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Preface

Behavior genetics is an interdisciplinary area combining the behavioral sciences and genetics.
The study of behavior genetics has become increasingly important as we see growth spurts
in finding genes involved in complex behaviors following on advances in molecular genetic
techniques. This domain has been growing rapidly since the 1970s and increasingly receives
attention from many different disciplines. It has now become a vast common ground for sci-
entists from very diverse fields including psychology, psychiatry, neurology, endocrinology,
biochemistry, neuroimaging, and genetics.

When I was invited to organize this book by Springer, I was preparing for a new course,
Behavior Genetics, at the University of Georgia in fall, 2005. Only a few textbooks were
available at that time, but I could not find good references for graduate students and scien-
tists. I thought that we needed to offer research guides to the studies of genetic and environ-
mental influences on a variety of complex behaviors in humans and animals. I had little idea
about the proper scope for such a book. I contacted senior colleagues of the Behavior Genet-
ics Association and they gave me excellent advice. I initially invited contributors who were
largely members of the Behavior Genetics Association and the handbook was outlined with
14 chapters. As the Handbook developed, it became clear that the first draft was not sufficient
to cover all important domains in behavior genetics. In the second meeting with contributors
during the BGA meeting in Hollywood, CA, we discussed expanding the handbook to other
related domains, such as evolutionary psychology, health behavior, and neurosciences. I invited
additional contributors from other disciplines, and added chapters on the history of behavior
genetics, quantitative methods and models, as well as more studies of animal models. Now the
handbook stands with 34 chapters and integrates many of the basic issues in behavior genetics.
In each chapter, current research and issues on the selected topics are intensively reviewed
and directions for future research on these topics are highlighted: new research designs, ana-
Iytic methods, and their implications are addressed. 1t is anticipated that the handbook will
contribute to our understanding of behavior genetics and future research endeavors in the 21st
century.

Chapter 1 addresses a history of behavior genetics going back to some of Plato’s ideas and
discusses the nature—nurture controversies on behavior in the modern era which sometimes
brought about uproar in our community. In Part I, we address designs and methods in behavior
genetic research. Chapters 2 and 4 introduce statistical models and analyses, i.e., biometrical
models and multivariate genetic analyses, which explain genetic and environmental causes
of covariation between quantitative traits and comorbidity between disorders. In Chapter 3,
quantitative trait locus (QTL) analysis is introduced and methods of linkage and association
mapping of continuous traits are discussed. Results of the QTL analyses in several quantitative
traits are presented throughout this volume. Chapter 5 addresses the importance of animals
as models of human behaviors — cognition, personality, and pathology are presented in this
volume.

Part II addresses the genetics of cognition in humans and animals with nine selected top-
ics. Chapter 6 discusses genetic and environmental influences on general intelligence using
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twin studies, followed by new twin research designs, analytic methods, findings, and their
implications. In Chapter 7, behavioral genetic research on cognitive aging is reviewed: genetic
and environmental contributions to age-related changes in cognitive abilities; contributions of
genes and lifestyle variables to dementia, and to the terminal decline in cognitive functioning;
and quantitative methods for investigating cognitive aging are presented. Chapter 8 addresses
behavioral genetic research on reading, and the genetic and environmental etiologies of read-
ing ability and disability are discussed. Chapter 9 explores behavioral and molecular genetic
studies elucidating the role of the genome in the development and manifestation of disorders
of speech and language. The human brain continues to show dynamic changes from child-
hood into adulthood. Genetic and environmental influences in brain volumes are addressed in
Chapter 10. Using quantitative magnetic resonance imaging (MRI), brain structures in patients
with a clear genetic etiology are reviewed. Genetic approaches to the search for genes asso-
ciated with brain volume are discussed. Cognitive abilities in animals as models of human
behavior are presented in Chapters 11, 12, 13, and 14. Quantitative and molecular genetic
approaches to cognition research in rodents are presented in Chapter 11. Cognitive deficits
affected by genetic manipulations and mouse models for human cognitive disabilities are dis-
cussed. Specifically, Chapter 12 reviews human cognitive impairment associated with chromo-
somal abnormalities, and mouse models of trisomy 21 are discussed addressing the relation-
ships among genes, brain, and cognitive function. Drosophila (fruit fly) models of Alzheimer’s
disease are introduced in Chapter 13. Pathological roles of AS peptides in fly brains, memory
defects, and locomotor dysfunctions are discussed. Chapter 14 addresses Drosophila courtship
songs which are utilized for intersexual selection and species recognition in nature. Quantita-
tive and molecular genetic studies on the phylogenetic patterns of song evolution in different
species groups are reviewed.

In Part III, the genetics of personality in humans and animals is addressed with 10
selected topics. Personality is influenced by both genes and environment during development.
Chapter 15 explores genotype—environment correlation through a review of the behavioral
genetic literature on genetic and environmental influences on family relationships. It is very
important that behavioral genetic models that measure behaviors of interest reflect the content
of the domains. Chapter 16 reviews behavioral genetic methods and models for personality
research and theory, and addresses some methodological issues. Chapter 17 addresses the roles
of specific genes, i.e., DRD4 and 5-HTTLPR genes, contributing to the multifaceted dimen-
sions of human personality, including altruism. Temperament, developing early in life and
possibly forming the basis for later personality and psychopathology, is explored in Chapter 18
in which quantitative and molecular genetic findings, as well as endophenotypic approaches,
are discussed. Sexual orientation is a controversial issue in our communities. A growing body
of evidence suggests that familial and genetic factors affect human sexual orientation. Quan-
titative and molecular genetic studies on sexual orientation are reviewed in Chapter 19. Three
chapters introduce animal models of personality and aggression. Chapter 20 explores personal-
ity differences in rats widely used in laboratories and discusses anatomical and neurochemical
analyses in this endeavor. Behavioral and genetic research on offensive aggression in mice is
reviewed and comparative genetic studies of aggression across species are addressed in Chap-
ter 21. Chapter 22 discusses aggressive behavior in fruit flies from the ecological, genetic,
neurological, and evolutionary perspectives. Approximately 10% of the population are left-
handers. The history, determination, and etiology of handedness are addressed in Chapter 23.
Chapter 24 introduces exercise behavior as a new discipline in behavior genetics. A large pro-
portion of adults in the world do not regularly engage in exercise, although benefits of exercise
are well documented. Genetic determinants of variability in exercise behavior are discussed.

In Part IV the genetics of psychopathology is represented with nine selected topics. Some
psychiatric disorders like ADHD are only diagnosed by questionnaires or psychiatric inter-
views, rather than by clinical tests, and consequently the genetic studies of the disorders
can vary as a function of applied assessment methods and informants. Chapter 25 addresses
such behavioral measure issues concerning ADHD. Depression and anxiety have their origins
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in childhood and arise from genetic and shared environmental effects. Epidemiological and
behavior genetic research on childhood depression and anxiety are discussed in Chapter 26.
Autism is familial and, thus, relatives of probands with autism are at high risk for depres-
sion, anxiety, and personality attributes. Chapter 27 reviews current findings in the genetic
epidemiology of autism and its etiological issues concerning the definition of autism pheno-
types are discussed. Two chapters address substance abuse behaviors, that is, smoking, drugs,
and drinking. Smoking behaviors aggregate in families and in peer networks due to genetic
dispositions and common environmental influences. Chapter 28 reviews behavioral genetic
research on smoking behavior and nicotine dependence, using Finnish sample studies, and its
comorbidities with other substance use, depression, and schizophrenia are discussed. Behav-
ioral and molecular genetic research on the use and abuse of both alcohol and drugs is reviewed
in Chapter 29. Substance abuse and substance use disorder co-occur with conduct disorder and
antisocial behavior. Chapter 30 gives results of a meta-analysis of twin and adoption studies
examining genetic and environmental influences on conduct disorder and antisocial behavior.
Association and linkage studies for genes influencing antisocial behavior are discussed. Chap-
ter 31 explores the behavioral and molecular genetic approaches to the origins of two major
psychoses: schizophrenia and bipolar mood disorder. The concept of endophenotypes, which
are measured intermediate traits or states between genotypes (genetic liability) and pheno-
types (disorders), is discussed. Chapter 32 discusses indepth longitudinal "high-risk” studies
that intend to identify endophenotypes in the first-degree relatives of schizophrenic probands
and to offer putative behavioral predictors of future schizophrenia spectrum disorders. Mouse
models of cognitive dysfunctions in schizophrenia are explored in Chapter 33 where the role
of dopamine in attention and working memory is discussed. Finally, in Chapter 34, future
directions for behavior genetics are addressed.

It is not surprising that, at the final publication date of a book like the Handbook of Behavior
Genetics, research has moved on. In 2008 we saw the publication of genome wide association
studies for Bipolar disorder (Ferreira et al., 2008), for five dimensions of personality (Ter-
racciano et al., 2008), ADHD (Neale et al., 2008) and major depressive disorder (Sullivan
et al., 2008). Many more GWA studies of complex behavioral and psychiatric phenotypes are
expected in the next few years. The landscape of behavior genetics has changed remarkably
in a relatively short space of time. The field continues to progress from comparatively small
studies to consortia-based efforts that target the inherited components of complex diseases and
behaviors and which typically involve thousands of participants (Orr & Chanock, 2008).
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Chapter1

History of Behavior Genetics

John C. Loehlin

Hermann Ebbinghaus (1908) said of psychology that it had a
long past, but only a short history. The same may be said of
behavior genetics. One cannot specify an exact date at which
behavior genetics came to be regarded as a distinct scientific
discipline, but for convenience let us say 1960, the publica-
tion date of Fuller and Thompson’s textbook of that title.

This chapter considers both the long past and some
aspects of the short history of behavior genetics. We begin
with the long past: the recognition since antiquity that behav-
ioral traits are in part inherited, and the controversy concern-
ing the extent to which this is so, a discussion often going
under the label of the nature—nurture controversy.

The Long Past of Behavior Genetics

From Ancient Times to the Renaissance

Ancient Times

Where does the long past start? Perhaps with the domes-
tication of dogs for behavioral as well as physical traits,
a process which probably took place at least 15,000 years
ago (Savolainen, Zhang, Luo, Lundeberg, & Leitner, 2002) —
although one must suppose that in its early days this was
more an evolution of a subgroup of wolves to fit a niche
around human habitation than a process deliberately under-
taken by man (Morey, 1994). In any case, about 5000 years
ago in Egypt and the Near East, it appears that deliber-
ate animal breeding was well established (Brewer, Clark, &
Phillips, 2001); several distinctive varieties of cattle and dogs
are portrayed in ancient Egyptian art.

J.C. Loehlin (=)
Department of Psychology, The University of Texas at Austin, Austin,
TX 78712, USA
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Greeks, Romans, Hebrews

By classical times, 30001500 years ago, many varieties of
dogs with distinctive physical and behavioral characteristics
were recognized. More than 50 breeds are named in sur-
viving Greek and Roman documents, falling into such cate-
gories as scent- and sight hounds, shepherd dogs, guard dogs,
war dogs, and pets (Brewer et al., 2001).

The ancient Greeks held that humans inherited quali-
ties, including behavioral ones, from their ancestors. Thus
in Book IV of Homer’s Odyssey, Menelaus greets two young
visiting strangers, “Ye are of the line of men that are scep-
tred kings ... for no churls could beget sons like you”
(Homer, trans. 1909, p. 49). And later (p. 53), to one of them,
“Thou has said all that a wise man might say or do, yea, and
an elder than thou; — for from such a sire too thou art sprung,
wherefore thou dost even speak wisely.” A similar notion
was expressed in the Hebrew scriptures: “I am the heir of
wise men, and spring from ancient kings” (Isaiah 19:11, New
English Bible).

A few hundred years later, the Greek philosopher Plato
in Book V of the Republic — his prescription for an ideal
state — took both inheritance and instruction into account
in the development of the “Guardians,” the ruling elite. He
begins with the question, “How can marriages be made most
beneficial?” He discusses the breeding of hunting dogs and
birds, noting that “Although they are all of a good sort, are
not some better than others?” “True.” “And do you breed
from them all indifferently, or do you take care to breed from
the best only?” “From the best” (Plato, trans. 1901, p. 149).
From there Plato goes on to generalize to the class of elite
humans in his ideal state — to the desirability of matching the
best with the best, and rearing their offspring with special
attention.

Plato recognizes that good ancestry is not infallibly pre-
dictive and recommends applying, at least in early youth,
a universal education to the citizens of his state; demoting,
when inferior, offspring of the elite class of guardians and
elevating into the ranks of the guardians offspring of the
lower classes who show merit.

DOI 10.1007/978-0-387-76727-7_1, © Springer Science+Business Media, LLC 2009
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We need not debate the pros and cons of Plato’s partic-
ular social proposals; people have been arguing about them
ever since his day. We only need observe that well over 2000
years ago the interplay of nature and nurture — and its social
implications — was being discussed.

Middle Ages

What of the contrary view, the notion that all men are
born equal? A major impetus to such an idea came from
the medieval Catholic Church (Pearson, 1995). All men are
sons of God, and therefore of equal value in His sight. Or,
from another perspective, as the fourteenth-century English
proverb had it, “When Adam delved and Eve span/Who was
then a gentleman?”

The Renaissance

Ideas concerning the inheritance of behavior were present in
Shakespeare’s day. The Countess of Rossilon in All’s Well
That Ends Well says, about a wise daughter of a wise father,
“Her dispositions she inherits” (Act I:i). The nature—nurture
controversy itself appears to have got its label from Pros-
pero’s remark in The Tempest about his subhuman creature,
Caliban, “A devil, a born devil, on whose nature nurture will
never stick” (Act IV:1).

The Nature-Nurture Controversy in the
Modern Era

Although ideas about the roles of nature and nurture in
human and animal behaviors have been with us for thousands
of years, the modern form of the controversy traces back
fairly directly to the seventeenth-century philosopher John
Locke and the nineteenth-century naturalist Charles Darwin.

John Locke

Locke may be considered to be the chief ideological father
of the nurture side of the controversy. In An Essay Concern-
ing Human Understanding (Locke, 1690/1975), he invoked
the metaphor of the mind as a blank sheet of paper upon
which knowledge is written by the hand of experience. In the
opening paragraph of his book Some Thoughts Concerning
Education, he said, “I think I may say, that of all the Men
we meet with, nine Parts of ten are what they are, good or
evil, useful or not, by their Education” (Locke, 1693/1913,
Sect. 1). Locke’s political view that all men are by nature
equal and independent, and that society is a mutual contract

entered into for the common good, had an immense influence
via Jefferson, Voltaire, Rousseau, and the other theorists of
the American and French revolutions.

Indeed, one may view many of the events of the nature—
nurture controversy since Locke’s day as a series of chal-
lenges to the prevailing Lockean position, with those steeped
in that tradition rising indignantly to battle what they per-
ceived to be threats to inalienable human rights of liberty and
equality.

Locke himself, however, was not nearly as alien to hered-
itarian concepts as some of his followers have been. He
rejected the concept of inborn ideas, but not of all innate char-
acteristics. In a marginal note on a pamphlet by one Thomas
Burnet, Locke wrote “I think noe body but this Author who
ever read my book [An Essay Concerning Human Under-
standing] could doubt that I spoke only of innate Ideas ...
and not of innate powers ... " (see Porter, 1887). Elsewhere
in Some Thoughts Concerning Education Locke wrote,

Some Men by the unalterable Frame of their Constitutions are

stout, others timorous, some confident, others modest, tractable,

or obstinate, curious or careless, quick or slow. There are not

more Differences in Men’s Faces, or in the outward Lineaments

of their Bodies, than there are in the Makes and Tempers of their
Minds. (1693/1913, Sect. 101)

John Stuart Mill

Many of Locke’s successors in the English liberal tradition

came out more strongly than Locke did on the side of nurture.

John Stuart Mill wrote in his Autobiography (1873, p. 192),
I have long felt that the prevailing tendency to regard all the
marked distinctions of human character as innate, and in the
main indelible, and to ignore the irresistible proofs that by far the
greater part of these differences, whether between individuals,
races, or sexes, are such as not only might but naturally would
be produced by differences in circumstances, is one of the chief
hindrances to the rational treatment of great social questions, and
one of the greatest stumbling blocks to human improvement.

Charles Darwin

During roughly the same period as Mill, Charles Darwin
gave the nature side of the controversy its modern form
by placing behavior, including human behavior, solidly in
the framework of biological evolution. In addition to his
major treatise The Origin of Species (1859), Darwin in such
works as The Descent of Man (1871) and The Expression
of the Emotions in Man and Animals (1872) made it clear
that human behavior shared ancestry with that of other ani-
mal forms, and was subject to the same evolutionary pro-
cess of hereditary variation followed by natural selection of
the variants that proved most successful in their particular
environments.
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In The Descent of Man (1871, pp. 110-111) Darwin
wrote,

So in regard to mental qualities, their transmission is manifest
in our dogs, horses, and other domestic animals. Besides special
tastes and habits, general intelligence, courage, bad and good
temper, etc. are certainly transmitted. With man we see simi-
lar facts in almost every family; and we now know through the
admirable labours of Mr. Galton that genius, which implies a
wonderfully complex combination of high faculties, tends to be
inherited; and on the other hand, it is too certain that insanity and
deteriorated mental powers likewise run in the same families.

Francis Galton

Darwin’s younger cousin Francis Galton agreed with Darwin
and disagreed with Mill. In his book Inquiries into Human
Faculty (1883, p. 241) he concluded,

There is no escape from the conclusion that nature prevails enor-
mously over nurture when the differences of nurture do not
exceed what is commonly to be found among persons of the
same rank of society and in the same country.

Galton is not saying that environment never matters. How-
ever, he is saying that the ordinary differences we observe
among people in the same general social context are mostly
due to heredity.

Galton was a central, crystallizing figure in behavior
genetics” “long past.” His emphasis on the measurement of
individual differences and their statistical treatment became
a core theme in the development of the field. His studies
of “hereditary genius” and “the comparative worth of differ-
ent races” (Galton, 1869) foreshadowed recent controversies
about 1Q. He proposed the study of twins as a way of getting
at the relative effect of nature and nurture. And his promotion
of eugenics — that is, the encouragement of the more useful
members of society to have more children and the less useful
to have fewer (as in Plato’s scheme for an ideal state) — has
generated on occasion a good deal of heat. Here is a recent
example (Graves, 2001, p. 100): “Galton’s scientific accom-
plishments are sufficient for some still to consider him an
intellectual hero. Whereas for others (this author included)
he was an intellectual mediocrity, a sham, and a villain.”

The Twentieth Century

Vigorous disagreements on the relative impact of nature and
nurture on behavior continued into the twentieth century. On
the whole, twentieth-century psychology was heavily envi-
ronmentalistic, emphasizing the crucial role of learning in
shaping behavior. The high-water mark of this tradition was
the famous claim of John B. Watson (1925, p. 82):

Give me a dozen healthy infants, well-formed, and my own spec-
ified world to bring them up in and I'll guarantee to take any

one at random and train him to become any type of specialist
I might select — doctor, lawyer, artist, merchant-chief, and yes,
even beggar-man and thief, regardless of his talents, penchants,
tendencies, abilities, vocations, and race of his ancestors.

The year 1928 saw the publication of the Twenty-Seventh
Yearbook of the National Society for the Study of Educa-
tion. It was entitled Nature and Nurture, and it contained
the reports of two adoption studies of IQ. One, by Barbara
Burks, emphasized the effects of nature. The other, by Free-
man, Holzinger, and Mitchell, came down on the side of
nurture. The nature—nurture controversy continued, but stu-
dents of the effects of heredity and environment on behavior
were gathering data. When enough had been gathered for a
textbook to be written, the short history of behavior genetics
could begin.

The Short History of Behavior Genetics

Most of the short history of behavior genetics, as it applies
to the study of both humans and other animal species, will
not be discussed in this chapter. It is a tale of steady sci-
entific progress on a variety of fronts, despite occasional
controversies, confusions, and setbacks, and it is a tale told
in the other chapters of this handbook. The reader who wants
a quick sense of the scope of scientific progress in the field
of behavior genetics during the last 40-odd years, and the
prospects opening up in it today, can achieve this by scanning
through the chapter introductions and summaries, and the
editor’s final chapter. The reader who aspires to a more solid
grasp of this short history will need, of course, to proceed
more systematically through the book, as well as following
up some of its many references.

The remainder of this chapter addresses two other aspects
of behavior genetics’ short history. First, we look briefly at
some institutional features of the field: its principal schol-
arly and scientific organization, the Behavior Genetics Asso-
ciation; the discipline’s key journal, Behavior Genetics; and
some major centers of behavior genetics research. Following
this, we look at the social context of behavior genetics, at
instances in which the scientific and scholarly pursuits of the
field have become entangled with public political and social
concerns. These instances include a series of controversies
concerning the genetic or environmental bases of differences
in psychological characteristics between groups defined by
race, sex, or social class. Controversies about group differ-
ences have roots in behavior genetics’ long past and have
persisted into its short history. They are far from central in
the activities of most working behavior geneticists, but they
represent an important part of the public face of the field.
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The Institutional History of Behavior Genetics

The Behavior Genetics Association

After some informal discussions in the late 1960s, and the
circulation of a mailing to a list of persons who had recently
published in the area of behavior genetics, an organizational
meeting took place at Urbana, Illinois, in March 1970. R.
H. Osborne, then editor of the journal Social Biology, was
chosen to act as president pro tem, and five committees were
appointed to lay the groundwork for a Behavior Genetics
Association (or Society — there was some argument about
a suitable name). In April 1971, the fledgling organization
held its first formal meeting, at Storrs, Connecticut. In addi-
tion to scientific sessions, a draft constitution was discussed
to be submitted to the initial membership via mail ballot for
approval. Nominations and an election followed, and at the
time of the second annual meeting at Boulder, Colorado,
in April 1972, the Behavior Genetics Association (BGA)
was officially underway, and its first set of officers took
office: Theodosius Dobzhansky was president, John Fuller
was president-elect, R. H. Osborne served as past president,
the secretary was Elving Anderson, the treasurer was John
Loehlin, and the two executive committee members-at-large
were Seymour Kessler and L. Erlenmeyer-Kimling.

The association proved viable. Table 1.1 shows the suc-
cessive presidents of the BGA and the location of its annual
meetings. Note that a special extra international meeting was
held in Jerusalem in 1981, and that thereafter the regular
annual BGA meeting was periodically held in countries out-
side the USA: in England (twice), the Netherlands (twice),
France, Australia, Spain, Canada (twice), and Sweden.

Over time, the association grew in size. Forty-four persons
responded to the initial mailing indicating interest in such an
association. There were 69 paid-up members at the time of
the first annual meeting at Storrs. By the time of the 34th
annual meeting in Aix-en-Provence, France, in 2004, the
BGA had 270 regular and 109 associate members (the latter
chiefly graduate students). Approximately two-thirds were
from North America and one-third from other continents.

The Journal Behavior Genetics

In 1970, a decade after Fuller and Thompson’s textbook, the
scientific journal Behavior Genetics began with Vol. 1, No. 1.
Its founding editors were Steven G. Vandenberg and John C.
DeFries. They stated their hopes for the new journal in an
editorial (p. 1):

Research in behavior genetics continues to be undertaken at
an accelerating rate. Nevertheless, no single journal has existed
heretofore which was dedicated primarily to the publication of
papers in this important area. Since manuscripts in behavior

Table 1.1 BGA Presidents and Annual Meetings

Year President Site of meeting

1971 R. H. Osborne [pro tem] Storrs CT

1972 Th. Dobzhansky Boulder CO

1973 John L. Fuller Chapel Hill NC

1974 Gerald E. McClearn Minneapolis MN

1975 J. P. Scott Austin TX

1976 Irving I. Gottesman Boulder CO

1977 W. R. Thompson Louisville KY

1978 Lee Ehrman Davis CA

1979 V. Elving Anderson Middletown CT

1980 John C. Loehlin Chicago IL

1981 Norman D. Henderson Purchase NY/Jerusalem
1982 John C. DeFries Ft Collins CO

1983 David W. Fulker London, England

1984 Steven G. Vandenberg Bloomington IN

1985 Sandra Scarr State College PA

1986 Ronald S. Wilson Honolulu HI

1987 Peter A. Parsons Minneapolis MN

1988 Leonard L. Heston Nijmegen, Netherlands
1989 Robert Plomin Charlottesville VA
1990 Carol B. Lynch Aussois, France

1991 Lindon J. Eaves St. Louis MO

1992 David A. Blizard Boulder CO

1993 Thomas J. Bouchard, Jr. Sydney, Australia
1994 Glayde Whitney Barcelona, Spain

1995 James Wilson Richmond VA

1996 Nicholas G. Martin Pittsburgh PA

1997 Nicholas G. Martin Toronto, Canada

1998 Norman D. Henderson Stockholm, Sweden
1999 Richard Rose Vancouver, Canada
2000 John Hewitt Burlington VT

2001 Matt McGue Cambridge, England
2002 Nancy Pedersen Keystone CO

2003 Andrew Heath Chicago IL

2004 Michele Carlier Aix-en-Provence, France
2005 H. Hill Goldsmith Hollywood CA

2006 Laura Baker Storrs CT

2007 Pierre Roubertoux Amsterdam, Netherlands

Source: BGA web site (June 27, 2007); http://www.bga.org

genetics have thus been published in widely scattered journals, a
clear identification with this discipline has been lacking. It is our
hope that BEHAVIOR GENETICS will fulfill this need.

