
MORTEN BARKLUND

AZAT MARDAN

SECOND EDITION

M ANNING

React hook reference

Hook Purpose Explained in

useState Create stateful functional components with simplicity and ease. Chapter 5

useEffect Execute external effects inside a component when desired. Chapter 6

useContext Access shared state across many components. Chapter 10

useReducer Manage multivalue interdependent state using elegant pure reducer
functions.

Chapter 10

useRef Maintain stable references across re-renders for DOM element access
and similar purposes.

Chapter 7

useMemo Memoize complex values across component renders for optimization. Chapter 7

useCallback Generate stable functions to be used for callbacks and event handlers
for memoized components.

Chapter 7

useLayoutEffect Run effects synchronously before the DOM paints to reduce perceived
performance lag.

Chapter 6

useDeferredValue Mark a local variable as lower-priority memoization, only returning fresh
values if React has idle time.

Chapter 7

useTransition Schedule lower-priority state updates to be executed whenever React
has idle time.

Chapter 7

useId Generate deterministic identifiers based on the component tree struc-
ture for perfect client-side hydration.

Chapter 7

useImperativeHandle Expose imperative functionality to parent components. Chapter 7

useSyncExternalStore Synchronize external libraries with the React internal state while
respecting React’s Concurrent Mode.

Chapter 7

useInsertionEffect Insert stylesheets into the document at the proper time in specialized
external libraries.

Chapter 7

useDebugValue Debug your applications easily by assigning custom labels to hooks for
the React debugger.

Chapter 7

Praise for the First Edition

A one-stop shop for anyone who wants a guided introduction, not only to React, but to the ecosystem of
tools, concepts, and libraries surrounding it.

—Peter Cooper, Editor of JavaScript Weekly

Perfect for new React developers and seasoned veterans alike.

—Matthew Heck, TechChange

An absolutely engaging read, where theory meets practice!

—Dane Balia, Entelect

Excellent introduction for getting up to speed on React . . . quickly!

—Art Bergquist, Cognetic Technologies

This book is simple to follow. It uses very basic language that helps you understand each concept step
by step.

—Israel Morales, SavvyCard

I finally understand how to utilize React, and it’s awesome.

—Peter Hampton, Ulster University

React Quickly is a great resource for coming up to speed with React. Very thorough and relevant. I’ll be
using it as a reference for my next app.

—Nathan Bailey, SpringboardAuto.com

If you’re new to React and would like to truly master it, I would look no further than this book.

—Richard Kho, Capital One

React Quickly
SECOND EDITION

MORTEN BARKLUND

AZAT MARDAN

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Frances Lefkowitz
20 Baldwin Road Technical development editor: Ninoslav Čerkez
PO Box 761 Review editor: Adriana Sabo
Shelter Island, NY 11964 Production editor: Kathleen Rossland

Copy editor: Julie McNamee
Proofreader: Katie Tennant

Technical proofreader: Chris Villanueva
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781633439290
Printed in the United States of America

www.manning.com

 To my wife and son, who inspire me to be a better person and writer. “Family is not an
important thing, it’s everything.” (Michael J. Fox)

—Morten Barklund

 To my grandfather, Khalit Khamitov. Thank you for being such a kind and just person.

You will always stay in my memory, along with the crafts you taught me, the trips we
took to the dacha, and the chess games we played.

—Azat Mardan

vii

brief contents
1 ■ Meeting React 1

2 ■ Baby steps with React 23

3 ■ Introduction to JSX 62

4 ■ Functional Components 103

5 ■ Making React interactive with states 136

6 ■ Effects and the React component life cycle 182

7 ■ Hooks to fuel your web applications 214

8 ■ Handling events in React 228

9 ■ Working with forms in React 272

10 ■ Advanced React hooks for scaling 313

11 ■ Project: Website menu 350

12 ■ Project: Timer 379

13 ■ Project: Task manager 401

contents
preface xv
acknowledgments xvii
about this book xix
about the authors xxiii
about the cover illustration xxiv

1 Meeting React 1

1.1 Benefits of using React 2
Simplicity 3 ■ Speed and testability 8 ■ Ecosystem and
community 9

1.2 Disadvantages of React 10
1.3 How React can fit into your website 10

Single-page applications and React 12 ■ The React stack 13

1.4 Your first React app: Hello World 15
The result 16 ■ Writing the application 16 ■ Installing and
running a web server 19 ■ Going to the local website 20

1.5 Quiz 21
Quiz answers 22
viii

CONTENTS ix
2 Baby steps with React 23
2.1 Creating a new React app 24

React project commands 27 ■ File structure 29
Templates 30 ■ Pros and cons 31

2.2 A note about the examples in this book 32
2.3 Nesting elements 33

Node hierarchy 35 ■ Simple nesting 36 ■ Siblings 38

2.4 Creating custom components 42
2.5 Working with properties 45

A single property 46 ■ Multiple properties 48 ■ The special
property: children 52

2.6 Application structure 55
2.7 Quiz 60

Quiz answers 60

3 Introduction to JSX 62
3.1 Why do we use JSX? 63

Before and after JSX 63 ■ Keeping HTML and JavaScript
together 64

3.2 Understanding JSX 66
Creating elements with JSX 66 ■ Using JSX with custom
components 67 ■ Multiline JSX objects 69 ■ Outputting
variables in JSX 70 ■ Working with properties in JSX 72
Branching in JSX 76 ■ Comments in JSX 83 ■ Lists of JSX
objects 84 ■ Fragments in JSX 86

3.3 How to transpile JSX 89
3.4 React and JSX gotchas 89

Self-closing elements 90 ■ Special characters 90 ■ String
conversion 91 ■ The style attribute 93 ■ Reserved names: class
and for 94 ■ Multiword attributes 94 ■ Boolean attribute
values 95 ■ Whitespace 97 ■ data- attributes 100

3.5 Quiz 101
Quiz answers 101

4 Functional Components 103
4.1 The shorter way to write React components 104

An example application 105 ■ Destructuring properties 109
Default values 111 ■ Pass-through properties 113

CONTENTSx
4.2 A comparison of component types 116
Benefits of functional components 117 ■ Disadvantages of
functional components 118 ■ Nonfactors between component
types 118 ■ Choosing the component type 118

4.3 When not to use a functional component 119
Error boundary 119 ■ Codebase is class-based 120
Library requires class-based components 120 ■ Snapshot
before updating 121

4.4 Conversion from a class-based to a functional
component 121
Version 1: Render only 122 ■ Version 2: Class method as
utility 125 ■ Version 3: Real class method 128 ■ Version 4:
Constructor 131 ■ More complexity equals harder
conversion 133

4.5 Quiz 134
Quiz answers 134

5 Making React interactive with states 136

5.1 Why is React state relevant? 137
React component state 139 ■ Where should I put state? 139
What kind of information do you store in component state? 141
What not to store in state 142

5.2 Adding state to a functional component 143
Importing and using a hook 146 ■ Initializing the state 148
Destructuring the state value and setter 154 ■ Using the state
value 156 ■ Setting the state 158 ■ Using multiple states 169
State scope 172

5.3 Stateful class-based components 176
Similarities with the useState hook 178 ■ Differences from the
useState hook 179

5.4 Quiz 180
Quiz answers 181

6 Effects and the React component life cycle 182
6.1 Running effects in components 183

Running an effect on mount 185 ■ Running an effect on mount
and cleanup on unmount 187 ■ Running cleanup on
unmount 190 ■ Running an effect on some renders 192

CONTENTS xi
Running an effect and cleanup on some renders 195
Running an effect synchronously 198

6.2 Understanding rendering 201
Rendering on mount 202 ■ Rendering on parent render 203
Rendering on state update 205 ■ Rendering inside functions 207

6.3 The life cycle of a class-based component 210
Life cycle methods 210 ■ Legacy life cycle methods 211
Converting life cycle methods to hooks 211

6.4 Quiz 212
Quiz answers 213

7 Hooks to fuel your web applications 214
7.1 Stateful components 215

Simple state values with useState 216 ■ Creating complex state
with useReducer 216 ■ Remembering a value without re-rendering
with useRef 216 ■ Easier multicomponent state with
useContext 220 ■ Low-priority state updates with
useDeferredValue and useTransition 221

7.2 Component effects 222
7.3 Optimizing performance by minimizing re-rendering 222

Memoizing any value with useMemo 223 ■ Memoizing functions
with useCallback 223 ■ Creating stable DOM identifiers with
useId 223

7.4 Creating complex component libraries 223
Creating component APIs with useImperativeHandle 223
Better debugging of hooks with useDebugValue 224
Synchronizing non-React data with useSyncExternalStore 224
Running effect before rendering with useInsertionEffect 225

7.5 The two key principles of hooks 225
7.6 Quiz 225

Quiz answers 226

8 Handling events in React 228
8.1 Handling DOM events in React 230

Basic event handling in React 230

8.2 Event handlers 235
Definition of event handlers 236 ■ Event objects 237
React event objects 239 ■ Synthetic event object persistence 241

CONTENTSxii
8.3 Event phases and propagation 243
How phases and propagation work in the browser 247
Handling event phases in React 250 ■ Unusual event
propagation 250 ■ Nonbubbling DOM events 251

8.4 Default actions and how to prevent them 251
The default event action 252 ■ Preventing default 253
Other default events 255

8.5 React event objects in summary 255
8.6 Event handler functions from properties 256
8.7 Event handler generators 259
8.8 Listening to DOM events manually 260

Listening for window and document events 260 ■ Dealing with
unsupported HTML events 263 ■ Combining React and DOM
event handling 265

8.9 Quiz 270
Quiz answers 270

9 Working with forms in React 272
9.1 Controlled vs. uncontrolled inputs 274
9.2 Managing controlled inputs 275

Filtered input 277 ■ Masked input 280 ■ Many similar
inputs 282 ■ Form submission 289 ■ Other inputs 295
Other properties 302

9.3 Managing uncontrolled inputs 303
Opportunities 307 ■ File inputs 310

9.4 Quiz 311
Quiz answers 311

10 Advanced React hooks for scaling 313
10.1 Resolving values across components 315

React Context 319 ■ Context states 323 ■ React Context
deconstructed 326

10.2 How to handle complex state 333
Interdependent state 335

10.3 Custom hooks 341
When is something a custom hook? 342 ■ When should I use a
custom hook? 343 ■ Where can I find custom hooks? 348

CONTENTS xiii
10.4 Quiz 348
Quiz answers 349

11 Project: Website menu 350

11.1 Scaffolding for the menu 353
HTML output 353 ■ Component hierarchy 354 ■ Icons 354
CSS 356 ■ Template 357 ■ Source code 358 ■ In the
browser 359

11.2 Rendering a static menu 360
The goal of this exercise 361 ■ Desired HTML output 361
Component tree 361 ■ Source code 363 ■ In the browser 364

11.3 Homework: A dynamic menu 364
Goal for this step 364 ■ Hints for solving this step 365
Component hierarchy 365 ■ What now? 366

11.4 Homework: Retrieving items from context 367
Goal for this step 367 ■ Hints for solving this step 367
Component hierarchy 368 ■ What now? 368

11.5 Homework: Optional link 370
Goal for this step 370 ■ Hints for solving this step 372
Component hierarchy 376 ■ What now? 376

11.6 Final thoughts 377

12 Project: Timer 379

12.1 Scaffolding for the timer 382
HTML output 383 ■ Component hierarchy 385 ■ Project
structure 386 ■ Source code 387 ■ Running the
application 390

12.2 Adding a simple play/pause timer 390
The goal of this exercise 390 ■ Component hierarchy 391
Updated project structure 392 ■ Source code 393
Running the application 396

12.3 Homework: Initializing the timer to a custom time 397
12.4 Homework: Resetting timers 398
12.5 Homework: Multiple timers 398

CONTENTSxiv
13 Project: Task manager 401
13.1 Scaffolding for the task manager 405

Component hierarchy 405 ■ Project structure 405
Source code 406 ■ Running the application 408

13.2 A simple list of tasks 408
The goal of this exercise 408 ■ Component hierarchy 409
Updated project structure 410 ■ Source code 411
Running the application 417

13.3 Homework: Task steps and progress 417
13.4 Homework: Prioritization of steps 418
13.5 Homework: Drag and drop 419
13.6 Conclusion 420

index 423

preface
Get ready for the ultimate love story! Boy meets library and, oh boy, does the library
rock! It’s love at first sight and the library is all in. Cue the happy ending because they
are going to live happily ever after!

 I had been working as a web developer for more than a decade, but I had always
felt like there was something missing. I tried my hand at JavaScript, jQuery, and even
Angular 1.0, but they just didn’t cut it. Honestly, who wants to write spaghetti code
that falls apart six months later?

 But then, one day, I stumbled upon React, and it was an instant connection, an
undeniable attraction that I couldn’t ignore. From the moment I laid eyes on the
library, I knew we were meant to be.

 Suddenly, everything made sense. React’s handling of components and data flow
was exactly what I’d been searching for. Who knew that coding could be this exciting?

 I dove headfirst into learning everything I could about React. I read documenta-
tion, watched tutorials, and built projects until my fingers bled. Okay, maybe not liter-
ally, but you get the point.

 I just couldn’t get enough of this new paradigm. I wanted to rewrite everything I
had ever done. Once I really started to understand the deeper design philosophy
behind this library, the attraction only grew deeper, becoming a lifelong relationship.

 As fate would have it, years after my initial foray into the world of React, I stumbled
across the charismatic Azat—a kindred spirit with an unbridled passion for this won-
drous library. Imagine my delight when I discovered that Azat had even gone so far as
xv

PREFACExvi
to immortalize his love for React in a tome of epic proportions—the first edition of
React Quickly.

 Oh, how that book sang to my soul! With its practical examples, clear organization,
and beginner-friendly approach, React Quickly was the perfect companion for any
React enthusiast. The community showered it with praise and accolades, and right-
fully so.

 But, like any young prodigy, React continued to evolve and mature with each pass-
ing year. Then, on that fateful day in 2019, hooks arrived on the scene with a flurry of
excitement and innovation. It was a game changer that completely revolutionized the
way applications were coded.

 And so it was that Azat and I joined forces to bring React Quickly into a new era,
while keeping its original essence alive and thriving. With our energies aligned, we
set out to craft a second edition that captured all the magic of React as it’s used today.
The structure and spirit of the first edition remain intact, while we’ve updated it to keep
pace with the times. Oh, what a joy it is to share our love for React with the world!

—MORTEN BARKLUND

acknowledgments
We would like to express our deepest gratitude to the team at the publishing house
who helped make this book a reality. At the forefront is our main editor, Frances
Lefkowitz, who tirelessly helped us shape and polish the text, making it accessible and
useful to readers of all levels. Her invaluable insights and guidance have been critical
to producing a book that we are truly proud of.

 We also want to extend a special thank you to our acquisition editor, Andy Waldron,
who believed in this project from the beginning and helped us navigate the complex
world of publishing.

 A special thanks goes to our tech editor, Ninoslav Čerkez, who provided meticulous
technical feedback and helped ensure that the code examples and explanations are
accurate and up to date. We are also indebted to our tech proofer, Chris Villanueva, for
his careful technical proofreading, which caught countless errors and inconsistencies.

 We also want to give a special shout-out to our copy editor, Julie McNamee, for her
stellar work on the manuscript. She’s not just a grammar expert, but a linguistic wiz-
ard who made sure all our excess adverbs really were actually removed—leaving the
text more concise and punchy. Thanks, Julie!

 Thank you, our reviewers: Amit Lamba, Andres Sacoo, Bernard Fuentes, Brendan
O’Hara, Brent Boylan, Chris Villanueva, Danilo Zeković, Derick Hitchcock, Fernando
Bernardino, Francisco Rivas, Ganesh Swaminathan, Harsh Raval, James Bishop, Jason
Hales, Jeff Smith, John Pantoja, Karthikeyarajan Rajendran, Kelum Prabath Senanayake,
Kent Spillner, Larry Cai, Matt Deimel, Matteo Battista, Michelle Williamson, Mick
Wilson, Miranda Whurr, Nitendra Bhosle, Nouran Mahmoud, Patrice Maldague, Pieter
xvii

ACKNOWLEDGMENTSxviii
Gyselinck, Richard Harriman, Richard Tobias, Rodney Weis, Roman Zhuzha, Saioa
Picado Fernández, Santosh Joseph, Thefanis Despoudis, and Yves Dorfsman—your
suggestions helped make this a better book.

 Thank you all for your dedication, hard work, and expertise. We couldn’t have
done this without you.

about this book
This book aims to take the reader from a React novice to an experienced React practi-
tioner. It’s a comprehensive guide to React fundamentals, designed to help both begin-
ners and experienced developers master the core concepts of this popular library, such
as JavaScript XML (JSX), components, state, hooks, events, and form elements.

 Overall, this book is an essential resource for anyone looking to build React appli-
cations, regardless of their experience level. By providing a strong foundation in the
core concepts of React, the book can help developers write clean, maintainable code
that is easy to understand and extend.

 React Quickly, Second Edition, will teach you all the fundamentals you need to design
clean, effective, and easy-to-update web applications using React. As you’ll see, the React
ecosystem of tools and libraries is enormous. After finishing this book and working
through the projects, you may decide you want to continue to build on your skills with
an eye toward advancing your career. If so, check out Job-Ready React by Morten
Barklund (Manning, 2024), which builds on the skills and methodologies taught in this
book. It will get you job-ready by introducing the advanced libraries, techniques, and
tools used by professional React developers.

Audience
For beginners, the book provides practical examples and exercises that can help them
build their first React applications and gain a solid understanding of how React works.
The book offers step-by-step guidance on how to build React applications from
scratch, with practical examples and exercises that reinforce the concepts.
xix

ABOUT THIS BOOKxx
 For experienced developers, the book serves as a useful reference and refresher on
the fundamental concepts of React. This can be particularly helpful for those who
may have learned React in a less structured way or who want to deepen their under-
standing of React best practices.

 To make the most of this book, it’s helpful to have a bit of experience with HTML,
CSS, and JavaScript, but you don’t need to be a master of these skills. Importantly, you
don’t need any prior knowledge of React at all—we’ll start at the beginning and guide
you all the way through building complex applications with confidence!

Roadmap
The book is structured with 10 subject matter chapters followed by 3 project chapters
at the end. The first 10 chapters are designed to build on one another in a natural
progression. For those who are new to React, we recommend that you read these
chapters in sequence to get the most out of the learning experience.

 However, if you already have some experience with React, feel free to skip around.
Chapters 1 through 4 introduce React and some core concepts such as component
structure, JSX, and functional components. These chapters may be skippable if you’re
already familiar with these topics.

 Chapters 5 through 7 introduce various hooks, starting with the basic state hook in
chapter 5, effect hooks in chapter 6, and a brief introduction to all the other hooks in
chapter 7. Chapters 8 and 9 cover events and forms, respectively. Understanding
events is crucial before diving into form input–handling practices.

 Chapter 10 builds further on all the previous concepts by introducing some
advanced component and logic patterns that you might encounter in more complex
applications.

 Finally, chapters 11 through 13 are project chapters, where you can put your new-
found knowledge to the test in three guided projects of increasing complexity. You’ll
build an interactive website menu, a timer, and a feature-rich task manager. If you’re
already experienced with React, you might want to start with these projects to see
where your knowledge gaps lie.

Source code
All the source code used in the book is available on GitHub as well as on the book’s
accompanying website. The latter includes an online source code browser where you
can not only see and download the source code for every single example but also run
the resulting application right in the browser without downloading anything. The
GitHub repository is available at https://github.com/rq2e/rq2e, and the source code
browser can be found at https://reactquickly.dev/browse.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/react-quickly-second-edition. The com-
plete code for the examples in the book is also available for download from the Man-
ning website at www.manning.com/books/react-quickly-second-edition.

https://livebook.manning.com/book/react-quickly-second-edition
https://github.com/rq2e/rq2e
https://reactquickly.dev/browse
http://www.manning.com/books/react-quickly-second-edition

ABOUT THIS BOOK xxi
 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this wasn’t enough, and listings include line-continuation
markers (➥). Code annotations accompany many of the listings, highlighting import-
ant concepts.

Software requirements
To use and run the examples and projects in this book, you only need two things:

 A command-line environment with a recent version of Node.js and npm
installed

 A text editor

That’s it! Now, let us show you how to quickly set up your command-line environment
and select a text editor, so you’ll be ready for the first exercises in chapter 1.

Command-line environment with Node.js and npm

First, you want to check if you already have compatible versions of Node.js and npm
installed. You need at least Node.js version 12 to use the examples in this book.

 In Windows:

 Open the Command Prompt or PowerShell by pressing the Windows key-R and
typing cmd or powershell in the Run dialog box.

 Type node -v in the Command Prompt, and press Enter.
 If you have Node.js installed, it will display the version number.

In macOS and Unix-like systems:

 Open the Terminal app.
 Type node -v in the terminal, and press Enter.
 If you have Node.js installed, it will display the version number.

If you don’t have Node.js installed or your version is older than 12, go to https://
nodejs.org/en/download, download the proper package for your operating system,
and follow the installation instructions.

 If you’re a power user of your operating system, feel free to use any other package
manager to install Node.js, as long as you get at least version 12.

Text editor

You probably already possess a text editor or have prior experience using one, given
your familiarity with JavaScript, HTML, and CSS, which are crucial to make the most

https://nodejs.org/en/download
https://nodejs.org/en/download

ABOUT THIS BOOKxxii
out of this book. However, in case you don’t have a text editor installed, here are some
widely used options that are compatible with most platforms:

 Sublime Text: www.sublimetext.com/download (free trial)
 Brackets: https://brackets.io/ (open source and free)
 Visual Studio Code: https://code.visualstudio.com/ (free)

liveBook discussion forum software requirements
Purchase of React Quickly, Second Edition, includes free access to liveBook, Manning’s
online reading platform. Using liveBook’s exclusive discussion features, you can attach
comments to the book globally or to specific sections or paragraphs. It’s a snap to make
notes for yourself, ask and answer technical questions, and receive help from the
authors and other users. To access the forum, go to https://livebook.manning.com/
book/react-quickly-second-edition/discussion. You can also learn more about Man-
ning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://www.sublimetext.com/download
https://brackets.io/
https://code.visualstudio.com/
https://livebook.manning.com/book/react-quickly-second-edition/discussion
https://livebook.manning.com/book/react-quickly-second-edition/discussion
https://livebook.manning.com/book/react-quickly-second-edition/discussion
https://livebook.manning.com/discussion

about the authors
MORTEN BARKLUND, an independent software engineer, works
as a lead developer in various teams, including an open source
React project funded by Google. With a degree in computer sci-
ence from the Technical University of Denmark, Morten has
been actively involved in the web community for more than two
decades and has worked on hundreds of projects.

AZAT MARDAN is an author of best-selling books on JavaScript,
React, and Node.js, including React Quickly, First Edition; Practical
Node.js, Pro Express.js, Full Stack JavaScript, and 100 TypeScript Mis-
takes. He is a visiting professor at a technology university, startup
mentor, and a software engineer/leader with experience in small
startups and large corporations, including YouTube, Google,
Capital One, Indeed, and DocuSign. Azat has taught many work-
shops and courses, including a course on edX with more than
40,000 international students. At one point, Azat was awarded
Microsoft Most Valuable Professional in Developer Technologies,

and was the 239th most active GitHub contributor in the world. He spoke at more than
30 conferences worldwide, keynoted, and shared the stage with prominent technologists
such as Douglas Crockford, Jeff Atwood (cocreator of Stack Overflow), Jim Jagielski
(creator of Apache), Scott Hanselman, and Danese Cooper.
xxiii

about the cover illustration
The figure on the cover of React Quickly, Second Edition, is “Homme Baschkir,” or “Bash-
kir man,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in
1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xxiv

Meeting React
React is the groundbreaking tool that web developers may not even know they
need, but can’t let go of once they’ve tried. This is definitely true for the two
authors of this book, as well as for many other enthusiastic web developers out
there. React is immensely popular—and for good reason.

 If you were doing web development in the early 2000s, all you needed was some
HTML and a server-side language such as Perl or PHP. Ah, the good old days of
putting in alert() boxes just to debug your frontend code. The internet has
evolved a lot since then, and the complexity of building websites has increased dra-
matically. Websites have become web applications with complex user interfaces
(UIs), business logic, and data layers that require changes and updates over time—
and often in real time.

 Many JavaScript template libraries have been written to try to solve the problems
of complex UIs. But they still require developers to adhere to the old separation of

This chapter covers
 Understanding what React is

 Solving problems with React

 Fitting React into your web applications

 Writing your first React web app: Hello World
1

2 CHAPTER 1 Meeting React
concerns—which splits style (Cascading Style Sheets [CSS]), data and structure
(HTML), and dynamic interactions (JavaScript)—and they don’t meet modern-day
needs (remember DHTML?).

 In contrast, React offers a new approach, which, when used correctly, streamlines
frontend web development. React is a powerful UI library offering an alternative
that many big firms such as Facebook, Netflix, and Airbnb have adopted and see as
the way forward. Instead of defining a one-off template for your UIs, React allows
you to create reusable UI components in JavaScript that you can use again and again
on your sites.

 Do you need a captcha control or date picker? Use React to define a <Captcha /> or
<DatePicker /> component that you can add to your form: a simple drop-in compo-
nent with all the functionality and logic to communicate with the backend. Do you
need an autocomplete box that asynchronously queries a database once the user has
typed four or more letters? Define an <Autocomplete charNum="4"/> component to
make that asynchronous query. You can choose whether it has a text box UI or has no
UI and instead uses another custom form element—perhaps <Autocomplete text-
box="..." />.

 This approach isn’t new. Creating composable UIs has been around for a long
time, but React is the first to use pure JavaScript without templates to make this possi-
ble. And this approach has proven easier to maintain, reuse, and extend.

 React is a great library for building UIs, and it should be part of your frontend web
toolkit, but it isn’t a complete solution for all frontend web development. We’ll spend
part of this chapter looking at the pros and cons of using React in your applications
and how React might fit into your existing web development stack.

 In this book, we’ll cover the basics of React and no more, providing readers with a
solid foundation in the core concepts and principles of the React library without delv-
ing into any external or advanced topics. By focusing solely on React, readers will gain
a comprehensive understanding of its capabilities and be well equipped to apply their
knowledge to a wide range of web development projects.

NOTE The source code for the example in this chapter is available at https://
rq2e.com/ch01.

1.1 Benefits of using React
Every new library or framework claims to be better than its predecessors in some
respect. In the beginning, we had jQuery, and it was leaps and bounds better for
writing cross-browser code in native JavaScript. If you remember JavaScript from the
old days, a single server request would take many lines of code, as it had to account
for Internet Explorer and WebKit-like browsers. With jQuery, this took only a single
line: $.ajax(), for example. Back in the day, jQuery was in some respects known as
a framework—but not anymore! Now a framework is something bigger and more
powerful.

https://rq2e.com/ch01
https://rq2e.com/ch01
https://rq2e.com/ch01

31.1 Benefits of using React
 Similarly, with Backbone and then Angular, each new generation of JavaScript
frameworks has brought something new to the table. React isn’t unique in this. What
is new is that React challenges some of the core concepts used by most popular front-
end frameworks, for example, the idea that you need to have templates.

 The following list highlights some of the benefits of React versus other libraries
and frameworks that existed at the time React emerged:

 Simpler web apps—React uses a component-based architecture (CBA) with pure
JavaScript; a declarative style; and powerful, developer-friendly Document Object
Model (DOM) abstractions (and not just DOM, but also iOS, Android, etc.).

 Fast UIs—React provides outstanding performance thanks to its virtual DOM
and smart reconciliation algorithm, which, as a side benefit, lets you perform
testing without spinning up (starting) a headless browser.

 Less code to write—React’s great community and vast ecosystem of components
provide developers with a variety of libraries and components. This is important
when you’re considering what framework to use for development.

Many features made React simpler to work with than most other frontend frameworks
available in its infancy. However, many new frameworks have spawned since React
came around. Partially due to the popularity of React, some of these new frameworks
have been developed with similar benefits or thoughts, each slightly altered in differ-
ent ways. Some other frameworks might just be inspired by the overall idea, but work
completely differently, whereas others are very similar to React, just with a smaller fea-
ture set requiring you to sometimes write more code, but other times end up with a
much smaller application codebase.

 We’ll consider the benefits that make React popular. These are the main selling
points of React, and they made the framework unique at its introduction, although
other modern frameworks have similar benefits today. Let’s start to unpack these ben-
efits one by one, starting with how wonderfully simple React is to use.

1.1.1 Simplicity

The concept of simplicity in computer science is highly valued by developers and
users, but it doesn’t equate to ease of use. Something simple can be hard to imple-
ment, but in the end, it will be more elegant and efficient. And often, an easy thing
will end up being complex. Simplicity is closely related to the KISS principle (keep it
simple, stupid). The gist is that simpler systems work better.

 React’s approach allows for simpler solutions via a dramatically better web develop-
ment experience for software engineers. When we began working with React, it was a
considerable shift in a positive direction that reminded us of switching from using
plain, no-framework JavaScript to jQuery.

 In React, this simplicity is achieved with the following features:

 Declarative over imperative style—React embraces declarative style over imperative
by updating views automatically.

4 CHAPTER 1 Meeting React
 CBA using pure JavaScript—React doesn’t use domain-specific languages (DSLs)
for its components, just pure JavaScript. And there’s no separation when work-
ing on the same functionality.

 Powerful abstractions—React has a simplified way of interacting with the DOM,
allowing you to normalize event handling and other interfaces that work simi-
larly across browsers.

Let’s cover these features one by one.

DECLARATIVE OVER IMPERATIVE STYLE

Declarative style means developers write how it should be, not what to do, step by step
(imperative). But why is the declarative style a better choice? The benefit is that the
declarative style reduces complexity and makes your code easier to read and understand.

 The distinction between imperative and declarative coding styles can quickly
become academic to some extent. When taken to the extreme, declarative program-
ming can become really complex to read unless you understand some fairly complex
concepts well, such as monads and functors. Here are a few different ways to describe
the difference between the two styles:

 Statements versus expressions—Imperative-style programming often works with
independent statements that individually advance the program state, while
declarative programming uses expressions that build upon each other to prog-
ress the flow of logic.

 Reserved word usage—Imperative-style programming often uses many reserved
words such as for, while, switch, if, and else, while declarative-style program-
ming uses array methods, arrow functions, object access, Boolean expressions,
and ternary operators to achieve the same results.

 Function composition—Imperative-style programming often uses independent
function calls and method invocations, while declarative-style programming uses
function composition to build upon the previous expression and make small gen-
eralized pieces of logic that, when composed, achieve the desired result.

 Mutability—Imperative-style programming often uses mutable objects and manip-
ulates existing structures, while declarative-style programming uses immutable
data and creates new structures from old ones rather than editing existing ones.

Let’s create a simple example to illustrate these different points. The goal of this task
is to create a function, countGoodPasswords, that, given a list of passwords, will return
how many of the passwords are good. Here, we’ll define a good password as any pass-
word at least nine characters long.

 This is a great simple task that can be solved in any programming language in a
multitude of ways. Some programming languages inherently make one style more nat-
ural to reach for, but JavaScript is a bit special, as it’s a member of both worlds. You
can solve this task either imperatively or declaratively.

51.1 Benefits of using React

sta
c

p

 Let’s start with a (very) naive imperative solution:

function countGoodPasswords(passwords) {
 const goodPasswords = [];
 for (let i = 0; i < passwords.length; i++) {
 const password = passwords[i];
 if (password.length < 9) {
 continue;
 }
 goodPasswords.push(password);
 }
 return goodPasswords.length;
}

This is, of course, partially taken to an extreme, and even under a fully imperative pro-
gramming paradigm, this could be much shorter.

 Let’s implement this same example using a declarative programming mindset:

function countGoodPasswords(passwords) {
 return passwords.filter(p => p.length >= 9).length;
}

We arrive directly at the goal in a single statement by manipulating an object in several
steps, using function composition to arrive at the target. We filter the original array to
arrive at a temporary value, which is the array of only good passwords. However, we
never store this array anywhere; we go directly to the next step of taking the length of
that array.

 That was just some generic JavaScript code. How does this relate to React? React
takes the same declarative approach when you compose UIs. First, React developers
describe UI elements in a declarative style. Then, when there are changes to views
generated by those UI elements, React takes care of the updates. Yay!

 The convenience of React’s declarative style fully shines when you need to make
changes to the view. Those are called changes of the internal state. When the state
changes, React updates the view accordingly.

NOTE We’ll cover how states work in chapter 5.

COMPONENT-BASED ARCHITECTURE USING PURE JAVASCRIPT

CBA existed before React came on the scene. Separation of concerns, loose coupling,
and code reuse are at the heart of this approach because it provides many benefits;
software engineers, including web developers, love CBA. A building block of CBA in
React is the component class. As with other CBAs, it has many benefits, with code
reuse being the main one (you can write less code!).

 What was lacking before React was a pure JavaScript implementation of this architec-
ture. When you’re working with Angular, Backbone, Ember, or most of the other Model-
View-Controller (MVC)-like frontend frameworks, you have one file for JavaScript and
another for the template. (Angular uses the term directives for components.)

New
tement
hanges

the
rogram

state

Reserved
word controls
program flow

Mutates an
existing object

6 CHAPTER 1 Meeting React
 There are a few problems with having two languages (and two or more files) for a
single component. The HTML and JavaScript separation worked well when you had
to render HTML on the server, and JavaScript was only used to make your text blink.
Now, single-page applications (SPAs) handle complex user input and perform rendering
on the browser. This means HTML and JavaScript are closely coupled functionally.
For developers, it makes more sense not to require separation of HTML and Java-
Script when working on a piece of a project (component).

 Under the hood, React uses a virtual DOM to find differences (the delta) between
what’s already in the browser and the new view. This process is called DOM diffing or
reconciliation of state and view (bringing them back to similarity). This means developers
don’t need to worry about explicitly changing the view; all they need to do is update
the state, and the view will be updated automatically as needed. You’ll see us implicitly
using this concept over and over in the book. We never do DOM manipulation
directly; we let React do that work for us.

 Conversely, with jQuery, you’d need to implement updates imperatively. By manip-
ulating the DOM, developers can programmatically modify parts of the web page with-
out re-rendering the entire page. DOM manipulation is what you do when you invoke
jQuery methods.

 Think of the help provided by the underlying framework on a scale as shown in fig-
ure 1.1. At one end of the scale, you have a “framework” that doesn’t actually help you
at all. If you built your application in plain JavaScript, you would be at this extreme.
Using jQuery would make it easier to manipulate the DOM, but you would still have
no help from the framework when things update. You would have to manually make
sure that your jQuery views update when your jQuery data updates.

At the other end of the scale, we have frameworks such as Angular, which is another
very popular framework and comparable to React in every way. However, Angular
works in a fundamentally different way with a lot more “magic” happening behind the
scenes. You often merely described how your components fit together, and Angular
will try to connect things correctly behind the scenes. The problem with Angular is
that you often lose the desired fine-grained control if things don’t work correctly.
Many things are hidden from you, which makes things unnecessarily complex.

 React strikes that happy medium, where the framework helps you with a lot of the
tedious work of connecting various things behind the scenes, but without locking you

Nothing Everything

Figure 1.1 How much does the framework help you? jQuery does
nothing; Angular does it all. For some, React hits the sweet spot in
between.

71.1 Benefits of using React
out of the fine-grained control required to make complex web applications. This is
obviously a subjective opinion, but we’re not alone in feeling that way.

POWERFUL ABSTRACTIONS

React comes with the following great abstractions that make life as a React developer
easier:

 Synthetic events abstracting out browser differences in native events
 JavaScript XML (JSX) abstracting out the JS DOM
 Browser independence allowing rendering in nonbrowser environments (e.g.,

on the server)

React has a powerful abstraction of the browser event model. In other words, it hides
the underlying interfaces and provides normalized/synthesized methods and proper-
ties. For example, when you create an onClick event in React, instead of the event
handler receiving a native browser–specific event object, it receives a synthetic event
object that’s a wrapper around native event objects. You can expect the same behavior
from synthetic events regardless of the browser in which you run the code. React also
has a set of synthetic events for touch events, which are great for building web apps for
mobile devices.

 Then there’s JSX, which is one of the more controversial elements of React. For
some, the abstraction of JSX is a strong argument for using React, while JSX has been
a stumbling block or even a deterrent for others.

 If you’re familiar with Angular, then you’ve already had to write a lot of JavaScript
in your template code because, in modern web development, plain HTML is too static
and is hardly any use by itself. Our advice is to give React the benefit of the doubt and
give JSX a fair run.

 JSX is a bit of syntactic sugar on top of JavaScript for writing React elements in
JavaScript using HTML-like notation with <>. React pairs nicely with JSX because
developers can better implement and read the code. Think of JSX as a mini-language
that’s compiled into native JavaScript. So, JSX isn’t run on the browser but is used as
the source code for compilation. Here’s a compact snippet written in JSX:

if (user.session) {
 return Logout;
} else {
 return Login;
}

Even if you load a JSX file in your browser with the runtime transformer library that
compiles JSX into native JavaScript on the run, you still don’t run the JSX; you run
JavaScript instead. In this sense, JSX is akin to CoffeeScript. You compile these lan-
guages into native JavaScript to get better syntax and features than that provided by
regular JavaScript.

 We know that to some of you, it looks bizarre to have HTML interspersed within
JavaScript code. It takes every new React developer (including us) a while to adjust

8 CHAPTER 1 Meeting React
because we’re expecting an avalanche of syntax error messages. And yes, using JSX is
optional. For these two reasons, we aren’t covering JSX until chapter 3. Trust us,
though—it’s very powerful and even addictive once you get familiar with it.

 Another example of React’s DOM abstraction is that you can render React ele-
ments on the server. This can be handy for better search engine optimization (SEO)
and improving performance.

 There are many options when it comes to rendering React components in both
DOM and HTML strings on the server. You can even use hybrid approaches where
your templates are rendered with some content on the server and later rehydrated
with live data in the browser. We’ll talk a lot more about this in section 1.3. And,
speaking of the DOM, one of the most sought-after benefits of React is its splendid
performance.

1.1.2 Speed and testability

In addition to the necessary DOM updates, your framework may perform unnecessary
updates, which makes the performance of complex UIs even worse. This becomes
especially noticeable and painful for users when you have a lot of dynamic UI ele-
ments on your web page.

 On the other hand, React’s virtual DOM exists only in the JavaScript memory.
Every time there’s a data change, React first compares the differences using its virtual
DOM; only when the library knows there has been a change in the rendering will it
update the actual DOM. Figure 1.2 shows a high-level overview of how React’s virtual
DOM works when there are data changes.

2. State changes

()setState

3. Smart diffing

algorithm

(reconciliation)

React virtual DOM

Virtual DOM:

“Dirty” components

affected by state changes

ReactElement

ReactNode

ReactComponent

Real DOM

DOMNode

1. Render

Real DOM

DOMNode

4. Re-render

only affected

elements

Figure 1.2 Once a component has been rendered, if its state changes, it’s compared to the
in-memory virtual DOM and re-rendered if necessary.

91.1 Benefits of using React
Ultimately, React updates only those parts that are necessary so that the internal state
(virtual DOM) and the view (real DOM) are the same. For example, if there’s a <p>
element, and you augment the text via the state of the component, only the text will
be updated (i.e., innerHTML), not the element itself. This results in increased perfor-
mance compared to re-rendering entire sets of elements or, even more so, entire
pages (server-side rendering).

The added benefit of the virtual DOM is that you can do unit testing without headless
browsers such as PhantomJS (http://phantomjs.org). There are several libraries out
there, including Jest and React Testing Library, that allow you to test your components
directly from the command line. We’ll obsess quite a bit more on unit testing React
components and hooks in later chapters.

1.1.3 Ecosystem and community

Last, but not least, React is supported by the developers of the juggernaut web applica-
tion called Facebook, as well as by their peers at Instagram. As with Angular and some
other libraries, having a big company behind the technology provides a sound testing
ground (it’s deployed to millions of browsers), reassurance about the future, and an
increase in contribution velocity. This is, of course, also a risk because if Facebook sud-
denly wants to take React in a new direction, you might get stranded if you don’t like
that direction, so weigh your options carefully.

 A lot of great content already exists that has been created for React by the commu-
nity. You’ll find that when you need some kind of component or interface, you can
just search the web for “react [name-of-component]”, and more than 95% of the time,
you’ll find something worthwhile.

 The history of open source software clearly shows that the marketing of open
source projects is as important to its wide adoption and success as the code itself. By
that, we mean that if a project has a poor website, lacks documentation and examples,
or has an ugly logo, most developers won’t take it seriously—especially now, when
there are so many JavaScript libraries. Developers are picky, and they won’t use an ugly
duckling library.

 As the saying goes, “Don’t judge a book by its cover.” This might sound controver-
sial, but, sadly, most people, including software engineers, are prone to biases such as

The geeky details of reconciliation
If you like to geek out on algorithms and Big O notation, these two articles do a
great job of explaining how the React team managed to turn an O(n3) problem into
an O(n) one:

 “Reconciliation,” on the React website (http://mng.bz/PQ9X)
 “React’s Diff Algorithm” by Christopher Chedeau (http://mng.bz/68L4)

http://mng.bz/PQ9X
http://mng.bz/68L4
http://phantomjs.org

10 CHAPTER 1 Meeting React
good branding. Luckily, React has a great engineering reputation backing it. And,
speaking of book covers, we hope you didn’t buy this book just for its cover!

