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[193]

You will notice that the editor has a two-column interface: the left column displays the files
in the Lambda function storage and in the right column, you can edit those files, as shown
in the following screenshot:

Click on lambda_function.py to begin editing the file and go through the following
steps:

Import the necessary modules. For the function to work, we will need the1.
support of some common libraries, as shown in the following code:

import boto3
import json
import random
import uuid
import time

The boto3 API is used to connect to the Amazon DynamoDB instance we set up.
The JSON module facilitates the generation of responses for the Alexa skill. The
rest of the modules help to generate responses.

Create the AlexaResponse class. In order to be able to fully replicate the Alexa2.
skill's expected format of responses, we can quickly set up a helper class that can
generate the responses for the Lambda function calls. Let's name it
AlexaReponse; the initialization of the class is shown in the following code
snippet:

class AlexaResponse:

 def __init__(self, **kwargs):

 self.context_properties = []
 self.payload_endpoints = []

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[194]

 # Set up the response structure
 self.context = {}
 self.event = {
 'header': {
 'namespace': kwargs.get('namespace', 'Alexa'),
 'name': kwargs.get('name', 'Response'),
 'messageId': str(uuid.uuid4()),
 'payloadVersion': kwargs.get('payload_version',
'3')
 },
 'endpoint': {
 "scope": {
 "type": "BearerToken",
 "token": kwargs.get('token', 'INVALID')
 },
 "endpointId": kwargs.get('endpoint_id', 'INVALID')
 },
 'payload': kwargs.get('payload', {})
 }

 if 'correlation_token' in kwargs:
 self.event['header']['correlation_token'] =
kwargs.get('correlation_token', 'INVALID')

 if 'cookie' in kwargs:
 self.event['endpoint']['cookie'] = kwargs.get('cookie',
'{}')

 if self.event['header']['name'] == 'AcceptGrant.Response'
or self.event['header']['name'] == 'Discover.Response':
 self.event.pop('endpoint')

The preceding initialization method for the AlexaResponse class sets the
expected output format and the various constant settings, such as the version
number for the payload, and some basic validation for the output object. Next, we
create the method for adding content properties and another method for setting
cookies in the responses. Finally, another method is added to set up the payload
endpoints:

def add_context_property(self, **kwargs):
self.context_properties.append(self.create_context_property(**kwarg
s))

def add_cookie(self, key, value):

 if "cookies" in self is None:
 self.cookies = {}

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[195]

 self.cookies[key] = value

def add_payload_endpoint(self, **kwargs):
self.payload_endpoints.append(self.create_payload_endpoint(**kwargs
))

Now to define the three handler methods that we created in the previous step.3.
The methods declared in the previous step depend upon inner methods of their
own. These are mostly helper functions, which have little to do with the major
focus of this chapter, and so we will leave these up to your implementation of the
function, which you can create by studying the response body documentation of
AWS Lambda functions and Alexa skills. A sample implementation can be found
in our code repository for this chapter, between lines 65 and 102 of the
lambda_function.py file at http:/ /tiny. cc/HOPDLW_ CH7_ lfpy.
Next, we will set up methods to generate the final response from the4.
AlexaResponse class. Finally, we create methods that assimilate all the different
parts—the context, event, payload, endpoints, and cookies—into a single object
that is ready for interaction with the Alexa skill:

 def get(self, remove_empty=True):

 response = {
 'context': self.context,
 'event': self.event
 }

 if len(self.context_properties) > 0:
 response['context']['properties'] = self.context_properties

 if len(self.payload_endpoints) > 0:
 response['event']['payload']['endpoints'] =
self.payload_endpoints

 if remove_empty:
 if len(response['context']) < 1:
 response.pop('context')

 return response

 def set_payload(self, payload):
 self.event['payload'] = payload

 def set_payload_endpoint(self, payload_endpoints):
 self.payload_endpoints = payload_endpoints

 def set_payload_endpoints(self, payload_endpoints):

http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy
http://tiny.cc/HOPDLW_CH7_lfpy

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[196]

 if 'endpoints' not in self.event['payload']:
 self.event['payload']['endpoints'] = []

 self.event['payload']['endpoints'] = payload_endpoints

The AlexaResponse class is now complete. We will now move on to connect5.
with the DynamoDB service using the following line:

aws_dynamodb = boto3.client('dynamodb')

Next, we define the primary method and entry point for the file—the6.
lambda_handler method:

def lambda_handler(request, context):

 # JSON dump for the request
 print('Request: ')
 print(json.dumps(request))

 if context is not None:
 print('Context: ')
 print(context)

We will continue adding to the preceding method for the rest of this step. In the
preceding lines, we declare the lambda_handler method, which accepts the
request and context objects from the Alexa skill. It then makes a JSON dump
of the request so that we can later observe it from the Amazon CloudWatch
dashboard. Next, it makes of a dump of the context if any was attached to the
request:

 # Validate we have an Alexa directive
 if 'directive' not in request:
 aer = AlexaResponse(
 name='ErrorResponse',
 payload={'type': 'INVALID_DIRECTIVE',
 'message': 'Missing key: directive, Is the request a
valid Alexa Directive?'})
 return send_response(aer.get())

We then validate whether we have a valid Alexa directive in the request, and if
none is found, an error message is generated and sent back as the response. Note
the usage of the AlexaResponse class object here. We will be using it in the
future to generate responses from this script:

 # Check the payload version
 payload_version = request['directive']['header']['payloadVersion']
 if payload_version != '3':

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[197]

 aer = AlexaResponse(
 name='ErrorResponse',
 payload={'type': 'INTERNAL_ERROR',
 'message': 'This skill only supports Smart Home API
version 3'})
 return send_response(aer.get())

Similarly, another check is made to ensure that the payload version being requested is 3.
This is because we have only developed it for the Smart Home API version 3 of Alexa:

First, we open the request and see what is being requested:1.

 name = request['directive']['header']['name']
 namespace = request['directive']['header']['namespace']

Then, we handle the incoming request from Alexa based on the namespace.2.
Note that this sample accepts any grant request, but in your implementation,
you will use the code and token to get and store access tokens:

 if namespace == 'Alexa.Authorization':
 if name == 'AcceptGrant':
 grant_code = request['directive']['payload']['grant']['code']
 grantee_token =
request['directive']['payload']['grantee']['token']
 aar = AlexaResponse(namespace='Alexa.Authorization',
name='AcceptGrant.Response')
 return send_response(aar.get())

The preceding condition acts on the Alexa authorization request.

For the discovery and the action to turn off the switch, we use the following code:3.

 if namespace == 'Alexa.Discovery':
 if name == 'Discover':
 adr = AlexaResponse(namespace='Alexa.Discovery',
name='Discover.Response')
 capability_alexa = adr.create_payload_endpoint_capability()
 capability_alexa_powercontroller =
adr.create_payload_endpoint_capability(
 interface='Alexa.PowerController',
 supported=[{'name': 'powerState'}])
 adr.add_payload_endpoint(
 friendly_name='Sample Switch',
 endpoint_id='sample-switch-01',
 capabilities=[capability_alexa,
capability_alexa_powercontroller])
 return send_response(adr.get())
 if namespace == 'Alexa.PowerController':

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[198]

 endpoint_id = request['directive']['endpoint']['endpointId']
 power_state_value = 'OFF' if name == 'TurnOff' else 'ON'
 correlation_token =
request['directive']['header']['correlationToken']

This sample always returns a success response for either a request to TurnOff
or TurnOn.

Now, we check for an error when setting the state:4.

 state_set = set_device_state(endpoint_id=endpoint_id,
state='powerState', value=power_state_value)
 if not state_set:
 return AlexaResponse(
 name='ErrorResponse',
 payload={'type': 'ENDPOINT_UNREACHABLE', 'message':
'Unable to reach endpoint database.'}).get()

 apcr = AlexaResponse(correlation_token=correlation_token)
apcr.add_context_property(namespace='Alexa.PowerController',
name='powerState', value=power_state_value)
 return send_response(apcr.get())

Finally, we extract the directive name and the namespace of the directive to5.
determine the type of response to be sent back. Depending upon the directives
being sent, a different response is generated and finally sent using the
AlexaResponse class object.
Note the usage of the send_response method in the code in the previous step.6.
We need to define that method. Its task is to send the AlexaResponse object in
JSON format and to log it for observation in Amazon CloudWatch:

def send_response(response):
 print('Response: ')
 print(json.dumps(response))
 return response

Update the device state method. Since we're building automation for a simple7.
switch device using Alexa, we'll need to maintain the state information of the
switch. We do this by storing its state in DynamoDB. We will add an update
method for this, as shown in the following code:

def set_device_state(endpoint_id, state, value):
 attribute_key = state + 'Value'
 response = aws_dynamodb.update_item(
 TableName='SmartHome',
 Key={'ItemId': {'S': endpoint_id}},

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[199]

 AttributeUpdates={attribute_key: {'Action': 'PUT', 'Value':
{'S': value}}})
 print(response)
 if response['ResponseMetadata']['HTTPStatusCode'] == 200:
 return True
 else:
 return False

Next, we will test the Lambda function.

Testing the Lambda function
We can now check whether our function responds properly. To do this, we must create a
test in the Lambda function's dashboard by going through these steps:

On the Lambda function page for the function that we created in the previous1.
sections, at the top right, click on Test.
A dialog box will appear with the options to write a new test or use an existing2.
one. Choose the option to Create new test event.
In the Event template, make that sure Hello World is selected.3.
Next, provide the Event name of directiveDiscovery.4.
Enter the following JSON into the editor:5.

{
 "directive": {
 "header": {
 "namespace": "Alexa.Discovery",
 "name": "Discover",
 "payloadVersion": "3",
 "messageId": "1bd5d003-31b9-476f-ad03-71d471922820"
 },
 "payload": {
 "scope": {
 "type": "BearerToken",
 "token": "access-token-from-skill"
 }
 }
 }
}

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[200]

At this point, your screen should resemble the following:

Scroll down and click on Create.6.
Once you return to the Lambda function dashboard, at the top right, select the7.
directoryDiscover test from the dropdown.
Click on Test.8.

On completion, the test will display the response status and the response of the Lambda
function. You can see the results on the page at the top of the Lambda function dashboard,
which will resemble the following screenshot:

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[201]

If the test fails, make sure you have followed the preceding steps carefully, making sure
that the regions in which the different services exist are the same.

Testing the AWS Home Automation skill
As the last phase of this project, we will be testing our skill in the Alexa Test simulator. To
do this, go through the following steps:

Go to https:/ /alexa. amazon. com and log in.1.
Click on Skills in the left-hand menu.2.
Click on Your Skills at the top right of the page.3.

https://alexa.amazon.com/
https://alexa.amazon.com/
https://alexa.amazon.com/
https://alexa.amazon.com/
https://alexa.amazon.com/
https://alexa.amazon.com/
https://alexa.amazon.com/
https://alexa.amazon.com/
https://alexa.amazon.com/

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[202]

Select the DEV SKILL tab.4.
Click on HomeAutomationSkill. You should see the following screen:5.

Click on the Enable button. You will be asked to allow access permissions to6.
your Developer account.
Come back to the Alexa Developer console and click on Discover devices. A new7.
device called Sample Switch will be shown as available, as shown in the
following screenshot:

Now, go to the Test tab on the Alexa Skills Kit development page for the8.
HomeAutomation skill.

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[203]

In the simulator, type alexa, turn on the sample switch. If the request is9.
accepted, then you will receive an OK from Alexa, as shown in the following
screenshot:

To check whether the skill is actually working, you can go to your DynamoDB table
SmartHome and switch to the Items tab of the table. You should be able to see the
following record:

DL on AWS Using Python: Object Detection and Home Automation Chapter 7

[204]

Congratulations on successfully building a simple Home Automation skill in Alexa! You
can play around with this skill and build your own home automation skills for Alexa. Once
you are ready to publish them for a wider audience, you can follow the advice in the
documentation available at https:/ / developer. amazon. com/ docs/ alexa- for- business/
create-and-publish- private- skills. html.

Summary
In this chapter, we covered how we can use AWS using its Python API—boto3. We
explored the various options and configurational requirements for using the API and
looked at an example of how to use it with the Rekognition API for recognizing celebrities.
We then dove deep into how to create an Alexa skill for home automation, setting up the
simple task of turning a switch on/off. This can be very easily extrapolated to other smart
home devices. We looked at how Alexa skill logic can be hosted over AWS Lambda and
observed from AWS CloudWatch. We also explored the storage of dynamic device data in
Amazon DynamoDB.

In the upcoming chapter, we will see how we can use deep learning on Microsoft's Azure
platform using Python.

https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html
https://developer.amazon.com/docs/alexa-for-business/create-and-publish-private-skills.html

8
Deep Learning on Microsoft

Azure Using Python
We are going to end our cloud API exploration journey with this chapter. So far, we have
gently introduced ourselves to the wonderful world of APIs, specifically the APIs that let us
carry out deep learning with ease. We have seen how to consume REST APIs and use them
programmatically. Like Google Cloud Platform (GCP) and Amazon Web Services (AWS),
Microsoft also offers its own cloud service platform, which is called Azure. As in previous
chapters, we will only be focusing on the deep learning-based solutions that Azure has to
offer. We will be shifting gears a bit and will also take a look at Microsoft's Cognitive
Toolkit (CNTK), which is a deep learning framework like Keras.

In this chapter, we will cover the following topics:

Setting up your account in Azure
A quick walk-through of the deep learning solutions offered by Azure
Using the Face API in Python
Using the Text Analytics API in Python
An introduction to CNTK

Deep Learning on Microsoft Azure Using Python Chapter 8

[206]

Technical requirements
You can access the code for this chapter from https:/ /github. com/ PacktPublishing/
Hands-On-Python- Deep- Learning- for- Web/ tree/ master/ Chapter8.

To run the code used in this chapter, you'll need the following software:

Python 3.6+
The Python PIL library
The Matplotlib library

All other installations, such as CNTK and Django, will be described during the course of
this chapter.

Setting up your account in Azure
From your previous cloud platform usage experience, you may have realized that it all
starts with setting up your account and billing in a cloud provider. This is a pretty standard
workflow and Azure is no exception. So, let's head over to https:/ /azure. microsoft. com
and follow these steps:

Click on the Start free button, as shown:1.

Note that you will need a Microsoft account to proceed with the following
steps. So, if you do not have one, create one at https:/ /account.
microsoft. com/ account.

You will be redirected to another page, where you will again see another Start2.
free button. Click on it.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter8
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account
https://account.microsoft.com/account

Deep Learning on Microsoft Azure Using Python Chapter 8

[207]

You will be asked to log in to your Microsoft account to proceed. Give the3.
credentials accordingly and you should land on a page as in the following
screenshot:

If you are a first-time user, you will get $200 of credit (depending on your
currency) for free for 30 days to explore different services offered by Azure.

Fill in your details, which will also include verification of your identity by card.4.

You might be charged a very nominal fee for this. Be sure to review the terms and
conditions of the Azure free tier, which you will find at https:/ / azure.
microsoft. com/ en- in/ offers/ ms-azr- 0003p/ .

https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/
https://azure.microsoft.com/en-in/offers/ms-azr-0003p/

Deep Learning on Microsoft Azure Using Python Chapter 8

[208]

Once this process is complete, you are all set up and ready to move to your Azure portal
(https://portal.azure. com), which acts in the same way as the GCP and AWS consoles
that you have seen in previous chapters.

The Azure portal looks like this:

Now that you have set up your Azure account, let's explore the deep learning-based
offerings of Azure in the next section.

A walk-through of the deep learning
services provided by Azure
Azure's deep learning- (and general machine learning-) based offerings are broadly divided
into three parts:

The Azure Machine Learning service (https:/ /azure. microsoft. com/ en- in/
services/ machine- learning- service/), which provides an end-to-end machine
learning life cycle, including model building, training, and deployment:

https://portal.azure.com/#home
https://portal.azure.com/#home
https://portal.azure.com/#home
https://portal.azure.com/#home
https://portal.azure.com/#home
https://portal.azure.com/#home
https://portal.azure.com/#home
https://portal.azure.com/#home
https://portal.azure.com/#home
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/
https://azure.microsoft.com/en-in/services/machine-learning-service/

Deep Learning on Microsoft Azure Using Python Chapter 8

[209]

Machine Learning APIs (https:/ / gallery. azure. ai/ machineLearningAPIs),
which provide APIs for a wide range of learning tasks, such as content
moderation, translation, anomaly detection, and so on:

Azure AI (https:/ /azure. microsoft. com/ en-in/ overview/ ai-platform/),
which focuses on topics such as knowledge mining, decision mining, and many
other similar machine learning capabilities in the domains of computer vision
and language modeling:

We will now study two APIs for a computer vision task and a natural language
understanding task, respectively. We will also look at how to use these APIs from Python.
Let's dive in.

https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://gallery.azure.ai/machineLearningAPIs
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/
https://azure.microsoft.com/en-in/overview/ai-platform/

Deep Learning on Microsoft Azure Using Python Chapter 8

[210]

Object detection using the Face API and
Python
Object detection is a classic use case of computer vision and is widely applied to a number
of real-world problems, such as video surveillance systems. In this section, we will be using
the Face API to detect faces from a given image. This has direct use when designing video
surveillance systems. You can learn more about the Face API from its official page at
https://azure.microsoft. com/ en- us/ services/ cognitive- services/ face/ .

The initial setup
Azure lets you try this API for free for a duration of 7 days, as well. But since you already
have an Azure account (with free credit, I am assuming), we can do it another way, as
shown:

Sign in to your Azure account.1.
Go to https:/ /azure. microsoft. com/ en- us/services/ cognitive- services/2.
face/.
Click on Already using Azure? Try this service for free now.3.

You should now have a window as in the following screenshot:

https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/

Deep Learning on Microsoft Azure Using Python Chapter 8

[211]

Fill in the details accordingly and hit Create once you are done. You will get a4.
popup that reads Submitting deployment.

Once the deployment is completed, you should land on a page as in the following
screenshot:

Click on Go to resource and you should be redirected to the resources page,5.
which contains a bunch of details on it:

Deep Learning on Microsoft Azure Using Python Chapter 8

[212]

Just scroll down a bit and you will be able to see the endpoint of the Face API.
Note that it will vary depending on the configuration details you entered while
creating the deployment. The endpoint looks like https:/ /eastus. api.
cognitive. microsoft. com/ face/ v1. 0. Note this down.

Now, to be able to use the Face API programmatically, you need to create the
respective API keys. On that same page, there is a section at the top that says
Grab your keys:

Under that section, click Keys and you will see something as in the following6.
screenshot:

Now that you have the API keys for the Face API, you are ready to use it.

https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0
https://eastus.api.cognitive.microsoft.com/face/v1.0

Deep Learning on Microsoft Azure Using Python Chapter 8

[213]

Consuming the Face API from Python code
When your program includes security credentials such as API keys, it is often a good
practice to define those keys as environmental variables and then call them in your
program. So, go ahead and create an environment variable to store one of the API keys of
the Face API.

To add an environment variable to your computer, you can follow this
article at https:/ / www. twilio. com/blog/ 2017/ 01/ how- to-set-
environment- variables. html.

In my case, I have named the environment variable face_api_key. You can put any image
that contains faces in it. For this example, I will be using this image:

Create a new Jupyter notebook and follow these steps:

Let's now load up the environment variable using Python, as shown:1.

import os
face_api_key = os.environ['face_api_key']

Now, assign your Face API endpoint (for object detection) to a variable.2.
Also, upload the image you want to test to an online file server, such as Imgur,3.
and retrieve the URL that allows fetching the raw image from Imgur.

https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html
https://www.twilio.com/blog/2017/01/how-to-set-environment-variables.html

Deep Learning on Microsoft Azure Using Python Chapter 8

[214]

In my case, I have uploaded the image to a GitHub repository and used the
respective URL:

face_api_url =
'https://eastus.api.cognitive.microsoft.com/face/v1.0/detect'

image_url=
'https://raw.githubusercontent.com/PacktPublishing/Hands-On-Python-
Deep-Learning-for-Web/master/Chapter8/sample_image.jpg'

Note that in the preceding API, only the endpoint name at the end of the URL
changes. In most cases, the part before the endpoint name will remain constant
throughout your use of Cognitive Services, unless a change is required by the
Azure platform itself.

Now, import the requests module and set up the API payload as shown:4.

import requests
params = {
'returnFaceId': 'true',
'returnFaceLandmarks': 'false',
'returnFaceAttributes': 'age,gender',
}

Now, we are in a position to make a request to the Face API.5.

The following lines of code do this for you:

Define the header param
headers = { 'Ocp-Apim-Subscription-Key': face_api_key }
Define the body params
params = {
'returnFaceId': 'true',
'returnFaceLandmarks': 'false',
'returnFaceAttributes': 'age,gender',
}

We can now display the response received from the API:6.

Make the call to the API
response = requests.post(face_api_url, params=params,
headers=headers, json={"url": image_url})
Get the response and log
faces = response.json()
print('There are {} faces im the given
image'.format(str(len(faces))))

Deep Learning on Microsoft Azure Using Python Chapter 8

[215]

In this case, the code returned is as follows:

There are 2 faces in the given image

Pay attention to the returnFaceAttributes body parameter, which lets you specify
several attributes of faces and the Face API will analyze the given faces with respect to
those attributes. To find out more about these attributes, check out the documentation at
http://bit.ly/2J3j6nM.

Let's embed the response we got from the API in the image in a presentable manner. We
will show the probable gender and probable age of the detected faces in the image. We will
do this using the matplotlib, PIL, and io libraries and we'll be using a Jupyter notebook
to work on the following segments of code in this section. We will start by importing the
libraries:

%matplotlib inline #Only for Jupyter Notebook
import matplotlib.pyplot as plt
from PIL import Image
from matplotlib import patches
from io import BytesIO

To display overlays on the image with the response received from the API, we use the
following method:

Store the API response:1.

response = requests.get(image_url)

Create an image from the response content:2.

image = Image.open(BytesIO(response.content))

Create an empty figure:3.

plt.figure(figsize=(8,8))

Show the image created with the response:4.

ax = plt.imshow(image, alpha=0.6)

Iterate over the faces specified in the earlier section and extract the necessary5.
information:

for face in faces:
 # Extract the information
 fr = face["faceRectangle"]

http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM
http://bit.ly/2J3j6nM

Deep Learning on Microsoft Azure Using Python Chapter 8

[216]

 fa = face["faceAttributes"]
 origin = (fr["left"], fr["top"])
 p = patches.Rectangle(origin, fr["width"], fr["height"],
fill=False,
 linewidth=2, color='b')
 ax.axes.add_patch(p)
 plt.text(origin[0], origin[1], "%s,
%d"%(fa["gender"].capitalize(), fa["age"]),
 fontsize=20, weight="bold", va="bottom")
Turn off the axis
_ = plt.axis("off")
plt.show()

You should have an image like this:

You are encouraged to play around with the different parameters that the API provides.
We will now study a Natural Language Understanding (NLU) API.

Deep Learning on Microsoft Azure Using Python Chapter 8

[217]

Extracting text information using the Text
Analytics API and Python
Whether knowingly or unknowingly, we must all have encountered some of the
astonishing use cases of natural language processing. Be it autocorrect, the next word
suggestion, or language translation, these use cases are too important to neglect. In this
section, we are going to use the Text Analytics API (https:/ / azure. microsoft. com/ en-us/
services/cognitive- services/ text- analytics/) to extract meaningful information from
a given piece of text.

You can try the API for free using the previously mentioned link and see its power. In the
following example, I entered the phrase I want to attend NeurIPS someday and
present a paper there and the Text Analytics API extracted four meaningful pieces of
information from it:

Observe how gracefully the API was able to extract all the key pieces of information from
the phrase.

We will now see how to do this programmatically using Python. The setup steps are going
to be exactly the same as the preceding ones. Just go to https:/ / portal. azure. com/
#create/Microsoft. CognitiveServicesTextAnalytics and follow the steps there. Once
you have the respective API keys to consume the Text Analytics API, move on to the
following subsection. Do not forget to note down the respective endpoint, as well. The
endpoint should start with https:/ /eastus. api. cognitive. microsoft. com/text/
analytics/v2.0. This URL will not work alone; it needs to have a suffix pointing to the
right method to be invoked.

https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://portal.azure.com/#create/Microsoft.CognitiveServicesTextAnalytics
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0
https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0

Deep Learning on Microsoft Azure Using Python Chapter 8

[218]

Using the Text Analytics API from Python code
This section will show you how to use the Text Analytics API in your own Python code.
The following are the steps for using it:

We will begin this section by importing the libraries we need:1.

import requests
import os
from pprint import pprint

We will then load the API key for the Text Analytics API from the environment2.
variable:

api_key = os.environ['text_api_key']

Let's now specify a few URLs to store the API endpoints:3.

text_analytics_base_url = \
'https://eastus.api.cognitive.microsoft.com/text/analytics/v2.0'
language_api_url = text_analytics_base_url + "/languages"
sentiment_api_url = text_analytics_base_url + "/sentiment"
key_phrase_api_url = text_analytics_base_url + "/keyPhrases"

Let's now define the headers parameter by supplying the API key:4.

headers = {"Ocp-Apim-Subscription-Key": api_key}

Let's also define the body parameter. In my case, I will keep the same phrase I5.
showed earlier in the GUI-based demo:

documents = { 'documents': [
{ 'id': '1', 'text': 'I want to attend NeurIPS someday and present
a paper there.' }
]}

We can now make calls to the respective APIs of Text Analytics. Let's start by6.
detecting the language:

response = requests.post(language_api_url, headers=headers,
json=documents)
language = response.json()
pprint(language)

We get the response accordingly, as shown:

Deep Learning on Microsoft Azure Using Python Chapter 8

[219]

Note that I have highlighted the language. Now, let's move on to the sentiment analysis
part:

response = requests.post(sentiment_api_url, headers=headers,
json=documents)
sentiment = response.json()
pprint(sentiment)

The sentiment displayed is as shown:

Note that the phrase used here contains neither a positive sentiment nor a negative
sentiment, hence the score. We will now extract the key phrases from the given text:

response = requests.post(key_phrase_api_url, headers=headers,
json=documents)
phrases = response.json()
print(phrases)

The key phrases are as shown:

Notice how the endpoints have changed with respect to the tasks. You can explore more
about the different parameters of the endpoints we used in the preceding example at
http://bit.ly/2JjLRfi.

An introduction to CNTK
CNTK is an offering by Microsoft. The framework is a part of the ONNX format initiative,
which allows easy conversion of models between different neural toolkit frameworks. The
framework is responsible for a huge portion of the deep learning production workload on
Microsoft software and platforms. Launched in 2016, the framework has been a contender
to popular frameworks such as TensorFlow, PyTorch, and so on. The framework is
completely open source and can be found at https:/ /github. com/microsoft/ CNTK.

http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://bit.ly/2JjLRfi
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK
http://github.com/microsoft/CNTK

Deep Learning on Microsoft Azure Using Python Chapter 8

[220]

CNTK powers enterprise services, such as Cortana and Bing, and advertisements, such as
Skype Translate, Microsoft Cognitive Services, and several others. It has been proven to
work faster than competitors such as TensorFlow and PyTorch on several applications.