The journal has largely lived up to their hopes. It never

stood completely alone — for example, at the time there was
an existing journal focused on twin research, Acta Geneticae
Medicae et Gemellologiae, which published many behav-
iorally oriented papers. The journal Social Biology — whose
editor, R. H. Osborne, played an important role in found-
ing the Behavior Genetics Association — initially served as
the official organ of the BGA. (Behavior Genetics assumed
that role in 1974.) Other journals have since emerged —
for example, the recent journals Genes, Brains, and Behav-
ior and Twin Research. Many important papers in behavior
genetics continue to be published in journals in the neighbor-
ing behavioral and biological sciences. Nevertheless, Behav-
ior Genetics, as the official organ of the Behavior Genetics
Association, remains a major defining force in the field.
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It is instructive to compare Vol. 1 (1970) of Behavior
Genetics with Vol. 35 (2005). The journal became a good
deal bigger: from three issues in Vol. 1 (Nos. 3 and 4 were
bound together) to six in Vol. 35 from 274 to 854 pages
(and nearly twice the number of words per page because
of larger pages). In Vol. 1, there were 24 papers, an edito-
rial, and 2 “short communications.” In Vol. 35 there were
66 papers, plus 142 abstracts from the Behavior Genetics
Association meeting, and various BGA minutes, announce-
ments, etc. Behavior Genetics continues to publish both sub-
stantively and methodologically oriented papers, featuring
various animal species, but the mix changed from Vol. 1
to Vol. 35. In Vol. 1 there were 7 papers (27%) focused on
human behavior, 16 papers (62%) involving rodents, mostly
inbred mice, 1 paper on another species (Drosophila), and
2 papers primarily methodological (statistical) in character.
In Vol. 35, there was an increased proportion of substantive
papers involving humans, 28 (42%); proportionately fewer
involving rodents, 14 (21%); an increase in those involving
other animal species, 9 (15%) — mostly Drosophila, but one
on rainbow trout. For many of the remaining 22% of papers,
the species might be described as the computer: These were
methodological papers, many involving a heavy dose of com-
puter model-fitting or simulation.

Major Behavior Genetics Centers

Preeminent among academic centers for teaching and
research in behavior genetics has been the Institute for
Behavioral Genetics (IBG) at the University of Colorado at
Boulder. Among the notable behavior geneticists who have
served on its faculty are Gregory Carey, John DeFries, David
Fulker, John Hewitt, Carol Lynch, Gerald McClearn, Robert
Plomin, Steven Vandenberg, and James Wilson. It has also
served as home for the journal Behavior Genetics, except for
1978-1985 when Jan Bruell edited the journal at the Uni-
versity of Texas and 2000-2002 when Norman Henderson
edited it at Oberlin College. The IBG has also hosted sev-
eral BGA annual meetings and a number of summer training
institutes on behavior genetics methods.

Next in line as a center of behavior genetics activity would
probably be the University of Minnesota, whose faculty has
included important behavior geneticists like Elving Ander-
son, Thomas Bouchard, Irving Gottesman, Leonard Heston,
Gardner Lindzey, David Lykken, Matthew McGue, Shel-
don Reed, Sandra Scarr, and Auke Tellegen. A third cen-
ter, at least in the early days, was the University of Texas
at Austin, with Jan Bruell, Joseph Horn, Gardner Lindzey,
John Loehlin, Delbert Thiessen, and Lee Willerman. A cur-
rent major behavior genetics center is at the Virginia Com-
monwealth University; its faculty includes Lindon Eaves,
Kenneth Kendler, Hermine Maes, and Michael Neale. Other

important U.S. centers include Washington University in
St. Louis (Robert Cloninger, Andrew Heath, & John Rice)
and Penn State (David Blizard, Gerald McClearn, & George
Vogler). Outside the USA, Kings College, London, has
recruited an eminent group of behavior genetics researchers,
including Peter McGuffin, Robert Plomin, and Michael Rut-
ter. The Vrije Universiteit in Amsterdam also has a substan-
tial behavior genetics contingent, including Dorret Boomsma
and Danielle Postuma. Stable international coalitions are
becoming increasingly common, greatly facilitated by the
Internet. Notable examples include collaborations between
groups at Indiana University and the University of Helsinki,
Penn State and the Karolinska Institute in Stockholm, and
several U.S. groups with the Queensland Institute for Medi-
cal Research in Australia.

Beside the institutions mentioned above, dozens of other
universities and research institutes, including many outside
the USA, have developed and maintained strong programs
in human or animal behavior genetics on the strength of one
or two distinguished researchers on their faculties. Almost
half the presidents of the BGA, for example, would represent
this category. The hosting of an annual BGA meeting (see
Table 1.1) also tends to reflect a strong local program.

Public Controversies - Group Differences

The possibility that there might be genetic differences in
psychological traits between groups defined by race, sex, or
social class has led to a good deal of public uproar and not
a little confusion. It has provided an inflammatory intersec-
tion between the scientific discipline of behavior genetics
and Western attitudes of equality stemming from religious,
political, and philosophical roots. Racist, sexist, and class-
ist ideas (as references to such group differences are some-
times called) tend to drive traditional Lockean ideologists up
the wall, so that clear thinking has not always prevailed in
this area.

A few general points should be noted. First, the main
business of behavior geneticists has always been individual
differences, not group differences, so that for the day-to-day
research of most behavior geneticists, questions about group
differences are at best an unwelcome distraction. Second, as
Lewontin (1970) made clear, a demonstration that individ-
ual differences are due to genes does not imply that group
differences are genetic. He used the analogy of genetically
varied seeds raised in a greenhouse in two pots under iden-
tical regimens, except that one pot lacked a crucial trace
nutrient present for the other. The heights of the plants
are subsequently measured. The variation of height within
each pot, except for random measurement errors, is entirely
genetic, since the plants within each pot vary genetically,
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but are treated exactly the same. The average difference in
plant height between the two pots is entirely environmen-
tal, because it stems from the presence or absence of the
critical nutrient. Clearly, this example implies that group
differences may be different in their genetic and environ-
mental origins from individual differences. However, it is
sometimes forgotten that may does not imply are. There
remains the empirical question for any particular trait and
any particular group difference in any particular population:
To what relative extent are genetic and environmental dif-
ferences between the groups in fact involved? There also
remains the social question: How much (if at all) does this
matter?

The empirical question is not necessarily an easy one to
answer. For one thing, it may well have different answers for
different traits and different groups (Loehlin, 2000). If one
were to demonstrate that profiles of cognitive ability differ
for genetic reasons between Asian Americans and European
Americans, it would not imply that a difference in average
intellectual performance between European Americans and
African Americans has a genetic origin. To make matters
worse, the social excitement and media hoopla surrounding
the issue of group differences has discouraged most behav-
ior geneticists from addressing such matters empirically. It is
not as though informative research designs do not exist. One
listing of promising areas of research on racial-ethnic ability
differences listed ten possible approaches, ranging from stud-
ies of race mixtures and cross-racial adoptions to piggy-back
studies on educational or nutritional programs which were
being undertaken for other reasons (Loehlin, Lindzey, &
Spuhler, 1975, pp. 251-254).

Jensen

Less than a decade into behavior genetics’ short history,
the educational psychologist Arthur Jensen published a
long article in the Harvard Educational Review entitled
“How much can we boost IQ and scholastic achievement?”
(Jensen, 1969). Jensen noted the fact that compensatory
education programs had not lived up to their advance billing
and concluded that this might partly reflect the genetic
contribution to IQ, which he estimated at a fairly high
80%. Almost in passing, he noted the possibility that the
persistent 1Q gap between U.S. blacks and whites might
in part be genetic in origin. He did not say that this had
been demonstrated to be the case, but suggested that the
matter should be looked into empirically. Jensen’s article,
particularly the suggestion that there might be a genetic
contribution to black—white IQ differences, created an
immediate furor. There were numerous published critiques,
not all judicious and carefully thought out. And this was not
just a genteel academic debate — tires were slashed and public

meetings disrupted. A graphic account of the goings-on may
be found in Pearson (1991). The controversy about possible
racial differences in mental abilities has continued to the
present — the interested reader may wish to consult Race
Differences in Intelligence (Loehlin et al., 1975), Race, IQ
and Jensen (Flynn, 1980), The Black—White Test Score Gap
(Jencks & Phillips, 1998), and The New Know-Nothings
(Hunt, 1999). Rushton and Jensen (2005) provide a recent
review emphasizing the genes: “Thirty years of research on
race differences in cognitive ability,” which, along with a
number of critiques from various points of view, fills an issue
of Psychology, Public Policy, and Law [Vol. 11(2), 2005].

The Bell Curve

Twenty-five years after Jensen’s article, a similar uproar
arose, this time due to the publication of a book by the
psychologist Richard Herrnstein and the sociologist Charles
Murray entitled The Bell Curve (Herrnstein & Murray, 1994).
Although much of the furor focused on race differences in
cognitive skills, the authors did not in fact devote a great deal
of attention to this topic and took a fairly mild position on
it. After emphasizing via a version of Lewontin’s metaphor
that a genetic basis for individual differences does not imply
a genetic basis for group differences, they said of U.S. ethnic
differences in average I1Q (p. 312):

They may well include some (as yet unknown) genetic compo-

nent, but nothing suggests that they are entirely genetic. And,

most important, it matters little whether the genes are involved
at all.

Their argument in support of the second sentence was that
for an appropriate treatment of an individual it is his or her
own IQ that is relevant (if 1Q is relevant at all), not the aver-
age 1Qs of some group to which the individual may belong.
One might add, however, that for long-term social policy, the
fact that an average group difference has its source in genes
or in the environment can sometimes matter, because it can
affect the choice of a remedy to alter that difference — eugen-
ics versus Head Start, for example.

Herrnstein on Social Class and IQ

The Bell Curve did not represent Herrnstein’s first engage-
ment with group differences and public controversy. In an
article in The Atlantic (Herrnstein, 1971) and in a subsequent
book, 1.Q. in the Meritocracy (1973), Herrnstein elaborated
on an idea by Cyril Burt (1961) that social class and occu-
pational differences in IQ will be partly genetic in a soci-
ety that features social mobility. If IQ is partly genetic, and
higher IQ individuals tend to move up in social and occupa-
tional status, while lower IQ individuals tend to move down,
then IQ differences between social classes and occupational
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groups will come to be partly genetic. This is not a heredi-
tary aristocracy — far from it — it is a dynamic phenomenon
that depends on continued mobility up and down the social
scale. An important question is, How much? Some evidence
suggests that about 40% of 1Q differences in occupation and
income in Western societies are associated with genetic dif-
ferences (Rowe, Vesterdal, & Rodgers, 1998; Tambs, Sundet,
Magnus, & Berg, 1989). Phenotypically, there are substan-
tial average differences in IQ between different occupational
groups. For example, in the U.S. standardization sample for
the 1981 revision of the Wechsler Adult Intelligence Scale,
there was a 22-point difference between the average 1Qs of
persons in professional and technical occupations and per-
sons who were unskilled laborers (Reynolds, Chastain, Kauf-
man, & McLean, 1987). And yet there was nearly as much
variation in IQ within these two occupational groups (stan-
dard deviations of 14.4 and 15.2) as in the U.S. population
as a whole (standard deviation of 15.1). It is an interesting
paradox that there may be real and significant differences in
average 1Q between different groups, yet individuals vary so
widely within them that an individual’s group membership is
of almost no value for predicting his or her IQ.

The Glayde Whitney Affair

In his 1995 presidential address to the Behavior Genetics
Association, Glayde Whitney, whose distinguished research
career had mostly focused on taste sensitivity in mice, turned
to humans and elected to address the topic of black—white
differences in the frequency of criminal behavior. He pointed
out the large discrepancies on the phenotypic level, such as
a ninefold difference in murder rates between blacks and
whites in the USA. Compared to a dozen other industrialized
countries, the USA had the highest overall murder rate. How-
ever, based only on its white population, it ranked third from
the bottom, with a lower murder rate than such countries
as Switzerland, Denmark, Finland, and Sweden. Whitney
argued that behavior geneticists should be willing to explore
both genetic and environmental hypotheses about such dif-
ferences; he also argued that the current intellectual climate
in the USA made such discussion virtually impossible — and
he made some critical remarks about the contribution of the
political Left to this situation (Whitney, 1995).

Whitney’s address was perhaps not a model of tact: for
example, in addition to his comments about the Left, he
noted that Richmond, Virginia, the city in which he was
speaking as a guest, was the second-worst large city in the
USA with respect to its murder rate. Nor did he address
the question of how behavior geneticists were to go about
deciding to what extent the group differences in criminality
were genetic or environmental. Subsequent events within the
Behavior Genetics Association proved, however, that he was

clearly right about the difficulty of public discussion of such
questions. An announcement was issued the next day by the
BGA Executive Committee to the effect that Whitney was
not acting as the official spokesman of the association, that
presentations at BGA meetings should be strictly scientific,
and that “members are not encouraged to express their per-
sonal political and moral views” (Heath, 1995, p. 590). A
special December meeting of the BGA Executive Committee
was scheduled to consider removing Whitney from the BGA
Board of Directors, of which he was automatically a member
as past president (e-mail announcement to the BGA member-
ship, October 12, 1995). President-elect Pierre Roubertoux
and Wim Crusio, a member-at-large of the Executive Com-
mittee, resigned from the association because it was unwill-
ing to adopt sufficiently strong sanctions against Whitney.
The incoming president-elect, Nicholas Martin, took over
for Roubertoux as president, and later served his own term,
accounting for his double appearance in Table 1.1, in 1996
and 1997 (Heath, 1996).

Lawrence Summers and Sex Differences

On January 14, 2005, Harvard President Lawrence H. Sum-
mers informally addressed a conference on “Diversifying the
Science and Engineering Workforce” which was considering
the reasons for a shortage of women at the highest levels in
the scientific professions (Summers, 2005). With the avowed
intention of provoking discussion, Summers proposed three
hypotheses for his audience’s consideration: (a) Many tal-
ented women prefer devoting some of their time to children
and families rather than undertaking the 80-hour work-weeks
required for reaching the top levels in elite research organi-
zations; (b) there may be biological differences between the
sexes, such as a greater variance for males on many traits,
producing an excess of males at the extremes; and (c) subtle
and not-so-subtle patterns of discrimination may exist that
lead the present elite in these fields, mostly males, to choose
others like them to join them. Summers thought it likely that
all three of these factors contributed, and he guessed that
they might rank in importance in the order given. Summers
is an economist by training, not a behavior geneticist, but he
cited some behavior genetic evidence against an overwhelm-
ing role of socialization in producing behavioral differences,
and suggested that the effects in hypotheses (a) and (b) might
have in part a biological basis. Summers’ remarks aroused a
firestorm in the press and in feminist circles, which in turn
provoked assorted indignant rejoinders. It is not necessary to
pursue these in detail here — a quick survey on the Internet
will yield an ample sampling of widely varying views about
Summers’ remarks — views expressed with widely varying
degrees of heat and light. Pinker (2002, Chap. 18) provides
a readable survey of the considerable evidence that at least
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some male—female psychological differences have a biolog-
ical component — although, presumably, few are exclusively
so, and many questions remain open empirically.

The Future?

One take-home lesson from the various controversies con-
cerning group differences is that the nature—nurture contro-
versy is not dead, even though it has been declared moribund
on many occasions in recent decades. Although behavior
geneticists have had an appreciable impact on public think-
ing about individual differences, the question of the relative
genetic and environmental contributions to group differences
has been both more socially explosive and much less suc-
cessfully addressed empirically.

What does the future hold? This will depend, in part, on
future behavior genetics research on these topics — some of
it, perhaps, carried out by readers of this book. One may
be fairly confident that nature—nurture controversies will not
vanish completely anytime soon. However, one may hope
that as knowledge expands, the cloud of misunderstandings
on which these controversies feed will gradually shrink, and
that one day we may have an agreed-upon body of facts on
which to base social policy.

Conclusion

Yes, behavior genetics has had a long past, which extends
into the nature—nurture controversies of the present day. It
has also had a short but solid history of substantive accom-
plishment and institutional establishment. The date at which
the short history will make the long past seem quaint and
obsolete in the eyes of the general educated public remains
to be determined. Readers of this book will help determine it.
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Chapter 2

Biometrical Models in Behavioral Genetics

Michael C. Neale

Introduction

The main goal of this chapter is to describe the research
designs and statistical methods that are in popular use in
behavioral genetics (BG). We begin with a brief overview of
the historical background to BG in general and twin studies
in particular. Next, we describe some elementary statistics
required for understanding biometrical modeling. Then fol-
lows a statistical model for genetic variation, as articulated by
Fisher in his classic 1918 paper, in which additive and dom-
inance genetic variance terms are defined. The coefficients
of resemblance between relatives derived from this model
are then implemented in structural equation models for the
analysis of data from twins and other relatives. Overall the
intent is to provide a general and extensible infrastructure for
the modeling of genetically informative data.

Historical Background

Behavior genetics is the synthesis of two domains: behavior,
which is defined as the actions or reactions of an object or
organism, and genetics, which is the science of heredity and
variation. The primary focus of contemporary BG is variation
in behavior, while broader psychological constructs such as
internal mental states and cognition are frequently included.
Individual differences in this activity are readily observed in
virtually all forms of animal life and may also be seen in
certain plant species, such as Dionaea muscipula (the Venus
Fly Trap). The ability to predict behavior in other organisms,
be they of the same or a different species — would seem to
have substantial survival value. Today, tremendous invest-
ment is made by both medical and military agencies in order
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to understand the origins of behavioral differences, and with
good reason. Many of the most pressing health problems in
modern cultures have behavioral components: obesity, car-
diovascular disease, cancer, drug abuse and psychopathology
are obvious examples. It is also the case that human con-
flicts, be it a marital dispute, a street fight, or a world war,
are primarily behavioral. Thus much of human suffering has
behavioral origins. One aim of BG is to identify potential
ways to alleviate this distress by correctly identifying both
genetic and environmental sources of individual differences
in behavior and susceptibility to environmental insults.

Behavioral genetics as a field was perhaps first established
by the exceptional 18th century cousins, Charles Darwin and
Francis Galton. The former, in Chapter 8 of On the Ori-
gin of Species (Darwin, 1859) discusses instincts in animals
as diverse as dogs, birds, insects, and notes individual dif-
ferences in behavior within species. In his later work, the
Descent of Man (Darwin, 1871), he wrote:

If no organic being excepting man had possessed any mental
power, or if his powers had been of a wholly different nature
from those of the lower animals, then we should never have been
able to convince ourselves that our high faculties had been grad-
ually developed. But it can be shown that there is no fundamental
difference of this kind.

It is well known that different breeds of dog have differ-
ent average temperaments. Typically, Labradors are affec-
tionate, Border Collies are intelligent and Bull Terriers are
aggressive. Even the most ardent critics of behavioral genet-
ics do not seem to quibble with this or any other behavioral
differences that are observed in either domesticated species
or those in the wild (Mann, 1994). That selection experi-
ments can produce reliable behavioral differences between
strains of rats and mice is well established for numerous
traits, including mazesolving ability (Tryon, 1941), activity
(Defries, Gervais, & Thomas, 1978), brain weight (Fuller
& Herman, 1974), and alcohol preference (Li, Lumeng, &
Doolittle, 1993). Selective breeding experiments are essen-
tially univariate in design; those with high or low scores on
the single trait of interest are used to populate the next gen-
eration. However, it is commonly observed that changes in
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other, secondary, phenotypes occur together with the selected
trait. Although many human traits might respond to selec-
tion, it is widely considered morally unacceptable to impose
reproductive constraints (or to carry out ‘ethnic cleansing’)
on human beings. The author knows of no behavior geneticist
who would consider such activities. Rather, the goal of BG is
to identify putative genetic and environmental pathways that
may prove fruitful targets for the prevention and treatment of
mental and physical disorders.

During the past 30 years, the classical twin study has been
extensively used to differentiate between genetic and envi-
ronmental sources of variation in human populations. The
idea is to compare the similarity of MZ twin pairs reared
together by their parents in the same home to that of DZ
twin pairs reared in the same circumstances. Today there
are dozens of well-established registries of twins around the
world (Busjahn & Hur, 2006). Exactly to whom this very
popular research design should be credited is a matter of
some debate. While many credit Sir Francis Galton (1875),
he did not explicitly propose this comparison. At the time,
the distinction between MZ and DZ twins’ genetic relation-
ship was not clear. Indeed, Thorndike (1905) doubted the
existence of two types of twins, which may have retarded
the development of the twin method. As discussed by Rende,
Plomin, and Vandenberg (1990) the first published compar-
ison of MZ and DZ twins’ similarities appears to be that
of Merriman (1924). In the same year, the dermatologist
Siemens described the approach in his book Die Zwilling-
pathologie (twin pathology). That period also saw the advent
of adoption studies. Gordon (1919) found that sibling resem-
blance for cognitive ability was approximately the same for
pairs reared together in the same home as for those reared
apart. It is reasonable to expect that most of the readers of
this volume will witness the centennials of Fisher’s classic
paper, the adoption and the twin study.

The advent of molecular genetics, from the elucidation of
the structure of deoxyribonucleic acid (DNA) in the 1950s
by Watson and Crick (1953) and others to the development
of polymerase chain reaction (PCR) for DNA amplifica-
tion by Mullis (1990) and subsequent explosive growth of
biotechnology has had a dramatic impact on modern behav-
ioral genetics. Early approaches to establish genetic link-
age focused on known measurable genetic polymorphisms
such as blood groups or the human leukocyte antigen region,
as these were the only readily available genetic mark-
ers (this is akin to looking under the lamppost for one’s
keys even though it seems unlikely that that is where they
were lost). The identification of microsatellite markers along
the genome at approximately 10 million base-pair inter-
vals (the human genome is approximately 3 billion base-
pairs in length) permitted linkage studies to provide approx-
imate localization of variants responsible for individual
differences. Fine mapping was typically restricted to regions

of linkage or loci that were plausible candidates by knowl-
edge of their function. In the past few years, microarray tech-
nology has enabled very large-scale genotyping, of over a
million single nucleotide polymorphisms (SNPs) on a single
array. This has ushered in an era of whole genome associ-
ation studies, which holds considerable promise for dissect-
ing the origins of individual differences in behavior. These
developments in measuring genomic variation have been par-
alleled by synergistic advances in statistical methods to ana-
lyze data.

For further readings in the history of genetics, the
reader is referred to the internet resource Wikipedia
(http://www.wikipedia.org). The maxim ‘don’t believe
everything you read’” which is a key aspect of scientific
method should of course be applied to Wikipedia articles —
as well as, e.g., this chapter. At the time of writing, the
Behavioral Genetics entries in Wikipedia are in need of revi-
sion, something that the Behavioral Genetics Association has
noted, and will hopefully address by the time this volume is
published.

Measuring Variation and Covariation

Note that whatever the phenotype being studied, it is varia-
tion in the phenotype that is the focus of behavior genetics.
As in any other scientific domain, measurement is key. One
consideration is how we measure the traits of interest. The
second is how we measure variation and covariation in those
traits, which is a matter for some elementary statistics, which
we discuss now.