1.2 Disadvantages of React
Of course, almost everything has its drawbacks. This is true with React, but the full list
of cons depends on whom you ask. Some of the differences, such as declarative versus
imperative, are highly subjective. They can be both pros and cons depending on your
personal preference. Here’s our list of React’s disadvantages (as with any such list, it
may be biased):

 React isn’t a full-blown, Swiss Army knife–type of framework. Developers need to pair
it with a library such as Redux or XState to achieve functionality comparable to
Angular or Ember. This can also be an advantage if you need a minimalistic UI
library to integrate with your existing stack.

 React stacks require maintenance and continuous package management. Because you
never use React only on its own, but almost always combine it with several other
packages, you need to constantly maintain your dependencies and make sure
you’re using the correct versions of various packages. In larger projects, this can
become a significant source of extraneous tasks.

 React uses a somewhat new approach to web development, and JSX and functional pro-
gramming can be intimidating to beginners. Especially in the early days, there was a
lack of best practices, good books, courses, and resources available for master-
ing React and similar frameworks. We’ll discuss JSX in much more detail in
chapter 3.

 React only has a one-way binding. Although one-way binding is better for complex
web apps and removes a lot of complexity, some developers (especially Angular
developers) who got used to a two-way binding will find themselves writing a bit
more code. We’ll explain how React’s one-way binding works compared to
Angular’s two-way binding in chapter 9, which covers working with form data.

 React isn’t reactive (as in reactive programming and architecture, which are more event-
driven, resilient, and responsive) out of the box. Developers need to use other librar-
ies, such as the React Query library, to make their applications integrate with
external content seamlessly and responsively. This also requires developers to
use a different mindset when developing React applications, or terribly coded
applications will result from attempting to force a round React into a square
architecture.

To continue with this introduction to React, let’s look at how it fits into a web application.

1.3 How React can fit into your website
Websites come in many variants, and React can be used to create interactive content
in many types of websites, either as a replacement for other technologies or as a way to
add new functionality to your website. React can be used on both “classic” websites

111.3 How React can fit into your website
that are mostly rendered by a server as well as client-side web applications, also known
as single-page applications (SPAs), as mentioned earlier.

 The React core library is a UI library first and foremost. The core library alone is
comparable to other UI libraries, but not directly comparable to more full-fledged
web application frameworks such as Angular. However, combined with other libraries,
either developed by the React team or other parties (e.g., React Router and Redux),
React can be a full competitor to any web application framework.

 If you’re using another SPA framework (e.g., Angular, Vue, Ember, Backbone,
etc.) to render your web application today, you’ll probably need to replace the
entire thing with a React-based stack. It’s very difficult and bordering on impossible
to create a hybrid SPA with some parts rendered by, for example, Angular, and oth-
ers by React.

 You can use React for just part of your UI if you have a website with smaller interac-
tive UI elements (or widgets). In such a case, you can replace your widgets one by one
with small React applications, without changing everything else. These existing wid-
gets might be written in plain JavaScript, jQuery, or even Angular or similar frame-
works. As you go along converting widgets to React, you can evaluate the best fit for
your organization.

 React is backend agnostic for frontend development. In other words, you don’t
have to rely on a JavaScript-based backend (Node or Deno) to use React. It’s fine to
use React with any other backend technology, such as Java, Ruby, Go, or Python. React
is a UI library, after all. You can integrate it with any backend and any frontend data
library (Backbone, Angular, Meteor, etc.).

 Another popular use case for React is for static site generators. In such a setup,
React is used to define your website locally on your environment, but when deployed
to the live server, it’s rendered “down” to a plain HTML website with JavaScript only
doing a minimal bit of work to add interactivity. All your templates, and so on, will
have been resolved. Initially, this was mostly popular for smaller websites, such as
blogs, which don’t update too frequently.

 Recent advances in server-side React rendering have made this pre-rendered
approach more and more popular even for larger SPAs that update often. You can do
this with popular frameworks built on top of React, such as Next.js or Remix. These
are considered partially server-rendered web applications, where your React code runs on
both the server and in the client. You might, for example, pre-render a list on the
server and add interactive filtering and sorting options in the client. This can sound a
bit daunting, but newer frameworks such as Next.js and Remix make it relatively easy.

 To summarize how React fits into a website, it’s most often used in these scenarios:

 As a UI library in an SPA, such as React+React Router+Redux
 As a drop-in widget in any frontend stack, such as a React autocomplete input

component in a website built using any other combination of technologies
 As a static website rendered on deployment to serve infrequently updated content

12 CHAPTER 1 Meeting React
 As a partially server-side-rendered website or SPA built on top of a more power-
ful framework potentially fed content by an external CMS, such as WordPress or
Contentful

 As a UI library in mobile apps using React Native, or desktop apps using Electron

React works nicely with some frontend technologies, but it’s mostly used as a part of
SPAs. We cover how React fits into an SPA in the next section.

1.3.1 Single-page applications and React

SPAs are a subset of websites in general. A website is considered an SPA if it has a lot of
functionality directly available in the browser and not just information. Examples
include Facebook, Google Docs, Gmail, and so on.

 SPAs are built using a multitude of technologies, of which React is only one potential
part in the stack. You can’t even use React alone; at least a few other technologies are
needed for React to be usable as a standalone application. In this section, we’ll establish
what an SPA is in general and then point out how React fits into this structure.

 SPAs are also known as thick clients because the browser, being a client, holds more
logic and performs functions such as rendering of the HTML, validation, UI changes,
and so on. Contrast this with a thin client, where the browser client is only used to dis-
play information that has been pre-rendered by a server. In a thin client, the browser
does very little work.

 Figure 1.3 is a very high-level example of a generic SPA regardless of the technol-
ogy used. It shows a bird’s-eye view of a typical architecture with a user, a browser, and
a server. The figure depicts a user making a request, and the input actions of clicking
a button, dragging and dropping, mouse hovering, and so on.

1. Inputs URL

7. Completed

website UI

4. Loads

JavaScript

Browser

SPA code

Server

2. URL request

3. Response

(assets)

5. Data requests/

responses

8. Inputs/UI

updates

Data

Static assetsStatic assets

App logic

Data service

6. Renders
User

interface

User

Figure 1.3 A generic SPA architecture

131.3 How React can fit into your website
Let’s walk through this typical end-to-end process, following the numbered steps in
figure 1.3:

1 The user types a URL in the browser to open a new page.
2 The browser sends a URL request to the server.
3 The server responds with static assets such as HTML, CSS, and JavaScript. In

most cases, the HTML is bare-bones; that is, it has only a skeleton of the web
page. Usually, there’s a “Loading . . . ” message and/or rotating spinner GIF.

4 The static assets include the JavaScript code for the application. When loaded,
this code makes additional requests for data.

5 The data comes back in JSON, XML, or any other format.
6 Once the application receives the data, it can render missing HTML (the User

Interface block in the figure). To put it differently, the process of rendering the
UI occurs within the browser as the application injects data into pre-rendered
templates, also known as hydration.

7 Once the browser rendering is finished, the browser updates the displayed con-
tent, and the user can work with the application.

8 The user sees a beautiful web page. The user may interact with the page (Inputs
in the figure), triggering new requests from the application to the server, and
the cycle of steps 2–6 continues. At this stage, browser routing may happen if
the application implements it, meaning navigation to a new URL will trigger
not a new page reload from the server, but rather an application re-render in
the browser.

To summarize, in an SPA, most rendering for UIs happens in the browser. Only data
travels to and from the browser. Contrast that with a “classic” website, which is not an
SPA, where all the rendering happens on the server. React fits into this SPA architec-
ture in steps 6 and 8 by rendering content based on data as well as handling user input
and updating the content based on the updated data that results from these inputs.

1.3.2 The React stack

React isn’t a full-blown, frontend JavaScript SPA framework. React is minimalistic in
the sense that it only does a single job (rendering reactive UIs) and tries to do that
very well. It doesn’t enforce a particular way of doing things such as data modeling,
styling, or routing (it’s non-opinionated). Because of that, developers often need to
pair React with a routing and/or data library.

 While you can use React as a smaller part of your stack, developers most often opt to
use a React-centric stack, which consists of the React core itself as well as data, routing,
and styling libraries created to be used specifically with React, such as the following:

 Data model libraries and backends—Examples include TanStack Query (https://
tanstack.com/query/latest), Redux (http://redux.js.org), Recoil.js (https://
recoiljs.org/), XState (https://xstate.js.org/), and Apollo (www.apollographql
.com/)

https://tanstack.com/query/latest
https://tanstack.com/query/latest
https://tanstack.com/query/latest
http://redux.js.org
https://recoiljs.org/
https://recoiljs.org/
https://recoiljs.org/
https://xstate.js.org/
http://www.apollographql.com/
http://www.apollographql.com/
http://www.apollographql.com/

14 CHAPTER 1 Meeting React
 Routing library—Often React Router (https://github.com/remix-run/react-router)
or a similar router implemented in many frameworks

 Styling libraries—Either a predefined set of styled components such as Material UI
(https://mui.com/) or Bootstrap (https://react-bootstrap.github.io/) or a library
to easily work with CSS inside React components, such as Styled-Components
(https://styled-components.com/), Vanilla Extract (https://vanilla-extract.style/),
or even Tailwind CSS (https://tailwindcss.com/)

The ecosystem of libraries for React is growing every day. In addition, React’s ability to
describe composable components (self-contained chunks of the UI) enables code
reuse. Many components are packaged as npm modules.

 A great (curated) list of a lot of various React components for many purposes can
be found here: https://github.com/brillout/awesome-react-components. This list has
everything from UI components (including tons of form elements) to complete UI
frameworks to development utilities and testing tools.

React website frameworks
Another category of React frameworks is the full-blown server-side framework, which
takes care of everything for you. Such frameworks come in two variants, but some-
times a framework can work in either way:

 Static site generators (SSGs)
 Dynamic server-rendered React (SSR)

SSGs are just that—frameworks that will generate a completely static website for you
fully ready to deploy to any static website host, which requires very little work on your
part and no expensive hosting. This is particularly popular for smaller personal web-
sites such as blogs, but can also be used for smaller businesses and even e-commerce
websites (that don’t require updates too often).

SSR frameworks are more complex and will take care of pre-rendering your React appli-
cation on the server before serving the HTML over the wire to your visitors’ browsers.
This means it’s good for SEO, embraces shareability, and has many other benefits.

We’ll list three such frameworks here:

 Gatsby—This very popular blogging framework is also useful for many other
types of static websites.

 Next.js—As probably the most popular React website framework out there,
this is useful for both small static websites and huge dynamic behemoths.

 Remix—This fairly new kid on the block is gaining traction and popularity very
quickly in serving super-fast dynamic React websites.

All of these frameworks—and many, many more—are different extensions of React,
each functioning by its own paradigms. They all add extra functionality on top of React
and sometimes also come with a set of React components that helps you create your
website to utilize the framework to its fullest.

https://mui.com/
https://react-bootstrap.github.io/
https://styled-components.com/
https://vanilla-extract.style/
https://tailwindcss.com/
https://github.com/remix-run/react-router
https://github.com/brillout/awesome-react-components

151.4 Your first React app: Hello World
By now, you should have an understanding of what React is, its stack, its place in
higher-level web applications, and how you can use tools built on top of React to gen-
erate complex websites. It’s time to get your hands dirty and write your first React
application.

1.4 Your first React app: Hello World
Let’s explore your first React application by implementing a Hello World application—
the quintessential example used for learning programming languages (see figure 1.4).
If we don’t, the gods of programming might punish us.

You’ll need a few things before you can get going. Fortunately, because we’re develop-
ing an application that runs in the browser, you don’t need all sorts of compilers or
libraries. Here’s the short list of things you do need before you can get started:

 A text editor.
 Knowledge of how to use the terminal on your system.
 Have npm version 5.2 or newer installed (given that version 5.2 has been

around since July 2017, odds are strong that your npm version is good enough
if you have one).

 Have a modern browser installed (any recent version of Edge, Firefox, Chrome,
or Safari will work).

And that’s about it. If you can check off this list, you’re good to go for this first exam-
ple. When we get to other examples in future chapters, you won’t need a lot more
than what’s on this list.

1. Write the application.

2. Install and run a web server.

3. Go to the local website. http://localhost:3000

Figure 1.4 The process to create your first React application has just three
simple steps.

16 CHAPTER 1 Meeting React
1.4.1 The result

The project will print a “Hello world!!!” heading (<h1>) on a web page. Figure 1.5
shows what it will look like when you’re finished (unless you’re not quite that enthusi-
astic and prefer just a single exclamation point).

You won’t be using JSX yet, just plain JavaScript (we actually won’t start using JSX until
chapter 3 and onward).

1.4.2 Writing the application

This project is so simple, it’ll only consist of a single HTML file. This file will include
links to the most recent versions of React 18 (the most stable version at the time of
writing) of the React Core and ReactDOM libraries. It will also, of course, include a
tiny bit of JavaScript code required to render the very simple application that we’re
building.

Learning React first without JSX
Although all React developers write React using JSX, browsers will only run standard
JavaScript and not understand JSX directly. That’s why it’s beneficial to be able to
understand React code in pure JavaScript. Another reason we’re starting with plain
JavaScript is to show that JSX is optional, albeit the de facto standard template lan-
guage for React. Finally, preprocessing JSX requires a bit more tooling, but it will
make the whole setup simpler because you’ll see less of how the sausage is made
and do more of the fun stuff—writing awesome React components.

We want to get you started with React as soon as possible without spending too
much time on setups in this chapter. You’ll be introduced to how to start a new appli-
cation in chapter 2, and we’ll add JSX to the mix in chapter 3.

Figure 1.5 Hello World
application

171.4 Your first React app: Hello World
 The code for the HTML file is simple and starts with the inclusion of the libraries
in <head>. In the <body> element, you’ll create a <div> container with the ID root
and a <script> element (that’s where the app’s code will go later), as shown in the
following listing.

<!DOCTYPE html>
<html>
 <head>
 <title>My First React Application</title>
 <script

➥ src="//unpkg.com/react@18/umd/react.development.js">

➥ </script>
 <script src="//unpkg.com/react-dom@18/umd

➥ /react-dom.development.js"></script>
 </head>
 <body>
 <div id="root"></div>
 <script type="text/javascript">
 ...
 </script>
 </body>
</html>

Just type this code using your text editor and save it as a file named index.html in
some folder on your machine.

 You might be wondering why we have to create a <div> node to render the content
into instead of rendering the React element directly in the <body> element. The
answer is that doing so can lead to conflict with other libraries and browser extensions
that manipulate the document body. If you try attaching an element directly to the
body, you’ll get this console error:

Warning: createRoot(): Creating roots directly with document.body is

➥ discouraged,

This is another good thing about React: it has great warnings and error messages!

NOTE React warning and error messages aren’t part of the production build
to reduce noise, increase security, and minimize the distribution size. The
production build is the minified file from the React Core library, that is,
react.min.js. The development version with the warnings and error mes-
sages is the unminified version, react.development.js, as you see us using in
this example.

By including the libraries in the HTML file, you get access to the React and React-
DOM global objects: window.React and window.ReactDOM. You’ll need two methods
from those objects: one to create an element (React) and another to render it in the
<div> container (ReactDOM), as shown in listing 1.2. To create a React element, all you

Listing 1.1 Loading React libraries and code

Imports the
React library

Imports the ReactDOM library

Defines an empty
<div> element to
mount the React UI

Creates a script
node that will hold
our JavaScript

The actual
JavaScript code
will go in here.

18 CHAPTER 1 Meeting React
need to do is call React.createElement(elementName, data, children) with three
arguments that have the following meanings:

 elementName—HTML tag as a string (e.g., 'h1') or a custom component class
as an object. We don’t have any custom components just yet, but we’ll start cre-
ating those in chapter 2.

 data—A data object containing attributes and properties for the element. We
don’t need any properties now, so we just pass null. We’ll get back to using
properties in chapter 2.

 children—Child elements or inner HTML/text content. In this example, it’s
just “Hello world!!!”.

const reactElement = React.createElement(
 'h1',
 null,
 'Hello world!!!'
);
const domNode = document.getElementById('root');
const root = ReactDOM.createRoot(domNode);
root.render(reactElement);

The code in listing 1.2 goes into the <script> tag in the HTML file, which you created
before, in place of the ... that we originally put there as a placeholder. This listing gets
a React element and stores the reference to this object in the reactElement variable.
The reactElement variable isn’t an actual DOM node; rather, it’s an instantiation of the
React h1 component (element). You can name it any way you want, for example, hello-
WorldHeading. In other words, React provides an abstraction over the DOM.

 Once the element is created and stored in the variable, you then create a React
application holder (called root) from the DOM element using the ReactDOM.create-
Root() method. Finally, you render the React element into the root with the root
.render() method, shown in listing 1.2.

 If you prefer, you can move all steps into a single call. The result is the same,
except you don’t use the three extra variables, as we’ve done in the next listing.

ReactDOM
 .createRoot(document.getElementById('root'))
 .render(React.createElement('h1', null, 'Hello world!'));

We’ll be using the more explicit version in listing 1.2, so the full HTML file should
now look like the following listing.

Listing 1.2 Creating and rendering an h1 element

Listing 1.3 Single statement

Creates an h1 React
element with the text
“Hello world!!!”

Grabs a reference to
the DOM element on the
page with ID “root”

Creates a root holder for the
React application connected to

the specific DOM element

Renders the h1 element
into the root holder

191.4 Your first React app: Hello World
<!DOCTYPE html>
<html>
 <head>
 <title>My First React Application</title>
 <script src="//unpkg.com/react@18/umd/react.development.js"></script>
 <script src="//unpkg.com/react-dom@18/umd/react-

➥ dom.development.js"></script>
 </head>
 <body>
 <div id="root"></div>
 <script type="text/javascript">
 const reactElement = React.createElement(
 "h1",
 null,
 "Hello world!!!"
);
 const domNode = document.getElementById("root");
 const root = ReactDOM.createRoot(domNode);
 root.render(reactElement);
 </script>
 </body>
</html>

With the HTML file completed, we now need to see this in action by serving the con-
tent to our browser.

1.4.3 Installing and running a web server

Now comes the next step, serving the HTML page to a browser. Why do we need to
serve the content? Can’t we just open the HTML file directly in the browser? Due to
cross-origin restrictions, you can’t open a file located on your local hard drive in the
browser and have it access content on other domains (such as the React libraries
loaded from https://unpkg.com). Browsers simply don’t allow this. You can try to
open the file in your browser directly by double-clicking it, but it will just show an
empty white page. So that’s no good.

 Instead, we need to serve the content using a local development web server. That
might sound terribly complex, but it’s surprisingly simple to do today.

 If you have node set up as recommended in the introduction, this will be enough
to get you going. Just type the following command in the folder where you saved your
index.html file:

$ npx serve

That’s it. You might be asked to install a package (if you haven’t used this command
before, simply press Enter to confirm), but after a few seconds, once the tool reports
that everything is rolling, your web server is running.

Listing 1.4 Creating and rendering an h1 element

The inserted
JavaScript is
located in its
proper place.

https://unpkg.com

20 CHAPTER 1 Meeting React
1.4.4 Going to the local website

With the web server running, you can now use your browser and go to this site:

http:/ /localhost:3000

Here, you should be able to see your application in action, and it should look pretty
much like figure 1.5 at the start of this section.

 Figure 1.6 shows the Elements tab in the browser developer tools with the <h1> ele-
ment selected. You know that React must have done something here because, in your
source HTML file, there’s no <h1> element inside the root node—it was empty.

 Congratulations! You’ve just implemented your first React application!

Local development web server
Unfortunately, in this very first example, you have to worry about setting up your own
local web server. Although the task is very simple, it’s a bit annoying to do here.

If for some reason the given command doesn’t work for you, there are a couple of
other ways to easily serve the current folder as a local web server.

If you have Node, you can try this command:

$ npx http-server -p 3000

Alternatively, if you have a working Python 2 installation on your computer, you can
just do the following:

$ python -m SimpleHTTPServer 3000

Or, if you have a working Python 3 installation, you can do this (you might have to type
python3 rather than python in the following depending on your setup):

$ python -m http.server 3000

Finally, if you have a PHP setup working locally, you can do this:

$ php -S localhost:3000

Any of those commands will run a local web server on your computer in the folder
where you run the command serving your HTML file to http:/ /localhost:3000.

211.5 Quiz
From the next chapter going forward, we won’t be creating our React applications like
this. We’ll be using a small tool to quickly generate and set up our React application
basics for us, which will make this entire process much smoother. It will take care of
serving our content as well, so you don’t have to worry about web servers anymore.

1.5 Quiz
1 React is a complete framework in and of itself, and you can create many applica-

tions using nothing but React. True or false?
2 What is the primary problem that React solves?

a Fetching data from the server
b Creating beautiful HTML widgets
c Rendering dynamic data in a UI layer

Separate JavaScript file
You can abstract the JavaScript code into a separate file instead of including the
script directly in the HTML file (refer to listing 1.1). For example, you can create a file
named script.js and copy and paste the entire snippet from either listing 1.2 or
listing 1.3 into that file. Then, in the HTML file, you need to link to your script.js
file after the <div id="root"> rather than include the script itself, like this:

<div id="root"></div>
<script src="script.js"></script>

Figure 1.6 Inspecting the Hello World web app as rendered by React

22 CHAPTER 1 Meeting React
3 React components are rendered into the DOM with which of the following
methods? (Beware, it’s a tricky question!)

a ReactDOM.appendRoot(...).render()

b ReactDOM.renderRoot(...).render()

c ReactDOM.createRoot(...).render()

d ReactDOM.launchRoot(...).render()

4 You have to use Node.js on the server to be able to use React in your SPA. True
or false?

5 You must include react-dom.js to render React elements on a web page. True
or false?

Quiz answers
1 False. You almost always have to use other frameworks or libraries to create the

vast majority of React applications.
2 While you can create beautiful HTML widgets in React, the primary problem

that React solves is to render dynamic data in a UI layer (answer c).
3 ReactDOM.createRoot(...).render().
4 False. You can use any backend technology.
5 True. You need the ReactDOM library.

Summary
 React for the web consists of the React Core and ReactDOM libraries. React

Core is a library geared toward building and sharing composable UI compo-
nents using JavaScript and (optionally) JSX in a universal manner. On the other
hand, to work with React in the browser, you can use the ReactDOM library,
which has methods for DOM rendering as well as for server-side rendering.

 React is declarative; it’s only a view or UI layer.
 React uses components that you bring into existence with ReactDOM.create-

Root().
 You use pure JavaScript to develop and compose UIs in React.
 Although optional, you don’t need to use JSX (an HTML-like syntax for React

objects) when developing with React, but everyone does.
 React can fit into your web stack in many ways, from just a small widget on some

page to the foundation of your entire website.
 React is not a Swiss Army knife, but rather the UI layer of a web application that

also consists of many other parts. React is often used together with data libraries
such as Redux or XState.

Baby steps with React
This chapter will teach you how to create a new React project and how to create
custom components to render HTML. Both of these concepts will serve as the basis
for all future chapters.

 First, we’ll examine how to create a new React project. While doing so, we’ll
teach you both how to start your own React projects and how to utilize the React
template system to quickly instantiate the examples and projects that we’ll work on
in this book. It’s quite magical how in a single line you can get the code down-
loaded and ready to go with everything set up for you!

 As we start our first React project, we’ll introduce several fundamental React con-
cepts that you’ll use frequently, including elements, components, and properties. In
a nutshell, elements are instances of components that can be passed properties. What
are their use cases, and why do you use them? Hang tight for this information until
section 2.3 because, right now, we’re going to discuss how to create a new React
web application.

This chapter covers
 Creating a new React project

 Nesting elements

 Creating a component class

 Working with properties
23

24 CHAPTER 2 Baby steps with React
NOTE The source code for the examples in this chapter is available at
https://rq2e.com/ch02. In section 2.2, however, you’ll learn that you don’t
have to download anything manually. You can instantiate all the examples
from this and subsequent chapters directly from the command line using a
single command.

2.1 Creating a new React app
In this section, we’ll introduce you to a magical command-line program that will make
all your React setups go smoothly. In just three short commands and a couple of min-
utes, you’ll download a fully functioning dummy React web app, compile it, run it
through a web server, and see it in your browser (see the overview in figure 2.1).

1. npx create-react-app
name-of-app

2. cd name-of-app

3. npm start

4. We update any

source file.

You, the developer File system Process
npm

repository

1.c creates a folder:npx
name-of-app.

1.d requestsnpx
dependencies.

1.b create-react-app
is installed.

1.a requestsnpx
create-react-app.

1.e All dependencies are

installed.

3.a Compiler builds from

source files.

3.b Web server watches file

system.
3.c Local app is launched in

browser.

4.a Compiler notices

updated files.

4.b Compiler rebuilds from

source files.

4.c Web server notices

updated files.

4.d Local app in browser is

updated.

Figure 2.1 Three commands that will take you from nothing to a working React application. From there,
you can update the source files, and the system will automatically recompile and update your application
in the browser.

https://rq2e.com/ch02

252.1 Creating a new React app

This
first
com

th
c
i

appl

d
w

does
If you have a modern version of Node (and npm) installed as advised in the introduc-
tion, you should be able to write the following command in your terminal:

$ npx create-react-app name-of-app

NOTE npx isn’t a typo. npx is a package runner tool that comes with npm. It
allows us to run commands using packages only present inside this project
folder and/or run commands that will be downloaded dynamically when
needed.

Run this command, and a new React application is set up for you! The first time you
run this command, npm will ask for confirmation to download the create-react-app
utility (just press Enter to confirm that). This refers to steps 1.a and 1.b in figure 2.1.
Every time you use the command after that, no questions will be asked.

NOTE We’ll refer to the create-react-app tool as CRA in the following
sections.

The command will create a new folder with the passed name, which is name-of-app in
the preceding case. Inside this folder, the utility will initialize a new Git project, down-
load the required resources for the application, and then download and locally install
all the dependencies required by the project.

 The command will run for a short while, probably around 1–3 minutes depending
on the project complexity and network conditions. Once the command is complete,
you’ll see something like this:

Success! Created name-of-app at <folder>
Inside that directory, you can run several commands:

 npm start
 Starts the development server.

 npm run build
 Bundles the app into static files for production.

 npm test
 Starts the test runner.

 npm run eject
 Removes this tool and copies build dependencies, configuration
 files and scripts into the app directory. If you do this, you
 can't go back!

We suggest that you begin by typing:

 cd name-of-app
 npm start

Happy hacking!

name-of-app and <folder>
will be replaced by the actual
name and folder location of
your project.

 is the
of four
mands
at you
an run
n your
ication

(we’ll
iscuss
hat it

 next).

These three other
commands will be
discussed in the
next subsection.

This command changes the folder
to the newly created project.

Why, thank you—and may your
hacking be forever white hat!

26 CHAPTER 2 Baby steps with React
Uh, exciting. Note that if your output mentions a command called yarn rather than
npm, don’t worry. See the sidebar for an explanation.

Now, let’s follow the suggestion in the preceding code snippet and run those two
commands:

$ cd name-of-app
$ npm start

Now the third part of the magic happens. A React development server starts up, com-
piling all the files and resources used (action 3.a in figure 2.1) and spins up a local
development web server (action 3.b in figure 2.1). After a few seconds, the command
line will say something like this:

Compiled successfully!
You can now view name-of-app in the browser.
 Local: http:/ /localhost:3000

Moreover, the application will already have been launched in your browser, as the
command also launches a browser window at the proper URL (action 3.c in figure 2.1).
If not, simply open localhost:3000 in your browser to see the application. This
browser window will display a React application (as shown in figure 2.2) that’s been
created for you by a template. This is the default template used for new React applica-
tions that don’t specify a specific template to use. We’ll discuss templates a bit later in
section 2.1.3.

 Note that this last command, npm start, is a continuously running command
that stays active in the terminal. It will watch your source files, recompile the whole

npm alternatives
There are several popular package managers for JavaScript projects that work on the
same package repository and structure, but with slightly different commands. The
most used manager is npm by far, but alternatives include Yarn and pnpm. The pop-
ular choice, npm, comes preinstalled with Node and is the default manager that many
people use.

However, you can opt to install a different manager, which will have a slightly simpler
command structure. For the purposes of this book, there’s no difference between
using npm or an alternative, other than some slightly different syntax when typing
commands. If you have Yarn or pnpm, you probably also have npm installed, so that
will most likely always work for you.

If you want to use one of these package managers, please check the documentation
on how to run commands:

 Yarn: https://classic.yarnpkg.com/lang/en/docs/cli/run/
 pnpm: https://pnpm.io/cli/run

https://classic.yarnpkg.com/lang/en/docs/cli/run/
https://pnpm.io/cli/run

272.1 Creating a new React app
application when any source file changes, and even reload the browser with the
updated application (actions 4–4.d in figure 2.1)! Now that is pure magic.

 If and when you want to abort this command, simply press Ctrl-C in your terminal,
and you’ll be back to your regular terminal prompt. However, your application no lon-
ger works because you also stopped the local development web server.

 You might have noticed that the previous output from creating our application
listed not only the start command that we just used but also three other commands:
build, test, and eject. We’ll go over all four of these commands in more detail in
the next subsection.

2.1.1 React project commands

Now that you have this React application source code available on your system, you
probably want to interact with it in several ways. The two primary things you want are to
see what you’re developing as you’re developing it and to deploy your application to a
web server. You also might want to run all tests in your application to verify that every-
thing is still working as designed. Finally, you might want to escape the confines of CRA
to tinker with the engine underneath. CRA abstracts some things away that you don’t
need to worry about at first, but when applications get more advanced, you might want
to access the innards of your application configuration. For these four purposes, a new
React application created with CRA comes with these four commands:

 start—Launch a local development web server and continuously compile the
project as it changes, serving it to any local browser.

Figure 2.2 The default React application launched by a new React project. Your
application will most likely be in dark mode with white text on a dark background
color. The brightness in this screenshot has been inverted for better print results.

28 CHAPTER 2 Baby steps with React
 build—Compile all resources into a production-ready package deployable to
the right web host.

 test—Launch a test runner that will run all unit tests defined in your project.
 eject—Reveal the inner workings of the project and make it fully configurable.

Let’s go over these one by one and discuss how and when to use them.

START

The start command is your primary command, the one you use every time you start a
new project or pick up an old project to start work on it again. At the beginning of
your coding session, you’ll run the start command in a terminal, and then you’ll be
ready to code in your editor while automatically being served the updated content in
your browser.

 The start command will build your project in the background continuously using
the development version of React and its utility libraries. This is distinct from the pro-
duction version of React used in the build command. The development version of
React includes much better error messages and warnings as well as options for debug-
ging the application as it’s running in the browser. However, the development version
of React is, for those reasons, also much larger in terms of sheer file size, so you don’t
want to publish your application using this version. It will make your application
unnecessarily large and hinder users trying to access it.

 The start command will also reload the application in the browser as it’s running,
but in a much smarter way than just reloading the whole browser window. React will
try to reload only the relevant bits of logic that have changed and otherwise leave the
application as is. For instance, if you’ve clicked a button to collapse a section that
would otherwise be open by default when the application launches, React will be able
to inject updated code while keeping the state in the browser, so this section remains
collapsed while the logic is otherwise updated.

BUILD

This is the command to run when you’re ready to see your application deployed to a
real web server and have users try it out. When you run the build command, you’ll be
using the production version of React, which is much leaner and optimized for
deployment. The result of the build will be put in the /build folder.

 By default, nothing else really happens, but you can set up direct deployment to your
cloud web hosting solution in the build command as well if you want to. Check your
cloud web hosting provider’s documentation for help on how to do this. We won’t be
using this command in this book, as we’ll be using another template for deploying appli-
cations in the project where deployment to the cloud will be an option.

TEST

If you want to run all unit tests defined in your project, run this command. You can do
that on the empty default template as well because the default template even comes
with a default test file.

292.1 Creating a new React app
EJECT

This command can be a bit dangerous because it’s irreversible. If you eject your appli-
cation, you’ll have access to a lot more configurable options inside the React setup
than you do otherwise, but you also lose the option of automatically updating to
newer versions of all the tools involved. We won’t cover ejecting your application in
this book, but we’ll discuss it again briefly in section 2.1.4 when examining the pros
and cons.

2.1.2 File structure

When you create a project with CRA, it almost always follows the same file structure.
Custom templates can do things differently, but they rarely do. The structure includes
these important elements:

/
 public/
 index.html
 src/
 index.js
 App.js
 package.json

With these two folders and four files, you’re good to go.
 The public folder is for files that will be served directly via the web server. This

includes the index.html file that serves your entire application as well as binary files
that you don’t want to bundle inside your application, such as content required by the
index.html file directly (e.g., favicon, Cascading Style Sheets [CSS], fonts, or images
for sharing) and large files (e.g., videos and images).

 The source (src) folder is where all your bundled JavaScript will go as well as any
other content that you want to bundle as a single package. This is mostly just Java-
Script, but could potentially also include CSS, icons, small images, JSON files, and
more. The bundling starts at the index.js file inside the source folder. It’s common-
place to have the main application reside in a file named App.js or app.js, depend-
ing on personal preference, but otherwise, you are free to be flexible here. Some
templates structure the content inside the src folder in subfolders, which is necessary
to structure larger projects.

 The main configuration file for your project is package.json, as required by npm
and Yarn. This is the starting file for your project and defines the dependencies as well
as the commands that you can run, as covered in section 2.1.1.

 The root folder will often contain a ton of other configuration files required for
various libraries included in the project. It isn’t uncommon to see custom templates
with 20+ other configuration files at the root of the project. Now let’s move on to
cover what custom templates are and how they help you.

30 CHAPTER 2 Baby steps with React
2.1.3 Templates

While the default application that we saw in figure 2.2 is pretty nice, it’s not always
helpful. The default application sets you up to create a simple web app in the same
style as that web app is created, but that might not be what you’re looking for. If you
want to create a web app using a specific technology stack or using React in a particu-
lar way, you probably want to use a different starting template to set you up correctly.

 When you use CRA, you can specify a template to use. The default template is the
one you saw previously with the (spinning) React logo. If you want to specify another
template, you can do so as an argument:

$ npx create-react-app name-of-app --template name-of-template

You can only use the name of a template that already exists; if it doesn’t exist, the
application will abort. Often, people don’t bother with choosing a template at all and
just work with the default one. But if you know that you want a specific setup or want
to start your codebase at a certain state, you can use a template that sets you up for
exactly that. Some commonly used templates include the following:

 Minimal templates with even fewer features than the default one, for example,
--template minimal. This one comes without images, CSS, tests, web vitals, and
other minor niceness used in the default template.

 Variants of the default or the minimal template using TypeScript, for example,
--template typescript or --template minimal-typescript. This is useful for
starting a new project using TypeScript.

 Complex boilerplate setups created by other developers where you have a stack
of certain dependencies already baked into your new application, for example,
--template redux-typescript, which comes prepackaged with Redux and
TypeScript, or --template rb, which is a popular React boilerplate (hence the
rb), that comes prepackaged with a ton of reputable libraries, including Redux
with Redux-Saga, styled components, ESLint, husky, and many more.

One of the very useful things about the template system for CRA is that it’s fully
decentralized. Anyone can publish a package to npm and structure it in a way that
allows you to use it as a base for your own applications. That is, of course, also one of
the downsides. If you find a template on npm, there’s no saying whether it’s any good
or even does what it says. Here, you should probably trust the wisdom of the crowd—if
it’s popular, it’s probably good.

 One of the benefits of allowing just about any random developer to publish a tem-
plate on npm is that this includes us, the authors of this book. We’ll be using custom
React templates for all examples and projects in this book. We’ll get back to that in a
second. First, we’ll discuss the advantages and drawbacks of using CRA.

312.1 Creating a new React app
2.1.4 Pros and cons

There are a lot of advantages to using CRA to create a new React application, but, as
always, such advantages have consequences. We’ve already discussed many advantages,
but let’s list them here anyway:

 Simplicity—You have less to worry about when setting up a new application. You
get JavaScript XML (JSX) transpiling, bundling, testing, automatic reloading,
and more for free, without dealing with all the interdependencies.

 Upgradability—You can easily upgrade to newer versions of React and all the
other libraries used. We haven’t discussed how to do that, but it’s surprisingly
simple. Just run npm install --exact react-scripts@VERSION to upgrade your
entire project to the specific version of React scripts. Check the changelog for
react-scripts for details.

 Community—With the deluge of available CRA templates and the easy path to
making more, you can likely always find a premade template with just the right
combination of tools so that you don’t have to deal with mixing them correctly.

 Customization—On top of a variety of templates, you still have the option of add-
ing all the other plugins and libraries that you need for your project. Does your
project interface with, for example, both Google Maps and Amazon Web Ser-
vices (AWS)? Just add their libraries, and you should be good to go.

However, there are also some drawbacks. Some of them can be ignored or glossed
over, but, in some situations, you have to seek out other setups besides what CRA can
provide. We’ll cover some of these situations here as well:

 Understanding—Without setting the whole project up from scratch, you won’t
know all that goes into such an endeavor. If you find yourself in a position
where you need a unique setup but have always relied on CRA, you might find
yourself stranded quickly because you never really paid attention to it. But that’s
the duality of all abstractions: you gain the benefit of not worrying at the cost of
not knowing what’s going on underneath.

 Control—You do lose control over which libraries are used. CRA currently uses
webpack and BabelJS for JSX bundling and transpiling, but they’re by no
means the only players around. Recently, tools such as esbuild, Bun, SWC, and
Rome have emerged that partially cover the same ground, but you can’t easily
switch to one of those. You’re stuck with the technology stack that CRA cur-
rently has chosen for you. On the other hand, that’s also an advantage because
when another tool becomes standard and maybe even superior to Babel, CRA
will adapt and use that instead—without you having to worry about it. For the
instances where you insist on using a specific stack, you do have to set your proj-
ect up from scratch. Another option is to eject your application as described in
section 2.1.1, which gives you extra configurability and control at the cost of los-
ing upgradability.

32 CHAPTER 2 Baby steps with React
 Integration—If you want to integrate your application in a server-side setup, CRA
currently can’t help you. For projects based on website frameworks as described
in the first chapter, you have to use the setups provided by those frameworks
rather than CRA.

After weighing the pros and cons just listed, we arrived at the conclusion that CRA is
perfect for new developers. You get a lot of simplicity and fewer worries. Once you get
more experience, you can start to experiment outside of CRA. That’s why we’ve used
CRA for the examples and projects in this book.

2.2 A note about the examples in this book
As mentioned, we’ll be using CRA for all projects and almost all examples in this
book. The only exception is the first example you completed in the first chapter.

 All the templates that we’ve created for this book will be named according to this
structure:

rqXX-NAME

Of course, rq refers to React Quickly. The XX will be replaced with the chapter num-
ber, and the last bit will be a custom short name for each example. For every example
and project using CRA, you’ll see the template name and how to use it in a sidebar
like the following.

Sometimes, examples will contain multiple variants of the source code, and, in such
cases, each variant will come with its own template as just shown. There are also exam-
ples that come with suggestions for extra homework. In those instances, a template
will be specified as the starting point for that extra homework, and another template
will contain one possible solution. You can use the solution template as either inspira-
tion or to compare with your own solution. All such homework can have infinite
solutions, so just because your work doesn’t match the template, that doesn’t mean it’s
wrong—it’s just different.

Repository: rq02-nesting
This example can be seen in repository rq02-nesting. You can use that repository
by creating a new web app based on the associated template:

$ npx create-react-app rq02-nesting --template rq02-nesting

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-nesting

https://rq2e.com/rq02-nesting

332.3 Nesting elements
 For ease of use, you can often use the template name as your application name as
well. So, let’s say you want to start working on the next example in this book. The tem-
plate name is rq02-nesting, so let’s use that as the web app name as well:

$ npx create-react-app rq02-nesting --template rq02-nesting

Just type that in your console, and you’re already up and running and ready to tackle
the example to work on the problem along with us if you so desire. You can also just
read the chapter and view the code in the listings in the book. If you find some things
odd or need to get your fingers into the code to try some things out, you can then
instantiate the templates and see the examples in action. Now let’s get on with this
example, which seems to be about nesting something.

2.3 Nesting elements
Getting back to creating React applications, which is what we’ve set out to do in this
book, let’s start making things slightly more complex than that instructive but over-
simplified example we looked at in chapter 1. In that chapter, you learned how to
create a single React element. As a reminder, the method you use is React.create-
Element(). For example, you can create a link element like this:

const reactLinkElement = React.createElement("a",
 { href: "http:/ /react.dev" },
 "React Website"
)

This is fine as long as we’re creating just a single element. The problem is that every
website has more than one element; otherwise, how would you have any other infor-
mation than just a single paragraph?

 The solution to creating multi-element structures in a hierarchical manner is
nesting elements. In the previous chapter, you implemented your first React code by
creating a single React element and rendering it in the DOM with ReactDOM
.createRoot().render():

const title = React.createElement("h1", null, "Hello world!");
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(title);

It’s important to note that ReactDOM.createRoot().render() can only take a single
(root) React element as an argument, which is reactElement in this example. The
resulting application is shown in figure 2.3.

34 CHAPTER 2 Baby steps with React
When you check out template rq02-nesting, you’ll have the preceding application,
but this time using CRA instead of manually adding libraries and writing HTML as we
did in chapter 1.