In this section, we will study some fundamentals of CNTK and then proceed to create a
Django application to carry over the CNTK-based model to the web.

Getting started with CNTK
CNTK is one of the easiest frameworks to get started with, thanks to its simple syntax and
ability to work without the concept of sessions, as is the case in TensorFlow, which is
confusing to most learners. Let's see how we can set up CNTK on our local machines or on
Google Colaboratory.

Installation on a local machine
The CNTK framework supports both 64-bit and 32-bit architecture machines. However, it
only supports Python versions up to version 3.6, at the time of writing this book. You can
verify the latest supported versions at https:/ /pypi. org/ project/ cntk/ . Furthermore,
CNTK is not available as a built binary on macOS, currently.

To install the framework, you can either use the pip package manager or install it using
compiled binaries on Anaconda. Assuming a Python environment is set up, you can use the
following commands to install CNTK on both Windows and Linux:

Without Anaconda, use the following for the CPU version:

For CPU version
pip install cntk

Use the following for the GPU-enabled version:

For the GPU enabled version
pip install cntk-gpu

On Anaconda-enabled machines, the CNTK framework can be installed using
pip with the following command:

pip install <url>

<url> can be obtained from the CNTK website at http:/ /tiny. cc/ cntk.

https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
https://pypi.org/project/cntk/
http://tiny.cc/cntk
http://tiny.cc/cntk
http://tiny.cc/cntk
http://tiny.cc/cntk
http://tiny.cc/cntk
http://tiny.cc/cntk
http://tiny.cc/cntk
http://tiny.cc/cntk
http://tiny.cc/cntk

Deep Learning on Microsoft Azure Using Python Chapter 8

[221]

The command will resemble the following:

pip install
https://cntk.ai/PythonWheel/CPU-Only/cntk-2.6-cp35-cp35m-win_amd64.whl

We can now begin with its installation on Google Colaboratory.

Installation on Google Colaboratory
The CNTK framework is not available on the Google Colaboratory platform by default and
so must be installed along with other requisite modules. To install CNTK on a Google
Colaboratory runtime, use the following command at the top of the script:

!apt-get install --no-install-recommends openmpi-bin libopenmpi-dev
libopencv-dev python3-opencv python-opencv && ln -sf /usr/lib/x86_64-linux-
gnu/libmpi_cxx.so /usr/lib/x86_64-linux-gnu/libmpi_cxx.so.1 && ln -sf
/usr/lib/x86_64-linux-gnu/openmpi/lib/libmpi.so /usr/lib/x86_64-linux-
gnu/openmpi/lib/libmpi.so.12 && ln -sf /usr/lib/x86_64-linux-gnu/libmpi.so
/usr/lib/x86_64-linux-gnu/libmpi.so.12 && pip install cntk

Note that the preceding command is a single-line command. If you break
it up into multiple lines, you should make sure you add the required
changes to the command.

Once the preceding step runs successfully, you will not need to use this command again in
that runtime. So, the command can be commented out in future runs of the program.

It is conventional to import CNTK to Python projects by the C alias. We use the following
code to import the library to the project:

import cntk as C

We can check the version of CNTK installed using the following line:

print(C.__version__)

With CNTK imported to the project, we're ready to proceed with the precursory
requirements of creating a deep learning model.

Deep Learning on Microsoft Azure Using Python Chapter 8

[222]

Creating a CNTK neural network model
In this section, we'll complete the steps required before creating a predictive neural
network and then we will create the neural network itself:

We begin by importing the necessary modules to the project:1.

import matplotlib.pyplot as plt
%matplotlib inline

import numpy as np
from sklearn.datasets import fetch_openml
import random

import cntk.tests.test_utils
from sklearn.preprocessing import OneHotEncoder

import cntk as C # if you have not done this before in the project

The fetch_openml() method of the sklearn modules helps us directly
download the dataset used in this example to the project—the MNIST
Handwritten Digits dataset. The OneHotEncoder method is used for the one-hot
encoding of the labels.

Next, the few constants that are required during the program execution are set2.
up:

num_samples = 60000
batch_size = 64
learning_rate = 0.1

We will perform the training on 60,000 samples with an initial learning rate of
0.1. This rate can be dynamically updated during the training.

We then need to create a method for generating random mini-batches for the3.
training:

class Batch_Reader(object):
 def __init__(self, data , label):
 self.data = data
 self.label = label
 self.num_sample = data.shape[0]

 def next_batch(self, batch_size):
 index = random.sample(range(self.num_sample), batch_size)
 return
self.data[index,:].astype(float),self.label[index,:].astype(float)

Deep Learning on Microsoft Azure Using Python Chapter 8

[223]

The preceding method on each call generates batches equal to the size set in the
previous step—for example, 64 samples in each batch. These samples are taken
randomly from the dataset.

The dataset now needs to be fetched; to do so, we use the following line of code:4.

mnist = fetch_openml('mnist_784')

Once the data has been fetched, it can be separated into training and test datasets,
as shown:

train_data = mnist.data[:num_samples,:]
train_label = mnist.target[:num_samples]
test_data = mnist.data[num_samples:,:]
test_label = mnist.target[num_samples:]

Labels in the datasets need to be one-hot encoded before being fed into the5.
training model. To do so, we use the following code:

enc = OneHotEncoder()
enc.fit(train_label[:,None])
train_encoded = enc.transform(train_label[:,None]).toarray()

We can now create a generator object for the training batches generator, as6.
shown:

train_reader = Batch_Reader(train_data, train_encoded)

Let's quickly carry out the preceding steps for the test dataset, too:7.

enc = OneHotEncoder()
enc.fit(test_label[:,None])
test_encoded = enc.transform(test_label[:,None]).toarray()

test_reader = Batch_Reader(test_data, test_encoded)

Now, let's create a CNTK neural network model. We first begin by defining some8.
constants:

dimensions = 784
classes = 10
hidden_layers = 3
hidden_layers_neurons = 400

Deep Learning on Microsoft Azure Using Python Chapter 8

[224]

We define the dimensions of the input data as 784. Recall our example from
Chapter 3, Creating Your First Deep Learning Web Application, where we used the
MNIST dataset. The images in the MNIST dataset are stored in the format of
single-dimension arrays containing 28 x 28 values in the range of 0 to 255. The
images belong to 10 different classes, corresponding to each digit in the Arabic
numeral system. We keep a provision of 3 hidden layers, each with 400 neurons
in them.

We then create two CNTK input variables to use while creating the model. This9.
is one of the most important concepts of CNTK.

input = C.input_variable(dimensions)
label = C.input_variable(classes)

An input variable in CNTK is essentially a placeholder that we use to fill
samples during model training and evaluation or testing. The shape of the input
from the dataset must exactly match the dimensions declared in the input
variables declaration in this step. It is important to mention here that a lot of
people confuse the dimensions of input with the number of features a dataset has.
A dataset that has N number of features and M number of samples has an (M, N)
shape and so the dimensions of this dataset is simply 2:

def create_model(features):
 with C.layers.default_options(init = C.layers.glorot_uniform(),
activation = C.ops.relu):

 hidden_out = features

 for _ in range(hidden_layers):
 hidden_out =
C.layers.Dense(hidden_layers_neurons)(hidden_out)

 network_output = C.layers.Dense(classes, activation =
None)(hidden_out)
 return network_output

We create the create_model() method, which takes the input of the features as10.
the argument.

First, the defaults are set for the model to use the uniform distribution of the
initialization of weights and other values. The default activation function is set to
ReLU.

Deep Learning on Microsoft Azure Using Python Chapter 8

[225]

The first layer contains the features themselves and the final layer contains a
vector with a dimension equal to the number of classes. All the layers in between
contain a completely connected network of 3 hidden layers with 400 neurons each
and ReLU activation:

model = create_model(input/255.0)

Finally, we create the model using the previous function. Dividing by 255 provides
normalization to the dataset, rendering the values in the image arrays between 0 and 1.

Training the CNTK model
With the model created, we can now move on to training the model and making it learn to
predict. To do so, we need to use the CNTK model object and fit the samples in the dataset
to it. We can, at the same time, log loss and other evaluation metrics. We need to carry out
the following steps to train our model:

Create placeholders for loss and the classification error:1.

loss = C.cross_entropy_with_softmax(model, label)
label_error = C.classification_error(model, label)

Now, we can set up a trainer object for the CNTK framework, which is used to2.
perform the actual training:

lrs = C.learning_rate_schedule(learning_rate, C.UnitType.minibatch)
learner = C.sgd(model.parameters, lrs)
trainer = C.Trainer(model, (loss, label_error), [learner])

Let's perform the training now:3.

epochs = 10
num_iters = (num_samples * epochs) / batch_size

for i in range(int(num_iters)):

 batch_data, batch_label =
train_reader.next_batch(batch_size=batch_size)

 arguments = {input: batch_data, label: batch_label}
 trainer.train_minibatch(arguments=arguments)

 if i % 1000 == 0:
 training_loss = False
 evalaluation_error = False

Deep Learning on Microsoft Azure Using Python Chapter 8

[226]

 training_loss = trainer.previous_minibatch_loss_average
 evalaluation_error =
trainer.previous_minibatch_evaluation_average
 print("{0}: , Loss: {1:.3f}, Error: {2:.2f}%".format(i,
training_loss, evalaluation_error * 100))

We set the number of epochs for training as 10 to allow quick training and evaluations. You
can set it to a higher value for more accuracy in training; however, this may lead to no
better training or overfitting, in some cases. At every 1,000th iteration, we display the loss
and evaluation error obtained up to then. The general trend for these should be toward
decline.

Testing and saving the CNTK model
Before continuing with turning this project into a web application using the Django
framework, let's quickly test the accuracy obtained in this training of the model. We will
carry out the following to make predictions from the model:

predicted_label_probs = model.eval({input: test_data})

This creates a NumPy array of probabilities for each label in the dataset. This has to be
converted into indices and compared to the labels of the test data. We do this as shown:

predictions = np.argmax(predicted_label_probs, axis=1)
actual = np.argmax(test_encoded, axis=1)
correct = np.sum(predictions == actual)
print(correct / len(actual))

We find around 98% accuracy in the prediction. This is a very good value and we will move
on to saving the model and using it through Django. To save the CNTK model, we do the
following:

model.save("cntk.model")

With the model saved successfully, you will have to download the model file to your local
system if you've used Colaboratory to build the model. Next, we can move on to deploying
the model on a Django-based server.

Deep Learning on Microsoft Azure Using Python Chapter 8

[227]

A brief introduction to Django web
development
Django is one of the most popular frameworks for web development using Python. The
framework is lightweight, robust, and actively maintained by the community, which
quickly patches security holes and adds new features. In this book, we've covered the Flask
framework, which is essentially a bare-bones framework for Python web development.
However, Django comes with a lot of built-in features that implement state-of-the-art
methods and practices.

A Django project is initially structured in the following manner:

These files are auto-generated when you create a new Django project using the django-
admin tool. The top-level directory, mysite, represents the name of the Django project.
Each Django project contains apps. Apps are similar to the concept of modules in software
development. They are usually independent pieces of the complete project and are put
together by the mysite master app within the project directory. Each project can have
several apps inside it.

Let's learn how to get started with Django and create a new project!

Deep Learning on Microsoft Azure Using Python Chapter 8

[228]

Getting started with Django
The foremost step before using Django is to install it. Fortunately, the framework is easily
installable as a module from the Python PIP repository. It is also available on the Conda
repository. To install Django, open a new terminal window and use the following
command:

conda install django

Alternatively, if you prefer PIP, use the following command:

pip install django

This will install the Django module to your Python environment.

To check whether it has been successfully installed, use the following command in the
terminal:

python -m django --version

This should produce an output of a version number—for example, - 2.0.8. If not, check
your installation of Django.

Creating a new Django project
Django provides a handy utility named the django-admin tool, which can be used to
generate the boilerplate code required for a Django project. To create a new project named,
say, cntkdemo, use the following code:

django-admin startproject cntkdemo

This will create all the boilerplate folders and files. However, we must create at least one
app within the project. Change your active working directory to the cntkdemo folder using
the terminal. Use the following command to create an app inside this project:

python manage.py startapp api

So, we have created a folder named api with the following folders inside it; all the files are
auto-generated with placeholder code and documentation:

Deep Learning on Microsoft Azure Using Python Chapter 8

[229]

We can now proceed with the coding of the initial UI.

Setting up the home page template
Let's now create a web page that loads when the / route is accessed. Remember the api
app that we created in the project? Let's make the index page a part of this app for the sake
of simplicity. While it is possible to create this route in the urls.py file of the mysite app,
we will provide the api app with its own route handling file.

Let's begin with the steps for setting up the home page template:

Create a file, urls.py, inside the api folder. The complete path of this file1.
relative to the project directory would be mysite/api/urls.py. Inside this file,
let's add the / route, using the following code:

from django.urls import path

from . import views

urlpatterns = [
 path('', views.indexView), # This line handles the '/' route.
]

Deep Learning on Microsoft Azure Using Python Chapter 8

[230]

Save this file. The preceding code essentially adds a new path, /, to the api app2.
(note, not to the project!). It imports all the views available in the views.py file
of the api app. Note that indexView still does not exist. We will create this view
after the next step.
The api app is not linked to the main project app. We need to add the following3.
lines to the mysite/mysite/urls.py file to enable the route handling by the
api app's route handler:

from django.contrib import admin
from django.urls import path
from django.urls import include # -- Add this line!

urlpatterns = [
 path('', include('api.urls')), # -- Add this line!
 path('admin/', admin.site.urls),
]

The first line imports a utility for including app-specific routing settings to the
project app. We use this to include the urls.py file inside the api app using the
api.urls string. This automatically converts the strings to lines of code that try
to find and include the correct file.

In the views.py file inside the api app directory, add the following lines:4.

from django.http import HttpResponse
from django.template import loader

The HttpResponse method allows the view method to return an HTML
response. The loader class provides us with methods to load HTML templates
from the disk.

Let's now create the indexView method:5.

def indexView(request):
 template = loader.get_template('api/index.html')
 context = {}
 return HttpResponse(template.render(context, request))

The indexView method loads the api/index.html template file and renders it
with the variables provided in the context dictionary, along with the request
parameters available to the template. Currently, we pass a blank context because
we do not have any values to send to the template. But again, the
api/index.html file defined previously does not exist.

Deep Learning on Microsoft Azure Using Python Chapter 8

[231]

Let's create the folder for holding templates and link it to the project settings. To6.
do so, go to the root directory of the project and create a folder named
templates. We need the project to be able to recognize this folder as the
directory for the templates. To do so, we need to modify the TEMPLATES settings
in the mysite/mysite/settings.py file:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates')], # -- Add this line!
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [

Upon adding the preceding line, the project will look for the templates inside the
mysite/templates/ folder.

Create the index.html template file.7.

Notice that our template file route in step 4 exists within an api directory. Create
a folder named api inside the templates directory. Inside this, create the
index.html file with the following code:

{% load static %}
...
 <div class="jumbotron">
 <h3 class="jumbotronHeading">Draw here!</h3>
 ...
 </div>
 <div class="jumbotron">
 <h3>Prediction Results</h3>
 <p id="result"></p>
 </div>
 <div id="csrf">{% csrf_token %}</div>
 </div>
 <script
src='https://cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/jquery.min
.js'></script>
 <script src="{% static "/index.js" %}"></script>
...

We've included some required scripts at the end of the preceding code block,
including a script to fetch the CSRF token from the backend.

Deep Learning on Microsoft Azure Using Python Chapter 8

[232]

Now, let's add a canvas element to div with the jumbotron class in the8.
previous code block, where we will draw the digits. We'll also add a slider for
selecting the width of the drawing pen, as shown:

 <div class="jumbotron">
 <h3 class="jumbotronHeading">Draw here!</h3>
 <div class="slidecontainer">
 <input type="range" min="10" max="50" value="15"
id="myRange">
 <p>Value: </p>
 </div>
 <div class="canvasDiv">
 <canvas id="canvas" width="350" height="350"></canvas>
 <p style="text-align:center;">
 <button class="btn btn-success" id="predict-btn"
role="button">Predict</button>
 <button class="btn btn-primary" id="clearButton"
role="button">Clear</button>
 </p>
 </div>
 </div>

The template file also includes two static files—style.css and script.js. We
will be creating these files in the upcoming section. We have not yet created the
script for sending the data to the server and rendering the response received.

Now, we will begin adding the JavaScript code required to communicate with9.
the backend APIs. First, we create a method to check whether we need a CSRF
token to communicate with the backend. This is only a utility function and is not
related to calling the backend APIs, which may, at times, be designed to accept
requests without CSRF tokens. We create this function as shown:

<script type="text/javascript">
 function csrfSafeMethod(method) {
 return (/^(GET|HEAD|OPTIONS|TRACE)$/.test(method));
 }

Then, we create a click handler for the Predict button. This handler function10.
first sets up the proper headers required to make the call to the backend APIs
and then converts the drawing present on the canvas into a data URL string:

 $("#predict-btn").click(function() {

 var csrftoken = $('input[name=csrfmiddlewaretoken]').val();

 $.ajaxSetup({

Deep Learning on Microsoft Azure Using Python Chapter 8

[233]

 beforeSend: function(xhr, settings) {
 if (!csrfSafeMethod(settings.type) && !this.crossDomain) {
 xhr.setRequestHeader("X-CSRFToken", csrftoken);
 }
 }
 });

 $('#predict-btn').prop('disabled', true);

 var canvasObj = document.getElementById("canvas");
 var img = canvasObj.toDataURL();
 // MORE CODE TO BE ADDED BELOW THIS LINE

 // MORE CODE TO BE ADDED ABOVE THIS LINE
 });
 </script>

Finally, we add the code to the click handler function of the Predict button to11.
make the Ajax call to the backend with the data from the canvas, as shown:

$("#predict-btn").click(function() {
...
 // MORE CODE TO BE ADDED BELOW THIS LINE
 $.ajax({
 type: "POST",
 url: "/predict",
 data: img,
 success: function(data) {
 console.log(data);
 var tb = "<table class='table table-
hover'><thead><tr><th>Item</th><th>Confidence</th></thead><tbody>";
 var res = JSON.parse(data);
 console.log(res);
 $('#result').empty.append(res.data);
 $('#predict-btn').prop('disabled', false);
 }
 });
 // MORE CODE TO BE ADDED ABOVE THIS LINE
...
});
 </script>

Deep Learning on Microsoft Azure Using Python Chapter 8

[234]

Before we can create the static files, we need to create a folder for them and link it12.
to the project. This is similar to how we created the templates folder. First,
create a folder, static, in the project directory with a mysite/static/ path.
Then, modify the STATIC configuration in the mysite/mysite/settings.py
file, as shown:

STATIC_URL = '/static/'

STATICFILES_DIRS = [
 os.path.join(BASE_DIR, "static"), # -- Add this line!
]

We can now create and load static files into the project templates using the {%
load static %} directive at the top of the template files, as we did in the
index.html file.

Create style.css and script.js—since these files are not explicitly relevant13.
to the context of this book, you can download them directly from http:/ /tiny.
cc/cntk- demo.

Please note here that without the script.js file, the project will not run.

We have created the setup for the prediction of the images drawn on a canvas present in
the index.html template file. However, the /predict route is yet to be created. Let's see
how CNTK models can be loaded and used in Django in the next section.

Making predictions using CNTK from the
Django project
In this section, we'll first set the required route, the view, and the imports for the CNTK
model to work with Django. We will then load the CNTK model from the saved file and
make predictions using it.

http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo
http://tiny.cc/cntk-demo

Deep Learning on Microsoft Azure Using Python Chapter 8

[235]

Setting up the predict route and view
Recall how we created the / route and its corresponding view in the api app:

First, add the following line to mysite/api/urls.py:1.

urlpatterns = [
 path('', views.indexView),
 path('predict', views.predictView), # -- Add this line!
]

This creates the /predict route. However, the view, predictView, is not yet
created.

Add the following lines to the views.py file in the api app:2.

from django.http import JsonResponse

def predictView(request):
 # We will add more code below this line

 # We will add more code above this line
 return JsonResponse({"data": -1})

Notice the placeholders in the preceding lines. We'll add more here in the next steps.

Making the necessary module imports
Now, let's load all the modules required to make predictions with the CNTK model, as in
the following steps:

Add the following lines of imports to the views.py file of the api app:1.

import os
from django.conf import settings

We'll need the preceding imports to load the model from the disk:2.

import cntk as C
from cntk.ops.functions import load_model

The preceding lines import the CNTK module to the Django project. The
load_model method will help us load the saved CNTK model file.

Deep Learning on Microsoft Azure Using Python Chapter 8

[236]

The following modules are used to manipulate the images that the predictions
will be made on:

from PIL import Image
import numpy as np

The following modules provide utility for handling Base64-encoded strings,
which is the format that the index.html page sends the canvas data in the
request:

import re
import base64
import random
import string

The other libraries will be explained when they are used in the upcoming sections.

Loading and predicting using the CNTK model
We will now further edit the predictView view by following these steps:

First, read the Base64-encoded image string data to a variable using the following1.
code:

def predictView(request):
 # We will add more code below this line

 post_data = request.POST.items()
 pd = [p for p in post_data]
 imgData = pd[1][0].replace(" ", "+")
 imgData += "=" * ((4 - len(imgData) % 4) % 4)

The Base64-decoded string does not have proper padding and contains spaces
that need to be converted into +. The last two lines in the previous code block
perform the same manipulations on the string.

Next, we will convert this Base64-encoded string into a PNG image and save it to2.
disk with the following lines:

filename = ''.join([random.choice(string.ascii_letters +
string.digits) for n in range(32)])

convertImage(imgData, filename)

Deep Learning on Microsoft Azure Using Python Chapter 8

[237]

The first line creates a 32-character-long random string for the filename. The next
line calls the convertImage method, which stored the base64 string as the
filename provided.

However, the convertImage method has not yet been defined. Outside of the3.
predictView method, add the definition for the function, as shown:

def convertImage(imgData, filename):
 imgstr = re.search(r'base64,(.*)', str(imgData)).group(1)
 img = base64.b64decode(imgstr)
 with open(filename+'.png', 'wb') as output:
 output.write(img)

The method strips out the extra metadata from the string. It then decodes the
string and saves it as a PNG file.

Let's return back to the predictView method. We will first load the saved4.
image file:

image = Image.open(filename+'.png').convert('1')

We will also convert the image into a black and white channel only. This reduces
the number of channels in the image from 3 to 1.

Recall that all images in the MNIST dataset have dimensions of 28 x 28. We must5.
resize our current image to the same dimensions. We do so with the following
line:

image.thumbnail((28,28), Image.ANTIALIAS)

Now, we convert the image into a NumPy array with the following lines:6.

image_np = np.array(image.getdata()).astype(int)
image_np_expanded = np.expand_dims(image_np, axis = 0)

np.expanded_dims is a simple utility in NumPy used to add an extra dimension
to the array for proper compatibility with most machine learning libraries.

Load the CNTK model. First, create a folder named data in the root directory of7.
the project and copy the saved model file there in mysite/data/cntk.model.

We now load the CNTK model in the predictView method, as shown:

model = load_model(os.path.join(settings.BASE_DIR,
"data/cntk.model"))

Deep Learning on Microsoft Azure Using Python Chapter 8

[238]

Finally, we can predict the label of the image, as shown:8.

predicted_label_probs = model.eval({model.arguments[0]:
image_np_expanded})
data = np.argmax(predicted_label_probs, axis=1)

The eval method, in its first argument, expects the NumPy array of the image
and returns a list of probabilities of each output class. The np.argmax method is
used to find the index of the class with the highest probability.

To return the output, modify the return part of the predictView method, as9.
shown:

 # We will add more code above this line
 return JsonResponse({"data": str(data[0])})

The predicted label for the image is sent as a digit contained in the data variable of the
JSON response, which is displayed on the page.

Testing the web app
Finally, we can test the CNTK + Django app we have developed. To do so, open the
terminal and direct it to the root directory of the project.

Use the following command to start the Django server:

python manage.py runserver

The server starts at http:/ /localhost:8000 if the port is free. Open the page in a web
browser. Draw your digit on the canvas provided and click on the Predict button. You will
be able to see the result from the model at the bottom of the page, as shown:

Deep Learning on Microsoft Azure Using Python Chapter 8

[239]

Notice that the model returns the correct output in the preceding screenshot, which is 2.
Hence, we conclude the deployment of CNTK models using Django.

Summary
In this chapter, we covered the offerings from Microsoft AI and the Azure cloud for
performing deep learning on websites. We saw how the Face API can be used to predict the
gender and age of people in images, as well as how the Text Analytics API can be used to
predict the language of a given text and the key phrases in the provided text or the
sentiment of any sentence. Finally, we created a deep learning model using CNTK on the
MNIST dataset. We saw how the model can be saved and then deployed via a Django-
based web application in the form of an API. This deployment of the saved model via
Django can be easily adapted for other deep learning frameworks, such as TensorFlow or
PyTorch.

In the next chapter, we will discuss a generalized framework for building production-grade
deep learning applications using Python.

4
Deep Learning in Production

(Intelligent Web Apps)
This section provides different case studies showing how to develop and deploy deep
learning-web applications (using deep learning APIs) along with showing measures to
secure web applications using deep learning.

This section comprises the following chapters:

Chapter 9, A General Production Framework for Deep Learning-Enabled Websites
Chapter 10, Securing Web Apps with Deep Learning
Chapter 11, DIY – A Web DL Production Environment
Chapter 12, Creating an E2E Web App Using DL APIs and Customer Support Chatbot

9
A General Production

Framework for Deep Learning-
Enabled Websites

We have covered decent ground on using industry-grade cloud Deep Learning (DL) APIs
in our applications in previous chapters and we have learned about their use through
practical examples. In this chapter, we will cover a general outline for developing DL-
enabled websites. This will require us to bring together all the things that we have learned
so far so that we can put them to use in real-life use cases. In this chapter, we will learn how
to structure a DL web application for production by first preparing the dataset. We will
then train a DL model in Python and then wrap the DL models in APIs using Flask.

The following is a high-level summary of this chapter:

Defining our problem statement
Breaking the problem into several components
Building a mental model to bind the project components
How we should be collecting the data
Following a directory structure for our project
Building the project from scratch

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[242]

Technical requirements
You can access the code used in this chapter at https:/ /github. com/ PacktPublishing/
Hands-On-Python- Deep- Learning- for- Web/ tree/ master/ Chapter9.

To run the code used in this chapter, you'll need the following software:

Python 3.6+
The Python PIL library
NumPy
Pandas
The Natural Language Toolkit (NLTK)
Flask 1.1.0+ and compatible versions of the following:

FlaskForm
wtforms
flask_restful
flask_jsonpify

All other installations will be described during the course of this chapter.

Defining the problem statement
Any project should start with a well-defined problem statement or the project development
is bound to suffer. The problem statement governs all the major steps involved in an overall
project development pipeline, starting from project planning to project cost.