Summarizing Variation

Most people are familiar with the concept of the mean or
average of a set of measurements. This quantity is simply
calculated by dividing the sum of a series of measurements
by the number, N of measures that have been made. The con-
ventinal notation for this operation is:

N
Dic1 i

p==

where the symbol u is the mean, x; is the measurement
obtained from case i, and ) _ denotes the summation. The
idea behind measuring variation is to measure the average
dispersion or spread of scores from the mean. Several pos-
sible measures of dispersion might be taken: the average
absolute distances from the mean, the average squared devia-
tion from the mean, or average of any higher even-numbered
power (4, 6, 8, etc.) of the deviation from the mean. Statisti-
cians almost always use the squared deviation, because this
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measure is, on average the most accurate. In other words, if
we took a sample of measurements and computed these alter-
native measures of variance, and repeated this process multi-
ple times, and then compared the variance of these measures
of variance, the squared deviations would have the smallest
variance. This result was shown by Fisher (1922). The for-
mula for the variance that is most commonly used is:

N
ol = D iz (xi — 1?

x N -1

The N — 1 denominator departs slightly from the formula
for the average (whose denominator is V) because it is less
biased in small samples. On occasion, N may be used in
place of N — 1; for example, the maximum likelihood esti-
mate of a variance is equivalent to using the divisor N rather
than N — 1. Asymptotically, as N tends to infinity, these
estimates converge. The average-squared deviation from the
mean is a general statistic. It does not require that the data
follow a particular distribution in the population. Indeed, we
employ it below in the context of measuring the variation due
to a single diallelic locus in Equation 2.2. At the same time,
the mean and the variance are not always sufficient statistics
in that they do not describe all distributions up to an arbi-
trary constant. As discussed in Equation 2.2, the mean and
the variance are sufficient for the normal distribution, but this
is not generally the case.

The next important consideration is how to measure
covariation. As discussed in the biometrical genetics below,
the model predicts that if genetic factors influence a trait,
then MZ twin pairs will (on average) show greater covari-
ation than will DZ twin pairs. Following the same general
principle for average variation, we wish to determine the
average of the extent to which the deviations from the mean
of one measure are similar to those of another measure. Thus
the formula for the covariance is:

YN = )i — )
Oxy = N .

Covariance is maximized when x; — u, and y; — p, are
equal for all i = 1...N pairs of data points in the sample.
The covariance is then equal to the square root of the prod-
uct of the variances of x and y, and the correlation (defined
below) equals unity. These summary statistics — means, vari-
ances and covariances — are commonly used to provide an
overview of characteristics of the data. Many genetic mod-
els predict that the variances of MZ and DZ twins should be
equal. Conversely, certain violations of the assumptions of
the twin method predict that these variances would differ; for
example, if one’s cotwin forms a substantial part of the rel-
evant trait environment, then different total variances of MZ
and DZ twins would be expected (Eaves, 1976; Carey, 1986).

Especially valuable in the inspection of data from different
classes of relatives is a comparison between their correla-
tion coefficients. The correlation is simply the standardized
covariance:

Txy = Oxy/0x0y.

Another commonly encountered statistic in biometrical
genetic analysis is the regression coefficient. Most readers
should be familiar with the simple linear regression formula:

Y =a+bX

Following some simple algebra (see almost any introduc-
tory statistics text, e.g., Edwards, 1979) it can be shown that
the least squares solution to this equation yields an estimate
of b:

In essence, the regression of ¥ on X may be thought of
as the covariance between X and Y scaled by the variance of
X. When X is standardized to unit variance, the covariance
equals the regression coefficient. It is on this simple model
that the idea of explained variance is based. The residual
variance of Y — that not explained by the regression — is
ay2 — b? or in the case of standardized X and Y, itis 1 — b?
so the variance explained by the regression is b%. There is
a potential pitfall when considering data from relatives in
this fashion. Our conceptual model for twin resemblance
is that there are certain factors (genetic or environmental)
that relatives share. The relatives’ phenotypes are regressed
on these shared factors, rather than, e.g., the phenotype of
twin 1 regressed on that of twin 2. The variance explained
by the common factor would equal the correlation, rather
than the square of the correlation. This problem, noted by
Loehlin (1996) has not stopped the development of a use-
ful regression-based approach to the analysis of twin data,
known as DeFries—Fulker regression.

Pri=BiPr2+ BoR+ K

where Pr; is the phenotype of twin j; Bj is the regression on
the cotwin’s score, B is the regression on the coefficient of
relationship R, which is set to 1 for MZ twins and 0.5 for DZ
twins; and K is the regression constant. B; therefore reflects
differential twin resemblance. The augmented model

Pri1 = B3Pro + B4R+ BsPraR + K

directly estimates additive genetic effects via the parame-
ter Bs and shared environment effects via parameter Bs3.
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The method has several virtues. First is that it is compu-
tationally straightforward, in that it can be implemented in
practically any standard statistical package. Second, it can
be extended in numerous ways. Fulker and Cardon (1994)
showed the incorporation of measured genetic markers to test
for the genetic linkage to a measured putative quantitative
trait locus. Third, it is particularly convenient for the analy-
sis of data from selected samples (DeFries & Fulker, 1988;
LaBuda, DeFries, & Fulker, 1986). It also provides a nat-
ural framework for testing for interactions. At the same
time there are some limitations. One is that the specifica-
tion of genetic factor models, which incorporate latent vari-
ables which influence several or all of the measures is not
straightforward. A second is that the method of double entry
of the data (in which both twin 1 and twin 2 are used as
dependent variables) does not naturally lead to the analysis
of more extended pedigrees. However, some recent devel-
opments in this area show considerable promise in making
the analysis of more complex pedigree structures practical.
McArdle and Prescott (McArdle & Prescott, 2005) show that
by judicious coding of dummy variables it is possible to ana-
lyze nuclear family structures in a relatively general fash-
ion. An alternative parameterization of this model, which is
more efficient for binary variables, was described by Rabe-
Hesketh, Skrondal, and Gjessing (2007). It seems reasonable
to expect that multivariate extensions of this approach will
be developed in the future. However, the explicit modeling
of common genetic and environmental factors that influence
some or all the observed measures in a multivariate anal-
ysis would seem complicated at best in the context of this
method.

Binary and Ordinal Measures

Many traits of interest to the behavior geneticist are not
measured on a continuous, interval scale. Psychiatric disor-
ders, substance use and abuse, and political affiliation are
examples of measures that are inherently categorical in
nature. Even traits that approximately follow the normal dis-
tribution in the population, such as measures of cognitive
ability or personality, are typically derived from the aggre-
gation of a set of binary or ordinal items that are designed
to measure the trait in question. Most psychiatric diagnoses
are based on the presence of one or more required signs
or symptoms, together with a sufficient number of addi-
tional criteria (e.g., five from nine possible symptoms of
depression).

There is an interesting duality to the specification of
genetic models. As we have seen, the models typically begin
at the binary level, with SNPs on the genome that affect
the expression of genes which, typically through quite con-
voluted biological pathways, subsequently generate differ-

ences in measured outcome traits. Since Fisher’s classic 1918
paper, and perhaps even earlier (Pearson, 1901) the idea that
a large number of such elementary factors combine to gen-
erate trait variation has had substantial appeal. That many
human physical traits follow the normal distribution that is
generated (per the central limit theorem) from the aggrega-
tion of a large number of factors, increases the appeal of the
multifactorial model. The question then becomes of how best
to model binary or ordinal data.

The inherent complexity of the systems that generate
behavior — most obviously the structure and function the
brain — suggests that it is unlikely that any one SNP will have
a major outcome on behavior. There are counterexamples,
of course, such as the metabolic disorder phenylketonuria,
which without appropriate intervention leads to severe cogni-
tive deficits, but these may be relatively rare. Particularly for
traits related to reproductive fitness, it seems likely that the
systems involved will be inherently redundant, since all other
things being equal, the organism with a ‘failsafe’ redundant
system will be more likely to reproduce than one without.
It is natural, therefore, to expect that a large number of
genetic variations across the human genome will influence
behavioral outcomes. The same expectation seems likely to
hold for environmental factors and for the interactions within
and between these primary sources. Thus even traits that
are measured at the binary level — presence or absence of
major depressive disorder, for example — may be appropri-
ately modeled by assuming that there is a continuous, under-
lying normal distribution of liability with a threshold. Those
with liability below this threshold would not be affected by
the disorder, while those with liability above it would. This
situation is shown in Fig. 2.1.

It should be emphasized that the underlying normal distri-
bution of liability model is not be appropriate for all binary

Normal
pdf

liability

Fig. 2.1 Liability threshold model. Liability is assumed to be normally
distributed in the population; those with liability above threshold ¢ are
affected (score 1) and those with liability below are unaffected (score 0)
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traits. For example, a SNP genotype itself might be regarded
as a binary or ordinal trait (zero, one or two copies of a partic-
ular SNP allele), but it would not be appropriate to suppose
that there is an underlying normal distribution of liability to
having this genotype. Likewise, any phenotype purely related
to a particular SNP genotype would be better modeled in
terms of allele frequencies than as an underlying continuous
liability distribution (Risch, 2001). Ultimately, the number of
genetic factors that influence a particular trait is an empirical
question, and one that is likely to be answered in the rela-
tively near future, due to the advent of SNP chip genotyping
technology.

The traditional summary statistics for the liability thresh-
old model closely correspond to the mean and correlation
for continuous data. Typically, the mean of the liability dis-
tribution is assumed to be zero. The threshold is usually
estimated in a z-score metric of standard deviations. The
covariance between two liability dimensions is not calculated
via the usual Pearson’s formula for the covariance because
this statistic is biased toward zero to an increasing extent as
the ratio of those above vs. below the threshold departs from
50:50 (so variables with a small proportion of 0’s or 1’s are
biased more towards zero). Instead, a tetrachoric correlation
coefficient may be used. This statistic can be estimated from
the data by computing the proportions of observations that
would fall into the 00, 01, 10, and 11 categories for a given
pair of thresholds and tetrachoric correlation on the under-
lying bivariate normal distribution. Thus the tetrachoric cor-
relation may be estimated through a model-fitting method,
where the predicted quadrants of the bivariate normal distri-
bution are ‘matched’ to the observed data through what is
generally known as a loss function. Alternative estimates of
the thresholds and the correlation are tried iteratively until
those that best predict the frequencies of the four outcomes
are found. Similar procedures may be used for ordinal-level
measurements, such as may be obtained from a Likert scale
with ordered response categories (e.g., never, rarely, often
or always). The same underlying normal distribution model
with thresholds may be used to predict the cell frequencies,
and a polychoric correlation may be estimated. An important
distinction is that when there are more than two categories
of outcome it is possible to test how well the bivariate nor-
mal distribution fits the contingency table data. Failure of
the model may occur for many reasons, such as un-modeled
population heterogeneity, or non-linearity of the relationship
between latent trait score and response outcome. While esti-
mation of variance components may be robust to minor vio-
lations of the model assumptions, it is always good practice
to try to establish the origins of departures from expecta-
tions. We now turn to the derivation of the expected resem-
blance between relatives from genetic theory, before con-
sidering the application of model-fitting to behavior genetic
data.

Biometrical Genetics

The principles of biometrical and quantitative genetics are
central to practically all the statistical models employed
in this book. A little knowledge of elementary biometrical
genetics can provide valuable insights into the variance com-
ponents being estimated and the assumptions being made
about the mode of gene action in the population. A thor-
ough account of biometrical genetics would easily fill an
entire volume. Those interested in deeper study of this area
might consult any of the excellent textbooks on the subject,
such as Mather and Jinks (1982), Falconer (1990) or Lynch
and Walsh (1998). Here we review the derivation of additive
and dominance variance components from basic principles.
Our treatment follows that of David Fulker, published in the
Neale and Cardon (1992) volume.

At the time of writing, genetics is a discipline which is
rapidly changing in many respects: genotyping technology,
bioinformatics, statistical methods, substantive findings, and
even nomenclature are all in a state of flux. For the most part,
this situation is excellent, because much scientific progress is
being made. However, the nomenclature deserves attention in
this section to avoid possible confusion. In what follows, we
use the term gene to refer to a ‘unit factor of inheritance’ that
influences an observable trait or traits, following the earlier
usage by Fuller and Thompson (1978). Measured traits are
referred to as phenotypes. The position of a gene on a chro-
mosome is known as the locus. Any gene may have multiple
alleles, which are alternative forms at the same locus. The
simplest type of allele we consider is a Single Nucleotide
Polymorphism, or SNP, which is where only a single base-
pair differs. In earlier works, alleles are frequently written
with uppercase vs. lowercase letters, such as A and a, or B
and b (letters such as C are not ideal for this purpose because
it has the same shape in both cases). An alternative nota-
tion is to denote alleles by subscript: A; vs. A, and it is
common in molecular genetic work to simply refer to SNP
alleles as 1 or 2. When larger strands of DNA are consid-
ered (haplotypes, which may span part or all of one or more
genes), a larger number of alleles may exist. For statistical
purposes, a two-allele system (known as diallelic or biallelic)
may still provide a useful approximation, such as when there
is one operational allele and multiple inoperational forms.
The genotype is the chromosomal complement of aileles
for an individual. At a single diallelic locus, the genotype
may be symbolized AA, Aa, or aa; when two loci are con-
sidered, the genotype may be written AABB, AABb, AAbD,
AaBB, AaBb, Aabb, aaBB, aaBb or aabb. If an individual
has the same allele at the same locus on both chromosomes
we say they are homozygous — genotype AA or aa. If their
alleles differ, they are said to be heterozygous and would
have, e.g., genotype Aa. In a quantitative trait, it is common
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to consider the average trait value of individuals with a par-
ticular genotype, which are referred to as genotypic values.
The additive value of a gene is the sum of the average effects
of the individual alleles. A dominance deviation refers to the
extent to which the heterozygote genotypic value differs from
the mean of the genotypic values of the two homozygotes.
Genetic variation in a trait is referred to as polygenic (‘many
genes’) when many genes influence the trait. It seems likely
that almost all traits are polygenic, since the pathway from
genotype to phenotype is rarely simple. Disorders (or very
large effects on a quantitative trait) that are caused by a single
gene may be referred to as monogenic or Mendelian. How-
ever, it is often the case that phenotypic variability remains
among individuals who have the same genotype at the major
locus which has a large effect on the phenotype. Pleiotropy
occurs when a gene or set of genes influences more than
one trait. Again, it is likely that any gene that influences one
trait will also influence others. Pleiotropic effects seem espe-
cially likely when considering endophenotypes (Gottesman
& Gould, 2003) which may be defined as being (i) associ-
ated with the phenotype in the population, (ii) heritable, (iii)
state-independent (e.g., present regardless of the phenotypic
value of an individual), and (iv) correlated with the pheno-
type within families.

Most biometrical models are initially defined in terms
of gene action at a single locus, but assume that the sys-
tem is polygenic. The development of this model was one
of the many seminal contributions of Sir Ronald Fisher
(Fisher, 1918). Typically it is assumed that many loci influ-
ence the trait in question and that each locus has a relatively
small effect. This assumption is consistent with the central
limit theorem, which states that asymptotically (as the num-
ber of factors of small and equal effect tends to infinity) a
normal distribution of the trait will emerge. In reality, this
assumption has to be incorrect because the genotype of any
species consists of a finite number of genes. Nevertheless, it
is likely to provide a good approximation to a normal distri-
bution even when the number of genes is a few as 10 (Kendler
& Kidd, 1986). The central limit theorem may also apply
when the factors involved are of unequal effect, or are non-
independent (Lehmann, 1998). Should a phenotype be influ-
enced by a major locus, the remaining genetic variation may
be polygenic. As will become clear, the biometrical genetic
model is sufficiently general and extensible to cover a wide
variety of models of gene action.

In a diallelic system with alleles B and b there are three
possible genotypes BB, Bb, and bb. If we were to measure
a phenotype from a sample of the population, and then cal-
culated the mean for each genotype, three observed statistics
(the means) would be obtained. Three parameters might be
used to characterize these means: a grand mean (u) for the
population, the distance between the two homozygotes (2a),
and the deviation d of the heterozygote from the midpoint

of the two homozygotes. Thus the genotype values would be
n — a for bb, ;@ + d for Bb, and p + a for BB. Estimates of
the model parameters u, a, and b could be obtained from an
appropriately genotyped and phenotyped sample. It is possi-
ble then to test whether d or @ may be set to zero, to conduct
a simple population-based association study. Statistically, we
could conduct this test using one-way analysis of variance
or by likelihood ratio test in a model-fitting context. We
can also consider how much variation a locus that operates
in this fashion would generate. This component of variance
could then be compared to the variance in the population as
a whole, to obtain a proportion of variance accounted for,
which we refer to as locus heritability. The variation caused
by a diallelic locus depends not only on the a and d parame-
ters but also on the frequencies, p and ¢ = 1 — p of the two
alleles.!

Note that all three genotypes share the term w for the pop-
ulation mean. Since adding a constant to a set of observations
does not change the variance (which is simply the average
squared deviation from the mean), we can calculate the vari-
ance generated by the locus with the grand mean parameter
1 set to zero. Parameters, a and d are referred to as genotypic
effects. They are shown graphically in Fig. 2.2.

To make this model concrete, suppose that we are consid-
ering genetic effects on a measure of intelligence (IQ) which
has a mean of 100 and a standard deviation of 15. Let us
assume that there are 50 loci with approximately equal and
purely additive effects on the phenotype and that at each
locus the alleles are equally frequent in the population. If
allele b at each locus contributes —1 IQ point, and allele B
contributes +1 IQ point, then individuals with genotype bb
will score (on average) 98, those with Bb will score 100, and
those with B B will score 102. The estimate of the parameter
a for the B locus would be +1, and parameter d would be

Bb d m
—
T

Fig. 2.2 The additive (a) and dominance (d) parameterization of the
gene difference B — b. Bb may lie on either side of the midpoint, m,
of the two homozygotes, and the sign of d will vary accordingly; in
the case illustrated d would be negative. Similarly, the mean of the BB
homozygote may be greater or less than that of the bb homozygotes and
the estimate of @ would be positive or negative, respectively (Adapted
from Mather & Jinks, 1977, p. 32)

! The term frequency is technically incorrect here, because frequency
refers to count, and p and ¢q are effectively allele proportions, but the
term allele frequency is in widespread use to mean proportion in this
context.
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estimated at zero. Individuals with a full set of the decreasing
alleles at every locus would be expected to have a mean 1Q of
zero, while those with a full set of increasing alleles would be
expected to average 200. Note that we are assuming here that
(i) the 50 genes operate independently — their action is influ-
enced neither by genes at other loci nor by environmental
factors; (ii) having allele B does not influence the probability
that one has a particular allele at another locus (i.e., there is
no disequilibrium due to e.g., linkage or assortative mating);
and (iii) there is no genotype by environment interaction.

Breeding Experiments: Crosses
with Inbred Strains

Biometrical genetics originated with the analysis of data on
inbred strains, particularly in R. A. Fisher’s work on agricul-
ture. Breeding experiments with inbred strains provide a very
simple and intuitive framework for understanding genetic
contributions to population variation. The analysis of data
from outbred populations, such as humans, is compared.
Inbred strains formed by multiple generations of brother—
sister or parent—offspring matings are homozygous at almost
every locus. Mutation is expected to generate heterozygosity
at a small number of loci, but for the most part homozygos-
ity will be observed throughout the genome. When two such
strains (‘parental strains’ P and P») are crossed, the result-
ing offspring strain (known as first-generation filial, or Fi)
will be homozygous at all loci at which the parental strains
do not differ, and heterozygous (Bb) at all loci at which they
do differ. A cross between two F) individuals creates what
Gregor Mendel termed the ‘second filial’ generation, or F3,
and it may be shown that this generation would be expected
to comprise 1/4 individuals of genotype BB, 1/4 bb, and
172 Bb. Mendel’s first law, the Law of Segregation, states
that parents with genotype Bb will produce the gametes B
and b in equal proportions. The geneticist Reginald Punnett
developed a device known as the Punnett square, which gives
the proportions of genotypes expected to arise under random
mating. A simple example of the Punnett square is shown
in Table 2.1 for the mating of two heterozygous parents in a
diallelic system. The gamete frequencies in Table 2.1 (shown
out-side the box) are known as gene or allelic frequencies,
and they can be used to calculate the genotypic frequen-
cies by a simple product of independent probabilities. This
assumption of independence makes the biometrical model
tractable yet readily extends to more complex situations, such
as random mating in populations where the gene frequencies
are unequal. It also forms a simple basis for considering the
more complex effects of non-random mating, or homogamy,
which are known to be important in human populations —

Table 2.1 Punnett square illustrating offspring genotypes (and
expected probabilities of their occurrence) that theoretically result from
the mating of two heterozygous parents

Male Gametes
B(3)  b(d)
B(3) BB(}) Bb()
Female Gametes
b(%)

Bb(}) bb(})

especially for traits such as substance use, educational attain-
ment, and social attitudes.

In the simple case of equal allele frequencies (p = g =
%), such as in an F, population, it is easily shown that ran-
dom mating over successive generations changes neither the
allele nor the genotype frequencies of the population. Male
and female gametes of the type B and b from an F> popula-
tion are produced in equal proportions so that random mating
may be represented by the same Punnett square as given in
Table 2.1, which simply reproduces a population with iden-
tical structure to the F> from which we started. More impor-
tantly this result holds regardless of the allele frequency p,
and also when there are more than two alleles. This state is
known as Hardy — Weinberg Equilibrium and is a fundamen-
tal principle of quantitative and population genetics. From
this result, the effects of non-random mating and other forces
that change populations, such as natural selection, migra-
tion, and mutation, may be derived (Gale, 1980; Lynch &
Walsh, 1998).

The genotypic frequencies from the Punnett square are
important because they allow calculation of the population
mean and variance of the phenotype. The genotypes, fre-
quencies, and genotype means for this model in Table 2.1
are as follows:

Genotype (i) BB Bb bb
Frequency (f) }1 % %
Mean (x) a d -—a

It is now possible to calculate the mean effect of the B locus,
by computing the sum of the products of the frequencies
(which are proportions, per the preceding footnote) with their
corresponding expected mean, which yields:

up = Zfixi

T
=344 @D
)
= -d
p

The variance of the genetic effects of the B locus is given
by the sum of the products of the genotypic frequencies and
their squared deviations from the population mean (d/2)
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o} = Zfi(xi -

1, 11, 1,
= @ =3+ 2(d = 2dP + J(~a — 2d)

4
=la2—lad+ —d>+ d2+ 1a + ad+—d2
4 4 16 8 4 16
1 a2 2
d
2 +
2.2)
For this single locus with equal allele frequencies, %az is
known as the additive genetic variance, or V4, and %dz is

known as the dominance variance, Vp. When more than one
locus is involved, Mendel’s law of independent assortment
permits the simple summation of the individual effects of
separate loci in both the mean and the variance. Thus, for
(k) multiple loci,

k
w= %Zd,-, 23)
i=1
and
) 1 k k
PPN
= Va+ Vp. 2.4)

It is the parameters V4 and Vp that are estimated for
inbred animal and outbred animal or human populations else-
where in this volume.

To appreciate the relationship between these variance
components and the estimates derived by fitting a structural
equation model to data collected from relatives, we need to
consider the joint effect of genes in related individuals. That
is, we need to derive, from the genotype frequencies and the
parameters a and d, expectations for MZ and DZ covariances
in terms of V4 and Vp components. These derived expecta-
tions may then be set as fixed parameters in the structural
equation model, as described on page 26. This approach is
general, in that expectations may be derived for a wide vari-
ety of types of relative. Some additional complications arise
in the presence of inbreeding, as described by Lynch and
Walsh (1998).

Genetic Covariance Between Relatives

In order to use data collected from relatives to estimate vari-
ance components or proportions of variance such as heri-
tability, it is necessary to establish the expected covariance
between relatives in terms of the variance components of
interest. Accordingly, we now consider the derivation of

the additive and dominance genetic contributions to the
covariance between relatives. It is our knowledge of the
mechanisms by which genetic factors are transmitted across
generations which permits precise specification of the
expected covariance between relatives. Although genetic
models have been precisely formulated for almost a cen-
tury, the same cannot be said for models of the action of
environmental agents. Of this second source of variation we
have much less understanding. The physical mechanisms by
which environmental events are transmitted from one indi-
vidual to another, perceived and subsequently encoded in
the brain, and thereafter influence the thoughts and actions
are not sufficiently characterized to make other than rela-
tively crude approximations to their degree of resemblance
between relatives. We return to models of environmental
resemblance later in this chapter, but for now note that hav-
ing at least one source of variation appropriately specified is
better than having none.

Twin correlations may be derived in a number of differ-
ent ways, but the most direct method is to list all possible
twin-pair genotypes (taken as deviations from the population
mean) and the frequency with which they arise in a random-
mating population. Then the expected covariance may be
obtained by multiplying the expected mean for twin 1 and
twin 2 for each pair type, weighting them by their frequency
of occurrence, and summing across all possible pairs. By this
method the covariance among pairs is calculated directly.
The mean of all pairs is, of course, simply the population
mean, %d , in the case of equal allele frequencies. There are
shorter methods for obtaining the same result, but they are
less intuitively obvious. In this section, we consider the more
general case of unequal allele frequencies. To do this, we
need to know the population mean, and the frequencies that
pairs of relatives, classified according to their pairwise geno-
types, are expected to occur.