 Remember that when you use createElement,
the third argument is the child of the element. In
this case, we just supply simple text as the child. But
that text is actually another element—at least in the
resulting DOM. In React, it doesn’t have a specific
element type, but it still functions as an element to
some extent. We can show this relationship in a very
simple diagram, as shown in figure 2.4.

Repository: rq02-nesting
This example can be seen in repository rq02-nesting. You can use that repository
by creating a new web app based on the associated template:

$ npx create-react-app rq02-nesting --template rq02-nesting

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-nesting

Figure 2.3 Your browser rendering a single heading element. We’ve opened the developer tools here to
show you the underlying HTML structure. Refer to your browser of choice for how to open developer tools,
but it’s likely that Ctrl-Alt-I/Cmd-Opt-I might do the trick.

<h1>

"Hello world!"

Figure 2.4 The gray node is a real
React element, whereas the white
element is just a text element.

https://rq2e.com/rq02-nesting

352.3 Nesting elements
2.3.1 Node hierarchy

Before we look at how we can create complex HTML structures, we need a bit of basic
terminology in place first. The HTML document is often represented as an upside-
down tree, as shown in figure 2.5. Nodes in a tree are commonly described in a family-
like fashion (parent, child, etc.).

The following terminology relates to the tree structure:

 Node—Any member in the tree is a node, including both HTML elements and
text nodes. All the boxes in figure 2.5 are nodes. The two bottommost boxes are
text nodes, and all the others are element nodes.

 Root—The first (topmost) node is the root of the tree. In figure 2.5, the <html>
node is the root node.

 Parent—The node directly above a given node is its parent. Every node in a tree
has only one parent. The node above that can be called the grandparent, and
so on. In figure 2.5, the parent node of the <body> is the <html> node. The root
node doesn’t have a parent, and it’s the only node in the tree without a parent.

 Child—Any node directly below a given node is a child of that node. A node can
have multiple children. The <section> node’s children are the <h1>, <p>, and
 nodes. Not all nodes have children. The element doesn’t have chil-
dren. Text nodes never have children.

 Sibling—Two nodes that have the same parent are considered sibling nodes.
The <p> node has two sibling nodes: the <h1> and nodes.

 Ascendants—The parent of a node, its parent, its parent’s parent, and so on—all
the way up to the root—are called the ascendants of a node. The <h1> node has
three ascendants: the <section>, <body>, and <html> nodes.

<html>

<head> <body>

<section> <footer>

<h1> <p>

......

...

"Welcome" "This ..."

Figure 2.5 The upside-down
tree structure of an HTML
document, with each node
related to the others in a
family role, such as parent,
child, and sibling

36 CHAPTER 2 Baby steps with React
 Descendants—The children of a node, all their children, all their children’s chil-
dren, and so on are called the descendants of a node. The <section> node has
five descendants: its three direct children as well as the two text nodes that are
the grandchildren of the first two children.

 Nesting—Nesting is the process of organizing nodes in a tree and deciding
which nodes will be the children of which other nodes, thus creating the docu-
ment tree. In figure 2.5, we’ve decided to nest the <h1>, <p>, and nodes
inside the <section> node.

2.3.2 Simple nesting

Let’s say you want to render the word world in italics in the string “Hello world!” but
still put all of it in an h1 element. As shown in figure 2.6, you create an em element
with the string "world" as a child and another h1 element with three children:

 String "Hello " (note the space at the end)
 em element from before
 String "!"

Using React.createElement, this becomes the following:

const world = React.createElement("em", null, "world");
const title = React.createElement(
 "h1", null, "Hello ", world, "!"
)

As you can see here, we’re passing five arguments to createElement now: first, the ele-
ment type, then the properties, and finally the children of the element. You can pass
as many arguments as children to an element as you need. You can also pass the child
elements as an array:

const title = React.createElement("h1", null, ["Hello ", world, "!"])

In this case, it doesn’t make sense to put the elements into an array before passing
them as an argument, but if we already had an array of elements, we could just pass

<h1>

"Hello "

"world"

"!"

Figure 2.6 The two React elements
and three text elements needed to
render our slightly emphasized
welcome message

createElement with
three arguments

createElement with five arguments,
the last three being its children

372.3 Nesting elements
that as an argument by itself. Putting this all together (without using an array), the
whole script becomes the following listing.

import React from "react";
import ReactDOM from "react-dom/client";
const world = React.createElement("em", null, "world");
const title = React.createElement("h1", null, "Hello ", world, "!");
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(title);

If we put this into action, we end up with our application looking like figure 2.7 in
the browser.

Listing 2.1 Emphatically greeting the world

Repository: rq02-nesting-italic
This example can be seen in repository rq02-nesting-italic. You can use that
repository by creating a new web app based on the associated template:

$ npx create-react-app rq02-nesting-italic --template rq02-nesting-italic

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-nesting-italic

Figure 2.7 Emphasized greeting in the browser. Notice the underlying HTML structure in the
developer tools.

https://rq2e.com/rq02-nesting-italic

38 CHAPTER 2 Baby steps with React
But what if you wanted to put an element after the h1 and not just inside it? We’ll cover
sibling elements in the next section.

2.3.3 Siblings

In many instances, you can only use a single React element at the top level. This goes
for the ReactDOM.createRoot().render() method—only a single element can be
rendered into the DOM as the root element. You’ll also see how custom components
can only return a single element a bit later.

 But what if you wanted to show a headline and then a link after it in our example
from before (see figure 2.8)? That would be two different elements next to each
other, and you can’t render that directly using ReactDOM.createRoot().render().

Instead, you have to wrap them in another element (something in place of the ? in fig-
ure 2.8). You have two different options here. One option is to use a neutral DOM ele-
ment, which is easy, but would add a “physical” element to the output HTML. The
alternative is to use a React Fragment element, which works like any other element,
but doesn’t result in any output HTML itself. See the difference between these
approaches in figure 2.9.

?

<h1>

"Hello world!"

<a>

"Read more" Figure 2.8 Two sibling React elements
to be rendered in the root

<div>
<h1>Hello world!</h1>
<a>Read more

</div>

<div>

<h1>

"Hello world!"

<a>

"Read more"

<Fragment>

<h1>

"Hello world!"

<a>

"Read more"

<h1>Hello world!</h1>
<a>Read more Figure 2.9 Two

different approaches
to sibling elements
with different outputs

392.3 Nesting elements
If you want to use a neutral DOM element, you can, for instance, use a <div> to group
them as shown in the next listing. This results in the HTML you see in figure 2.10.

import React from "react";
import ReactDOM from "react-dom/client";
const title = React.createElement("h1", null, "Hello world!");
const link = React.createElement("a", { href: "//react.dev" }, "Read more");
const group = React.createElement("div", null, title, link);
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(group);

Listing 2.2 Two elements in a grouping container

Repository: rq02-siblings-div
This example can be seen in repository rq02-siblings-div. You can use that
repository by creating a new web app based on the associated template:

$ npx create-react-app rq02-siblings-div --template rq02-siblings-div

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-siblings-div

Figure 2.10 Title and link in a grouping element

https://rq2e.com/rq02-siblings-div

40 CHAPTER 2 Baby steps with React
The <div> container is usually a good choice for block-level content, and is
used for inline-level content. But you don’t have to use a “real” element. You can also
create an empty React element, whose only purpose is to group multiple other ele-
ments and doesn’t output itself into the HTML on the page. This can be done with
the magical component called React.Fragment, and it can be used as the grouping
element type. Let’s do that in the next listing.

import React from "react";
import ReactDOM from "react-dom/client";
const title = React.createElement("h1", null, "Hello world!");
const link = React.createElement("a", { href: "//react.dev" }, "Read more");
const group = React.createElement(
 React.Fragment, null, title, link
);
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(group);

The output of this is shown in figure 2.11 in the browser.
 You can also render the whole element in a single statement as follows:

const group = React.createElement(
 React.Fragment,
 null,
 React.createElement(
 "h1",
 null,
 "Hello world!",
),
 React.createElement(
 "a",
 { href: "//react.dev" },
 "Read more",
),
);

Listing 2.3 Two elements in a fragment

Repository: rq02-siblings-fragment
This example can be seen in repository rq02-siblings-fragment. You can use that
repository by creating a new web app based on the associated template:

$ npx create-react-app rq02-siblings-frag --template rq02-siblings-fragment

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-siblings-fragment

Notice the use of
React.Fragment as the first
argument to createElement.

https://rq2e.com/rq02-siblings-fragment

412.3 Nesting elements
This is functionally equivalent to the previous code; it just uses less variables. Some
would argue it becomes more obvious, whereas others would say that it becomes less
readable.

 So far, you’ve mostly provided string values as the first parameter of create-
Element(). But the first parameter can have two types of input, as we just saw with the
fragments:

 Standard HTML tag as a string, for example, "h1", "div", or "p" (without the
angle brackets). The name is in lowercase.

 React component as a reference (not a string). The name is normally capitalized.

The first approach renders standard HTML elements. You can use any string as an
HTML tag name, regardless of whether it has a meaning in the browser by default. So,
while you’ll mostly be using normal HTML elements, such as div, main, section, and
so on, there is nothing stopping you from creating a tiny-horse element, which
would render as <tiny-horse> in the browser. It has no meaning and no default styl-
ing, but it would work.

 In the second approach just listed, we can supply a React component as a refer-
ence. By this, we don’t mean the name of a React component as a string, but a direct
reference to the component in question. You already saw one instance of that by using
React.Fragment. Now let’s look at how we can create our own custom components in
the next section.

Figure 2.11 Title and link without a grouping element

42 CHAPTER 2 Baby steps with React
2.4 Creating custom components
After nesting elements with React, you’ll soon stumble across the next problem:
there are a lot of elements with a lot of repetition. You need to use the component-
based architecture (CBA) described in chapter 1, which lets you reuse code by sep-
arating the functionality into loosely coupled parts: meet component classes, or
just components, as they’re often called for brevity (not to be confused with web
components).

 Think of standard HTML tags as building blocks. You can use them to compose
your own React components, which you can use to create custom elements (instances
of components). By using custom elements, you can encapsulate and abstract logic in
composable, reusable components. This abstraction allows teams to reuse user inter-
faces (UIs) in large, complex applications as well as in different projects. Examples
include panels, inputs, buttons, menus, and so on.

 For this example, we want to create three identical links. It doesn’t make a whole
lot of sense to create identical links, but, for now, we can’t customize them, so let’s just
go with this scenario. We want to create three links, that all say “Read more about
React” and link to the React website at www.react.dev. We also want to wrap each link
in a paragraph, so they go on separate lines.

 There are two different approaches to this. We can do it the naive way by having
three identical copies of elements, or we can do it the smart way by creating a reusable
link component and then instantiating it three times, as illustrated in figure 2.12.

 Let’s first look at the former approach, where we only use a single component with
the copies manually duplicated. We want three independent links inside independent
paragraphs, and we can do that in a fairly verbose way as in the following listing.

import React from "react";
import ReactDOM from "react-dom/client";
const link1 = React.createElement(
 "a", { href: "//react.dev" }, "Read more about React"
);
const p1 = React.createElement("p", null, link1);
const link2 = React.createElement(
 "a", { href: "//react.dev" }, "Read more about React"
);
const p2 = React.createElement("p", null, link2);
const link3 = React.createElement(
 "a", { href: "//react.dev" }, "Read more about React"
);
const p3 = React.createElement("p", null, link3);
const group = React.createElement(React.Fragment, null, p1, p2, p3);
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(group);

Listing 2.4 Three links, one time each

http://www.react.dev

432.4 Creating custom components
If we open this in the browser, we have the result shown in figure 2.13, which is exactly
what we wanted.

 But we’re repeating ourselves a lot in listing 2.4, which, of course, isn’t desirable.
The whole point of React and similar frameworks is to stop repeating ourselves at all.
This calls for a custom component!

 A custom component is a named object that contains other elements and com-
ponent instances. So, in this case, we could create a single Link component that
would render the link that we need in the correct way, and then we would include
three instances of the Link component rather than the “raw” <p> and <a> elements
with all their properties.

 You create a React component class by extending the React.Component class with
class CHILD extends PARENT ES6 syntax. Let’s create a custom Link component class
using class Link extends React.Component.

 The one mandatory thing you must implement for this new class is the render()
method. This method must return a single root element created using createElement(),

Parent element

p element

"Read
more
about
React"

a element

p element

"Read
more
about
React"

a element

p element

"Read
more
about
React"

a element

Parent element

Link
element

Link
element

Link
element

p element

"Read
more
about
React"

a element

Root component Root component

Link component

Single-component approach Multicomponent approach

Figure 2.12 Two approaches to creating duplicate elements

44 CHAPTER 2 Baby steps with React
which is created from another custom component class or an HTML tag. Either can have
nested elements if you so desire as long as there is only one root element.

import React from "react";
import ReactDOM from "react-dom/client";
class Link extends React.Component {
 render() {
 return React.createElement(
 "p",
 null,
 React.createElement(
 "a",
 { href: "//react.dev" },
 "Read more about React"
)
);
 }
}
const link1 = React.createElement(Link);
const link2 = React.createElement(Link);
const link3 = React.createElement(Link);
const group = React.createElement(
 React.Fragment, null, link1, link2, link3
);

Listing 2.5 Creating and rendering a React component class

Figure 2.13 Three identical links in our application

Defines a React component
class with the capitalized
name Link

Creates a render() method
as an expression (function
returning a single element)

Returns a new element with
whatever we need for this
component

Creates an instance
of the new Link
component

452.5 Working with properties
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(group);

By convention, the names of variables containing React components are capitalized.
This isn’t required in regular JavaScript. You could use the lowercase class name some-
Link in the preceding code instead of Link, and it would still work. But because it’s
necessary for JSX (which we’ll cover in the next chapter), we apply this convention
here as well.

 Analogous to ReactDOM.createRoot().render(), the render() method in a class
component can only return a single element. If you need to return multiple same-
level elements, wrap them in a container component—either an HTML element or a
React fragment. If we now run this code in the browser, we get the exact same HTML
as before (refer to figure 2.13).

 This new code is much more compact. Unnecessary repetition is removed, and
we’ve compartmentalized a part of the code that can be reused as much as we want.
This is the power of component reusability! It leads to faster development and fewer
bugs. Components also have properties, life cycle events, states, DOM events, and
other features that let you make them interactive and self-contained; these topics are
all covered in the following chapters.

 Right now, the links are all the same. Wouldn’t it be awesome if you could set ele-
ment attributes and modify their content and/or behavior individually? You can do
just that with properties, as we’ll discuss next.

2.5 Working with properties
Properties are a cornerstone of the declarative style that React uses. Think of proper-
ties as unchangeable values within an element. They allow elements to have different
variations if used in a view, such as changing a link URL by passing a new value for
a property:

React.createElement("a", { href: "//react.dev" }, "React");

One thing to remember is that properties are immutable within their components. A
parent assigns properties to its children upon their creation. The child element isn’t

Repository: rq02-custom-links
This example can be seen in repository rq02-custom-links. You can use that repos-
itory by creating a new web app based on the associated template:

$ npx create-react-app rq02-custom-links --template rq02-custom-links

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-custom-links

https://rq2e.com/rq02-custom-links

46 CHAPTER 2 Baby steps with React
supposed to modify its properties. For instance, you can pass property PROPERTY_NAME
with value VALUE to a component of type Link, like this:

React.createElement(Link, { PROPERTY_NAME: VALUE });

Properties closely resemble HTML attributes (as shown with the href in the link of
the snippet at the beginning of this section). This is one of their purposes, but they
also have another—you can use the properties of an element in your code as you wish
for the following:

 To render standard HTML attributes of an element: href, title, style, class,
and so on

 As custom instructions for components to make them render individually

The object of properties can be accessed inside a component using this.props. This
object is a frozen (immutable) object, from which you can only read values, not set them.

2.5.1 A single property

Let’s start with a very simple example. We want the name of the framework in the links
we created before to be customized. So, we can say “Read more about React” in one
link, “Read more about Vue” in the second, and “Read more about Angular” in the
third, as shown in figure 2.14.

 To do this, we need to do two things:

1 Pass a property to our component instances.
2 Use the property inside the component.

First, we need to pass a new property to the link instances. So, rather than just using

const link1 = React.createElement(Link);

Frozen objects in JavaScript
Internally, React uses Object.freeze(), which is a built-in function in JavaScript to
make the this.props object immutable. To check whether an object is frozen, you
can use the Object.isFrozen() method. For example, you can determine whether
this statement will return true:

class Test extends React.Component {
 render() {
 console.log(Object.isFrozen(this.props))
 return React.createElement("div")
 }
}

The details of this are pretty complex, but for now, just know that you should never
try to edit or add properties inside a component itself. That is something you do in
the parent context.

472.5 Working with properties
we’ll instead be supplying an object as the second argument with a single property:

const link1 = React.createElement(Link, { framework: "React" });

We used the variable name framework here. That is an arbitrary choice that we get to
make as the component creator. We just need to make sure to use the same variable
name in the second step.

 We now need to use this passed property inside our class. Given that we called the
variable framework, we’ll access it through this.props.framework. The following list-
ing shows the overall code result.

import React from "react";
import ReactDOM from "react-dom/client";
class Link extends React.Component {
 render() {
 return React.createElement(
 "p",
 null,
 React.createElement(
 "a",
 { href: "//react.dev" },
 `Read more about ${this.props.framework}`,
),
);
 }

Listing 2.6 Link instances with different text

Fragment element

Link
element

Link
element

Link
element

p element

"Read more about

a element

Root component Link component

framework

framework

framework "Vue"

"Angular"

"

framework"React"

Figure 2.14 Passing a property to components and using the property inside the component

We render the text
content of the link by
combining
this.props.framework
with some static
content. Note how
backticks are used to
compose a string with a
variable. This is a feature
of JavaScript, not React
in particular.

48 CHAPTER 2 Baby steps with React
}
const link1 = React.createElement(Link, {
 framework: "React"
});
const link2 = React.createElement(Link, {
 framework: "Vue"
});
const link3 = React.createElement(Link, {
 framework: "Angular"
});
const group = React.createElement(
 React.Fragment, null, link1, link2, link3
);
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(group);

You can see this in action in the browser in figure 2.15.

2.5.2 Multiple properties

You may have noticed that all the links still point to the same URL, which is the React
website. That’s no good, of course, because we need the URLs to be different. Using
the same approach, we simply invent a new property, url, and use it inside the compo-
nent as well as in the component instances. You can see that illustrated in the diagram
in figure 2.16 and implemented in the code in listing 2.7.

The first instance of our link
component uses "React" as the
framework property.

The second instance of our link
component uses "Vue" as the
framework property.

The third instance of our link
component uses "Angular" as
the framework property.

Figure 2.15 Three links with different text, each inside a paragraph

492.5 Working with properties
import React from "react";
import ReactDOM from "react-dom/client";
class Link extends React.Component {
 render() {
 const link = React.createElement(
 "a",
 { href: this.props.url },
 `Read more about ${this.props.framework}`
);
 return React.createElement("p", null, link);
 }
}
const link1 = React.createElement(Link, {
 framework: "React",
 url: "//react.dev",
});
const link2 = React.createElement(Link, {
 framework: "Vue",
 url: "//vuejs.org",
});
const link3 = React.createElement(Link, {
 framework: "Angular",
 url: "//angular.io",
});
const group = React.createElement(
 React.Fragment, null, link1, link2, link3
);

Listing 2.7 Link instances with different text and URLs

Fragment element

Link
element

Link
element

Link
element

p element

"Read more about

a element

Root component Link component

framework "Vue"

framework

url "//vuejs.org"

framework "React"

url "//react.dev"

framework "Angular"

url "//angular.io"

href url

"

Figure 2.16 Two different properties are passed to our components.

Using the url property to
set the href property on
the <a> element

The URL for React is
https://react.dev.

The URL for Vue is
https://vuejs.org.

The URL for Angular
is https://angular.io.

https://react.dev
https://vuejs.org
https://angular.io

50 CHAPTER 2 Baby steps with React
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(group);

You can see this in action in the browser in figure 2.17. As you can see, we can use
properties on both custom components (which are used inside the component to cus-
tomize the returned structure) and HTML elements (which set HTML attributes).

What happens if you mess up and set a custom property on an HTML element? React
will render it anyway. Before React 16, invalid properties would be filtered out, but
because modern web applications often use other third-party libraries that might rely
on some custom properties, React 16 and onward will allow you to use whichever
properties you choose.

Repository: rq02-link-props
This example can be seen in repository rq02-link-props. You can use that reposi-
tory by creating a new web app based on the associated template:

$ npx create-react-app rq02-link-props --template rq02-link-props

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-link-props

Figure 2.17 Three links with different text and different URLs

https://rq2e.com/rq02-link-props

512.5 Working with properties
 You can completely modify the rendered elements based on the value of a prop-
erty. For example, we can examine the framework property and return a huge title
with a link in case the framework name is "React":

class Link extends React.Component {
 render() {
 const link = React.createElement(
 "a",
 { href: this.props.url },
 `Read more about ${this.props.framework}`,
);
 if (this.props.framework === "React") {
 return React.createElement("h1", null, link);
 }
 return React.createElement("p", null, link);
 }
}

This is also a great example of React elements being just plain old JavaScript. We can
create an element and store it in a variable, and then later use that variable as we see
fit. We can also create branching using regular JavaScript functionality. If we render
this new component in the browser, suddenly the links aren’t identical anymore, as
you can see in figure 2.18.

 We’ve now covered several permutations of some very simple HTML that’s almost
useless by itself. But by starting small, we’re building a solid foundation for future,

Creates a link
element and stores
it in a variable

Checks if the
framework
matches "React"

If it matches,
returns an h1
element with the
link insideOtherwise, returns a paragraph

element with the link inside

Figure 2.18 Three links are shown, but React stands out as a lot more important.

52 CHAPTER 2 Baby steps with React
more advanced topics. The truth is that you can achieve a lot of great things with cus-
tom components.

 It’s very important to know how React works in regular JavaScript if you (like many
React developers) plan to use JSX. This is because, in the end, browsers will still run
regular JavaScript, and you’ll need to understand the results of the JSX-to-JS transpil-
ing from time to time. Going forward, we’ll be using JSX, which is covered in the next
chapter. But before we get to that, we need to discuss a bit about the structure of a
React application.

2.5.3 The special property: children

React elements take a special property, children. This isn’t a property you specify in
the normal way, but you do use it as any other property.

 Let’s change our example a little bit and instead create a list of links where the text
is just the framework name without the text “Read more about” before it, as shown in
figure 2.19.

Now let’s take this one step further. Let’s say we want the framework for React to be
displayed in bold. We already know how to make a bold element—just wrap it in an
element as follows:

React.createElement("strong", null, "React");

But how are we going to pass that in as a property? We can do this by creating the
node for the React framework like this:

Fragment element

Link
element

Link
element

Link
element

p element

a element

Root component Link component

framework

framework "Vue"

url "//vuejs.org"

url url

href url

framework "Angular"

"//angular.io"

framework "React"

"//react.dev"

Figure 2.19 Our new structure with the links only containing the framework name

532.5 Working with properties

act
he
ed
const boldReact = React.createElement("strong", null, "React");
const link1 = React.createElement(
 Link,
 { framework: boldReact, url: "//react.dev" }
);

That’s a bit weird, though. We’re now creating elements, but passing them in as prop-
erties, which isn’t what we normally do. What if we instead could create an element
and pass it in as a child element?

 Remember how argument three and onward to React.createElement are the chil-
dren of the element? We haven’t used that for custom components, but we can. All the
nodes passed as the children to a custom element are accessible through this.props
.children. That property is either a single node (if only passed one child element) or
an array of nodes (if passed multiple child elements).

 So, let’s change our root component to contain three links, where link text isn’t
passed in as a property named framework, but rather as a child node. For the first link,
we still want to make the text bold, as shown in figure 2.20 and then implemented in
listing 2.8.

Creates a Re
element in t
variable nam
boldReact

Passes that variable
in as the property
framework on the
Link element

Fragment element

Link
element

Link
element

Link
element

p element

a element

Root component Link component

children

url "//vuejs.org"

href url

strong
element

"React"

"Vue" "Angular"

url "//react.dev" url "//angular.io"

Figure 2.20 The component tree when we pass the link text as a child node rather than as a regular
property

54 CHAPTER 2 Baby steps with React
import React from "react";
import ReactDOM from "react-dom/client";
class Link extends React.Component {
 render() {
 return React.createElement(
 "p",
 null,
 React.createElement(
 "a",
 { href: this.props.url },
 this.props.children
)
);
 }
}
const boldReact = React.createElement("strong", null, "React");
const link1 = React.createElement(
 Link,
 { url: "//react.dev" },
 boldReact
);
const link2 = React.createElement(
 Link,
 { url: "//vuejs.org" },
 "Vue"
);
const link3 = React.createElement(
 Link,
 { url: "//angular.io" },
 "Angular"
);
const group = React.createElement(
 React.Fragment, null, link1, link2, link3
);
const domElement = document.getElementById("root");
ReactDOM.createRoot(domElement).render(group);

Listing 2.8 Links with text as child nodes

Repository: rq02-links-children
This example can be seen in repository rq02-links-children. You can use that
repository by creating a new web app based on the associated template:

$ npx create-react-app rq02-links-children --template rq02-links-children

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-links-children

Note how we use the
property named children
just as if it was any other
property.

We now only pass a single named property to
each custom component, the url property. But
now we also pass a child node, which will
become the children property. For React, it’s a
nested element.

We now only pass a single
named property to each custom
component, the url property. For
Vue and Angular, the child node
is just a regular text node.

https://rq2e.com/rq02-links-children

552.6 Application structure
If you run this in the browser, you get the output displayed in figure 2.21. The distinc-
tion between using a normal property and the children property might seem insignif-
icant at this point, but in the next chapter, when we start using JSX, you’ll see how it
starts to make a lot of sense when used correctly.

2.6 Application structure
From the next chapter on, we’re going to structure our applications in the same orga-
nized way with similar patterns for easy recognition. We’ll also follow the standard
structure that the default CRA template provides.

 In the previous examples in this chapter, we put our application directly into the
index.js file inside the source folder. From now on, we’re going to use a custom App
component as the root element of our applications, and we’ll render that as the single
child to the browser. This means that we won’t have to touch src/index.js again at
all. It will remain the same file for all future applications going forward that use CRA.

 For this purpose, we’ll rewrite our application with three links from before as two
new components. One is the root App and the other is the Link component. We’ll use
the latter three times in the former. Finally, we’ll destructure some properties from
the React namespace to shorten our component definition slightly. We’ll place all this
in src/App.js. See figure 2.22 and listing 2.9.

Figure 2.21 Our link components using children properties where the first link is set in bold

56 CHAPTER 2 Baby steps with React
import React, { Fragment, Component } from "react";
class Link extends Component {
 render() {
 return React.createElement(
 "p",
 null,
 React.createElement(
 "a",
 { href: this.props.url },
 `Read more about ${this.props.framework}`
)
);
 }
}

Listing 2.9 Application that goes in src/App.js

App.js

Fragment element

Link
element

p element

"Read more
about

"

a element

App component Link component

framework "Vue"

framework

url "//vuejs.org"

url

href url

index.js

App element

Root component

Link
element

Link
element

framework "React"

"//react.dev"

framework "Angular"

url "//angular.io"

Figure 2.22 Our new file structure with our two components inside the App.js file

Destructures the
import of React to
directly reference
Fragment and
Component

The Link component
exactly as in the
previous listing

572.6 Application structure
class App extends Component {
 render() {
 const link1 = React.createElement(Link, {
 framework: "React",
 url: "//react.dev",
 });
 const link2 = React.createElement(Link, {
 framework: "Vue",
 url: "//vuejs.org",
 });
 const link3 = React.createElement(Link, {
 framework: "Angular",
 url: "//angular.io",
 });
 return React.createElement(
 Fragment, null, link1, link2, link3
);
 }
}
export default App;

We then change src/index.js to import our App from App.js and render that into
the root DOM element, as shown in listing 2.10.

import React from "react";
import { createRoot } from "react-dom/client";
import App from "./App";
createRoot(document.getElementById("root"))
 .render(React.createElement(App));

This new src/index.js file is now basically complete. We don’t ever need to edit it
again; we only edit src/App.js to customize our future applications.

As our apps grow larger, we’ll grow out of including everything inside a single file in
src/App.js. When we need to grow, we can just create new files and import those as
needed. Although it’s customary to create a single file per component and name the

Listing 2.10 src/index.js

Repository: rq02-links-app
This example can be seen in repository rq02-links-app. You can use that reposi-
tory by creating a new web app based on the associated template:

$ npx create-react-app rq02-links-app --template rq02-links-app

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-links-app

A new App
component that
renders the root
of our application

The App component returns
a single element as all
components must.

In App.js, we export the App component as
the single accessible asset inside this file.

Imports our application
from App.js and stores it
in the local variable App

Creates a single root
element from the HTML
element with id="root"Renders the App component in that root

https://rq2e.com/rq02-links-app

58 CHAPTER 2 Baby steps with React
file after the component (including the uppercase first letter), it isn’t a strict rule. If a
component needs several other small components to function, you can freely decide
whether you want to put it all in one file, as we did with Link and App in listing 2.10, or
split it up into multiple files.

 Let’s see how we would create the same example with the App and Link compo-
nents in separate files. Please refer to the diagram in figure 2.23. We would also need
to update src/App.js to import the Link component from src/Link.js, as shown in
listing 2.11.

import React, { Fragment, Component } from "react";
import Link from "./Link";

Listing 2.11 One component per file: src/App.js

Link.jsApp.js

Fragment element

Link
element

Link
element

Link
element

p element

"Read more
about

"

a element

App component Link component

framework "Vue"

framework

url "//vuejs.org"

url url

href url

index.js

App element

Root component

framework "React"

"//react.dev"

framework "Angular"

"//angular.io"

Figure 2.23 Using one file per component, our file structure looks like this.

Imports the Link component
from another file

592.6 Application structure
class App extends Component {
 render() {
 const link1 = React.createElement(Link, {
 framework: "React",
 url: "//react.dev",
 });
 const link2 = React.createElement(Link, {
 framework: "Vue",
 url: "//vuejs.org",
 });
 const link3 = React.createElement(Link, {
 framework: "Angular",
 url: "//angular.io",
 });
 return React.createElement(Fragment, null, link1, link2, link3);
 }
}
export default App;

Then, we must create the new src/Link.js with only the Link component and
remember to export that at the end.

import React, { Component } from "react";
class Link extends Component {
 render() {
 return React.createElement(
 "p",
 null,
 React.createElement(
 "a",
 { href: this.props.url },
 `Read more about ${this.props.framework}`
)
);
 }
}
export default Link;

Listing 2.12 One component per file: src/Link.js

Repository: rq02-links-app-alt
This example can be seen in repository rq02-links-app-alt. You can use that
repository by creating a new web app based on the associated template:

$ npx create-react-app rq02-links-app-alt --template rq02-links-app-alt

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq02-links-app-alt

The Link component
definition is now
alone in this file.

Remember to export
the component at
the end.

https://rq2e.com/rq02-links-app-alt

60 CHAPTER 2 Baby steps with React
We’ll be using both approaches throughout the book. In many of the upcoming chap-
ters, our applications will be small and compact, so we’ll put everything inside
src/App.js. But in later chapters, our applications grow larger, and we’ll outgrow a
single file. We’ll also be creating files for other things than components. It could be
files for commonly used functions or other shared functionality that we want to use in
many files. We’ll also be using separate files for custom hooks when we get to that
topic in chapter 10.

 When projects grow even larger, folder structures are introduced. There are no
defined standards for how to use folders to structure a React project, so teams often
come up with their own best practices.

2.7 Quiz
1 A custom React component can be created with which of the following

statements?

a const Name = React.createComponent()
b class Name extends React.Component
c const Name = React.createElement()
d class Name extends React.Class

2 The only mandatory member of a React component is which of the following?

a function

b return

c name

d render

e class

3 To access the url property inside a component, you use which of the following?

a this.properties.url

b this.data.url

c this.props.url

d url

4 React properties are immutable inside the component itself. True or false?
5 React components allow developers to create reusable UIs. True or false?

Quiz answers
1 class Name extends React.Component. In addition, there’s no React.Class nor

React.createComponent, and React.createElement is used for creating com-
ponent instances, not component definitions.

2 render() is the only required method. In addition, function, return, and
class aren’t valid method names.

3 this.props.url is correct because only this.props returns the properties
object.

61Summary
4 True. It’s impossible to change a property inside the component itself.
5 True. Developers use components to create reusable UIs.

Summary
 You can create new React projects using the command-line program create-

react-app. This allows you to get up and running with a great starter pack of
valuable libraries in no time.

 New React projects can be created from a specified template, and all examples
in this book come with a template to allow you to see the example locally in
three short commands without having to locate or download anything directly.
We’ll also provide links to download the examples instead.

 You can nest React elements by putting nested createElement() calls inside
each other. You can compose sibling nodes by using third, fourth, and so on
arguments in createElement().

 You can create elements based on regular HTML node names by using the
HTML node name as the first argument to createElement().

 If you want to modify the resulting elements using properties, you can pass
these in as an object as the second argument to createElement().

 To use a CBA (one of the features of React), you create custom components.
Custom components can use properties internally through the this.props vari-
able. Child nodes are received as the specially named children property.

 Examples in this book will all follow a very simple file structure.

Introduction to JSX
JavaScript XML (JSX) is a syntax extension to JavaScript. It’s one of the things that
make React great, but it was also one of the more controversial elements of React
when it was introduced back in the day.

 This is an example of using JSX in JavaScript:

const link = React;

JSX is the element that appears between the angle brackets: <a href="//react
.dev">React. It’s not a string, not a template literal, and not HTML. It’s a
JavaScript object that is created with the syntax extension called JSX. It makes cre-
ating React elements much faster and more compact and makes reading React ele-
ments much easier. The latter advantage is at least as important as the former.

 JSX is made for developers only. By itself, it doesn’t do anything to make bet-
ter or faster web applications. JSX is converted to the same code you get when not
using JSX.

This chapter covers
 Understanding JSX and its benefits

 Using JSX to implement custom components
faster and easier

 React and JSX gotchas
62

633.1 Why do we use JSX?
 Although JSX isn’t a requirement, it’s universally accepted as the only way to write
React components. You may find a few teams out there not using JSX, but they are by
far the minority.

 In this chapter, we’ll dive a bit more into the reasons for using JSX in the first
place, then discuss all the different parts of applying JSX in practice, and, finally,
cover some tricks that you need to pay attention to when using JSX. Along the way,
we’ll also briefly discuss converting JSX to JavaScript, called transpiling, which you
may remember from chapter 2. Luckily, transpiling isn’t something you have to worry
too much about.

NOTE The source code for the examples in this chapter is available at
https://rq2e.com/ch03. But as you learned in chapter 2, you can instantiate
all the examples directly from the command line using a single command.

3.1 Why do we use JSX?
JSX is a JavaScript extension that provides syntactic sugar (i.e., making it easier to
type, but otherwise functionally equivalent) for function calls and object construction,
particularly a replacement for React.createElement(). It may look like a template
engine or HTML, but it isn’t. JSX produces React elements while allowing you to har-
ness the full power of JavaScript. JSX is a great way to write React components and
includes the following benefits:

 Improved developer experience—Code is easier to read because it’s more eloquent,
thanks to an XML-like syntax that’s better at representing nested declarative
structures.

 Better error messages—React assumes that you use JSX and reports helpful error
messages as if you are. If you’re not, the error messages will be somewhat mis-
leading by referring to a different syntax than you actually use.

 Faster code—When converting JSX to JavaScript, the transpiler optimizes the
code on the fly, making the resulting JavaScript execute faster than you could
normally type by hand.

 More productive team members—Casual developers (e.g., designers) can modify code
more easily because JSX looks like HTML, which is already familiar to them.

 Fewer syntax errors—Developers have less code to type, which means they make
fewer mistakes.

Although JSX isn’t required for React, it fits in nicely, and we highly recommended it,
as do React’s creators. You’ll have a hard time finding any team in the real world that
uses React without JSX. While we can’t say that all recent React projects in the world
use JSX, we’re pretty confident that almost all do.

3.1.1 Before and after JSX

To demonstrate the eloquence of JSX, this is the snippet required to create an ele-
ment with a few custom components followed by a link:

https://rq2e.com/ch03

64 CHAPTER 3 Introduction to JSX
const element = <main>
 <Title>Welcome</Title>
 <Carousel images={6} />
 Go to the blog
</main>;

That’s identical to the following snippet implemented without the benefit of JSX:

const element = React.createElement(
 'main',
 null,
 React.createElement(Title, null, 'Welcome'),
 React.createElement(Carousel, {images: 6}),
 React.createElement('a', {href: "/blog"}, 'Go to the blog'),
);

We can probably all agree that the JSX version is much easier to understand at a
glance. It looks like HTML, which is very easy to read, and it’s partially identical to the
HTML output that will be rendered, except for the custom components, of course.

3.1.2 Keeping HTML and JavaScript together

In essence, JSX is a small language with an XML-like syntax. It has changed the way
people write user interface (UI) components. Previously, developers wrote HTML—
and JavaScript code for controllers and views—in an MVC-like manner, jumping
between various files. That stemmed from the separation of concerns in the early
days. This approach served the web well when it consisted of static HTML, a little
CSS, and a tiny bit of JavaScript to make text blink.

 This is no longer the case; today, we build highly interactive UIs, and JavaScript
and HTML are tightly coupled to implement various pieces of functionality. This vio-
lates the principle of separation of concerns, which is a fundamental principle sought
after in most software development. This principle is about separating unrelated
items, but keeping related items together. If you seek to obey this principle, you
should break your code down in such a way that every bit in isolation performs one
and only one concern, and these “bits” can then be used in different connections. If
you split your template and your view logic, but they only work if combined, then you
have needlessly separated two items that belong together.

 React fixes this invalidated principle by bringing together the description of the UI
and the JavaScript logic; and with JSX, the code looks like HTML and is easier to read
and write. If for no other reason, we would use React and JSX for this new approach to
writing UIs.

 JSX is compiled by various transformers (tools) into standard ECMAScript (see fig-
ure 3.1). You probably know that JavaScript is ECMAScript too, but JSX isn’t part of
the specification and doesn’t have any defined semantics. That means that if you try
to compile JavaScript with embedded JSX in a normal JavaScript compiler without

653.1 Why do we use JSX?
transpiling the JSX first, you’ll get errors. JSX isn’t valid JavaScript on its own and
can’t be compiled directly by a JavaScript compiler.

NOTE We call it transpiling rather than compiling because we translate it from
one source language (JSX) into another source language (JavaScript). The
resulting JavaScript will then, in turn, be interpreted by a “real” compiler that
runs the code. Transpiling is merely converting syntax rather than interpret-
ing the code.

When your browser executes your React application, your browser will only see the
React.createElement statements required to generate the structure that you need.
It’s only in the editor that the JSX exists. The transpiler converts your files with JSX in
them to pure JavaScript with React.createElement()s all over the place to save you
the trouble.

 You may wonder why you should bother with JSX at all. Considering how counter-
intuitive JSX code looks to begin with for new developers, it’s no surprise that a few
developers are turned off by this amazing technology. As an example, this bit of Java-
Script has JSX in the middle of it, mixing in angle brackets where they normally would
never exist:

const title = <h1>Hello</h1>;

But what makes JSX amazing are the shortcuts to React.createElement(NAME, ...).
Instead of writing that function call over and over, you can instead use <NAME />. And
as mentioned earlier, the less you type, the fewer mistakes you make. With JSX, devel-
oper experience is the primary concern, that is, making it easier for developers to cre-
ate components and applications faster and with fewer errors.

 The main reason to use JSX is that many people find code with angle brackets (<>)
easier to read than code with a lot of React.createElement() statements. Once you
get into the habit of thinking about <NAME /> not as XML but as an alias to JavaScript
code, you’ll get over the perceived weirdness of JSX syntax. Knowing and using JSX can
make a big difference when you’re developing React components and, subsequently,
React-powered applications.

 As mentioned earlier, JSX needs to be transpiled into regular JavaScript before
browsers can execute the code. In most setups, you’ll never have to worry about this,

2. Transpiler 3. JavaScript 4. Browser1. JSX

Figure 3.1 JSX is transpiled into regular JavaScript.

66 CHAPTER 3 Introduction to JSX
but we’ll discuss some transpilers in section 3.3 if you need to do it on your own. For
now, we’ll dig in to fully understand JSX.

3.2 Understanding JSX
Let’s explore how to work with JSX. You can read this section and keep it bookmarked
for your reference, or (if you prefer to have some of the code examples running on
your computer) start working on the examples using the create-react-app (CRA)
templates listed throughout. With CRA, you get JSX transpiling “for free,” so you don’t
have to worry about setting it up yourself.

3.2.1 Creating elements with JSX

Creating React elements with JSX is straightforward. See table 3.1 for some examples
of the JavaScript that you’ve previously used and its JSX equivalent.

In the JSX code, the attributes and their values (e.g., size={6}) come from the sec-
ond argument of createElement(). We’ll focus on working with properties later in
this chapter.