In a DL-based web project, for example, the problem statement will direct us to the
following:

Determine what kind of data we would need.
How much complexity there would be in terms of code, planning, and other
resources.
What kind of user interface we would develop.
How much human involvement there would be so that an estimate can be
prepared on the project’s manpower and so on.

Hence, a well-defined problem statement is really required in order for us to get started
with further project development.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter9

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[243]

Imagine being a DL engineer at a company that is planning to build a recommendation
system to suggest products from a product listing based on some user-provided criteria.
Your boss has asked you to develop a Proof of Concept (PoC) based on this. So, how
should we go about it? As mentioned previously, let’s start by defining the problem
statement first.

The main entity that provides inputs to the final recommendation system is a user. Based
on the user’s preferences (let’s call the input features preferences for now), the system
would provide a list of products that best match their preference. So, long story short, the
problem statement can be written as follows:

Given a set of input features (user preferences), our task is to suggest a list of products.

Now that we have a well-defined problem statement to proceed, let’s go ahead and build
up the next steps in the following section.

Building a mental model of the project
Looking at the problem statement, you might feel tempted to open a browser and start
searching for some datasets. But when it comes to properly develop a project, definite
planning is required to structure it piece by piece. A project without a structure is nothing
more than a rudderless ship. So, we will be cautious about this from the start. We will
discuss the modules that are going to play a very essential role in our project. This includes
several mental considerations as well. I like to call this phase building a mental model of
the project.

Let’s take some time to discuss the problem statement further, so as to figure out the
essential modules we would need to develop.

Our project concerns recommending products to users based on their preferences. So, in
order to perform this recommendation, we would need a system that knows how to
understand the set of preferences a user is providing to it. To be able to make sense of these
preferences, the system would need some kind of training that we would be implementing
DL. But what about preferences? How would they look like? You will often encounter these
questions in real-world project situations that need humans in the loop.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[244]

Now, think for a second and try to think of the aspects you typically look for while
choosing a product to buy. Let’s list them here:

What are the specifications of the product? If I want a large size T-shirt, I should
not be recommended a small size T-shirt.
What is the cost of the product? Users have a limited amount of money is this
recommendation good for their wallet?
What brand is this product? Users often have brand preferences for similar
products manufactured by several companies.

Note that the preceding pointers are not in any particular order.

So, from the preceding section, we are starting to get a sense of what we would need, which
is an interface (which will essentially be a web page, in our case) for a user to provide their
preferences. Taking these preferences into account, our system would predict a set of
products that it found to be the most appropriate ones. This is where the DL part comes
into play. As we will recollect from earlier chapters, for a DL model to work on a given
problem, it needs to be trained on some data that represents the problem as closely as
possible. Let’s now discuss the data part of our system.

We have a readily available dataset for our project—the Amazon Fine Food Reviews
dataset provided by Amazon and created by the Stanford Network Analysis Project team.
While the dataset is large in size, we will not be using the full dataset when creating the
demonstration in this chapter. An immediate question that might get triggered here is how
would the dataset look? We need to formulate a rough plan to decide the following:

What features we would be choosing to construct the dataset
Where we would be looking to collect the data

Let’s add a bit of enhancement to the original problem statement before proceeding further
from here. Here’s the original problem statement:

Given a set of input features (user preferences), our task is to suggest a list of products.

Users will not like our system if it recommends them substandard products. So, we would
modify the problem statement a bit, as follows:

Given a set of input features (user preferences), our task is to suggest a list of the best possible
products to buy.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[245]

For our system to recommend a list of the best possible products with respect to a given
criterion, it first needs to know the average ratings of the products. Along with the average
ratings, it would be useful to have the following information about a particular product,
apart from its name:

Specifications
Category of product
Seller name
Average price
Expected delivery time

While preparing the data, we would look for the previous pointers about a particular
product. Now comes the question of where we would be collecting the data from. The
answer is Amazon! Amazon is known for its services in the e-commerce industry in
providing us with various products and information about them, such as their ratings,
product specifications, the price of the items, and so on. But say Amazon does not allow
you to download this data directly as a zipped file. In order to get the data from Amazon in
the desired form, we would have to resort to web scraping.

Up to this point in the discussion, we are certain on two broad areas of the project:

An interface to receive preferences from the user
Data that would represent the problem statement we are dealing with

For DL modeling, we will be starting with simple, fully-connected, neural network-based
architecture. It’s often useful to start with a simple model and gradually increase the
complexity because it makes the code base easier to debug.

So, from this, it is safe enough to say that the following three modules are going to play an
essential role in this project:

An interface
Data
A DL model

Hopefully, you now have a fair idea about approaching the development of a project in the
first place. What questions you should be asking at this stage and what considerations you
may have to make can be worked out from the involved framework you now have.

We would not want our recommendation system to be biased toward anything. There can
be many types of biases hidden in the data and naturally enough, it can cause the DL
system that uses it to inherit that bias.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[246]

To find out more about different types of biases in machine learning systems, you are
encouraged to refer to this article at https:/ /developers. google. com/machine- learning/
crash-course/fairness/ types- of- bias. In our case, a staggering example of bias would
be a situation where a male visitor gets product recommendations that are averaged out.
The recommendations might only come on the basis of his gender but not based on any
other visitor-browsing pattern. This can be erroneous and may have been done mistakenly.
But instances like this can make our model very inappropriate. In the next section, we will
be discussing a few points to learn how can we avoid bias on the data.

Avoiding the chances of getting erroneous data
in the first place
What is erroneous data? Are we only talking about data with wrong values? The answer is
no. Besides data having wrong or missing values, erroneous data can have subtle but grave
errors that may lead to poor training of the model or even bias. So, it is important to
identify such erroneous data and remove it before training our model. There are five main
ways of identifying these errors:

Look for missing values.
Look for values that seem out of scale or possibility—in other words, outliers.
Do not include any features in the dataset that might cause data leakage.
Ensure that all categories of evaluation have a similar number of samples in the
dataset.
Ensure that your design of the solution to the problem itself does not introduce a
bias.

Once we are clear on these points, we are ready to move on to the more specific areas that
we need to be careful about during the collection of data. It is important that during data
collection a proper plan is prepared to keep in mind all the properties of the data source
and the requirements of the problem statement.

Suppose you are scraping data for products from US-based outlets on Amazon and end up
searching for products on the Indian version of Amazon instead. The scraper might give
you data from India-based outlets, which may not be suitable for recommendation to US-
based residents.

https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias
https://developers.google.com/machine-learning/crash-course/fairness/types-of-bias

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[247]

Further, since Amazon—and similar services, such as Flipkart—takes the help of
recommender systems to target the most suitable products for their customers, during data
collection, the scraper should not become prey to such recommendations. It is important
that the scraper clears its context every now and then and avoids getting biased results due
to the AI put in place by Amazon.

Let's take an example from the Amazon Fine Food Reviews dataset. Though on the first
look the dataset looks pretty balanced, we can uncover a lot of bias in the dataset. Consider
the length of the text that the customers write for their reviews of products. Let's plot them
in a graph against the score they were rated. The following graphs show the plot for
products rated 1 and 2 stars:

The following graphs show the plot for products rated 3 and 4 stars:

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[248]

The following graph shows the plot for products rated 5 stars:

Notice how more positive reviews have more written text in them. This would directly
convert into most of the words in the dataset, leading to a higher rating from the user.
Now, consider a scenario where a user writes a lengthy review with a low rating and a
generally negative opinion about the product. Since our model is trained to associate larger
lengths of reviews to positive ratings, it would mark the negative review as positive.

The bottom line here is that real-world data can contain many edge cases, as shown, and if
they are not handled in a proper manner, you will most likely get an erroneous model.

How not to build an AI backend
Considering the vastness that web applications can grow to and the strong dependence of
nearly every other platform on a backend that runs as a web-based service, it is important
for the backend to be well thought of and properly executed. AI-based applications, even in
a PoC stage, are often not blazingly fast in responding or take a lot of time to train on the
new samples.

While we will be discussing tips and tricks to make a backend that does not choke under
pressure due to bottlenecks, we need to lay down a few pointers that need to be avoided in
the best possible way when developing an AI-integrated backend for a website.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[249]

Expecting the AI part of the website to be real
time
AI is computationally expensive and needless to say, this is undesirable for a website that
aims to serve its clients in the quickest time possible. While smaller models or using
browser AI (such as TensorFlow.js or other libraries) can provide the experience of real-
time AI responses, even they suffer issues where the client is in a slow network area or
using a low-end device. So, both the methods of in-browser AI models or lightweight AI
models replying near instantaneously are subject to device configuration and network
bandwidth. Hence, the backend of the website, which is supposed to make quick responses
to the client, should ideally be separated from the part that handles the AI model responses.
Both, working in parallel, should maintain a common data storage and a proper method of
interaction between the two, such that the backend code responsible for responding to the
clients has less dependence on the AI model part.

Assuming the incoming data from a website is
ideal
Even though the website or app corresponding to the project might resemble an ideal
method of data collection, the data coming from it must not be assumed to be free of errors.
Bad network requests, malicious connections, or simply garbage input provided by users
can lead to data that is unfit for training. A non-malicious user may have network issues
and refresh the same page 10 to 20 times in a short time frame, which should not add to the
viewing-based importance of that page. All data collected from the website must be subject
to cleanup and filtering based on the requirements of the model. It must be kept in mind
that the challenges faced by websites will almost certainly affect the quality of data
collected.

A sample end-to-end AI-integrated web
application
Now that we have discussed an overview and the pitfalls to avoid when creating an AI-
powered website backend, let's move on to creating one—albeit a rather simple one—that
demonstrates the general overview of the solution.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[250]

We will cover the following steps, as stated previously:

The collection of data as per the problem statement
Cleaning and preprocessing the data
Building the AI model
Creating an interface
Using the AI model on the interface

While we have previously discussed the pitfalls of collecting the data, we will briefly
discuss here the tools and methods that can be employed to complete the task.

Data collection and cleanup
For the purpose of collecting data, from a general perspective, there could be several data
sources. You could scrape data off websites or simply download some prepared dataset.
Other methods could also be employed, such as the following:

Generating data on the fly within the runtime of applications/websites
Logging from applications or smart devices
Collecting data directly from users via systematic forms (such as quizzes or
surveys)
Collecting data from survey agencies
Observational data measured by specific methods (scientific data) and other
ways

beautifulsoup is a library commonly used to perform web scraping. Scrapy is yet
another popular tool and can be used very rapidly.

The data cleaning would entirely depend on the form of data collected by you and has been
discussed in previous chapters of the book. We will assume that you are able to convert
your data into a format that is suitable for how you wish to proceed with the model-
building part. For the further topics in this section, we will use a prepared dataset titled
Amazon Fine Food Reviews, which can be downloaded from https:/ /www. kaggle. com/
snap/amazon-fine- food- reviews. Once you extract the downloaded ZIP file, you'll get the
dataset as a file called Reviews.csv.

A good starting point to observe how to perform web scraping and prepare a clean dataset
is https://github. com/ Nilabhra/ kolkata_ nlp_ workshop_ 2019.

https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://www.kaggle.com/snap/amazon-fine-food-reviews
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019
https://github.com/Nilabhra/kolkata_nlp_workshop_2019

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[251]

Building the AI model
Now, we will prepare the AI model, which will recommend products based on the user's
query. To do so, let's create a new Jupyter notebook.

Making the necessary imports
We begin by importing the required Python modules to the project:

import numpy as np
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import WordPunctTokenizer
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer

Comment below line if you already have stopwords installed
nltk.download('stopwords')

We import TfidfVectorizer to help us create Term Frequency-Inverse Document
Frequency (TF-IDF) vectors for performing natural language processing. TF-IDF is a
numerical measure of how important a word in a single document is, given a number of
documents that may or may not contain the words. Numerically, it increases the
importance value when a single word occurs frequently in a single document but not in
other documents. TF-IDF is so popular that over 80% of the world's natural language-based
recommender systems currently use it.

We are also importing WordPunctTokenizer. A tokenizer performs the function of
breaking down a text into elemental tokens. For example, a large paragraph may be broken
down into sentences and further into words.

Reading the dataset and preparing cleaning functions
We will read the Amazon Fine Food Reviews dataset with the ISO-8859-1 encoding. This
is only to ensure that we do not lose out on any special symbols used in the text of the
review:

df = pd.read_csv('Reviews.csv', encoding = "ISO-8859-1")
df = df.head(10000)

Since the dataset is very large, we've restricted our work in this chapter to the first 10,000
rows in the dataset.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[252]

We would need to remove stop words from the text and filter out symbols such as brackets
and other symbols not natural to written text. We will create a function named
cleanText(), which will perform the filtering and removal of stop words:

import string
import re

stopwordSet = set(stopwords.words("english"))

def cleanText(line):
 global stopwordSet
 line = line.translate(string.punctuation)
 line = line.lower().split()
 line = [word for word in line if not word in stopwordSet and len(word)
>= 3]
 line = " ".join(line)
 return re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ", line)

Using the preceding function, we have removed the stop words and any words shorter
than three characters from the text. We have filtered out punctuation and are only keeping
the relevant characters from the text.

Slicing out the required data
The dataset contains more data than is useful to us for the demo at hand. We will extract
the ProductId, UserId, Score, and Text columns to prepare our demo. The names of the
products are encrypted for privacy reasons, just as the names of the users are encrypted:

data = df[['ProductId', 'UserId', 'Score', 'Text']]

Keeping data encrypted and free of personal information is a challenge in data science. It is
important to remove parts from the dataset that would make it possible to identify the
private entities that are a part of the dataset. For example, you would need to remove
people and organization names from the text of the review to stop the products and users
from being identified, despite them having encrypted product and user IDs.

Applying text cleaning
We will now apply the text filtering and stop word removal function to clean the text in the
dataset:

%%time
data['Text'] = data['Text'].apply(cleanText)

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[253]

The time taken for the task is displayed.

Note that the preceding code block will only work in Jupyter Notebook
and not in normal Python scripts. To run it on normal Python scripts,
remove the %%time command.

Splitting the dataset into train and test parts
Since we have a single dataset, we will break it into two parts, with the feature and label
parts separated:

X_train, X_valid, y_train, y_valid = train_test_split(data['Text'],
df['ProductId'], test_size = 0.2)

We will use the train_test_split() method from the sklearn module to split the
dataset into 80% for training and 20% for testing.

Aggregating text about products and users
We will now aggregate the dataset's reviews by users and product IDs. We'll need the
reviews for each product to determine what that product would be a good choice for:

user_df = data[['UserId','Text']]
product_df = data[['ProductId', 'Text']]
user_df = user_df.groupby('UserId').agg({'Text': ' '.join})
product_df = product_df.groupby('ProductId').agg({'Text': ' '.join})

Similarly, reviews aggregated by users will help us determine what a user likes.

Creating TF-IDF vectorizers of users and products
We will now create two different vectorizers one is for users and the other for products. We
will need these vectorizers in place to determine the similarity between the requirements of
the users and what the reviews tell us about any given product. First, we will create the
vectorizer for users and display its shape:

user_vectorizer = TfidfVectorizer(tokenizer =
WordPunctTokenizer().tokenize, max_features=1000)
user_vectors = user_vectorizer.fit_transform(user_df['Text'])
user_vectors.shape

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[254]

Then, we will create the vectorizer for products:

product_vectorizer = TfidfVectorizer(tokenizer =
WordPunctTokenizer().tokenize, max_features=1000)
product_vectors = product_vectorizer.fit_transform(product_df['Text'])
product_vectors.shape

We use WordPunctTokenizer to break down the text and use the fit_transform
method of the TfidfVectorizer object to prepare the vectors, which map the word
dictionary to their importance in documents.

Creating an index of users and products by the ratings
provided
We use the pivot_table method of the pandas module to create a matrix of user ratings
against products. We will use this matrix to perform matrix factorization to determine the
products that a user likes:

userRatings = pd.pivot_table(data, values='Score', index=['UserId'],
columns=['ProductId'])
userRatings.shape

We will also convert the TfidfVectorizer vectors for users and products into matrices
suitable for matrix factorization:

P = pd.DataFrame(user_vectors.toarray(), index=user_df.index,
columns=user_vectorizer.get_feature_names())
Q = pd.DataFrame(product_vectors.toarray(), index=product_df.index,
columns=product_vectorizer.get_feature_names())

We can now create the matrix factorization function.

Creating the matrix factorization function
We will now create a function to perform matrix factorization. Matrix factorization became
a popular family of algorithms used for recommender systems during the Netflix Prize
challenge in 2006. It is a family of algorithms that decomposes a user-item matrix into a set
of two lower-dimension rectangular matrices that can be multiplied to restore the original
higher-order matrix:

def matrix_factorization(R, P, Q, steps=1, gamma=0.001,lamda=0.02):
 for step in range(steps):
 for i in R.index:

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[255]

 for j in R.columns:
 if R.loc[i,j]>0:
 eij=R.loc[i,j]-np.dot(P.loc[i],Q.loc[j])
 P.loc[i]=P.loc[i]+gamma*(eij*Q.loc[j]-lamda*P.loc[i])
 Q.loc[j]=Q.loc[j]+gamma*(eij*P.loc[i]-lamda*Q.loc[j])
 e=0
 for i in R.index:
 for j in R.columns:
 if R.loc[i,j]>0:
 e= e + pow(R.loc[i,j]-
np.dot(P.loc[i],Q.loc[j]),2)+lamda*(pow(np.linalg.norm(P.loc[i]),2)+pow(np.
linalg.norm(Q.loc[j]),2))
 if e<0.001:
 break
 return P,Q

We then perform the matrix factorization and log the time taken:

%%time
P, Q = matrix_factorization(userRatings, P, Q, steps=1,
gamma=0.001,lamda=0.02)

After this, we need to save the model.

Saving the model as pickle
Now, create a folder called api in the root directory of your project. Then, save the trained
model, which is the lower-order matrices obtained after factorization of the user-products
rating matrix:

import pickle
output = open('api/model.pkl', 'wb')
pickle.dump(P,output)
pickle.dump(Q,output)
pickle.dump(user_vectorizer,output)
output.close()

Saving the models as binary pickle files allows us to quickly load them back into the
memory during deployment of the model on the backend of the website.

Now that we are done developing the predictive model, we will move on to building an
interface for the application to work on.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[256]

Building an interface
To build an interface for the web application, we need to think about how we would want
our users to interact with the system. In our case, we are expecting the user to be presented
with suggestions based on what they search for in a search bar the moment they submit the
search query. This means we need the system to respond in real time and generate
suggestions on the fly. To build this system, we will create an API that will respond to the
search query.

Creating an API to answer search queries
We will create an API that accepts queries in the form of HTTP requests and replies with
suggestions of products based on the search query entered by the user. To do so, follow
these steps:

We will begin by importing the required modules for the API. We discussed1.
these imported modules in the previous section:

import numpy as np
import pandas as pd
from nltk.corpus import stopwords
from nltk.tokenize import WordPunctTokenizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from flask import Flask, request, render_template, make_response
from flask_wtf import FlaskForm
from wtforms import StringField, validators
import io
from flask_restful import Resource, Api
import string
import re
import pickle
from flask_jsonpify import jsonpify

We will also import the Flask module to create a quick HTTP server that can2.
serve on a defined route in the form of an API. We will instantiate the Flask app
object as shown:

DEBUG = True
app = Flask(__name__)
app.config['SECRET_KEY'] = 'abcdefgh'
api = Api(app)

The value of SECRET_KEY in the app configuration is up to you.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[257]

We will then create a class function to handle the text input that we receive in3.
the form of a search query from the user:

class TextFieldForm(FlaskForm):
 text = StringField('Document Content',
validators=[validators.data_required()])

To encapsulate the API methods, we wrap them in a Flask_Work class:4.

class Flask_Work(Resource):
 def __init__(self):
 self.stopwordSet = set(stopwords.words("english"))
 pass

The cleanText() method we used during model creation is again required. It5.
will be used to clean and filter out the search query entered by the user:

 def cleanText(self, line):
 line = line.translate(string.punctuation)
 line = line.lower().split()
 line = [word for word in line if not word in self.stopwordSet and
len(word) >= 3]
 line = " ".join(line)
 return re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ", line)

We define a home page for the application, which will be loaded from the6.
index.html file that we create in the templates later:

 def get(self):
 headers = {'Content-Type': 'text/html'}
 return make_response(render_template('index.html'), 200, headers)

We create the post method-based prediction route, which will respond with the7.
product suggestions upon receiving the user's search query:

 def post(self):
 f = open('model.pkl', 'rb')
 P, Q, userid_vectorizer = pickle.load(f), pickle.load(f),
pickle.load(f)
 sentence = request.form['search']
 test_data = pd.DataFrame([sentence], columns=['Text'])
 test_data['Text'] = test_data['Text'].apply(self.cleanText)
 test_vectors = userid_vectorizer.transform(test_data['Text'])
 test_v_df = pd.DataFrame(test_vectors.toarray(),
index=test_data.index,
columns=userid_vectorizer.get_feature_names())

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[258]

 predicted_ratings = pd.DataFrame(np.dot(test_v_df.loc[0], Q.T),
index=Q.index, columns=['Rating'])
 predictions = pd.DataFrame.sort_values(predicted_ratings,
['Rating'], ascending=[0])[:10]

 JSONP_data = jsonpify(predictions.to_json())
 return JSONP_data

We attach the Flask_Work class to the Flask server. This completes the script8.
on running. We have put an API in place that suggests products based on the
user's search query:

api.add_resource(Flask_Work, '/')

if __name__ == '__main__':
 app.run(host='127.0.0.1', port=4000, debug=True)

Save this file as main.py. With the API script created, we need to host the server.

To do so on a local machine, run the following command in the terminal:9.

python main.py

This will start the server on the computer on port 4000, as shown:

However, we still need to prepare a user interface to use this API. We will do so in the
following section.

Creating an interface to use the API
We will now create a simple, minimal UI to use the API we created. In essence, we will
create a single search bar where the user enters the product or product specification that
they want and the API returns recommendations based on the user's query. We will not be
discussing the code for building the UI, but we have included it in the GitHub repository,
which can be found at http:/ / tiny. cc/ DL4WebCh9.

http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9
http://tiny.cc/DL4WebCh9

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[259]

This UI will be visible at http://127.0.0.1:4000 once you start the server, as shown in
step 9 of the Creating an API to answer search queries section.

The interface we created looks like this:

The user enters a search query and gets recommendations, as shown:

Our application does not have the benefit of saving user sessions. Also, it does not have
parameters for the expected budget of the user, which is often a deciding factor in whether
the product is a good fit for the user. It is easy to add these features to web applications and
leverage their benefits.

A General Production Framework for Deep Learning-Enabled Websites Chapter 9

[260]

Summary
As a general overview, web applications that hone the power of DL have a few set methods
to do so via APIs, in-browser JavaScript, or by silently embedding DL models in the
backend of the application. In this chapter, we saw how to use the most common of these
methods—an API-based DL web application—while at the same time, we saw a rough
overview of how to design similar solutions. We covered the thought process that goes into
the identification of the problem statement and a subsequent solution, along with the
pitfalls and pain points to avoid during the design of a web application that integrates DL
models.

In the next chapter, we will cover an end to end project that integrates DL on web
applications for security purposes. We will see how DL can help us recognize suspicious
activity and block spam users.

10
Securing Web Apps with Deep

Learning
Security is of the utmost importance to any website—and all software, in general. These
days, security threats are evolving with the rise of available computing power and
developments in the field of technology. So, it is important that websites employ the best
possible measures of security to keep their data and user information secure. Websites with
online commercial activities are always at high risk and it is very common for them to face
security attacks that have not been seen before. New attacks are particularly difficult for
rule-based security systems to identify and stop; so, you can look at the options offered by
deep learning-powered security systems, which can effectively replace rule-based systems
and are also capable of correctly identifying and blocking new threats.

This chapter discusses several tricks and techniques that you can use to secure websites
using deep learning with Python. We will present reCAPTCHA and Cloudflare and discuss
how they are used to enhance the security of websites. We will also show you how to
implement security mechanisms to detect malicious users on websites using deep learning-
based techniques and a Python backend. The following topics will be covered in this
chapter:

The story of reCAPTCHA
DIY – malicious user detection on Django
Using reCAPTCHA in web applications with Python
Website security with Cloudflare

We will begin this chapter's discussion with the story of reCAPTCHA—an ingenious tool,
created by Google, that changed the internet.

Securing Web Apps with Deep Learning Chapter 10

[262]

Technical requirements
You can access the code for this chapter at https:/ / github. com/ PacktPublishing/ Hands-
On-Python-Deep-Learning- for- Web/ tree/ master/ Chapter10.

You'll need the following software to run the code in this chapter:

Python 3.6+
TensorFlow 1.14
Keras compatible with TensorFlow 1.14
Django 2.x

The story of reCAPTCHA
Easy on Humans, Hard on Bots—that is the tagline of reCAPTCHA, which states the simple
idea that reCAPTCHA is a system that establishes whether a user on an application or
website is a genuine human user or an automated script. reCAPTCHA is a specific
implementation of the CAPTCHA technology—a method that uses visuals with distorted,
squiggly letters and numbers and challenges the user to decipher the contents of the visual
image and write it out in a plain format.

If you were a regular internet user in the early 2000s, you would have seen images
resembling the following CAPTCHA on a number of websites:

CAPTCHA is an acronym for Completely Automated Public Turing Test
To Tell Computers and Humans Apart.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter10

Securing Web Apps with Deep Learning Chapter 10

[263]

Popularized by Yahoo, the CAPTCHA system was rapidly adopted for use on millions of
websites. However, despite the boost to security this system provided to websites, it was
time-consuming and was often being beaten by rogue programmers. Every so often, people
would create new CAPTCHA systems with varied designs and combinations of elements in
the visuals.

At the same time, developers were tackling a very different problem—one of digitizing
printed books and other texts. A quick solution was to scan books; that is, using an Optical
Character Reader (OCR) to convert books into preliminary digital text form. The
conversions were fine for printed content that was made with standard fonts and whose
scans were obtainable in good quality. However, the conversion accuracy suffered for
malformed prints and manuscripts. People were increasingly uploading images to online
platforms in the quest to extract text from those images and to use them for several
purposes, such as determination of content in images, locations, or brands mentioned.

The origin of CAPTCHA is disputed with claims of invention from
multiple groups, but it was in 2003 that Luis von Ahn coined the term
CAPTCHA, and he later became the founder of reCAPTCHA, which was
acquired by Google.

A pioneer of crowdsourcing, Luis von Ahn used the reCAPTCHA program to display very
small chunks of text cropped from scans of printed books. Only humans would be able to
solve these challenges easily, and automated programs would fail. At the same time, these
books were being slowly digitized by contributions from a large number of human users,
through unknown crowdsourcing activity. reCAPTCHA still remained a nuisance for users
but the issue of digitizing books was solved.

Over time, reCAPTCHA evolved to use AI-based systems to identify real and fake users. At
the time of writing this book, reCAPTCHA is being actively developed by Google and is
currently on its third version, where it allows the invisible verification of users in the
background of the web page and only displays a challenge when the user cannot be
successfully verified. This saves a lot of time for genuine users and poses a challenge to
machines.