The results for equal allele frequencies were known by
a number of biometricians shortly after the rediscovery of
Mendel’s work (Castle, 1903; Pearson, 1904; Yule, 1902).
However, it was not until Fisher’s remarkable 1918 paper
that the full generality of the biometrical model was elu-
cidated. Allele frequencies do not have to be equal, nor
do they have to be the same for the various polygenic
loci involved in the phenotype for the simple fractions, 1,
%, 41'1’ and O to hold, as long as we define V4 and Vp
appropriately. The algebra is considerably more compli-
cated with unequal allele frequencies and it is necessary
to define carefully what we mean by V4 and Vp. How-
ever, the end result is extremely simple, which is perhaps
somewhat surprising. The interested reader should refer
to the classic texts in this field for further information
(Crow & Kimura, 1970; Falconer, 1990; Kempthorne, 1960;
Mather & Jinks, 1982). We note that the elaboration of
this biometrical model and its power and elegance has
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been largely responsible for the tremendous strides in eco-
nomical plant and animal food production throughout the
world.

Consider the three genotypes, BB, Bb, and bb, with pop-
ulation genotypic frequencies P, Q, R:

Genotypes BB Bb bb
Frequency P QO R

The allele frequencies (proportions) are

allele frequency (A) = P + % =p
(@) =R+ % =gq. (2.5)

These expressions derive from the simple fact that the BB
genotype contributes only B alleles and the heterozygote, Bb,
contributes %B and %b alleles. A Punnett square showing the
allelic form of gametes uniting at random gives the genotypic
frequencies in terms of the allele frequencies:

Male Gametes

pA  qa
Female Gametes pA p?BB  pgBb
ga pgBb  ¢*bb

which yields an alternative representation of the genotypic
frequencies

Genotypes BB Bb bb
Frequency p°> 2pq gq°

That these genotypic frequencies are in Hardy—Weinberg
equilibrium may be shown by using them to calculate allele
frequencies in the new generation showing them to be the
same, and then reapplying the Punnett square. Using expres-
sion 2.5, substituting p2, 2pg, and ¢, for P, Q, and R,
respectively, and noting that the sum of allele frequencies is
1 (p + g = 1.0), we can see that the new allele frequencies
are the same as the old and that genotypic frequencies will
not change in subsequent generations

1
p1=p2+52pq=p2+pq=p(p+q)=p

1
n=4"+2p4=0"+pg=q(p+9)=q. 26
The biometrical model is developed in terms of these

equilibrium frequencies and genotypic effects as

Genotypes BB Bb bb
Frequency 2 2pq ¢
Genotypic effect a d —a

Q2.7)

The mean and variance of a population with this compo-
sition is obtained in analogous manner to that in 1. The mean
is

uw=p'a+2pgd —q*a=(p—qa+2pqd. (2.8)

Because the mean is a reasonably complex expression, it is
not convenient to sum weighted deviations to express the
variance as in 2.2, instead, we rearrange the variance formula

ol =) filsi =’
= > fi} = 2+ p?)

=Zf,-xi2—2,u2f,-xi+uz

= > fix} 2P +

=Y fixi =’

Applying this formula to the genotypic effects and their fre-
quencies given in 2.7 above, we obtain

2.9)

o? = p*a® +2pqd* + ¢*a® — [(p — @)a + 2pqd)*

= p’a® +2pqd® + q*a®> — [(p — q)*a’
+4pgad(p — q) +4p*q*d*]

= p’a® +2pqd® + q*a®> — [(p* — 2pq — ¢*)a*
+4pqad(p — q) +4p*q*d’]

=2pgla* +2(qg — p)ad + (1 — 2pq)d*]

= 2pqla® +2(q — p)ad + (q — p)d* + 2pqd?]

=2pqla + (q — p)d)* +4p°q*d>. (2.10)

When the variance is arranged in this form, the first term,
2pvla+(v—p)d ]2, defines the additive genetic variance, V4,
and the second term (4 p2g2d?) defines the dominance vari-
ance, Vp. Why this particular arrangement is used to define
V4 and Vp rather than some other may be seen if we intro-
duce the notion of gene dose and the regression of genotypic
effects on this variable, which is how Fisher proceeded to
develop the concepts of V4 and Vp.

If B is the increasing allele, then we can consider the three
genotypes, BB, Bb, bb, as containing 2, 1, and 0 doses of the
B allele, respectively. The regression of genotypic effects on
these gene doses is shown in Fig. 2.3. The values that enter
into the calculation of the slope of this line are

Genotype BB Bb bb
Genotypic effect (y) a d —a
Frequency (f) p? 2pg ¢
Dose (x) 2 1 0
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Therefore, the slope is
+a 1 Oxy
T
d- =2pqla + (g — p)d]/2pq
Genotypic =a+(g—pyd. 2.14)
Effect m A

Gene Dose

Fig. 2.3 Regression of genotypic effects on gene dosage showing addi-
tive and dominance effects under random mating. The figure is drawn
to scale for p = ¢ = %,d: I,and h = %

From these values the slope of the regression line of y on x

in Fig. 2.3 is given by B, , = ax,y/o*xz. In order to calculate

2 . .
o; we need iy, which is

jy = 2p* +2pgq
=2p(p+q)

=2p. @2.11)

2 .
Then, o is

sz = 22p2 + 122pq — 22p2
=4p® +2pq — 4p*
=2pq

using the variance formula in 2.9. In order to calculate oy
we need to employ the covariance formula

Ox,y = ZfiXiyi — Mxlby, (2.12)

where 1y, and p, are defined as in 2.8 and 2.11, respectively.
Then,

vy =2p*a+2pqd — 2pl(p — q)a + 2pqd]
=2p’a +2pgd — 2p*a + 2pga — 4p*qd
=2pga +dQ2pq — 4p*q)
=2pga +2pqd(1 —2p)
=2pqa +2pqd(1 —p — p)
=2pqa +2pqd(q — p)

=2pqla + (¢ — p)d]. (2.13)

Following standard procedures in regression analysis, we
can partition crf into the variance due to the regression and
the variance due to residual. The former is equivalent to the
variance of the expected y; that is, the variance of the hypo-
thetical points on the line in Fig. 2.3, and the latter is the
variance of the difference between the observed y and the
expected values.

The variance due to regression is

Boxy =2pqla + (q — p)dlla + (¢ — p)d]

=2pgla+(q — p)d)’

=Va (2.15)
and we may obtain the residual variance simply by subtract-
ing the variance due to regression from the total variance of
y. The variance of genotypic effects (oyz) was given in Equa-
tion 2.10, and when we subtract the expression obtained for
the variance due to regression 2.15, we obtain the residual
variances:

0—3 — Boxy = 4p2q2d2
= Vp. (2.16)

In this representation, genotypic effects are defined in
terms of the regression line and are known as genotypic val-
ues. They are related to a and d, the genotypic effects we
defined in Fig. 2.2, but now reflect the population mean and
allele frequencies of our random-mating population. Defined
in this way, the genotypic value (G) is G = A + D, the
additive (A) and dominance (D) deviations of the individual.

G = A + D  frequency
Gpg =  2qla+d(qg—p)] 2q*d p*
Gpp = (@—pla+dg—p]l + 2pqd 2pq
Gw = —2platdqg—p)] — 2p%d q*

Inthe case of p =¢q = %, this table becomes

G = A + D frequency
GBB = a — %d ;1‘
Gpp, = %d %
Gpyp = —a -— %d ‘—1‘
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from which it can be seen that the weighted sum of all G’s is
zero (3 fiG; = 0).

The genotypic values A and D that we employ in the
structural equation model have precisely the expectations
given above in 2.15 and 2.16, but are summed over all
polygenic loci contributing to the trait. Thus, the biometri-
cal model gives a precise definition to the latent variables
employed in structural equation models for the analysis of
twin data.

Coefficients of Resemblance Between Relatives

In order to compute the predicted degree of resemblance
between pairs of relatives for a variance component, it is
useful to list all possible genotype pairings together with cer-
tain other salient pieces of information. The left-most col-
umn of Table 2.2 lists all possible pairs of diallelic geno-
types that may be shared by a pair of relatives. Additive and
dominance effects (the genotype means) of these genotypes
are shown in columns two and three for relative one (xy;)
and two (x;), respectively. Next are shown the deviations
of these two genotype means from the population mean pu,
and then their cross-product, from which we compute the
covariance. Finally, the population frequencies of MZ, DZ,
and unrelated siblings are listed. For MZ twins, the geno-
types must be identical, so there are only three possibilities
and these occur with the population frequency of each of the
possible genotypes (p?, 2pq, and g?). For unrelated pairs,
the population frequencies of the three genotypes are simply
multiplied within each pair of siblings since genotypes are
paired at random. The frequencies for DZ twins, which are
the same as for ordinary siblings, are more difficult to obtain.
All possible parental types and the proportion of paired geno-
types they can produce must be enumerated, and these cate-
gories collected up across all possible parental types. These
frequencies and the method by which they are obtained may

be found in standard texts (e.g., Crow & Kimura, 1970,
pp. 136-137; Falconer, 1960, pp. 152-157; Mather &
Jinks, 1971, pp. 214-215).

The covariances of three types are sibling are given by the
frequency-weighted sum of the cross-products:

Cov(MZ) =2pqla + (q — p)d> + 4p*q*d*>=Vs + Vp
Cov(DZ) = pgla + (q — p)d* + p*¢*d* =Ltva+1vp
Cov(U) =0 =0

By similar calculations, the expectations for half-siblings
and for parents and their offspring may be shown to be %VA
and %VA, respectively. That is, these relationships do not
reflect dominance effects. The MZ and DZ resemblances
are the primary focus of this chapter and others in this vol-
ume, but the approach is very general and may be used
for extended pedigrees and the large number of different
relationships found in, e.g., studies of twins, their parents,
spouses, and children (Maes et al., 2006).

Given a wider variety of types of relative we can assess
the effects of epistasis, or non-allelic interaction, since the
biometrical model may be extended easily to include such
genetic effects. Another important problem we have not con-
sidered is that of assortative mating, which one might have
thought would introduce insuperable problems for the model.
However, once we are working with genotypic values such as
A and D, the effects of assortment can be readily accom-
modated in the model using the Pearson—Aitken formulae
for deriving the mean vector and variance—covariance matrix
among variables that covary with variables on which selec-
tion has occurred (Aitken, 1934). Fulker (1988) describes
this approach in the context of Fisher’s (1918) model of
assortment.

In this section, we have given a brief introduction to the
biometrical model that underlies the structural equation mod-
eling of data from twins, and we have shown how additional
genetic variance components may be incorporated in the
model. However, in addition to genetic influences, we must

Table 2.2 Genotypes, gene effects, deviations, cross-products and frequencies for MZ, DZ, and Unrelated Siblings

Genotype Effects Deviations Product Frequency
pair

X1 X2 X1 — [ X2 — [ (1 — ) (xoi — p) MZ DZ U
BB BB a a a—dj2 a—dj2 a? —ad + d?/4 P2 p*+ g+ 1p%g® p*
BB Bb a d a—dJ2 d/2 ad/2 — d*/4 0 P+ ip*q® 2p%q
BB bb a —a a—dJ2 —a—d)J2 —a* +d?/4 0 1°q? P*q?
Bb BB d a d/2 a—dj2 ad/2 —d*/4 0 pa+ ip%q® 2p%g
Bb Bb d d dj2 dj2 d?/4 2pq p3q +3p%¢* + pg® 4p2q?
Bb bb d —a dj2 —a—dj2 —ad/2 —d*/4 0 10°a* + pg® 2pq°
bb BB —a a —a—dJ2 a—dj2 —a’ +d*/4 0 Y p2q?
bb Bb —a d —a—dJ2 d/2 —ad/2 — d*/4 0 10°¢* + pg® 2pq3
bb bb —a —a —a—dJ2 —a—dJ2 a* +ad + d*/4 p* 10°a* + pa’ +q* q*
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consider the effects of the environment in any phenotype.
These may be easily accommodated by defining environmen-
tal influences that are common to sib pairs and those that are
unique to the individual. If these environmental effects are
unrelated to the genotype, then the variances due to these
influences simply add to the genetic variances we have just
described. If they are not independent of genotype, as in the
case of sibling interactions and cultural transmission, both
of which are likely to occur in some behavioral phenotypes,
then the structural equation model may be suitably modified
to account for them.

Modeling of Data from Relatives

In this section we consider the statistical underpinnings of
one of the more popular approaches to modeling data from
relatives. The treatment here is not by any means intended to
be exhaustive. Rather, we wish to give enough information
for the reader to appreciate how the coefficients of resem-
blance between relatives that were calculated in the preced-
ing section can be implemented in a statistical model and
used to analyze data. A key feature of the approach we
describe is that it is extensible. While there are inevitably
some limitations to any selected approach, it will be shown
that it is highly versatile. Some alternative methods will be
considered at the end of the chapter.

It should be recognized that biometrical modeling is
intended to discern between putative causes of variation in
the population. That is, it is a part of the study of individ-
ual differences. As such, it differs from, e.g., a physiologist’s
study of the mechanics of a particular organ or cellular sig-
nalling pathway, because the focus is on what differs between
the individuals in the population rather than on what they
have in common. This choice of focus is partly motivated by
the desire to understand why certain individuals suffer from
physical or psychological disorders, while others do not. In
essence, therefore, the approach is partly guided by epidemi-
ological concerns, and the term genetic epidemiology is fre-
quently used to describe this area of study.

Our first concern coincides with almost every area of sci-
ence: how do we measure the quantities of interest? Usually,
a researcher with a substantive interest in a particular trait,
disorder, or condition has some idea of how to measure it.
In practice, behavior is often measured through self-report,
which may be obtained by questionnaire administered by a
paper-and-pencil test or via the Internet. These approaches
are popular because they are inexpensive. More costly stud-
ies may involve personal interviews which may be conducted
face-to-face or by telephone (Internet videoconferencing is
possible at the time of writing but is not yet sufficiently
widespread to be feasible for a population-based survey).

Perhaps the most desirable approach would be to measure
behavior by direct observation, as for example are being con-
ducted by Goldsmith and colleagues (Goldsmith, Lemery-
Chalfant, Schmidt, Arneson, & Schmidt, 2007). The major
drawbacks to such methods are that it is possible that knowl-
edge that one is being observed may change the behavior
itself, and that it is very expensive. Such observational meth-
ods are typically not well-suited to the assessment of internal
states, although it is possible that neuroimaging may pro-
vide some non-introspective insights in this area. Behavior
genetics may also concern itself with health outcomes that
are only partly behavioral in their origin. Physical charac-
teristics such as cardiovascular functioning (which may be
assessed with high quality measurements) are likely to reflect
behavioral variation such as the amount of physical exercise
a person takes. The scope of behavior genetics is therefore
very broad, encompassing many different types of measure-
ment and different substantive areas. At times we may be
interested in comparing the effects of different sources of
variation — genetic vs. environment or more explicit sub-
components thereof, perhaps at different ages. Other stud-
ies may focus on how they relate to each other to address
questions of comorbidity such as whether the same genetic
factors influence variation in two traits. It is therefore impor-
tant to devise and implement a statistical framework that is
sufficiently general to encompass different types of measure-
ments as well as different putative causes of variation.

Structural Equation Modeling: Latent and Observed
Variables

Structural equation modeling (Bollen, 1989; Cudeck, Toit,
& Sorbom, 2001) is a popular statistical method in many
branches of social science. It is essentially an extension of
multiple linear regression (Maxwell, 1977) which includes
latent as well as observed variables. An especially useful
feature of the approach for the non-mathematical audience
is that it is possible to draw a graphical representation of the
model, known as a path diagram. Structural equation mod-
eling is thus sometimes referred to as path analysis, and the
diagrams may be known as path models. This useful device
was invented by the population geneticist Sewall Wright
around the time that Ronald Fisher was developing biometri-
cal genetics (Wright, 1921, 1934). In their basic form, these
diagrams may contain two types of variable: (i) latent (drawn
as circles), which have not been directly measured; and (ii)
observed (drawn as squares), which have. Two types of rela-
tionship (paths) between variables may be depicted: causal,
shown as single-headed arrows from cause to effect; and cor-
relational, shown as double-headed arrows. A double-headed
arrow from a variable to itself may be used to represent the
variance of a variable in a path diagram. Often these variance
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paths are omitted when the variables are standardized, but it
is good practice to include them because it makes the dia-
grams mathematically complete (i.e., sufficiently precisely
specified to enable unambiguous derivation of all predicted
variances and covariances between the variables).

There are two general ways of deriving the predicted
variances and covariances between the variables in a path
diagram. One is to follow a set of tracing rules. For math-
ematically complete diagrams as described above, a suitable
set of rules is:

1. Trace the path chains between the variables, as follows:

a) Start at one of the variables of interest, trace back-
wards along any number (zero or more) of single-
headed arrows

b) Change direction at a double-headed arrow

¢) Trace forwards along zero or more single-headed
arrows to the second variable of interest

2. Multiply the paths along the path chain to obtain the path
effect

3. Repeat the chain procedure for all distinct chains. Chains
are distinct if they pass through different nodes, or (in the
case of computing a variance only) the order of the paths
in the chain is different.

4. Sum all the path effects to obtain the predicted covariance.

It is possible to organize a path diagram into matrices.
There are several ways of doing so; the one described here
is completely general but is not the most computationally
efficient. It has the advantage of being conceptually simple
and is due to my colleagues Jack McArdle and Steve Boker
(McArdle & Boker, 1990). Two matrices are defined to con-
tain the paths between all the variables (latent and observed)
in the model. Both matrices are square with nv rows and nv
columns. The first, labelled S, is symmetric and contains all
the two-headed paths in the diagram, with zeroes otherwise.
The second, labelled A, contains the asymmetric paths or
arrows, which are specified between causes in the columns to
effects in the rows. The following relatively simple quadratic
matrix algebra formula may then be used to derive the pre-
dicted covariances between all the variables in the diagram:

T=1I-A)'Sa-—A)"

where ! and ’ denote the inverse and transpose operations,
respectively, and I is the identity matrix. Typically, the pre-
dicted variances and covariances of only the observed vari-
ables are of use for model-fitting. These can be filtered from
¥ using an elementary matrix (one containing 1’s and 0’s) F
with columns the same as those of matrices S and A above
and rows containing only the observed variables. All ele-
ments of F are set to zero except those where the column
variable and the row variable are identical.

Another useful feature of the path analysis approach is
that it is straightforward to use them to derive predicted
means as well as covariances. This aspect of path diagrams
appears to have been a much later development. Sorbom
(1974) presented the general approach to implementing mean
structures in structural equation models, in terms of matrix
equations. Graphical representation of mean structures in
path models appears to have been first described by McArdle
and Boker’s RAMPATH. Triangles are used to denote mean
deviations, and a set of path tracing rules and corresponding
matrix algebra permits unambiguous derivation of predicted
means.

1. Trace the path chains back from the variable whose
expected mean is required to all triangles in the diagram:

a) Start at the variables of interest, trace backwards
along any number (one or more) single-headed
arrows to a triangle

b) Multiply the paths along the path chain to obtain the
path effect

2. Repeat the chain procedure for all distinct chains. Chains
are distinct if they pass through different nodes.
3. Sum all the path effects to obtain the predicted mean

Using the same organization of matrices A, S and I as
before, we can derive the expected means under the model
using the formula

n=1-A)"'MU,

where matrix M has rows corresponding to those in S and
columns corresponding to each of the triangles in the dia-
gram. Paths from the triangles to the circles or squares are
entries (from column to row) in the matrix M, which contains
zeroes where no path is drawn. The matrix U is a column
vector with as many rows as there are triangles in the model,
and with every element set to unity.

Alternative matrix specifications. The approach described
above is general, but it is not usually the most efficient. The
large majority of models in use in behavior genetics do not
require use of the matrix inverse to derive the expectations.
Often a very succinct and efficient matrix specification can
be described. The main advantage of specifying models with
matrices is that they are very easy to change when the number
of observed variables or the number of factors changes.

Univariate Model for Twin Data

For most variables, the first foray into establishing the rela-
tive impact of genetic and environmental factors on trait vari-
ation involves a classical twin study. Ideally, random samples
of twin pairs are obtained from the population under study,
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and data are collected from both members of each pair. Twins
are usually subclassified according to zygosity (MZ or DZ)
and sex (male-male, female—female, or male—female) pairs.
For the present, we consider only the MZ/DZ distinction and
assume that the sample at hand consists of all males or all
females. Note that it is generally inadvisable to collate DZ
pairs when opposite sex pairs are present, since lower cor-
relation between opposite sex pairs are frequently observed
(likely because different genetic or environmental factors are
operating in the two sexes).

While studying pairs of relatives is a substantial advance
over the study of unrelated pairs, it must be remembered
that there are limits to the number of parameters that can be
identified. In the univariate case, the twin study augments the
simple measure of trait variance that would be available from
unrelated persons to include the MZ and DZ covariances.
At its simplest level, this presents us with the opportunity
to estimate two additional parameters. Typically, additive
genetic (V4) and a common (shared) environment (V¢) com-
ponent are estimated, and this model will be presented here.
The main alternative model specifies variance due to genetic
dominance (Vp) as derived in Section above. It is important
to recognize that these two components are confounded in
the classical twin study and that while a DZ twin correlation
that is greater than half that of the MZ twins might imply
shared environment variance, and while a model with Vg4,
Ve and Vg will fit better than one with Vp in place of V¢,
it does not exclude the possibility that Vp exists for the trait,
but is masked by the effects of V.

A path diagram for twin pairs is shown in Fig. 2.4. The
model specifies that the phenotypes of the two twins, P1
and P2, regress on their respective latent additive genetic
(A), common environment (C), or specific environment vari-
ance (E) component. This model is often referred to as an
ACE model, per the acronym for its variance components.
The latent variables are specified to correlate differently for

5(DZ)or 1(M2)

P1 P2

Fig. 2.4 Structural equation model for MZ or DZ twin pairs, showing
additive genetic (A), common environment (C) and specific environ-
ment variance components (E)

MZ and DZ twin pairs, as derived on p. 25. Note that the
C components covary 1.0 regardless of zygosity type. This
specification is the embodiment of the equal environments
assumption — that the environmental influences correlate, on
average, the same regardless of zygosity. The free parameters
of this model are the three regression coefficients a, ¢, and
e, and the mean, m. All other parameters (the variances of,
and covariances between, the latent variables) are fixed to a
priori values according to theory. The free parameters may
in principle be estimated at any value from — oo to + oo,
though most software algorithms constrain the values some-
what (-10,000 to 10,000 are the defaults in Mx). Different
values of the parameters predict different means, variances,
and covariances for the twins. Typically, the variances and
means are constrained to be equal not only for the two mem-
bers of a twin pair but also for both MZ and DZ twins. That
different values of the parameters a and ¢ predict different
patterns of covariances between twins is the essence of the
biometrical twin model.

Specification of this model with the Mx graphical inter-
face is described in detail in Chapter 2 of the Mx manual
(Neale, Boker, Xie, & Maes, 2003), so it will not be repeated
here. Of note, however, is that very simple matrix algebra
expressions for the means and covariance matrix can be writ-
ten as

112+cz+e2

aa? + 2
aa? + 2 ’

a2+c2+e2

p = (mm); E=(

where a = 1 for MZ paris and 0.5 for DZ pairs.

Model-Fitting and Statistical Considerations

As described in the preceding sections, the biometrical
genetic theory, and the specification of models according
to that theory furnish us with sets of expected covariances
and means in terms of the parameters of the model. It now
remains to describe how these expectations are made to
‘match’ a set of observed data. This process is known as
model-fitting, and there are a variety of approaches that may
be used. It is instructive to consider the simplest approach,
which can be done ‘on the back of an envelope’ because it
provides insight into how the information is used. This dis-
cussion will be followed by a brief description of maximum
likelihood methods.