Table 3.1 JavaScript code versus JSX

JavaScript JSX equivalent

React.createElement('h1') <h1 />

React.createElement(
 'h1',
 null,
 'Welcome',
);

<h1>
 Welcome
</h1>

React.createElement(
 Title,
 null,
 'Welcome',
);

<Title>
 Welcome
</Title>

React.createElement(
 Title,
 {size: 6},
 'Welcome'
);

<Title size="6">
 Welcome
</Title>

React.createElement(
 Title,
 {size: 6},
 'Welcome to ',
 React.createElement(
 'strong',
 null,
 'Narnia',
),
);

<Title size="6">
 Welcome to
 Narnia
</Title>

673.2 Understanding JSX
 For now, let’s look at an example of JSX elements without properties. Here is one
of our early examples from the previous chapter, upgraded to the recommended
structure using a custom App component. It’s just an h1 element with the text “Hello
world!” where the word “world” is set as italic, as shown next.

import React, { Component } from 'react';
class App extends Component {
 render() {
 return React.createElement(
 'h1',
 null,
 'Hello ',
 React.createElement('em', null, 'world'),
 '!',
);
 }
}
export default App;

Implementing this with JSX is so much simpler.

import React, { Component } from 'react';
class App extends Component {
 render() {
 return <h1>Hello World!</h1>;
 }
}
export default App;

You can even store objects created with JSX syntax in variables because JSX is just a
syntactic improvement of React.createElement(). This example stores the reference
to the generated element in a variable before returning it:

const title = <h1>Hello World!</h1>;
return title;

This is completely identical to line 4 in listing 3.2; it just uses an extra variable before
returning.

3.2.2 Using JSX with custom components

The previous example used the <h1> JSX tag, which is also a standard HTML tag name.
When working with custom components, you apply the same syntax. The only differ-
ence is that the component class name must start with a capital letter, as in <Title />.

 Listing 3.3 shows a more advanced iteration of our three-link application from
chapter 2, rewritten in JSX. In this case, you create a new component class and use

Listing 3.1 Emphasized greeting without JSX

Listing 3.2 Emphasized greeting with JSX

68 CHAPTER 3 Introduction to JSX
JSX to create an element from it. Remember our Link example from the previous chap-
ter? The code looked like the following without JSX (converted to the recommended
App structure).

import React, { Component, Fragment } from 'react';
class Link extends Component {
 render() {
 return React.createElement(
 'p',
 null,
 React.createElement(
 'a',
 {href: '//react.dev'},
 'Read more about React',
),
);
 }
}
class App extends Component {
 render() {
 const link1 = React.createElement(Link);
 const link2 = React.createElement(Link);
 const link3 = React.createElement(Link);
 const group = React.createElement(Fragment, null, link1, link2, link3);
 return group;
 }
}
export default App;

Using JSX, this now becomes listing 3.4. If you run this in the browser, you get the exact
same result as we did in figure 2.13 in chapter 2, which we show again in figure 3.2.

import { Component, Fragment } from 'react';
class Link extends Component {
 render() {
 return (
 <p>
 Read more about React
 </p>
);
 }
}
class App extends Component {
 render() {
 return (
 <Fragment>
 <Link />
 <Link />
 <Link />

Listing 3.3 Three identical links without JSX

Listing 3.4 Three identical links with JSX

Creates a component named Link
that can later be instantiated by
using the JSX notation <Link />

Opening parenthesis that starts the
returned multiline JSX expression

React fragments are elements just like
any other and can be rendered using JSX.

Three identical
instances of the
Link component

693.2 Understanding JSX
 </Fragment>
);
 }
}
export default App;

3.2.3 Multiline JSX objects

You might have noticed the parentheses around the returned multiline JSX object in
listing 3.4. You have to include these parentheses if you start a multiline JSX object on
a separate line after, for example, a return. This is the way to create multiline JSX
objects when not starting on the same line:

Repository: rq03-jsx-links
This example can be seen in repository rq03-jsx-links. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq03-jsx-links --template rq03-jsx-links

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-jsx-links

Closing parenthesis that
completes the returned
multiline JSX expression

Figure 3.2 Three identical links in our application but now written using JSX

https://rq2e.com/rq03-jsx-links

70 CHAPTER 3 Introduction to JSX
return (
 <main>
 <h1>Hello world</h1>
 </main>
);

Alternatively, you can start your root element on the same line as return and avoid
the parentheses. For example, this is valid as well:

return <main>
 <h1>Hello world</h1>
</main>;

A downside of this second approach is the reduced visibility of the opening <main>
tag. It may be easy to miss in the code. The choice is up to you. We’ll exclusively use
the former style of using parentheses around multiline JSX content for consistency.

 Note that the exact same thing goes for any other use of multiline JSX objects, for
example, when you save them in a variable. We’ll also be using parentheses there:

const message = (
 <main>
 <h1>Hello world</h1>
 </main>
);

3.2.4 Outputting variables in JSX

When you compose components, you want them to be smart enough to change the
view based on some code. For example, it would be useful if a date component uses
the current date and time, and not just a hardcoded value.

 When working with JavaScript-only React, you have to use string template literals
(i.e., backticks) to mix strings with variables—or, even worse, concatenation. For
example, to use a variable in a string context in a DateTimeNow component without
JSX, you would write this code:

class DateTimeNow extends React.Component {
 render() {
 const dateTimeNow = new Date().toLocaleString()
 return React.createElement(
 'span',
 null,
 `Current date and time is ${dateTimeNow}.`
)
 }
}

In JSX, you can use curly brace {} notation to output variables dynamically, which
reduces code complexity substantially:

713.2 Understanding JSX
class DateTimeNow extends React.Component {
 render() {
 const dateTimeNow = new Date().toLocaleString()
 return Current date and time is {dateTimeNow}.
 }
}

If you reference a variable that is a React element (optionally created using JSX), you
can directly insert that other bit of JSX in the current context:

const now = <date>{dateTimeNow}</date>;
const message = <p>Today is {now}</p>;

This is equivalent to directly inserting the element:

const message = <p>Today is <date>{dateTimeNow}</date></p>;

The inserted variables can also be properties, not just locally defined variables:

<p>Hello {this.props.userName}, today is {dateTimeNow}.</p>

You can also invoke methods of your component that you create yourself. That is a
common practice to isolate bits of functionality, as shown in the next listing.

import { Component } from 'react';
class ButtonList extends Component {
 getButton(text) {
 return (
 <button disabled={this.props.disabled}>{text}</button>
);
 }
 render() {
 return (
 <aside>
 {this.getButton('Up')}
 {this.getButton('Down')}
 </aside>
);
 }
}

The example in listing 3.5 is overly simplified, of course, as most of the time, you
would probably be using an extra component for such a use case. However, there are
situations where component methods do come in handy. The purpose of this example
is to show that you can invoke component methods directly in JSX. For example, you
can execute arbitrary JavaScript expressions inside the curly braces, such as format-
ting a date directly:

<p>Today is {new Date(Date.now()).toLocaleTimeString()}.</p>

Listing 3.5 ButtonList using a method

Defines the getButton method that
takes an argument text, which will
be the label on the button

Our button depends on
another property passed

to our component.

Invokes our method to get a button
inserted with the proper text

72 CHAPTER 3 Introduction to JSX
Now let’s rewrite our emphasized greeting to store the italicized word in a variable
first, before outputting it, in the next listing. Then, we’ll move on to discuss how you
work with properties in JSX in the next section.

import { Component } from 'react';
class App extends Component {
 render() {
 const world = World;
 return <h1>Hello {world}!</h1>;
 }
}
export default App;

3.2.5 Working with properties in JSX

We touched on this topic earlier, when we introduced JSX. Element properties are
defined using attribute syntax. That is, you use key1=value1 key2=value2… notation
inside the JSX tag to define both HTML attributes and React component properties.
This is similar to attribute syntax in HTML/XML.

 In other words, if you need to pass properties, write them in JSX as you would in
normal HTML. You render standard HTML attributes by setting element properties
(discussed in section 2.3) on a React element with an HTML tag. For example, this
code sets a standard HTML attribute href for anchor element <a>:

return Let's do React!;

You use the exact same method to set properties on custom components. If we had
our Link component from the previous chapter, we could use it in JSX as follows:

return <Link url=”//react.dev” framework=”React” />;

Using hardcoded values for attributes isn’t all that flexible, of course. If you want to
reuse the Link component, then the href must change to reflect a different address
each time. This is called dynamically setting values versus hardcoding them. So, next,
we’ll go a step further and consider a component that can use dynamically generated
values for attributes. Those values can come from component properties (this.props).
After that, everything’s easy. All you need to do is use curly braces ({}) inside angle
braces (<>) to pass dynamic values of properties to elements.

 For example, suppose you’re building a component that will be used to link to
user accounts. You need some attributes on your <a> tag, but href and title must be
different for each component and not hardcoded. Let’s create a dynamic component
ProfileLink that renders a link with properties url and label for href and title,
respectively. You pass the properties to <a> using {}:

class ProfileLink extends React.Component {
 render() {

Listing 3.6 Emphasized greeting using JSX and a variable

733.2 Understanding JSX
 return (
 <a
 href={this.props.url}
 title={this.props.label}
 target="_blank">Profile

);
 }
}

Where do the property values come from? They’re defined when ProfileLink is cre-
ated—that is, in the component that creates ProfileLink, aka its parent. For exam-
ple, this is how the values for url and label are passed when a ProfileLink instance
is created, which results in rendering the <a> tag with those values:

<ProfileLink url="/users/johnny" label="Profile for Johnny" />

From the previous chapter, you’ll remember that when rendering standard elements
(<h>, <p>, <div>, <a>, etc.), React will render any and all properties even if they don’t
have any semantic meaning in HTML. That’s not specific for JSX, that’s just default
React behavior.

 If you have an object with properties that you want to render on an element, you
can render each of them one by one as follows:

return (
 <Post
 id={post.id}
 title={post.title}
 content={post.content}
 />
);

This works great and is a safe solution. However, if you have an object with values, and
you want to render all of them, you can do so using the spread operator as follows:

return <Post {...post} />;

Note that this will render every property of the post object, regardless of whether that
makes sense or not. Only use this process when you’re sure that the object only has
the properties that you need or at least sure that any excess properties are ignored.

 This will even allow you to render all the properties passed to a component to
another element inside that component by spreading this.props:

return <input value={this.value} {...this.props} />;

This is a bit dangerous though, as it allows the parent component to pass in arbitrary
values that would supersede any values that you passed to it. If this.props contained

74 CHAPTER 3 Introduction to JSX
a value property, it would override the value property that you set in the component
before the spread. Be extra careful when spreading objects and in particular when
spreading all props passed to a component. We’ll get back to the spreading operator
in the next chapter and cover some other common examples of its use.

THE SPECIAL PROPERTY: CHILDREN

If you think back to the previous chapter, we introduced the special property children,
which only looks like a property inside a custom component, not from the outside.
When using JSX, the children property becomes a lot neater to use. In the example
with child nodes in chapter 2, it looked like the tree structure shown in figure 3.3.

Let’s reimplement this one in JSX. We know all the things we need to do, so let’s go
ahead and do them.

import { Fragment, Component } from "react";
class Link extends Component {
 render() {
 return (

Listing 3.7 Link list with child nodes in JSX

Fragment
element

Link
element

Link
element

Link
element

p element

a element

App component Link component

children

url "//vuejs.org"

url "//angular.io"url "//react.dev"

href url

strong
element

"React"

"Vue" "Angular"

Figure 3.3 The component tree when we use child nodes as link content

753.2 Understanding JSX
 <p>

 {this.props.children}

 </p>
);
 }
}
class App extends Component {
 render() {
 return (
 <Fragment>
 <Link url="//react.dev">
 React
 </Link>
 <Link url="//vuejs.org">Vue</Link>
 <Link url="//angular.io">Angular</Link>
 </Fragment>
);
 }
}
export default App;

The difference between using properties and child nodes suddenly becomes a lot more
obvious. We could have passed the link content in as a property, but it would have looked
pretty bad. If we used the regular property approach, it would have looked like this:

<Link
 url="//react.dev"
 content={React}
/>

But when we use the children approach, it becomes

<Link url="//react.dev">
 React
</Link>

We definitely know what we prefer—the latter approach.

Repository: rq03-children
This example can be seen in repository rq03-children. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq03-children --template rq03-children

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-children

We still use the url property
as we did before and also
just use this.props.children
as if it was any other
property.

Note how elegantly these
child nodes are added in
JSX. It looks just like the
rest of the code.

https://rq2e.com/rq03-children

76 CHAPTER 3 Introduction to JSX
3.2.6 Branching in JSX

Branching is always important in coding. For example, if the user is logged in, show
their account information; otherwise, show a login form. Because JSX is just JavaScript,
we can basically use the exact same constructs that we do in regular coding to create
branching in our components. That being said, some patterns have emerged that most
developers follow about how to use branching in React components using JSX:

 Use early return for rendering nothing.
 Use the ternary operator for rendering alternative elements.
 Use the logical AND operator (&&) for rendering optional elements.
 Use object maps for rendering between many different elements.
 Use extra components for more complex branching.

We’ll go through each of these in the next subsections to explain how we use branch-
ing in JSX and custom React components.

USING EARLY RETURN FOR RENDERING NOTHING

Imagine you have a component that renders something relevant only when a certain
condition is true. For example, imagine a countdown component that renders a value
only when the number of remaining seconds is larger than 0.

 If a component doesn’t render anything, we can simply return null from the com-
ponent. However, to optimize our components, we try to do this as early as possible to
short-circuit the execution. The purpose is to branch out to the easiest case as quickly
as we can to avoid doing extra calculations or creating JSX objects where we don’t
need them.

 We could create our Countdown component like this:

class Countdown extends Component {
 render() {
 const seconds = this.props.remaining % 60;
 const minutes = Math.floor(this.props.remaining / 60);
 const message = <p>{minutes}:{seconds}</p>;
 if (seconds > 0 || minutes > 0) {
 return message;
 } else {
 return null;
 }
 }
}

There’s nothing inherently wrong with this—it works and it’s fully functional. But
you’ll see many developers use the approach of aborting early if the component ren-
ders nothing. We can detect this case of rendering nothing before calculating the
number of seconds and minutes and before creating the JSX object:

class Countdown extends Component {
 render() {
 if (this.props.remaining === 0) {

773.2 Understanding JSX
 return null;
 }
 const seconds = this.props.remaining % 60;
 const minutes = Math.floor(this.props.remaining / 60);
 return <p>{minutes}:{seconds}</p>;
 }
}

Here, we also use the fact that when we return from inside an if block, we don’t need
an else block. The else is implicit in that anything after the if block is only visited if
the condition failed.

USING TERNARY FOR ALTERNATIVES

Another very common case in React components is to render different elements
based on whether some condition is true or false. For instance, let’s imagine a shop-
ping cart in which we want to display the items if there are any items, but display a
message saying there are no items when no items are in the cart.

 We could do this in JSX by using a variable and assigning it different values via a
regular if/else statement block. However, that’s a bit lengthy, and it’s a lot more com-
mon in React to use the ternary operator. Where the if/else construct is a statement,
the ternary operator is an expression and can thus be used inline directly in JSX:

<p>User is {this.props.isOnline ? 'Online' : 'Offline'}</p>

Using this, we can create our shopping cart component from before:

class ShoppingCart extends Component {
 render() {
 return (
 <aside>
 <h1>Shopping cart</h1>
 {this.props.items.length === 0 ? (
 <p>Your cart is empty. Go buy something!</p>
) : (
 <CartItems items={this.props.items} />
)}
 </aside>
);
 }
}

USING LOGICAL OPERATORS FOR OPTIONAL RENDERING

Another common pattern is the need to optionally render an element if a condition is
true, but render nothing if not true. As an example, we want to display a little check-
mark next to a username if the user is a verified user, but nothing for the unverified
plebeians. We can do this using logical AND and the fact that logical operators short-
circuit by returning as soon as the truthiness of the entire expression is known. So,
when doing a && b, JavaScript returns a if a is falsy or b if a is truthy. If a is truthy, it

78 CHAPTER 3 Introduction to JSX
doesn’t matter what b is; it will be returned regardless. Combine this with the fact that
React renders false as the empty string (more on that later).

We can use this to render conditional elements, by making our logical AND operator
return false if the user isn’t verified, and a React element if the user is verified:

class UserName extends Component {
 render() {
 return (
 <p>
 {this.props.username}
 {this.props.isVerified && <Checkmark />}
 </p>
);
 }
}

You’ll encounter this pattern often in React components, so it’s a good one to know.

USING OBJECTS FOR SWITCHING

So far, we’ve dealt with the case of rendering either an element or nothing, or ren-
dering one element or another, but what if we want to render more than two types
of elements based on a condition? For this scenario, we want to render an icon
based on some blog post status. If the post is in the draft state, we render a draft
icon. If the post is in the published state, we render a published icon. And, if the
post is in any other state (which we happen to know to be just the deleted state), we
render a trash icon.

Truthiness
In JavaScript, a truthy value translates to true when evaluated as a Boolean. For
example, in an if statement

if (someVariable) {
 // this happens if and only if someVariable is truthy.
}

the value is truthy if it’s not falsy. That is literally the official definition, not kidding.
There are only six falsy values:

 false
 0
 "" (empty string)
 null
 Undefined
 NaN (not a number)

793.2 Understanding JSX
 Well, we could nest ternaries in order to first check if status === "draft"; then, if
not, check if status === "published"; and, if not, assume that it must be deleted:

class PostStatus extends Component {
 render() {
 return this.props.status === "draft" ?
 <DraftIcon /> :
 this.props.status === "published" ?
 <PublishedIcon /> :
 <TrashIcon />;
 }
}

This would work, but it’s not very pretty. Another alternative is to use a switch state-
ment and simply return the different values in each case. But a more declarative
approach here is to use an object with properties for the different cases resolving the
different outcomes:

const status2icon = {
 draft: <DraftIcon />,
 published: <PublishedIcon />,
 deleted: <TrashIcon />,
};
class PostStatus extends Component {
 render() {
 return status2icon[this.props.status];
 }
}

That’s rather short and neat, no? However, note that this doesn’t handle the situation
in which the status is none of those things. Before, the component would render the
trash icon if the status was neither draft nor published, but now, it will only render
the trash icon if the status is deleted.

 To handle the case when the status is any other unexpected value, we need to add
a logical OR at the end so that if the object indexing resolves to nothing, we still ren-
der an alternative. Let’s say we just render the trash icon in any unknown case:

class PostStatus extends Component {
 render() {
 return status2icon[this.props.status] || status2icon.deleted;
 }
}

This pattern is probably less common in React, but you’ll still see it for simple cases
like those we’ve discussed.

USING EXTRA COMPONENTS FOR COMPLEX BRANCHING

The preceding scenarios only cover some simple branching cases. What do you do if
your component has more complicated logic than that?

80 CHAPTER 3 Introduction to JSX
 Let’s say we have a shopping cart component like before with some buttons at the
bottom. We have to implement the following business logic as dictated by a customer:

 If the user is logged in, there will be just a Checkout button.
 If the user isn’t logged in, there will be a Login button as well as a Checkout as

Guest button.
 If any item is out of stock or if the cart is empty, the Checkout or the Checkout

as Guest button will be disabled.
 If the user is logged in but hasn’t added a credit card yet, show an Add Credit

Card button instead.
 If the user is logged in, has a credit card on file, and has entered an address,

show a One-Click Buy button next to the Checkout button. This button will be
disabled according to the same logic as the Checkout button.

Now, let’s implement all of this with the tricks that you’ve learned so far.

import { Component, Fragment } from "react";
class ShoppingCart extends Component {
 render() {
 const hasItems = this.props.items.length > 0;
 const isLoggedIn = this.props.user !== null;
 const hasCreditCard = isLoggedIn && this.props.user.creditcard !== null;
 const hasAddress = isLoggedIn && this.props.user.address !== null;
 const isAvailable = this.props.items.every((item) => !item.outOfStock);
 return isLoggedIn ? (
 hasCreditCard ? (
 <Fragment>
 <button disabled={!hasItems || !isAvailable}>
 Checkout
 </button>
 {hasAddress && (
 <button
 disabled={!hasItems || !isAvailable}
 >
 One-click buy
 </button>
)}
 </Fragment>
) : (
 <button>Add credit card</button>
)
) : (
 <Fragment>
 <button>Login</button>
 <button disabled={!hasItems || !isAvailable}>
 Checkout as guest
 </button>
 </Fragment>

Listing 3.8 Complex shopping cart

First
ternary

operator

Second
ternary

operator

Repeated logic
for disabled
button

Logical AND
to optionally

render a
button

813.2 Understanding JSX

o

);
 }
}
class App extends Component {
 render() {
 const items = [1, 2, 3];
 const user = { creditcard: null, address: true };
 return <ShoppingCart items={items} user={user} />;
 }
}
export default App;

Okay, that seems to cover everything. However, this is getting a bit complicated with
the nested conditionals and duplicated attributes. For such a complex case, it’s often a
good idea to split things into multiple components that deal with each of the different
cases one by one.

 Here, we can create new components <UserButtons /> and <GuestButtons />. At
the top level, we can select which of these components to use and then add the neces-
sary extra checks and conditionals inside each of these.

import { Component, Fragment } from "react";
class UserButtons extends Component {
 render() {
 const hasCreditCard = this.props.user.creditcard !== null;
 const hasAddress = this.props.user.address !== null;
 const disabled = !this.props.canCheckout;
 return hasCreditCard ? (
 <Fragment>
 <button disabled={disabled}>Checkout</button>
 {hasAddress && (
 <button disabled={disabled}>One-click buy</button>
)}
 </Fragment>
) : (
 <button>Add credit card</button>
);

Repository: rq03-cart-single
This example can be seen in repository rq03-cart-single. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq03-cart-single --template rq03-cart-single

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-cart-single

Listing 3.9 Simplified multicomponent shopping cart

Ternary
perators

Logical AND
for optional

rendering

https://rq2e.com/rq03-cart-single

82 CHAPTER 3 Introduction to JSX

o

 }
}
class GuestButtons extends Component {
 render() {
 return (
 <Fragment>
 <button>Login</button>
 <button disabled={!this.props.canCheckout}>
 Checkout as guest
 </button>
 </Fragment>
);
 }
}
class ShoppingCart extends Component {
 render() {
 const hasItems = this.props.items.length > 0;
 const isLoggedIn = this.props.user !== null;
 const isAvailable = this.props.items.every((item) => !item.outOfStock);
 const canCheckout = hasItems && isAvailable;
 return isLoggedIn ? (
 <UserButtons user={this.props.user} canCheckout={canCheckout} />
) : (
 <GuestButtons canCheckout={canCheckout} />
);
 }
}
class App extends Component {
 render() {
 const items = [1, 2, 3];
 const user = { creditcard: null, address: true };
 return <ShoppingCart items={items} user={user} />;
 }
}
export default App;

This works the same as before with exactly the same complexity, but each compo-
nent is much simpler, and you can easily understand each component on its own by

Repository: rq03-cart-multi
This example can be seen in repository rq03-cart-multi. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq03-cart-multi --template rq03-cart-multi

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-cart-multi

Ternary
perators

https://rq2e.com/rq03-cart-multi

833.2 Understanding JSX
reading through the code. You could even take it an extra step and split the <User-
Buttons> component into two for the “has credit card” and “doesn’t have credit card”
situations.

 We must, of course, acknowledge that more components means more code, and
more code means more memory and CPU usage (in general), so this latter example is
slightly more resource intensive than the former. In most applications, this difference
is negligible though, and code quality often trumps such minor optimizations.

3.2.7 Comments in JSX

Because JSX is written inside of JavaScript, you can use regular JavaScript comments
outside the JSX elements as normal:

// This is the page title
const title = <h1>Hello world!</h1>;

However, if you have very long segments of JSX code, you might want to add com-
ments inline inside the JSX. If you want to do that, you can’t always use a regular Java-
Script comment directly.

 To add JSX comments between tags, you can wrap standard JavaScript comments
using /**/ or // in {}, like this:

const content = (
 <div>
 {/* Just like a JS comment */}
 {/* It can also span
 multiple lines */}
 {// Single line comments are possible too
 }
 </div>
);

You can also use JavaScript comments directly using either /**/ or // inside tags:

const content = (
 <div>
 <input
 /* This element is
 rendered because... */
 name={this.props.name} // Some important comment here
 />
 </div>
);

Note that when you use a regular single-line comment between tags inside curly brack-
ets, you need to have a newline character before you end the curly brackets. The fol-
lowing code would fail:

84 CHAPTER 3 Introduction to JSX
const content = (
 <div>
 {// This does NOT work! }
 </div>
);

This would result in a compiler error because the ending curly bracket is considered
part of the comment, so the opening curly bracket doesn’t have a matching ending
bracket, which causes a parser error.

3.2.8 Lists of JSX objects

A common tactic in React elements is to map an array of elements to an array of JSX
objects to be returned in a component. Let’s say we want to create a component to
render a drop-down list. We want to pass the list of options in the drop-down as an
array of strings to a new <Select /> component. We want to be able to do the follow-
ing in our application:

class App extends Component {
 render() {
 const items = ['apples', 'pears', 'playstations'];
 return <Select items={items} />;
 }
}

Then our Select component should correctly render a <select> with <option> ele-
ments in HTML. How would we go about doing that? The naive way is to simply map
the elements from strings to JSX objects using declarative programming, as shown in
the next listing.

import { Component } from "react";
class App extends Component {
 render() {
 const items = ["apples", "pears", "playstations"];
 return <Select items={items} />;
 }
}
class Select extends Component {
 render() {
 return (
 <select>
 {this.props.items.map((item) => (
 <option>{item}</option>
))}
 </select>
);
 }
}
export default App;

Listing 3.10 Naive implementation of select

For every
element in the
items array

Returns a JSX
element

853.2 Understanding JSX
This is a pretty decent attempt at solving this. However, if we run this in the browser,
we’ll get a warning:

Warning: Each child in a list should have a unique "key" prop.

The application works, but we get this warning about a missing key property. The
usage of the key property is a bit advanced at this stage in our React learning, but
it’s used by React to track if the same element moves around in the rendered DOM.
If the same element moves around, React will reuse the same element, but if React
doesn’t know whether it’s the same element or not, React will delete all the old ele-
ments and recreate completely new elements every time the list renders.

 For the purposes of this example, we can just use the item value as the key prop-
erty on the root element returned inside the mapped array. This results in the code
shown in the next listing.

import { Component } from "react";
class App extends Component {
 render() {
 const items = ["apples", "pears", "playstations"];
 return <Select items={items} />;
 }
}
class Select extends Component {
 render() {
 return (
 <select>
 {this.props.items.map((item) => (
 <option key={item}>{item}</option>
))}
 </select>
);
 }
}
export default App;

Repository: rq03-naive-select
This example can be seen in repository rq03-naive-select. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq03-naive-select --template rq03-naive-select

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-naive-select

Listing 3.11 Correct implementation of select

We’ve added a
key property to the
<option> element.

https://rq2e.com/rq03-naive-select

86 CHAPTER 3 Introduction to JSX
This key property is an internal React property that will never be rendered to the
DOM. It’s recommended that the key property is some unique identifier for the ele-
ment in question and not just the index of the element in the array (if elements move
around in the array, the indexes change even though the elements don’t, so proper
element reuse is circumvented).

 Keys must be unique. If you render a list with non-unique keys, you’ll get a differ-
ent warning in the console about duplicate keys.

NOTE Keys are local to the individual array, so they only have to be unique
within each array, not between all arrays in your application or even your
component. Different arrays of JSX objects can have duplicate keys between
them as long as no single array has duplicate keys inside it.

As mentioned, this is a fairly complicated feature of React to understand at this point,
so, for now, just be aware that if you get a warning in the console about a missing key
property or duplicate keys, this is the reason.

3.2.9 Fragments in JSX

We’ve already covered JSX fragments a few times. They’re used to export multiple ele-
ments at the same level in a situation where only a single element is allowed. We’ve
previously done something like this to include both a heading and a link:

import { Fragment } from 'react';
...
return (
 <Fragment>
 <h1>Hello and welcome</h1>
 Go to the blog
 </Fragment>
);

However, from React 16.2 (and Babel 7) forward, a shorter syntax is also allowed. Now
you don’t even have to import the Fragment component:

return (
 <>

Repository: rq03-correct-select
This example can be seen in repository rq03-correct-select. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq03-correct-select --template rq03-correct-select

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-correct-select

https://rq2e.com/rq03-correct-select

873.2 Understanding JSX
 <h1>Hello and welcome</h1>
 Go to the blog
 </>
);

This new shorthand syntax uses a seemingly empty tag to render fragments. This syn-
tax with <></> can’t take any attributes or properties, however. The only property you
might want to apply to this would be key because you’re rendering a list of elements,
where each element has more than a single JSX element at the root.

 A classic scenario for this is a definition list. It’s defined in HTML like this:

<dl>
 <dt>Term A</dt>
 <dd>Description of Term A.</dd>
 <dt>Term B</dt>
 <dd>Description of Term B.</dd>
</dl>

As you can see, each entry requires two sibling elements in the list to render (<dt>
and <dd>).

 For example, if we create an application to render three dog breeds with a little
description about each, we need to map our dog breed names and definitions to two
elements. We do that by wrapping them in a fragment, but because we need the frag-
ment to have a key property, we have to use the literal Fragment component and,
unfortunately, can’t use the shorthand syntax mentioned previously. Let’s implement
this in the following listing.

import { Component, Fragment } from "react";
class App extends Component {
 render() {
 const list = [
 { breed: "Chihuahua", description: "Small breed of dog." },
 { breed: "Corgi", description: "Cute breed of dog." },
 { breed: "Cumberland Sheepdog", description: "Extinct breed of dog."},
];
 return <Breeds list={list} />;
 }
}
class Breeds extends Component {
 render() {
 return (
 <dl>
 {this.props.list.map(
 ({ breed, description }) => (
 <Fragment key={breed}>
 <dt>{breed}</dt>
 <dd>{description}</dd>
 </Fragment>
)

Listing 3.12 Definition list of dog breeds

Uses destructuring to easily
access the properties of
the list item

Because we need a key property, we have
to use the proper Fragment component.
Note that we just use the breed as the
key, as that uniquely identifies each
element in the array.

88 CHAPTER 3 Introduction to JSX
)}
 </dl>
);
 }
}
export default App;

If we run this in the browser, we get a nice definition list exactly as we wanted to, as
you can see in figure 3.4. Using fragments with keys isn’t as much of an edge case as it
might seem, so this is very useful to know already at this stage.

You’ve now had a taste of JSX and its benefits. The rest of this chapter is dedicated to
JSX tools and potential traps to avoid—that’s right: tools and gotchas.

 Before we can continue, you must understand that for any JSX project to function
properly, JSX needs to be compiled. Browsers can’t run JSX directly—they can run
only JavaScript—so you need to take the JSX and transpile it to normal JavaScript
(refer to figure 3.1). Fortunately, that task is a lot less complicated than it sounds.

Repository: rq03-dog-breeds
This example can be seen in repository rq03-dog-breeds. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq03-dog-breeds --template rq03-dog-breeds

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-dog-breeds

Figure 3.4 A definition list
of a curated subset of dog
breeds and their primary
description

https://rq2e.com/rq03-dog-breeds

893.4 React and JSX gotchas
3.3 How to transpile JSX
For all the projects and examples in this book, you don’t need to set up your own
transpiler (or most other things in your technology stack). The same is true for most
projects you’ll encounter out in the wild, because existing projects already have a
working pipeline, and new projects can be based on the best practice documentation
provided by whatever framework you desire to work with.

 However, if you want to set up a React project from scratch, you can, and that
would include setting up a JSX transpiler. The most popular tool out there to do JSX
transpiling is Babel, but there are alternatives you might want to look at as well. Some
of the alternatives can be part of a larger package of build tools that make your whole
setup easier to maintain or simply be drop-in replacements for Babel. Alternatives
include SWC, Sucrase, and esbuild. Please consult their various documentation for
details on how to use them:

 Babel: https://babeljs.io/
 SWC: https://swc.rs/
 Sucrase: https://sucrase.io/
 esbuild: https://esbuild.github.io/

We strongly recommend that you don’t spend too much time creating a JSX transpiler
setup yourself. The good folks at React have created CRA for us, which will serve
almost all our needs in this book. You might want to look into custom setups in your
own projects, but for this book, you’ll be covered by the setups provided by our selec-
tion of great tools.

3.4 React and JSX gotchas
This section covers some edge cases and oddities that you should be aware of when
you use JSX:

 Self-closing tags are required for leaf nodes.
 Special characters are written literally.
 String conversion is a bit peculiar.
 The style attribute is an object.
 Some attributes have reserved names and must be renamed.
 Multiword attributes are in camelCase.
 Boolean attributes are handled differently than in HTML.
 Some whitespace is collapsed (but not all).
 You can add data- attributes where desired.

https://babeljs.io/
https://swc.rs/
https://sucrase.io/
https://esbuild.github.io/

90 CHAPTER 3 Introduction to JSX
3.4.1 Self-closing elements

JSX requires you to have a closing slash (/) either in the closing tag or, if you don’t
have any children, at the end of that single tag. For example, this is correct:

React

The following is not correct, because both nodes are missing an end tag:

React

You might know that HTML is more fault tolerant. Browsers will ignore the missing
slash or end element and render the element just fine without it. Go ahead: try to cre-
ate an HTML file with just <button>Press me and see for yourself that this renders the
button just fine!

3.4.2 Special characters

HTML entities are codes that display special characters such as copyright symbols, em
dashes, quotation marks, and so on. Here are some examples:

©
—
“

You can render those codes as any string in text content inside a node or as an attri-
bute to a node. For example, this is static JSX (text defined in code without variables
or properties):

©—“
<input value="©—“"/>

But if you want to dynamically output HTML entities (from a variable or a property),
all you’ll get is the direct output (i.e., ©—“), not the special charac-
ters. Thus, the following code won’t work:

// Anti-pattern. Will NOT work!
const specialChars = '©—“'
{specialChars}
<input value={specialChars}/>

React/JSX will auto-escape the dangerous HTML, which is convenient in terms of
security (security by default rocks!). To output special characters, you need to use one
of these approaches:

 Copy the special character directly into your source code. Just make sure you
use a UTF-8 character set. This is the recommended method to deal with spe-
cial characters.

913.4 React and JSX gotchas
 Escape the special character with \u, and use its Unicode number (use a web-
site such as fileformat.info to look it up).

 Convert from a character code to a character number with String.fromChar-
Code(charCodeNumber).

 Use the special property dangerouslySetInnerHTML to set the inner HTML
(this is dangerous and not recommended).

To illustrate the last approach (as a last resort—when all else fails on the Titanic, run
for the boats!), look at this code:

const specialChars = '©—“';

Obviously, the React team has a sense of humor to name a property dangerouslySet-
InnerHTML.

3.4.3 String conversion

When React outputs the value of your variable (or your expression in general), what is
it rendered as? It can only render as one of two things: either a string, which becomes
the string content between elements, or an element, which then just becomes an ele-
ment as if it was rendered directly. But how are “things” converted to a string, if
they’re not an element? Well, React is a bit peculiar here as it depends on the type of
the expression that you’re rendering. Take a look at table 3.2 to understand the possi-
bilities for the different primitive values in JavaScript.

Table 3.2 React rendering different types

Type Output

"string" "string"

"" ""

3.4 "3.4"

0 "0"

NaN "NaN"

Number.POSITIVE_INFINITY "Infinity"

Number.NEGATIVE_INFINITY "-Infinity"

true "true"

false ""

undefined ""

null ""

http://fileformat.info

92 CHAPTER 3 Introduction to JSX
There are a few surprises there. Most importantly, false becomes the empty string,
but true becomes "true". So, four of the falsy values (empty string, false, null, and
undefined) all become the empty string.

 But what about 0, which is also falsy? Well, it becomes 0. It would be weird if you
couldn’t render a 0 in your components, so that’s kind of necessary. Finally, NaN is also
just "NaN", and not the empty string. This is generally to help you debug your calcula-
tions better—if you see a NaN, you know you made an error somewhere, but if you just
see nothing, you might not find it as quickly.

 This fact—that false renders nothing, but 0 renders something—especially mat-
ters when using logical AND to render optional elements as we discussed earlier. You
might be used to doing things like this in JavaScript:

if (items.length) {
 hasItems = true;
}

Here, we just use items.length as the condition for our if statement because we know
that 0 is falsy anyway, so we don’t have to say items.length > 0—the truthiness of the
statement is the same.

 You shouldn’t do that in JSX though. Let’s say you want to render a Checkout but-
ton in your shopping cart if it contains at least one item, but you want to render noth-
ing when there are no items in the cart:

class ShoppingCart extends Component {
 render() {
 return (
 <aside>
 <h1>Shopping cart</h1>
 <CartItems items={this.props.items} />
 {this.props.items.length && (
 <button>Checkout</button>
)}
 </aside>
);
 }
}

This works as long as there are more than 0 items in the cart. But what happens when
there are 0 items? The logical AND expression highlighted in the annotation short-
circuits and returns the first falsy value as it is. In addition, because the length of the
array is 0, the resulting value of the expression is suddenly 0, which renders as "0" in
the document, as shown previously in table 3.2. So, if you used the code just shown,
your empty shopping cart would suddenly display a "0" in the bottom of the compo-
nent, to the utter confusion of everyone.

 To implement this correctly, always compare the length of the array to be greater
than 0 to ensure the type is Boolean. Even better, you can store that comparison in
another variable, making the code even simpler to read:

Don’t do this because
using array length as a
condition directly in a
logical AND expression
leads to problems.

933.4 React and JSX gotchas
class ShoppingCart extends Component {
 render() {
 const hasItems = this.props.items.length > 0;
 return (
 <aside>
 <h1>Shopping cart</h1>
 <CartItems items={this.props.items} />
 {hasItems && <button>Checkout</button>}
 </aside>
);
 }
}

It’s not that uncommon to forget this when you’re developing, so spotting rogue 0’s
throughout your application is definitely possible. They are almost always the result of
this type of expression.

3.4.4 The style attribute

The style attribute in JSX works differently than in plain HTML. With JSX, instead of a
string, you need to pass a JavaScript object, and CSS properties need to be in camel-
Case. For example:

 background-image becomes backgroundImage.
 font-size becomes fontSize.
 font-family becomes fontFamily.

You can save the JavaScript object in a variable or render it inline with double curly
braces ({{...}}). The double braces are needed because one set is for JSX, and the
other is for the JavaScript object literal.

 Suppose you have an object with this font size:

const smallFontSize = { fontSize: '10pt' };

In your JSX, you can use the smallFontSize object as

<input style={smallFontSize} />

or settle for a larger font (30 point) by passing the values directly without an extra
variable:

<input style={{ fontSize: '30pt' }} />

Let’s look at another example of passing styles directly. This time, you’re setting a red
border on a :

<span style={{
 borderWidth: '1px',
 borderStyle: 'solid',
 borderColor: 'red',
}}>Red velvet cake is delicious

Stores the comparison
in a variable guaranteed
to be of type Boolean

Uses that variable to
conditionally render
your optional element

94 CHAPTER 3 Introduction to JSX
Alternatively, the following border value will also work and do the same thing:

Hey

The main reason styles aren’t CSS strings but JavaScript objects is so that React can
work with them more quickly when it applies changes to views.

3.4.5 Reserved names: class and for

React (and JSX) accepts any attribute that is a standard HTML attribute, except class
and for. Those names are reserved words in JavaScript/ECMAScript (for creating
classes and for loops, respectively), and JSX is converted into regular JavaScript. So,
just like you can’t create a variable named for or any other reserved word, you can’t
create attributes with these names (not directly, anyway).

 Instead, you can use className and htmlFor, respectively. For example, if you
want to apply a class name of "hidden" to an element, you have to use the class-
Name attribute:

<p className="hidden">...</p>

If you need to create a label for a form element, use htmlFor:

<input type="checkbox" id={this.props.id} value="hasCorgi" />
<label htmlFor={this.props.id}>Corgi?</label>

Both of these are pretty easy to remember because you’ll get compiler errors if you
forget.

3.4.6 Multiword attributes

In the same vein as the two reserved names mentioned in the previous section, other
HTML attributes are renamed in React as well. Some of them make sense, but others
less so.

 Any attribute made up of more than one English word is renamed to camelCase-
style naming. This makes sense for scalable vector graphics (SVG) attributes using a
hyphen such as clip-path or fill-opacity. We can’t use hyphenated attributes
directly in JSX, so these are renamed to clipPath and fillOpacity, respectively.

 However, the same goes for HTML attributes that don’t use a hyphen but are all
lowercase normally, which can be quite confusing. If you enter

return <video autoplay>...</video>;

in JSX, it doesn’t work because, while the attribute is called autoplay (and can be all
lowercase in HTML), you have to use camelCase and call it autoPlay in React. This
can be a bit frustrating. This goes for a huge number of properties that you often use
in HTML.

953.4 React and JSX gotchas
 Instead of warning you about skipping these properties, React merely filters them
out silently. So, you might never know that you typed it wrong until you realize that your
video isn’t autoplaying (because of autoPlay rather than autoplay), your iframe
doesn’t allow full screen (because of allowFullscreen rather than allowfullscreen),
or your input field doesn’t have a maximum of characters allowed (because of max-
Length rather than maxlength).

3.4.7 Boolean attribute values

Some attributes (e.g., disabled, required, checked, autoFocus, and readOnly) are
specific only to form elements. The most important thing to remember here is that
the attribute value must be set as a JavaScript expression (i.e., inside {}) and not set as
a string. For example, use {false} to enable the input:

<input disabled={false} />

But don’t use a "false" value because it’ll pass the truthy check (a non-empty string is
truthy in JavaScript, as you hopefully remember from section 3.2.6). This is because
the string "false" isn’t any of the six falsy values; it’s actually a non-empty string,
which is truthy and results in the value true. React will render the input as disabled
(disabled will be set to true):

<input disabled="false" /> // Don't do this!