We will now build a website to use deep learning-based models and reCAPTCHA to
provide security elements to a website.

Securing Web Apps with Deep Learning Chapter 10

[264]

Malicious user detection
A malicious user on a website is any user who attempts to perform tasks that they are not
authorized to do. In today's world, the threats posed by malicious users are increasing
exponentially, with huge databases of personal information from several global tech giants,
government agencies, and other private firms being exposed to the public by hackers. It is
important to have systems in place that can automatically mitigate these malicious attacks.

In order to recognize the malicious users in our sample web app, we have created a model
that is able to learn the usual behavior of a user and raises the alarm if the user behavior at
any instance changes significantly from their past usage.

Anomaly detection is a popular branch of machine learning. It is a collection of algorithms
that are used to detect data samples in a given dataset that do not fall along with the
majority of the data sample properties. To detect a cat in a dog shelter would be anomaly
detection. Anomaly detection is performed in several ways:

By using minimum-maximum ranges of columns
By finding out sudden spikes in the plots of the data
By marking points lying on the extreme ends as outliers (anomalies) when data is
plotted under a Gaussian curve

Support vector machines, k-nearest neighbors, and Bayesian networks are some of the most
popular algorithms used for anomaly detection.

How can we define usual behavior for users on a website?

Assume that you use a website where you normally log in using your laptop. Mostly, it
takes you a maximum of two attempts to successfully log in to the website. If one day you
suddenly start using a new laptop, the login would be suspicious and would probably be a
malicious attempt to hack your account. It would be more so if the location of the new
device was somewhere you have not been to recently or ever before. It would also be highly
suspicious if you took 10 attempts to log in to your account. The state of not being in any
suspicious state of usage is the usual behavior of the user on a website.

Sometimes, the anomaly may not be due to the irregular behavior of any specific user. Due
to changes in the server, the regular traffic of the users and so their behavior might change.
We have to be careful to not mark all users as malicious in such circumstances. Also, the
irregular behavior of a user may be caused due to reasons other than hacking attempts on
their account. If a genuine user suddenly starts accessing parts of the website that they
should not have access to, it is an anomaly and needs to be prevented.

Securing Web Apps with Deep Learning Chapter 10

[265]

In our sample website, we will integrate a system like this. To do so, we will be putting a
check on the login page of the website where we will try to determine whether a user's
login is normal or anomalous. We will be taking into consideration the page that the user
logs in from, as a website may have multiple login pages, and try to determine whether it is
a usual page for the user to login from. If the user attempts to log in from a page that they
generally do not log in from, we will mark it as an anomaly. This is just one simple criterion
for checking anomalous users, with a scope of several hundreds of other parameters.

An LSTM-based model for authenticating
users
We will break down this section into two major sub-sections:

Building the security check model1.
Hosting the model as an API2.

Let's begin with the first section.

Building a model for an authentication validity
check
To authenticate the user based on their login activity, we will need an API that checks the
requests. We can build this model using the following steps:

Let's begin by developing the authentication model that determines whether a1.
user is not acting in a regular manner. We begin by importing the necessary
modules in a Jupyter notebook running Python 3.6+, as shown:

import sys
import os
import json
import pandas
import numpy
from keras.models import Sequential
from keras.layers import LSTM, Dense, Dropout
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer
from collections import OrderedDict

Securing Web Apps with Deep Learning Chapter 10

[266]

We can now import the data into the project. We will be using the dataset2.
at https:/ /github. com/ PacktPublishing/ Hands- On- Python- Deep- Learning-
for-Web/ blob/ master/ Chapter10/ model/ data/ data- full. csv. We load the
dataset into the project, as shown:

file = 'data-full.csv'

df = pandas.read_csv(file, quotechar='|', header=None)
df_count = df.groupby([1]).count()
total_req = df_count[0][0] + df_count[0][1]
num_malicious = df_count[0][1]

print("Malicious request logs in dataset:
{:0.2f}%".format(float(num_malicious) / total_req * 100))

You will see some general statistics about the data, as shown:

You will observe that the data contains text, as shown:

This observation is important and we'll be referring to this screenshot in future
steps.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/model/data/data-full.csv

Securing Web Apps with Deep Learning Chapter 10

[267]

However, all the data is in string format. We need to convert it into appropriate3.
types of values. Also, the dataset currently consists of just one DataFrame; we
will break it into two parts—the training columns and the labels column—with
the following code:

df_values = df.sample(frac=1).values

X = df_values[:,0]
Y = df_values[:,1]

Also, we need to lose some of the columns as we only want to use features in the4.
dataset that are relevant to our task:

for index, item in enumerate(X):
 req = json.loads(item, object_pairs_hook=OrderedDict)
 del req['timestamp']
 del req['headers']
 del req['source']
 del req['route']
 del req['responsePayload']
 X[index] = json.dumps(req, separators=(',', ':'))

With this done, we are now ready to proceed with tokenizing the request body.5.
Tokenizing is a method where we break large paragraphs down into sentences
and sentences into words. We can perform tokenization with the following code:

tokenizer = Tokenizer(filters='\t\n', char_level=True)
tokenizer.fit_on_texts(X)

With the tokenization done, we convert each request body entry into vectors. We6.
do so because we need a numerical representation of the data for the computer to
be able to perform calculations on it. After that, we further split the dataset into
two more parts—75% of the dataset is for training and the rest is for testing
purposes. Similarly, the labels column is split using the following code:

num_words = len(tokenizer.word_index)+1
X = tokenizer.texts_to_sequences(X)

max_log_length = 1024
split = int(len(df_values) * .75)

X_processed = sequence.pad_sequences(X, maxlen=max_log_length)
X_train, X_test = X_processed[0:split],
X_processed[split:len(X_processed)]
Y_train, Y_test = Y[0:split], Y[split:len(Y)]

Securing Web Apps with Deep Learning Chapter 10

[268]

Remember from step 2 that this data mainly contained text. When it comes to text
data, there is most likely a context and a specific order associated with it.

For example, consider the words of this sentence—Sachin Tendulkar is a great
cricketer. The order of the words must not be changed in order to convey the
expected meaning. This is where the importance of maintaining order and context
comes into the picture when you deal with text data in machine learning.

In our case, we will use a special type of recurrent neural network—Long Short-
Term Memory (LSTM)—which will learn to recognize the regular user behavior.

A detailed discussion on LSTM is beyond the scope of this book but if you are
interested, you can refer to http:// bit.ly/ 2m0RWnx to learn about it in detail.

We now add the layers, along with the word embeddings, which helps maintain7.
the relationship between the numerically encoded text and the actual words,
using the following code:

clf = Sequential()
clf.add(Embedding(num_words, 32, input_length=max_log_length))
clf.add(Dropout(0.5))
clf.add(LSTM(64, recurrent_dropout=0.5))
clf.add(Dropout(0.5))
clf.add(Dense(1, activation='sigmoid'))

Our output is a single neuron that either holds 0 or 1 in the case of a non-
anomalous or an anomalous login attempt, respectively.

We then compile the model and print a summary using the following code:8.

clf.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
print(clf.summary())

 The summary of the model is produced, as shown:

http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx
http://bit.ly/2m0RWnx

Securing Web Apps with Deep Learning Chapter 10

[269]

Now, we are ready to move on to training the model:

We use the fit() method of the model as shown: 1.

clf.fit(X_train, Y_train, validation_split=0.25, epochs=3,
batch_size=128)

We will quickly check the accuracy achieved by the model. We can see that the2.
model is more than 96% accurate on the validation data. This score is quite
impressive given that this is our first model. We can check the accuracy of the
model using the following code:

score, acc = clf.evaluate(X_test, Y_test, verbose=1,
batch_size=128)
print("Model Accuracy: {:0.2f}%".format(acc * 100))

You should see an output as in this screenshot:

Let's save these weights. We will use them to create an API that is used for 3.
authenticating the users. We can save the model using the following code:

clf.save_weights('weights.h5')
clf.save('model.h5')

With the model ready, we can now move on to hosting it as a Flask API.

Securing Web Apps with Deep Learning Chapter 10

[270]

Hosting the custom authentication validation
model
Let's now create the API that will accept the login attempt from the user and return its
confidence in the validity of the login:

We begin by importing the required modules for creating a Flask server, as1.
shown:

from sklearn.externals import joblib
from flask import Flask, request, jsonify
from string import digits

import sys
import os
import json
import pandas
import numpy
import optparse
from keras.models import Sequential, load_model
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer
from collections import OrderedDict

We now need to import the saved model and weights from the model training2.
step. Once we do so, we need to recompile the model and make its predict
function using the make_predict_function() method:

app = Flask(__name__)

model = load_model('lstm-model.h5')
model.load_weights('lstm-weights.h5')
model.compile(loss = 'binary_crossentropy', optimizer = 'adam',
metrics = ['accuracy'])
model._make_predict_function()

We will be using a data cleaning function to strip out numbers and other non-3.
useful text in the incoming queries from the client app:

def remove_digits(s: str) -> str:
 remove_digits = str.maketrans('', '', digits)
 res = s.translate(remove_digits)
 return res

Securing Web Apps with Deep Learning Chapter 10

[271]

Next, we create the /login route in the app, which will accept the login4.
credentials and other request header details from the client app when the user
attempts to log in. Notice that we still drop out some extra request headers as we
did during the training.
Once we clean the data, we tokenize and vectorize it. These steps are the same as5.
the preprocessing we did during training. This is to ensure that the incoming
request is processed exactly as it was during the training phase:

@app.route('/login', methods=['GET, POST'])
def login():
 req = dict(request.headers)
 item = {}
 item["method"] = str(request.method)
 item["query"] = str(request.query_string)
 item["path"] = str(request.path)
 item["statusCode"] = 200
 item["requestPayload"] = []

 X = numpy.array([json.dumps(item)])
 log_entry = "store"

 tokenizer = Tokenizer(filters='\t\n', char_level=True)
 tokenizer.fit_on_texts(X)
 seq = tokenizer.texts_to_sequences([log_entry])
 max_log_length = 1024
 log_entry_processed = sequence.pad_sequences(seq,
maxlen=max_log_length)

 prediction = model.predict(log_entry_processed)
 print(prediction)
 response = {'result': float(prediction[0][0])}
 return jsonify(response)

Finally, the app returns its confidence in the user being authenticated in the form
of a JSON.

To run the server on the desired port, we need to add the following lines at the6.
end of the script:

if __name__ == '__main__':
 app.run(port=9000, debug=True)

Lastly, we save the server script file as main.py. We will get the server running7.
by using the following command on the system:

python main.py

Securing Web Apps with Deep Learning Chapter 10

[272]

This will start the Flask server, which listens in on the loopback IP 127.0.0.1, and at port
9000. You can easily host this script on a virtual machine in the cloud and make it available
to all your apps and websites as a common security checkpoint API.

We can now move on to creating our web app that runs on the Django framework.

A Django-based app for using an API
The website that we are creating to consume the user-authentication check API will be a
simple billboard demo. The website will have provisions for users to log in and then post
bills to a billboard. While the app is simple, it contains two major features of deep learning-
based security integrations—anomaly detection during user authentication and the
implementation of reCAPTCHA during posting bills—to avoid spam.

The steps to create the application are discussed in the following sections.

The Django project setup
In this section, we'll be working with Django. Make sure that you have a working Django
installation on your system before proceeding with this section. You can find installation
instructions for Django in the A brief introduction to Django web development section in
Chapter 8, Deep Learning on Microsoft Azure Using Python.

Now, we will create a Django project. To do so, we use the following command:

django-admin startproject webapp

This will create the webapp directory in the current folder. We will be adding all of our
future code in this directory. The current directory structure looks as follows:

webapp/
 manage.py
 webapp/
 __init__.py
 settings.py
 urls.py
 wsgi.py
 db.sqlite3

With this done, we are now ready to create an app inside the project, which is shown in the
next section.

Securing Web Apps with Deep Learning Chapter 10

[273]

Creating an app in the project
As discussed in Chapter 8, Deep Learning on Microsoft Azure Using Python, we must now
add apps to the website project. To do so, we use the following command:

cd webapp
python manage.py startapp billboard

The preceding command will create an app called billboard in the project. However, we
still have to link this app to the project.

Linking the app to the project
To add the app to the project, we need to add the app name to the list of apps
in settings.py in the project settings file, as in the following code. In settings.py, add
the following change:

Application definition

INSTALLED_APPS = [
 'billboard', # <---- ADD THIS LINE
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

With this, we are ready to create the routes on the website.

Adding routes to the website
To add routes to the project, we edit the urls.py file of webapp:

from django.contrib import admin
from django.urls import path, include # <--- ADD 'include' module

urlpatterns = [
 path('', include('billboard.urls')), # <--- ADD billboard.urls path
 path('admin/', admin.site.urls),
]

However, the billboard.urls path does not exist. We'll create the path to proceed.

Securing Web Apps with Deep Learning Chapter 10

[274]

Creating the route handling file in the billboard
app
Create a new file, called urls.py, in the billboard folder, as shown:

from django.urls import path
from django.contrib.auth.decorators import login_required

from . import views

urlpatterns = [
 path('', login_required(views.board), name='View Board'),
 path('add', login_required(views.addbill), name='Add Bill'),
 path('login', views.loginView, name='Login'),
 path('logout', views.logoutView, name='Logout'),
]

Save this as webapp/billboard/urls.py. Notice that we have imported some
views items to this route handling file. Also, we have used the login_required method.
This indicates that we can start working on the authentication of the website.

Adding authentication routes and configurations
To add the routes for authentication, add the following at the end of the
webapp/settings.py file:

LOGIN_URL = "/login"
LOGIN_REDIRECT_URL = '/'
LOGOUT_REDIRECT_URL = '/logout'

These lines indicate that we will need a /login and a /logout route.

Creating the login page
To create the login page, we'll need to add the /login route to urls.py in the billboard
app. However, we've already done that. Next, we need to add the loginView view to the
views.py file of the billboard app:

def loginView(request):
 if request.user.is_authenticated:
 return redirect('/')
 else:

Securing Web Apps with Deep Learning Chapter 10

[275]

 if request.POST:
 username = request.POST['username']
 password = request.POST['password']
 user = authenticate(request, username=username,
password=password)
 ## MORE CODE BELOW THIS LINE
 ## MORE CODE ABOVE THIS LINE
 else:
 return redirect('/logout')
 else:
 template = loader.get_template('login.html')
 context = {}
 return HttpResponse(template.render(context, request))

The preceding function first checks whether the username and password being passed to it
exist in the user database. So, we'll need a user model, in the future, to store users in the
database file, db.sqlite3, which was created during the project creation step.

The function will then make a call to the authentication check model API to validate
whether the user login is of normal behavior. The validation is carried out as in the
following code:

def loginView(request):
 ...
 ## MORE CODE BELOW THIS LINE
 if user is not None:
 url = 'http://127.0.0.1:9000/login'
 values = { 'username': username, 'password': password }
 data = urllib.parse.urlencode(values).encode()
 req = urllib.request.Request(url, data=data)
 response = urllib.request.urlopen(req)
 result = json.loads(response.read().decode())
 if result['result'] > 0.20:
 login(request, user)
 return redirect('/')
 else:
 return redirect('/logout')
 ## MORE CODE ABOVE THIS LINE
 ...

The preceding code block validates the user login and, if it's found to be invalid, performs a
logout action and redirects the user back to log in again.

We'll need to add some necessary imports to the view.py file for this, as shown:

from django.shortcuts import redirect
from django.contrib.auth import authenticate, login, logout

Securing Web Apps with Deep Learning Chapter 10

[276]

from django.http import HttpResponse
from django.template import loader

from django.conf import settings
from django.urls import reverse_lazy
from django.views import generic

from django.contrib.auth.models import User

import urllib
import ssl
import json

Notice that we also imported the logout method from django.contrib.auth. This will
be used to create a logout view.

Creating a logout view
Now, let's create the logout view. This is very simple to do, as shown:

def logoutView(request):
 logout(request)
 return redirect('/')

Now, let's create a template of the login page.

Creating a login page template
To create a template, we first need to create the folders required.

Create a folder called templates in the billboard directory. The directory structure will
now look as in the following code:

webapp/
 manage.py
 webapp/
 __init__.py
 settings.py
 urls.py
 wsgi.py
 billboard/
 templates/
 ___init_.py
 admin.py

Securing Web Apps with Deep Learning Chapter 10

[277]

 apps.py
 models.py
 tests.py
 urls.py
 views.py

Inside the templates folder, we'll place our template files. Let's first create base.html,
which we will extend in all other templates. This will contain the CSS and JS includes,
along with the general block structure of the page.

We have provided a sample of this file at https:/ / github. com/
PacktPublishing/ Hands- On-Python- Deep- Learning- for-Web/ blob/
master/ Chapter10/ webapp/ billboard/ templates/ base. html.

Once this is done, we're ready to create the login.html file, which will carry out the
process of sending the login values to the server:

{% extends 'base.html' %}
{% block content %}
<div class="container">
 <div class="row">
 <div class="form_bg">
 <form method="post">
 {% csrf_token %}
 <h2 class="text-center">Login Page</h2>
 # WE'LL ADD MORE CODE BELOW THIS LINE
 ...
 # WE'LL ADD MORE CODE ABOVE THIS LINE
 </form>
 </div>
 </div>
</div>
{% endblock %}

Notice that we have extended the base.html template in the preceding view template.

You can read more about extending Django templates at https:/ /
tutorial. djangogirls. org/en/ template_ extending/ .

The form in this login page makes a POST request and so requires the passing of the CSRF
token. We can now create the page that renders after the login is done.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/templates/base.html
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/
https://tutorial.djangogirls.org/en/template_extending/

Securing Web Apps with Deep Learning Chapter 10

[278]

The billboard page template
Since we've already set up the base.html file, we can simply extend it in the board.html
template file to create the billboard display page:

{% extends 'base.html' %}
{% block content %}
<div class="container">
 <div class="row">
 {% for bill in bills %}
 <div class="col-sm-4 py-2">
 <div class="card card-body h-100">
 <h2>{{ bill.billName }}</h2>
 <hr>
 <p>
 {{ bill.billDesc }}
 </p>
 {{
bill.user.username }}
 </div>
 </div>
 {% endfor %}
 </div>
</div>
{% endblock %}

In the preceding block of code, we have iterated over all the available bills items in the
billboard's database and displayed them using a for loop in the template. The use of the
base.html template allows us to reduce the amount of repeated code in the view
templates.

After this, we will create the page that will have the code to add a new bill to the billboard.

Adding to Billboard page template
To create the page template that adds a bill to the billboard, we use the following code to
create the add.html template file:

{% extends 'base.html' %}
{% block content %}
<div class="container">
 <div class="row">
 <div class="form_bg">
 <form method="post" id="form">
 {% csrf_token %}

Securing Web Apps with Deep Learning Chapter 10

[279]

 <h2 class="text-center">Add Bill</h2>

 <div class="form-group">
 <input type="text" class="form-control" id="billname"
name="billname" placeholder="Bill Name">
 </div>
 <div class="form-group">
 <input type="text" class="form-control" id="billdesc"
name="billdesc" placeholder="Description">
 </div>

 <div class="align-center">
 <button type="submit" class="btn btn-success"
id="save">Submit</button>
 </div>
 </form>
 </div>
 </div>
</div>
{% endblock %}

In the preceding block of code, we have extended the base.html template to add a form
that allows us to add bills. Notice the use of the CSRF token in the form element. In Django,
we always need to pass valid CSRF tokens while making POST requests.

You can read more about CSRF tokens in Django at https:/ /docs.
djangoproject. com/ en/ 3. 0/ref/ csrf/ .

But wait, we've not yet added the views to handle the billboard page and the addition of
the bills page. Let's add them now!

The billboard model
We need to add the views to see all the bills on the billboard page. However, for this, we
first need to create the model to hold all the bills.

In the models.py file, add the following code:

from django.utils.timezone import now
from django.contrib.auth.models import User

class Bills(models.Model):
 billName = models.CharField("Bill Name", blank=False, max_length=100,

https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/
https://docs.djangoproject.com/en/3.0/ref/csrf/

Securing Web Apps with Deep Learning Chapter 10

[280]

default="New Bill")
 user = models.ForeignKey(User, on_delete=models.CASCADE)
 billDesc = models.TextField("Bill Description")
 billTime = models.DateTimeField(default=now, editable=False)

 class Meta:
 db_table = "bills"

In the preceding code, we created a new model called Bills. This will store the details for
all of the bills added by users on the billboard. The user model is linked with this model as
a foreign key. Save this file as webapp/billboard/models.py.

You can read more about foreign keys and other keys at https:/ / www.
sqlite. org/ foreignkeys. html.

With this done, we can now use the Bills model in the views.

Creating the billboard view
To start using the Bills model in the app, we first need to import it to the views.py file.

Add the following line at the top of the view.py file:

from .models import Bills

Then, we can add the view for the billboard, as shown:

def board(request):
 template = loader.get_template('board.html')
 context = {}
 context["isLogged"] = 1

 Bill = Bills.objects.all()

 context["bills"] = Bill

 return HttpResponse(template.render(context, request))

Next, we need to create the view for adding the bills.

https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html
https://www.sqlite.org/foreignkeys.html

Securing Web Apps with Deep Learning Chapter 10

[281]

Creating bills and adding views
In this view, we will create the bills. If a valid POST request is made to the route served by
the addbill method, we create a new Bill object and save it to the database. Otherwise,
we display the form for adding bills to the user. Let's see how we can do this in the
following code:

def addbill(request):
 if request.POST:
 billName = request.POST['billname']
 billDesc = request.POST['billdesc']
 Bill = Bills.objects.create(billName=billName,
user=request.user, billDesc=billDesc)
 Bill.save()
 return redirect('/')
 else:
 template = loader.get_template('add.html')
 context = {}
 context["isLogged"] = 1

 return HttpResponse(template.render(context, request))

However, we still need to create the admin user before using the app.

Creating the admin user and testing it
To create the admin user, we use the following command:

 python manage.py createsuperuser

We can now migrate the database change by using the following commands:

python manage.py makemigrations
python manage.py migrate

Securing Web Apps with Deep Learning Chapter 10

[282]

An output similar to the following is produced:

Now, let's secure the billboard postings using the reCAPTCHA tool.

Using reCAPTCHA in web applications with
Python
To add the reCAPTCHA to the website, we first need to obtain the API keys from the
Google reCAPTCHA console:

First, log in to your Google account and go to https:/ /www. google. com/1.
recaptcha.
Next, click on Admin Console at the top-right. 2.
Add your site to the console by following the steps shown on your screen. If3.
you're testing on your local system, you'll have to specify 127.0.0.1 as one of
the URLs.
Obtain the API keys for your domain.4.

The screen that you get your domain's API keys on should look similar to the
following screenshot:

https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://www.google.com/recaptcha

Securing Web Apps with Deep Learning Chapter 10

[283]

Now, add the secret key to the settings.py file of the web app, as shown: 5.

GOOGLE_RECAPTCHA_SECRET_KEY =
'6Lfi6ncUAAAAANJYkMC66skocDgA1REblmx0-3B2'

Next, we need to add the scripts to be loaded to the add.html template. We'll6.
add it to the billboard app page template, as shown:

<script
src="https://www.google.com/recaptcha/api.js?render=6Lfi6ncUAAAAAIa
JgQCDaR3s-FGGczzo7Mefp0TQ"></script>
<script>
 grecaptcha.ready(function() {
 grecaptcha.execute('6Lfi6ncUAAAAAIaJgQCDaR3s-
FGGczzo7Mefp0TQ')
 .then(function(token) {
 $("#form").append('<input type="hidden" name="g-
recaptcha-response" value="'+token+'" >');
 });
 });
</script>

{% endblock %}

Note that the key used in this step is the client/site key.

Finally, we need to validate the reCAPTCHA in the add billboard view, as7.
shown:

def addbill(request):
 if request.POST:
 recaptcha_response = request.POST.get('g-recaptcha-
response')
 url = 'https://www.google.com/recaptcha/api/siteverify'
 values = { 'secret': settings.GOOGLE_RECAPTCHA_SECRET_KEY,

Securing Web Apps with Deep Learning Chapter 10

[284]

 'response': recaptcha_response}
 context = ssl._create_unverified_context()
 data = urllib.parse.urlencode(values).encode()
 req = urllib.request.Request(url, data=data)
 response = urllib.request.urlopen(req, context=context)
 result = json.loads(response.read().decode())
 if result['success']:
 # Do stuff if valid
 else:
 # Do actions when no request is made

You can grab the full working version of the addbill method in the previous code block
from https://github. com/ PacktPublishing/ Hands- On- Python- Deep- Learning- for- Web/
blob/master/Chapter10/ webapp/ billboard/ views. py.

With the previous changes made, we're finally ready to test run the website with all its
security measures in place. Run the following command to start the website server:

python manage.py runserver

You should be able to see the website's login page, as shown:

Note that at this point, you'll need to have the Flask server, which
performs the login validation, running at the same time.

Upon login, you'll see the billboard page with bills posted on it. Head over to the Add Bill
button to add a new bill, as shown:

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/blob/master/Chapter10/webapp/billboard/views.py

Securing Web Apps with Deep Learning Chapter 10

[285]

Notice the reCAPTCHA logo at the bottom-right corner of the screen. This indicates that
the page is protected against spamming by using reCAPTCHA. If you are able to post
successfully, the billboard is displayed again with the submitted bill. If not, you'll be
presented with a reCAPTCHA verify challenge.

Website security with Cloudflare
Cloudflare is the industry's leading web infrastructure and website security provider. It
creates a layer of security and fast content delivery between a website and its users, hence
routing all the traffic through its servers, which enables security and other features on
websites. In 2017, Cloudflare provided DNS services to over 12 million websites. These
services include content delivery networks, Distributed Denial of Service (DDoS) attack
protection, hacking attempt protection, and other internet security services, such as
leeching protection.

In 2014, Cloudflare reported mitigating a 400 Gib/s DDoS attack on a customer, which was
soon followed by a 500 Gib/s attack the next year. The largest attack on any website
recorded has been on GitHub, where it faced a DDoS of 1.4Tb/s flooding. GitHub was using
Akamai Prolexic (an alternative to Cloudflare) and was able to withstand the attack, going
down only for 10 minutes before coming back up entirely. Cloudflare offers DDoS
protection to all its users free of charge.

Securing Web Apps with Deep Learning Chapter 10

[286]

To get started with deploying the services of Cloudflare on your website, you need to set
up Cloudflare as an intermediate layer between your users and the hosting server. The
following diagram depicts how Cloudflare sits on the network:

So, the detection of spam and malicious users that we created the previous custom
solutions for, with the help of Google's reCAPTCHA, is automatically taken care of by
Cloudflare to a basic extent (in the free tier, with more powerful solutions in the higher tiers
as you upgrade). It is, therefore, very intuitive and simple for a small team of developers to
push off their security needs to Cloudflare's systems and to rest assured that they are
protected against a number of security breaches.