Suppose that we have collected data from 600 pairs of
MZ twins, and from 400 pairs of DZ twins, and have com-
puted the two correlations: ry;z = 0.8 and rpz = 0.5. The
expected correlations under the ACE model are obtained by
standardizing the variance — covariance matrix ¥ in Equation
above, which become
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. 1 a*z +C*2
EMZ = <a*2 +C*2 1 )
" 1 Sa*2 4 %2
YXpz =\ s, e | ;

where a*? and ¢*? are the standardized variance components.
Combining the observed data and these two simultaneous
equations we obtain

ruz = .8 =a*?+c*? (2.17)

rpz = .5 = .5a*2 + ¢*2. (2.18)

Twice the difference between these equations gives a*> =
0.6. Substituting this value into the equation for sz gives an
estimate of ¢*2 = 0.2. A third equation is that the standard-
ized variance components sum to unity: a*> + ¢*2 4 ¢*2 = 1
and substituting the estimates for a*2 and ¢*2 into this equa-
tion we obtain

0.6+02+4¢2=1 (2.19)
e?=1-06-02 (2.20)
e? =0.2. (2.21)

At this point, one might wonder why behavior geneticists do
not routinely exploit this simple algebra to obtain estimates
of variance components all the time. As discussed elsewhere
(Neale, 2003a), there are at least eight problems with this
algorithm for estimating components of variance. First, it is
possible to obtain nonsensical estimates of the heritability,
either greater than 1.0 or less than zero. Second, it takes no
account of the relative precision of the ry;z and rpz statis-
tics, which may be unequal if the sample sizes or the values
of the correlations differ. Third, there is no assessment of
whether the correlations are consistent with the ACE model.
Fourth, the method does not easily generalize to the mul-
tivariate case to permit testing hypotheses concerning why
variables correlate with each other. Fifth, it is not easy to
correct estimates for the effects of covariates such as age and
sex. Sixth, it does not generalize to extended twin studies
that involve other relatives. Seventh, it is inefficient when
there are missing data, and eighth, it is not suitable for non-
randomly ascertained samples of twins. Accordingly, we now
discuss maximum likelihood estimation which provides a
solution to all these difficulties.

Maximum likelihood estimation. Early in the 20th century,
R. A. Fisher began publishing a seminal series of articles on
the statistical properties of maximum likelihood estimates.
His first publication using the method was in the context of
curve-fitting (Fisher, 1912), and he explored its advantages
during the following decade (Fisher, 1922). In many
respects, maximum likelihood estimates are ideal. They are

invariant to one-to-one transformations; given the maximum
likelihood estimate (MLE) of a, the MLE of a2 can be
computed directly (& x @ = a%). Second, asymptotically
(i.e., as the sample size goes to infinity) MLE’s are unbiased.
Third, of all estimates that are asymptotically unbiased,
MLE’s have the smallest variance (that is, they are, on
average, the most accurate). Fourth, the distribution of
MLE’s is asymptotically normal, so the error of an MLE
is described simply by a single number (its variance). Of
course, nothing is perfect, and there are conditions where
alternative estimators are superior; with small sample sizes
an estimator with lower bias may be preferred. Perhaps
the most significant limitation is that MLE’s can be time
consuming to compute. While the dramatic advances in
computer hardware and software that have occurred in the
past 25 years continue to make ever more complex analyses
feasible, several areas — including the analysis of ordinal
data — still take too long for practical purposes.

The application of maximum likelihood estimation to
the analysis of data collected from twins is in widespread
use in behavior genetic analysis at this time (2007). Early
methods fitted models to previously computed variance —
covariance matrices (Fulker, Baker, & Bock, 1983). This
approach exploited valuable work by Lawley (1940) and
Joreskog (1967). When data are input as covariance matrices,
the fit function is usually

MLc = df{ln |2| — In|S| + ST ) — p}, (2.22)
where X is the estimated covariance matrix, S is the sam-
ple observed covariance matrix, p is the number of observed
variables, df is the sample size used to compute observed
covariance matrix, and | X|, >~ ! and trT denote the determi-
nant, inverse, and trace of the matrix X, respectively. Follow-
ing the later work by S6rbom, it became popular to fit mod-
els jointly to a covariance matrix and a vector of observed
sample means, Xx. In this case the fit function is augmented as

MLcim = df{ln |2 — In|S| + ST~ — p

+ (= w27 @ = W) (223)
where p is the vector of predicted means. This approach is
highly practical for two main reasons. First, it is computa-
tionally efficient, requiring the evaluation of Equation 2.22
or 2.23 only once per set of trial parameter estimates used
to iterate toward the maximum. Second, the loss function
in fact is not the log-likelihood itself, but is the log of the
likelihood ratio of the fitted model to a ‘saturated’ model in
which the observed covariance matrix is substituted for the
population matrix. This model is called saturated because it
has as many free parameters as there are observed statistics.
Under certain regularity conditions (Steiger, 1990), twice the
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difference between the log-likelihood of a model with u free
parameters and a submodel with v < u free parameters is
distributed as y> with degrees of freedom equal to u — v.
Thus when fitting models to covariance matrices, a measure
of overall goodness-of-fit of the model to the data is gener-
ated automatically. Furthermore, alternative ‘nested’ models
can be compared to one another by this same likelihood ratio
test.

A disadvantage of this approach is that it is awkward to
use when there are missing data, since different covariance
matrices must be computed and modeled for each differ-
ent pattern of missing data. Such problems are commonly
encountered in longitudinal studies and with multivariate
analysis. The problem can become particularly acute when
covariates or moderator variables are used. For example,
Visscher et al. (2006) use a direct measure of genotype
sharing between DZ twin pairs, and use this statistic to
specify a different genetic correlation for each pair in the
sample. Analyses of this type are not suited to the above sum-
mary statistic approach. They motivate the use of direct ‘Full
Information Maximum Likelihood’ (FIML) to which we
now turn.

The principles of ML estimation are somewhat obscured
by the use of the summary statistic formulae 2.22 and 2.23.
The approach is almost mind-boggling in its simplicity. Any
probability density function (pdf) has parameters which gov-
ern its general form. The univariate normal pdf, for exam-
ple, has two parameters, its mean p and variance o2, We
can fit a normal distribution to set of independent obser-
vations (hypothesized to be sampled from a normal distri-
bution) by varying the estimates /i and ¢ until the joint
likelihood of the data points is maximized. Given that the
data points are independent, the joint likelihood is obtained
by multiplying the likelihood of the individual data points
together (Neale, 2000). Typically, the individual likelihoods
consist of a large number of likelihoods, most or all of
which take values between zero and one. The product of
a large number of such values may be very close to zero,
which in turn can cause computational problems. Use of
logarithms of the individual likelihoods avoids this diffi-
culty, as these may be summed to yield the log of the joint
likelihood.

As discussed above, many models of complex traits
assume that individual differences arise as the result of the
action of a large number of independent factors, which gives
rise to a normal distribution of trait variation. The joint distri-
bution of pairs of relatives is assumed to be bivariate normal,
and this assumption may be extended to the multivariate case.
The multivariate normal probability density function for a
vector of observed variables x; may be written as

1
27 X"/ exp {‘5("" — )T — m)} :

For univariate twin data, the matrix X is as on p. 28 and
hence varies according to the particular set of parameter esti-
mates of a, ¢, and é being evaluated during optimization.
Typically, the estimates of the elements of the mean vector p
are constrained to be equal across the members of a twin pair
and between MZ and DZ twins. This assumption is testable
by likelihood ratio test. When there are missing data, the
mean vector u is trimmed to match only those variables that
are in the observed data vector x;. The covariance is similarly
filtered to retain only those rows and columns correspond-
ing to the data that were actually observed. The advantage
of this approach is that it produces asymptotically unbiased
estimates under either or both of two quite general possible
causes of missingness. First is when the data are missing
completely at random, i.e., the missingness is not related to
any of the variables being analyzed. Second is when missing
values are predicted by other variables that are observed in
the data set. For example, should structural MRI scan data
be obtained only from those subjects who are above a certain
height, but height is analyzed jointly with the scan data, then
the estimates of the mean, the variance, and the covariances
between the twins would be asymptotically unbiased. This is
despite the fact that the height and structural MRI measures
are likely to be correlated.

The application of this model to binary or ordinal data
presents no special conceptual difficulties when the thresh-
old model is employed. Essentially, the model states that a
particular value on an ordinal scale is observed when an indi-
vidual’s trait score lies between two thresholds #; and 7, with
t; = —oo for the lowest category and ¢; = oo for the high-
est. However, for high-dimensional problems — when there
are large pedigrees or the problem is highly multivariate,
analyses become time consuming. High-dimensional numer-
ical quadrature to obtain the multidimensional integrals is
computationally intensive, particularly when optimization is
required over a large number of parameters of the model.
Alternative methods, such as the Gibbs sampler (Geman &
Geman, 1984; Casella & George, 1992), offer a promising
alternative in such situations.

Conclusion

This chapter provides a brief introduction to the basic genetic
theory and statistical methods that are in common use in
human behavioral genetics. Using simple algebra and max-
imum likelihood estimation, it is possible to estimate the
contribution of genetic and environmental factors to human
variation in quantitative, ordinal, or categorical traits. These
contributions have direct counterparts in the variance com-
ponents estimated from animal and plant breeding experi-
ments, but they do not require experimentation with human
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reproduction. It is especially important to realize that the
treatment in this chapter is brief and considers only the sim-
plest of models for genetically informative data. Neverthe-
less, the platform on which it is built is very general indeed,
and many extensions are well established. First, data from
many other classes of relative may be encountered in behav-
ior genetic studies. Such additional sources of data prove
especially valuable in removing confounds between, e.g.,
common environment and dominance genetic variance com-
ponents (Keller & Coventry, 2005), and may resolve alter-
native models of assortative mating (Heath, 1987). Indeed,
the twin study should be considered as only an initial step in
the genetic epidemiological study of a trait. Second, exten-
sions to multivariate analysis, which will be discussed in
Chapter 4, have great potential for understanding comorbid-
ity between disorders, and covariance between traits. Beyond
simple estimation of variance components, it is possible to
estimate the relative contributions of these components to
the covariance between two or more traits. Factor analysis,
which can yield valuable insights to the covariance between
multiple phenotypic measures, may be applied to genetic
and environmental variance components separately (Martin
& Eaves, 1977; McArdle & Goldsmith, 1990). Furthermore,
under certain circumstances it is possible to resolve between
models that specify different directions of causation between
traits (Heath et al., 1993; Neale & Kendler, 1995; Duffy &
Martin, 1994; Neale et al., 1994). Third, the models gen-
eralize for the analysis of longitudinal data in a variety of
ways. Simple Cholesky factorization across time provides
an initial view of whether different genetic or environmen-
tal factors are operating at different stages of development.
More elaborate approaches that exploit Markov chain mod-
els (Eaves, Long, & Heath, 1986), growth curves (Neale
& McArdle, 2000), dynamical systems modeling (Neale,
Boker, Bergeman, & Maes, 2005), and dual change score
models (Gillespie et al., 2007) offer great promise for mul-
tivariate longitudinal genetic modeling. Third, it is straight-
forward to carry out univariate or multivariate linkage anal-
yses (Eaves, Neale, & Maes, 1996; Fulker & Cherny, 1996).
Linkage analysis may be thought of as partitioning DZ twin
pairs into those sharing zero, one, or two alleles identical by
descent (IBD) at a specific locus (Nance & Neale, 1989).
When marker data unambiguously classify sibling pairs into
these IBD groups, the approach is analogous to the MZ vs.
DZ vs. unrelated partitioning used to obtain estimates of total
heritability. Should the marker data not yield unambiguous
classification, then a mixture distribution approach may be
used to reflect the uncertainty. The same method is also use-
ful in the context of twin studies in which zygosity diagnosis
is subject to error (Neale, 2003b). Similarly, data on spe-
cific genetic markers can be included to effect a joint vari-
ance components and association analysis. Fourth, models of
genotype by environment interaction are undergoing a surge

of popularity, partly fueled by the availability of genetic
markers. Two main varieties are common: those with mea-
sured genotypes (Caspi, Harrington, Moffitt, Milne, & Poul-
ton, 2006) and those with unmeasured variance components
(Purcell, 2002). Finally, while the above brief list of exten-
sions may all be approached within the maximum likelihood
framework, we note that other applications may be more eas-
ily approached via Bayesian or other methods. Cases requir-
ing high-dimensional integration (such as highly multivariate
binary or ordinal data) may be tackled with the Gibbs sam-
pler, and models for genotype—environment interaction in
the presence of measurement error or genotype—environment
covariance have also been successfully analyzed within this
framework (Eaves & Erkanli, 2003; Eaves, Foley, & Sil-
berg, 2003). In future we may expect to see a convergence
of these methods that will facilitate further analysis of genet-
ically informative data. Hopefully these advances will yield
deeper understanding not only of genetic and environmental
factors but also of their complex interplay that generates the
incredible variety of human behavior.
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Chapter 3

QTL Methodology in Behavior Genetics

Stacey S. Cherny

Introduction

In the second chapter of this volume, biometrical models
in behavioral genetics are presented. Such models provide
the foundation for quantitative trait locus (QTL) analysis.
The present chapter specifically deals with applying those
models to QTL analysis, in both linkage and association
contexts. Until relatively recently, linkage was the preferred
method for mapping QTLs. The approach has limited power
in detecting small effects, unless an extremely large sample
size is available. However, linkage extends over large chro-
mosomal regions and so can be used to localize QTLs of
relatively large effects to large segments of DNA. In con-
trast to association mapping, linkage can be detected with-
out actually genotyping a causal variant or a locus that is in
linkage disequilibrium with a causal locus. In this case, link-
age disequilibrium implies a correlation between a marker
and a causal variant within the population as a whole. With
the availability of low-cost single nucleotide polymorphism
(SNP) chip-based genotyping technologies, the focus has
shifted toward association mapping. Currently, for example,
Affymetrix has a chip set that includes nearly 1,000,000
SNPs, spaced on average nearly every 3000 base pairs along
the genome. Such chips are ideally suited to genomewide
association scans. The present chapter will deal with both
linkage and association methods, however, since linkage may
still be the preferred first-pass analysis in a genomewide scan
if one is interested in finding genes of relatively large (per-
haps 10% of the total phenotypic variance) effects, including
multiple rare variants at a single locus. While coverage with
the new SNP chips is relatively complete, if a causal variant
is not in linkage disequilibrium with a typed SNP, it will not
be detected via association mapping, yet still can be detected
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using linkage. Therefore, linkage and association can be con-
sidered complimentary approaches to gene mapping.

Maximum likelihood variance components methods for
estimating and testing genetic and environmental variance
contributions to a trait of interest have been the analysis
methods of choice in behavior genetics since Jinks and
Fulker’s seminal 1970 paper (Jinks & Fulker 1970). The
approach is extremely flexible and readily lends itself to the
analysis of complex pedigrees and phenotypically multivari-
ate datasets. In the years since then, these methods have been
refined and extended and are most readily implemented using
the Mx statistical modelling package (Neale, Boker, Xie, &
Maes, 2003), although other packages can be used as well
but tend to involve more cumbersome specifications. A good
basic introduction to such model fitting can be found in Neale
and Cardon (1992) and the second edition of this text, Neale
and Maes (in preparation), in addition to Chapter 2 of this
volume. QTL mapping extends these models of estimating
overall genomewide genetic influences to estimating genetic
effects at any (or all) position(s) along the genome.

Linkage Mapping of QTLs

While studies which estimate the extent to which genetic
influences contribute to quantitative traits are still very
important as a first step in genetic analysis, with the low
cost of typing DNA markers across the genome, we are
much more interested in finding the individual genes which
contribute to the genetic variance twin and adoption stud-
ies can detect. That is, we wish to detect a quantitative trait
locus, a gene which has a quantitative effect on a trait. Link-
age analysis for complex behavioral genetic traits typically
involves the analysis of large numbers of small families,
typed on hundreds or thousands of DNA markers. We can
extend the basic twin model (see previous chapter) to esti-
mate variance attributable to a single genetic locus, rather
than the genomewide contribution of all loci. In estimating
genomewide genetic variance, we rely on the difference in
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the amount of genetic material shared by MZ vs. DZ twins,
on average. When examining a particular locus to deter-
mine its effect on a phenotype, we contrast allele sharing
between sibling pairs only at that particular locus. A sibling
pair can either share 0, 1, or 2 alleles at any position in the
genome. Sharing is generally not known with certainty and
so must be estimated from marker data, with this estimate
being denoted 7. While estimating allele sharing for a sin-
gle marker locus is relatively straightforward (e.g., see Hase-
man & Elston, 1972), we typically now genotype markers
all along each chromosome, necessitating use of more com-
plex algorithms (see e.g., Abecasis, Cherny, Cookson, & Car-
don, 2002; Kruglyak, Daly, Reeve-Daly, & Lander, 1996). In
order to estimate the effect of a QTL using linkage analysis,
we fit the following model to the data:

2 2 2 ~p2 2
mo (50 W)

rihy +c* g +c* +e?

where hg is an estimate of the variance attributable to the
QTL, 2 is the variance attributable to environmental influ-
ences shared by a pair of DZ twins or siblings, confounded
with polygenic variance, and e is the variance attributable
to environmental influences unique to the individual, which
includes measurement error (unless that is explicitly mod-
elled through use of multiple measures of a trait). If these
three quantities are standardized to the phenotypic variance,
the quantities of QTL heritability, the proportion of vari-
ance due to the putative trait locus, shared environmentality
(which in this case includes polygenic influences) and non-
shared environmentality result, analogous to the basic twin
model presented in the previous chapter.

In order to estimate the parameters of this model, we max-
imize the (log of the) following likelihood of the data across
all i sib pairs:

1 1 'z
L =Sy Z 7 i) 3.2
H 271z o

This expression also contains a means model, where y; is a
vector of observed data and p; is a vector of expected, or
predicted means. We would expect means of the first and
second members of a sib pair to be equal, but this is a testable
assumption.

In addition to allowing estimation of these parameters,
their statistical significance is tested by fitting a model with
the parameter of interest (hé for testing the QTL variance)
included and estimating the likelihood of the data (L) and
comparing it with a model with that parameter fixed to zero
(Lo). Twice the difference between these two (natural) log-
likelihoods is asymptotically distributed as x 2:

L
x2=—2m=2
Ly

(3.3)

In practice, we would estimate sharing across the entire
genome and repeatedly fit the genetic model at perhaps 1
centi-Morgan (cM) intervals and perform a test of hg (the
heritability due to the particular locus), plotting the obtained
test statistic at each position. We would choose an interval of
1 ¢cM because the probability of a recombination event occur-
ring during a meiosis within 1 cM of DNA is approximately
1%, making for a smooth linkage curve. Typically linkage
could locate a gene to at best 10cM, and more often only
20-30cM. In linkage analysis, the test statistic commonly
employed is the LOD score, where

Ly
Ly
yielding the simple relationship
2
X
D = 35
21n(10) (3-5)

Lander and Kruglyak formalized some guidelines as to what
size LOD score constitutes a significant linkage finding (E.
Lander & Kruglyak 1995). They determined that for sibling-
based linkage studies, a LOD of 3.6 is required for statistical
significance, where the probability of a positive linkage aris-
ing anywhere in the genome is 0.05 under the null hypoth-
esis of no QTL present. They also proposed a LOD of 2.2
for “suggestive linkage”, where a single genomewide false-
positive would be expected under the null hypothesis.

In the above example of QTL linkage analysis, when we
use 7; in the model, we are looking for a QTL which has
an additive effect on the quantitative trait of interest. That
is, if the gene contains just two alleles, A; and A, if an
individual had genotype A1 A1, we would expect an individ-
ual’s trait score to be a above the mean and if the individual
were Ay Aj, we would expect their trait score to be a below
the mean. The heterozygote, A;A>, would be expected to
not deviate from the mean, in the additive case. Nonaddi-
tive (dominant or recessive) models can also be fitted, which
would then imply a nonlinear relationship between the three
possible genotypes and the expected trait scores. Discussion
of additive vs. dominance models in linkage analysis can be
found in the statistical genetics textbook by Sham (1998).

QTL linkage models can be fitted using structural equa-
tion modelling packages (e.g., LISREL, EQS, Calis, Mx). In
the field of behavior genetic analysis, Mx (Neale et al. 2003)
is a very convenient and powerful structural modelling pack-
age, and there is a large archive of Mx scripts for QTL
linkage analysis and many other behavior genetic analyses
at the Mx Scripts Library (http://www.psy.vu.nl/mxbib/) and
at the Mx web site (http://www.vcu.edu/mx/). However, for
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the most basic variance components linkage analysis for
quantitative traits, the Merlin package (Abecasis et al. 2002)
can perform these analyses most efficiently across the entire
genome.

Multivariate QTL Linkage Mapping

Just as multiple measures can be analyzed to examine genetic
and environmental covariance structure using twins and other
genetically informative relationships (see Chapter 2), link-
age analysis can also be performed in a multivariate manner,
both as a means of increasing power and as a way to deter-
mine which aspects of a phenotype are linked to particular
genetic loci. This can be done through use of the (relatively)
unconstrained Cholesky decomposition to model the envi-
ronmental components of variation and the more restrictive
common factor model for the QTL components of the model
(see Chapter 2 for a discussion of these models). The com-
mon factor model is particularly useful when generalizing the
multivariate twin model to the detection of QTLs, since a sin-
gle genetic locus can influence several traits simultaneously
and this influence is necessarily perfectly correlated across
the traits. The magnitudes of the effect of the given locus
on each trait can differ dramatically, but it still results in a
common factor influence, with no specific variances resulting
from the QTL.

Extending the Cholesky decomposition to the mapping
of QTLs, we still model a full Cholesky on the shared and
nonshared environmental covariance structure, but we sub-
stitute a single common factor representing a single gene,
or QTL, in place of the full Cholesky. This simply involves
reducing the A matrix of the genetic Cholesky parameters
(see Chapter 2) down to a single column of parameters, with
the QTL loading on each of the observed measures. This
allows estimation of the effect of the QTL on each measure
in the multivariate model, but ensures these effects are corre-
lated completely across measures, since it is the same QTL
influencing multiple measures. This results in an n degree-of-
freedom test for the QTL, where n is the number of pheno-
typic measures. Despite the increased degrees of freedom, we
generally see increased power as a result of the multivariate
test, both in theory (Schmitz, Cherny, & Fulker, 1998) and in
practice (Marlow et al. 2003). We use the A to model the
QTL effect in ordinary siblings or DZ twins, as we would
model the polygenic effect in twin pairs. However, if we
have MZ twin pairs available for QTL analysis, we would
also model the polygenic variance by including a Cholesky
decomposition of that component. MZ twins may improve
the power of a QTL analysis somewhat over an analysis of
DZ twins alone (Schork & Xu 2000). Additionally, a pair
of MZ twins along with their sibling can be more powerful

than just using one member of the MZ pair (Evans & Med-
land 2003).

An example of the added power of multivariate QTL link-
age analysis can be found in Marlow et al. (2003). This study
presents a multivariate analysis of six measures of read-
ing ability, in an attempt to find a QTL influencing reading
disability. While the sample was selected for reading prob-
lems, the selection criteria were so weak that all measures
were essentially normally distributed and so variance com-
ponents analysis, without any ascertainment correction, was
performed. As can be seen in Fig. 3.1, the multivariate anal-
ysis yielded a test statistic similar to that obtained from one
of the individual measures (PD) on Chromosome 6, but did a
better job of localizing the QTL, as indicated by the sharper
peak. However, for Chromosome 18, an individual measure
(Read) yielded a higher test statistic. Results such as these
are not surprising, however. If all measures in the analysis
are equally good at tapping the underlying construct which
the QTL influences, a multivariate test will be more power-
ful. However, when a specific measure better taps what the
QTL influences, of course no more power would be expected
of a multivariate analysis. In the case of reading disability
presented here, perhaps that is the case for the Chromosome
18 region. Nonetheless, multivariate analysis performed bet-
ter for Chromosome 6, in terms of providing a more precise
estimate of the peak location.

Association Mapping

The maximum likelihood variance components framework
can easily be adapted to test for genetic association in addi-
tion to linkage (Abecasis et al. 2000, Abecasis, Cookson, &
Cardon 2000, Fulker, Cherny, Sham, & Hewitt 1999). While
linkage to quantitative trait loci involves detection of differ-
ences in sibling covariance among phenotypes as a function
of differences in the degree of allelic sharing, association
mapping involves the detection of mean differences in the
phenotype as a function of an individual’s genotype. When
modelling linkage using sibling pairs, the QTL is modelled
in the covariance matrix among the sibling pairs. When mod-
elling association, the QTL is modelled in the mean vector,
as one deals with any other covariate. In the simplest case,
in order to estimate and detect association of a gene with a
trait, each element of u; in the likelihood expression would
be modelled as

m =p+ Bagi (3.6)
where the g; for a given individual is coded as —1 for geno-
type aa, 0 for the heterozygote Aa, and 41 for genotype AA,
in the case of modelling an additive effect of a diallelic locus.
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Fig. 3.1 Multivariate and univariate linkage analysis of the six reading-
related measures—on a 54 cM region of chromosome 6p (A) and a
137 cM region spanning the whole of chromosome 18 (B)—and com-
parison of multivariate linkage and use of the first factor from a PCA
approach as the phenotypic measure for linkage analysis, on chromo-

Ba would then estimate the additive effect of the locus on
the trait and dropping B, from the model and comparing it
with a model that includes S, in it would provide a test of
association.