If you omit a value after a property, React will set the value to true:

<input required />

This is equivalent to manually setting the value to true, so just use the preceding code
rather than using required={true}.

 For many of these attributes in HTML, completely excluding the value means set-
ting the value to false, so if you want to set a value specifically to true or false, sim-
ply include it without a value or omit it. If you want to set a value based on the
contents of a variable, use an expression:

<input readOnly={!isEditable} />

NOTE Notice the multiword problem mentioned before. This Boolean attri-
bute in React is called readOnly and not readonly as you know it from HTML.

CUSTOM COMPONENT WITH BOOLEAN PROPERTIES

The same thing is true when you create your own components. If you have a custom
component and want to accept a Boolean property, you can just use a property from
this.props as if it was a Boolean, and React will make sure to set it to true, if speci-
fied when used.

96 CHAPTER 3 Introduction to JSX
 For example, we can create an alert component that will display an alert message
to the user. This message is either an error or a warning. To control the level of the
alert, we add a Boolean flag, isError, and if true, we include a warning-sign emoji
around the message. We’ll then use this component to display two different alerts in
our application—one as an error and the other as a warning, as shown in listing 3.13.
If we run this in the browser, we see how the two messages are correctly displayed (see
figure 3.5).

import { Component } from 'react';
class Alert extends Component {
 render() {
 return (
 <p>
 {this.props.isError && '⚠'}
 {this.props.children}
 {this.props.isError && '⚠'}
 </p>
);
 }
}
class App extends Component {
 render() {
 return (
 <main>
 <Alert>We are almost out of cookies</Alert>
 <Alert isError>
 We are completely out of ice cream
 </Alert>
 </main>
);
 }
}
export default App;

Listing 3.13 Passing and accepting Boolean properties in JSX

Repository: rq03-alert
This example can be seen in repository rq03-alert. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq03-alert --template rq03-alert

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-alert

Sets the isError
property to true simply
by including it in the JSX
without a value

https://rq2e.com/rq03-alert

973.4 React and JSX gotchas
3.4.8 Whitespace

If you want to add whitespace between components—for example, if you’re adding a
bold word inside a sentence—you have to be very careful about how you place your
newline characters. Let’s say you want to write a headline with an emphasized word in
the middle, for example, "All corgis are awesome" but "corgis" must be in italics.
You could do this in JSX as shown in the next listing.

import { Component } from 'react';
class App extends Component {
 render() {
 return (
 <h1>
 All
 corgis
 are awesome
 </h1>
);
 }
}
export default App;

Listing 3.14 Naive implementation of a partially emphasized message

Repository: rq03-bad-whitespace
This example can be seen in repository rq03-bad-whitespace. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq03-bad-whitespace --template rq03-bad-whitespace

Figure 3.5 The first
message is just a warning,
but the second is definitely
an error.

Some
plain text

Then a
JSX node Then some

more plain
text

98 CHAPTER 3 Introduction to JSX
This seems pretty reasonable, no? Let’s run this app with CRA and watch it in the
browser. You can see the result in figure 3.6.

That’s clearly wrong. The space around the word “corgis” just collapsed. What hap-
pened? Normally, newline characters and tabs are ignored as whitespace in JSX. When
we had JSX as

return (
 <main>
 <h1>Hello world</h1>
 </main>
);

earlier in the chapter, we didn’t actually want spaces between the elements <main>
and <h1>. We just formatted it on multiple lines because it looks pretty—not because
we want a lot of extra whitespace rendered in the browser. So, if there is whitespace
between elements in JSX that include newline characters, all the whitespace is col-
lapsed. It doesn’t matter if you have an extra normal space at the end of the plain-text

(continued)

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-bad-whitespace

Figure 3.6 Emphasized message with improper whitespace

https://rq2e.com/rq03-bad-whitespace

993.4 React and JSX gotchas

app
and
line in listing 3.14. If there is a newline character between the elements, all whitespace
is collapsed.

 So, how could we do this correctly? There are two ways to make sure spaces are
rendered:

 Don’t use newline characters at all between the elements.
 Add spaces as expressions in the code.

The latter sounds a bit complex and doesn’t look all that good, but can be necessary.
Let’s see the first solution—no newline characters—in practice.

import { Component } from 'react';
class App extends Component {
 render() {
 return (
 <h1>
 All corgis are awesome
 </h1>
);
 }
}
export default App;

Note that we can have newline characters before and after the message (because the
whitespace here can be collapsed—we don’t care about it). We just don’t want newline
characters in places where we want actual space characters to be inserted. Now let’s
look at space expressions in the next listing.

import { Component } from 'react';
class App extends Component {
 render() {
 return (
 <h1>
 All
 {" "}
 corgis
 {" "}
 are awesome
 </h1>
);
 }
}
export default App;

Here, we add spaces using curly brackets. This will force the JSX engine to include
the spaces as actual elements and not treat them as part of the negligible whitespace

Listing 3.15 Partially emphasized message without newline characters

Listing 3.16 Partially emphasized message with space expressions

Newlines
ear before
 after the
heading.

No newline
characters appear
inside the heading.

Spaces
inserted as
expressions

100 CHAPTER 3 Introduction to JSX
that normally exists between elements. You’ll often see developers append such
space-as-expressions at the end of the line before the newline character, as shown next.

import { Component } from 'react';
class App extends Component {
 render() {
 return (
 <h1>
 All{" "}
 corgis{" "}
 are awesome
 </h1>
);
 }
}
export default App;

Both of the preceding listings will render our message correctly in the browser—a
message that no one can contest, as shown in figure 3.7.

3.4.9 data- attributes

Sometimes, you want to pass additional data using DOM nodes. While you shouldn’t
use your DOM as a database or local storage, sometimes that’s necessary when you
want to pass variables to third-party libraries. If you need to create custom attributes
and get them rendered, use the data- prefix.

 For example, this is a valid custom data-object-id attribute that React will render
in the view (HTML will be the same as this JSX):

<li data-object-id={object.id}>...

Listing 3.17 Partially emphasized message with fewer lines

Repository: rq03-good-whitespace
This example can be seen in repository rq03-good-whitespace. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq03-good-whitespace --template rq03-good-whitespace

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq03-good-whitespace

Space expressions appended
at the end of the lines

https://rq2e.com/rq03-good-whitespace

101Quiz answers
3.5 Quiz
1 To output a JavaScript variable in JSX, which of the following do you use?

=, <%= %>, {}, or <?= ?>
2 The class attribute isn’t allowed in JSX. True or false?
3 The default value for an attribute without a value is false. True or false?
4 The inline style attribute in JSX is a JavaScript object and not a string like other

attributes. True or false?
5 If you need to have if/else logic in JSX, you can use it inside {}. For example,

class={if (!this.props.isAdmin) return 'hide'} is valid JSX code. True or
false?

Quiz answers
1 You use {} for variables and expressions.
2 True. class is a reserved JavaScript statement. For this reason, you use class-

Name in JSX.
3 False. The default value for a property with no value specified is true.
4 True. style is an object for performance reasons.
5 False. First, class isn’t the proper attribute name; it’s className. Then, instead

of if return (which isn’t valid JavaScript anyway in this context), you should
use a ternary operator or logical expressions. You could do it like this: class-
Name={this.props.isAdmin || 'hide'}.

Figure 3.7 All corgis are now correctly rendered as awesome.

102 CHAPTER 3 Introduction to JSX
Summary
 JSX is just syntactic sugar for React methods such as React.createElement.
 You should use className and htmlFor instead of the standard HTML class

and for attributes.
 The style attribute takes a JavaScript object, not a string like normal HTML.
 Ternary and logical operators are the best ways to implement if/else statements.
 Outputting variables, comments, and HTML entities is easy and straightforward.
 Several multiword HTML and SVG attributes are renamed in React, so pay

attention to these special attributes, and remember to verify whether your attri-
butes correctly make it into the HTML document.

 JSX needs to be transpiled into JavaScript before it can run in the browser, but
you rarely have to worry about that. However, if you find it necessary, a number
of tools are available, including Babel, which is the most popular tool at the
time of writing.

Functional Components
React was based on class-based components for a long time in the early years, but
an alternative came along for the simplest of components at some point. Func-
tional components are a more succinct and, in some regards, simpler way of writ-
ing React components, and they now have the same feature set as their class-
based cousins.

 The term functional component isn’t meant as a contrast to a nonfunctional
component—no one has any use for those. Rather, the functional part refers to the
component definition itself being a JavaScript function rather than a JavaScript class.

 In the beginning, functional components were less powerful than class-based com-
ponents, but when React hooks came about in React 16.8, functional components

This chapter covers
 Introducing functional components

 Comparing functional components to class-based
components

 Choosing between the two types of component
definitions

 Converting a class-based component to a
functional component
103

104 CHAPTER 4 Functional Components
were suddenly as powerful, if not more, than their class-based siblings. Today, many React
developers exclusively use functional components, as they are the primary method rec-
ommended by the React team.

 Class-based components are still fully supported in React and probably not going
anywhere anytime soon. You’ll also find them very common “in the wild,” for several
reasons:

 Not all older codebases have been refactored away from class-based compo-
nents and must still be maintained.

 Some older libraries still only document how they interface with class-based
components and thus require your code to use them to interface with the
library correctly.

 Some long-time React developers started using class-based components and feel
more comfortable with them, so they prefer to stick to them when possible.

 The mental model of a component life cycle changed quite a bit when going
from class-based to functional components, and, in some instances, the re-render
life cycle can be easier to maintain when using the old class-based approach.

 A tiny subset of the core functionality in React is only possible using class-based
components (error boundary, in particular).

Not only are functional components here to stay, but they’re also going to take over
the world—at least the React world. All indicators point to functional components
being the main way to write React going forward. Writing functional components
makes your life as a developer significantly easier with (almost) no downsides.

 In this chapter, we’ll go over what functional components are, how they differ (and
how they don’t) from class-based components, how to choose which component type
to use in your projects, and how you can convert a class-based component to a func-
tional one.

NOTE The source code for the examples in this chapter is available at https://
rq2e.com/ch04. But, as you learned in chapter 2, you can instantiate all the
examples directly from the command line using a single command.

4.1 The shorter way to write React components
In this section, we’ll introduce functional components and slowly add some extra utili-
ties on top of them. These utilities are merely syntactic sugar, often enabled by modern
JavaScript features rather than React-specific functionality. However, we’ll introduce
these techniques in this chapter because we’ll be using all of them in later chapters.
They are all standard in the industry, so you’ll see them in React codebases all the time.
These utilities are all about simplifying how you write and interact with components:

 Simplifying access to properties using destructuring
 Simplifying the component interface with default values
 Simplifying the component interface using pass-through properties

https://rq2e.com/ch04
https://rq2e.com/ch04
https://rq2e.com/ch04

1054.1 The shorter way to write React components
Together, these utilities will give you a good foundation to write simple, presentational
React components using concise component definitions.

4.1.1 An example application

Let’s create a simple React application: a menu with a list of links all built with plain
HTML. This is a very simple HTML fragment with a website menu, but it’s one of the
building blocks of every web application.

 We’ll use this example to illustrate that when components get even a tiny bit com-
plex, the three utilities mentioned previously will help us keep our components sim-
ple both on the outside and the inside. See the component tree in figure 4.1.

The output of this application will look like figure 4.2 in the browser.
 First, we’ll create it as we’ve seen previously using class-based components, and

then secondly, we’ll create those same components using functions. When we get
there, we’ll have a short discussion about which way is better. Note that this is a subjec-
tive discussion—there is no right answer—and you should feel free to use whatever
method you feel works best for you.

IMPLEMENTATION USING CLASSES

This application includes three components: <App/>, <Menu /> inside <App/>, and
<MenuItem />s in <Menu />. For now, let’s just put everything in the same file, that is,
the App.js file, as shown in listing 4.1.

<App>

<h1>

<Menu>

<MenuItem>

"Blog"

"TheMenuCompany" <MenuItem><MenuItem>

"About""Home"

Figure 4.1 A tree diagram of our menu application showing the overall structure of
components from the <App> at the top to the text nodes at the bottom

106 CHAPTER 4 Functional Components
import { Component } from "react";
import "./App.css";
class App extends Component {
 render() {
 return (
 <main>
 <Menu />
 </main>
);
 }
}
class Menu extends Component {
 render() {
 return (
 <nav className="navbar">
 <h1 className="title">TheMenuCompany</h1>
 <ul className="menu">
 <MenuItem label="Home" href="/" />
 <MenuItem label="About" href="/about/" />
 <MenuItem label="Blog" href="/blog" />

 </nav>
);
 }
}
class MenuItem extends Component {
 render() {
 return (
 <li className="menu-item">
 <a
 className="menu-link"
 href={this.props.href}
 >
 {this.props.label}

Listing 4.1 Menu application using classes

Figure 4.2 Our menu
application as seen in the
browser. It’s simple HTML
with a tiny bit of styling.

Imports a CSS file to
style the application

Defines
a new
component

Uses a
standard
HTML tag

Makes an instance of
another custom component
without passing properties

Passes
properties

to a custom
component

Uses properties passed
to a custom component

1074.1 The shorter way to write React components

);
 }
}
export default App;

This application only uses things we already know. For example, we can nest com-
ponents, use both built-in HTML components and our own custom components,
pass properties to child components, and access properties passed to our custom
components.

 Yes, we do also import a CSS file in this application. This is supported by CRA out
of the box, and you can also see this in the default template when you create a new
create-react-app (CRA) app as we showed previously in chapter 2.

IMPLEMENTATION USING FUNCTIONS

For this example, we’re just going to throw ourselves in at the deep end. Let’s see what
this same application looks like using functional components.

import "./App.css";
function App() {
 return (
 <main>
 <Menu />
 </main>
);
}
function Menu() {
 return (
 <nav className="navbar">
 <h1 className="title">TheMenuCompany</h1>
 <ul className="menu">
 <MenuItem label="Home" href="/" />
 <MenuItem label="About" href="/about/" />
 <MenuItem label="Blog" href="/blog" />

Repository: rq04-menu-class
This example can be seen in repository rq04-menu-class. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq04-menu-class --template rq04-menu-class

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-menu-class

Listing 4.2 Menu application using functions

These two functional
components do not
take any arguments.

https://rq2e.com/rq04-menu-class

108 CHAPTER 4 Functional Components
 </nav>
);
}
function MenuItem(props) {
 return (
 <li className="menu-item">

 {props.label}

);
}
export default App;

This almost looks too good to be true. To create a functional component, we simply
create a function and return JavaScript XML (JSX)—that’s it.

 If we need to access properties passed to the component, we can do that through
the single argument passed to the function, which is a frozen object of properties.
This works similarly to this.props in a class-based component.

Repository: rq04-menu-function
This example can be seen in repository rq04-menu-function. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq04-menu-function --template rq04-menu-function

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-menu-function

Any function will do
As you saw in listing 4.2 in the annotations, some functional components accept a
props argument, but some do not. In addition, we used the statement version (i.e.,
function name() {}) of the function definition, but we didn’t have to. Any value that
can be executed as a function, that returns JSX, can be used as a component.

You can even define them inline in another component. This isn’t generally consid-
ered a good practice, but sometimes it might be useful.

const App = function() {
 const EmptyMenu = () => { return <nav /> };
 return (
 <main>
 <EmptyMenu />
 </main>
);
}

This functional
component does take
a (single) argument.

Functional
expression using
the “function”
keywordFunctional

expression using
arrow notation

https://rq2e.com/rq04-menu-function

1094.1 The shorter way to write React components
4.1.2 Destructuring properties

In the previous MenuItem example, we received our properties in the functional com-
ponent as a props object and accessed the properties on the object later using, for
example, props.label. A more common approach used by many React developers is
to destructure the properties directly in the function signature. Destructuring is the
process of extracting parts of a complex value in a compact way. In JavaScript, destruc-
turing an object generally takes this form:

const someObject = { a: 1, b: 2, c: 3 };
const { a, b } = someObject;

This expression assigns the value of someObject.a to the variable a. Similarly, the
value of someObject.b is assigned to the variable b. The value of someObject.c is
ignored, as we don’t destructure that in our expression.

 We can also use destructuring when accepting object arguments to a function:

function log({ message, level }) {
 console.log(level.toUpperCase(), "Message:", message);
}
log({ message: "Unknown product", level: "error" });

This would result in the following console output:

ERROR Message: Unknown product

For such a simple example, you might question why we don’t make it two different
arguments instead, such as the following:

function log(message, level) { ...

Here, we define one component, App, using a function expression, and another com-
ponent, EmptyMenu, right in the function body using arrow notation. This is an empty
list for now (so it doesn’t display any menu items), but it shows just how easy creating
a component is.

The latter function can even be shortened further using implicit return:

const EmptyMenu = () => <nav />;

Yes, this is a fully valid React component. It’s a very simple component, for sure, and
it doesn’t do much (yet), but this is a React component.

We’ll get back to how this feature of “any function can be a component” can be useful
in later chapters. For now, just remember that we write our components in a certain
way out of convention rather than framework constraints.

Destructures
“someObject” into
parts “a” and “b”

110 CHAPTER 4 Functional Components
But as functions get more complex and more arguments are added, using just a single
object makes it a lot easier to call the function with a variable number of arguments
instead of having to remember that level is the fifth argument, and so on.

 In a functional React component, properties are always given as the first (and
only) argument to our defining functions. We can use the method of destructuring
the argument object to make the component definition even cleaner in the next list-
ing. Note that this is only an excerpt of the file App.js in this example.

...
function MenuItem({ href, label }) {
 return (
 <li className="menu-item">

 {label}

);
}
...

This is, of course, completely identical to doing destructuring in a line of its own
inside the function definition in the next listing.

...
function MenuItem(props) {
 const { href, label } = props;
 return (
 <li className="menu-item">

 {label}

);
}
...

Listing 4.3 MenuItem with argument destructuring

Repository: rq04-menu-destruct
This example can be seen in repository rq04-menu-destruct. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq04-menu-destruct --template rq04-menu-destruct

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-menu-destruct

Listing 4.4 MenuItem with explicit destructuring

Destructs the argument
in the function definition

Allows us to use the
properties without
going through the
props object

Here, we still accept a
props argument without
destructuring it.

However, we destruct it
as a separate statement
in the very first line in
the component.We can then proceed

to use the properties
as separate variables

as before.

https://rq2e.com/rq04-menu-destruct

1114.1 The shorter way to write React components
In this book, we’ll use the approach shown in listing 4.3 with argument destructuring
directly in the component definition. You’ll also often see this in the wild, as many
React developers use this convention. As mentioned earlier, however, it’s merely a con-
vention; other variants are also possible.

4.1.3 Default values

An added benefit of using destructured properties is that we can also introduce
default values. Let’s say that our menu link to the blog should be opened in a new
browser window (or tab), but the other links should just open regularly in the same
session. We can do that by adding a new property, target, that the menu has to spec-
ify. Note again that this is only an excerpt of App.js.

...
function Menu() {
 return (
 <nav className="navbar">
 <h1 className="title">TheMenuCompany</h1>
 <ul className="menu">
 <MenuItem
 label="Home" href="/" target="_self"
 />
 <MenuItem
 label="About" href="/about/" target="_self"
 />
 <MenuItem
 label="Blog" href="/blog" target="_blank"
 />

 </nav>
);
}
function MenuItem({ label, href, target }) {
 return (
 <li className="menu-item">
 <a
 className="menu-link"
 href={href}
 target={target}
 >
 {label}

);
}
...

However, one could argue that it makes sense that opening a link in the same session
is the default behavior, and the menu shouldn’t have to specify that. We can implement

Listing 4.5 Menu items with targets

Adds a new property
to every instance of
the menu item
component

Accepts the new
property in the
destructuring inside
the component

Assigns the property
to the relevant JSX
element as an
attribute

112 CHAPTER 4 Functional Components
this using default values in the function definition. Note that this isn’t React-specific
functionality, but just normal JavaScript functionality.

...
function Menu() {
 return (
 <nav className="navbar">
 <h1 className="title">TheMenuCompany</h1>
 <ul className="menu">
 <MenuItem label="Home" href="/" />
 <MenuItem label="About" href="/about/" />
 <MenuItem
 label="Blog" href="/blog" target="_blank"
 />

 </nav>
);
}
function MenuItem({ label, href, target = "_self" }) {
 return (
 <li className="menu-item">
 <a
 className="menu-link"
 href={href}
 target={target}
 >
 {label}

);
}
...

ORDERING PROPERTIES

You can specify your component properties in any order you like. Although common
JavaScript practice is to specify properties with defaults at the end of the definition,
nothing prevents you from doing it differently.

Listing 4.6 Menu items with a default target

Repository: rq04-menu-default
This example can be seen in repository rq04-menu-default. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq04-menu-default --template rq04-menu-default

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-menu-default

We don’t have to
specify the target
property if we don’t
need to override the
default.

But when we do
need to override
the default, we can
do so easily.

Defines the default
using built-in
JavaScript notation
for defaults while
destructuring

https://rq2e.com/rq04-menu-default

1134.1 The shorter way to write React components
 This means that the following line is generally not recommended, but still com-
pletely valid:

function MenuItem({ label, target="_self", href }) {

And, this is the recommended order:

function MenuItem({ label, href, target="_self" }) {

This only refers to the order of nondefault properties versus default properties—the
internal order of either list of properties has no general ordering, so it’s up to you or
your team to set any such recommendations if desired.

4.1.4 Pass-through properties

Let’s make our example even more hypothetical and say that we need various extra
properties on the different elements:

 The home link doesn’t need any extra properties.
 The about link needs an ID of "about-link".
 The blog link needs an ID of "blog-link".

Let’s implement this using what we know so far using default values for unspecified
values.

...
function Menu() {
 return (
 <nav className="navbar">
 <h1 className="title">TheMenuCompany</h1>
 <ul className="menu">
 <MenuItem label="Home" href="/" />
 <MenuItem label="About" href="/about/" id="about-link" />
 <MenuItem
 label="Blog" href="/blog" target="_blank" id="blog-link"
 />

 </nav>
);
}
function MenuItem({ label, href, target = "_self", id=null }) {
 return (
 <li className="menu-item">

 {label}

);
}
...

Listing 4.7 Menu items with multiple default values

114 CHAPTER 4 Functional Components
This is beginning to look a bit repetitive. We’re accepting a bunch of arguments only
to pass them straight through to a single element—even with the same name and
everything else intact.

THE REST SYNTAX

You can indicate that you want some arguments to be handled in a special way and all
other arguments to be passed straight through to the target element by using another
modern JavaScript concept known as the rest syntax. When destructuring an object,
you can use the rest syntax, denoted by three periods, to specify an object that will be
assigned all the leftover properties not already assigned:

const someObject = { a: 1, b: 2, c: 3, d: 4 };
const { a, b, ...otherAttrs } = someObject;

The two properties, c and d, which we didn’t already reference in the destructuring
statement, are transferred as properties to a new object named otherAttrs. There-
fore, the preceding code snippet is equivalent to the following code snippet:

const a = 1;
const b = 2
const otherAttrs = { c: 3, d: 4 };

We can use this in a component function definition like this:

function MyComponent({ a, b, ...rest }) {
 // a = 1, b = 2, rest = { c: 3 }
}
// Later:
<MyComponent a="1" b="2" c="3" />

We can capture all the remaining properties in an object, often called rest. Now
we just need to use this object and apply all the properties inside it to an element in
the output.

 You’ve already seen how to assign properties to a JSX element from an object, but
to reiterate, we do this using the spread operator:

const extraProps = { target: "_blank", id: "link" }
return

Remember to wrap the spread inside brackets, or it won’t work.

REST IN PRACTICE

Let’s go back to our example. We want to capture the label and href properties
passed to our <MenuItem /> component, but we don’t care about the rest. If any other
properties are passed to the component, we want to pass them straight through to our
target element. Putting this all together, our component becomes the next listing.

1154.1 The shorter way to write React components
...
function MenuItem({ label, href, ...rest }) {
 return (
 <li className="menu-item">

 {label}

);
}
...

This looks a lot nicer now. We don’t have to specify all those extra properties that we
don’t really care about. Any other component can pass whatever it wants except for a
few properties—here, label and href—that will receive special treatment. Note that
we could even skip listing href as a property now, as it would be included in the rest
variable, but we still list it because it’s a mandatory property that consumers of this
component should always specify. Note that this is purely convention, not something
enforced by React.

 A few things to note here: As you can see, the rest syntax and the spread operator
are identical. Both are three periods before a variable name. However, they are used
very differently, as one is used for destructuring and the other for assigning. They
have a similar nature, which is why they look the same, but they are different opera-
tors altogether.

 Using the variable name rest for the extra parameters is a common convention,
but is by no means a requirement anywhere. You’ll see many developers use it, but feel
free to change it to something that makes sense to you.

 In addition, this isn’t React-specific functionality, but merely a useful artifact of the
JavaScript language that you’ll see many React developers use. We’ll be using it in
future chapters as well.

Listing 4.8 Menu items with rest and spread

Repository: rq04-menu-rest
This example can be seen in repository rq04-menu-rest. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq04-menu-rest --template rq04-menu-rest

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-menu-rest

In this line, "..." is
the rest syntax.

In this line, "..."
is the spread
operator.

https://rq2e.com/rq04-menu-rest

116 CHAPTER 4 Functional Components
REST AND PROPERTY ORDERING

The rest syntax has to be the very last element of the object destructuring, so you have
to specify it at the end of the property list. When combined with default properties,
which, of course, is still possible, the common ordering is as follows:

1 Properties without defaults
2 Properties with defaults
3 Rest

An example of all three types of properties is

function MenuItem({ label, href, target="_self", ...rest }) {

4.2 A comparison of component types
At this stage in your React edification, the differences between functional components
and class-based components might seem small or even insignificant. Boiled down to
its bare minimum, it’s the difference between writing the following as a class-based
component:

class Menu extends Component {
 render() {
 return <nav />;
 }
}

versus writing the following as a functional component:

function Menu() {
 return <nav />;
}

When we get to more complex components in later chapters, especially when using
callbacks and state, things get more complicated, and the differences between func-
tional components and their class-based siblings become larger and larger. When we
get to the composition of components and reuse of generalized functionality, very dif-
ferent patterns emerge in the two worlds—almost completely different.

 The choice between component types is fundamental in your React journey, but
quite frankly, it’s not really a choice anymore. You’ll probably be using functional
components unless there’s a strong reason not to for your particular project or devel-
opment team. Nevertheless, in this section, we’ll go over the benefits and disadvan-
tages of functional components, as well as some factors that are actually not factors in
this choice.

1174.2 A comparison of component types
4.2.1 Benefits of functional components

The following is a non-exhaustive list of some subjective benefits of using functional
components:

 Compactness—Functional components are most often more compact in terms of
lines of code and pure template code overhead than class-based components. You
simply have to type fewer characters when implementing functional components.

 Readability—It can be much harder to track down the origin of some property
in a class-based component going through layers of composed higher-order
components than to do the same thing in a functional component using
hooks (new in React 16.8, which we’ll cover in the next couple of chapters).
Generally, functional components are much easier to read and understand
even at a glance.

 Purity—The purity of a function (a pure function has no side effects and
doesn’t depend on any other information than its arguments) is easier to
determine, and the side effects of impure functions are easier to deduce due
to the existence of hooks. The purity or lack thereof of a class-based compo-
nent is generally harder to deduce, which can make debugging and under-
standing a lot harder.

 Simplicity—Functions are a fundamental part of any programming language
and even mathematics. The theoretical tools used to describe, work with, com-
pose, and explain functions are far greater than those for doing the same for
classes. Classes are also fundamental in many programming languages, but they
are still a significantly higher-level abstraction than simple functions.

 Testability—Due to the ability to break off bits of functionality into indepen-
dent hooks, functional components are often much easier to unit test, as you
can break them down into smaller composable units and easily test each
independently.

 Popularity—The preference for functional components is a benefit in and of
itself. Most other React developers will by now be more at home using func-
tional components; most new development happens in the ecosystem of
functional components; and the vast majority of new content about React (vid-
eos, tutorials, books, etc.) refers exclusively to functional components.

Note that all of these benefits are about developer experience. The actual end prod-
uct—the final web application available to end users—isn’t improved or degraded by
the choice of component type. It’s almost exclusively about making it easier for devel-
opers to write, maintain, and debug components, where the syntax of functional com-
ponents really shines.

 In general, using functional components is more elegant, more succinct, and—
most importantly—far easier to understand. Of course, this is partially a subjective
opinion on behalf of the authors, but it’s a common opinion found among React
developers as can be seen in public codebases on GitHub and similar repositories.

118 CHAPTER 4 Functional Components
4.2.2 Disadvantages of functional components

There are no direct disadvantages to using functional components. For any feature
that you can create in both a functional component and a class-based component,
there are never any disadvantages to creating said feature in a functional one.

4.2.3 Nonfactors between component types

Some factors that are important to developers, development teams, and business units
alike are not actually factors at all in the choice of component types. These nonfactors
include the following:

 Speed—There is no inherent speed difference in running a simple component as
a functional one versus a class-based one. The tools to make every component,
and thus your entire application, speedy and responsive are slightly different in
the two types of components. Most would probably argue that the tools are a bit
more transparent and easier to understand in functional components, but similar
tools exist for class-based components, so any component can be made fast if opti-
mized properly or can behave sluggishly if not optimized properly.

 Composability—Albeit the design patterns used are very different, code reuse
and composability of functionality are just as good and well supported in both
types of components.

 Usability—For the end user visiting your web application, the experience is no
different whether you’re using one type or the other. User experience does not
affect this decision.

 Accessibility—Making React components accessible is a skill of its own, but that
applies regardless of whether you’re writing them one way or the other.

 Reliability—Components are just as easy or difficult to make reliable or correct
regardless of the choice of component type. Reliability is a property of good
software development, not the choice of tooling.

 Maintainability—At least for now, there are no indications that class-based com-
ponents are being deprecated, so both component types are expected to be
fully supported by React in all future versions.

While all of these are important aspects of software development, they’re not directly
influenced by the choice of component types; rather, they are influenced by the com-
petence and vision of the developer or development team wielding the keyboard.

4.2.4 Choosing the component type

The short answer to “What component type should I choose for my project?” is sim-
ple: use functional components. The slightly longer answer adds the following postfix:
unless there’s a very strong reason not to.

 In our most informed opinion, you should always use the latest stable version of
any technology, and for React, that is most definitely functional components over
class-based components. Functional components have been around for quite a while

1194.3 When not to use a functional component
by now, most new development happens in functional components and their environ-
ment (hooks in particular), and most other developers will be using functional com-
ponents as well. However, there might be scenarios where we would consider using
class-based components, and we’ll cover those in the next section.

4.3 When not to use a functional component
As mentioned previously, almost anything you can do with a class-based component,
you can do with a functional component, except for error boundaries. There are a few
other instances where you might want to choose to use a class-based component any-
way, even if you don’t have to for technical reasons.

 In this section, we’ll discuss the following cases where you might want to avoid
using functional components:

 You want to set up an error boundary to handle errors occurring further down
the render tree.

 You’re working in a codebase primarily composed of class-based components
and want to make something that fits in.

 You’re using a library that is tailored to class-based components only.
 You’re specifically tasked to use the built-in React functionality of getSnapshot-

BeforeUpdate.

The preceding items are written in prioritized order of their likeliness to occur in
your everyday work. Given that the first item in the list is a rather specialized case nec-
essary in only the largest and most complex codebases, you’re not likely to come
across any of these exceptions at all. We’ll cover each of the exceptions in the follow-
ing subsections.

4.3.1 Error boundary

Establishing an error boundary is a valid concern for a mature React codebase once it
gets to a certain complexity level, so this is something you’re likely to come across if
you’re working on a large codebase. Currently, at the time of writing, there is still no
way to solve this without using a class-based component. There aren’t even any plans
to convert the error boundary functionality to a hook or similar, which would allow it
to be possible in a functional component.

 An error boundary is a way of establishing a fallback in case a child component
throws a JavaScript error. You should always strive to never have unhandled errors, of
course, but as things get complex, input changes, APIs evolve, and your codebase gets
more complex and harder to properly cover by tests, errors will occur. An error
boundary is your way of making sure that when such an error does occur, at least the
end user is presented with a nicely formatted error message along with your sincere
apologies. You should probably also log the error to your analytics tool of choice.

 Two methods in the React API deal with errors occurring in child components.
One is getDerivedStateFromError, where you can set an internal flag that this

120 CHAPTER 4 Functional Components
component should render differently because an error occurred somewhere. The
other is componentDidCatch, where you get the actual error that occurred along with
its stack trace and other information. This latter part allows you to log it for debug-
ging purposes. We won’t go into detail about how these work, as it’s outside the scope
of this book, but if you need them, the React documentation on both methods is
pretty substantial.

 If you find yourself needing to catch errors in a component tree, you have to use a
class-based component for at least this one component. You can still keep 99% of your
components functional, despite having a single class-based error boundary or two.

4.3.2 Codebase is class-based

Imagine that you’re hired to a development position in a company that has an old
React codebase that they’re still actively working on. It’s a huge application, maybe
with hundreds or even thousands of components, and an extensive set of complex
functionalities.

 You’re asked to add some new functionality to just a tiny part of this application.
While there is no problem mixing class-based and functional components, it might
seem very odd to other developers that some components are written in one style
while others are written in a different style.

 Refactoring the entire codebase to functional components would be a huge under-
taking, but it’s hopefully the goal for the engineering team in the long term. However,
there will likely be a transition period where only certain parts of the codebase have
been converted and you’ll be asked to keep using classes in some parts while using
functional components in others.

 As React ages and the ghost of class-based components is a relic of a further and
further past, this scenario becomes less and less likely. If you find yourself in such a
scenario, we recommend using the wisdom of the team and going with the flow. Don’t
force a conversion before the team is ready as a whole, and don’t go against the
agreed-upon coding conventions of your team.

4.3.3 Library requires class-based components

This scenario is somewhat hypothetical, as we can’t find a library requiring a class-
based component, but that’s not to say that it doesn’t exist. There might be a circum-
stance where you’re interacting with third-party functionality that requires you to use
class-based components.

 The most likely case is that you want to use an old library that hasn’t been updated
since before React hooks came out, and their examples and guides still use class-based
components. That doesn’t mean that you can’t use the library with hooks; it just
means that you’re on your own and can’t use the library documentation to help you
out if things don’t work. While outdated documentation is the most likely culprit of
the library instructing you to use class-based components, we can’t rule out that there
might be a library that doesn’t work with hooks at all.

1214.4 Conversion from a class-based to a functional component
 If either of the preceding scenarios occurs, your best bet is to look around for a
more modern library. Many things have changed in the four years since hooks came
out—not just notation—and you’ll probably find that the library in question is behind
the curve on many things if it’s been unmaintained for that long.

4.3.4 Snapshot before updating

There is another built-in function in the React API that doesn’t exist in a hooks-only
React world: getSnapshotBeforeUpdate. This is an extremely specific piece of func-
tionality that has the narrowest use case, the details of which we won’t go over here.
You’ll be able to work around it easily with hooks if you just structure your compo-
nents slightly differently.

 However, if you’re specifically tasked to use this functionality, there’s no way
around it (also, who gave you this weird task?). If you’re just tasked with solving a
problem, where getSnapshotBeforeUpdate will be a solution in a class-based compo-
nent, you can find a similar solution using functional components.

 This method is only mentioned here for completion, not because it’s a method fre-
quently used at all. A quick search of GitHub reveals only seven repositories mention-
ing the method. Two are lists of React functions, two are examples of how to use this
specific method, and three are old unmaintained demos. So, this whole method is a
candidate for functionality that will likely disappear from the React API completely
rather than be upgraded to a functional equivalent.

4.4 Conversion from a class-based to a functional component
You’ve already seen a simple class-based component converted to a functional one
between code listings 4.1 and 4.2. In this section, we’ll dig more into this conversion,
iron out some gotchas, and prepare you for the journey ahead, as we’ll keep coming
back to this conversion as we add more and more complicated functionality to our
components in the next chapters.

 For this conversion exercise, we’ll create another simple web application: a gallery
with images and titles for each. This is a simple visual application that has no interac-
tion (as we’ve not yet learned how to add that) but highlights different features of
component internals, so we have to use some different tricks to convert the compo-
nents. The output of this application will look like figure 4.3 in the browser.

 We’ll create four versions of this component, which iterate as follows:

 Version 1, using only the render method
 Version 2, using a secondary method as utility only
 Version 3, using a secondary method with class access
 Version 4, using the constructor to initialize a calculation

The reason we go through these iterations is to see how to convert class-based compo-
nents to functional components when the classes use more and more advanced patterns
that require slightly different solutions in a functional equivalent. Finally, we’ll discuss

122 CHAPTER 4 Functional Components
how one-to-one conversion gets more complex—bordering on impossible—as compo-
nents get more complicated.

4.4.1 Version 1: Render only

We’ll implement our first iteration with classes completely similar to our menu earlier
in this chapter.

ORIGINAL

We use three components, and each uses its render method to return JavaScript.

import { Component } from "react";
class App extends Component {
 render() {
 return (
 <main>
 <h1>Animals</h1>
 <Gallery />
 </main>
);
 }
}
class Gallery extends Component {
 render() {
 return (
 <section style={{ display: "flex" }}>
 <Image index="1003" title="Deer" />

Listing 4.9 Gallery v1 using classes

Figure 4.3 The gallery application as seen in the browser with simple figures and captions

Our three class
components only
have a render
function and no
other methods.

1234.4 Conversion from a class-based to a functional component
 <Image index="1020" title="Bear" />
 <Image index="1024" title="Vulture" />
 <Image index="1084" title="Walrus" />
 </section>
);
 }
}
class Image extends Component {
 render() {
 return (
 <figure style={{ margin: "5px" }}>
 <img
 src={`//picsum.photos/id/${this.props.index}/150/150/`}
 alt={this.props.title}
 />
 <figcaption>
 <h3>Species: {this.props.title}</h3>
 </figcaption>
 </figure>
);
 }
}
export default App;

CONVERSION

When converting such a simple component to a functional component, we directly
convert the render method of the class to a function with the same name as the class.
Thus, it follows this simple template. If you have the class as

class MyComponent extends Component {
 render() {
 ...
 }
}

you end up with this:

function MyComponent() {
 ..
}

Repository: rq04-gallery-class-v1
This example can be seen in repository rq04-gallery-class-v1. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq04-c1 --template rq04-gallery-class-v1

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-class-v1

Our three class
components only
have a render
function and no
other methods.

https://rq2e.com/rq04-gallery-class-v1

124 CHAPTER 4 Functional Components
The only other thing we also have to do is ensure that we directly destructure the
props in the component definition rather than access them through this.props as
we’ve seen before. This leads us to the result shown in the following listing.

function App() {
 return (
 <main>
 <h1>Animals</h1>
 <Gallery />
 </main>
);
}
function Gallery() {
 return (
 <section style={{ display: "flex" }}>
 <Image index="1003" title="Deer" />
 <Image index="1020" title="Bear" />
 <Image index="1024" title="Vulture" />
 <Image index="1084" title="Walrus" />
 </section>
);
}
function Image({ index, title }) {
 return (
 <figure style={{ margin: "5px" }}>
 <img
 src={`//picsum.photos/id/${index}/150/150/`}
 alt={title}
 />
 <figcaption>
 <h3>Species: {title}</h3>
 </figcaption>
 </figure>
);
}
export default App;

Listing 4.10 Gallery v1 using functions

Repository: rq04-gallery-function-v1
This example can be seen in repository rq04-gallery-function-v1. You can use
that repository by creating a new app based on the associated template:

$ npx create-react-app rq04-f1 --template rq04-gallery-function-v1

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-function-v1

Component
definition changed
to a function

This component
definition also takes
destructured properties.

Property reference
changed to a direct
variable rather than
an object property

https://rq2e.com/rq04-gallery-function-v1

1254.4 Conversion from a class-based to a functional component
There’s nothing surprising here. We used all the tricks we’ve learned so far in this
chapter:

 A functional component is simply a function returning JSX.
 If we need to accept properties, we destructure them in the function definition.
 When we need to access properties, we can do so directly using the destruc-

tured variables.

In the next couple of subsections, we’ll iterate the definition of the image component,
so you’ll see different versions of only that component. For brevity, only the image
component will be shown in the sample code listings.

4.4.2 Version 2: Class method as utility

In this version of the implementation, we examine what we would do if the image class
had another method that served as a utility function aiding the rendering. The argu-
ment is that the src property of the element is a bit long and windy, and the
JSX would look a lot simpler if we had a utility method to render this URL.

ORIGINAL

Let’s expand the class-based implementation of the image gallery with some code
improvements. In this iteration, we’ll imagine that the developer of the gallery wants
to reduce the visual clutter of these lines in the original component from listing 4.9

<img
 src={`//lorempixel.com/200/100/animals/${this.props.index}/`}
 alt={this.props.title}
/>

to something that looks simpler, like this:

<img
 src={this.getImageSource(this.props.index)}
 alt={this.props.title}
/>

This requires us to define a class method, getImageSource, which takes an argument,
index, and returns a string with the URL:

getImageSource(index) {
 return `//lorempixel.com/200/100/animals/${index}/`;
}

Putting all this together, the resulting image component looks like the next listing.