Summary
In this chapter, we saw how we can provide security to websites using Cloudflare's
services. We also saw how to create security APIs that can be used in integration with web
applications and other security services such as reCAPTCHA. It is crucial for any
website—small or large—to have these security measures in place in order for their website
services to function properly. There have been major breaches in recent times, and
countless others that have been attempted by AI-powered systems that do not make it onto
the news because they were not an issue. Security using deep learning is a burning topic of
research and it is believed that in the near future, security systems will all rely strongly on
deep learning to recognize and eliminate threats.

In the next chapter, we will discuss how to set up a production-grade deep learning
environment. We will discuss the architecture designs you could follow, depending on
their size requirements, and the state-of-the-art service providers and tools.

11
DIY - A Web DL Production

Environment
In previous chapters, we saw how to use some notable Deep Learning (DL) platforms, such
as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure, to
enable DL in our web applications. We then saw how to make websites secure using DL.
However, in production, the challenge is often not just building the predictive model—the
real problems arise when you want to update a model that is already sending responses to
users. How much time and business can you lose in the 30 seconds or 1 minute that it may
take to replace the model file? What if there are models customized for each user? That
might even mean billions of models for a platform such as Facebook.

You need to have definite solutions for updating models in production. Also, since the
ingested data may not be in the format that the training is performed in, you need to define
flows of data, such that they are morphed in a seamless manner for usage.

In this chapter, we will discuss the methods by which we update models in production and
the thought that goes into choosing each method. We will begin with a brief overview and
then demonstrate some famous tools for creating DL data flows. Finally, we will implement
our own demonstration of online learning or incremental learning to establish a method for
updating a model in production.

We will be covering the following topics in this chapter:

An overview of DL in production methods
Popular tools for deploying ML in production
Implementing a demonstration DL web production environment
Deploying the project to Heroku
Security, monitoring, and performance optimizations

DIY - A Web DL Production Environment Chapter 11

[288]

Technical requirements
You can access the code for this chapter at https:/ / github. com/ PacktPublishing/ Hands-
On-Python-Deep-Learning- for- Web/ tree/ master/ Chapter11.

You'll need the following software to run the code used in this chapter:

Python 3.6+
Flask 1.1.12+

All other installations will be made during the course of this chapter.

An overview of DL in production methods
Be it DL or classic Machine Learning (ML), when it comes to using models in production,
things can get challenging. The main reason is that data fuels ML and data can change over
time. When an ML model is deployed in production, it is re-trained at certain intervals as
the data keeps changing over time. Therefore, re-training ML is not a luxury but a necessity
when you are thinking of production-based purposes. DL is only a sub-field of ML and it is
no exception to the previous statements. There are two popular methods that ML models
are trained on—batch learning and online learning, especially when they are in production.

We will be discussing online learning in the next section. For this section, let's introduce
ourselves to the concept of batch learning. In batch learning, we start by training an ML
model on a specific chunk of data and when the model is done training on that chunk, it is
supplied with the next chunk of data and this process continues until all the chunks are
exhausted. These chunks are referred to as batches.

In real-life projects, you will be dealing with large volumes of data all the time. It would not
be ideal to fit those datasets in memory at once. Batch learning comes to our aid in
situations such as this one. There are disadvantages to using batch learning and we will get
to them in the next section. You may wonder (or may not, as well), but yes, we perform
batch learning whenever we train a neural network in this book.

Just like training, the concepts of batches can be applied to serving ML models, as well.
Serving ML models here means using machine models to make predictions on unseen data
points. This is also known as inference. Now, model serving can be of two types—online
serving, where the prediction needs to be made as soon as the model is met with the data
point(s) (we cannot afford latency here), and offline serving, where a batch of data points is
first gathered and the batch is run through the model to get predictions. Note that in the
second case, we can opt in for a bit of latency.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter11

DIY - A Web DL Production Environment Chapter 11

[289]

Note that there are several engineering aspects as well that are directly attached to
production ML systems. Discussing them is beyond the scope of this book, but you are
encouraged to check online for courses by the GCP team.

Let's try to summarize and further understand the preceding discussion with the following
diagram:

This diagram depicts the requirements of your AI backend and the various parameters that
can affect the choice of the solution that you make. We will discuss all of the aspects and
choices available, as in this diagram, in the following section.

So, we have four major types of solutions that you may usually find in implementations of
DL in production:

A web API service
Online learning
Batch forecasting
Auto ML

Let's look at each of them in detail.

DIY - A Web DL Production Environment Chapter 11

[290]

A web API service
We have a model that is trained by a separate script on the backend and is stored as a
model and then deployed as an API-based service. Here, we're looking at a solution that
produces results on-demand but the training occurs offline (not in the execution span of the
portion of code responsible for responding to the client queries). Web APIs respond to a
single query at a time and yield singular results.

This is by far the most commonly used method for deploying DL in production since it
allows accurate training performed offline by data scientists and a short deployment script
to create an API. In this book, we have mostly carried out deployments of this kind.

Online learning
Another form of on-demand predictions via the backend is online learning. However, in
this methodology, the learning happens during the execution of the server script and so the
model keeps changing with every relevant query. While such a method is dynamic and
unlikely to become stale, it is often less accurate than its static counterpart—web APIs.
Online learning, too, yields a single result at a time.

In this chapter, we have demonstrated an example of online learning. We will discuss the
tools that are helpful for online learning in the coming sections.

Batch forecasting
In this method, a number of predictions are made at once and stored on the server, ready to
be fetched and used when the user needs them. However, as a static training method, this
method allows training the model offline and so offers greater accuracy to the training,
similar to web APIs.

In other words, batch forecasting can be understood as a batch version of web APIs;
however, the predictions are not served by an API. Rather, the predictions are stored and
fetched from a database.

Auto ML
Making predictions is only one part of the entire process of having DL in production. A
data scientist is also responsible for cleaning and organizing the data, creating a pipeline,
and optimizations. Auto ML is a way of eliminating the need for such repetitive tasks.

DIY - A Web DL Production Environment Chapter 11

[291]

Auto ML is a batch forecasting method where the need for human intervention is removed.
So, the data, as it comes, goes through a pipeline and the forecasts are regularly updated.
So, this method provides more up-to-date predictions than the batch forecasting method.

Let's now discuss some tools for rapidly realizing some of the methods we have presented.

Popular tools for deploying ML in
production
In this section, we will be discussing some popular tools used for putting ML in production
systems. The core utility provided by these tools is automating the learning-prediction-
feedback pipeline and facilitating the monitoring of the model's quality and performance.
While it is very much possible to create your own tools for this, it is highly recommended
that you use any of the following tools, as per the requirements of your software.

Let's begin by discussing creme.

creme
creme is a Python library that allows us to perform online learning efficiently. Before we
look at creme in action, let's have a brief discussion about online learning itself:

In online learning, ML models are trained on one instance at a time, instead of being trained
on a batch of data (which is also known as batch learning). To be able to appreciate the use
of online learning, it's important to understand the cons of batch learning:

In production, we need to re-train ML models on new data over time. Batch
learning forces us to do this but this comes at a cost. The cost not only lies in
computational resources but also the fact that the models are re-trained from
scratch. Training models from scratch is not always useful in production
environments.
The features and labels of data can change over time. Batch learning does not
allow us to train ML models that can support dynamic features and labels.

DIY - A Web DL Production Environment Chapter 11

[292]

This is exactly where we need to use online learning, which enables us to do the following:

Train ML models using only one instance at a time. So, we won't require a batch
of data to train an ML model; it can be trained instantaneously using data as it
becomes available.
Train ML models with dynamic features and labels.

Online learning has got several other names, but they all do the same thing:

Incremental learning
Sequential learning
Iterative learning
Out-of-core learning

creme, as mentioned earlier, is a Python library for performing online learning. It is an
extremely useful thing to keep in your ML toolbox, especially when you are dealing with a
production environment. creme is heavily inspired by scikit-learn (which is a very popular
ML library in Python), which makes it very easy to use. To get a comprehensive
introduction to creme, you are encouraged to check out the official GitHub repository for
creme at https://github. com/ creme- ml/ creme.

Enough talking! Let's go ahead and first install creme. It can be done by using the following
command:

pip install creme

To get the latest version of creme, you can use the following commands:

pip install git+https://github.com/creme-ml/creme
Or through SSH:
pip install git+ssh://git@github.com/creme-ml/creme.git

https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme
https://github.com/creme-ml/creme

DIY - A Web DL Production Environment Chapter 11

[293]

Let's take a look at a quick example by following these steps:

We first make a few necessary imports from the creme module:1.

from creme import compose
from creme import datasets
from creme import feature_extraction
from creme import metrics
from creme import model_selection
from creme import preprocessing
from creme import stats
from creme import neighbors

import datetime as dt

Notice that the naming convention of creme is similar to that of the sklearn
library for an easier migration experience.

We then fetch a dataset provided by the creme module itself to the data variable:2.

data = datasets.Bikes()

We will be working on this dataset, which contains information about bike-ride
sharing.

While the dataset is included in the creme library, you can read more
about it at https:/ / archive. ics. uci. edu/ ml/datasets/
bike+sharing+dataset.

Next, we build a pipeline using creme, as shown:3.

model = compose.Select("humidity", "pressure", "temperature")
model += feature_extraction.TargetAgg(by="station",
how=stats.Mean())
model |= preprocessing.StandardScaler()
model |= neighbors.KNeighborsRegressor()

Notice the use of the |= and += operators. creme makes it possible to use these
operators, which makes understanding the data pipeline very intuitive. We can
obtain a detailed representation of the pipeline built in the previous code block by
using the following command:

model

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

DIY - A Web DL Production Environment Chapter 11

[294]

The output of the previous command is as shown:

Pipeline([('TransformerUnion', TransformerUnion (
 Select (
 humidity
 pressure
 temperature
),
 TargetAgg (
 by=['station']
 how=Mean ()
 target_name="target"
)
)), ('StandardScaler', StandardScaler (
 with_mean=True
 with_std=True
)), ('KNeighborsRegressor', KNeighborsRegressor([]))])

We can also get a visual representation of this pipeline by using the following
command:

model.draw()

This produces the following graph:

DIY - A Web DL Production Environment Chapter 11

[295]

Finally, we run the training and obtain the scoring metric at an interval of every4.
30,000 row of the dataset. On the production server, this code will result in batch
forecasting at every 1 minute:

model_selection.progressive_val_score(
 X_y=data,
 model=model,
 metric=metrics.RMSE(),
 moment='moment',
 delay=dt.timedelta(minutes=1),
 print_every=30_000
)

So, creme makes it very simple to create batch forecasting and online learning deployments
in production with its lucid syntax and debugging facilities.

We'll now discuss another popular tool—Airflow.

Airflow
As an effective ML practitioner, you will need to programmatically handle workflows such
as the previous one and be able to automate them, as well. Airflow provides you with a
platform to efficiently do this. This link—https:/ /airflow. apache. org—is an excerpt
taken from Airflow's official website. Airflow is a platform used to programmatically
author, schedule, and monitor workflows.

The main advantage of this is that tasks represented on Directed Acyclic Graphs (DAGs)
can easily be distributed across available resources (often known as workers). It also makes
it easier to visualize your entire workflow and this turns out to be very helpful, especially
when a workflow is very complicated. If you need a refresher on DAGs, the article at
https://cran.r-project. org/ web/ packages/ ggdag/ vignettes/ intro- to-dags. html can
help. This will become much clearer when you see this implemented in a little while.

When you are designing an ML workflow, you need to think of many different things, such
as the following:

The data collection pipeline
The data preprocessing pipeline
Making the data available to the ML model
Training and evaluation pipelines for the ML model
The deployment of the model
Monitoring the model, along with other things

https://airflow.apache.org
https://airflow.apache.org
https://airflow.apache.org
https://airflow.apache.org
https://airflow.apache.org
https://airflow.apache.org
https://airflow.apache.org
https://airflow.apache.org
https://airflow.apache.org
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html
https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-dags.html

DIY - A Web DL Production Environment Chapter 11

[296]

For now, let's go ahead and install Airflow by executing the following line:

pip install apache-airflow

Although Airflow is Python-based, it is absolutely possible to use Airflow to define
workflows that incorporate different languages for different tasks.

Once installed, you can invoke the admin panel of Airflow and view the list of DAGs on it,
as well as manage them and trigger a lot of other useful functions, as shown:

To do so, you must first initialize the database:1.

airflow initdb

You should see a number of tables being created on a SQLite3 database. If2.
successful, you will be able to start the web server by using the following
command:

airflow webserver

Open http://localhost:8080 on your browser. You will be presented with a
screen as in the following screenshot:

A number of example DAGs are presented. You can try running them for a brief play!

Let's now discuss a very popular tool called AutoML.

DIY - A Web DL Production Environment Chapter 11

[297]

AutoML
DL or AI solutions are not limited to building cutting-edge accurate models in Jupyter
Notebook when it comes to industrial usage. There are several steps in the formation of AI
solutions, beginning with collecting raw data, converting the data into a format that can be
used with predictive models, creating predictions, building an application around the
model, and monitoring and updating the model in production. AutoML aims to automate
this process by automating the pre-deployment tasks. Often, AutoML is mostly about
orchestrating the data and Bayesian hyperparameter optimization. AutoML only
sometimes means a fully automated learning pipeline.

One famous library available for AutoML is provided by H2O.ai and it is called
H2O.AutoML. To use it, we can install it using the following commands:

Using Conda installer
conda install -c h2oai h2o

Using PIP installer
pip install -f
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Py.html h2o

H2O.AutoML is very simple to understand due to the similarity of its syntax with other
popular ML libraries.

Implementing a demonstration DL web
environment
We will now take a deep dive into building a sample production application that uses
online learning on the backend. We will be creating an application that can predict heart
diseases, based on the Cleveland dataset. We will then deploy this model to Heroku, which
is a cloud container-based service. Finally, we will demonstrate the online learning feature
of the application.

You can find out more about Heroku by going to https:/ /heroku. com.

https://heroku.com
https://heroku.com
https://heroku.com
https://heroku.com
https://heroku.com
https://heroku.com
https://heroku.com

DIY - A Web DL Production Environment Chapter 11

[298]

Let's list the steps that we will be covering:

Build a predictive model on Jupyter Notebook.1.
Build a backend for the web application that predicts on the saved model.2.
Build a frontend for the web application that invokes incremental learning on the3.
model.
Update the model on the server side incrementally.4.
Deploy the application to Heroku.5.

We will begin with the zeroth step; that is, observing the dataset.

The UCI Heart Disease dataset contains 303 samples, with 76 attributes in each. However,
most of the research work on the dataset has been centered around a simplified version of
the Cleveland dataset with 13 attributes, as defined here:

Age
Sex
Chest pain type:

Typical angina
Atypical angina
Non-anginal pain
Asymptomatic

Resting blood pressure
Serum cholesterol in mg/dl
Fasting blood sugar > 120 mg/dl
Resting electrocardiographic results:

Normal
Having ST-T wave abnormality (T wave inversions and/or ST
elevation or depression of > 0.05 mV)
Showing probable or definite left ventricular hypertrophy by Estes'
criteria

Maximum heart rate achieved
Exercise-induced angina
Oldpeak = ST depression induced by exercise relative to rest
The slope of the peak exercise ST segment
Number of major vessels (0-3) colored by fluoroscopy
Thal: 3 = normal; 6 = fixed defect; 7 = reversible defect

DIY - A Web DL Production Environment Chapter 11

[299]

There will be a final column, which is the target we will be predicting. This will make the
problem at hand a classification between normal and affected patients.

You can read more about the Cleveland dataset at https:/ /archive. ics.
uci.edu/ ml/ datasets/ Heart+Disease.

Let's now begin building the heart disease detection model.

Building a predictive model
In this subsection, we will begin by building a simple neural network using Keras, which
will classify, from a given input, the probability that a patient has heart disease.

Step 1 – Importing the necessary modules
We begin by importing the required libraries:

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
np.random.seed(5)

We have imported the pandas and numpy modules. Along with these, we have imported
the train_test_split method from the scikit-learn library to help us quickly split the
dataset into training and testing parts.

Step 2 – Loading the dataset and observing
Let's load the dataset, assuming it to be stored in a folder named data that is on the same
directory level as that of the directory containing our Jupyter notebook:

df = pd.read_csv("data/heart.csv")

We'll quickly observe the DataFrame to see whether all the columns have been imported
correctly:

df.head(5)

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease

DIY - A Web DL Production Environment Chapter 11

[300]

This produces the following output in the Jupyter notebook:

We can observe the 14 columns and see that they have been imported correctly. A basic
Exploratory Data Analysis (EDA) would reveal that the dataset does not contain any
missing values. However, the raw UCI Cleveland dataset does contain missing values
contrary to the version we're using, which has been preprocessed and is readily available in
this form on the internet. You can find a copy of it in the repository of this chapter on
GitHub at http://tiny. cc/ HoPforDL- Ch- 11.

Step 3 – Separating the target variable
We'll now splice out the target variable from the dataset, as shown:

X = df.drop("target",axis=1)
y = df["target"]

Next, we will perform scaling on the features.

Step 4 – Performing scaling on the features
As you might have observed in the sample of the dataset in the preceding step, the values
in the training columns are not in a common or comparable range. We will be performing
scaling on the columns to bring them to a uniform range distribution, as shown:

from sklearn.preprocessing import StandardScaler

X = StandardScaler().fit_transform(X)

The target is in the range of 0 to 1 and so does not require scaling.

http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11
http://tiny.cc/HoPforDL-Ch-11

DIY - A Web DL Production Environment Chapter 11

[301]

Step 5 – Splitting the dataset into test and train datasets
We'll then split the dataset into training and testing parts, using the following line of code:

X_train,X_test,y_train,y_test =
train_test_split(X,y,test_size=0.20,random_state=0)

We have allotted 20% of the dataset to testing purposes.

Step 6 – Creating a neural network object in sklearn
Next, we create an instance of the classifier model by instantiating a new object of the
MLPClassifier object:

from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(max_iter=200)

We have arbitrarily set the maximum number of iterations to 200. This may not be reached
if the convergence happens earlier.

Step 7 – Performing the training
Finally, we perform the training and note the observed accuracy of the method:

for i in range(len(X_train)):
 xt = X_train[i].reshape(1, -1)
 yt = y_train.values[[i]]
 clf = clf.partial_fit(xt, yt, classes=[0,1])
 if i > 0 and i % 25 == 0 or i == len(X_train) - 1:
 score = clf.score(X_test, y_test)
 print("Iters ", i, ": ", score)

The output of the preceding block of code in Jupyter Notebook is as follows:

DIY - A Web DL Production Environment Chapter 11

[302]

We can see that after training on all of the 241 samples in the processed dataset, the
accuracy is expected to reach 83.60%. Notice the partial_fit method in the preceding
block of code. This is a method of the model that allows fitting a simple sample to the
model. The more commonly used fit method is, in fact, a wrapper around the
partial_fit method, iterating over the entire dataset and training one sample in each
iteration. It is one of the most instrumental parts of our demonstration of incremental
learning using the scikit-learn library.

To quickly see the format that the model provides an output in, we run the following block
of code:

Positive Sample
clf.predict(X_test[30].reshape(-1, 1).T)

#Negative Sample
clf.predict(X_test[0].reshape(-1, 1).T)

The following output is obtained:

Note that a sample with a predicted output of 0 means that the person does not have a
heart disease, while a sample with an output of 1 means that the person is suffering from a
heart disease.

We will now begin to convert this Jupyter notebook into a script that can perform learning
on-demand incrementally. However, we will first build the frontend of this project so that
we can understand the requirements from the backend.

Implementing the frontend
We will take a bottom-up approach here and design the frontend of our sample application
first. This is merely done for the sake of understanding why we write a few methods in the
backend script differently from how we did in previous chapters. You would obviously
create the backend script first when developing the real application.

DIY - A Web DL Production Environment Chapter 11

[303]

We'll have a very stripped-down frontend, merely comprising a button that invokes
incremental training of the application and a placeholder displaying the accuracy score of
the model trained up to a given number of samples.

Let's take a quick peek at what we are building:

As you might interpret from the preceding screenshot of the application we will be
building, we will have two buttons—one will add 25 samples from the training dataset to
the partially trained model and the other will reset the training to 0 samples (this is,
actually, 1 sample in the implementation, to avoid common errors caused by 0; but this has
minimal effect on the demonstration).

Let's create a Flask project folder named, say, app. We then create the templates folder
and create index.html inside it. Another file, named app.py, is created in the app folder.
We will create more files in this folder for deployment on Heroku.

We will not be writing the complete code of the index.html file, but we'll take a look at
the two functions calling the API of the backend via Ajax triggers.

You can find the entire code at http:/ /tiny. cc/ HoPforDL- Ch- 11- index.

Observe lines 109 to 116 in index.html:

....
$("#train-btn").click(function() {
 $.ajax({
 type: "POST",
 url: "/train_batch",
 dataType: "json",
 success: function(data) {
 console.log(data);
....

http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index
http://tiny.cc/HoPforDL-Ch-11-index

DIY - A Web DL Production Environment Chapter 11

[304]

The preceding piece of JavaScript (jQuery) code creates a click handler on a button with
the train-btn ID. It calls the /train_batch API on the backend. We will be creating this
API while we are developing the backend.

Another interesting block of code in this file is lines 138 to 145:

....
$("#reset-btn").click(function() {
 $.ajax({
 type: "POST",
 url: "/reset",
 dataType: "json",
 success: function(data) {
 console.log(data);
....

Here, we set a click handler on the button with a reset-btn ID to fire a request to the
/reset API. This is an easily forgotten side of incremental learning, which asks for the
decrement of the training; that is, it resets the trained model to an untrained state.

We now know the APIs we will need to build on the backend. Let's build those in the next
section!

Implementing the backend
In this section, we will work on creating the required APIs along with the server script for
the demonstration. Edit the app.py file in the root folder of the project:

First, we will make some necessary imports to the script:1.

from flask import Flask, request, jsonify, render_template

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier

np.random.seed(5)

Notice that the imports here are very similar to the imports we made during
model creation in the Jupyter notebook. This is explained due to the fact that
we're only converting the Jupyter notebook code into a server script for the
backend demonstration.

DIY - A Web DL Production Environment Chapter 11

[305]

We will then load the dataset onto a pandas DataFrame:2.

df = pd.read_csv("data/heart.csv")

We'll quickly run through the rest of the code, where we will split the dataset,3.
scale the columns, and train the model on a certain number of samples:

X = df.drop("target",axis=1)
y = df["target"]

X = StandardScaler().fit_transform(X)
X_train,X_test,y_train,y_test =
train_test_split(X,y,test_size=0.20,random_state=0)

clf = MLPClassifier(max_iter=200)

for i in range(100):
 xt = X_train[i].reshape(1, -1)
 yt = y_train.values[[i]]
 clf = clf.partial_fit(xt, yt, classes=[0,1])
 if i > 0 and i % 25 == 0 or i == len(X_train) - 1:
 score = clf.score(X_test, y_test)
 print("Iters ", i, ": ", score)

Notice that in the preceding code, we train the model on 100 samples from the
dataset. This would make the model fairly accurate, but obviously, with scope for
improvement, which we will trigger using the /train_batch API, which adds 25
samples to the training of the model.

Let's set a few variables to use the script, as well as instantiating the Flask server4.
object:

score = clf.score(X_test, y_test)

app = Flask(__name__)

start_at = 100

We will now create the /train_batch API, as shown:5.

@app.route('/train_batch', methods=['GET', 'POST'])
def train_batch():
 global start_at, clf, X_train, y_train, X_test, y_test, score
 for i in range(start_at, min(start_at+25, len(X_train))):
 xt = X_train[i].reshape(1, -1)
 yt = y_train.values[[i]]
 clf = clf.partial_fit(xt, yt, classes=[0,1])

DIY - A Web DL Production Environment Chapter 11

[306]

 score = clf.score(X_test, y_test)

 start_at += 25

 response = {'result': float(round(score, 5)), 'remaining':
len(X_train) - start_at}

 return jsonify(response)

The train_batch() function increments the learning of the model by 25
samples or the remaining samples of the dataset. It returns the current score of the
model on the 20% test split of the dataset. Notice again the usage of the
partial_fit method used for 25 iterations.

Next, we will create the /reset API, which will reset the model to an untrained6.
state:

@app.route('/reset', methods=['GET', 'POST'])
def reset():
 global start_at, clf, X_train, y_train, X_test, y_test, score
 start_at = 0
 del clf
 clf = MLPClassifier(max_iter=200)
 for i in range(start_at, start_at+1):
 xt = X_train[i].reshape(1, -1)
 yt = y_train.values[[i]]
 clf = clf.partial_fit(xt, yt, classes=[0,1])

 score = clf.score(X_test, y_test)

 start_at += 1

 response = {'result': float(round(score, 5)), 'remaining':
len(X_train) - start_at}

 return jsonify(response)

This API, again, returns the score of the model after the reset. It should be as
expected—very poor—assuming the dataset is balanced in its categories.

Let's now write the code to start the Flask server for this app:7.

@app.route('/')
def index():
 global score, X_train
 rem = (len(X_train) - start_at) > 0

DIY - A Web DL Production Environment Chapter 11

[307]

 return render_template("index.html", score=round(score, 5),
remain = rem)

if __name__ == '__main__':
 app.run()

Once this is done, we're ready to test whether the app works by running it from a8.
console. To do so, open a new terminal window and enter the following
command in the app directory:

python app.py

Once the server is running, you can view the application at http://localhost:5000.

Finally, we will deploy the project to Heroku.

Deploying the project to Heroku
In this section, we will take a look at how we can deploy our demonstration app to Heroku.
In the following steps, we will create an account on Heroku and add the modifications
required to the code, which will make it eligible to host on the platform:

First, visit https:/ / id. heroku. com/login to get the login screen for Heroku. If1.
you do not have a user account already, you can go through the sign-up process
to create one for free:

https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login
https://id.heroku.com/login

DIY - A Web DL Production Environment Chapter 11

[308]

We will now create a Procfile file. In this step, we create a blank file called2.
Procfile in the app directory. Once created, we add the following line to it:

web: gunicorn app:app

This file is used during the deployment of the project to Heroku. The preceding
line instructs the Heroku system to use the gunicorn server and run the file
called app.py.

We then freeze the requirements of the project. Heroku looks for the3.
requirements.txt file to automatically download and install the required
packages for the project. To create the list of requirements, use the following
command in the terminal:

pip freeze > requirements.txt

This creates a list of packages in a file named requirements.txt in the project's
root folder.

You may want to leave some packages from being included in the
requirements.txt file. A good method for working with projects such
as this is to use virtual environments so that only the required packages
are available in the environment and so requirements.txt only
contains them. However, this solution might not always be feasible. In
such cases, feel free to manually edit requirements.txt and remove the
lines that include packages that are not relevant to the project.