Fulker et al. (1999) further extended this simple asso-
ciation model to allow one to control for population strat-
ification, a problem of concern in association studies, and
proposed further to simultaneously model linkage and asso-

somes 6p (C) and 18 (D). A subset of the markers is shown on the
graphs. The significance of the linkage results is reported in all cases as
p values. For univariate measures, the p values are empirically derived
as described elsewhere (S. Fisher et al. 2002); for multivariate and PCA
results, the p values are asymptotic. From Marlow et al. (2003)

ciation using the maximum likelihood variance components
approach. Population stratification refers to the problem of
the individuals in the sample coming from different genetic
populations. Different populations may have different allelic
frequencies for reasons unrelated to the trait of interest
(e.g., genetic drift). However, if allele frequencies differ
between populations and there are mean differences between
populations, association could be detected between those
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alleles and the trait, when in fact there is no causal rela-
tionship. Stratification was controlled for by decomposing
the genotype score, g;, into between-family (b) and within-
family (w) components. Since stratification would contribute
to between-family differences, the within-family component
of association would be free of stratification effects. The
means model they proposed is

rij =+ Bpbi + Puwij (3.7
where b; and w;; are the orthogonal between- and within-
family components of g;;, respectively, with j denoting a
particular individual in family i. Using the specification
of Abecasis et al. (2000) and their extension to deal with
parental genotypes,

b = (3.8)
n;
if parental genotypes are unknown and
bi = w (3.9)

if parental genotypes are available, with " and M referring to
the father’s and mother’s genotypes in family i. The within-
family component is given as

wij = &ij — bi (3.10)
A robust test for association, controlling for stratification,
is obtained by computing the 1-df difference x> between a
model with 8,, free and a model with 8, set to 0, while S
is estimated in both models. In the case of a locus which is
dominant or multi-allelic, these models are readily extended
to allow a between- and within-dominance or multi-allelic
parameters. Furthermore, the modelling of multiple alleles is
a straightforward extension, although with inclusion of dom-
inance parameters in such a model, the number of df associ-
ated with the test of association increases dramatically with
more and more alleles.

This test of association, because it is based on maxi-
mum likelihood variance components estimation procedures,
brings all the advantages of that procedure to it. One major
advantage is that linkage can be modelled simultaneously
with the association parameters. Linkage is modelled in the
covariance structure, as illustrated above, while the associa-
tion parameters, along with other covariates, if desired, are
modelled on the means. One would estimate all parame-
ters as a full model and compare it to various submodels,
allowing individual tests of association and linkage. A simple
test of the within-association parameter would yield a robust
test of association while controlling for stratification. Testing
linkage while simultaneously modelling association would

provide a test of whether the putative QTL locus is likely
causative or whether it is merely in disequilibrium with a
trait locus. If significant linkage is detected while modelling
association, one can conclude that the putative locus is not
the functional gene, but rather a locus in disequilibrium with
a trait locus. Such tests have been explored more formally by
Cardon and Abecasis (2000).

The approach not only allows one to control for stratifi-
cation but readily suggests a test for it. If the 8; parameter
cannot be equated to the B, parameter, one can conclude
that at least part of the association observed is a result of
population stratification. However, if 8, on its own is still
significant, one can still conclude that a true association has
been found.

Application of this method is beautifully illustrated by a
study by McKenzie et al. (2001). In their study, they mea-
sured circulating angiotensin I-converting enzyme (ACE) in
two samples and tested for linkage and association with 10
polymorphisms in the ACE gene. The study is both proof
of principle that linkage and association could be detected,
since it was already known that the ACE gene influences
ACE levels, but the primary purpose was to narrow down
which particular variant in the ACE gene is responsible for
the effect. The Fulker et al. (1999) and Abecasis et al. (2000)
model was fitted to these data, whereby linkage was mod-
elled without association parameters in the model, associ-
ation was modelled without the linkage parameters in the
model, and a combined linkage and association model was
fitted. As can be seen in the first panel of Fig. 3.2, the evi-
dence for linkage is very strong. However, because the region
is quite small, a short segment of DNA in a single gene,
linkage cannot be expected to resolve location at all, since
the recombination fraction between markers is nearly zero.
However, association has much greater resolution capability,
since linkage disequilibrium between the markers examined
is not complete. And as can be seen in the second panel of
Fig. 3.2, the association test statistic is greatest for the four
markers on the right-hand side in the figure, already a great
improvement on the linkage analysis. The top line represents
the combined test of 8,, and B, while the bottom line is the
robust, but less powerful, test of linkage in the presence of
stratification, the test of just B,. However, if both linkage
and association are modelled together, we would expect to
see the linkage signal disappear to the extent that the marker
in association is the causal variant. Indeed, for one of the
markers (I/D) in this analysis, the linkage signal disappeared
completely when the association parameters were modelled
simultaneously.

Just as we can extend the linkage mapping methods to
the analysis of multivariate phenotypes, association mapping
can also be extended to deal with multivariate traits, both to
better understand the genotype—phenotype relationship and
to increase power.
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Regression Models

Thus far this chapter has dealt with maximum likelihood
variance components approaches to modelling linkage and
association to quantitative traits using sibships. It has been
shown that such methods are optimally powerful and given
their flexibility in designing complex genetic and environ-
mental models, if it is appropriate to use them, they are
preferable. However, these methods are less flexible when
dealing with selected samples, where families and individu-
als within families are not sampled at random. Sham, Zhao,
Cherny, and Hewitt (2000) have developed a conditioning on
traits approach for modelling linkage using variance com-
ponents with selected samples, but in dealing with sibships
larger than pairs it becomes quite unwieldy. Also, variance
components methods can yield inflated test statistics when
dealing with non-normal data. Next, a brief history of regres-
sion methods is discussed, adapted from Sham, Purcell,
Cherny, & Abecasis (2002).

Haseman-Elston

It is commonly known that simple multiple linear regression
is more robust than maximum likelihood variance compo-
nents methods to violations of normality and also deals with
selection on independent variables without any modifications
of the method. Regression methods for linkage analysis in
sib pairs date back to the Haseman—Elston (1972) approach,
whereby the phenotypic squared sib pair difference score,
(X — Y)2, is regressed on the sib pair’s proportion of alleles
shared identical by descent (IBD) at a given locus, 7:
(X—-Y)Y?=2(1—r)4+20F — .5 +¢ (3.11)

In the above expression, r is the correlation between phe-
notypic scores of sib 1 (X) and sib 2 (Y'), with the intercept
of the regression equal to 2(1 — r) and the regression slope
B = —20Q, where Q is the variance explained by the addi-
tive effect of the putative QTL, if there is no recombination
between the marker and the QTL, and ¢ is the residual. A
one-tailed 7-test, ,3 /SE (,é), provides a test of significance
for the QTL. At a given chromosomal location, a pair of
siblings can share either none, one, or both alleles IBD from
their parents. For example, sibling 1 could have received one
allele at a given locus from her maternal grandmother and
the other from her paternal grandmother. If her sibling also
received those same alleles, they will be IBD 2, or 7 = 1.
However, if sibling 2 received the maternal grandmother’s
allele, but the paternal grandfathers’s allele, the sib pair is
IBD 1, or 7 = 0.5. Finally, the sib pair could be # = 0 if
they differ in the origin of both alleles (e.g., sib 2 received

the maternal grandfather allele and the paternal grandfather
allele. While the original H-E method dealt with linkage to a
single marker, a later multipoint extension by Fulker, Cherny,
and Cardon (1995) replaced # with an estimate of allele
sharing at any position in the genome, using all available
flanking markers, thereby eliminating the effect of recom-
bination between the marker and QTL on effect size and on
the power of the test statistic and providing a more powerful
test of linkage. There are several methods available for esti-
mating IBD at any position along a chromosome, given all
the genetic information available on the chromosome. When
dealing with sib pairs or small families, exact methods such
as the Lander—Green algorithm (Lander & Green 1987) and
improvements on it (Idury & Elston 1997), as implemented
in Merlin (Abecasis et al. 2002), are preferred. The H-E
regression test for linkage has the advantages of simplicity
and robustness (Allison, Fernandez, Heo, & Beasley 2000),
but is less powerful than variance components (VC) models
(Fulker & Cherny 1996), which make optimal use of the data.

Extensions to Haseman-Elston

Several authors have proposed modifications to the original
H-E method in order to improve its power (Drigalenko 1998,
Elston, Buxbaum, Jacobs, & Olson 2000, Forrest 2001, Sham
& Purcell 2001, Visscher & Hopper 2001, Wright 1997, Xu,
Weiss, Xu, & Wei 2000). The H-E method regresses squared
sib pair differences on an estimate of allelic sharing. How-
ever, there is more phenotypic information in a sib pair than
simply the square of its phenotypic difference score. One
proposal was to perform the regression on squared sums
instead of squared differences (Drigalenko 1998), which cap-
ture different, yet correlated, information in the sib pair:
X+Y)2=2(1+r)+20F — .5 +¢ (3.12)
This led to a further extension by Elston et al. (2000) which
attempted to incorporate the information contained in both
the sums and differences by using the cross-product XY as
the dependent variable:
XY=r+0@—-.5) +¢ (3.13)
Xu et al. (2000) proposed a unified H-E method that uses
a weighted linear combination of the estimates of Q obtained
from the original H-E regression on squared differences and
the alternative regression on squared sums. Rijsdijk, Hewitt,
and Sham (2001) showed that this method yielded a non-
centrality parameter which is identical to that from the VC
linkage test. Sham and Purcell (2001) further simplified this
unified method such that it could be performed with a single
regression:
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with identical results.

Sham and Purcell (2001) examined all of the above
regression-based methods, comparing them under various
conditions. A variance components (VC) approach (Fulker &
Cherny 1996), modelling the full familial covariance struc-
ture, can be considered the gold standard, and Sham and
Purcell compared these existing regression-based methods
with VC, showing that none of the other methods captured
all available information in the data. They noted that in the
special case of a sib correlation (r) equal to zero, the non-
centrality parameters (NCPs) for using squared sums and
squared differences are the same, and they sum to the NCP
obtained from using the cross-products. As r increases, how-
ever, the original squared differences regression test gains
in power, while using sums or cross-products loses power;
when r > (2 — +/3), cross-products are less powerful than
squared differences, which should be noted is a likely mini-
mum sib correlation (0.27) for typical linkage studies. They
further showed that their new regression method retains the
advantages of the original H-E regression method in being
computationally less demanding than VC and, more impor-
tantly, more suited to the analysis of selected samples, which
comprise the vast majority of linkage studies.

Sham, Purcell, Cherny, and Abecasis (2002) extended
this method to deal with sibships larger than size 2 and
more general pedigree configurations, while retaining all the
advantages of the other regression-based methods. Within a
single pedigree, the analysis is a case of multivariate regres-
sion, with as many observations as there are pairs of family
members, each contributing an estimated proportion of alle-
les shared IBD. These estimated IBD-sharing proportions are
regressed on an equal number of squared sums and an equal
number of squared differences. The regression from the pre-
vious methods is reversed, where now the trait values are
regressed on 77, because sample selection is often through
trait values but almost never through marker genotypes. The
estimate of a regression coefficient is not biased by sample
selection through the independent variable, but can be biased
by sample selection through the dependent variable. There-
fore, IBD sharing is put on the dependent side of the regres-
sion and the squared sums and squared differences are the
independent variables.

In this multivariate regression, the estimated IBD sharing
of a pair of relatives is modelled not only on the squared
sum and squared difference of the same relative pair but also
on the squared sums and squared differences of other rela-
tive pairs in the pedigree. Since the full distribution of IBD
sharing is uncertain under imperfect marker information,
a weighted least squares estimation procedure is adopted,

which requires only the covariance matrix of IBD sharing.
The weighted least squares estimators of the regression coef-
ficients can be written as a function of three covariance matri-
ces: (1) the covariance matrix of the IBD sharing propor-
tions, (2) the covariance matrix of the squared sums and
squared differences, and (3) the covariance matrix between
the estimated IBD proportions and the squared sums and
squared differences. The last of these matrices is in part
determined by the additive variance explained by a linked
QTL. The solution of this multivariate regression in a single
pedigree provides an estimate of the additive QTL variance,
together with its sampling variance. It is then straightfor-
ward to combine these estimates across all the pedigrees in
a sample, weighting them by the inverse of their variances.
This also provides the sampling variance of the combined
estimate and a chi-squared test for linkage. The asymptotic
distribution of this test statistic in large samples is ensured
by the central limit theorem. The method has been shown
to provide unbiased LODs and p values under selection
Sham et al. (2002).

This method is implemented in Merlin (Abecasis
et al. 2002, Sham et al. 2002) and its application is illustrated
by an analysis of data from a large population-based sample
of sibships assessed for anxiety and depression measures in
the GENESIS study (Nash et al. 2004). This study involved
collection of questionnaire data on a large community-based
sample of 34,371 people, of which 14,807 were members of
sibships of sizes 2—7, with the majority sib pairs. Using an
algorithm implemented in the SEL (selection for QTL link-
age) program (Purcell, Cherny, Hewitt, & Sham 2001), DNA
samples were solicited from the most informative 10% of all
sibships, based on their composite phenotypic scores across
several measures. Informativeness was then recalculated on
the 65% of samples who returned DNA, and another round of
selection was performed to choose those to be genotyped on
400 microsatellite markers. Sibships which are most discor-
dant or extreme concordant on the phenotype are the most
informative, with the ratio of those two groups a function
of the sibling correlation on the phenotype. The SEL pro-
gram ranks the sibships based on their likely contribution
to the noncentrality parameter for linkage, using only phe-
notypic information. Given that this was a selected sample,
it was ideally suited for regression-based linkage analysis
(Sham et al. 2002). Figure 3.3 shows the results of perform-
ing a genome scan using Merlin-regress (Sham et al. 2002)
on the neuroticism measure from the Eysenck personality
questionnaire (EPQ-N; Eysenck & Eysenck 1975), mea-
sured on two occasions in 78% of those subjects geno-
typed. Using an average of two repeated measures, rather
than just a single measurement occasion, will reduce mea-
surement error, thereby increasing heritability (Falconer &
Mackay 1996). Merlin-regress was extended to make use
of this additional information, allowing the use of averaged



3 QTL Methodology in Behavior Genetics

43

LOD Score

WiN

OJMM N

0 500

l

1500

A

1000

N RN il

2000 2500

Distance Across Genome (cM)

Fig. 3.3 Genomewide linkage scan results for a composite measure of neurotism, from Nash et al. (2004). See text for details

phenotypes from any number of measurement occasions on
a per-subject basis, with the method taking account of the
differing expected error variance on a per-subject basis (see
Appendix in Nash et al. 2004). This analysis resulted in a
LOD of nearly 3 on Chromosome 6 for the EPQ-N. This
study further refined the analysis by examining males and
females separately, yielding a somewhat higher LOD score
(Nash et al. 2004).

DeFries-Fulker Regression

An alternative regression model for linkage analysis using
sibship data is one based on the DeFries—Fulker (DF) method
for analysis of twin data (DeFries & Fulker 1985, 1988,
LaBuda, DeFries, & Fulker 1986). The method was devel-
oped for estimating genetic and environmental components
of variance in both population-based samples of twins and
samples where proband members of a twin pair were selected
for having extreme scores exceeding (or below) a desig-
nated threshold. The method was later extended for analysis
of genetic marker data (Fulker et al. 1991, Fulker & Car-
don 1994) and the power of the method explored (Cardon &
Fulker 1994). It has been used successfully to map a gene for
reading disability (Cardon et al. 1994, 1995) which has since
been replicated using this methodology (Gayéan et al. 1999)
and other methods (S. E. Fisher et al. 1999, Grigorenko
et al. 1997, Marlow et al. 2003).

The DF basic model (DeFries & Fulker 1985; LaBuda
et al. 1986), appropriate for selected sample analysis, when
used for linkage mapping in sib pairs, is given by

C; = B P; + By7; (3.15)
where for sib pair i, the co-sib’s phenotypic score (C;) is
predicted by the proband’s score (P;) and the sib pair’s 7,
the proportion of alleles shared IBD at a given location along
a chromosome. B, provides an estimate of the proportion
of variance accounted for by the putative QTL (provided
the data are suitably transformed prior to analysis (LaBuda
et al. 1986)) and the corresponding ¢ statistic provides a
test of linkage. In the case of sibships larger than pairs,
the method can still be applied by having each sib’s score
predicted by each proband’s score. In the case of multiple
probands in a sibship, the probands appear on both sides of
the regression equation (once as proband and again as a co-
sib). The resulting ¢ statistic is then adjusted by producting
it by the square root of the ratio of the number of unique
pairings to the number of pairings resulting from this double-
entry procedure.

The DF augmented model (DeFries & Fulker 1985,
LaBuda et al. 1986) can also be used for linkage mapping,
both in selected and population-based samples:

C; = B3P; + Bym; + BsP;m; (3.16)
where Bs provides an alternative test for linkage (appropri-
ate both in selected and unselected samples; see LaBuda
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et al. (1986) for an explanation of the distinction between
tests of By and Bs in selected samples). For analysis of
unselected samples, all possible pairings of siblings within
a family must be formed, with each sib appearing on both
sides of the regression equation. The resulting ¢ statistics are
then adjusted by producting them by /2 to adjust for this
double-entry procedure. Double entry of all individuals in an
unselected sample acknowledges the intraclass relationship
among siblings in a family.

Once the proportions of alleles shared IBD at given
chromosomal locations are available, implementation in a
statistical analysis package of the DF method of QTL
mapping is trivial, since it uses simple linear regression.
However, complications arise in merging pairwise IBD infor-
mation as output from Genehunter (Kruglyak et al. 1996)
or Merlin (Abecasis et al. 2002), computing the regression
repeatedly across the chromosome, accommodating sibships
larger than sib pairs, and accommodating sibships with mul-
tiple probands. A macro package for the SAS™ statistical
analysis software is available which makes the application
of the DF approach to sibship data a simple matter for the
researcher (Lessem & Cherny 2001).

Conclusions

The regression approach lends itself to various extensions,
such as multivariate analysis and tests of association. How-
ever, these extensions are not as straightforward to imple-
ment as they are in variance components and as yet have not
been fully developed. Additionally, it is doubtful a general
implementation of the regression approach could be devised
so that the researcher can accommodate more complex data
structures, using a flexible structural equation modelling
package such as Mx (Neale et al. 2003). The variance compo-
nents approach offers all the flexibility that structural equa-
tion modelling brings. Dealing with complex issue such as
gene by environment interaction is relatively straightforward,
both when estimating genomewide genetic variance, such as
in twin studies, and searching for QTLs using genetic marker
data. We could stratify our samples into multiple groups,
estimating parameters separately for males vs. females, or
different ethnicities, or social strata. Or, alternatively, the
models could be written, for example, such that the genetic
and environmental parameters are linear (or nonlinear) func-
tions of measures of the environment. However, while the
regression methods are fast and robust under selected sam-
ples and non-normal data, as yet the flexibility offered by
structural modelling cannot be matched, as can be seen by the
large collection of scripts made available at the Mx Scripts
Library (http://www.psy.vu.nl/mxbib/) or the Mx web site
(http://www.vcu.edu/mx/).

Acknowledgment Preparation of this chapter was partially supported
by National Institutes of Health grant EY-12562.

References

Abecasis, G. R., Cardon, L. R., & Cookson, W. O. (2000, January). A
general test of association for quantitative traits in nuclear families.
American Journal of Human Genetics, 66(1), 279-92.

Abecasis, G. R., Cherny, S. S., Cookson, W. O., & Cardon, L. R. (2002).
Merlin—rapid analysis of dense genetic maps using sparse gene
flow trees. Nature Genetics, 30, 97-101.

Abecasis, G. R., Cookson, W. O., & Cardon, L. R. (2000, July).
Pedigree tests of transmission disequilibrium. European Journal of
Human Genetics, 8(7), 545-551.

Allison, D. B., Fernandez, J. R., Heo, M., & Beasley, T. M. (2000).
Testing the robustness of the new haseman-elston quantitative-trait
loci-mapping procedure. American Journal of Human Genetics, 67,
249-252.

Cardon, L. R., & Abecasis, G. R. (2000). Some properties of a variance
components model for fine-mapping quantitative trait loci. Behavior
Genetics, 30, 235-243.

Cardon, L. R., & Fulker, D. W. (1994). The power of interval mapping
of quantitative trait loci, using selected sib pairs. American Journal
of Human Genetics, 55, 825-833.

Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pen-
nington, B. F., & DeFries, J. C. (1994). Quantitative trait locus for
reading disability on chromosome 6. Science, 266, 276-279.

Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pen-
nington, B. F., & DeFries, J. C. (1995). Quantitative trait locus for
reading disability: Correction. Science, 268, 1553.

DeFries, J. C., & Fulker, D. W. (1985). Multiple regression analysis of
twin data. Behavior Genetics, 15, 467-473.

DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of
twin data: Etiology of deviant scores versus individual differences.
Acta Geneticae Medicae et Gemellologiae, 37, 205-216.

Drigalenko, E. (1998). How sib pairs reveal linkage. American Journal
of Human Genetics, 63, 1242—1245.

Elston, R. C., Buxbaum, S., Jacobs, K. B., & Olson, J. M. (2000). Hase-
man and elston revisited. Genetic Epidemiology, 19, 1-17.

Evans, D. M., & Medland, S. E. (2003). A note on including pheno-
typic information from monozygotic twins in variance components
qtl linkage analysis. Annals of Human Genetics, 67, 613-617.

Eysenck, H. J., & Eysenck, S. B. G. (1975). Manual of the eysenck
personality questionnaire. San Diego: Digits.

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative
genetics (pp. 136-142). London: Longman.

Fisher, S., Francks, C., Marlow, A. J., MacPhie, I. L., Newbury, D. F.,,
Cardon, L. R., et al. (2002). Independent genome-wide scans iden-
tify a chromosome 18 quantitative-trait locus influencing dyslexia.
Nature Genetics, 30, 86-91.

Fisher, S. E., Marlow, A. J., Lamb, J., Maestrini, E., Williams, D. F.,
Richardson, A. J., et al. (1999). A quantitative-trait locus on chro-
mosome 6p influences different aspects of developmental dyslexia.
American Journal of Human Genetics, 64, 146—-156.

Forrest, W. (2001). Weighting improves the “new haseman-elston”
method. Human Heredity, 52, 47-54.

Fulker, D. W., & Cardon, L. R. (1994). A sib-pair approach to inter-
val mapping of quantitative trait loci. American Journal of Human
Genetics, 54, 1092—-1103.

Fulker, D. W., Cardon, L. R., DeFries, J. C., Kimberling, W. J., Pen-
nington, B. F.,, & Smith, S. D. (1991). Multiple regression analysis
of sib-pair data on reading to detect quantitative trait loci. Reading
and Writing: An Interdisciplinary Journal, 3,299-313.



3 QTL Methodology in Behavior Genetics

45

Fulker, D. W., & Cherny, S. S. (1996). An improved multipoint sib-pair
analysis of quantitative traits. Behavior Genetics, 26, 527-532.

Fulker, D. W., Cherny, S. S., & Cardon, L. R. (1995). Multipoint interval
mapping of quantitative trait loci, using sib pairs. American Journal
of Human Genetics, 56, 1224-1233.

Fulker, D. W., Cherny, S. S., Sham, P. C., & Hewitt, J. K. (1999,
January). Combined linkage and association sib-pair analysis for
quantitative traits. American Journal of Human Genetics, 64(1),
259-267.

Gayan, J., Smith, S. D., Cherny, S. S., Cardon, L. R., Fulker, D. W,
Brower, A. M., et al. (1999). Quantitative trait locus for specific lan-
guage and reading deficits on chromosome 6p. American Journal of
Human Genetics, 64, 157-164.

Grigorenko, E. L., Wood, F. B., Meyer, M. S., Hart, L. A., Speed, W. C.,
Schuster, A., et al. (1997). Susceptibility loci for distinct compo-
nents of developmental dyslexia on chromosomes 6 and 15. Ameri-
can Journal of Human Genetics, 60, 27-39.

Haseman, J. K., & Elston, R. C. (1972). The investigation of linkage
between a quantitative trait and a marker locus. Behavior Genetics,
2,3-19.

Idury, R. M., & Elston, R. C. (1997). A faster and more general hid-
den markov model algorithm for multipoint likelihood calculations.
Human Heredity, 47, 197-202.

Jinks, J. L., & Fulker, D. W. (1970). Comparison of the biometrical
genetical, MAVA, and classical approaches to the analysis of human
behavior. Psychological Bulletin, 73, 311-349.

Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., & Lander, E. S. (1996).
Parametric and nonparametric linkage analysis: A unified multipoint
approach. American Journal of Human Genetics, 58, 1347-1363.

LaBuda, M. C., DeFries, J. C., & Fulker, D. W. (1986). Multiple regres-
sion analysis of twin data obtained from selected samples. Genetic
Epidemiology, 3, 425-433.

Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits:
Guidelines for interpreting and reporting linkage results. Nature
Genetics, 11,241-247.

Lander, E. S., & Green, P. (1987). Construction of multilocus genetic
maps in humans. Proceedings of the National Academy of Sciences,
84,2363-2367.

Lessem, J. M., & Cherny, S. S. (2001). Defries-fulker multiple regres-
sion of sibship qtl data: A SAS® macro. Bioinformatics, 17,
371-372.

Marlow, A. J., Fisher, S. E., Francks, C., MacPhie, 1. L., Cherny, S. S.,
Richardson, A. J., et al. (2003). Use of multivariate linkage analy-
sis for dissection of a complex cognitive trait. American Journal of
Human Genetics, 72, 561-570.

McKenzie, C. A., Abecasis, G. R., Keavney, B., Forrester, T., Ratcliffe,
P. J., Julier, C., et al. (2001). Trans-ethnic fine mapping of a quan-
titative trait locus for circulating angiotensin i-converting enzyme
(ace). Human Molecular Genetics, 10, 1077-1084.

Nash, M. W., Huezo-Diaz, P., Williamson, R. J., Sterne, A., Purcell, S.,
Hoda, F, et al. (2004). Genome-wide linkage analysis of a compos-
ite index of neuroticism and mood-related scales in extreme selected
sibships. Human Molecular Genetics, 13,2173-2182.

Neale, M. C., Boker, S. M., Xie, G., & Maes, H. H. (2003). Mx:
Statistical modeling (6th ed). VCU Box 900126, Richmond, VA
23298 USA: Department of Psychiatry, Virginia Commonwealth
University.

Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies
of twins and families, NATO ASI series. Dordrecht, The Netherlands:
Kluwer Academic Press.

Neale, M. C., & Maes, H. H. (in preparation). Methodology for genetic
studies of twins and families (2nd ed). Dordrecht, The Netherlands:
Kluwer Academic Press.

Purcell, S., Cherny, S., Hewitt, J., & Sham, P. (2001). Optimal sibship
selection for genotyping in quantitative trait locus linkage analysis.
Human Heredity, 52, 1-13.

Rijsdijk, F. V., Hewitt, J. K., & Sham, P. C. (2001). Analytic power
calculation for variance-components linkage analysis in small pedi-
grees. European Journal of Human Genetics, 9, 335-340.

Schmitz, S., Cherny, S. S., & Fulker, D. W. (1998). Increase in power
through multivariate analyses. Behavior Genetics, 28, 357-363.
Schork, N. J., & Xu, X. (2000). The use of twins in quantitative trait
locus mapping. In T. D. Spector, H. Snieder, & A. J. MacGre-
gor (Eds), Advances in twin and sib-pair analysis (pp. 189-202).

London: Greenwich Medical Media.

Sham, P. (1998). Statistics in human genetics. London: Arnold.

Sham, P. C., & Purcell, S. (2001). Equivalence between haseman-elston
and variance-components linkage analyses for sib pairs. American
Journal of Human Genetics, 68, 1527-1532.

Sham, P. C., Purcell, S., Cherny, S. S., & Abecasis, G. R. (2002). Pow-
erful regression-based quantitative-trait linkage analysis of general
pedigrees. American Journal of Human Genetics, 71, 238-253.

Sham, P.C., Zhao, J. H., Cherny, S., & Hewitt, J. (2000). Variance-
components qtl linkage analysis of selected and non-normal
samples: conditioning on trait value. Genetic Epidemiology, 19,
S22-S28.

Visscher, P. M., & Hopper, J. L. (2001). Power of regression and maxi-
mum likelihood methods to map qtl from sib-pair and dz twin data.
Annals of Human Genetics, 65, 583-601.

Wright, F. A. (1997). The phenotypic difference discards sib-pair QTL
linkage information. American Journal of Human Genetics, 60,
740-742.

Xu, X., Weiss, S., Xu, X., & Wei, L. J. (2000). A unified haseman-elston
method for testing linkage with quantitative traits. American Journal
of Human Genetics, 67, 1025-1028.



Chapter 4

Multivariate Genetic Analysis

Danielle Posthuma

Introduction

The main goal of behavior genetics’ research is to understand
the causes of variation in (human) traits. When single traits
are considered, observed trait variation is decomposed into
sources of genetic and environmental variation. A geneti-
cally informative design, such as the classical twin design,
allows estimating the relative contributions of these sources
of variation. When multiple traits are considered, geneti-
cally informative designs additionally allow investigating the
causes of co-variation between two or more traits. Such mul-
tivariate genetic analyses are usually more powerful than uni-
variate genetic analyses (Schmitz, Cherny, & Fulker, 1998),
may aid in understanding underlying biological mechanisms,
and may provide a faster route to gene-finding and eluci-
dating environmental factors that influence a trait (Leboyer
et al., 1998).

The key source of information in multivariate twin studies
is the comparison of MZ and DZ cross-trait cross-twin
correlations (CTCTs). A CTCT is a correlation between trait
A of a twin and trait B of his or her co-twin. A larger MZ
CTCT correlation than DZ CTCT correlation implies that the
correlation between traits A and B is due to co-variation at a
genetic level, while similar MZ and DZ CTCT correlations
imply that (shared) environmental factors are responsible for
the co-variation between traits A and B. For example, using
a sample of MZ and DZ twins for whom data on both brain
volume and IQ were available, correlations were calculated
between brain volume of a twin and the IQ score of his or her
co-twin (Posthuma et al., 2002). It was found that the CTCT
correlation was larger in MZ twins than in DZ twins, which
indicates that genes must mediate the correlation between
brain volume and IQ. In support of this, it was also found that
the MZ cross-trait cross-twin correlation was the same as the
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correlation between brain volume and IQ in the same person,
indicating that non-shared environmental influences do not
mediate the correlation between brain volume and 1Q. The
prediction of one’s IQ score can thus be made with similar
reliability from one’s own brain volume as from the brain
volume of one’s genetically identical co-twin. This finding
directs further research aimed at finding genetic determinants
for intelligence, as it indicates that some of the genes that
influence brain volume may also influence intelligence (and
vice versa). Since some genes for brain volume have already
been identified (such as ASPM and Microcephalin), these
may pose good candidate genes for intelligence. The iden-
tification of such underlying common sources of variation
may therefore direct further research aimed at identifying
the actual genes (or actual environmental factors).

This chapter is intended as an introductory text explaining
the basics of multivariate genetic models. In some cases for-
mal quantification is offered to allow the reader to apply these
models using software designed to model genetically infor-
mative data, such as Mx (Neale, 1997) or LISREL (Jéreskog
& Sorbom, 1986). For more advanced models, a theoretical
description and a brief discussion of the limitations of the
models are provided. The reader is then directed to other
sources in the literature that deal with the formal quantifi-
cation of these advanced models. Below we will first explain
how the univariate twin model can be extended to a multi-
variate model, using path analysis and matrix algebra. We
will then continue with more complex multivariate models.

Multivariate Analysis of Twin Data:
Determining Genetic and Environmental
Correlations

The univariate model can easily be extended to a multivariate
model when more than one trait per subject is measured
(Boomsma & Molenaar, 1986, 1987; Eaves & Gale, 1974;
Martin & Eaves, 1977). For simplicity we will first discuss a
bivariate design, as depicted in Fig. 4.1 (two observed traits
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1/0.5

Trait A twin 1 Trait B twin 1

Fig.4.1 A bivariate twin design: Cholesky factorization. The observed
(co-)variance of traits A and B is decomposed into sources of genetic
(A), shared (C), and non-shared (E) environmental variation, following
a Cholesky factorization. Genetic factors correlate 1 in MZ twins and
0.5 in DZ twins. Shared environmental factors correlate 1

Note that the path coefficients are not included in the figure for estheti-

per subject; four observed traits for a pair of twins or sib-
lings). We assume each trait is influenced by additive genetic
influences (A), shared environmental influences (C), and
non-shared environmental influences (E). The corresponding
matrix algebra expressions for the expected MZ or DZ vari-
ances and co-variances for traits i and j are similar to those
in a univariate model. Let X, Y, and Z be the matrices rep-
resenting the genetic, non-shared, and shared environmental
paths, respectively. In the multivariate case, the dimensions
of matrices X, Y, and Z are no longer 1 x 1, but are a function
of the number of traits. An often convenient form for those
matrices is lower triangular of dimensions n x n (where 7 is
the number of traits assessed on a single subject; in Fig. 4.1,
n = 2). Matrix X is thus |:x11 0 i|, with each matrix entry
X21 X22
corresponding to a path coefficient. Element x| corresponds
to the path that goes to the first observed trait and comes
from the first genetic factor (A1), while x21 corresponds to
the path that goes to the second observed trait and comes
from the first genetic factor (A1), and xy corresponds to the
path that goes to the second trait and comes from the second
latent genetic factor. As a rule of thumb, the subscripts are
thus in the order ‘goes to, comes from’ in path diagrams and
‘rows first then columns’ in matrices. Similar reasoning goes
for matrices Y |:y11 0 i| and Z |:Z” 0 ]
Y21 y22 221 222
Multivariate genetic designs allow the decomposition

of an observed correlation between two variables into a
genetic and an environmental part. This can be quantified by

Trait B twin 2 Trait A twin 2

cal reasons. For the genetic paths, the paths are named x;1, x21, and X2,
where the subscripts refer to ‘goes to the nth measured variable, comes
from the nth latent variance component’. The path coefficients for the
shared environmental paths are denoted as z11, z21, and z32, and for the
non-shared environmental paths z11, z2, and z2»

calculating the genetic and environmental correlations and
the genetic and environmental contributions to the observed
correlation.

The additive genetic, shared, and non-shared environmen-
tal variances and co-variances can be represented as ele-
ments of the symmetric matrices A = XXT, C = YYT, and
E = ZZ", where the superscripted T denotes matrix transpo-
sition. On the diagonals these matrices contain the additive
genetic and (non-)shared environmental variances for vari-
ables 1 to n. X, Y, and Z are known as the Cholesky factor-
ization of the matrices A, C, and E, assuring that these matri-
ces are nonnegative definite, which is required for variance—
covariance matrices.

The genetic correlation between traits i and j (rg;;) is
derived as the genetic covariance between traits i and j
(denoted by element ij of matrix A; a;;) divided by the

square root of the product of the genetic variances of traits
i(aij) andj(ajj): reij = \/‘:#—a“

The shared environmental correlation (r.;;) between vari-
ables i and j is derived as the environmental covariance
between variables i and j divided by the square root of the
product of the shared environmental variances of variables i
and j: reij = \/#—c” Analogously, the non-shared environ-
mental correlation (r.;;) between variables i and j is derived
as the non-shared environmental covariance between vari-
ables i and j divided by the square root of the product of

the non-shared environmental variances of variables i and j:

Feij = ———.
J eji Xejj
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The phenotypic correlation r is the sum of the product
of the genetic correlation and the square roots of the stan-
dardized genetic variances (i.e., the heritabilities) of the two
traits, and the product of the shared environmental correla-
tion and the square roots of the standardized shared envi-
ronmental variances of the two traits and the product of the
non-shared environmental correlation and the square roots of
the standardized non-shared environmental variances of the
two traits:

aji ajj
r=rgij X X
(aji + cii + eii) (ajj +cjj +ejj)

+ Feij

y \/ Cii o \/ Cjj
(aii + cii + eii) (ajj +cjj +ejj)

— T

4 reij X \/ Cjj % JJ
(aii + cii + eij) (ajj +cjj+ejj)

(i.e., observed correlation is the sum of the genetic contribu-
tion and the environmental contributions).

The genetic contribution to the observed correlation
between two traits is a function of the two sets of genes that
influence the traits and the correlation between these two
sets. However, a large genetic correlation does not imply a
large phenotypic correlation, as the latter is also a function
of the heritabilities. If the heritabilities are low, the genetic
contribution to the observed correlation will also be low.

If the genetic correlation is 1, the two sets of genetic influ-
ences overlap completely. If the genetic correlation is less
than 1, at least some genes are a member of only one of
the sets of genes. A large genetic correlation, however, does
not imply that the overlapping genes have effects of similar
magnitude on each trait. The overlapping genes may even act

additively for one trait and show dominance for the second
trait. In addition, a genetic correlation less than one cannot
exclude that all of the genes are overlapping between the two
traits (Carey, 1988). Similar reasoning applies to the environ-
mental correlation.

It should be noted that the Cholesky factorization
described above is just identified. That is, with data on MZ
and DZ twins one can estimate three sources of variation, and
for each source there are no more latent factors than observed
traits (i.e., two in the bivariate case). In the Cholesky factor-
ization, there is no path specified from the second latent fac-
tor to the first observed trait (e.g., element x5 is zero) — as an
additional path coefficient is not identified (unless this coef-
ficient is restricted to be equal to one of the other path coef-
ficients specified). This lower triangular solution, however,
is mathematically completely equivalent with an upper trian-
gular solution. Or, in other words, the order of the observed
variables is completely arbitrary. In practice this means that
when two traits (e.g., anxiety and depression; personality
and smoking; sports participation and self-reported health)
are modeled in a bivariate genetic design, we are restricted
to statements on the genetic (or environmental) overlap
between the two traits. Statements of the form ‘new genes are
important for depression, whereas all of the genetic informa-
tion important for anxiety is also important for depression’
cannot be made. Instead of the lower triangular solution, one
can interpret the standardized solution represented by a cor-
related factors model with the standardized factor loadings
(e.g., «/h?1 and /h?>) and the genetic correlation between
them, using XRX7, where X is diagonal and R is a standard-
ized, correlation matrix containing the genetic correlation
between factors Al and A2. Similar reasoning applies to the
shared and non-shared environmental factors (see Fig. 4.2).

1/0.5

Trait A twin 1 Trait B twin 1

Trait B twin 2 Trait A twin 2

Fig. 4.2 A bivariate twin design: standardized solution. The path coefficients refer to the square roots of the relative proportions of A, C, and E to
the observed variation. rg = genetic correlation, rc = shared environmental correlation, re = non-shared environmental correlation
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There is one exception to the restrictions described above;
when the two traits of the bivariate model are naturally
ordered (for example when they concern two measurements
over time or two nested conditions), specific hypothesis-
driven tests can in fact be carried out. It can then be tested
whether new genes come into play (by testing whether the
influence of the second genetic factor on the second mea-
surement significantly differs from zero) or whether genetic
amplification is in order (when the two path coefficients from
the first genetic factor to the two traits are equal). For exam-
ple, De Geus, Kupper, Boomsma, and Snieder (2007) used
bivariate genetic modeling to discriminate between amplifi-
cation of genetic effects (the same genes influence two traits
with different effect sizes) and emergence of new genetic
effects by comparing cardiovascular measures in resting and
stress conditions. They found that the heritability of these
cardiovascular traits increased during stress which was due
both to an amplification of genetic effects that are important
in a resting condition and to new genetic effects emerging
under stress.

Extension of the bivariate design described above to more
than two traits is straightforward, allowing the estimation
of genetic and environmental correlations between multiple
traits at the same time (see Fig. 4.3).

The full Cholesky model provides a complete mathemat-
ical description of the observed variables. In other words, it
has as many latent factors as there are observed traits. Apart
from decomposing the observed (co-)variation into sources
of genetic and environmental (co-)variation, it merely pro-
vides a description of the observed data. In order to test sev-
eral different theoretical models to the data, one usually seeks
to reduce the number of explanatory, latent factors. One way
to do so is via factor analysis.

Genetic Factor Models

The main goal of factor analysis is to explain (co-)variation
between and within a set of measured traits by a lesser
number of latent factors. The use of factor analysis was pio-
neered by Spearman (1904) in the context of the measure-
ment of intelligence and different mental abilities. Spearman
noted that performance in several different mental abilities
correlates highly within subjects. This led him to believe
that there is a general mental ability (the ‘g’-factor) under-
lying performance on all other specific mental abilities. The
use of factor analytic techniques in the social sciences has
since flourished. Factor analysis can either be exploratory
or confirmatory. In exploratory factor analysis, there is no
a priori hypothesis on the number of latent factors or the
nature of the relationship between them. In contrast, confir-
matory factor analysis is based on testing hypotheses on the
latent factor structure underlying multiple traits. Confirma-
tory factor analysis typically has fewer factors than observed
variables and specifies the presence or absence of corre-
lations between the latent factors. For a full treatment of
phenotypic factor analytic techniques we refer the reader to
Hotelling (1933), Lawley & Maxwell (1971), Mulaik (1972),
and Thurstone (1947). Briefly, in phenotypic factor analysis,
an observed trait P in an individual is modeled as a function
of that individual’s score on a latent factor F and error or
unique variance U:

Pi=fiF+U

Genetic factor analysis follows similar principles as phe-
notypic factor analysis, except that the latent factors are

1/0.5

1/0.5

1/0.5

1/0.5
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Fig. 4.3 A four-variate twin model: Cholesky factorization
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decomposed into genetic and environmental latent factors. A
genetic factor model is formally represented as (see Neale &
Maes, in press)

P, =a;A—ciC—e¢E—-U

In standard factor analysis the complete factor model is
formally represented in one matrix (B) containing the com-
mon variances (for all sources of variation) and a matrix
(U) containing the specific variances. In addition, a matrix
that specifies the relations between the latent factors (R) is
included. The formal notation of the factor model is then

Z =BRBT + U
PP

where the dimensions of matrices B and R depend on
the number of latent sources of variance x the number of
factors (columns) and the number of observed traits (for all
individuals) (rows). Matrix R is a diagonal matrix contain-
ing correlations between the latent factors, while matrix U
is a diagonal and contains the specific variances for each
observed trait. When the latent factors are uncorrelated, R is
an identity matrix and can be omitted from the model. While
this notation follows most applications for phenotypic fac-
tor analysis, an alternative specification is commonly used in
behavior genetics research. Using classical behavior genetic
conventions, the different sources of variation and the com-
mon and specific variances are specified in separate matrices
(see Neale & Cardon, 1992, or Neale & Maes, in press). The
formal representation for the factor structure then becomes

Z:A—C—E
PP

1/0.5

where A = XRXT, C = YSY', E = ZTZ" +UUT. Matrices
X, Y, and Z are of dimensions number of traits x number of
factors, while matrix U is diagonal with dimensions num-
ber of traits x number of traits and assumes that all specific
variance is due to measurement error. (Note, however, that
specific variation may also be decomposed into sources of
genetic and environmental variation.) Matrices R, S, and T
are diagonal matrices that contain the relationships between
the latent genetic, shared, and non-shared environmental fac-
tors, respectively.

Two factor models that are often used in behavior genet-
ics are the independent and common pathway models. In the
independent pathway model, the genetic and environmen-
tal sources of variation independently influence the observed
traits, although for each source of variation there is one com-
mon factor (see Fig. 4.4).

The formal representation of this model is equivalent to
the genetic factor model described above, except that the
accompanying matrices X, Y, and Z are of dimensions 4 x 1
(4 traits x 1 latent factor), matrices S, T, and U are identity
matrices, and matrix U is diagonal and 4 x 4. Again, for
simplicity, this model assumes that all specific variance is
due to measurement error.

In the common pathway model, all observed traits are
indicators of one common latent factor which is influ-
enced by sources of genetic and environmental variation (see
Fig. 4.5).

A formal representation of this model is provided by
>pp = A—C —E, where A = FXRXDHFT, C =
F(YSYDF!, E = F(ZTZ")FT + UUT. Matrices X, Y, and
Z. are of dimensions 1 (number of latent traits) x 1 (num-
ber of latent genetic or environmental factors); matrix F is
of dimension 4 (number of observed traits) x 1 (number of
latent traits); matrices R, S, and T are identity matrices; and

Trait A twin 1 || Trait B twin 1 || Trait C twin 1 || Trait D twin 1

Trait D twin 2 [ | Trait C twin 2 | | Trait B twin 2| | Trait A twin 2

ey

Fig. 4.4 A four-variate twin model: independent pathway model
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Trait A twin 1 Trait B twin 1 Trait C twin 1 Trait D twin 1

Trait D twin 2 || Trait C twin 2 || Trait B twin 2 | | Trait A twin 2

Z11 Z2 Z33 Zaa
Fig. 4.5 A four-variate twin model: common pathway model

matrix U is diagonal and 4 x 4. Again, for simplicity, this
model assumes that all specific variance is due to measure-
ment error. In addition to these specifications, a restriction
should be made in the model to assure that the variance of
the latent factor F is scaled to 1. Common pathway models
are often used when multiple indicators (e.g., multiple raters)
are collected of the same underlying trait data.

More complex multivariate genetic models that are exten-
sions of the models described above can be designed. For
example, Rijsdijk, Vernon, and Boomsma (2002) tested
whether hierarchical genetic factor models would provide a
good description of scores on subscales of two intelligence
tests: the Wechsler Adult Intelligence Scale (WAIS) and the
Raven Standard Progressive Matrices (Raven SPM). They
found that at a genetic level the subscales could be described
best by a two-level hierarchical model; the first level con-
sisted of three factors (verbal comprehension, perceptual
organization, and freedom-from-distractibility), while the
second level consisted of one general factor. This general
factor was suggested to support the notion of a biological
basis for general intelligence, or g (see Fig. 4.6).

Longitudinal Analysis of Twin Data

When the same trait is measured at multiple time points,
genetically informative samples can provide information on
the sources of the stability and change in a trait over time,
using longitudinal analysis of genetic data. The aim of longi-
tudinal analysis of twin data is to consider the genetic and
environmental contributions to the dynamics of twin pair
responses through time. In this case the trait is measured at
several distinct time points for each twin in a pair. To analyze
such data one must take the serial correlation between the
consequent measurements of the trait into consideration. The

Z44 Z33 Z Zy1

classical genetic analysis methods described above are aimed
at the analysis of a trait or traits measured cross-sectionally
and provide a way of estimating the time-specific heritabil-
ity and variability of environmental effects, as well as co-
variation with other measured traits. However, these methods
are not able to handle serially correlated longitudinal data
efficiently.

To deal with these issues the classic genetic analysis
methods have been extended to investigate the effects of
genes and environment on the development of traits over
time (Boomsma & Molenaar, 1987; McArdle, 1986). Meth-
ods based on the Cholesky factorization of the covariance
matrix of the responses treat the multiple trait measurements
in a multivariate genetic analysis framework (as discussed
above). ‘Markov chain’ (or ‘Simplex’) models (Dolan, 1992;
Dolan, Molenaar, & Boomsma, 1991) provide an alterna-
tive account of change in covariance and mean structure of
the trait over time. The Markov model structure implies that
future values of the trait depend on the current trait values
alone, not on the entire past history. Methods of function-
valued quantitative genetics (Pletcher & Geyer, 1999) or the
genetics of infinite-dimensional characters (Kirkpatrick &
Heckman, 1989) have been developed for situations where
it is necessary to consider the time variable on a continu-
ous scale. The aim of these approaches is to investigate to
what extent the variation of the traits at different times may
be explained by the same genetic and environmental factors
acting at different time points and to establish how much of
the genetic and environmental variation is time specific.

An alternative approach for the analysis of longitudinal
twin data is based on random growth curve models (Neale
& McArdle, 2000). The growth curve approach to genetic
analysis was introduced by Vandenberg and Falkner (1965)
who first fitted polynomial growth curves for each subject
and then estimated heritabilities of the components. These
methods focus on the rate of change of the phenotype (i.e.,
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Fig. 4.6 Example of a hierarchical genetic factor model on subtests
of the WAIS intelligence test and the Raven SPM. The genetic vari-
ance follows a hierarchical, two-level factor model. There is a common
non-shared environmental factor that explains part of the correlation
between subtests (Eg). Additionally specific genetic and non-shared
environmental influences are modeled for each subtest

WAIS subtests: INF = information; COM = comprehension; ARl =

its slope or partial derivative) as a way to predict the level
at a series of points in time. It is assumed that the individ-
ual trait trajectory in time may be described by a paramet-
ric growth curve (e.g., linear, exponential, logistic, etc.). The
parameters of the growth curve (e.g., intercept and slope, also
called latent variables) are assumed to be random and indi-
vidual specific. However, the random intercepts and slopes
may be dependent within a pair of twins because of genetic
and shared environmental influences on the random coeffi-
cients. The basic idea of the method is that the mean and
covariance structure of the latent variables determines the
expected mean and covariance structure of the longitudinal
phenotype measurements and one may therefore estimate the
characteristics of the latent variable distribution based on the
longitudinal data.