...
class Image extends Component {
 getImageSource(index) {

Listing 4.11 Gallery v2 using classes (excerpt)

Defines a new
method in the class

126 CHAPTER 4 Functional Components
 return `//picsum.photos/id/${index}/150/150/`;
 }
 render() {
 return (
 <figure style={{ margin: "5px" }}>
 <img
 src={this.getImageSource(this.props.index)}
 alt={this.props.title}
 />
 <figcaption>
 <h3>Species: {this.props.title}</h3>
 </figcaption>
 </figure>
);
 }
}
...

Note that this listing only shows the image component. The app and gallery compo-
nents are the same as before. We won’t bother repeating these in listing 4.11 nor in
the conversion that follows. The task now becomes to convert this new class-based
component, using multiple methods, to a functional component.

CONVERSION

The key to converting this function is to recognize that the class method isn’t, in the
object-oriented sense of the word, a method of the class, but merely a utility func-
tion. In fact, you could move the function completely outside the class and get the
same result.

 Imagine that listing 4.11, shown earlier, instead looked like listing 4.12.

...
function getImageSource(index) {
 return `//picsum.photos/id/${index}/150/150/`;
}
class Image extends Component {
 render() {
 return (

Repository: rq04-gallery-class-v2
This example can be seen in repository rq04-gallery-class-v2. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq04-c2 --template rq04-gallery-class-v2

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-class-v2

Listing 4.12 Gallery v2 using classes and a function (excerpt)

Invokes the new
method with a
property as the
argument

We’ve moved the method
out as a separate and
independent function
outside the class.

https://rq2e.com/rq04-gallery-class-v2

1274.4 Conversion from a class-based to a functional component
 <figure style={{ margin: "5px" }}>
 <img
 src={getImageSource(this.props.index)}
 alt={this.props.title}
 />
 <figcaption>
 <h3>Species: {this.props.title}</h3>
 </figcaption>
 </figure>
);
 }
}
...

This works in the same way because the getImageSource method didn’t use any
knowledge that was only available inside the class. In other words, the function was
pure and only relied on its input and no other outside information, nor did it have
any outside consequences.

 Converting this new class-based component using a utility function now becomes
just as simple as before. We leave the utility function as is and just convert the compo-
nent itself.

...
function getImageSource(index) {
 return `//picsum.photos/200/100/animals/${index}/`;
}
function Image({ index, title }) {
 return (
 <figure style={{ margin: "5px" }}>

 <figcaption>
 Species: {title}
 </figcaption>
 </figure>
);
}
...

Listing 4.13 Gallery v2 using functions (excerpt)

Repository: rq04-gallery-function-v2
This example can be seen in repository rq04-gallery-function-v2. You can use
that repository by creating a new app based on the associated template:

$ npx create-react-app rq04-f2 --template rq04-gallery-function-v2

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-function-v2

Invokes the function
as any other function,
and not as a method
of the class

Maintains the utility
function outside the
component definition

Invokes this
function as any
other function

https://rq2e.com/rq04-gallery-function-v2

128 CHAPTER 4 Functional Components
This does seem a lot simpler and more compact than the previous iteration in list-
ing 4.10. The tag is much simpler to read, and the details of the actual URL
generation have been moved to a function dedicated to that task only.

 Here, we used the knowledge that the method was pure; that is, the method didn’t
use any outside information but relied on its arguments only. What if this wasn’t the
case? We’ll get to that in the next subsection.

4.4.3 Version 3: Real class method

Now let’s take a new look at the class method we had in the previous example. Let’s
instead imagine that the developer implementing this component wanted to use the
fact that the method is part of the class and thus has direct access to the properties of
the component.

ORIGINAL

Using this information, the method doesn’t need to rely on an argument delivering
the index but can retrieve the index directly from the component properties using
this.props:

getImageSource() {
 return `//lorempixel.com/200/100/animals/${this.props.index}/`;
}

Now, when we use this method, we don’t have to provide an argument; we can just call
the method. This results in the component definition in the following listing.

...
class Image extends Component {
 getImageSource() {
 return `//picsum.photos/id/${
 this.props.index
 }/150/150/`;
 }
 render() {
 return (
 <figure style={{ margin: "5px" }}>
 <img
 src={this.getImageSource()}
 alt={this.props.title}
 />
 <figcaption>
 <h3>Species: {this.props.title}</h3>
 </figcaption>
 </figure>
);
 }
}
...

Listing 4.14 Gallery v3 using classes (excerpt)

This time, the class
method uses the props
object directly.

We can now call the
method without passing
an argument to it.

1294.4 Conversion from a class-based to a functional component
Now the class method is indeed a method of the class and relies on outside informa-
tion. What do we do now? The short answer is that there is no direct equivalent of this
in a functional component; however, there are similar ways to achieve the same result.

 There are two primary approaches to converting this class-based component to a
functional component, each with its advantages and drawbacks:

 Convert the method to a pure function and move it outside the component.
 Create a local function inside the component.

We’ll cover both of those approaches and compare them in the following subsections.

CONVERSION USING A PURE FUNCTION

Option 1 is to remember the previous version of the gallery image and try to reverse
this advancement of complexity and interconnectedness. For this method, it’s quite
simple: the goal is to remove any direct access to component properties or other
component-local information and instead pass it as arguments to the function. This
would lead us to the same version of getImageSource that we saw in version 2, where it
took an argument and returned a string.

 Implementing this would look exactly like listing 4.13 earlier. However, imagine
that the method was more complex and used a lot of properties:

getImageSource() {
 const { width, height, index } = this.props;
 return `//picsum.photos/id/${index}/${width}/${height}/`;
}

When we use this method in our class-based component render, it looks quite nice:

return (
 ...

 ...
);

The usage of this function is quite compact, and all the complexity of accessing the
different properties is moved to the method only.

Repository: rq04-gallery-class-v3
This example can be seen in repository rq04-gallery-class-v3. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq04-c3 --template rq04-gallery-class-v3

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-class-v3

https://rq2e.com/rq04-gallery-class-v3

130 CHAPTER 4 Functional Components
 If we convert it to a pure function, we suddenly have to pass a ton of arguments to
it, increasing the complexity. In our functional component with a pure function, we
would have to pass all the properties to the function, and it would suddenly look like
this:

return (
 ...
 <img
 src={getImageSource(width, height, index)}
 alt={title}
 />
 ...
);

This isn’t as nice and isolated as before, but it would work and would be a valid conver-
sion.

CONVERSION USING A LOCAL FUNCTION
Option 2 is to convert the class method to a local function inside our functional com-
ponent, which would look like the next listing.

...
function Image({ index, title }) {
 const getImageSource = () =>
 `//picsum.photos/id/${index}/150/150/`;
 return (
 <figure style={{ margin: "5px" }}>

 <figcaption>
 <h3>Species: {title}</h3>
 </figcaption>
 </figure>
);
}
...

Listing 4.15 Gallery v3 using functions (excerpt)

Repository: rq04-gallery-function-v3
This example can be seen in repository rq04-gallery-function-v3. You can use
that repository by creating a new app based on the associated template:

$ npx create-react-app rq04-f3 --template rq04-gallery-function-v3

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-function-v3

Defines a local function
inside the component that
has access to properties

Invokes this
function as any
other function

https://rq2e.com/rq04-gallery-function-v3

1314.4 Conversion from a class-based to a functional component
Now because this definition of getImageSource is a local function inside our compo-
nent, it has access to the properties passed to the component, and we don’t have to
pass all the properties to the helper function. The downside to this approach is that
every time we create a new component, we create a new local function. This doesn’t
matter much in this example with only four components, but imagine a huge, com-
plex application with thousands or even millions of instances of some components. If
we had millions of instances of our original class-based component as defined in list-
ing 4.14, we would still only have a single definition of the getImageSource method,
which wouldn’t occupy a lot of memory.

 However, with our functional component as defined in listing 4.15, every instance
of our component would have a locally defined function, and each would occupy a
slot in the program memory. This isn’t normally a worry, but it’s a slight difference
between the two implementations.

 When you’re converting a class-based component with extra class methods, you
can use either option as outlined previously. Just be aware of the advantages and dis-
advantages of both. In the concrete example, both options are fully valid solutions,
but sometimes one option will be more appropriate than the other, depending on the
exact circumstances.

4.4.4 Version 4: Constructor

As we’ve mentioned previously, you can also add a constructor method to your class-
based component. Generally, the constructor is used for initializing attributes that will
remain the same in the component’s entire lifetime, regardless of the properties passed.
This is because the constructor is only executed once, the first time the component is cre-
ated, and not every time the component properties update or the component re-renders
for other reasons.

 We’ll get into a lot more details about component re-rendering in future chapters.
For now, just know that the constructor is only called once in the component’s life-
time, so you shouldn’t put any functionality there that depends on properties that
might change in the future.

 In this example, we’ll add a constructor to our image component that generates a
random ID to be applied to our element. Reasons for doing this might include to
attach it to some external library or to reference the element using Accessible Rich
Internet Applications (ARIA) properties for accessibility.

 If we created an ID in the render method, the ID would regenerate every time the
component renders. Instead, we create the ID in the constructor to make sure that it
stays the same in the component’s lifetime.

...
class Image extends Component {
 constructor(props) {
 super(props);

Listing 4.16 Gallery v4 using classes (excerpt)

Calling super(props) is required in the
constructor of a class-based component;
otherwise, your component won’t work.

132 CHAPTER 4 Functional Components
 this.id =
 `image-${Math.floor(Math.random() * 1000000)}`;
 }
 render() {
 return (
 <figure style={{ margin: "5px" }} id={this.id}>
 <img
 src={`//picsum.photos/id/${this.props.index}/150/150/`}
 alt={this.props.title}
 />
 <figcaption>
 <h3>Species: {this.props.title}</h3>
 </figcaption>
 </figure>
);
 }
}
...

Note that we simply store the ID as a property directly on the class instance itself using
this.id. We don’t put it in this.props for two reasons: (1) because we can’t (it’s a
frozen object), and (2) because it’s not a property passed to our component—it’s
something we calculated ourselves. So, how do we convert this to a functional compo-
nent with the knowledge we have so far? We can’t! You’ll learn the tools to do this later
in chapter 7, using hooks (useMemo in particular); for now, however, we don’t have the
features to do this.

 The problem is that unlike class-based components, which have a constructor that
runs only once when the component is created the first time, and a separate render
method, which runs every time the component renders (and re-renders), a functional
component only has a single method that runs every time the component renders,
including the first time. In a functional component, there is no real difference
between the first render and subsequent renders.

 We haven’t seen a component yet that re-renders, but, for now, just trust us that
almost all components you’ll be writing in React will need to render more than once.
If a component only ever renders once, it’s most likely a very simple component with
no internal logic or state. For example, your web application logo might be defined in

Repository: rq04-gallery-class-v4
This example can be seen in repository rq04-gallery-class-v4. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq04-c4 --template rq04-gallery-class-v4

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-class-v4

We create a class
variable with the
generated unique ID.

We then use
this ID in the
render
method by
retrieving it
from the
class.

https://rq2e.com/rq04-gallery-class-v4

1334.4 Conversion from a class-based to a functional component
a simple component that never changes. We’ll talk a lot more about component life
cycles and rendering in chapter 6.

 To give you a sneak peek of what this ID generation would look like using func-
tional components, check out listing 4.17. Here, we use the hook, useMemo, to gener-
ate a unique ID the first time the component renders, and then reuse this same
calculated result on every subsequent render.

import { useMemo } from 'react';
...
function Image({ index, title }) {
 const id = useMemo(() =>
 `image-${Math.floor(Math.random() * 1000000)}`,
 []);
 return (
 <figure style={{ margin: "5px" }} id={id}>

 <figcaption>
 <h3>Species: {title}</h3>
 </figcaption>
 </figure>
);
}
...

We won’t go into more detail on how this works right now, but this is the logical equiv-
alent of initializing a variable in the constructor. You’ll learn more about hooks, ren-
dering, and memoization in chapter 7. This technique does require some rewriting of
the component, and you have to think a bit differently, but all the examples seen so
far can be converted to functional components without too much work.

4.4.5 More complexity equals harder conversion

All the examples shown so far are very simple. We don’t have any interaction or any
state. Features such as filtering which animals you want to see and clicking to expand

Listing 4.17 Gallery v4 using functions (excerpt)

Repository: rq04-gallery-function-v4
This example can be seen in repository rq04-gallery-function-v4. You can use
that repository by creating a new app based on the associated template:

$ npx create-react-app rq04-f4 --template rq04-gallery-function-v4

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq04-gallery-function-v4

Imports the hook
from the React
package

Applies the hook and adds
the magic—an empty
array—that makes the
hook run only once. This is
called a dependency array,
which is discussed in
chapter 6.

https://rq2e.com/rq04-gallery-function-v4

134 CHAPTER 4 Functional Components
the information about each animal require more complex React components, which
in turn require more complex logic to convert to a functional component, if that’s the
task you have.

 When we introduce more complex features of functional React components in
future chapters, we’ll also briefly discuss what this would look like in a class-based
component. In addition, we’ll cover how you would handle the conversion of a com-
ponent using these features to the equivalent features in a functional component.

 For now, just know that while all functionality (barring the very few exceptions we
saw earlier in section 4.3) can be converted from a class-based component to a func-
tional one, it might not always be simple. Just as we had to make judgment calls when
converting components using class methods, other degrees of complexity will intro-
duce several different approaches, some of which are more applicable to a given situa-
tion than others. On top of that, as the original developer starts to combine all these
features, you might end up with a very complex component that needs to be com-
pletely reworked to make sense in a functional world.

4.5 Quiz
1 Are functional components less powerful, as powerful, or more powerful than class-

based components in terms of React functionality and which applications you
can build?

2 How many arguments are passed to a functional component?
3 Which one of these statements is not a benefit of using functional components?

a Functional components are more compact than class-based components.
b Functional components are faster than class-based components.
c Functional components are easier to understand than class-based components.

4 If you’re starting a brand-new React application, should you use functional com-
ponents or class-based components, all else being equal?

5 Converting a class-based component to a functional component is always trivial;
true or false?

Quiz answers
1 Functional components are exactly as powerful as class-based components. Any

application you can build using one type can also be built using the other.
2 Functional components receive one argument: a frozen object of properties.
3 Functional components are not faster than class-based components. While there might

be a slight difference in speed for any naive implementation, both types of com-
ponents can be lightning-fast when optimized properly, or, when ill-composed,
can drag your whole application down. The choice of component type isn’t in
itself an indicator of application speed.

4 All else being equal, you should start any new project using functional
components.

135Summary
5 False. Converting a simple class-based component to a functional one can often
be trivial initially, but as component complexity grows, the conversion gets
more and more complex.

Summary
 Functional components are another way to write React components as an alter-

native to class-based components.
 Any JavaScript function returning JSX is a functional component, but for the

sake of convention, we tend to write functional components in a certain style.
 Certain JavaScript tricks are often used to aid the definition of functional com-

ponents, including destructuring, default values, the rest syntax, and the object
spread operator.

 Functional components are at least as capable as class-based components in
every respect.

 In certain aspects, functional components are more beneficial to the developer
experience, but these benefits do not extend to the final product, which is inde-
pendent of the choice of component type.

 If given the choice, using functional components is the recommended way to
write React components.

 Class-based components can generally be converted to functional components,
but it might require a lot of work and refactoring of existing functionality.

Making React
interactive with states
All the components we’ve created so far take some properties and render some
HTML based on those properties. We can pass a label property to a button, so the
button is displayed with that exact button text, for instance. But we can’t make the
button text change when something happens, such as changing between Turn On
and Turn Off when toggled. That’s because we lack both the ability to react to
something that happens and the ability to store the single piece of information that
something has changed dynamically.

 The output of the components we’ve created so far depends on nothing but
their properties. In other words, the components are “pure” in functional program-
ming terms. The components have no other inputs and no side effects. If you give
the same component the same properties, you’ll always get the same result and
nothing but that result.

 That’s all good, and it’s exactly what we want—but it’s also kind of boring. Such
components are vital for presenting data but are useless if we want to create an

This chapter covers
 The role of state in a component

 Using state in functional components

 Converting stateful class-based components
to functional components
136

1375.1 Why is React state relevant?
interactive application. If we want to update something when a button is clicked or an
input is filled, we need to store that somewhere and pass that information to some
other component to react to it. Imagine a login form. When users enter their email
and password, we need to store that information somewhere to display error messages
if filled incorrectly. When users click the Send button, we need to send the data to a
remote server.

 Components that depend only on their properties and have no internal logic
beyond that are also called stateless components. The alternative is a stateful compo-
nent. In this context, state refers to the ability to change over time by using internal
variables. The same component can have one internal state that results in one Java-
Script XML (JSX) output at one point, and later have a different state that results in a
different output. Imagine a push button that can toggle between being clicked and
not clicked. Whether it’s clicked or not is the state of the button, and a component
that holds state is stateful.

 In this chapter, we’ll cover exactly what a stateful application is and what a stateful
component does in such an application. We’ll then make this more concrete by seeing
how you set, update, and use component state inside a functional component. Despite
the very simple API, which consists of a single function, useState, there’s a lot of
information to cover.

 At the end of this chapter, we’ll briefly discuss how setting, updating, and using
state in a class-based component works. This is done in a related but different way, so
there are some important things to be aware of.

 When discussing class-based components, we’ll also introduce how to convert state-
ful class-based components to stateful functional components. This will come in handy
if you’re tasked with working on an older codebase that is still using class-based compo-
nents, but you want to upgrade it to a functional codebase so you can use the latest and
greatest technology available. This knowledge can also help if you find examples and
guides online that teach you how to do something in a class-based component. There
are still thousands of older and useful tutorials out there, but to use the advice pre-
sented in a modern codebase, you have to convert some of the concepts.

NOTE The source code for the examples in this chapter is available at
https://rq2e.com/ch05. But as you learned in chapter 2, you can instantiate
all the examples directly from the command line using a single command.

5.1 Why is React state relevant?
State is essential for making any kind of interactive application. If your application
doesn’t have any state, it means that your application is completely static—it can’t
change at all once opened in the browser. This might be fine for a blog post or a rec-
ipe, but if you want users to log in, update, click, or in any other way interact with your
application to influence what is being shown, you need your application to be stateful.

 React components are individually stateful. Keeping state in a component is what
makes your React application as a whole stateful.

https://rq2e.com/ch05

138 CHAPTER 5 Making React interactive with states
 Note that while almost all React applications are stateful, not all components are state-
ful. You might have only a few stateful components in your application, but those few
components can control state for your entire application and will update all the state-
less components when necessary. While it’s extremely hard to generalize about this, a
rough estimate is that probably no more than a third of your components are stateful
in your final application, and as applications grow larger and more complex, that
ratio will likely decrease. Imagine a fictional component tree for a fictional applica-
tion, as shown in figure 5.1. Only the dark components are stateful, whereas the light
ones are stateless.

React doesn’t have tools to make your application as a whole stateful. A React applica-
tion is only defined as the sum of its components, so to make your application stateful,
you have to make some of your components stateful.

Figure 5.1 The dark components are stateful; the light ones are stateless. Note how stateful components
often reside toward the top of your component tree, whereas stateless components are more prevalent
toward the leaves.

1395.1 Why is React state relevant?
5.1.1 React component state

Component state is what makes a component stateful rather than stateless:

 Stateful component—A stateful component is independent of its context and has
the ability to update itself based on internal triggers.

 Stateless component—A stateless component can only change or update when its
parent component provides it with new properties.

React component state is the mechanism that allows you to store values inside your
component that can change over time. Imagine the difference between a clock com-
ponent that can display some time of day based on a property passed to it, versus a
clock component that is able to update itself every second and continually display the
current time. To do the latter, the component needs to have a way to store the current
time of day (as well as a way to advance that value).

 Figure 5.2 illustrates the difference between these two approaches.

Note that for the stateless clock in figure 5.2 to actually work, the parent has to be
stateful because we still need to keep the current time in a state somewhere. Of course,
we could make the parent component stateless as well, but then we would have to
push the state higher up the tree.

5.1.2 Where should I put state?

Okay, so we want our application to be stateful. Now where do we put the state?
Normally, you would try to put the state as close as possible to the components that
need it.

 Let’s say you have an application that contains a top menu with a (live and func-
tional) clock in it, a main section with many different pages that can update as you
navigate around the page, and a footer with some static links. You need the state for
the clock to exist somewhere either inside the clock component itself or in any com-

Stateful<clock>Stateless<clock>

<Parent>

<Clock>

currentTime 10:05:32

<Parent>

<Clock>

currentTime 10:05:32

Figure 5.2 The stateless clock
needs its parent component to
update it every second to
display the time, whereas the
stateful clock can update itself,
and the parent need not worry
about it.

140 CHAPTER 5 Making React interactive with states
ponent above it in the tree. If you design your application as in figure 5.3, you have a
choice of components for where to put your clock state.

In this example, it makes sense to put the clock state inside the clock component
itself. No other component has a need to know about the current time, so we just have
the state localized to the component that needs it.

 On the other hand, let’s say we also need to keep the state of which page is cur-
rently displayed in the application. This information is required both in the Pages
component because it actually needs to display the active page, as well as in the Menu
component because it needs to display the link to the current page with a highlighted
background.

 Examining the document tree in figure 5.4 shows that we can put the information
in either Main or App, as those are the only two components that contain both of the
components that require the state we care about.

 Whether you actually decide to put your current page state in Main or App is up
to you, as it’s probably a matter of taste or personal preference. While there is a
practical argument to keep state as “low” in the document tree as possible (i.e., put
it in Main), that component might already have a ton of other responsibilities.
Therefore, it might make sense to put this information in the parent App for organi-
zational purposes.

<App>

<Main>

<Pages> <Footer><Header>

<Menu> <Clock>

...

... ...

Figure 5.3 Clock state is only required in the component marked in a darker gray. You can put
your clock state in any of the components with a dashed border. These represent the clock
component and its ancestors.

1415.1 Why is React state relevant?
5.1.3 What kind of information do you store in component state?

In general, any state used in a web application belongs to one of three categories:

 Application data
 UI state
 Form data

This isn’t a rule or an artifact of React in particular, but it’s a consequence of how
stateful applications operate.

 Different types of data are stored in different ways. We’ll cover each of these to talk
about how to store and use the data appropriately. There might be other categories of
component state, but most of them fall within one of the preceding three categories.

APPLICATION DATA

Application data is the data the user is working on, updating, or reading. If you’re
building a web application where users can log in, the information about the user is
application data. If the user can log in and see available classes in the gym, book a
class, and so on, all of that data is application data as well.

 Application data is most often stored on a global level in your application. If you
have a component that displays gym classes, then it would be possible to store the list
of available classes locally in this component, but that would also mean that all the infor-
mation about the available classes would be lost when the component unmounts, and
they would have to be reloaded from the server when the component mounts again

<App>

<Main>

<Pages> <Footer><Header>

<Menu> <Clock>

...

... ...

Figure 5.4 Current page state is required in the two components marked in a darker gray.
You can then put your current page state in the two components marked with a dashed
border. These are the common ancestors of the two target components.

142 CHAPTER 5 Making React interactive with states
later. These two terms, mounting and unmounting, will be discussed in a lot more detail
in the next chapter.

 A better solution is often to create a data store in a component that is persistent in
your application so that when data is loaded once, it remains through the application.
We’ll see different ways of doing this in the future involving built-in React functional-
ity (using React Context).

UI STATE

UI state refers to the current state of UI components, such as which tab is currently
active, whether a panel is collapsed or not, whether the menu is open or not, and so
on. In general, this is intermittent data that isn’t persisted but just helps the web appli-
cation render the correct elements in the correct way.

 UI state values are most often kept as local as possible. The information about
whether the menu is open or not is only of relevance inside the menu component, so
you can easily store this as local state inside this component only.

FORM DATA

As you’ll see in chapter 9, form data is another very common use case for component
state. While the user is interacting with a form, entering data, moving from one form
field to the next, the current state of the form is often kept in local state in the compo-
nent that covers all the form fields.

5.1.4 What not to store in state

A number of things should never be stored in state, including the following:

 Values that don’t change—This isn’t just constants like magic numbers but also
configuration values loaded in at application start. If it can’t change, don’t
make it variable.

 Copies of other state values—You should try to keep a single source of truth. If you
have some data in a global state in your application, it will get messy if you also
keep it in a local state in a different component (unless you’re locally allowing
the user to update the data there in a form).

 Duplicates of the same data—If you have two versions of the same data in state, you
might want to consolidate that data. For instance, if you have both first name,
last name, and full name in state, you’ll have to update at least two of these val-
ues every time one of the values change. It would be a lot better to only keep
the source values, first name and last name, in the state and calculate the full
name as needed based on the state.

Of course, there are many more things you should never put in state (e.g., your car
keys), but that list is too long to write out. The preceding list shows the common pit-
falls that you might think about doing, but probably shouldn’t.

1435.2 Adding state to a functional component
5.2 Adding state to a functional component
So far, we’ve discussed why, where, and what to keep in component state, but we still
don’t know how to actually do it. Keeping state in a functional component has a sur-
prisingly simple API that is both a main attraction and sometimes also a headache.
Because it’s a very low-level API, you might have to add some functionality to get a
smooth developer experience; however, it allows you to make simple cases of stateful
components very, very, easily.

 Let’s jump right in and see the API in action by creating the simplest possible state-
ful component, a click counter. We need a way to initialize our counter, display the
current value, and increment the counter every time we click a button. However, there
is one very important last step. We can’t simply update any old variable and hope that
the component renders correctly. We need to let React know that a value has been
updated, which means we need to go through the React-specific API. Refer to figure
5.5 for a simple flowchart.

To do this in a functional component, we need to use a function from the React pack-
age named useState. It takes an initial value and returns the current state and an
update function. Let’s add in the required relevant bits of the React-specific API, as
shown in figure 5.6.

 Let’s see the code in its entirety in listing 5.1. Note that we cover all the details
of the values passed to and returned from the useState hook later, so don’t be too
confused at this point about the setCounter function. It will be explained in
due time.

Display current value

Initialize counter to 0

User clicks

button
Update current value to

value + 1

Tell React that a value

has been updated

Figure 5.5 The flow of state in our counter component. We
initialize the variable and display it, and, on button click, we
increment the value and make sure React knows to update the
component to display the new value.

144 CHAPTER 5 Making React interactive with states

import { useState } from "react";
function Counter() {
 const [counter, setCounter] = useState(0);
 return (
 <main>
 <p>Clicks: {counter}</p>
 <button
 onClick={() => setCounter((value) => value + 1)}
 >
 Increment
 </button>
 </main>
);
}
function App() {
 return <Counter />;
}
export default App;

Let’s go ahead and run this in the browser right away and get clicking, as we have in
figure 5.7.

Listing 5.1 A fully functional counter

const [counter, setCounter] = useState(0);

return (

...

<p>Clicks: </p>{counter}

<button onClick={() => (}>setCounter value => value + 1)

...

);

Display current value

Initialize counter to 0

User clicks

button
Update current value to

value + 1

Tell React that a value

has been updated

Figure 5.6 The flow of state and the lines of code that refer to each action in the
chart. The dashes and arrows translate the concept to the actual piece of code
implementing the given goal.

Imports the function useState
from the React package

Initializes a new state with
an initial value and gets the
current value and a setter
function backDisplays

the value
through

the current
state

Updates the
value through
the setter
function

1455.2 Adding state to a functional component
There’s a lot to cover here, so let’s go over these steps one by one:

 Import the function useState from the React package.
 Call useState in the functional component and supply an initial value.
 Destructure the response from calling useState as two array elements:

– The first element is the current value.
– The second element is a setter function.

 Use the current value however you see fit.
 When you want to update the state, call the setter with either a function or a

plain value.

We’ll cover each of these steps one at a time in the next subsections. We’ll also dis-
cover how you can use multiple useStates to create more complex components.

Repository: rq05-functional-counter
This example can be seen in repository rq05-functional-counter. You can use
that repository by creating a new app based on the associated template:

$ npx create-react-app rq05-functional-counter --template rq05-functional-
counter

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-functional-counter

Figure 5.7 The counter in action after only three clicks, but feel free to keep going. The sky’s
the limit—or actually 9,007,199,254,740,991 is the limit—but you probably won’t get that far.

https://rq2e.com/rq05-functional-counter

146 CHAPTER 5 Making React interactive with states
 Oh, and did we mention, useState is a hook? This is the first and simplest of the
new React hooks that came in React 16.8 and changed everything. Hooks are special
functions that you can’t treat like any other function. We’ll cover some of that in this
section, but will go even deeper into the topic of hooks in chapter 6.

5.2.1 Importing and using a hook

useState is a hook. Hook is an umbrella term for a new kind of special function that
exists in React 16.8 and forward. React comes with a number of built-in hooks, and
they are hooks because React says so. They don’t do the same things nor provide over-
lapping functionality, but are all “hooks” into the React core functionality and require
special attention to work correctly.

 The fact that useState is a hook is actually very easy to see because the function
starts with the word use*. In modern React, it’s now a convention that any function start-
ing with the word use* is a hook, and non-hooks should never start with that word.

 So, what’s so special about hooks? Hooks are named like that because they are
hooks from your component to the “insides” of the React machinery. You can do some
magic things that aren’t possible without having this extra access. A functional compo-
nent is just a function, so it can’t really do much beyond controlling a single render if
we don’t have this deeper access.

 React comes with 15 hooks (as of React 18), which are low-level units that can be
combined to create all sorts of advanced components. New built-in hooks can be added
to the React API over time, so by the time you’re reading this, there might be more
than 15.

 You can create your own custom hooks on top of the React hooks. If you do, you
should name your custom hooks use* as well. For example, we could have created a
useCounter hook for the preceding component. We’ll cover custom hooks in chap-
ter 10.

RULES OF HOOKS

When you use a hook in a component, you must always use that hook. In addition, you
must use the exact same hooks in the exact same order every time you render the
component. This might seem weird, but it’s required by React to make your function
work correctly.

 By “always use,” we mean that the same hook must always be called every time the
component renders, that is, every time the component definition function runs. This
means that you can’t conditionally run a hook, for example, by putting it inside an if
block or include it after an optional return statement.

 Imagine a variant of the counter component where we pass a property to the com-
ponent to indicate whether it should be visible at all. You might think that we would
be able to do something like figure 5.8.

1475.2 Adding state to a functional component
We can implement this as follows:

function Counter({ isVisible }) {
 if (!isVisible) {
 return null;
 }
 const [counter, setCounter] = useState(0);
 return (
 ...
);
}

Well, that’s not allowed! What’s wrong here? The hook function, useState, isn’t called
every time, only sometimes. If the isVisible property is set to true in one render, the
hook will be called, but if it’s set to false in the next render, the hook won’t be called.
And, that’s not just bad, it will completely break your React application. React will
throw an error message similar to this:

React Hook "useState" is called conditionally. React Hooks must be called
in the exact same order in every component render. Did you accidentally
call a React Hook after an early return?

For this reason, you’ll need to sometimes make what looks like suboptimal code. You
need to put all your hooks before any attempt to return anything in the component,
as shown in figure 5.9.

Display current value

Initialize

counter to 0

User clicks

button
Update current value to

value + 1

Tell React that a value

has been updated

isVisible
is ?true

Mount

component

YesNo

Figure 5.8 Can we check the property first, and, if false, simply ignore initializing the state
altogether?

If isVisible is false, we
just return null from
the very start.

Only if isVisible isn’t false do
we actually initialize the state
using the useState hook. This
is wrong!

148 CHAPTER 5 Making React interactive with states
Let’s implement this as follows:

function Counter({ isVisible }) {
 const [counter, setCounter] = useState(0);
 if (!isVisible) {
 return null;
 }
 return (
 ...
);
}

This also means that you can never conditionally run a hook (e.g., inside an if block),
you can never run a hook in a loop (because that would mean you might have a vary-
ing number of hook calls), and you can never call a hook inside a callback or event
handler (it has to run directly in the component body when called). You’ll see some
examples of some of these restrictions in the next sections and how you can work
around those restrictions to still achieve the desired goal.

 We’ll also cover much more about hooks in the next chapter, where we go deeper
under the hood of hooks and how they must be used.

5.2.2 Initializing the state

When you call useState, you must pass an initial value; if not, the initial value is
assumed to be undefined. Only the value that you pass to useState the first time
around for each component instance matters. When your hook re-renders for what-
ever reason, the initial value is ignored.

 The most obvious use case for this is setting up a baseline in your component.
When it mounts the first time, what should the state be? If it should be some dynamic

Display current value

User clicks

button
Update current value to

value + 1

Tell React that a value

has been updated

isVisible
is ?true

Initialize

counter to 0

YesNo

Figure 5.9 We have to initialize the state before optionally aborting rendering even if we
don’t need the state at all.

Initializes two variables
that might never be
neededOnly returns something

after all our hooks have
been executed

1495.2 Adding state to a functional component
value passed in as a property, use that property. If it should be any static value, write
that. In 99% of cases, you’ll set your initial value to either a static value (including
null very often) or a property. We’ll cover some examples of initialization in the rest
of this section.

INITIAL VALUE

Every state has an initial value. Our counter had an initial value of 0, but it didn’t need
to be 0, of course. We could have initialized it to 10, 100, or even some dynamic value.

 Let’s say we want to create a variant of the counter, where we can initialize the
value to some property that we pass in. We’ll then create an application with three dif-
ferent instances of this counter initialized with different starting values. The resulting
component tree will look like figure 5.10.

We can implement this as shown in the following listing. The result in a browser will
look like figure 5.11.

import { useState } from "react";
function Counter({ start }) {
 const [counter, setCounter] = useState(start);
 return (
 <main>
 <p>Counter: {counter}</p>
 <button onClick={() => setCounter(value => value + 1)}>
 Increment
 </button>
 </main>
);
}
function App() {
 return (
 <>
 <Counter start={0} />
 <Counter start={123} />
 <Counter start={-64} />
 </>

Listing 5.2 Triple counters

<App>

<Counter>

start 0

<Counter>

start 123

<Counter>

start -64

Figure 5.10 We now want to
have three counters initialized to
different starting values because
it looks cool.

The property passed to this
component is named start.

We use that property
to initialize our state.

Three instances of
the counter with three
different start values

150 CHAPTER 5 Making React interactive with states
);
}
export default App;

The following are other common static initial values besides numbers:

 true or false for Booleans—If your menu is hidden until a button is clicked, the
isMenuVisible state is initialized to false.

 Empty string, ""—If you have an input for a login email address, you’ll initialize
your state to the empty value so the input is empty until the user starts typing.

 null—If you have a complex value that hasn’t been set to anything yet, null is
the perfect placeholder value for indicating that no value exists yet.

The most common dynamic initial value is to use a property. We did that with the pre-
vious counter. Similarly, you would use a property if you had a component to change
your name. You would pass in the current name as a property and initialize your state
based on that.

Repository: rq05-triple-counter
This example can be seen in repository rq05-triple-counter. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq05-triple-counter --template rq05-triple-counter

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-triple-counter

Figure 5.11 Our three counters before we start clicking any of them

https://rq2e.com/rq05-triple-counter

1515.2 Adding state to a functional component
 You could also initialize your state to a value from a cookie or similar local storage.
For a login form, you could initialize the email address state with the last known email
address used in this same form as stored in a cookie.

ONLY THE FIRST INITIAL VALUE MATTERS

Let’s make a new variant of the counter with a variable start value. This time, we
want to add a new button outside the counter that will change the start value of the
counter. So, instead of initializing the value to 0 every time, we have a button that,
if clicked, will lower the start value of the counter by 10, as illustrated in a flowchart
in figure 5.12. We’re actually creating a stateful component on top of our stateful
component.

Rather than blindly implementing this, let’s think through some scenarios. What hap-
pens in this scenario?

1 At first, the counter will be initialized with a start value of 0.
2 We then click the button to lower the start value, so the start value should now

be –10.
3 Does the counter then update to –10?

<App>

Render counter with

current start value

Initialize start value to 0

User clicks

button to

lower start

value Update current start

value to value - 10

Tell React that a value

has been updated

<Counter>

Display current value

Initialize counter to start

value

User clicks

Increment

Update counter to

value + 1

Tell React that a value

has been updated

Figure 5.12 We now have state in both the app and the counter, and we want to use the app state
to initialize the counter state.

152 CHAPTER 5 Making React interactive with states
Let’s expand with another scenario:

1 At first, the counter will be initialized with a start value of 0.
2 We then click Increment in the counter to increase the counter value to 1.
3 We then click the button to lower the start value (which was 0), so the start

value should now be –10.
4 Does the counter then update to -10? Or does it update to –9?

In fact, both of these scenarios are meaningless because, as we’ve briefly mentioned,
only the first value passed to useState is used as the value for the state. If the initial
value changes in a subsequent render, the state never updates. This is both good and
bad. It’s good because otherwise our counter would always be the same value, as we
keep passing the same value in every render. The bad thing is that if we actually want
the value to change based on some passed parameter, we can’t do that (not in this way,
at least).

 In this instance, it wasn’t actually clear what we wanted to happen if we started low-
ering the start value after we had begun counting. It’s important to figure out exactly
what we want to happen before we try to implement it in code.

 It’s possible to have a state value update based on a property, but that requires
other hooks—in particular, the useEffect hook—that we’ll introduce in the next
chapter.

INITIALIZER FUNCTION

There are times when you want to set the initial value to the result of some calcula-
tion. Let’s say you have a password input that you want to initialize to a good, strong
password, but once the user starts typing, you just use whatever the user types. We
have an expensive function somewhere else in our codebase, generatePassword, that
we’ll use to create this initial password. Let’s go ahead and diagram this as earlier, in
figure 5.13.

If we implement this using the initial value, we get something like this:

function Password() {
 const [password, setPassword] = useState(generatePassword());
 ...
}

Render input with

current password

Initialize password to

generatePassword()

User types in

input field
Update password to the

current input value

Tell React that a value

has been updated
Figure 5.13 The state flow
when we use a function to
generate the initial value

1535.2 Adding state to a functional component
However, this generatePassword() function will actually be called on every render
(because it’s executed on every render), while the return value will be ignored on
every render except the first, as just explained. It might be a complex function that
runs a lot of expensive algorithms, so we should avoid running it if we don’t need the
returned value.

 For this purpose, the initial value can instead be a function that returns the initial
value. In such a setup, the initial value function will only be invoked the first time
around and will be ignored for future renders, as shown in figure 5.14.

We can do that generally as

const [password, setPassword] = useState(() => generatePassword());

or, in this instance, much simpler:

const [password, setPassword] = useState(generatePassword);

Because generatePassword is already a function, we can pass it as is. However, if the
function took an argument, perhaps the length of the generated password, we would
have to use the former form:

const [password, setPassword] = useState(() => generatePassword(12));

INITIALIZING TO A FUNCTION

What if your state is a function? If we pass a function to the initial value, it will be
called, so how can we store a function as the initial value? We make another function
that returns the first one. It sounds a bit weird, but it actually can make sense.

 Let’s say that we have a calculator component with which we can do some mathe-
matical operation (e.g., addition, subtraction, and multiplication) on two values
entered in two input fields. This calculation is a function that takes two values and
returns a single response. We can implement this as an enum-like type as follows:

const OPERATORS = {
 ADDITION: (a, b) => a + b,
 SUBTRACTION: (a, b) => a - b,
 PRODUCT: (a, b) => a * b,
};

Render input with

current password

Initialize password to the result of

invoking generatePassword()

User types in

input field
Update password to the

current input value

Tell React that a value

has been updated

Figure 5.14 We don’t actually
call generatePassword in
this instance. We rather
instruct the hook to call the
function itself only when it
needs to (which is only the first
time around).

154 CHAPTER 5 Making React interactive with states
function Calculator() {
 const [operator, setOperator] = useState(OPERATORS.ADDITION);
 ...
}

This looks pretty good, but it doesn’t work. What we’ve done is shown in figure 5.15.

If you type the preceding code snippet into a component, the operator will initialize
to the value NaN. That’s, of course, because useState is invoked with a function as ini-
tializer, so it calls the function, but that function doesn’t know what to do without
arguments, so it just returns NaN. What we need is a function that returns the operator,
as shown in figure 5.16.

We can implement that as

function Calculator() {
 const [operator, setOperator] = useState(() => OPERATORS.ADDITION);
 ...
}

This works and is a perfectly fine construction. You’ll see this construction repeated
when we talk about the setter function in a bit.

5.2.3 Destructuring the state value and setter

When we need a stateful component, we use the useState hook. This hook returns a
value, which we’ve destructured into a state value and a setter function like this:

const [value, setter] = useState(initial);

Calculate result using

current operator

Initialize to the result of invokingoperator
OPERATORS.ADDITION

User

changes

operator Update operator to new

selection

Tell React that a value

has been updated Figure 5.15 Because we pass
in a function as the initial value,
React treats it as an initializer
function and invokes it—just
like before.

Calculate result using

current operator

Initialize to the result of invoking aoperator
function that returns OPERATORS.ADDITION

User

changes

operator Update operator to new

selection

Tell React that a value

has been updated
Figure 5.16 This time, we’ll
still pass in a function as the
initializer value, but that
function will then return our
desired value (which happens
to be a function).

1555.2 Adding state to a functional component
This is as close to mandatory as it gets. There are other ways to do it, but everyone uses
the useState hook in this manner. If you do the same thing, your code will make
sense to other developers. This is simply a necessary convention when using this hook.
Other hooks work in similar ways, and you just have to get used to this notation.