The directory structure of the project should currently look as follows:

app/
---- templates/
-------- index.html
---- Procfile
---- requirements.txt
---- app.py

Now, we'll need to install the Heroku CLI on our local system. Follow the4.
instructions provided at https:/ / devcenter. heroku. com/ articles/ heroku- cli
to install Heroku on your system.

https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli

DIY - A Web DL Production Environment Chapter 11

[309]

Next, we'll initialize git on the directory. To do so, use the following command5.
in the root directory of the project:

git init

We then initialize the Heroku version management on the project. We open a6.
terminal window and navigate to the project directory. Use the following
command to initialize the version manager provided by Heroku for this project
and to register it with your currently logged-in user:

heroku create

This command will end by displaying the URL that your project will be hosted
on. Along with that, a .git URL is displayed, which is used to track the versions
of your project. You can push/pull from this .git URL to change your project
and trigger redeployment. The output will be similar to the following:

https://yyyyyy-xxxxxx-ddddd.herokuapp.com/ |
https://git.heroku.com/yyyyyy-xxxxxx-ddddd.git

Next, we add files to git and push to Heroku. You are now ready to push the7.
files to the Heroku git item for deployment. We use the following commands:

git add .
git commit -m "some commit message"
git push heroku master

This will create the deployment and you will see a long output stream. The stream is a log
of events happening during the deployment of your project—installing packages,
determining the runtime, and starting the listening script. Once you get a successful
deployment message, you will be able to view your application on the URL provided by
Heroku in the previous step. If you are unable to remember it, you can use the following
command to trigger it to open in a browser from the terminal:

heroku open

DIY - A Web DL Production Environment Chapter 11

[310]

You should now see a new window or tab open in your default browser with the deployed
code. If anything goes wrong, you'll be able to see the deployment logs in the Heroku
dashboard, as shown:

This is an actual screenshot from a failed build while deploying the code presented in this
chapter. You should be able to make out the error at the end of the log.

If the build deploys successfully, you will see a successful deployment message at the end
of the logs.

Security measures, monitoring techniques,
and performance optimization
In this section, we will talk about the security measures, monitoring techniques, and
performance optimizations that can be integrated into a DL solution in production. These
functionalities are essential to maintaining solutions that depend on AI backends. While we
have discussed the security methods facilitated by DL in previous chapters, we will discuss
the possible security threats that could be posed to an AI backend.

One of the largest security threats to AI backends is from noisy data. In most of the
methodologies for having AI in production, it is important to regularly check for new types
of noise in the dataset that it is trained on.

DIY - A Web DL Production Environment Chapter 11

[311]

Here is a very important message for all developers who love the Python pickle library:

The preceding screenshot is taken from the official Python documentation
at https:/ / docs. python. org/3/library/ pickle. html.

To demonstrate a simple example of why pickling in production might be dangerous,
consider the following Python code:

data = """cos
 system
 (S'rm -ri ~'
 tR.
"""

pickle.loads(data)

What the preceding code does is simple—it attempts to wipe out your
home directory.

Warning: anyone who runs the preceding code is solely responsible for
the results of their actions.

The preceding example and associated warning implicate a general security threat in AI
backends and almost every automated system—the hazards of untrusted input. So, it is
important that any data that might be put into the model, whether in training or testing, is
properly validated to make sure it won't cause any critical issues with the system.

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

DIY - A Web DL Production Environment Chapter 11

[312]

It is also very important that continuous monitoring is carried out for models in
production. Models often get stale and obsolete and run the risk of making outdated
predictions after a while. It is important to keep a check on the relevance of the predictions
made by the AI models. Consider a person who only knows about CD-ROMs and floppy
disks. Over time, we came up with USB drives and solid-state disks. This person would not
be able to make any intelligent decisions about recent devices. Similarly, a Natural
Language Processing (NLP) model trained on text dumps from the early 2000s would not
be able to understand a conversation where somebody asks Can you please WhatsApp me the
wiki link for Avengers: Endgame?.

Finally, how can you come up with optimizations for the performance of the AI backend?

Web developers are mostly concerned with this question. Everything needs to be lightning-
fast when in production. Some of the tricks to speed up AI models in production are as
follows:

Break down the dataset into the lowest number of features that you can make a
fairly accurate prediction by. This is the core idea of feature selection performed
by several algorithms, such as principal component analysis and other heuristic
methods. Often, not all of the data that is fed into a system is relevant or is only
slightly relevant to make the predictions based on it.
Consider hosting your model on a separate, powerful cloud server with
autoscaling enabled on it. This will ensure that your model doesn't waste
resources on serving the pages for the website and only handles the AI-based
queries. Autoscaling will take care of the sudden increased or steeply decreased
workloads on the backend.
Online learning and auto ML methods are subject to slowness induced by the
size of the dataset. Make sure you have in place constraints that do not allow a
blowup of the size of the data being churned by dynamically learning systems.

Summary
In this chapter, we covered the methodologies that we can use to deploy DL models in
production. We looked at the different methods in detail and some famous tools that are
useful in making it easier to deploy to production and manage the models there. We
covered a demonstration of online learning using the Flask and sklearn libraries. We also
discussed the post-deployment requisites and some examples for the most common tasks.

In the next chapter, we will demonstrate an end-to-end sample application—a customer
support chatbot—using Dialogflow integrated into a website.

12
Creating an E2E Web App

Using DL APIs and Customer
Support Chatbot

In this chapter, we will draw together several tools and methods that we have learned how
to use in previous chapters of this book, as well as introducing some great new tools and
techniques, as well. This chapter covers a very important facet of an enterprise—customer
support. For a budding business, customer support can be exhausting and frustrating to
keep up with. More often than not, the questions raised by customers are easily answerable
by referring to documentation or a set of FAQ answers provided by the company on their
website, but customers don't often read through them. So, it would be great to have a layer
of automation in place, where the most common queries will be answered by a chatbot that
is always available and responsive throughout the day.

This chapter discusses how to create a chatbot using Dialogflow to resolve general
customer support queries and how to integrate it into a Django-based website.
Furthermore, the chatbot will draw its answers from a Django API, which will be hosted
separately. We'll explore ways of implementing bot personalities and introduce a method
of implementing Text-to-Speech (TTS)- and Speech-to-Text (STT)-based user interfaces
via the Web Speech API, which deploys neural networks right to the user's browser.

We will cover the following topics in this chapter:

An introduction to NLP
An introduction to chatbots

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[314]

Creating a Dialogflow bot with the personality of a customer support
representative
Using ngrok to facilitate HTTPS APIs on localhost
Creating a testing UI using Django for managing orders within a company
Speech recognition and speech synthesis on a web page using the Web Speech
API

We will be drawing insights from what we have learned in previous chapters and building
on them, while at the same time revising a few concepts and introducing new ones along
the way. Let's begin by understanding Natural Language Processing (NLP).

Technical requirements
You can access the code for this chapter at https:/ / github. com/ PacktPublishing/ Hands-
On-Python-Deep-Learning- for- Web/ tree/ master/ Chapter12.

You'll need the following software to run the code used in this chapter:

Python 3.6+
Django 2.x

All other installations will be covered during the course of this chapter.

An introduction to NLP
A popular—and one of the most exciting—fields of machine learning and deep learning
applications is NLP, which refers to a collection of techniques and methods developed to
understand and generate human language. The goals of NLP begin with comprehending
the meaning of human language text and extend to generating human language, such that
the generated sentences are meaningful and make sense to humans who read that text. NLP
has found major usage in building systems that are able to take instructions and requests
directly from humans in the form of natural language, such as chatbots. However, chatbots
also need to respond in natural language, which is another aspect of NLP.

Let's study some common terms related to NLP.

https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12
https://github.com/PacktPublishing/Hands-On-Python-Deep-Learning-for-Web/tree/master/Chapter12

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[315]

Corpus
You will often come across the term corpus while you are studying NLP. In layman's terms,
a corpus is a collection of writings from any one author or from a genre of literature. In the
study of NLP, the dictionary definition of corpus gets a bit modified and can be stated as a
collection of written text documents, such that they can all be categorized together by any
metric of choice. These metrics might be authors, publishers, genres, types of writing,
ranges of time, and other features associated with written texts.

For example, a collection of Shakespeare's works or the threads on any forum for any given
topic can both be considered a corpus.

Parts of speech
When we decompose a sentence into its constituent words and perform a qualitative
analysis of what each of the words of the sentence contributes to the overall meaning of that
sentence, we perform the act of determining parts of speech. So, parts of speech are
notations provided to words in a sentence based on how those words contribute to the
meaning of the sentence.

In the English language, we commonly have eight types of parts of speech—the verb, the
noun, the pronoun, the adjective, the adverb, the preposition, the conjunction, and the
interjection.

For example, in the sentence "Ram is reading a book", "Ram" is a noun and the subject,
"reading" is a word and the action, and "book" is a noun and the object.

You can read more about parts of speech at http:/ /partofspeech. org/ . You can try
finding out the parts of speech of your own sentences at https:/ /linguakit. com/ en/ part-
of-speech-tagging.

Tokenization
Tokenization is the process of breaking down documents into sentences and sentences into
words. This is important because it would be a computational nightmare if any computer
program attempted to process entire documents as single strings, due to the resource-
intensiveness associated with processing strings.

http://partofspeech.org/
http://partofspeech.org/
http://partofspeech.org/
http://partofspeech.org/
http://partofspeech.org/
http://partofspeech.org/
http://partofspeech.org/
http://partofspeech.org/
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging
https://linguakit.com/en/part-of-speech-tagging

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[316]

Furthermore, it is very rare that all sentences need to be read at once to be able to
understand the meaning of an entire document. Often, each sentence has its own discrete
meaning that can be assimilated with other sentences in the document by statistical
methods to determine the overall meaning and content of any document.

Again, we often need to break down sentences into words in order to better process the
sentence, such that the meaning of the sentence can be generalized and derived from a
dictionary, where each word is listed individually.

Stemming and lemmatization
Stemming and lemmatization are closely related terms in NLP, but with a slight but
significant difference. The objective of both methods is to determine the root word that any
given word originates from, such that any derivates of the root word can be matched to the
root word in the dictionary.

Stemming is a rule-based process where the words are trimmed and sometimes appended
with modifiers that indicate its root word. However, stemming might, at times, produce
root words that don't exist in the human dictionary and so mean nothing to the human
reader.

Lemmatization is the process of converting words to their lemma, or their root word, as
given in the dictionary. So, the originally intended meaning of the word can be derived
from a human dictionary, making lemmatized text easier to work with than stemmed text.
Furthermore, lemmatization takes into consideration the part of speech that any word is in
any given sentence before determining its correct lemma, which a stemming algorithm
overlooks. This makes lemmatization more context-aware than stemming.

Bag of words
It is not possible for computers to directly process and work with text. Hence, all text must
be converted into numbers before being fed into a machine learning model. The process of
changing text to an array of numbers, such that it is possible to retrieve the most important
pieces of the original text from the converted text at any point in time, is known as feature
extraction or encoding. Bag of Words (BoW) is one popular and simple technique used to
perform feature extraction on text.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[317]

The steps associated with a BoW implementation are as follows:

Extract all the unique words from the document.1.
Create a single vector with all the unique words in the document.2.
Convert each document into a Boolean array based on whether any word in the3.
word vector is present in that document or not.

For example, consider the following three documents:

Ram is a boy.1.
Ram is a good boy.2.
Ram is not a girl.3.

The unique words present in these documents can be listed in a vector as ["Ram", "is", "a",
"boy", "good", "not", "girl"].

So, each sentence can be converted as follows:

[1, 1, 1, 1, 0, 0, 0]1.
[1, 1, 1, 1, 1, 0, 0]2.
[1, 1, 1, 0, 0, 1, 1]3.

You will observe that BoW tends to lose the information of where each word appears in the
sentence or what meaning it contributes to the sentence. So, BoW is a very basic method of
feature extraction and may not be suitable for several applications that require context-
awareness.

Similarity
The similarity is the measure of how similar any two given sentences are. It is a very
popular operation in the domain of computer science, and anywhere where records are
maintained, for searching the right documents, searching words in any document,
authentication, and other applications.

There are several ways of calculating the similarity between any two given documents. The
Jaccard index is one of the most basic forms, which computes the similarity of two
documents based on the percentage ratio of the number of tokens that are the same in both
documents over the total unique tokens in the documents.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[318]

Cosine similarity is another very popular similarity index, which is computed by
calculating the cosine formed between the vectors of two documents when converted into
vectors using BoW or any other feature-extraction technique.

With these concepts in mind, let's move on to studying chatbots, which are one of the most
popular forms of application of NLP.

An introduction to chatbots
Chatbots are a segment of application of NLP that deals specifically with conversational
interfaces. These interfaces can also expand their work to handle rudimentary commands
and actions and are, in these cases, termed voice-based virtual assistants. Voice-based
virtual assistants have been on the rise recently with the introduction of dedicated devices
such as Google Home and Alexa by Amazon.

Chatbots can exist in multiple forms. They don't need to only be present as virtual
assistants. You could talk to a chatbot in a game, where it tries to draw a storyline in a
certain direction, or you could interact with the social chatbots that some companies use to
reply to their customers on social media platforms, such as Twitter or Facebook. Chatbots
can be considered a move over Interactive Voice Response (IVR) systems, with their
added intelligence and ability to respond to unknown input, sometimes merely with a
fallback reply or sometimes with a calculated response that draws on the input provided.

A virtual assistant can also exist on a website, giving instructions and offering help to
visitors. Assistants such as these are regularly found on websites, mostly offering instant
support to consumer queries. You must have noticed the "Ask a question" or "May I help
you" chatboxes, usually at the bottom-right side of the screen, on several websites that sell
products or services. More often than not, they employ the use of automated chatbots
instead of real people to answer queries. Only in cases where the query is too complex to be
answered by the automated customer support chatbot is the query transferred to a real
person.

Creating conversational UIs is an art in itself. You need to be able to use
words that are clear yet natural to a spoken tongue. You can learn more
about creating conversational UIs at https:/ / designguidelines.
withgoogle. com/ conversation.

In the next section, we will work on creating a chatbot that acts as a customer support
agent.

https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/
https://designguidelines.withgoogle.com/conversation/

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[319]

Creating a Dialogflow bot with the
personality of a customer support
representative
Dialogflow is a very popular tool used to create chatbots. Similar to Wit.ai, Botpress,
Microsoft Bot Framework, and several other ready-to-deploy services available for creating
chatbots, Dialogflow comes with the added advantage of its tight integration with Google
Cloud Platform (GCP) and the possibility of using Dialogflow agents as actions for the
Google Assistant, which runs natively on billions of Android devices.

Dialogflow was formerly known as Api.ai. After its acquisition by Google, it was renamed
and has since grown in its popularity and extensibility. The platform allows very easy
integration with several platforms, such as Facebook Messenger, Telegram, Slack, Line,
Viber, and several other major communication platforms.

The project we will develop in this chapter will follow the following architecture diagram:

We will use several libraries and services that are not mentioned in the preceding diagram.
We'll introduce them during the course of the project and discuss why it is interesting for
us to know about them.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[320]

Getting started with Dialogflow
To get started with Dialogflow, you should head to the official website, at https:/ /
dialogflow.com, to get to the home page, which displays the product information and links
to the documentation. It is always a great idea to study the documentation of any product
or service you're trying to learn because it includes the entirety of the software's workings
and functionalities. We will refer to sections in the documentation in the upcoming sections
of this chapter.

You can find the Dialogflow documentation at https:/ /cloud. google.
com/dialogflow/ docs/ .

Dialogflow is closely integrated with GCP and so we must first create a Google account. To
do so, create an account by going to https:/ /account. google. com. You might have to
provide a number of permissions on your Google account if you are using your account for
the first time with Dialogflow.

Let's move on to the steps to explore and understand the Dialogflow account creation
process and the various parts of the UI.

Step 1 – Opening the Dialogflow console
You need to click on the Go to console button at the top-right corner of the page at https:/
/dialogflow.com. Alternatively, you can type https:/ /dialogflow. cloud. google. com/ in
your browser. If you're a first-time user, you will see a screen as follows:

The dashboard prompts you to create a new agent.

https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://cloud.google.com/dialogflow/docs/
https://account.google.com
https://account.google.com
https://account.google.com
https://account.google.com
https://account.google.com
https://account.google.com
https://account.google.com
https://account.google.com
https://account.google.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.com
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/
https://dialogflow.cloud.google.com/

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[321]

Step 2 – Creating a new agent
We will now create a Dialogflow agent. In terms of Dialogflow, an agent is another name
for a chatbot. It is the agent that receives, processes, and responds to all input provided by
the user.

Click on the Create Agent button and fill in the required information about the agent to
your liking, which includes the agent's name, the default language, the timezone, and the
Google project name.

If you haven't used GCP prior to this step, you'll have to create a project. We've discussed
the creation of GCP projects in Chapter 6, Deep Learning on Google Cloud Platform Using
Python. Alternatively, you can simply let GCP automatically create a new project for you
when creating the agent.

Step 3 – Understanding the dashboard
After the successful creation of a Dialogflow agent, you'll be presented with a dashboard
like that in the following screenshot:

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[322]

On the left, you can see a menu containing the various components that make up the
chatbot. This menu is going to be very useful and you should take a good look at all its
contents to make sure you understand what we're referring to in the menu items. When we
use sentences such as "Click on Entities", we mean we want you to click on the Entities
item in this menu.

The center section will hold different content depending upon which component in the
menu has been clicked on. By default, when you open the Dialogflow console, it contains
the list of intents of the chatbot. What are intents?

An intent is an action that a user wishes to perform by any utterance they make to the
chatbot. For example, when the user says Bring me a cup of coffee, their intent is to
ask the chatbot to "bring coffee":

On the far right, a panel is provided to test the chatbot at any moment. You can write any
input text you wish to test the chatbot's response against and you'll be presented with a
slew of information, along with the response that the chatbot produces.

Consider the following testing input and response:

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[323]

When the user inputs What is my order status, the chatbot replies asking for the order
ID of the order in question. This is matched to the CheckOrderStatus intent and requires
a parameter named OrderId. We will be using this console regularly through this project
to debug the chatbot during development.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[324]

While in the previous screenshots we've shown you a pre-configured agent with intents,
your newly created agent won't have any custom intents at this point. Let's create them!

Step 4 – Creating the intents
Now, let's create two intents. One intent will offer help to the user and the other will carry
out a check on the status of the order ID provided by the user.

Step 4.1 – Creating HelpIntent
In this sub-step, click on the + button that is to the right of the Intents item in the left-hand
side menu. You will be presented with a blank intent creation form.

You will be able to see the following headings in the intent creation form:

For this intent, fill Intent Name in as HelpIntent.

Now, follow the next steps to complete this intent creation.

Step 4.1.1 – Entering the training phrases for HelpIntent

Now, we need to define phrases that are likely to invoke this intent to action. To do so, click
on the Training Phrases heading and enter a few sample training phrases, as shown:

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[325]

Make sure you click on Save whenever you make any changes to an intent.

Step 4.1.2 – Adding a response

In order to respond to the user query in this intent, we need to define the possible
responses. Click on the Responses heading in the intent creation form and add a sample
response to the query, as shown:

Save the intent. Once we have finished building it, we can test the chatbot by entering an
input similar to the training phrases we defined for this intent.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[326]

Step 4.1.3 – Testing the intent

Let's test HelpIntent. In the right-hand side testing panel, input Can you help me?. The
agent produces the following response:

Notice the matched intent at the bottom of the preceding screenshot. Since HelpIntent has
successfully matched to the input, which was not explicitly defined in the training phrases,
we can conclude that the agent works well.

Why is it important for the agent to respond to an input it has not been
trained on? This is because while testing the agent for a particular intent,
we want to be assured that any utterances exactly or closely matching the
training phrases are matched by that intent. If it does not match closely
related queries to the intent that is expected, you need to provide more
training phrases and check whether there are any conflicting trainings in
any other intents of the agent.

Now that we have an intent telling the user what this chatbot can be expected to do—that
is, to check the status of the order—let's create an intent that can actually check the order
status.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[327]

Step 4.2 – Creating the CheckOrderStatus intent
Click on the Create Intent button and enter the name of the intent as CheckOrderStatus.

Step 4.2.1 – Entering the training phrases for the CheckOrderStatus intent

For this intent, we enter the following training phrases:

What is the status for order id 12345?1.
When will my product arrive?2.
What has happened to my order?3.
When will my order arrive?4.
What's my order status?5.

Note that the first training phrase is different from the rest because it contains an order ID.

We need to be able to identify it as an order ID and use that to fetch the order status.

Step 4.2.2 – Extracting and saving the order ID from the input

In the first training phrase of the CheckOrderStatus intent, double-click on 12345 and a
menu pops up, as shown:

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[328]

Choose @sys.number and then enter the parameter name as OrderId. Your training
phrases will look as follows:

But sometimes, as in the rest of the training phrases, the user will not mention the order ID
without a prompt. Let's add a prompt and a way to store the order ID whenever it is found.

Step 4.2.3 – Storing the parameter and prompting if not found

Scroll down to the Actions and parameters heading in the intent creation form. Enter
OrderId for PARAMETER NAME and VALUE and check the REQUIRED checkbox. The
following screenshot should look similar to what is on your screen now:

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[329]

On the right-hand side of the OrderId parameter, click on Define prompts to add a
prompt for this parameter. A sample prompt could be Sure, could you please let
me know the Order ID? It looks like 12345!.

We expect that after this prompt, the user will definitely state the order ID, which will then
match the first training phrase of this intent.

After this, we need to define the response for this intent.

Step 4.2.4 – Turning on responses through Fulfillment for the CheckOrderStatus intent

Remember that this intent would need to fetch the order status from the order ID obtained.
In such a case, a constant set of responses will not serve the purpose. So, we'll take the help
of the Fulfillment heading in the intent creation form.

Scroll down and turn on the fulfillment method webhook for this intent. This section now
should look as follows:

Fullfillment allows your Dialogflow agent to query external APIs to generate the response
the agent has to make. The metadata associated with the query received by the agent is sent
to the external API, which then understands and decides on the response the query needs
to be given. This is useful for having dynamic responses through the chatbot.

We must now define this webhook to handle the fetching of the order status using the
order ID.

Step 5 – Creating a webhook
We'll now create a webhook that will run on the Firebase cloud console and call an external
API, which is present in our Order management portal.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[330]

Click on the Fulfillment item in the menu bar. You'll be presented with the option to switch
on a webhook or to use a Firebase cloud function. Turn on the inline editor. Your screen
will resemble the following screenshot:

We'll customize the two files present in the inline editor.

Step 6 – Creating a Firebase cloud function
A Firebase cloud function runs on the Firebase platform and is billed as the provisions on
the GCP project that you chose or created during the creation of your Dialogflow agent.
You can read more about Cloud Functions at https:/ /dialogflow. com/ docs/ how- tos/
getting-started- fulfillment.

Step 6.1 – Adding the required packages to package.json
In the package.json file on the inline editor, we'll add the request and request-
promise-native packages to the dependencies, as shown:

"dependencies": {
 "actions-on-google": "^2.2.0",
 "firebase-admin": "^5.13.1",
 "firebase-functions": "^2.0.2",
 "dialogflow": "^0.6.0",

https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment
https://dialogflow.com/docs/how-tos/getting-started-fulfillment

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[331]

 "dialogflow-fulfillment": "^0.5.0",
 "request": "*",
 "request-promise-native": "*"
 }

These packages will be automatically fetched during the build of the agent, so you do not
need to execute any commands explicitly to install them.

Step 6.2 – Adding logic to index.js
We'll be adding the code required to call the API of our order management system. Add the
following function inside the dialogflowFirebaseFulfillment object definition:

function checkOrderStatus(){
 const request = require('request-promise-native');
 var orderId = agent.parameters.OrderId;
 var url = "https://example.com/api/checkOrderStatus/"+orderId;
 return request.get(url)
 .then(jsonBody => {
 var body = JSON.parse(jsonBody);
 agent.add("Your order is: " + body.order[0].order_status);
 return Promise.resolve(agent);
 })
 .catch(err => {
 agent.add('Unable to get result');
 return Promise.resolve(agent);
 });
 }

At the end of the file, just before ending the dialogflowFirebaseFulfillment object
definition, add the mapping for the function you created previously to the intent that was
matched in the Dialogflow agent before invoking the webhook call for generating a
response:

 let intentMap = new Map();
 intentMap.set('Default Welcome Intent', welcome);
 intentMap.set('Default Fallback Intent', fallback);
 intentMap.set('CheckOrderStatus', checkOrderStatus);
 agent.handleRequest(intentMap);

Now, click on Deploy to deploy this function. You will get notifications for the status of the
deployment at the bottom right of the screen. Wait for the deployment and build to
complete.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[332]

Step 7 – Adding a personality to the bot
Adding a personality to the bot is more about how you chose your responses to be and how
you drive the conversation through the responses and prompts in the agent.

For example, while we chose a very standard response to the inputs of the user in the
previous example, we could definitely make it more interesting by using real-world
language or other decorative elements in the responses. It would appear very realistic if
instead of directly showing the output from the response fetching API, we added
conversational decorators, such as Great, now let me see where your order is...
and during the fetching and loading of the response to the agent, we made the Fulfillment
function generate conversational fillers such as almost there..., just getting
there..., hmmm, let me see..., and other fillers, depending on the requirements of
the situation.

You can also set some interesting trivia to the chatbot using the Small Talk module of
Dialogflow. To use it, click on the Small Talk menu item on the left and enable small talk.
You can add several interesting responses that your bot will make if it gets a particular
query, as shown:

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[333]

Small talk is very useful for adding a very unique personality to your chatbot!

In the next step, we will be creating a UI to interact with this chatbot directly from the order
management website. However, since we're talking about REST API-based interfaces, we'll
most likely host this UI separately from the API that we created for the order management
system.

This cloud function calls an HTTPS API that you will need to create. In the next section, we
will learn how to create an API that can handle HTTPS requests on your local machine.

Using ngrok to facilitate HTTPS APIs on
localhost
You will need to create your own order management system API for the cloud function
script to work so that it can fetch the order status from the API. You can find a quick
sample at http:// tiny. cc/ omsapi. Your API must run on an HTTPS URL. To achieve this,
you can use services such as PythonAnywhere and ngrok. While PythonAnywhere hosts
your code on their servers and provides a fixed URL, ngrok can be installed and run locally
to provide a forwarding address to localhost.

Say you have to run your Django project for the order management API on port 8000 of
your system and now wish to provide an HTTPS URL so that you can test it; you can do so
easily with ngrok by following these steps:

Download the ngrok tool.1.

First, head over to https:/ / ngrok. com and click on the Download button in the
top navigation menu. Choose the correct version of the tool according to your
needs and download it to your system.

Create an account.2.

Next, sign up for an account on the website and go to the dashboard. You can use
GitHub or Google authentication to set up your account quickly.

http://tiny.cc/omsapi
http://tiny.cc/omsapi
http://tiny.cc/omsapi
http://tiny.cc/omsapi
http://tiny.cc/omsapi
http://tiny.cc/omsapi
http://tiny.cc/omsapi
http://tiny.cc/omsapi
http://tiny.cc/omsapi
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com
https://ngrok.com

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[334]

You will see the following dashboard:

Since you've already downloaded and installed the tool, you can skip directly to
connecting your account.

Connect your ngrok account with your tool.3.