The random growth curve approach permits to investigate
new questions concerning the nature of genetic influence on
the dynamic characteristics of the trait, such as the rate of
change. If the random parameters of the growth curve would
be observed, they might have been analyzed directly using
the classical methods of multivariate genetic analysis. How-
ever, their latent nature requires a more elaborate statistical

arithmetic; SIM = similarities; DS = digit span; VOC = vocabulary;
CODE coding; PC picture completion; BLK block
design; PA picture arrangement; OA = object assembly: Fac-
tors: VC = verbal comprehension; FD = freedom of distractibility;
PO = perceptual organization. Asp specific genetic influences;
Esp = specific non-shared environmental influences. Reprinted with
permission from Rijsdijk et al. (2002)

approach. Since the growth curve model may be formulated
in terms of the mean and covariance structure of the ran-
dom parameters one might simply take the specification of
the mean and covariance structure of a multivariate trait as
predicted by the classical methods of multivariate genetic
analysis and transfer that to the growth curve model. The
resulting two-level latent variable model would then allow
for multivariate genetic analysis of the random coefficients
(see Fig. 4.7).

In the following sections we consider the bivariate linear
growth curve model applied to longitudinal twin data using
age as timescale. The approach may be extended to other
parametric growth curves (e.g., exponential, logistic, etc.)
using first-order Taylor expansions and the resulting mean
and covariance structure approximations (Neale & McAr-
dle, 2000).

The Linear Growth Curve Model

A simple implementation of the random effects approach
is carried out using linear growth curve models. In this
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case each individual is characterized by a random intercept
and a random slope, which are considered to be the new
traits. In a linear growth curve model the continuous age-
dependent trait (Y7, Yo;) for sib 1 and sib 2 are assumed
to follow a linear age trajectory given the random slopes
and intercepts with some additive measurement error: Y;; =
o; + Pit + &, for sibling i, where i = 1, 2, ¢ denotes the
time point (f = 1,2,...,n), o and B; are the individual
(random) intercept and slope of sib i, respectively, and &j
is a zero-mean individual error residual, which is assumed
to be independent of «; and B;j. The aim of the study is
then the genetic analysis of the individual intercepts («;) and
slopes (B;). The model may easily be extended to include
covariates.

Assume the trait (Y;;) is measured for the two sibsat = 1,
2, ..., n. The measurements on both twins at all time points
may be written in vector form as Y = (Y1q,..., Y1n, Y21,
.., Yo)T (where T denotes transposition). Furthermore, if L
denotes the vector of the random growth curve parameters,
the matrix form of the linear growth curve model is Y =
DL + E where

o 11
Bi FO 12 Eln
a |’ 0F)" . €21
B2 1n

&2n

Note that the linear growth curve model actually rep-
resents a structural equation model with latent variables
ai and B; (and e;s) with loadings of the latent variables
on the observed responses Yj; given by either 1 or z. This
implies that this model may be analyzed using the gen-
eral structural equation modeling techniques. In particular,
parameter estimation may be carried out via the maximum
likelihood method under multivariate normality assumptions
using the fact that the moment structure (my, Xy) of Y can
be expressed in terms of m, X, and Var(ej;), where m =
mean(L), ¥ = Cov(L,L) : my =Dm, Xy = DEDT + X,
where ¥, = Cov(E, E).

As described previously in the section on multivariate
genetic analysis, the two-dimensional phenotype (¢, 8;) may
be analyzed by modeling the covariance matrix X for MZ
and DZ twins using the Cholesky factorization approach (see
Fig. 4.7 above).

The two-level model construction leads to a parameter-
ization of the joint likelihood for the trait in terms of the
variance components, the respective mean vectors, and resid-
ual variances. This yields estimates of the two heritability
values of ¢ and B; (and respective variabilities of the envi-
ronmental effects) and also estimates of correlations between
the genetic and environmental components of «; and f;, as
described earlier. Posthuma et al. (2003) further describe how
the predicted individual random growth curve parameters can

- be obtained. These predictions may be useful for selection of

most informative pairs for subsequent linkage analysis of the
random intercepts and slopes.

1/0.5

1/0.5

A1 C1 E1 A2 c2 E2

B2 ) (C2)(a2) (E1)(ct1)( a1

X21 Yo1\ Z21
Xooy. 251 /Y21 X21
22/ z
X11 Y11 » 22 Zop\ Yoz | X22 Vi1
211 X11
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% 4 4 ]
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Fig. 4.7 A latent growth curve model, where the latent mean and intercept are decomposed into sources of A, C, and E
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Co-morbidity Models

Genetic and environmental correlations provide information
on the nature of an observed phenotypic correlation between
two traits, whereas longitudinal models provide information
on the causes of stability and change over time. However,
these models do not provide information on the actual mech-
anism underlying this correlation. For example, a genetic
correlation does not make any inferences on the direction
of causation or on the reasons why two traits tend to occur
together. In order to understand and investigate the causes of
the co-occurrence of two traits, we need to apply models of
co-morbidity.

Co-morbidity is usually investigated in the context of
(psychiatric) diseases, where a disease is either present or
absent. Co-morbidity may also apply to other traits (i.e., not
particularly disorders, not particularly categorical), e.g., red
hair and blue eyes, although we would then simply call it
co-occurrence, or correlation. When patients have two co-
occurring disorders, we refer to them as co-morbid for these
disorders. Understanding co-morbidity can be of crucial sci-
entific importance to understanding disease etiology, and also
has high practical significance (Rutter, 1994). For patients
two disorders combine to produce greater impact on normal
functioning than each disorder separately. Understanding co-
morbidity may further have implications both for diagnosing
disorders and treating them.

Two important papers provide an exhaustive overview
of co-morbidity models: Klein and Riso (1993) and Neale
and Kendler (1995). Klein and Riso (1993) have pro-
vided a scholarly overview of many possible models of co-
morbidity. Neale and Kendler (1995) have provided a schol-
arly overview of many possible models of co-morbidity.
Neale and Kendler (1995) later extended these models and
translated their implications into formal, falsifiable expecta-
tions. Table 4.1 summarizes the Klein and Riso (KR) and
Neale and Kendler (NK) models. In the following we provide
a conceptual overview of the models described in KR and
NK models. For a more mathematical explanation of these
models we refer the reader to the original papers.

Co-morbidity Due to Sampling and Base Rates

Models 1-3 (in Table 4.1) explain co-morbidity due to sam-
pling bias and base rates. The simplest explanation for co-
morbidity between two traits is chance: when trait A has a
frequency of 0.20 in the population and trait B has a fre-
quency of 0.30, they are expected to co-occur with a fre-
quency of 0.20 x 0.30 = 0.06 (KR1/NK1). When a sample
is ascertained through clinical records individuals with two
or more diseases may be more likely to be included in the
study. Such sampling bias induces a spuriously high rate of

Table 4.1 Models of co-morbidity according to Klein & Riso (1993)
and Neale & Kendler (1995)

Explanations based on sampling and base rates

KR1/NK1: Co-morbidity due to chance

KR2/NK2: Co-morbidity due to sampling bias

KR3/NK3: Co-morbidity due to population stratification
Explanations based on artifacts of diagnostic criteria

KR4: Co-morbidity due to overlapping diagnostic criteria

KRS5: Co-morbidity due to one disorder encompassing the other
NK7: Submodels of NK3 and 4

Explanations based on drawing boundaries in the wrong places
KR6: Multiformity of the co-morbid condition

NK8: Submodels of NK 3 and 4

KR7: Heterogeneity (of severe form)

NKS5: Random multiformity and NK6: Extreme multiformity

KR8: The co-morbid disorder is a third, independent factor

NKO: Three independent disorders

KRO9/NK4: The pure and co-morbid conditions are different phases or
alternative expressions of the same disorder

Explanations based on etiological relationships

KR10: One disorder is a risk factor for the other; NK11: Causal model
KR11: The two disorders arise from overlapping etiological processes.
NK10: Correlated liabilities

KR-/NK12: Reciprocal causation

KR = Klein & Riso (1993); NK = Neale & Kendler (1995).

co-occurrence between traits (KR2/NK2). Another spurious
association between two traits may arise when two indepen-
dent sets of risk factors for having traits A and B are both
elevated in certain subpopulations but not in others. Analyz-
ing all subpopulations as a whole will then show a statistical
association between traits A and B (KR3/NK3).

Co-morbidity Due to Artifacts of Diagnostic
Criteria

Klein and Riso models 4 and 5 explain co-morbidity in
terms of artifacts of diagnostic criteria; when criteria for cer-
tain traits or disorders overlap (i.e., similar symptoms are
included as criteria for different diagnoses), two traits may be
diagnosed at the same time in one person (KR4). Klein and
Riso model 5 states that disorder A is really a manifestation
of disorder B. This is actually a specific case of KR model 6
(KR5/NK7).

Co-morbidity Due to Drawing Boundaries in
the Wrong Places

Klein and Riso models 6-9 concern the concept of liabil-
ity and drawing boundaries at the wrong places. Although
presented as dichotomous traits, many psychiatric diseases
are thought to show an underlying liability. This latent lia-
bility follows a normal distribution, with a certain thresh-
old above which a disorder becomes manifest. The multi-
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formity explanation of co-morbidity (KR6/NK3 and NK4)
states that disorders are manifested in several heterogeneous
forms, including symptoms typically associated with other
disorders: The co-morbid disorder is regarded as an atypi-
cal or more severe form of disorder A and is distinct from
disorder B. The heterogeneity explanation (KR7/NKS and
6) states that the co-morbid disorder is regarded as atypical
forms of both disorders A and B. Following the Neale and
Kendler formulation this model is named the random mul-
tiformity model of liability to disorders A and B. Disorder
A arises if individuals are above threshold on the liability to
disorder A or with probability r if they are above threshold
on the liability to disorder B. Disorder B arises if individuals
are above threshold for disorder B or with probability p if
they are above threshold for disorder A. In the extreme multi-
formity model of Neale and Kendler, the underlying liability
shows two thresholds, dividing the liability scale into low
scorers (below the first threshold), medium scorers (between
the first and second threshold) and high scorers (above the
second threshold). Disorder A arises if individuals are above
either threshold on the liability to disorder A or above the
second threshold on the liability to disorder B. Disorder B
arises if individuals are above either threshold on the liability
to disorder B or if they are above the second threshold on the
liability to disorder A.

In Klein and Riso model 8 (Neale and Kendler model 9)
the co-morbid disorder is regarded as a completely distinct
disorder. In terms of the Neale and Kendler formulation, dis-
order A arises when individuals are above threshold on either
the liability to disorder A or the liability to the third, com-
bined disorder. Disorder B arises when individuals are above
threshold on either the liability to disorder B or the liability
to the third, combined disorder.

Klein and Riso model 9 further states that the two pure
disorders and the co-morbid disorder are all phases or differ-
ent expressions of the same underlying single disorder. Indi-
viduals above threshold on the liability to disorder A express
disorder A with probability p and disorder B with probability
r. Probabilities p and r are independent, so co-morbid cases
arise with frequency pr. This is an extreme form of multifor-
mity (NK model 4).

Co-morbidity Due to Etiological Relationships

The last two models introduced by Klein and Riso explain
co-morbidity in terms of etiological processes. Neale and
Kendler added an additional model (NK12). KR11 explains
co-morbidity in terms of overlapping etiological processes.
For example, the same environmental stressor may cause
both depression and alcohol abuse. Or, in terms of genet-
ics: one (set of) genes may show pleiotropic effects on mul-
tiple disorders. This model relates to the simplest bivariate
genetic model as well as to the genetic factor models for

multivariate traits. Alternatively, one disorder may be a risk
factor for developing another disorder, or vice versa. In this
case co-morbidity is explained by disorder A causing disor-
der B, either unidirectionally (KR10/NK11) or reciprocally
(NK12).

The co-morbidity models described above provide theo-
retical explanations for co-morbidity at a phenotypic level.
Applying these models to actual data and comparing how
well each model fits the data requires specialized sam-
ple designs. Key simulation work in this area has been
carried out by Rhee et al. (Rhee, Hewitt, Corley, &
Stallings, 2003; Rhee et al., 2004, 2006), as reviewed in
Krueger & Markon (2006). Rhee and colleagues showed
that different co-morbidity models can be distinguished well
in many circumstances, bar certain caveats. As may be
expected, similar co-morbidity models, e.g., different sub-
types of co-morbidity models, are more difficult to distin-
guish than co-morbidity models that are structurally very
different, such as the alternate forms and directional cau-
sation models. In addition, distinguishing between different
co-morbidity models becomes difficult when the prevalence
of one or both of the disorders is very low or when cor-
relations between liabilities are small. Finally, Rhee et al.
have shown that very large samples may be required to
obtain adequate power to discriminate between different co-
morbidity models. The studies of Rhee et al. (2003, 2004,
2006) stress the importance of study design in distinguish-
ing between different models of co-morbidity. The three
possible designs to study co-morbidity are epidemiologi-
cal designs, longitudinal designs, and family designs. Fam-
ily designs preclude the need of longitudinal data, and in
many instances are more cost-effective than any of the other
designs. Many models that are indistinguishable in simple
phenotypic cross-sectional design can be distinguished in
family designs due to the addition of information about co-
morbidity patterns across relatives (Neale & Kendler, 1995;
Simonoff, 2000).

Although there is an extremely large amount of litera-
ture on bivariate relationships between disorders, relatively
few studies have explicitly compared multiple models of co-
morbidity within a KR/NK framework, as stated by Krueger
and Markon (2006). The co-morbidity between depression
and anxiety disorder seems to be the most frequently mod-
eled. Middeldorp, Cath, Van Dyck, and Boomsma (2005)
reviewed twin and family studies of depression and anxi-
ety in the framework of KR/NK models and concluded that
shared genetic liability can explain much of the co-morbidity
between depression and anxiety.

Of all co-morbidity models described above the direc-
tion of causation models elegantly show the added value of
genetically informative designs in delineating the causes of
co-morbidity or correlation between two disorders or traits.
The application of direction of causation models in genetic
designs is described in further detail below.
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Direction of Causation

Heath et al. (1993) reviewed the conditions under which
cross-sectional twin data are informative about the direc-
tion of causation between two traits. Below we describe the
main issues that have been put forward in direction of causa-
tion models using genetically informative data sets (see also
Dufty & Martin, 1994; Neale, Duffy, & Martin, 1994; Neale,
Eaves, Kendler, Heath, & Kessler, 1994; Neale & Walters,
et al., 1994).

Four different models of causation can be distinguished:
(1) no causation, but pleiotropy between traits A and B; (2)
unidirectional causation — trait A causes trait B; (3) unidi-
rectional causation — trait B causes trait A; and (4) recip-
rocal causation — trait A causes trait B and vice versa. The
power to distinguish between the two unidirectional causa-
tion models is strongly dependent on the difference in modes
of inheritance in the two traits. The most optimal situation

1/0.5

Trait A twin 1 Trait B twin 1

1/0.5

Trait A twin 1 Trait B twin 1

Fig. 4.8 A bivariate twin design: direction of causation model.
Top: trait A causes trait B; Botfom: trait B causes trait A

1

arises when variation in trait A is mainly due to genetic vari-
ation and variation in trait B is mainly due to environmental
variation. Figure 4.8 depicts the two situations where trait A
causes trait B (top) and where trait B causes trait A (bottom).
Variation in trait A is due to additive genetic variation and
non-shared environmental variation, with the influence of
shared environmental variation mediated by trait B. Variation
in trait B is influenced by shared and non-shared variation
while additive genetic influences are mediated by trait A.

The expected MZ and DZ CTCTs under these two models
are

A — B:MZCTCT =b x a>; DZCTCT = b x 1/24>
B —> A:MZCTCT = b x ¢>; DZCTCT = b x ¢?

Thus, when trait A causes trait B, the CTCTs are a func-
tion of the mode of inheritance of trait A, whereas when
trait B causes trait A, the CTCTs are a function of the mode

Trait B twin 2 Trait A twin 2

Trait B twin 2 Trait A twin 2
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of inheritance of trait B. Formally the direction of causa-
tion model for two observed traits in one individual is rep-
resented as

p=0I-B) 'A+C+E)d-B)HT,
where A = XX', C = YYT,E = 72"

Matrices X, Y, and Z are diagonal matrices of dimensions
2x2 (number of traits x number of traits). Matrix I is an
identity matrix, whereas matrix B is a subdiagonal matrix
if trait A causes trait B. The total variance is thus pre- and
post-multiplied by the inverse of (I-B). Matrix B is trans-
posed when trait B causes trait A. For reciprocal causation,
matrix B needs to be respecified such that the diagonals are
zero whereas the off-diagonals are the reciprocal path coef-
ficients. For a formal derivation of reciprocal causation we
refer the reader to Heath et al. (1993) and Neale and Eaves
et al. (1994).

Cross-sectional data can thus be informative for direction
of causation as long as a genetically informative design is
used. However, there are several limitations to be noted. Nat-
urally if the mode of inheritance of trait A is highly similar to
the mode of inheritance of trait B, these two models become
indistinguishable. In addition to that Heath et al. (1993) note
that these unidirectional models can only be tested if there
are at least three different sources of variance of impor-
tance for the two traits, unless multiple indicators are used.
With only two sources of variation, the two unidirectional
models become indistinguishable from each other as well
as from the general bivariate model, unless we know that
both traits are measured without error or we have additional
information on the measurement variances (Heath et al.,
1993, p. 38).

The reciprocal model cannot be tested at all when only
a single indicator of each trait is available. With multiple
indicators available, testing the reciprocal causation model
is feasible only when at least three sources of variation are
present. The use of multiple indicators in testing direction
of causation is strongly advised, as it reduces the error vari-
ance of each trait. This is crucial to direction of causation
models as ignoring measurement error affects the within-
person covariance and therefore influences all other parame-
ters in the direction of causation model (Heath et al., 1993).
Another limitation is that because the direction of causation
models are nested under the general bivariate model, we are
restricted to testing whether the (reciprocal) causation is the
only cause of the observed correlation between two traits. It
is not possible to test whether both a causation mechanism
and a pleiotropic mechanism influence correlation between
two traits at a phenotypic level.

Conclusion

In the above we have aimed to provide a general introduction
in the basics of multivariate genetic modeling as well as
discuss some of the more advanced multivariate genetic
models, such as longitudinal models, genetic factor models,
and co-morbidity models. We have discussed that genetically
informative designs often provide a cost-effective framework
for determining the causes of co-variation between multiple
traits. The models described in this chapter do not reflect
an exhaustive list of all possible multivariate genetic
models, but merely aim to provide a good starting point
to gain insight in the theoretic underpinnings as well
as putative extensions of multivariate genetic models.
Alternative multivariate genetic models that have not
been described above include for example multivariate
genetic linkage models (see, e.g., J. Liu, Y. Liu, X.
Liu, & Deng, 2007; Marlow et al., 2003; Williams, Van
Eerdewegh, Almasy, & Blangero, 1999, see also Hottenga &
Boomsma, 2007) or models that deal with data obtained
from multiple raters (Derks, Hudziak, van Beijsterveldt,
Dolan, & Boomsma, 2004; Hartman, Rhee, Willcutt,
& Pennington, 2007; Hewitt, Silberg, Neale, Eaves, &
Erickson, 1992; Simonoff et al., 1995).

In general, multivariate genetic modeling can be of great
value when trying to understand the causes of co-variation
between quantitative traits and co-morbidity between disor-
ders. Some of the remaining chapters of this book will pro-
vide excellent examples of the application of multivariate
genetic modeling.
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Chapter 5

Models of Human Behavior: Talking to the Animals

Gene S. Fisch

If we could talk to the animals, learn their languages

Think of all the things we could discuss

If we could walk with the animals, talk with the animals,
Grunt and squeak and squawk with the animals,
And they could squeak and squawk and speak and talk to us.

Prologue and Introduction

Inheritance of behavioral characteristics was known to
humankind in prehistoric times and likely came about while
domesticating animals. In the Middle East, sheep, goats,
and pigs were likely tamed between 6000 and 9000 B.C.
There is no written record of the early rise of animal hus-
bandry, but rearing and training of animals were known to
the ancient Romans. Well-defined breeding techniques for
domesticated livestock were underway in England in the
18th century. At the turn of the 19th century, even rats were
bred for their variegated coat colors and behavioral pecu-
liarities (Brush & Driscoll, 2002). Breeders conserved the
desired characteristics and controlled for undesired aspects
by repeatedly selecting those preferred features in offspring,
mating “like with like” and producing increasingly homoge-
neous strains.

Inheritance of traits in humans stemmed from the belief
in “blood theory” — the child is a fusion, or blend, not only in
the characteristics of the parent, but of all preceding genera-
tions — which was widespread in the 19th century. However,
the mechanism of inheritance was not known. Darwin
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and Galton speculated as to the process, but it remained for
William Bateson and the rediscovery of Mendel’s published
account of his research on peas for the modern concept of
genetics — and that of the gene — to emerge as the paradigm
for the inheritance of traits.

That animals could be used as models of human behav-
ior, that the heritability of human traits could be replicated
in nonhuman creatures, emerged in the mid-to-late 19th cen-
tury. Until then, Aristotelian taxonomy separated plants from
infrahuman animals and humans (cf. Fisch, 2006). That there
was continuity in structure and mind between humans and
infrahumans, and that mental abilities could be inherited,
grew out of the thinking and writings of Charles Darwin and
his cousin, Francis Galton.

In The Origin of Species (1859), Darwin alluded to the
many similarities in structure between animals and humans,
and the inheritance of instincts related to behavior. He also
made mention of the “acquirement of each mental power and
capacity by gradation” (Darwin, 1859, p. 455). Later, in The
Expression of the Emotions in Man and Animals (1872), Dar-
win was less circumspect: “not only has the body been inher-
ited by animal ancestors, but there is continuity in respect to
mind between animals and humans.”

What was the mechanism by which mind was inherited?
As noted earlier, the blood theory of inheritance was pop-
ular, and Darwin and Galton set off to validate the the-
ory by performing blood transfusions in various species of
rabbits. Both obtained negative results. As a consequence,
and unaware of Mendel’s experiments, Galton redirected his
thinking away from a physiological theory of inheritance in
favor of a statistical model.
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Galton and His Statistical Model of Inherited
Traits

The statistical model Galton used to develop his ideas
about correlation and regression was based on the Gaus-
sian distribution. Galton was aware of the anthropologi-
cal findings of his time that quantitative characteristics in
fossilized plants and animals appeared to approximate the
Gaussian distribution. In Hereditary Genius (1869), Gal-
ton argued that mental abilities were likely normally dis-
tributed as well, and provided an outline for a theory of
genetics, based on Darwin’s theory of pangenesis (cf. Bul-
mer’s (2003) scholarly treatise of Galton’s investigations
of genetics and statistics). In a presentation to the Royal
Society in 1887, Galton stated that heredity must, there-
fore, follow the statistical laws derived from the Gaussian
distribution.

Animal Models of Human Characteristics

While Galton was absorbed with the inheritance of men-
tal ability, Darwin’s evolutionary notion of the continuity of
structure and mind between animals and humans provided
the basis for systematic investigations of animal intelligence
and behavior as they might relate to humans, and spawned
studies in comparative psychology and animal experimental
psychology. One of Darwin’s earliest supporters of continu-
ity of mind was his friend, George Romanes, who busily
collected anecdotes about animal behavior that he likened to
humans, drawing additional inferences about the state of the
animal mind.

Not all investigators of animal behavior embraced
Romanes’ argument. Contrarian views were held by animal
experimental psychologists such as E. L. Thorndike and J.
B. Watson, who were trained in the 19th century British
associationist tradition and saw no need to make additional
assumptions about the existence of an animal mind in order
to study the behavior. The arguments are now more than
a century old, but the gap between behaviorism and men-
talism has never been bridged. The rise of cognitive psy-
chology and cognitive neuroscience in the mid-20th century,
the advances in mathematics, logic, and computation, cou-
pled with the similarities observed between neural networks
and computer parallel processing, plus the discovery of the
structure of DNA, all combined to catapult cognitive neu-
roscience to the forefront of investigations of gene—brain—
behavior relationships, leaving unresolved disputes concern-
ing the existence and nature of an animal mind. I will
return to the dilemma posed by behaviorism and mentalism
later.

Validity of Animal Models

As noted earlier, selective breeding for specific charac-
teristics in animals has been known for centuries, and
animal models have taught us much about the pathogenesis
of many diseases. Therefore, it would seem logical that
inbred mouse strains could provide an effective means
by which to optimize the search for genetic factors of
complex behavioral phenotypes, as Wehner, Radcliffe,
and Bowers (2001) note. Complex phenotypes exhibit
continuous variation, from which we may deduce that they
are quantitative in nature and, therefore, likely the outcome
of polygenic sources. Quantitative traits have, in turn, been
mapped to chromosomal regions referred to as quantitative
trait loci (QTLs) that contain the gene or genes affecting
the phenotype, based on statistical inferences drawn from
linkage analysis (