THE USESTATE RETURN VALUE
The useState hook return value is a bit cryptic. The hook returns an array with two
elements. The first element is the current value of the state, and the second element is
the setter function. There are many ways we could “accept” this return value and
change it to our use. We could store the returned array in a variable and address the
two items as value[0] and value[1], respectively, or we could copy those elements to
two other variables. But the recommended and most common way is to destructure
the array directly in the assignment of the return value to a variable and name the two
returned values as we see fit:

const [counter, setCounter] = useState(0);

At this point, for most React developers, this is just instinctive. Because this is how you
use the useState hook, after a while, you don’t really think about it. The only thing to
think about here is the naming of the two destructured variables. The common
approach is to name the state value after what we store in it, and name the setter func-
tion the same, but with a set* prefix. This is what we did earlier with counter and
setCounter, respectively.

 Teams will often come up with their own naming standards or apply those from
others, but what we’ve suggested here is a safe default. The only potential deviation is
when it comes to Boolean state values. You might have a state value called isCol-
lapsed. The setter function would then be called setIsCollapsed, which just sounds
like terrible English, so some might just call it setCollapsed and skip the prefix of
is* or has* that Boolean variables often have.

Why useState returns an array
Okay, you understand that useState returns an array and that’s just how it is. But,
why does useState return an array with two unrelated values? It’s clearly not a list
of something!

Imagine that you’re a React core developer creating the useState hook. The use-
State function needs to return two values. One value is the current state, which can
be any type. The second value is the setter function, and it’s a function that can take
any value or even an update function.

JavaScript doesn’t have tuples or structures, where you can structurally combine dif-
ferent types in a “nice” way. You might think we could return an object with the two
properties and just have to agree on their naming, for example, obj.value and
obj.set. These would also destructure well as simply

const { value, set } = useState(0); // This doesn't actually work!

156 CHAPTER 5 Making React interactive with states
5.2.4 Using the state value

Imagine our counter from earlier. What would happen if we changed the Increment
button from incrementing the value to setting the value to the string "hi there"? So,
it’s not a number anymore, but a string. This would look like figure 5.17.

Let’s try to implement that:

import { useState } from "react";
function Counter() {
 const [counter, setCounter] = useState(0);
 return (
 <main>
 <p>Counter: {counter}</p>
 <button onClick={() => setCounter("hi there")}>
 Increment
 </button>
 </main>
);
}

(continued)

But as you’re inclined to have multiple states in the same component, you would
have to rename them often. Even if you only have a single state, you might still want
to have a more descriptive name, and destructuring the named properties in an
object to different local variables is more verbose than doing it for an array:

const {
 value: counter,
 set: setCounter,
} = useState(0); // This still doesn't work

That’s a lot of extra typing and unnecessary overhead. So, rather than returning a
more well-defined object with the two named properties, the React developers chose
the array for ease of use.

Because React developers know this useState function so well, and it’s used so
many times in their daily workflow, the unusual syntax just becomes muscle memory,
and they don’t really think about it. But we agree that it’s actually a bit weird.

Display current value

Initialize counter to 0

User clicks

button
Update current value to

"hi there"

Tell React that a value

has been updated

Figure 5.17 We set the
counter value to a string
when we click the button.

Initializes the
counter to a
number

Displays whatever the
counter currently is

On click, changes
the value of the
counter to a
string

1575.2 Adding state to a functional component
This actually works. If we click the button, the result will look like figure 5.18.

It’s pretty nonsensical to change the type of a state, just like it’s nonsensical to change
the type of any other variable.

 The state value returned by the useState hook is whatever you set it to. You can
change the type, complexity, and so on. You have full control over the value. The
value will start at whatever you pass in as the initial value, and from then on, it will be
whatever you pass to the setter function.

 Most of the time, your state type should not change, however. Just as any other vari-
able in your codebase, keeping the type consistent is a huge help, even though Java-
Script doesn’t put any such constraints on you. For instance, you can initialize a value
to null and later set it to a number, where null would represent that you don’t know
what the number would be yet, so initializing to 0 would be misleading. This could be
the case with an age input, for example. Just because you haven’t typed your age yet,
doesn’t mean that it’s 0. This would be a change of type, where the type is initially
null but later changes to a number.

 You can, of course, have object literals in the state, which might make sense for
related values that you either always update together or use together. You might, for
instance, have a loader component that displays the loading progress of a file in both
a percentage and in text with loaded bytes out of total bytes:

function Loader() {
 const [progress, setProgress] = useState(null);
 const someCallback = () => {
 ...

Figure 5.18 Our “counter” value is now a string, and it’s still displayed because we don’t
actually check if it’s a number.

158 CHAPTER 5 Making React interactive with states
 setProgress({ loaded, total });
 };
 if (!progress) {
 return null;
 }
 const { loaded, total } = progress;
 return (
 <h2>{Math.floor(100 * loaded / total)}%</h2>
 <p>Loaded { loaded } out of {total}.</p>
);
}

This is a partial example only, as we don’t actually load anything here, so we would
need more logic to actually fetch something and check the values. But it is an example
of related values stored in a single state value.

 In later sections, we’ll discuss how you can use multiple states rather than cram all
your states into a single value. You should only put multiple values into a single state
when the values are tightly related, as in the preceding Loader example.

5.2.5 Setting the state

Setting the state is fairly straightforward in that it works exactly like setting the ini-
tial value, with all the same quirks and workarounds. We can update the state either
by setting it to a static value or by using an update function that returns the new
value to be set.

SETTING TO A STATIC VALUE

Let’s create a simple accordion component where you can expand and collapse the
contents. The headline contains two buttons with a plus and minus, respectively.
Clicking the Plus button will expand the accordion and show the contents, and click-
ing the Minus button will collapse the accordion and hide the contents. This is illus-
trated as a diagram in figure 5.19 and implemented in listing 5.3.

Display contents only if

is Expanded trueis

Initialize flag to false

User clicks "+" button

User clicks "-" button

Update value to true

Tell React that a value

has been updated

Update value to false

Figure 5.19 The flowchart for
an accordion. The Boolean is set
to true or false depending on
which button is clicked.

1595.2 Adding state to a functional component
import { useState } from "react";
function Accordion() {
 const [isExpanded, setExpanded] = useState(false);
 return (
 <main>
 <h2 style={{ display: "flex", gap: "6px" }}>
 Secret password
 <button onClick={() => setExpanded(false)}>
 -
 </button>
 <button onClick={() => setExpanded(true)}>
 +
 </button>
 </h2>
 {isExpanded && (
 <p>
 Password: <code>hunter2</code>.
 </p>
)}
 </main>
);
}
function App() {
 return <Accordion />;
}
export default App;

The result in a browser will look like figure 5.20. This component is an example of
using the setter with a static value. The minus button always sets the state value to
false no matter how many times you click it. Because we set it to a fixed value, we
don’t need to look at the current value.

Listing 5.3 A simple accordion

Repository: rq05-accordion
This example can be seen in repository rq05-accordion. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq05-accordion --template rq05-accordion

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-accordion

Initializes the
state to false

Invokes the setter
with either true or
false when a button
is clicked

Displays the secret
accordion contents
if the Boolean is
true

https://rq2e.com/rq05-accordion

160 CHAPTER 5 Making React interactive with states
SETTING USING AN UPDATE FUNCTION

You can set the value as either a direct value as we’ve just done or with an update func-
tion that returns the new value. If you use an update function, it will be passed the cur-
rent state as an argument.

 We’ve already seen an example of using an update function:

const [counter, setCounter] = useState(0);
...
<button onClick={() => setCounter((value) => value + 1)}>

This updates the value in the state by using a simple increment function that takes an
argument and returns the argument + 1.

SETTING TO A FUNCTION

To set the state value to a function, we have to use the same workaround as with the
initial value. We need a function that returns our operator function.

 So, if we expand our calculator example from earlier with buttons to change the
operator, we would be implementing a full application. Let’s first look at the diagram
of the state flow in figure 5.21 and then see its implementation in listing 5.4.

Figure 5.20 After clicking the Plus button, the secret accordion contents are revealed.

1615.2 Adding state to a functional component
import { useState } from "react";
const PLUS = (a, b) => a + b;
const MINUS = (a, b) => a - b;
const MULTIPLY = (a, b) => a * b;
function Calculator({ a, b }) {
 const [operator, setOperator] = useState(() => PLUS);
 return (
 <main>
 <h1>Calculator</h1>
 <button
 onClick={() => setOperator(() => PLUS)}
 >
 Plus
 </button>
 <button
 onClick={() => setOperator(() => MINUS)}
 >
 Minus
 </button>
 <button
 onClick={() => setOperator(() => MULTIPLY)}
 >
 Multiply
 </button>
 <p>
 Result of applying operator to {a} and {b}:
 <code> {operator(a, b)}</code>
 </p>
 </main>
);
}

Listing 5.4 Simple calculator

Calculate result using

current operator

Initialize operation to the result of invoking

a function that returns PLUS

User clicks Plus

User clicks Minus

Update operator to the result

of invoking a function that

returns PLUS

Update operator to the result

of invoking a function that

returns MINUS

User clicks Multiply

Update operator to the result

of invoking a function that

returns MULTIPLY

Tell React that a value

has been updated

Figure 5.21 The expanded
calculator example now has three
buttons to change the operator.

Initializes the
state with a
function returning
the default
operator function

Updates the state with
a function returning
the clicked operator
function

We can now call
the state value as a
function because
we’ve made sure it’s
always a function.

162 CHAPTER 5 Making React interactive with states
function App() {
 return <Calculator a={7} b={4} />;
}
export default App;

See this fancy (but a bit simple) calculator in action in figure 5.22.

SETTING AND RENDERING

What happens if we keep clicking the Plus button in the calculator? Does the compo-
nent re-render every time, doing the calculation every time? We set the state to the
exact same value every time, so why should it?

 Actually, the component won’t re-render. React includes built-in optimization, so
useState will wait until the end of the current cycle to update the component. It
checks whether the value actually changed and then only re-renders the component if
it has changed. Because of this, there can be situations where you call the state setter

Repository: rq05-calculator
This example can be seen in repository rq05-calculator. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq05-calculator --template rq05-calculator

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-calculator

Figure 5.22 Our calculator with the default operator, PLUS. We don’t actually display
anywhere what the operator is, we just display the result of the calculation of applying that
operator to the two operands.

https://rq2e.com/rq05-calculator

1635.2 Adding state to a functional component
function, but no re-render happens (because no re-render should be necessary as
nothing has changed).

 Let’s expand our counter from earlier and add a Reset button that resets the
counter to 0. The state flowchart now looks like figure 5.23.

If we implement this, we get the following listing. You can see this new resettable
counter in figure 5.24.

import { useState } from "react";
function Counter() {
 const [counter, setCounter] = useState(0);
 return (
 <main>
 <p>Counter: {counter}</p>
 <button onClick={() => setCounter((val) => val + 1)}>
 Increment
 </button>
 <button onClick={() => setCounter(0)}>
 Reset
 </button>
 </main>
);
}
function App() {
 return <Counter />;
}
export default App;

Listing 5.5 A resettable counter

Repository: rq05-reset-counter
This example can be seen in repository rq05-reset-counter. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq05-reset-counter --template rq05-reset-counter

Display current value

Initialize counter to 0

User clicks Increment

User clicks Reset

Update current value

to value + 1

Tell React that a value

has been updated

Update current value

to 0

Figure 5.23 The new Reset
button sets the counter to 0
regardless of the old value.

When you click
Reset, the counter
is set to 0.

164 CHAPTER 5 Making React interactive with states
Clicking Reset works by resetting the value to 0. If we click the button again, nothing
happens. But how can you tell if the component re-rendered or not? The answer is a
very useful plugin available for Chrome, Firefox, and modern versions of Edge, called
React Developer Tools. It’s available for download from their respective stores:

 Chrome and Edge: http://mng.bz/wvoq
 Firefox: http://mng.bz/qrYw

With this plugin, we’re able to see when any component renders. React Developer
Tools instructions are shown in figure 5.25.

 When finished, go back to the resettable counter application and click the incre-
ment counter, and you’ll see a blue outline around the entire component flash briefly
every time the counter increases. It should look like figure 5.26.

 If you click the Reset button when the counter isn’t at 0, you’ll see the blue outline
flash because the component renders. But if you click the Reset button when the
counter is already at 0, no blue outline appears. React is smart enough to know that if
the state is unchanged, the component output is (or at least should be) unchanged.

(continued)

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-reset-counter

Figure 5.24 A resettable counter that we’ve just set back to 0

https://rq2e.com/rq05-reset-counter
http://mng.bz/wvoq
http://mng.bz/qrYw

1655.2 Adding state to a functional component
. Open the Components tab in your browser developer tools.

2. Click the circled gear icon to open settings (not the gear icon in the top-right corner).

3. Check the Highlight pdates hen omponents ender check box.U W C R

4. When checked, it should look like this.

Figure 5.25 Open the Components panel for React Developer Tools, open the gear menu, and select the
Highlight Updates When Components Render check box.

Figure 5.26 The blue outline around the entire component indicates that it has just rendered
due to the state changing.

166 CHAPTER 5 Making React interactive with states
STATE MUST BE SET TO A NEW VALUE

This condition on the re-render also means that if you set the state value to the same
object it already is, even if you changed the object “on the inside,” nothing will hap-
pen because there isn’t a re-render. This can occur, for example, if you have an array
in your state. If you manipulate the array in place and set the same array as the state
value again, the component won’t render because nothing has changed (from a refer-
ential equality perspective, at least).

 Let’s see this in action and discuss how we can fix this. For that purpose, we’re going
to build a simple to-do application. We have a list of items we can tick off the list, and as
we tick off an item, we remove it from the array and then render the list again.

 The wrong way to do this is to set the state to the same array every time. It doesn’t
matter if we edit the array before setting it as state again because React doesn’t look
inside our state value, but only at the reference. This wrong approach in sketched out
in figure 5.27.

While we now understand that this is wrong, let’s try to implement it anyway, so we can
also see that it actually doesn’t work for real.

import { useState } from "react";
function TodoApplication({ initialList }) {
 const [todos, setTodos] = useState(initialList);
 return (
 <main>
 {todos.map((todo, index) => (
 <p key={todo}>
 {todo}
 <button
 onClick={() => {
 todos.splice(index, 1);
 setTodos(todos);
 }}
 >
 x
 </button>
 </p>
))}

Listing 5.6 A broken to-do list application

Display all items

Initialize task array with items

User removes an item

Remove item from array

and set as state again

Tell React that a value

has been updated

Figure 5.27 The wrong way to
use an array as a state value is
to set the state to the same
array every time. The problem
here is that React actually won’t
see that anything changed, and
it won’t cause our component to
re-render.

Modifies the
array in place

Updates the state to the
same value it already has
(which we changed
though, right?)

1675.2 Adding state to a functional component
 </main>
);
}
function App() {
 const items = [
 "Feed the plants",
 "Water the dishes",
 "Clean the cat"
];
 return <TodoApplication initialList={items} />;
}
export default App;

Let’s try this out and click those Delete buttons shown in figure 5.28. Nothing hap-
pens when you click. If you try enabling update outlines in the React Developer Tools
plugin, you’ll see that the component doesn’t actually re-render because the state
value is identical by reference, even though it might have been “updated.”

Repository: rq05-bad-todo
This example can be seen in repository rq05-bad-todo. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq05-bad-todo --template rq05-bad-todo

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-bad-todo

Figure 5.28 Our functional to-do list application looks right, but doesn’t work—nothing
happens when we click the buttons.

https://rq2e.com/rq05-bad-todo

168 CHAPTER 5 Making React interactive with states
For this reason, it’s not merely recommended that you don’t mutate state directly, it’s
absolutely necessary that you don’t. Doing this correctly requires setting the state
value to a new array, which is a duplicate of the old one but without the spliced item.
One way is to use the spread operator on a slice of the array before and after the item
to be deleted. We can fix the model so it becomes like figure 5.29 by creating a new
array and setting that as the new state. This is implemented in listing 5.7, which follows
the figure.

import { useState } from "react";
function TodoApplication({ initialList }) {
 const [todos, setTodos] = useState(initialList);
 return (
 <main>
 {todos.map((todo, index) => (
 <p key={todo}>
 {todo}
 <button
 onClick={() => {
 setTodos((value) => [
 ...value.slice(0, index),
 ...value.slice(index + 1),
]);
 }}
 >
 x
 </button>
 </p>
))}
 </main>
);
}
function App() {
 const items = ["Feed the plants", "Water the dishes", "Clean the cat"];
 return <TodoApplication initialList={items} />;
}
export default App;

Listing 5.7 A proper to-do list application

Display all items

Initialize task array with items

User removes an item

Clone task array without

deleted item and set as state

Tell React that a value

has been updated
Figure 5.29 We now pass a
new array to the setter function
every time an item is removed.
React correctly identifies that
state as updated and will re-
render the component.

Sets the state to a new array, which
is the concatenation of two things:
the old array sliced from the start
to just before the deleted element,
plus the old array sliced just after
the deleted element to the end

1695.2 Adding state to a functional component
This looks the same as before, but now we can actually delete items from the list, as
you can see in figure 5.30.

5.2.6 Using multiple states

We’ve hinted at this a few times, but just to confirm it—yes, you can have multiple use-
State hooks in the same component, and you often will. As an example, let’s expand
our new to-do list application. Let’s stop deleting items from the array when we com-
plete them. Instead, we’ll mark them as completed. Completed items will be rendered
in the list with a strike-through. On top of that, we’ll also add a new filter at the top,
where you can decide if you want to see all items or only uncompleted items.

 To filter the list, we need to remember whether we should filter out completed
items or not. The perfect way to do this is to add another state value that holds this fil-
ter flag, as illustrated in figure 5.31. The implementation is shown in listing 5.8.

Repository: rq05-proper-todo
This example can be seen in repository rq05-proper-todo. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq05-proper-todo --template rq05-proper-todo

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-proper-todo

Figure 5.30 Our functional to-do list application now actually works as here we’ve completed
two of the items on the task list for the day. Now, go run a bath; this is gonna be messy!

https://rq2e.com/rq05-proper-todo

170 CHAPTER 5 Making React interactive with states
import { useState } from "react";
function markDone(list, index) {
 return list.map(
 (item, i) => (i === index ? { ...item, done: true } : item)
);
}
function TodoApplication({ initialList }) {
 const [todos, setTodos] = useState(initialList);
 const [hideDone, setHideDone] = useState(false);
 const filteredTodos = hideDone
 ? todos.filter(({ done }) => !done)
 : todos;
 return (
 <main>
 <div style={{ display: "flex" }}>
 <button onClick={() => setHideDone(false)}>
 Show all
 </button>
 <button onClick={() => setHideDone(true)}>
 Hide done

Listing 5.8 To-do app with a filter

Display all items, but filter out

completed items if filter is true

Initialize task array with items

Initialize filter flag as false

User completes an item

Clone task array with item marked as

completed and set as state

Tell React that a value

has been updated

User toggles filter off

Set filter flag to false and update state

User toggles filter on

Set filter flag to true and update state

Figure 5.31 We can now update state in three different ways. If an item is marked as
completed, we still have to remember to create a new array, but with the item in question
marked as completed. If we toggle the filter flag, we simply set the relevant state flag.

Creates a little utility function that takes an
array of task objects and returns a new array
of the same objects, except one of them will be
marked as done, as indicated by the second
argument

Still initializes the
task list using the
useState hook

But now we have a
second instance of the
useState hook for the
new filter flag, which
we default to false.

Uses the filter flag to optionally filter
the list of to-do items to display

The two filter buttons
call the filter setter
function with either
true or false.

1715.2 Adding state to a functional component
 </button>
 </div>
 {filteredTodos.map((todo, index) => (
 <p key={todo.task}>
 {todo.done ? (
 <strike>{todo.task}</strike>
) : (
 <>
 {todo.task}
 <button
 onClick={() => setTodos((value) =>
 markDone(value, todo.index)
)}
 >
 x
 </button>
 </>
)}
 </p>
))}
 </main>
);
}
function App() {
 const items = [
 { task: "Feed the plants", done: false, index: 0 },
 { task: "Water the dishes", done: false, index: 1},
 { task: "Clean the cat", done: false, index: 2 },
];
 return <TodoApplication initialList={items} />;
}
export default App;

Let’s see this in action in figure 5.32 and try to use the various buttons.
 Of course, you’re not limited to two state values in a single component. You can

use as many as you want, though it might get a bit hard to follow if the number
exceeds 10. We suggest using either context providers, reducers, or custom hooks—or
all three—if states get more complex. We’ll get back to how these more advanced
techniques work in chapter 10.

Repository: rq05-filter-todo
This example can be seen in repository rq05-filter-todo. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq05-filter-todo --template rq05-filter-todo

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-filter-todo

Now we must remember
to use the new (optionally
filtered) list.

Renders the task with a
strike-through if it has
been completed

If not completed,
renders a button
that will call our

utility function and
updates the task

list state

Creates the list of initial items as a list of
objects, each marked as not done yet.

Note that we need to remember the
original position of each item, as the index
in the filtered array will be different from

the original index position.

https://rq2e.com/rq05-filter-todo

172 CHAPTER 5 Making React interactive with states
5.2.7 State scope

In all the components we created previously, we accessed and updated the state inside
the component itself, as opposed to accessing or updating the state outside the com-
ponent, where we defined the state. But what if we want to have state that spans multi-
ple components? What if we want to access the value in one component, but update it
in another? We hinted at this at the beginning of the chapter, when we talked about
the number of stateful components in the entire application component tree, but we
haven’t actually done it yet.

 To do this, we can use properties to pass state values and state setters to the rele-
vant components. The state flowchart is the same as before; the difference is the com-
ponent tree. Where we just had a single component handle everything, we’re now
going to introduce a number of components. The TodoApplication component is
still our stateful component holding the two state values. To aid this one, we add a
FilterButton and a Task, which take care of rendering the top filter buttons and
individual tasks in the list, respectively. Figure 5.33 shows this new component tree as
well as all the properties.

 Let’s now put this all together in a single application in listing 5.9, and, while we’re
at it, let’s also make things look a bit nicer with some styles.

Figure 5.32 After completing the two easy items, we can decide whether to see the full list and bask in
our 67% completed progress or only see the remaining items and get a bit overwhelmed because of the
single daunting task.

1735.2 Adding state to a functional component
<TodoApplication>

<Task>

task "..."

todos initialList

hideDone false

initialList [...]

done true/false

markDone () => {...}

<Task>

task "..."

done true/false

markDone () => {...}

<Task>

task "..."

done true/false

markDone () => {...}

.
.
.

<FilterButton>

current

flag true

setFilter () => {...}

true/false

<FilterButton>

current

flag false

setFilter () => {...}

true/false

Figure 5.33 The component tree of our multicomponent to-do application. We render a variable
number of Task instances, one for every item in the list, and always exactly two filter buttons.

174 CHAPTER 5 Making React interactive with states
import { useState } from "react";
function markDone(list, index) {
 return list.map(
 (item, i) => (i === index ? { ...item, done: true } : item)
);
}
function FilterButton(
 { current, flag, setFilter, children }
) {
 const style = {
 border: "1px solid dimgray",
 background: current === flag ? "dimgray" : "transparent",
 color: current === flag ? "white" : "dimgray",
 padding: "4px 10px",
 };
 return (
 <button
 style={style}
 onClick={() => setFilter(flag)}
 >
 {children}
 </button>
);
}
function Task({ task, done, markDone }) {
 const paragraphStyle = {
 color: done ? "gray" : "black",
 borderLeft: "2px solid",
 };
 const buttonStyle = {
 border: "none",
 background: "transparent",
 display: "inline",
 color: "inherit",
 };
 return (
 <p style={paragraphStyle}>
 <button
 style={buttonStyle}
 onClick={done ? null : markDone}
 >
 {done ? "✓ " : "◯ "}
 </button>
 {task}
 </p>
);
}
function TodoApplication({ initialList }) {
 const [todos, setTodos] = useState(initialList);
 const [hideDone, setHideDone] = useState(false);
 const filteredTodos = hideDone
 ? todos.filter(({ done }) => !done)
 : todos;

Listing 5.9 Advanced multicomponent to-do application

The FilterButton takes
four properties and
renders a nice button
based on these.

In particular, the onClick
property on the button calls
the passed setter function
with the passed value.

Similarly, the Task
component takes a
number of properties,
including a callback.

This time, we just invoke the
passed callback when we click
the button because it does the
required work, but only if the
item wasn’t already done.

1755.2 Adding state to a functional component
 return (
 <main>
 <div style={{ display: "flex" }}>
 <FilterButton
 current={hideDone}
 flag={false}
 setFilter={setHideDone}
 >
 Show all
 </FilterButton>
 <FilterButton
 current={hideDone}
 flag={true}
 setFilter={setHideDone}
 >
 Hide done
 </FilterButton>
 </div>
 {filteredTodos.map((todo, index) => (
 <Task
 key={todo.task}
 task={todo.task}
 done={todo.done}
 markDone={() => setTodos((value) =>
 markDone(value, todo.index)
)}
 />
))}
 </main>
);
}
function App() {
 const items = [
 { task: "Feed the plants", done: false, index: 0 },
 { task: "Water the dishes", done: false, index: 1 },
 { task: "Clean the cat", done: false, index: 2 },
];
 return <TodoApplication initialList={items} />;
}
export default App;

Repository: rq05-nice-todo
This example can be seen in repository rq05-nice-todo. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq05-nice-todo --template rq05-nice-todo

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq05-nice-todo

Two filter buttons in
the final component
with almost identical
properties

For each task
item, creates a Task
component instance

Sets the markDone to
the same updating
function as before

https://rq2e.com/rq05-nice-todo

176 CHAPTER 5 Making React interactive with states
And there we have it—our first complete, useful, and well-architected application in
React! It looks just like before, except it looks a lot nicer, as you can see in figure 5.34.

The ideas used in this application are the same ideas that fuel any application. We store
state in one level and pass it around to other components where applicable to render
the result we need. In our latest to-do application, state is stored “globally” in the Todo-
Application component and not just locally inside each of the child components.

 If we were to add another component to this that existed next to the task list but
would need access to the same state values as the task list does, we would need to lift
the states from the TodoApplication component up to the App component and then
pass the values and the setters down to the TodoApplication component. All of this
work of passing state values and setters around can get a bit complex, but we’ll see
how to solve that in a better way in chapter 10 using React Context.

5.3 Stateful class-based components
So far, we’ve covered how to add component state to functional components. But
stateful components existed before the emergence of hooks. In fact, state was a pri-
mary feature built into the functionality of class-based components.

 In class-based components, state works the same way and has the same four steps
shown in figure 5.5:

1 Initialize state.
2 Display current value.
3 Update state.
4 Inform React that state has been updated.

Figure 5.34 Our fully developed to-do application with a lovely UI, even! Currently, the filter is set
to Show All, but if we toggle it to Hide Done, only the last item would be displayed—just like before.

1775.3 Stateful class-based components
We’ve seen a ton of examples of how we do these four steps in a functional compo-
nent. Now let’s look at how to do the same in a class-based component. The API is sim-
ilar, but the syntax is a bit different, and the behavior also varies slightly. The basic
concept is the same, however.

 The code for a (partial) counter component looks like this:

class Counter extends Component {
 state = { counter: 0 }
 render() {
 return (
 ...
 <p>Clicks: {this.state.counter}</p>
 <button onClick={() =>
 this.setState({ counter: this.state.counter + 1 })
 ...
);
 }
}

Now, take a look at figure 5.35 for a quick overview of how the different parts relate
to the different bits of the state cycle. Rather than store values as local variables as

class Counter extends Component {

state = { counter: 0 }

render() {
return (
...
<p>Clicks: { }</p>this.state.counter

<button onClick={() =>

this.setState ({ })counter: this.state.counter + 1
...

);
}

}

Display current value

Initialize counter to 0

User clicks

button

Update current value to

value + 1

Tell React that a value

has been updated

Figure 5.35 The flowchart of data in our click counter with code added. The dashed
arrows connect the state in the flowchart to the corresponding bit of code responsible
for that particular action.

178 CHAPTER 5 Making React interactive with states
we do in a functional component, we store the state values on the class member called
this.state.

 In this section, we’ll first cover how adding state to class-based components is simi-
lar to adding state to functional components, but with a slightly different syntax; then,
we’ll discuss how this is also fundamentally different due to three larger changes in
behavior; and, finally, we’ll briefly go over how to convert a stateful class-based compo-
nent to a functional component. Note that we’re not going to provide full examples in
this section, merely explain the differences.

5.3.1 Similarities with the useState hook

Everything we’ve done so far in functional components could just as well have been
done in class-based components. Initializing, updating, and displaying state is the
name of the game, and we can do that with a slightly different syntax. See table 5.1 for
an overview of how the syntax deviates.

Table 5.1 State in functional components and class-based components

Functional component Class-based component

const [counter, setCounter] =
 useState(0);

This is the case if state is initialized to a static
value.

state = {
 counter: 0,
}

When we initialize state to a static value here, we
can use a class member.

const [counter, setCounter] =
 useState(initialValue);

This is the case if state is initialized to a dynamic
value from a property.

constructor(props) {
 this.state = {
 counter:
 props.initialValue,
 };
}

Here, we have to access the property in the
constructor and initialize the state using
this.state.

<p>
 Counter: {counter}
</p>

<p>
 Counter: {this.state.counter}
</p>

onClick={() =>
 setCounter(0)
}

If we’re setting the state to a fixed value, we can
use the nonfunctional variant of the setter.

onClick={() =>
 this.setState({ counter: 0 })
}

We do the same thing here, except we need to
make it an object.

1795.3 Stateful class-based components
5.3.2 Differences from the useState hook

There are also differences in how state is used in class-based components. Those dif-
ferences are significant and will affect how you use state in class-based components as
opposed to functional components. The main differences are listed here:

 You can only have one state object, which is always an object.
 Components always re-render if updated, even if nothing changed.
 Objects are merged when you update the state, so partial updates are possible.

We’ll go over each of these differences with a short example in the following subsections.

ONLY ONE STATE OBJECT

As you saw in table 5.1, class-based component state lives inside a state object. Even if
you only have a single value—for example, a counter—you have to create it on the
state object, update it on the state object, and display it from the state object.

 The upside is that moving from a single state value to multiple state values is very
smooth. You simply add a second property to the state object, and you’re good to go.
As soon as you have introduced state into a class-based component, you can support
one or multiple state values without any problem.

COMPONENTS ALWAYS RENDER WHEN STATE IS UPDATED

We mentioned in section 5.2.5 that the useState hook will only cause the component
to re-render if the state actually updates. If you set a state value to 0 when it’s already 0,
it won’t update the component. React assumes that our components are pure and that
the component will render the same if the state hasn’t updated.

 It was different in the old days, and some applications actually depended on this
back then. In a class-based component, you can call setState with the same values or
even no values, and React will re-render your component.

STATE OBJECTS ARE MERGED

Because the state in a class-based component is a single big object with potentially doz-
ens of state values, it would be annoying to have to remember to set all of them.

onClick={() =>
 setCounter(
 value => value + 1
)
}

If we use an update function, we simply use the old
value and return a new one using whatever type we
have in the state.

onClick={() =>
 this.setState(
 ({ counter }) =>
 ({ counter: counter + 1 })
)
}

If we’re setting the state to a dynamic value based
on the current state, we can use the functional
update variant of the setter, but we have to return
an object based on the old state object.

Table 5.1 State in functional components and class-based components (continued)

Functional component Class-based component

180 CHAPTER 5 Making React interactive with states
 Imagine that you reset a counter with the following snippet:

this.setState({ counter: 0 });

If you had a number of other state values in this same component, imagine that this
would reset or even delete all these other state values because you didn’t include them
in the object that you passed to setState. That would be quite annoying. If that hap-
pened, you would have to do something like this every time to copy all the existing val-
ues into the new object:

this.setState(
 oldState => ({ ...oldState, counter: 0 })
);

Fortunately, you don’t have to do that. React automatically does this for class-based
components. When you pass a new object (or an update function that returns an
object) to the setState method, React automatically merges this new object onto the
existing state object. It will do exactly what is shown in the previous snippet, so you
don’t have to remember to do that every time.

5.4 Quiz
1 Which of the following would you store in component state?

a Dynamic application data
b Component properties
c Constant values

2 Which of the following is the correct way to initialize a simple numeric state in a
functional component?

a const { value, setter } = useState(0);
b const [value, setter] = useState(0);
c const { value, setter } = useState({ value: 0 });
d const [value, setter] = useState({ value: 0 });

3 You can only have a single useState hook in each functional component. True
or false?

4 When updating a component state value through a useState setter function,
the component will always re-render. True or False?

5 Which of the following would you use to read a single numerical value from
state in a class-based component?

a <p>Value: {this.state}.</p>
b <p>Value: {this.counter}.</p>
c <p>Value: {this.state.counter}.</p>

181Summary
Quiz answers
1 You should definitely store dynamic application data in state but never proper-

ties (you already have them in the properties object), and neither should you
store unchanging values in state.

2 const [value, setter] = useState(0);. You provide the initial value to use-
State as a simple value and destruct the returned value as an array, not an
object.

3 False. You can have as many useState hooks in each component as you desire.
4 False. The component will only render if the new value passed to the setter func-

tion is different from the existing value. The comparison is done using referen-
tial equality, so even if an object has updated internally, if it’s still the same
object, it won’t cause a re-render.

5 <p>Value: {this.state.counter}.</p>. Remember that state in a class-based
component is always an object, and your state values are properties of that object.

Summary
 Component state is used to make your application interactive. You’ll get just about

nowhere in your application development if you don’t have stateful components.
 You can have state in both class-based components and functional components.
 State in functional components is initialized as separate distinct calls to use-

State that have a separate setter per state value.
 You can initialize the value of a useState hook by providing a static value, a

dynamic value, or even a function that returns the initial value.
 You can update the value of a useState hook at any time, but only in a callback

or other hook, and never directly in the component definition.
 When updating the value of a useState hook, you can either provide a new value

directly or provide a function that returns a new value based on the old value.
 State in class-based components is initialized as a single object and updated using

the setState method.
 Conversion from a stateful class-based component to a stateful functional com-

ponent might require a bigger refactor as the two approaches are significantly
different.

Effects and the React
component life cycle
React components use JavaScript XML (JSX) to send information to the user in the
form of HTML. But components need to do a lot more than that to be useful in an
application. In React, everything that happens, happens in some component, so if
your application wants to set a cookie, load some data, handle form input, display
the user’s camera, start or stop a timer, or a myriad of other dynamic capabilities,
you need more than just JSX.

 If you want your component to load some data from a server, you want the effect
to run as soon as the component loads, but then you don’t need the effect to run

This chapter covers
 Running effects inside components

 A complete guide to the React component
life cycle

 Mounting, unmounting, and rendering
components

 Introducing life cycle methods for class-based
components
182

1836.1 Running effects in components
again even if your component re-renders. On the other hand, if you want to set a
cookie with the last username entered into the login field, you want that effect to run
every time the user types in the input field. If you want to display a timer inside your
component, you want the timer to start ticking as your component loads, but you also
want the timer to stop ticking as your component later unloads, to avoid unnecessarily
clogging up resources.

 What you need are effects. Effects are functions that run inside a component under
certain circumstances. To run an effect, you have to specify under which circum-
stances the effect should run. To fully understand this, we have to dive into the topic
of the React component life cycle.

 We’ll properly define some terminology that we’ve already used previously, but not
properly explained, such as mounting, unmounting, and re-rendering. The latter is
especially important. When and why do components re-render, and how can you hook
into this process to either control it or react to it?

 We’ll finally give a brief introduction to how life cycle methods work in class-based
components and what they compare to in functional components. The difference
between the two component types becomes even more pronounced than what we’ve
seen previously. The life cycle methods of a class-based component are extraordinarily
complex and hard to understand compared with the simplicity of an effect in a func-
tional component. With all that to cover, let’s get started!

NOTE The source code for the examples in this chapter is available at
https://rq2e.com/ch06. But as you learned in chapter 2, you can instantiate
all the examples directly from the command line using a single command.

6.1 Running effects in components
Let’s say you have a timer component, and you want it to display the number of sec-
onds it has been mounted. The first thing that comes to mind is to create an interval
with setInterval inside the function body, which increments a counter state value
every second. But when you change the state value, the whole component re-renders,
which would start another interval rendering your component twice every second,
which would start another two intervals rendering it four times every second, and so
on. That’s clearly not the way to do it.

 Another idea is to use a timeout with setTimeout. In this situation, 1 second after
the component renders, we increment the counter state value, which in turn causes a
re-render, starting a new timeout. This seems like a reasonable approach. But what if
your component re-renders for other reasons? A component can re-render because a
property changes or because it has multiple state values that can change independently
of the counter. If your component unmounts because it isn’t needed anymore, the time-
out continues to run and, after a second, will try to update a component that no longer
exists. That’s unfortunately also not a good way to do it.

 To solve this problem, React introduced an effect hook, called useEffect (notice the
important use* prefix used on all hooks). An effect in a useEffect hook is triggered

https://rq2e.com/ch06

184 CHAPTER 6 Effects and the React component life cycle
when any value in a set of dependencies changes. Furthermore, when an effect in use-
Effect runs, it can define a cleanup function that should run in one of two cases: before
the effect is triggered again or if the component unmounts. Figure 6.1 shows this flow.

This diagram is pretty complex, so we’ll take you through it one step at a time by intro-
ducing functions that do just a few things at a time. The trick to this diagram is that
you can set up your useEffect call so that you can define just the effect, just the
cleanup function, or both, when it suits your needs. Furthermore, by carefully crafting
the dependency array with the right values, you can trigger your effect and cleanup to
run at exactly the desired instances.

 There are five likely scenarios that you want your effect and cleanup function to
run under. We’ll go through all five scenarios with examples of each:

 You’re loading some external data in a component. To correctly do that in an
effect, you need it to run as your component mounts.

 You’re creating a timer using an interval. To achieve this, you need to run such
an effect as your component mounts, but also clean it up again as your compo-
nent later unmounts.

function Component() {
useEffect(
function effect() {

// some effect here
return function cleanup() {

// some cleanup here
};

},
[dependency1, dependency2,...]

);
// rest of component

}

Mount

Run effect()

Mounted

Did any

dependency

change?

DOM is updated

No Yes

Unmount

Run cleanup()

Component is

removed

DOM is updated

Run cleanup()
Run effect()

Component renders

Figure 6.1 The useEffect hook here is displayed both as a code snippet and a flowchart. The hook
contains an optional effect as well as an optional cleanup function. The effect runs on mount, and the
cleanup runs on unmount—if they’re defined, of course. Furthermore, if the effect has a dependency array,
the cleanup and effect will also run every time any value reference in the dependency array changes.

1856.1 Running effects in components
 You want to track when a dialog is closed regardless of how it’s closed. To do this
properly, you need to run such an effect only as your component unmounts.

 You want to update the browser window (or tab) title with the title of the page
currently displayed. To achieve this in an effect, you need it to run every time
the title property changes, but not when any other property changes, as long as
the title remains the same.

 You want to run a timer but only if the timer is active as denoted by an isActive
flag. To achieve this, you need to run such an effect and its cleanup every time
the isActive flag changes, but not if other properties or values change, as long
as the isActive flag remains the same.

6.1.1 Running an effect on mount

Let’s say we want to create a drop-down component that loads data from an external
server to be displayed in the drop-down. We need to load this data as an effect that runs
on mount, and then it shouldn’t ever run again (because we already have the data). In
this scenario, only the part of the diagram highlighted in figure 6.2 is relevant.

You can see the code in listing 6.1 and the result in figure 6.3.

function Component() {
useEffect(

function effect() {
// some effect here
return function cleanup() {

// some cleanup here
};

},
[dependency1, dependency2,...]

);
// rest of component

}

Mount

Run effect()

Mounted

Did any

dependency

change?

DOM is updated

No Yes

Unmount

Run cleanup()

Component is

removed

DOM is updated

Run cleanup()
Run effect()

Component renders

Figure 6.2 The execution of an effect hook when the effect is only desired as the component mounts. Note
how the dependency array is kept empty, and there’s no cleanup function. This means that the effect is only
ever executed on mount and never as the component re-renders.

186 CHAPTER 6 Effects and the React component life cycle
import { useState, useEffect } from "react";
function RemoteDropdown() {
 const [options, setOptions] = useState([]);
 useEffect(() => {
 fetch("/ /www.swapi.tech/api/people")
 .then((res) => res.json())
 .then((data) => data.results)
 .then((characters) => characters.map(({ name }) => name))
 .then((names) => setOptions(names));
 }, []);
 return (
 <select>
 {options.map((option) => (
 <option key={option}>{option}</option>
))}
 </select>
);
}
function App() {
 return <RemoteDropdown />;
}
export default App;

Listing 6.1 Drop-down loading options from remote

Repository: rq06-remote-dropdown
This example can be seen in repository rq06-remote-dropdown. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq06-remote-dropdown --template rq06-remote-dropdown

We need a state to have a place
to hold the values once the
options have been fetched.

In our effect hook, we load
this URL (which is a list of
characters in Star Wars).

As the result is parsed,
we set our state value
with an array of
character names.

Finally, we make sure to pass
an empty dependency array,
so this effect only runs on
mount and never again.

Figure 6.3 Our Star Wars character drop-down in action. May the source be with you!