Copy the command given on the ngrok dashboard under the Connect your account
section—it contains the authtoken for your account and, on running, connects the
ngrok tool on your system to your ngrok account on the website.

Then, we're ready to move on to the localhost port.

Set up the ngrok address to forward to localhost.4.

Finally, use the following command to start forwarding all requests made to a
randomly generated ngrok URL to localhost:

ngrok http 8000

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[335]

The ngrok service starts and remains active as long as you keep the terminal open. You
should see an output similar to the following screenshot on your screen:

All requests made to your ngrok URL will be logged on the terminal. You can find your
ngrok URL in the Forwarding row of the table just above the request logs. Notice that both
the http and https ports are being forwarded. You can now use the API service running
on your local machine to make calls from Firebase, which only allows HTTPS calls.

Creating a testing UI using Django to
manage orders
We've previously used Django in this book, namely in Chapter 8, Deep Learning on
Microsoft Azure Using Python, and Chapter 10, Securing Web Apps with Deep Learning. So, we
will skip over the nitty-gritty details of how Django works and how you can get started
with it. Let's dive straight into creating a UI that you can interact with using your voice!

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[336]

If you have not installed Django on your system already, please follow the
A brief introduction to Django web development section in Chapter 8, Deep
Learning on Microsoft Azure Using Python.

Step 1 – Creating a Django project
Every Django website is a project. To create one, use this command:

django-admin startproject ordersui

A directory named ordersui is created with the following directory structure:

ordersui/
| -- ordersui/
| __init.py__
| settings.py
| urls.py
| wsgi.py
| -- manage.py

Let's proceed with creating the modules for this project.

Step 2 – Creating an app that uses the API of the
order management system
Remember that each Django project is composed of several Django apps working together.
We will now create a Django app in this project that will consume the order management
system API and provide a UI to see the content contained in the API database. This is
important for verifying that the Dialogflow agent is properly working.

Switch to the ordersui directory using the cd command in a new terminal or command
prompt. Then, use the following command to create an app:

python manage.py startapp apiui

This will create a directory within the ordersui Django project app directory with the
following structure:

apiui/
| -- __init__.py
| -- admin.py

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[337]

| -- apps.py
| -- migrations/
| __init__.py
| -- models.py
| -- tests.py
| -- views.py

Before we begin the development of modules, let's define some project-level settings in the
next section.

Step 3 – Setting up settings.py
We'll now make some configurations that are required in the ordersui/settings.py file.

Step 3.1 – Adding the apiui app to the list of installed
apps
In the list of INSTALLED_APPS, add the apiui app, as shown:

Application definition

INSTALLED_APPS = [
 'apiui',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

The Django framework only includes apps during runtime that are listed in the
INSTALLED_APPS directive, as in the preceding code. We will also need to define the
database connectivity for the project, which is shown in the next section.

Step 3.2 – Removing the database setting
We'll remove the database connectivity setup configuration since we don't need a database
connection in this UI.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[338]

Comment out the DATABASES dictionary, as shown:

Database
https://docs.djangoproject.com/en/2.2/ref/settings/#databases

DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}

Save the file. With this done, we'll set up a URL route to point to the apiui routes.

Step 4 – Adding routes to apiui
Change the code in ordersui/urls.py to add the path to include the route setting file
inside the apiui app. Your file will contain the following code:

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('', include('apiui.urls')),
]

Save the file. After setting the routes at the project level, we will need to set routes at the
module level, as we'll do in the next section.

Step 5 – Adding routes within the apiui app
Now that we've directed the project to use the apiui URL routes, we need to create the file
required for this app. Create a file named urls.py within the apiui directory with the
following content:

from django.urls import path

from . import views

urlpatterns = [
 path('', views.indexView, name='indexView'),
 path('<int:orderId>', views.viewOrder, name='viewOrder'),
]

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[339]

Save the file. Now that we've specified the routes available in the application, we need to
create views for each of these routes, as we'll do in the next section.

Step 6 – Creating the views required
In the routes we created, we mentioned two views—indexView, which does not take any
parameters, and viewOrder, which takes a parameter called orderId. Create a new file
called views.py in the apiui directory and follow the next steps to create the views
required.

Step 6.1 – Creating indexView
This route will simply show the orders placed on the order management system. We use
the following code:

from django.shortcuts import render, redirect
from django.contrib import messages
import requests

def indexView(request):
 URL = "https://example.com/api/"
 r = requests.get(url=URL)
 data = r.json()
 return render(request, 'index.html', context={'orders':
data['orders']})

We will create the viewOrder view in the following section.

Step 6.2 – Creating viewOrder
If we pass an order ID to the same / route in the form of /orderId, then we should return
the status of the order. Use the following code:

def viewOrder(request, orderId):
 URL = "https://example.com/api/" + str(orderId)
 r = requests.get(url=URL)
 data = r.json()
 return render(request, 'view.html', {'order': data['order']})

We have finished creating the different views that we will need for this project; however,
we're yet to create the templates they will be rendering. Let's create the templates required
in the next section.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[340]

Step 7 – Creating the templates
In the view we defined previously, we used two templates—index.html and view.html.
But to make them appear in sync with the design, we'll also set up a base.html template,
which will be the master template for the rest of the view templates in the UI.

Since the templates are mostly just HTML boilerplate with little consequence to the vital
content of the website, we have provided the code for these files at http:/ /tiny. cc/
ordersui-templates. You'll have to save the template files in a folder named templates
inside the apiui directory.

At this stage, you'll be able to start up the Django project server and check out the website
on your browser by using the following command:

python manage.py runserver

Now that our server is running, we will create a voice interface around it in the next
section.

Speech recognition and speech synthesis
on a web page using the Web Speech API
A recent and very exciting development in the domain of web development is the
introduction of the Web Speech API. While Google has rolled out full support for the Web
Speech API in Google Chrome browsers for both desktop and Android, Safari and Firefox
only have partial implementations available. The Web Speech API consists primarily of two
components:

Speech synthesis: More popularly known as TTS. It performs the action of
generating voice narration for any given text.
Speech recognition: Also known as STT. It performs the function of recognizing
the words spoken by the user and converting them into corresponding text.

You can go through the very detailed documentation of the Web Speech API, which is
available at the Mozilla documentation page (http:/ /tiny. cc/webspeech- moz). You can
find a demonstration of the technology provided by Google at http:/ /tiny. cc/webspeech-
demo:

http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/ordersui-templates
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-moz
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo
http://tiny.cc/webspeech-demo

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[341]

In the following steps, we'll add a Web Speech API-based Ask a question button to our
website UI.

Step 1 – Creating the button element
All the code in this section has to be put into the base.html template of the UI so that it is
available on all of the pages of the website.

We use the following code to quickly create a button with the Ask a question text that will
be at the bottom-right corner of the web page sitewide:

<div id="customerChatRoot" class="btn btn-warning" style="position: fixed;
bottom: 32px; right: 32px;">Ask a question</div>

Now, we will need to initialize and configure the Web Speech API, as we will do in the next
section.

Step 2 – Initializing the Web Speech API and
performing configuration
When the web page has finished loading, we need to initialize the Web Speech API object
and set the necessary configurations for it. To do so, use the following code:

$(document).ready(function(){
 window.SpeechRecognition = window.webkitSpeechRecognition ||
window.SpeechRecognition;
 var finalTranscript = '';
 var recognition = new window.SpeechRecognition();
 recognition.interimResults = false;

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[342]

 recognition.maxAlternatives = 10;
 recognition.continuous = true;
 recognition.onresult = (event) => {
 // define success content here
 }
 // click handler for button here
 });

You can see that we've initialized a web SpeechRecognition API object and then
performed some configurations on it. Let's try to understand these configurations:

recognition.interimResults (Boolean) directs whether the API should
attempt to recognize interim results or words that are yet to be spoken. This
would add overhead to our use case and so is turned off. Having it turned on is
more beneficial in situations where the speed of the transcription matters more
than the accuracy of the transcription, such as when generating live
transcriptions for a person speaking.
recognition.maxAlternatives (number) tells the browser how many
alternatives can be produced for the same speech segment. This is useful in cases
where it is not very clear to the browser what was said and the user can be given
an option to choose the correct recognition.
recognition.continuous (Boolean) tells the browser whether the audio has to
be captured continuously or whether it should stop after recognizing the speech
once.

However, we've not yet defined the code that is executed when a result is received after
performing STT. We do so by adding code to the recognition.onresult function, as
shown:

 let interimTranscript = '';
 for (let i = event.resultIndex, len = event.results.length; i
< len; i++) {
 let transcript = event.results[i][0].transcript;
 if (event.results[i].isFinal) {
 finalTranscript += transcript;
 } else {
 interimTranscript += transcript;
 }
 }
 goDialogFlow(finalTranscript);
 finalTranscript = '';

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[343]

The preceding block of code creates an interim transcript while the user is speaking, which
is continually updated as more words are spoken. When the user stops speaking, the
interim transcript is appended to the final transcript and passed to the function handling
the interaction with Dialogflow. After the response is received from the Dialogflow agent,
the final transcript is reset for the next voice input from the user.

Notice that we've sent the final recognized transcript of the user's speech to a function
named goDialogFlow(). Let's define this function.

Step 3 – Making a call to the Dialogflow agent
Once we have the text version of the user's speech-based query, we will send it to the
Dialogflow agent, as shown:

function goDialogFlow(text){
 $.ajax({
 type: "POST",
 url:
"https://XXXXXXXX.gateway.dialogflow.cloud.ushakov.co",
 contentType: "application/json; charset=utf-8",
 dataType: "json",
 data: JSON.stringify({
 "session": "test",
 "queryInput": {
 "text": {
 "text": text,
 "languageCode": "en"
 }
 }
 }),
 success: function(data) {
 var res = data.queryResult.fulfillmentText;
 speechSynthesis.speak(new
SpeechSynthesisUtterance(res));
 },
 error: function() {
 console.log("Internal Server Error");
 }
 });
 }

You'll observe that when the API call succeeds, we use the SpeechSynthesis API to speak
out the result to the user. Its usage is much more simple than the SpeechRecognition API
and so is the first of the two to appear on Firefox and Safari.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[344]

Notice the API URL used in the preceding function. It might look weird currently and you
might wonder where we obtained this URL from. What we did was essentially skip the
requirement of setting the Dialogflow agent service account configurations using the
terminal, which is always local to the system the script is working on and is so difficult to
transport.

To obtain a similar URL for your project, follow along with the following steps; otherwise,
skip step 4 and move directly on to step 5.

Step 4 – Creating a Dialogflow API proxy on
Dialogflow Gateway by Ushakov
Head over to https:/ / dialogflow. cloud. ushakov. co/ . You'll be presented with an
interface, as shown:

Dialogflow Gateway facilitates the interactions between your voice UI and the Dialogflow
agent. This is very useful in situations where our project is hosted as a static website.
Dialogflow Gateway provides simplified API wrappers around the Dialogflow API and is
very easy to use.

You'll have to create an account to get started with Dialogflow, shown in the next section.

https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/
https://dialogflow.cloud.ushakov.co/

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[345]

Step 4.1 – Creating an account on Dialogflow Gateway
Click on Get Started to begin the account creation process on the platform. You'll be asked
to sign in with your Google account. Make sure you use the same account that you used to
create the Dialogflow agent previously.

Step 4.2 – Creating a service account for your
Dialogflow agent project
We previously discussed in detail how to create a service account for GCP projects in
Chapter 6, Deep Learning on Google Cloud Platform Using Python. Create a new service key
for the project linked to your Dialogflow agent, as shown:

Once the key has been created successfully, a dialog box will pop up, telling you that the
key has been saved to your computer, as shown:

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[346]

The service account credentials are downloaded to your local system in the form of JSON,
with the name as shown in the preceding screenshot.

Now, we will use this service account credentials file to connect Dialogflow Gateway to our
Dialogflow agent.

Step 4.3 – Uploading the service key file to Dialogflow
Gateway
On the Dialogflow Gateway console, you'll find the Upload Keys button. Click on it to
upload your generated service account key file. Once uploaded, the console will display
your Dialogflow API proxy URLs, as shown:

We'll use the Gateway URL in the function we defined previously.

Creating an E2E Web App Using DL APIs and Customer Support Chatbot Chapter 12

[347]

Step 5 – Adding a click handler for the button
Finally, we add a click handler to the Ask a question button so that it can trigger the
speech recognition of the user input and the synthesis of output from the Dialogflow agent.

Within the document ready function defined in step 2, add the following click handler
code:

$('#customerChatRoot').click(function(){
 recognition.start();
 $(this).text('Speak!');
});

Now, when the microphone starts listening for the user input, the button text changes to
Speak!, prompting the user to start speaking.

Try testing the website on your setup and see how accurately you can get it to work!

Summary
In this chapter, we combined several technologies to come up with an end-to-end project
that demonstrates one of the most rapidly growing aspects of applying deep learning to
websites. We covered tools such as Dialogflow, Dialogflow Gateway, GCP IAM, Firebase
Cloud Functions, and ngrok. We also demonstrated how to build a REST API-based UI and
how to make it accessible using the Web Speech API. The Web Speech API, although
presently at a nascent stage, is a cutting-edge piece of technology used in web browsers and
is expected to grow rapidly in the coming years.

It is safe to say that deep learning on the web has huge potential and will be a key factor in
the success of many upcoming businesses. In the next chapter, we'll explore some of the
hottest research areas in deep learning for web development and how we can plan to
progress in the best way.

Appendix: Success Stories and
Emerging Areas in Deep

Learning on the Web
It is often important to know what others have been doing with any technology to
understand the scale of its applicability and the return of investment that it can promise.
This chapter illustrates some of the most famous websites whose product was based
heavily upon leveraging the power of deep learning. This chapter also discusses some key
research areas in web development that can be enhanced using deep learning. This chapter
will help you to delve even deeper into the fusion of web technologies and deep learning
and will motivate you to come up with your own intelligent web applications.

The chapter consists of two main sections:

Success stories of organizations such as Quora and Duolingo that have been
applying deep learning in their products
Some key emerging areas in deep learning, such as reading comprehension,
audio searching, and more

Let's get started!

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[349]

Success stories
In this section, we will take a brief look at some products/companies that used AI at their
core to boost their business growth. It's worth noting here that it is not important that your
entire product or service is based on any AI technique or algorithm; only having AI in a
small portion of it or for a specific feature is enough to boost your product's usefulness and
hence the widespread usage of your product by customers. Sometimes, you may not even
have AI present in any of the product's features, and instead, you might only use it to
perform data analysis and come up with expected trends to make sure your product
conforms to the upcoming trends. Let's take a look at what worked for these companies as
they made it large.

Quora
Before Quora, there had been a plethora of question-and-answer websites and forums. At
one point in time in the history of the internet, online forums were seen as something that
could no longer be improved; however, Quora came up with a few tweaks that were
enabled using deep learning to help them rapidly outperform other forums. The following
are the tweaks that they implemented:

They enabled contributors to request an answer to any question as soon as it was
published using the Ask to Answer feature. This made it easier for the questions
to reach the relevant subject experts, who gave answers rapidly and made the
platform more responsive and accurate.
They blocked out poorly written questions and answers using natural language
processing (NLP). This brought in the concept of automoderated forums with
high-quality content.
The determination of tags and related articles for any given question–answer
thread made the discovery of similar questions easy. This made Quora users
spend a lot of time reading answers to similar questions to theirs just to find new
information in each of them.
The Quora Digest newsletter was a highly curated collection of articles, based on
the user's interests, that almost always succeeded in bringing the user back to the
platform:

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[350]

Quora at one point in time became (and is still counted among) the most addictive social
platforms on the internet. They took a simple question-and-answer website and used deep
learning to transform it into an amazing platform. You can check out the platform
at https://quora. com.

Duolingo
Learning a new language has always been a tough feat. When Duolingo came onto the
market in 2012, it brought with it a term that was beginning to grow in importance and
scope—artificial intelligence. They converted something as mundane as memorizing words
and grammar rules into minigames that would respond differently to each user. The
Duolingo AI took into account the temporal nature of the human mind. They formulated
research on how quickly a person is likely to forget the words he/she has learned. They
called this concept half-life regression and used it to reinforce the knowledge of the words
it predicted that the user would have forgotten at any given point of time.

This worked immensely in their favor and made Duolingo one of the most popular apps on
mobile app stores. Their website is also a classic example of unorthodox designs that were
well received. You can learn more about Duolingo at https:/ /duolingo. com.

https://quora.com
https://quora.com
https://quora.com
https://quora.com
https://quora.com
https://quora.com
https://quora.com
https://duolingo.com
https://duolingo.com
https://duolingo.com
https://duolingo.com
https://duolingo.com
https://duolingo.com
https://duolingo.com

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[351]

Spotify
Audio players have existed for a very long time, but no one had what Spotify brought to
the table. Spotify used deep learning to determine which songs a user would like to hear at
any given point of time. Over the years, their AI has progressed in leaps and bounds,
suggesting entire playlists according to the recently played songs of the user. The rapid rise
of Spotify has inspired a huge number of products that attempt to do the same and are
trying to catch up with the popularity of Spotify.

Spotify also introduced a very powerful feature—searching for a song based on an audio
sample. It was an instant hit feature; many users downloaded Spotify just because they
could not remember the name of a nice song they were listening to wanted to find its name
out quickly. You simply had to record the audio of a song playing nearby and feed it to
Spotify to know the song that was playing.

Google Search/Photos
While image storage on the cloud was an existing solution offered by companies such as
Dropbox, Google Photos revolutionized the cloud image storage space by bringing AI into
the equation. Google Photos has been adopted by billions of people worldwide because of
its amazing features, such as the following:

Face recognition: This feature was present in an earlier Google product named
Picasa, which is considered to be the precursor to Google Photos.
Wizard: Google Photos automatically determines which photos were taken at the
same event or occasion. It then tries to create movies about the related pictures or
simply touches upon the images to make them appear better. Sometimes, Google
Photos also creates animated GIFs with photos that appear to be in a sequence.
Recognition of documents and memes: Google Photos suggests that its users
archive old documents, screenshots, and memes. This is very helpful in saving
device storage:

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[352]

Google Photos is a market leader in terms of personal online galleries because of its usage
of deep learning behind the curtain. If you would like to learn more about it, visit https:/ /
photos.google.com.

In this section, we took a look at a few products that have been greatly impacted by deep
learning. In the next section, we will be seeing some of the emerging areas where deep
learning seems to bring a lot of positive results.

Key emerging areas
In the previous sections, we saw how several companies have incorporated deep-learning-
based techniques in order to improve their products. In this section, we will be discussing
some of the areas that are currently being heavily researched, and we will see how
impactful they are through the lens of web development.

https://photos.google.com
https://photos.google.com
https://photos.google.com
https://photos.google.com
https://photos.google.com
https://photos.google.com
https://photos.google.com
https://photos.google.com

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[353]

Audio search
Suppose you are in a pub and you like the song being played by the live band. In your
mind, you know that you have already heard that song before, but you are unable to
recollect the name of the song. Wouldn't it be nice if you could have a system that would
listen to the song and search for its name? Welcome to the world of audio search engines!

There are a number of existing audio search engines available out there, with Sound Search
(which is offered by Google Assistant) being one of the most popular ones. You
might also want to check out Shazam. In the following screenshot, you can see a sample
audio search result produced via Sound Search:

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[354]

For a system to perform an audio search based on the audio signal it is receiving, the
system first needs to process the signal, which is known as audio signal processing. The
system then compares that processed signal with its existing database of tens of thousands
of songs. Before the signal is even compared to an existing database, it is given a particular
representation using a neural network, which is often referred to as a fingerprint; however,
this is still an active area of research, and I highly encourage you to read the article
at https://ai.googleblog. com/ 2018/ 09/ googles- next- generation- music. html for a
more detailed overview of these techniques.

Reading comprehension
Have you ever wished that a search engine would give you the answer to your search
query instead of finding suitable links to resources that might contain the answer to your
search query? Well, it's now possible for a system to achieve this if it is programmed with
reading comprehension. Let's look at the following screenshot to see what this means:

If you notice carefully, we did not even phrase the statement Sachin Tendulkar's father as a
question. Modern systems are capable enough to infer properties like this by themselves.

https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html
https://ai.googleblog.com/2018/09/googles-next-generation-music.html

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[355]

Now, to be able to appreciate the depth of a system (or a machine) that has reading
comprehension, say that you wanted to find an answer to your question after performing a
web search. This is the multistep process that you would need to go through:

You start by formulating the search query with the relevant keywords and the1.
search engine performs the search.
The search engine then gives you a list of relevant documents for the given2.
search query.
You go through those documents, organize the information present in them3.
according to your understanding, and then you come to a conclusion.

There are still a number of steps that are manual in nature, and the question still gets
raised—can we design a system that would automate the process of finding that suitable
answer for us? Existing search engines give us a list of relevant documents for given search
queries, but are not sufficient to develop systems that can actually produce answers to the
search queries by themselves. Briefly, such a system would need to do the following:

Follow the structure of the relevant documents.1.
Make sense out of the contents present in those documents.2.
Come to a final answer.3.

Let's simplify the problem a bit. Let's say that for a given question, we already have a list of
relevant passages and now we need to develop a system that would actually make sense
out of those passages and give us a definite answer for the given question. In reading
comprehension systems, neural networks typically learn to capture a deep semantic
relationship between the given questions and the relevant passages and then they
formulate the final answers.

As you might have already figured out, search engines such as Google Search, Bing, and so
on already come with the capability of reading comprehension.

Detection of fake news on social media
With social media booming at a very rapid pace, there is never a dearth of news. Social
media has easily become one of the prime sources of news for us; however, its authenticity
is often not ensured. Not every news article that you stumble across on social media is
genuine, and it is safe to say that a vast number of them are fake. The after-effects of this
phenomenon can be really very alarming, and it can indeed lead to acts of abuse, violence,
and so on.

Appendix: Success Stories and Emerging Areas in Deep Learning on the Web

[356]

There are a handful of organizations and agencies that are trying to fight with this and
make people aware of the authenticity of news articles. This task can be very tedious given
the amount of news that we see daily on social media. So, the question now becomes can
we leverage the power of machine learning to automatically detect fake news? This is, in
fact, an active area of research and there are no substantial applications that are known to
tackle this at a large scale.

However, the following are some research studies conducted by various groups where they
have used classical machine learning and deep learning approaches:

Detecting Fake News in Social Media Networks: https:/ /www. sciencedirect. com/
science/ article/ pii/ S1877050918318210

Fake News Detection on Social Media using Geometric Deep Learning: https:/ /
arxiv.org/ abs/ 1902. 06673

You are encouraged to check out the survey paper at https:/ /arxiv. org/ pdf/ 1812. 00315.
pdf, which provides a comprehensive guide on various fake news detection techniques and
also discusses related research on the subject. On the other hand, a German startup named
Varia (https://www. varia. media/) is trying to solve the problem of fake news in a unique
way. Instead of detecting the authenticity of the news, they are providing different
perspectives of certain news items. In other words, they are providing perspective as a
service. To know more about it, you should definitely check it out at https:/ /alpha.
varia.media/.

Summary
In this final chapter of this book, we have tried to inspire you to build your next deep
learning project and use it on a web platform. You might be interested in the stories of more
such companies that transformed their businesses using AI and ruled the market space. If
you take a look at almost every website you visit, they will all use elements of AI and deep
learning on them in some way, be it in the form of recommendation systems or
advertisements (which are again promotional recommendation systems). We then covered
the upcoming topics in the field of deep learning, which are looking for implementation on
websites in the very near future. It would be amazing if you could come up with a service
based on any of these topics!

https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://www.sciencedirect.com/science/article/pii/S1877050918318210
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://arxiv.org/pdf/1812.00315.pdf
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://www.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/
https://alpha.varia.media/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Machine Learning with TensorFlow.js
Kai Sasaki

ISBN: 978-1-83882-173-9

Use the t-SNE algorithm in TensorFlow.js to reduce dimensions in an input
dataset
Deploy tfjs-converter to convert Keras models and load them into TensorFlow.js
Apply the Bellman equation to solve MDP problems
Use the k-means algorithm in TensorFlow.js to visualize prediction results
Create tf.js packages with Parcel, Webpack, and Rollup to deploy web apps
Implement tf.js backend frameworks to tune and accelerate app performance

https://www.packtpub.com/data/hands-on-machine-learning-with-tensorflow-js

Other Books You May Enjoy

[358]

Hands-On Web Scraping with Python
Anish Chapagain

ISBN: 978-1-78953-339-2

Analyze data and information from web pages
Learn how to use browser-based developer tools from the scraping perspective
Use XPath and CSS selectors to identify and explore markup elements
Learn to handle and manage cookies
Explore advanced concepts in handling HTML forms and processing logins
Optimize web securities, data storage, and API use to scrape data
Use Regex with Python to extract data
Deal with complex web entities by using Selenium to find and extract data

https://www.packtpub.com/big-data-and-business-intelligence/hands-web-scraping-python

Other Books You May Enjoy

[359]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
adversarial training 14
agent 146
AI advancements
 data 4, 5
 democratization, of high-performance computing

6

 factors 4
 in algorithms 5, 6
 in hardware 6
Airflow
 about 295, 296
 URL 295
Akaike Information Criterion (AIC) 21
Alexa 36
Alexa API
 using, in Python 182
Amazon Developer account
 URL 182
Amazon robotics 36
Amazon Web Services (AWS)
 offers 169, 170, 171
 using 166, 167, 168, 169
Amazon, with AI
 about 36
 Alexa 36
 Amazon robotics 36
 DeepLens 36
Anaconda distribution, of Python
 installing 75
Anaconda
 download link 67
 used, for installing Jupyter Notebooks 67
api.ai 145
application backend
 implementing 304, 305, 306, 307

application frontend
 implementing 302, 303, 304
application programming interfaces (APIs)
 about 132, 133
 advantages 133
 need for 133, 134
 using, via cURL 104, 105
 versus library 134
 web client, creating for 105, 106, 107
Area Under Curve (AUC) 21
artificial intelligence (AI)
 about 2, 9, 10
 expert systems 4
 fuzzy systems 4
 ML systems 4
 types 3
 web-AI players with 30, 31
artificial neural network (ANN) 41
artificial neurons
 about 41
 anatomy, of linear neuron 42, 43, 44
 anatomy, of nonlinear neuron 44, 45, 46, 47
audio search 353, 354
authentication validity check
 LSTM-based model, building for 265, 266, 267,

268, 269
Auto ML 290, 291
AutoML 297
AWS account
 URL 182
AWS EC2 GPU deep-learning environment
 setting up 71
Azure AI
 reference link 209
Azure deep learning services 208, 209
Azure Machine Learning service
 reference link 208

[361]

Azure
 account, setting up 206, 207, 208

B
backpropagation 51, 52, 53, 54
backpropagation through time 65
Bag of Words (BoW) 316, 317
boto3
 installing 173
 used, for accessing S3 bucket from Python code

175, 176
 using 171, 172, 173

C
chatbots 25, 26, 318
Cloud Functions
 reference link 330
Cloud Translation API
 setting up, for Python 162
 using, in Python 162
Cloud Vision API, in Python
 pre-trained models, using 157, 158
 Vision Client libraries, setting up 158, 159
Cloud Vision API
 calling, with Python 160, 161
 using, in Python 156, 157
Cloudflare
 using, for website security 285, 286
CNTK model, used for creating predictions from

Django
 about 234
 module imports 235, 236
 predict route, setting up 235
 view, setting up 235
CNTK model
 saving 226
 testing 226, 238, 239
 training 225, 226
 used, for loading 236, 237, 238
 used, for predicting 236, 237, 238
CNTK neural network model
 creating 222, 223, 224, 225
Cognitive Toolkit (CNTK)
 about 205, 219, 220
 installing, on Google Colaboratory 221

 installing, on local machine 220
 working with 220
conversational UIs
 reference link 318
convolutional neural networks (CNN)
 about 54, 55, 56, 57, 58, 59
 components 56
 reference link 59
corpus 315
covariate shift 96
creme 291, 292, 293, 294, 295
Crestle
 deep learning on 75
 URL 76
Cross Industry Standard Process for Data Mining

(CRISP-DM) 17
CSRF tokens, Django
 reference link 279
CUDA drivers
 installing, on GPU instance 74
cURL
 application programming interfaces (APIs), using

via 104, 105
custom authentication validation model
 hosting 270, 271

D
data preparation
 about 18
 data, processing 19
 data, wrangling 19
 Exploratory Data Analysis (EDA) 19
 feature engineering 19
 feature selection 19
data retrieval 18
datasets 87
Deep Learning (DL)
 about 7, 9, 10
 Auto ML 290, 291
 batch forecasting 290
 online learning 290
 overview, in production methods 288, 289
 types 289
 web API service 290
deep learning APIs

[362]

 lesser-known 137
 provider, selecting 138, 139
 tasks 135
 using, widely 135, 136, 137
deep learning backend
 improving 108
deep learning web application, with TF.js
 about 116
 Iris flower dataset, preparing 116
 Node.js, installing 117, 118, 119
 NPM, installing 117, 118, 119
 project architecture 116
 simple client, creating 124, 125
 TF.js web app, executing 128
deep learning web application
 structure diagram 86
 structuring 85
deep learning
 on Crestle 75
deep-learning environments 76
deep-learning-based cloud environment
 setting up 70
DeepLens 36
demonstration DL web environment
 implementing 297, 298, 299
Denial of Service (DoS) 111
Dialogflow agent project
 service account, creating for 345
Dialogflow agent
 calling, with Python API 153, 155
Dialogflow API, in Python
 using, reference link 145
Dialogflow API
 using, in Python 145
Dialogflow bot, creating with personality of

customer support representative
 about 319
 agent, creating 321
 CheckOrderStatus intent, creating 327, 328,

329

 dashboard 321, 322, 323
 Dialogflow console, opening 320
 Firebase cloud function, creating 330
 HelpIntent, creating 324, 325, 326
 intents, creating 324

 logic, adding to index.js 331
 packages, adding to package.json 330
 personality, adding to bot 332, 333
 webhook, creating 329, 330
Dialogflow Gateway
 account, creating 345
 service key file, uploading to 346
Dialogflow Python SDK
 installing 150, 151
Dialogflow
 about 319, 320
 account, creating 145
 agent, creating 146, 147
 agent, testing 149, 150
 intent, creating 148, 149
 URL 320
dimensionality reduction 20
Directed Acyclic Graphs (DAG) 295
Distributed Denial of Service (DDoS) 285
Django app
 testing 238, 239
Django project
 admin user, creating 281
 admin user, testing 281
 app, creating 273
 app, linking to 273
 authentication routes, adding 274
 billboard add page template 278, 279
 billboard model 279
 billboard page template 278
 billboard view, creating 280
 bills, creating 281
 configurations, adding 274
 creating 228, 229
 login page template, creating 276, 277
 login page, creating 274, 275, 276
 logout view, creating 276
 route handling, creating in billboard app 274
 routes, adding 273
 setup 272
 views, adding 281
Django web development 227
Django-based app
 creating, for using API 272
Django

[363]

 home page template, setting up 229, 230, 231,
232, 233, 234

 working with 228
DL solution, in production
 monitoring techniques, integrating 310, 311, 312
 performance optimization, integrating 310, 311
 security measures, integrating 310, 311, 312
DL solution
 performance optimization, integrating 312
DL-based web project
 AI backend, wrong ways of building 248, 249
 erroneous data, avoiding 246, 247, 248
 mental model, building 243, 244, 245
 problem statement, defining 242, 243
Duolingo
 success stories 350

E
EC2 GPU-enabled instance
 creating 72, 73
EC2 instance
 SSHing 73, 74
end-to-end AI-integrated web application, AI model
 building 251
 cleaning functions, preparing 251, 252
 data, slicing out 252
 dataset, reading 251, 252
 dataset, splitting into test part 253
 dataset, splitting into train part 253
 index of products, creating by ratings 254
 index of users, creating by ratings 254
 matrix factorization function, creating 254, 255
 necessary imports, making 251
 saving, as binary pickle files 255
 text cleaning, applying 252
 text, aggregating about products 253
 text, aggregating about users 253
 TF-IDF vectorizers of products, creating 253
 TF-IDF vectorizers of users, creating 253
end-to-end AI-integrated web application, interface
 API, creating to answer search queries 256,

257, 258
 building 256
 creating, to use API 258, 259
end-to-end AI-integrated web application

 about 249, 250
 data cleanup 250
 data collection 250
environment variables
 configuring 173
 loading up, in Python 173
expert systems 4
Exploratory Data Analysis (EDA) 19, 88, 300
express module
 reference link 118

F
Face API
 consuming, form Python code 213, 214, 215,

216

 initial setup 210, 211, 212
 reference link 210
 using, for object detection 210
Facebook, with AI
 about 35
 disturbing content 35
 fake news 35
 fake profiles 35
 other uses 35
feature engineering 20
feature selection 20
Flask API, creating to work with server-side Python
 about 99
 app function, setting 102
 data, loading into scrip runtime 101
 environment, setting up 99
 image function, converting 102
 index function, setting 102
 model structure, uploading 100
 model, setting 101
 necessary modules, importing 100
 prediction APIs 102, 103
 weights, uploading 100
Flask server
 creating 100
Flask
 used, for creating web client 104
foreign key
 reference link 280
fuzzy systems 4

[364]

G
GCP account
 setting up 141, 142
 URL 141
GCP service account
 creating 151, 152
generalization error 17
Google Assistant 34
Google Cloud Platform (GCP)
 about 319
 project, creating 143, 144, 145
 reference link 144
Google Cloud Translation Python library
 using 163
Google Colaboratory
 Cognitive Toolkit (CNTK), installing on 221
Google next generation music recognition
 reference link 354
Google Photos
 URL 352
Google Search 32, 33
Google Search/Photos, features
 face recognition 351
 recognition of documents and memes 351
 wizard 351
Google Search/Photos
 success stories 351, 352
Google Translate 33
Google, with AI
 about 31
 Google Assistant 34
 Google Search 32, 33
 Google Translate 33
 other products 34
GPU instance
 CUDA drivers, installing on 74
gradient descent 51, 52, 53, 54

H
header 69
heart disease detection model
 building 299
 dataset and observing, loading 299, 300
 dataset, splitting into test and train datasets 301

 modules, importing 299
 neural network object, creating in sklearn 301
 scaling, performing on features 300
 target variable, separating 300
 training, performing 301, 302
Heroku
 project, deploying to 307, 308, 309, 310
Home Automation Alexa skill, creating with Python

SDK
 Alexa skill, configuring 191
 Amazon DynamoDB, setting up for skill 192
 AWS Home Automation skill, testing 201, 202,

203, 204
 AWS Lambda function, configuring 187, 188
 block diagram 182, 183
 code, deploying for AWS Lambda function 192,

193, 194, 195, 196, 197, 198, 199
 configuration, creating for skill 183, 184
 Lambda function, creating 189, 190
 Lambda function, testing 199, 200, 201
 Login, setting up with Amazon 184, 185
 prerequisites 182, 183
 skill, creating 186, 187
hyperparameter tuning
 about 22
 techniques 23

I
Identity and Access Management (IAM) 172
Interactive Voice Response (IVR) 318
Iris Data Set
 reference link 115

J
JSON format, dataset
 reference link 116
Jupyter Notebooks
 about 68, 69, 70
 exploring 66
 installation, verifying 67, 68
 installing, with Anaconda 67
 installing, with pip 67
 running 75

[365]

K
Keras neural network
 compiling 97
 training 97
Keras
 arrays, reshaping for processing with 95
 used, for creating neural network 96, 97
kernel 76

L
layers 114
lemmatization 316
library
 versus application programming interfaces

(APIs) 134
linear neuron
 anatomy 42
linear neurons
 about 44
 anatomy 42, 43, 44
Long Short-Term Memory (LSTM) 268
LSTM-based model
 building, for authenticating users 265
 building, for authentication validity check 265,

266, 267, 268, 269

M
Machine Learning (ML), terminologies
 bias and variance 14, 15
 generalization error 16
 overfitting 15, 16
 test set 14
 train set 14
 training error 16
 underfitting 15, 16
 validation set 14
Machine Learning (ML), types
 reinforcement learning (RL) 12, 13
 semi-supervised learning 13
 supervised learning 11
 unsupervised learning 12
Machine Learning (ML)
 about 7, 9, 10
 fundamentals 10

 terminologies 13
 types 10, 11
Machine Learning APIs
 URL 209
malicious user detection 264, 265
middlewares
 reference link 122
ML model
 comparison and selection 23
 deployment 24
 monitoring 24
ML modeling
 about 20, 21
 model evaluation 21
 training 21
 tuning 22
ML systems 4
ML workflow
 about 17
 data preparation 18
 data retrieval 18
ML, deploying in production with tools
 about 291
 Airflow 295, 296
 AutoML 297
 creme 291, 292, 293, 294, 295
MNIST dataset of handwritten digits
 about 87, 88
 exploring 88, 89
 functions, creating to read images files 89, 90
 functions, creating to read label files 91
 summary 92
modal 69
model deployment 24
model evaluation 21
models 114
multilayer perceptron (MLP) 44

N
Natural Language Processing (NLP)
 about 158, 312, 314, 349
 Bag of Words (BoW) 316, 317
 corpus 315
 lemmatization 316
 parts of speech 315

[366]

 similarity 317
 stemming 316
 tokenization 315, 316
Natural Language Understanding (NLU) API 216
neural network (NN)
 about 8, 41, 93
 convolutional neural networks (CNN) 54, 55, 56,

57, 58, 59
 creating, with Keras 96, 97
 demystifying 40, 41
 implementing, with Python 93
 input and output layers 47, 48, 49, 50
 recurrent neural networks (RNN) 59, 60, 61
 types 54
neural network, implementing with Python
 arrays, reshaping for processing with Keras 95
 functions, reusing to load image files 94, 95
 functions, reusing to load label files 94, 95
 Keras neural network, compiling 97
 Keras neural network, training 97
 model, evaluating 98, 99
 model, storing 98, 99
 necessary modules, importing 93
ngrok
 URL 333
 used, for facilitating HTTPS APIs on localhost

333, 334, 335
Node Package Manager (NPM) 117
Node Version Manager (NVM) 117
nonlinear neuron
 anatomy 44, 45, 46, 47
Numerical Python (NumPy) 77
NumPy arrays, versus Python lists
 about 81
 array, slicing over multiple rows and columns 81
 assignment, over slicing 81
NumPy
 about 77
 array operations 79, 80
 arrays, creating 77, 78, 79
 exploring 76

O
object detection
 with Face API 210

 with Python 210
operators 113
optimization 22
overfitting 15

P
pandas
 about 82, 83
 data structures 82
 exploring 76
parts of speech
 about 315
 reference link 315
pip
 used, for installing Jupyter Notebooks 67
pre-trained models
 using, need for 157, 158
Principal Component Analysis (PCA) 20
Proof of Concept (PoC) 243
Python API
 used, for calling Dialogflow agent 153, 155
Python code
 Face API, consuming from 213, 214, 215, 216
 S3 bucket, accessing with boto3 175, 176
 Text Analytics API, using from 218, 219
Python
 Alexa API, using 182
 Cloud Translate API, setting up 162
 Cloud Translation API, using 162
 Cloud Vision API, using 156, 157
 Dialogflow API, using 145
 environment variables, loading up 173
 Rekognition API, using 176, 177, 178, 179,

180, 181
 used, for calling Cloud Vision API 160, 161
 used, for extracting text information 217
 used, for implementing neural network 93
 using, for object detection 210

Q
Quora
 success stories 349, 350

[367]

R
reading comprehension 354, 355
reCAPTCHA
 about 262, 263
 using, in web applications with Python 282, 283,

284

Receiver Operator Characteristic (ROC) 21
recurrent neural networks (RNN)
 about 59, 60, 61
 activation functions, applying 64, 65, 66
 final output, applying 64, 65, 66
 letters, feeding to 61
 weight matrices, putting together 63, 64
 weight matrix, initializing 62, 63
regularization 15
reinforcement learning (RL) 12, 13
Rekognition API
 using, in Python 176, 177, 178, 179, 180, 181
Root Mean Square Error (RMSE) 21

S
S3 bucket
 accessing, from Python code with boto3 175,

176

 creating 174, 175
semi-supervised learning 13
similarity 317
social media
 fake news, detecting 355
speech recognition 340
speech synthesis 340
Spotify
 success stories 351
SSHing
 in EC2 instance 73, 74
stemming 316
step-function 44
supervised learning
 about 11
 parts 11

T
TensorFlow 110
TensorFlow.js (TF.js), case study

 about 115
 Iris flower dataset 115
 problem statement 115
TensorFlow.js (TF.js), components
 models and layers 114
 operators 113
 reference link 114
 tensors 112
 variables 113
TensorFlow.js (TF.js)
 about 110
 advantages 129
 basic concepts 111
 functionalities 110
 fundamentals 110
 limitations 129
 need for 111
 used, in deep learning web application 116
tensors
 about 112
 example 112
Term Frequency-Inverse Document Frequency

(TF-IDF) 251
test set 14
testing UI, creating with Django to manage orders
 about 335
 apiui app, adding to list of installed apps 337
 app, creating 336
 database setting, removing 337
 Django project, creating 336
 indexView, creating 339
 routes, adding to apiui 338
 routes, adding within apiui app 338
 settings.py, setting up 337
 templates, creating 340
 viewOrder, creating 339
 views, creating 339
Text Analytics API
 used, for extracting text information 217
 using, from Python code 218, 219
text information
 extracting, with Python 217
 extracting, with Text Analytics API 217
TF.js model
 creating 120, 121

 training 121, 122
 used, for predicting result 123, 124
TF.js web app
 executing 126, 127
TF.js, setup instructions
 reference link 119
tokenization 315, 316
train set 14
training error 16
transfer learning 157
types of bias
 reference link 246

U
underfitting 15
unlimited cloud storage 6
unsupervised learning
 about 12
 examples 12

V
validation set 14
Varia
 URL 356
variables 113
Vision Client libraries
 setting up 158, 159

W

web analytics 26, 27
web API service 290
web applications
 reCAPTCHA, using with Python 282, 283, 284
web client
 creating, for API 105, 106, 107
 creating, with Flask 104
web development, AI rise
 about 25
 chatbots 25, 26
 search 28, 29, 30
 spam, filtering 27, 28
 web analytics 26, 27
Web Speech API, for speech synthesis and speech

recognition
 API, initializing 341
 button element, creating 341
 call, making to Dialogflow agent 343, 344
 Click handler, adding for button 347
 configuration, performing 342
 Dialogflow API proxy, creating on Dialogflow

Gateway by Ushakov 344
Web Speech API
 using 340
web-AI players
 with artificial intelligence (AI) 30, 31
website security
 with Cloudflare 285, 286

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Dedication
	Preface
	Table of Contents
	Section 1: Artificial Intelligence on the Web
	Chapter 1: Demystifying Artificial Intelligence and Fundamentals of Machine Learning
	Introduction to artificial intelligence and its types
	Factors responsible for AI propulsion
	Data
	Advancements in algorithms
	Advancements in hardware
	The democratization of high-performance computing

	ML – the most popular form of AI
	What is DL?
	The relation between AI, ML, and DL
	Revisiting the fundamentals of ML
	Types of ML
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Semi-supervised learning

	Necessary terminologies
	Train, test, and validation sets
	Bias and variance
	Overfitting and underfitting
	Training error and generalization error

	A standard ML workflow
	Data retrieval
	Data preparation
	Exploratory Data Analysis (EDA)
	Data processing and wrangling
	Feature engineering and extraction/selection

	Modeling
	Model training
	Model evaluation
	Model tuning

	Model comparison and selection
	Deployment and monitoring

	The web before and after AI
	Chatbots
	Web analytics
	Spam filtering
	Search

	Biggest web-AI players and what are they doing with AI
	Google
	Google Search
	Google Translate
	Google Assistant
	Other products

	Facebook
	Fake profiles
	Fake news and disturbing content
	Other uses

	Amazon
	Alexa
	Amazon robotics
	DeepLens

	Summary

	Section 2: Using Deep Learning for Web Development
	Chapter 2: Getting Started with Deep Learning Using Python
	Demystifying neural networks
	Artificial neurons
	Anatomy of a linear neuron
	Anatomy of a nonlinear neuron

	A note on the input and output layers of a neural network
	Gradient descent and backpropagation

	Different types of neural network
	Convolutional neural networks
	Recurrent neural networks
	Feeding the letters to the network
	Initializing the weight matrix and more
	Putting the weight matrices together
	Applying activation functions and the final output

	Exploring Jupyter Notebooks
	Installing Jupyter Notebook
	Installation using pip
	Installation using Anaconda

	Verifying the installation
	Jupyter Notebooks

	Setting up a deep-learning-based cloud environment
	Setting up an AWS EC2 GPU deep learning environment
	Step 1: Creating an EC2 GPU-enabled instance
	Step 2: SSHing into your EC2 instance
	Step 3: Installing CUDA drivers on the GPU instance
	Step 4: Installing the Anaconda distribution of Python
	Step 5: Run Jupyter

	Deep learning on Crestle
	Other deep learning environments

	Exploring NumPy and pandas
	NumPy
	NumPy arrays
	Basic NumPy array operations
	NumPy arrays versus Python lists
	Array slicing over multiple rows and columns
	Assignment over slicing

	Pandas

	Summary

	Chapter 3: Creating Your First Deep Learning Web Application
	Technical requirements
	Structuring a deep learning web application
	A structure diagram of a general deep learning web application

	Understanding datasets
	The MNIST dataset of handwritten digits
	Exploring the dataset
	Creating functions to read the image files
	Creating functions to read label files
	A summary of the dataset

	Implementing a simple neural network using Python
	Importing the necessary modules
	Reusing our functions to load the image and label files
	Reshaping the arrays for processing with Keras
	Creating a neural network using Keras
	Compiling and training a Keras neural network
	Evaluating and storing the model

	Creating a Flask API to work with server-side Python
	Setting up the environment
	Uploading the model structure and weights
	Creating our first Flask server
	Importing the necessary modules
	Loading data into the script runtime and setting the model
	Setting the app and index function
	Converting the image function
	Prediction APIs

	Using the API via cURL and creating a web client using Flask
	Using the API via cURL
	Creating a simple web client for the API

	Improving the deep learning backend
	Summary

	Chapter 4: Getting Started with TensorFlow.js
	Technical requirements
	The fundamentals of TF.js
	What is TensorFlow?
	What is TF.js?
	Why TF.js?
	The basic concepts of TF.js
	Tensors
	Variables
	Operators
	Models and layers

	A case study using TF.js
	A problem statement for our TF.js mini-project
	The Iris flower dataset

	Your first deep learning web application with TF.js
	Preparing the dataset
	Project architecture
	Starting up the project
	Creating a TF.js model
	Training the TF.js model
	Predicting using the TF.js model
	Creating a simple client
	Running the TF.js web app

	Advantages and limitations of TF.js
	Summary

	Section 3: Getting Started with Different Deep Learning APIs for Web Development
	Chapter 5: Deep Learning through APIs
	What is an API?
	The importance of using APIs
	How is an API different from a library?
	Some widely known deep learning APIs
	Some lesser-known deep learning APIs
	Choosing a deep learning API provider
	Summary

	Chapter 6: Deep Learning on Google Cloud Platform Using Python
	Technical requirements
	Setting up your GCP account
	Creating your first project on GCP
	Using the Dialogflow API in Python
	Creating a Dialogflow account
	Creating a new agent
	Creating a new intent
	Testing your agent
	Installing the Dialogflow Python SDK
	Creating a GCP service account
	Calling the Dialogflow agent using Python API

	Using the Cloud Vision API in Python
	The importance of using pre-trained models
	Setting up the Vision Client libraries
	The Cloud Vision API calling using Python

	Using the Cloud Translation API in Python
	Setting up the Cloud Translate API for Python
	Using the Google Cloud Translation Python library

	Summary

	Chapter 7: DL on AWS Using Python: Object Detection and Home Automation
	Technical requirements
	Getting started in AWS
	A short tour of the AWS offerings
	Getting started with boto3
	Configuring environment variables and installing boto3
	Loading up the environment variables in Python
	Creating an S3 bucket
	Accessing S3 from Python code with boto3

	Using the Rekognition API in Python
	Using the Alexa API in Python
	Prerequisites and a block diagram of the project
	Creating a configuration for the skill
	Setting up Login with Amazon
	Creating the skill
	Configuring the AWS Lambda function
	Creating the Lambda function
	Configuring the Alexa skill
	Setting up Amazon DynamoDB for the skill
	Deploying the code for the AWS Lambda function
	Testing the Lambda function
	Testing the AWS Home Automation skill

	Summary

	Chapter 8: Deep Learning on Microsoft Azure Using Python
	Technical requirements
	Setting up your account in Azure
	A walk-through of the deep learning services provided by Azure
	Object detection using the Face API and Python
	The initial setup
	Consuming the Face API from Python code

	Extracting text information using the Text Analytics API and Python
	Using the Text Analytics API from Python code

	An introduction to CNTK
	Getting started with CNTK
	Installation on a local machine
	Installation on Google Colaboratory

	Creating a CNTK neural network model
	Training the CNTK model
	Testing and saving the CNTK model

	A brief introduction to Django web development
	Getting started with Django
	Creating a new Django project
	Setting up the home page template

	Making predictions using CNTK from the Django project
	Setting up the predict route and view
	Making the necessary module imports
	Loading and predicting using the CNTK model
	Testing the web app

	Summary

	Section 4: Deep Learning in Production (Intelligent Web Apps)
	Chapter 9: A General Production Framework for Deep Learning-Enabled Websites
	Technical requirements
	Defining the problem statement
	Building a mental model of the project
	Avoiding the chances of getting erroneous data in the first place

	How not to build an AI backend
	Expecting the AI part of the website to be real time
	Assuming the incoming data from a website is ideal

	A sample end-to-end AI-integrated web application
	Data collection and cleanup
	Building the AI model
	Making the necessary imports
	Reading the dataset and preparing cleaning functions
	Slicing out the required data
	Applying text cleaning
	Splitting the dataset into train and test parts
	Aggregating text about products and users
	Creating TF-IDF vectorizers of users and products
	Creating an index of users and products by the ratings provided
	Creating the matrix factorization function
	Saving the model as pickle

	Building an interface
	Creating an API to answer search queries
	Creating an interface to use the API

	Summary

	Chapter 10: Securing Web Apps with Deep Learning
	Technical requirements
	The story of reCAPTCHA
	Malicious user detection
	An LSTM-based model for authenticating users
	Building a model for an authentication validity check
	Hosting the custom authentication validation model

	A Django-based app for using an API
	The Django project setup
	Creating an app in the project
	Linking the app to the project
	Adding routes to the website
	Creating the route handling file in the billboard app
	Adding authentication routes and configurations
	Creating the login page
	Creating a logout view
	Creating a login page template
	The billboard page template
	Adding to Billboard page template
	The billboard model
	Creating the billboard view
	Creating bills and adding views
	Creating the admin user and testing it

	Using reCAPTCHA in web applications with Python
	Website security with Cloudflare
	Summary

	Chapter 11: DIY - A Web DL Production Environment
	Technical requirements
	An overview of DL in production methods
	A web API service
	Online learning
	Batch forecasting
	Auto ML

	Popular tools for deploying ML in production
	creme
	Airflow
	AutoML

	Implementing a demonstration DL web environment
	Building a predictive model
	Step 1 – Importing the necessary modules
	Step 2 – Loading the dataset and observing
	Step 3 – Separating the target variable
	Step 4 – Performing scaling on the features
	Step 5 – Splitting the dataset into test and train datasets
	Step 6 – Creating a neural network object in sklearn
	Step 7 – Performing the training

	Implementing the frontend
	Implementing the backend

	Deploying the project to Heroku
	Security measures, monitoring techniques, and performance optimization
	Summary

	Chapter 12: Creating an E2E Web App Using DL APIs and Customer Support Chatbot
	Technical requirements
	An introduction to NLP
	Corpus
	Parts of speech
	Tokenization
	Stemming and lemmatization
	Bag of words
	Similarity

	An introduction to chatbots
	Creating a Dialogflow bot with the personality of a customer support representative
	Getting started with Dialogflow
	Step 1 – Opening the Dialogflow console
	Step 2 – Creating a new agent
	Step 3 – Understanding the dashboard
	Step 4 – Creating the intents
	Step 4.1 – Creating HelpIntent
	Step 4.2 – Creating the CheckOrderStatus intent

	Step 5 – Creating a webhook
	Step 6 – Creating a Firebase cloud function
	Step 6.1 – Adding the required packages to package.json
	Step 6.2 – Adding logic to index.js

	Step 7 – Adding a personality to the bot

	Using ngrok to facilitate HTTPS APIs on localhost
	Creating a testing UI using Django to manage orders
	Step 1 – Creating a Django project
	Step 2 – Creating an app that uses the API of the order management system
	Step 3 – Setting up settings.py
	Step 3.1 – Adding the apiui app to the list of installed apps
	Step 3.2 – Removing the database setting

	Step 4 – Adding routes to apiui
	Step 5 – Adding routes within the apiui app
	Step 6 – Creating the views required
	Step 6.1 – Creating indexView
	Step 6.2 – Creating viewOrder

	Step 7 – Creating the templates

	Speech recognition and speech synthesis on a web page using the Web Speech API
	Step 1 – Creating the button element
	Step 2 – Initializing the Web Speech API and performing configuration
	Step 3 – Making a call to the Dialogflow agent
	Step 4 – Creating a Dialogflow API proxy on Dialogflow Gateway by Ushakov
	Step 4.1 – Creating an account on Dialogflow Gateway
	Step 4.2 – Creating a service account for your Dialogflow agent project
	Step 4.3 – Uploading the service key file to Dialogflow Gateway

	Step 5 – Adding a click handler for the button

	Summary

	Appendix: Success Stories and Emerging Areas in Deep Learning on the Web
	Other Books You May Enjoy
	Index