1876.1 Running effects in components
This is a pretty classic setup that you’ll often see in web apps loading data that is rele-
vant only inside a small part of the overall application. It does have a small problem
though. What happens if, for some reason, the component unmounts before the
response comes back from the server—maybe because the internet connection is flaky
or the server is experiencing a lot of load? We’ll have to deal with that in a cleanup
function. Cue next section.

6.1.2 Running an effect on mount and cleanup on unmount

We’ve been tasked with creating a stopwatch component. It should start an interval as
soon as the component mounts that just keeps incrementing as time passes; however,
if the component is ever unmounted in the future (e.g., because the user closes it), we
must make sure to stop the interval. This requires an effect that runs on mount but
also runs a cleanup function on unmount. In this scenario, only the part of the dia-
gram highlighted in figure 6.4 is relevant.

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-remote-dropdown

Mount

Run effect()

Mounted

Did any

dependency

change?

DOM is updated

No Yes

Unmount

Run cleanup()

Component is

removed

DOM is updated

Run cleanup()
Run effect()

Component renders

function Component() {
useEffect(
function effect() {

// some effect here
return function cleanup() {

// some cleanup here
};

},
[dependency1, dependency2,...]

);
// rest of component

}

Figure 6.4 To make the effect hook activate with an effect and cleanup only on mount and unmount,
respectively, you must add an empty dependency array to make sure that the effect and cleanup never runs
just because the component is re-rendering.

https://rq2e.com/rq06-remote-dropdown

188 CHAPTER 6 Effects and the React component life cycle
You can see the code for such a component in the following listing. Figure 6.5 shows
the component in action.

import { useState, useEffect } from "react";
function Stopwatch() {
 const [seconds, setSeconds] = useState(0);
 useEffect(() => {
 const interval = setInterval(
 () => setSeconds((seconds) => seconds + 1),
 1000
);
 return () => clearInterval(interval);
 }, []);
 return <h1>Seconds: {seconds}</h1>;
}
function App() {
 const [showWatch, setShowWatch] = useState(false);
 return (
 <>
 <button onClick={() => setShowWatch((b) => !b)}>Toggle watch</button>
 {showWatch && <Stopwatch />}
 </>
);
}
export default App;

Listing 6.2 Stopwatch

In our effect function, we start an interval, to be
run every second, that increments the counter.

Using the browser built-in
function setInterval, we can
have our increment function
invoked at a steady rate.

Cancels the ongoing interval in
the cleanup function using the
built-in function clearInterval

Conditionally renders the
stopwatch to see the cleanup
function do its job

Figure 6.5 Our stopwatch is ticking away.

1896.1 Running effects in components
Even though we’re using the variable setSeconds inside the effect, we don’t list it as a
dependency because it’s a stable variable that doesn’t change. The state update func-
tion as returned by the useState hook is always the same function by reference. You
can include it in the array, and the hook works the same, so if you find this part a bit
too complex to remember, just include the function in the array.

EVENTS

Another common example of using an effect only for mount and unmount is listen-
ing for events. For example, you might want your component to update itself when
the whole web page resizes (listening to the resize event) or when a certain element
scrolls (listening to the scroll event). We’ll see a number of examples of this happen-
ing in chapter 8, which is dedicated to events.

CANCELING ACTION IF UNMOUNTED

The third type of use case for mount and unmount is an extension of the example in
the previous section. Our RemoteDropdown loads data when mounted, but what would
happen if the data transfer was slow, and the user somehow navigated away from the
part of the application with the drop-down before the response came in? We would be
trying to update state on a component that no longer existed!

 This can be mitigated in one of two ways: you can either cancel the request in a
cleanup function (in JavaScript, via AbortController), or you can have a local flag
that remembers whether the component is still mounted and only updates the
component state if the flag is true. If not, the component just ignores the returned
response.

 Canceling the request using an AbortController on unmount looks something
like this:

useEffect(() => {
 const controller = new AbortController();
 fetch(url, { controller })
 .then(data => {
 // handle the data
 });

Repository: rq06-stopwatch
This example can be seen in repository rq06-stopwatch. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq06-stopwatch --template rq06-stopwatch

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-stopwatch

Creates an abort controller
inside the effect

Makes sure to pass the
abort controller to the
fetch function

https://rq2e.com/rq06-stopwatch

190 CHAPTER 6 Effects and the React component life cycle
 return () => {
 controller.abort();
 };
}, []);

The former option of aborting is the better option, as we can just cancel the request;
however, that might not always be possible. If we can’t cancel the request for some rea-
son, we can keep track of whether the component is still mounted as follows:

useEffect(() => {
 let mounted = true;
 fetch(url)
 .then(data => {
 if (!mounted) {
 return;
 }
 // handle the data
 });
 return () => {
 mounted = false;
 };
}, []);

This setup works for any type of delayed callback running in an effect hook. It could
be a promise that resolves, a timeout that executes, or anything like that. You set a
local variable inside the effect to false when the component unmounts and then make
sure to just abort the callback when triggered.

6.1.3 Running cleanup on unmount

Imagine we’re working on a large application with a dialog component that is dis-
played when some kind of alert has to be presented to the user. This dialog can be
closed in a number of ways, including clicking the little x in the corner, pressing
escape on the keyboard, clicking the OK button at the bottom, and so on. We’re
tasked with adding an analytics call as the dialog closes. We could manually add this
little piece of code to all the different ways the dialog can be closed, but we know we
can run an effect as a component unmounts instead. In this scenario, only the part of
the diagram highlighted in figure 6.6 is relevant.

 We can do this in our dialog as follows:

function Dialog() {
 useEffect(
 () => () => trackEvent('dialog_dismissed'),
 [],
);
 // rest of component goes here
};

Note that this is only a partial example, as it assumes our dialog is part of a larger
application with a lot more functionality.

In the cleanup function, we ask the abort controller
to do its job. If the request already went through,
nothing happens if we try to abort anyway.

Keeps a local variable in our effect function that is
initially set to true and reflects the fact that, as far
as we know, the component is currently mounted

Once the data comes in, we’ll first check
whether the component is still mounted.
If not, just abort now.

Flips the Boolean flag in a cleanup
function, which will only be invoked
if our component unmounts

Double arrow notation is
required, as we want our
effect function to return a
function when executed.

1916.1 Running effects in components
Another example, which coincidentally also involves a dialog, is focus management.
When you use a keyboard to tab your way to a button and press Enter to open a dialog,
if you then later dismiss the dialog, you want the keyboard focus returned to that same
button, so you can keep tabbing from there to other buttons in the user interface.
When the dialog opens, we want the keyboard focus to move inside the dialog, but
once unmounted, we must make sure to reset the keyboard focus to whatever element
had focus before the dialog was opened. This could be done in a useEffect hook with
only a cleanup function.

 You might note that both of the preceding examples are a bit far-fetched or at least
very specific to some narrow use cases. That’s because this flow of only using a use-
Effect hook for its cleanup function on unmount is a bit unusual and doesn’t happen
that often in components in the real world.

 A much more common use case for the cleanup function is to do exactly what it’s
named for: clean up after a useEffect that leaves some sort of functionality in place
after it unmounts, in order to not misuse resources or have memory leaks in our appli-
cation. You saw an example of that in the previous subsection, and you’ll see a lot
more examples in the future.

Mount
Mounted

Did any

dependency

change?

DOM is updated

No Yes

Unmount Component is

removed

DOM is updated

Run cleanup()
Run effect()

Component renders

Run effect() Run cleanup()

function Component() {
useEffect(

function effect() {
// some effect here
return function cleanup() {

// some cleanup here
};

},
[dependency1, dependency2,...]

);
// rest of component

}

Figure 6.6 If only the cleanup function is relevant, there’s no need to specify any effect code, only return
a function from the effect function. With an empty dependency array once again, this code will never run
just because the component re-renders.

192 CHAPTER 6 Effects and the React component life cycle
6.1.4 Running an effect on some renders

Wouldn’t it be wonderful if the title of the tab in the browser updates as the user navi-
gates around on our blog? We created the whole blog website in React, and it has a
component that can dynamically display any blog post. We now want to change the
document title in an effect that runs every time the blog title changes, but it doesn’t
need to run if any other property changes. In this scenario, only the part of the dia-
gram highlighted in figure 6.7 is relevant. You can see this component in listing 6.3.

import { useEffect } from "react";
function BlogPost({ title, body }) {
 useEffect(() => {
 document.title = title;
 }, [title]);
 return (
 <article>
 <h1>{title}</h1>
 {body}

Listing 6.3 Side effect executed in hook

Mount

Run effect()

Mounted

Did any

dependency

change?

DOM is updated

No Yes

Unmount

Run cleanup()

Component is

removed

DOM is updated

Run cleanup()Component renders

function Component() {
useEffect(
function effect() {

// some effect here
return function cleanup() {

// some cleanup here
};

},
[dependency1, dependency2,...]

);
// rest of component

}

Run effect()

Figure 6.7 This time, we’ll utilize the dependency array. We want our effect to run on mount, but also every
time a certain property changes. However, we don’t want it to run just because other properties change, so
we’re careful about including only the relevant variables in the dependency array.

Our effect inside useEffect sets
the document title to the value
of the title property.

Putting only the title in the
dependency array ensures that
the document title is updated
only when the post title is.

1936.1 Running effects in components
 </article>
);
}
function App() {
 return (
 <main>
 <BlogPost title="First post" body={
 <p>Welcome to my cool website.</p>
 } />
 </main>
);
}

export default App;

This is probably the perfect textbook example of what useEffect is meant for, that is,
to execute side effects of a component. You can’t update the document title through
the DOM, so it has to be a side effect; for that, useEffect is the perfect solution.

UPDATING FROM A PROPERTY

Another common use case is to update a state value based on a property. You might
remember from the previous chapter that if we initialize a state in useState to the
value of a property, it is only set to that property when the component renders the first
time around on mount. If the component later re-renders with a new property value,
the state won’t automatically update to that value.

 We can fix that using an effect that depends on the value of the property and
updates the state value based on it. Let’s build a very simple email input component
where the user can input their email address. However, we’ll allow the email address
to be prefilled from the “outside” from a parent component using a property.

import { useEffect, useState } from "react";
function EmailInput({ value }) {
 const [email, setEmail] = useState("");

Repository: rq06-blog-title
This example can be seen in repository rq06-blog-title. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq06-blog-title --template rq06-blog-title

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-blog-title

Listing 6.4 State updated from property

We create a new state value,
but we don’t initialize it to
anything.

https://rq2e.com/rq06-blog-title

194 CHAPTER 6 Effects and the React component life cycle
 useEffect(() => setEmail(value), [value]);
 return (
 <label>
 Email address:
 <input
 type="email"
 value={email}
 onChange={(evt) => setEmail(evt.target.value)}
 />
 </label>
);
}
const EMAIL1 = "daffyduck@looneytunes.invalid";
const EMAIL2 = "bugsbunny@looneytunes.invalid";
const EMAIL3 = "elmerfudd@looneytunes.invalid";
function App() {
 const [defaultEmail, setDefaultEmail] = useState(EMAIL1);
 return (
 <main>
 <button onClick={() => setDefaultEmail(EMAIL1)}>Use {EMAIL1}</button>

 <button onClick={() => setDefaultEmail(EMAIL2)}>Use {EMAIL2}</button>

 <button onClick={() => setDefaultEmail(EMAIL3)}>Use {EMAIL3}</button>

 <EmailInput value={defaultEmail} />
 </main>
);
}
export default App;

The use case here can be a little hard to understand, but it’s a pretty common pattern
in controlled input components.

Repository: rq06-email-input
This example can be seen in repository rq06-email-input. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq06-email-input --template rq06-email-input

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-email-input

That’s because on every render
where the property value changes,
we’ll (re)set the email state value to
the property. We remember to add
a dependency array, which is only
the value property.

We update the email input field in a new way in this
component (discussed further in chapter 8).

Finally, we update
the state value
every time the
input changes.

https://rq2e.com/rq06-email-input

1956.1 Running effects in components
6.1.5 Running an effect and cleanup on some renders

This time, rather than a stopwatch that counts up, we’re going to create a countdown
component that—you guessed it—counts down. This countdown can now be paused
and resumed. To do that, we still need to run an interval in an effect, but we need to
stop and start this interval every time the countdown is paused and resumed, respec-
tively. To do this, we need to create an effect (with a cleanup function) that has a depen-
dency. In this scenario, everything in the diagram shown in figure 6.8 is relevant.

A countdown component is an example of a component in which we want to run
cleanup on unmount. This component is different from the stopwatch component
from earlier in that you can pause, start, and stop the clock whenever you like without
unmounting and remounting the component (the only way to stop the stopwatch
component from earlier).

 The countdown component will be initialized with the starting time of the counter,
which is 10 in this example. It also has a Reset button that will reset the counter to the
initial value at any point. Furthermore, there’s a Pause/Resume button that will toggle
whether the counter is running or not. Finally, there’s the actual countdown decreas-
ing every second, pausing the counter once it reaches 0. To make sure we can’t start
the counter again at 0, the Pause/Resume button is disabled if the countdown is over.

Mount

Run effect()

Mounted

Did any

dependency

change?

DOM is updated

No Yes

Unmount

Run cleanup()

Component is

removed

DOM is updated

Run cleanup()
Run effect()

Component renders

function Component() {
useEffect(

function effect() {
// some effect here
return function cleanup() {

// some cleanup here
};

},
[dependency1, dependency2,...]

);
// rest of component

}

Figure 6.8 Everything in the effect hook is relevant when effect and cleanup on some renders are the goals.

196 CHAPTER 6 Effects and the React component life cycle
This sounds complicated, but take a look at the state flowchart for this component in
figure 6.9.

You can see this implemented in the next listing. The result is shown in figure 6.10.

import { useEffect, useState } from "react";
function Countdown({ from }) {
 const [seconds, setSeconds] = useState(from);
 const [isRunning, setRunning] = useState(false);
 useEffect(() => {
 if (!isRunning) {
 return;
 }
 const interval = setInterval(
 () =>
 setSeconds((value) => {
 if (value <= 1) {
 setRunning(false);
 }

Listing 6.5 An interactive countdown

Countdown is paused

Countdown is running

Time is

0?

Seconds decrease

Seconds is set to 10

Seconds is set to 10

Running is set to false

Running is set to true

1 second passes

No

Yes

Click Pause

Component mounts

Click Resume

Click Reset

Click Reset

Figure 6.9 The flow of state in the countdown component as time passes and the user interacts with
the component. Notice in particular how clicking Reset doesn’t stop or start the countdown, but just
leaves it either running or not. In addition, note how the time stops when time runs out.

Initializes the seconds
to the value of the
initial property

Initializes the
isRunning flag
to false

The first thing we check in the effect is
whether the countdown is running at all.
If not, we just abort silently (and return
nothing—nothing to clean up).

If the countdown is running, we
define an interval that updates
the state value every second.When we update the state value, we

check if the value was 1 (or less); if so,
we make sure to stop the countdown.

1976.1 Running effects in components
 return value - 1;
 }),
 1000
);
 return () => clearInterval(interval);
 }, [isRunning]);
 return (
 <section>
 <h2>Time left: {seconds} seconds</h2>
 <button onClick={() => setSeconds(from)}>
 Reset
 </button>
 <button
 onClick={() => setRunning((v) => !v)}
 disabled={seconds === 0}
 >
 {isRunning ? "Pause" : "Resume"}
 </button>
 </section>
);
}
function App() {
 return <Countdown from={10} />;
}
export default App;

Returns one less than
the current value of the
counter

Ensures our effect returns a
cleanup function that cancels
the interval completely

We make our effect depend on the value of the
isRunning state value. Whenever this value
changes, our effect runs (and the cleanup of
the last effect runs just before it).

In our component JSX, we
have a button that resets
the counter and only that
(it doesn’t change the
value of the run flag).

Another button flips the value of
the run flag but doesn’t change the
counter. This button is disabled,
however, if the counter is at zero.

We vary the text on the toggle
button depending on the
current state of the run flag.

Figure 6.10 The countdown component while running

198 CHAPTER 6 Effects and the React component life cycle
There’s quite a lot happening in this component, and we use the three hooks in a clever
combination to achieve the desired goals. One thing you might notice is that when our
counter reaches zero, we don’t directly stop the interval. In listing 6.5, we toggle the
running flag to false with setRunning(false);. Doing so will force our component
to re-render, causing the effect to rerun because isRunning is listed as a dependency
for the effect. As the effect reruns, the cleanup function will stop the interval. So, set-
ting the isRunning flag to false will indirectly stop the interval, but only through the
magic of the hook.

 This is a pretty advanced component, so it’s okay if you don’t understand it at first.
We strongly recommend that you download the code for the preceding app and play
around with it. Try changing parts of the code to see what makes it tick and how it
works the way it does.

6.1.6 Running an effect synchronously

Now we’re going to talk about an even more hypothetical situation than we normally
do. Imagine that we’re creating a component that has a bunch of text in it, and we
want to count how many letters there are in total and display that number. The text is
all static, so we could go ahead and count them all by hand before creating the com-
ponent, but we want to make sure the component automatically updates the count if
we change the text later.

 One way to create this is to add a state value to the component that will contain
the letter count and initialize this to zero. Then, we add an effect to the component
that runs after the component has rendered, counts all the letters, and updates the
state. When the component re-renders, it will display the correct count. This will
combine the data flows of an effect hook with that of a state hook, as illustrated in
figure 6.11.

 The problem with the flow as described and displayed in figure 6.11 is that the
browser updates the UI and displays it to the user before the effect hook runs. This
means that the user will see the component render a 0 briefly before the component
re-renders and displays the correct number of letters.

 What if we instead could run an effect after React generates the required HTML
but before the browser updates the UI and displays it to the user? Well, surprise, surprise,

Repository: rq06-countdown
This example can be seen in repository rq06-countdown. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq06-countdown --template rq06-countdown

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-countdown

https://rq2e.com/rq06-countdown

1996.1 Running effects in components
we can do exactly that. We can run a layout effect hook instead, which does two things
differently than the regular effect hook. First, it runs before the browser updates the
UI, but—just as important—it also runs instantly as the DOM is generated. If React
detects a state update from a layout effect, it will immediately re-render the compo-
nent with the updated state. We can see that in figure 6.12. By replacing useEffect
with useLayoutEffect in this special instance, we can avoid a brief flash of the
wrong content.

 Do note that useEffect is the correct hook to use in almost all use cases, and use-
LayoutEffect is only relevant in a few specialized instances. Always try useEffect
first, and only if that doesn’t work for your purpose, see if useLayoutEffect might be
the right choice instead.

TECHNICAL DETAILS OF A LAYOUT EFFECT

The useLayoutEffect hook is a variant of useEffect. It’s identical to useEffect in
every way except when it’s called. Similar to useEffect, the useLayoutEffect hook
also takes a function and a dependency array as arguments. When any dependency
changes, the cleanup function (if any) of the previous effect is run, and then the

Component renders and

returns JSX with current

letter count.

Initialize letter count to 0.

Effect hook counts letters and

updates letter count.

Tell React that a value

has updated.

React generates the

required HTML and sends it

to the browser.

The browser updates the UI

as it is displayed to the end

user.

Is this the first

render?

Yes

No

Nothing happens.

Figure 6.11 The state flow as we update state and run an effect. The problem here
is the darker box. As we update the UI, the user will see the initial 0 displayed
before the component quickly re-renders and displays the correct number of letters.

200 CHAPTER 6 Effects and the React component life cycle
effect is run for this instance while capturing any potential returned cleanup func-
tion resulting from the effect.

 The difference between useEffect and useLayoutEffect is a bit technical but
boils down to timing. useLayoutEffect is called synchronously in the same execution
cycle as when the components are rendered into the DOM (but before the browser
has had a chance to paint the DOM to the browser window). On the other hand,
useEffect is invoked asynchronously on the next execution cycle where the DOM has
been painted to the window and all CSS has taken effect and been calculated. The
timing of the two events is shown in figure 6.13.

 As you can see in figure 6.13, we hid some details from the previous diagrams of
useEffect execution. Note that here we have a useEffect and a useLayoutEffect with
the same dependencies. These dependencies can vary, which would make the flow run
differently for different renders, as some would only run layout effects and cleanups,
others would run regular effects and cleanups, and still others might run both.

 One consequence of a layout effect running synchronously after the render is that if
the effect is complex, the screen doesn’t update until the effect is complete. The UI is
basically blocked while the layout effect runs. For this reason, extra caution should be
used when writing layout effects to make sure they take up as few CPU cycles as possible.

Component renders and

returns JSX with current

letter count.

Initialize letter count to 0.

Layout effect hook counts

letters and updates letter count.

Tell React that a value

has updated.

React generates the

required HTML and sends it

to the browser.

The browser updates the UI

as it is displayed to the end

user.

Is this the first

render?

Yes

No

Figure 6.12 Now that we’re using a layout effect, it will run before the browser
UI is updated, and the new state will render immediately as the effect updates it,
which makes the UI correct the first time around.

2016.2 Understanding rendering
If you don’t fully understand the difference between regular effects and layout effects,
you shouldn’t worry too much about it. In 99% of cases, you ought to use the use-
Effect hook. Only in very rare instances, where you need to update the DOM in an
effect before it’s painted to the window but after the component has rendered, do you
need to use the useLayoutEffect hook.

6.2 Understanding rendering
In the previous section, we talked about components re-rendering many times. In this
section, we’ll go into some more technical details about what it means for a component
to (re-)render. Note that this isn’t directly useful in practice, but it’s very important back-
ground information to understand what is going on in your application.

 A functional component will render for one of three reasons:

function Component() {
useEffect(

function effect() {
// effect
return () => {
// cleanup

};
},
[dep1, dep2, ...]

);
useLayoutEffect(

() => {
// layout effect
return () => {
// layout cleanup

};
},
[dep1, dep2, ...]

);
// rest of component

}

Run effect()

Mounted

DOM is updated,

and UI is painted

No Yes

Unmount

Run layoutCleanup()
Run cleanup()

Component

is removed

DOM is updated

Run cleanup()
Run effect()

Component renders

DOM is

updated

UI is

painted

Run layoutEffect()

UI is painted

Run layoutCleanup()
Run layoutEffect()

Did any

dependency

change?

Figure 6.13 The timing of useLayoutEffect versus useEffect. Note how the layout effect is run just
after the DOM is updated, but before the browser has had a chance to lay out the elements using CSS.
(Sorry for the crowded diagram!)

202 CHAPTER 6 Effects and the React component life cycle
 The component has just been mounted (as in, the component wasn’t in the com-
ponent tree before, and it is now).

 The parent component re-rendered.
 The component uses stateful hooks, which have updated.

That’s it. If none of the preceding things happen, your component won’t re-render,
and that’s a guarantee. If either of the three happens, your component will re-render,
for sure. However, React might batch rendering after several of these happen, so if
both a state value changes and the parent component re-renders, the component
might only re-render once, or it might re-render twice. That is controlled by React
and depends on subtle timing details. We’ll give detailed examples of all of these
scenarios, discuss how you can see these things happen, and what you can do when
they happen.

 Note that we’re talking about your component re-rendering as a whole. You might
have functions or callbacks in your component that render some part of your out-
put, and they can re-render for any of a myriad of reasons depending on your usage.
This is particularly the case if you’re using so-called render props, which are often
used in older codebases and in the non-hook variant of the React Context API. You
might still see render props in modern and more complex codebases, as they can be
used to render partial content in a generic component. We’ll discuss this topic at
the end of this section.

6.2.1 Rendering on mount

Imagine that we have a component that loads some external data. We can use the
example of our remote drop-down from earlier. When it mounts, it loads data from
a remote server and stores it locally in the component. When it unmounts, the data
is forgotten.

 The render of a component that happens on mount is the most trivial and obvi-
ous. Note that if a component is included conditionally in a parent component, it will
mount and unmount depending on that condition. This isn’t always what you want.

 If we conditionally render the previously mentioned RemoteDropdown component
in a parent component, thus toggling it on and off many times, we’ll many times load
the external data and throw it away, wasting time and bandwidth on the same request.
While network caching will help somewhat, we can mitigate this in two ways. We can
either move the data storage and data fetching up to a higher-level component, which
is always included in the application, or we can conditionally render the component
differently. You’ll see this sometimes in everyday components. Normally we condition-
ally render a component like this:

return (
 <main>
 {hasDropdown && (<RemoteDropdown />)
 </main>
);

If the Boolean is true, we
mount the component. If
it is later set to false, the
component is unmounted.

2036.2 Understanding rendering
We can instead do it like this:

return (
 <main>
 <RemoteDropdown isVisible={hasDropdown} />
 </main>
);

We would need to modify the component to use this flag as an indicator about
whether to render anything at all:

function RemoteDropdown({ isVisible }) {
 const [options, setOptions] = useState([]);
 useEffect(() => {
 // Loading happens here
 }, []);
 if (!isVisible) {
 return null;
 }
 // Rest of component goes here
);

While this approach to conditional rendering is generally not recommended (and the
former approach is), this can be a handy tool when you don’t want your component to
mount and unmount again and again, but you want to keep it in the document all the
time while only sometimes actually rendering anything.

6.2.2 Rendering on parent render

This might come partially as a surprise, but every child component also renders when
their parent component renders. Let’s create this simple example of an icon inside a
push button:

function Icon() {
 return
);
function Button() {
 const [enabled, setEnabled] = useState(false);
 const style = { border: `1px solid ${enabled ? "red" : "black"}`;
 return (
 <button style={style} onClick={() => setEnabled(b => !b)}>
 <Icon /> Toggle
 </button>
);
}

If we test this out in the browser, what do you think will happen? Every time we click
the button, the enabled flag flips, and the button renders again. But what about the

We always mount
the component and
simply toggle a flag
as a property.

We first include all the hooks
that we need in the component.

Only after all hooks have been
evaluated can we check if we
need to render anything at all.

The icon component is extremely simple: it never
changes nor updates based on anything. The button

component has
internal state and
renders every time
the state changes.

204 CHAPTER 6 Effects and the React component life cycle
icon? Will it render again (as in, will the function named Icon be executed again)?
Yes, it will. React doesn’t assume that components are “pure,” and they might not be.
For that reason, React will render the component every time that the parent renders.
If the component takes properties, React will render the component every time,
regardless of whether these properties change or not.

 Let’s imagine a different scenario, where we’re actively utilizing this behavior. We
can create a dice roller, where we can roll three dice. You can see the code in listing 6.6
and the output in figure 6.14.

import { useState } from "react";
function Die() {
 const style = {
 border: "2px solid black",
 display: "inline-block",
 width: "2em",
 height: "2em",
 textAlign: "center",
 lineHeight: 2,
 };
 const value = Math.floor(6 * Math.random());
 return {value};
}
function DiceRoller() {
 const [rolls, setRolls] = useState(1);
 return (
 <main>
 <h1>Rolls: {rolls}</h1>
 <button onClick={() => setRolls((r) => r + 1)}>
 Re-roll
 </button>

Listing 6.6 A dice roller

Figure 6.14 Our dice
roller after five rolls

Even though our Die
component appears to be
pure, it actually has an
external source of
information (Math.random)
and (potentially) returns
something new on every
render.

Our
DiceRoller
component
is stateful.

When we click the button, we increase
the roll count, which forces a complete

render of the component, causing all
the child components to render and

giving us new dice values in turn.

2056.2 Understanding rendering
 <div>
 <Die />
 <Die />
 <Die />
 </div>
 </main>
);
}
function App() {
 return <DiceRoller />;
}
export default App;

On a general level, you should always put such variable content (e.g., the value of a
die roll) inside component state, and not depend on it just magically updating on
every render as in the preceding example. Please don’t do this at home. This makes
the previous example a terrible React design pattern. For example, we can’t display
the sum of the dice in the parent component because it doesn’t know the values of the
child components.

 A much better structure is for the parent component to generate three random
numbers and pass them to the dice as properties. But for demonstration purposes,
this does highlight how even seemingly pure components render when their parent
component does.

6.2.3 Rendering on state update

When you update the state inside a stateful hook (see chapter 7 for more details about
stateful hooks), your component using that hook will render. That’s the whole pur-
pose of updating the state, so this flow is pretty obvious and even desired.

 But you can also render too often if your state contains data that updates often.
You want to avoid components rendering all the time, as it can be very CPU and/or
memory intensive for the browser, as well as annoying for the user.

 A potential source of frequently updated information is something like the mouse
position. A user can move the mouse around a lot—many times per second. If you
have multiple components that store the mouse position in state, you’ll have multiple

Repository: rq06-dice-roller
This example can be seen in repository rq06-dice-roller. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq06-dice-roller --template rq06-dice-roller

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-dice-roller

Three separate instances of the same
Die component—each with its own
internal random source of information

https://rq2e.com/rq06-dice-roller

206 CHAPTER 6 Effects and the React component life cycle
components rendering many times per second, which will slow down your computer.
Next, we’ll look at two different instances with this setup and how you can minimize
renders on state updates.

STORING HIGHER-LEVEL INFORMATION

Imagine a component that has a yellow background when the cursor is on the left side
and a blue background when the cursor is on the right side. Let’s say the component
is 200 pixels wide, so if the cursor is more than 100 pixels from the left edge, the cur-
sor is on the right; otherwise, it’s on the left.

 The first way to implement this is to save the cursor offset from the left side in a
state value and, on each render, check which background color to display:

function BlinkingBackground() {
 const [left, setLeft] = useState(0);
 const onMouseMove = (evt) =>
 setLeft(evt.nativeEvent.offsetX);
 const style = {
 backgroundColor: left < 100 ? "blue" : "red",
 };
 return <div style={style} onMouseMove={onMouseMove} />;
}

This method wastes a ton of render cycles, though, because all the time you’re moving
the mouse around on only one side of the component, it will render again and again
for every position. A much smarter approach is to just store in state whether the cur-
sor is on the left or right side, and nothing else. That way, our component only ren-
ders when the cursor changes sides:

function BlinkingBackground() {
 const [isLeft, setLeft] = useState(true);
 const onMouseMove = (evt) =>
 setLeft(evt.nativeEvent.offsetX < 100);
 const style = {
 backgroundColor: isLeft ? "blue" : "red"
 };
 return <div style={style} onMouseMove={onMouseMove} />;
}

In this example, we utilize the fact that React only renders a component on a state
update if the state actually changed value. We call the setter function just as often as in
the previous example, but because we only store a Boolean value, which only changes
from true to false as the cursor moves over the center of the component, most calls to
the setter are simply ignored, as they don’t alter the component state. This new exam-
ple results in a much cleaner data flow, and now our component only renders when
something happens that affects the output.

The state holds the
mouse position.

Records the mouse position in the
state when the mouse moves

Determines which color
to use every time the
component renders

The state holds only
a Boolean flag.

Records the mouse position in the
state when the mouse moves

Determines which color
to use every time the
component renders

2076.2 Understanding rendering
MANIPULATING DOM ELEMENTS DIRECTLY

In this example, we want to have a component that moves an element in sync with the
cursor at all times. It seems like we’re doomed with this one. How can we update the
style of an element in a component without storing it in component state?

 For such a case, we might want to look at circumventing React and directly updat-
ing the DOM instead. To do this, we need a reference to the element in question (this
requires another hook, useRef, discussed in chapter 7), and on mouse move, we’ll
update the style of the element directly:

function PhantomCursor() {
 const element = useRef();
 const onMouseMove = (evt) => {
 element.current.style.left =
 `${evt.nativeEvent.offsetX}px`;
 element.current.style.top =
 `${evt.nativeEvent.offsetY}px`;
 }
 return (
 <div style={{ position: "relative" }} onMouseMove={onMouseMove}>
 <img
 style={{ position: "absolute" }}
 ref={element}
 src="/images/fake_cursor.png"
 alt=""
 />
 </div>
);
}

This component never re-renders. It renders as it’s mounted, and then it just stays
around. The mouse event will change the appearance of the component, but that is
outside React’s control. As seen from React’s perspective, this is a static component
that doesn’t ever change.

 The problem here is that if we need to use the mouse position for other things in
our application—do some math, check collisions, and so on—we’ll have to store it in
state anyway. However, if at all possible, we want to avoid updating the state often.

6.2.4 Rendering inside functions

A component doesn’t have to render directly inside another component; it can also
render inside a function, for example. If that’s the case, the component will render
every time the function runs. Sometimes, such a function only runs when the parent
component renders, so the result is the same; however, you might also have a function
that can run at other times, causing the render to happen at different times.

 Imagine a button component that allows the parent to specify an icon for the com-
ponent. The button is a push button, so it has a state of either pressed or not pressed.
Sometimes you want the icon to be different for those two states. You can make the

Creates a reference
that will point to our
DOM element

Directly updates the
DOM element through
the reference whenever
the mouse moves

Remember to put the ref
on the element that we
want to manipulate.

208 CHAPTER 6 Effects and the React component life cycle
component accept two different properties to use for the two states, or you can
instead accept a function that will receive the state of the button as an argument and
then return the proper icon.

import { useState } from "react";
function Icon({ type }) {
 return ;
}
function Button({ label, getIcon }) {
 const [pressed, setPressed] = useState(false);
 return (
 <button onClick={() => setPressed((p) => !p)}>
 {getIcon(pressed)}
 {label}
 </button>
);
}
function LockButton() {
 const getIcon = (pressed) =>
 pressed ? <Icon type="lock" /> : <Icon type="unlock" />;
 return <Button label="Lock" getIcon={getIcon} />;
}
function App() {
 return <LockButton />;
}
export default App;

In this setup, we render the icon component inside a function and not directly inside
our component. However, the function is only called inside the button component
directly when it renders, so it’s as if we include an icon conditionally directly in the
render—we just do it through a function. This does change some of the things we
know about components, however, and it can be a bit hard to optimize this bit of
source code or even figure out exactly what’s going on.

 However, we can also achieve the same result in a much more familiar way. Take
another look at that getIcon function. It’s a function that returns JSX based on some

Listing 6.7 A push button with an icon function

Repository: rq06-push-button
This example can be seen in repository rq06-push-button. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq06-push-button --template rq06-push-button

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-push-button

A general icon component
embeds an image loaded

from the right folder.

Our button calls the getIcon
function with its current
state on every render.

Defines getIcon to
return one of two icons

https://rq2e.com/rq06-push-button

2096.2 Understanding rendering

arguments. Does that sound familiar? That’s exactly what a functional component
does. So, we can alter this slightly to instead make the getIcon function into a cus-
tom component.

import { useState } from "react";
function Icon({ type }) {
 return ;
}
function Button({ label, ButtonIcon }) {
 const [pressed, setPressed] = useState(false);
 return (
 <button onClick={() => setPressed((p) => !p)}>
 <ButtonIcon pressed={pressed} />
 {label}
 </button>
);
}
function LockIcon({ pressed }) {
 return pressed ? <Icon type="lock" /> : <Icon type="unlock" />;
}
function LockButton() {
 return <Button label="Lock" ButtonIcon={LockIcon} />;
}
function App() {
 return <LockButton />;
}
export default App;

This works great—and looks so much cleaner! We can, of course, further optimize this
(e.g., by moving the ternary conditional to the property that changes inside the Lock-
Icon component), but that is beyond this example.

 The concept of providing functions that render JSX is called render props and was a
pretty common approach in older React codebases. However, with functional compo-
nents, almost all such cases are better solved by converting the argument to a full

Listing 6.8 A push button with an icon component

Repository: rq06-push-button2
This example can be seen in repository rq06-push-button2. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq06-push-button2 --template rq06-push-button2

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq06-push-button2

The button component now
expects a (capitalized) ButtonIcon
property rather than a getIcon
function as before.

Because it’s a component we
expect, we can render it as
such directly in the body.

getIcon is now not just a function, but a fully
fledged functional component (by accepting
properties rather than a simple argument).

Finally, we just supply LockIcon as a
property, which is legal to do even
though we haven’t done it before.

https://rq2e.com/rq06-push-button2

210 CHAPTER 6 Effects and the React component life cycle
component as we did here. It makes the whole flow of data much easier to understand
and solves ~95% of the cases of a function (i.e., not a functional component) render-
ing JSX.

REACT CONTEXT

One of the remaining reasons for rendering JSX in functions is if you use the non-
hook version of the React Context API with a MyContext.Consumer component. This
component takes a function as a child component (a mind-blowing concept in itself).
But that’s quite a special case and not one that you’re likely to encounter in a modern
React codebase with functional components. If that does happen, you should check
the online React documentation for how to use the React Context API. Even better,
convert the component to a functional component and use the useContext hook if
possible (see chapters 7 and 10 for more details on how to use this hook).

6.3 The life cycle of a class-based component
When a class-based component mounts, renders, and unmounts, rather than using
hooks, you can use life cycle methods to react to the different stages in the compo-
nent life cycle. The methods are named after what they do and where they fit into the
life cycle, so they’re fairly self-evident most of the time.

 Some life cycle methods are executed in multiple events. Other life cycle methods
allow you to interfere with React’s regular scheduling of component updates if you
have inside knowledge that React doesn’t have. React used to have more life cycle
methods, but they’ve been deprecated in newer versions of React because of their
troublesome behavior.

 You ought to be using functional components, but if you do come across a class-
based component, and you want to refactor it to a functional one, there are some gen-
eral tips for how to make this conversion. Note that this isn’t an exact science, and
rewriting or completely rethinking the feature might be required.

6.3.1 Life cycle methods

When a component mounts, these class methods are called (in this order):

1 constructor()

2 static getDerivedStateFromProps()

3 render()

4 componentDidMount()

When a class-based component updates (for any of the previously mentioned rea-
sons), the following methods are invoked (in this order):

1 static getDerivedStateFromProps()

2 shouldComponentUpdate()

3 render()

4 getSnapshotBeforeUpdate()

5 componentDidUpdate()

2116.3 The life cycle of a class-based component
Actually, that’s not completely true. shouldComponentUpdate() is special here, in that
if defined, you can halt the render loop if you return false. It seems like a great way
to minimize renders, but it can be very tricky to do and, if used incorrectly, can lead to
components that are out of sync with their actual DOM representation. When a com-
ponent unmounts, the following method is invoked: componentDidUnmount().

6.3.2 Legacy life cycle methods

A number of life cycle methods existed previously that you might still see in some leg-
acy codebases, as these were quite popular to use, but came with a lot of problems,
hence their deprecation. The methods have been renamed for now, but still exist in
the React codebase—even in React 18. At some point, they will be removed and not
work anymore, but they still work for now. Albeit, if you use them, you’ll be aware of
how fragile they are based on their current naming. The methods were called:

 componentWillMount()

 componentWillUpdate()

 componentWillReceiveProps()

All three have been renamed, and you now have to create the following class methods
to be able to use the functionality:

 UNSAFE_componentWillMount()

 UNSAFE_componentWillUpdate()

 UNSAFE_componentWillReceiveProps()

Typing UNSAFE will get most developers to realize that they probably shouldn’t be
using this method or at least should have a plan for how to get rid of it fairly soon.

 We won’t cover their functionality, as they are strongly discouraged. If you find
them in a codebase, check the online documentation for their functionality, so you’re
able to recreate the features without these methods.

6.3.3 Converting life cycle methods to hooks

Converting a class-based component can be tricky. We’ve already seen how to deal
with some of the tasks involved, which got a bit complicated as we introduced stateful
components. Now that we add life cycle methods, it gets even more daunting. The fol-
lowing lists these methods and describes how you can implement similar functionality
using hooks:

 constructor()—This method can be implemented either using a useEffect()
with no dependencies or, if used for precalculating expensive values, in use-
Memo() with no dependencies.

 getDerivedStateFromProps()—This can be implemented with a useEffect()
hook with the relevant properties as dependencies.

 render()—The entire functional component is the render function.

212 CHAPTER 6 Effects and the React component life cycle
 componentDidMount()—This method is mostly used for exactly what a use-
Effect() hook with no dependencies achieves. It’s often used together with
componentDidUnmount(), which is then the equivalent cleanup function for the
hook. Note that to be technically correct, componentDidMount runs synchro-
nously, whereas useEffect runs asynchronously, so to achieve the same effect, you
might have to use useLayoutEffect. Most of the time, however, useEffect will
do just fine because the synchronous aspect is rarely a factor relevant for this
life cycle method.

 shouldComponentUpdate()—This method has no hook equivalent, but it’s also
not necessary when using hooks. If you want to minimize the renders of a func-
tional component, use the memoization hooks briefly introduced in the next
chapter.

 getSnapshotBeforeUpdate()—This is a weird method that’s seldom used. It’s
almost exclusively used for a single specific purpose, which is to record the
scroll position of some part of a component before the component updates, so
you can restore that position after the component updates with new data. This
specific behavior can be emulated in a functional component by wrapping the
state setter in a custom function that records the old scroll position in a refer-
ence before updating the component and causing a new render.

 componentDidUpdate()—This can be emulated with a useEffect hook with
dependencies set to the relevant values that have changed and caused whatever
changed behavior that you want to react to.

 componentDidUnmount()—Functionality in this method can be moved to a
cleanup function in a useEffect (or useLayoutEffect) hook with no depen-
dencies. This is often used to cancel subscriptions or intervals set on mount, so
it goes together with the effect in the same hook.

6.4 Quiz
1 It’s not possible to run side effects inside functional components, as only class-

based components can do that. True or false?
2 When can you run an effect using an effect hook?

a As the component mounts
b As the component unmounts
c As the component updates
d All of the above

3 If you want to load data in a component as soon as it’s displayed, but then not
reload the data even if the component updates, your dependency array should

a Be skipped
b Be empty
c Contain only the URL of the data

213Summary
4 When a parent component renders, the child components only re-render if
their properties update. True or false?

5 What is the correct syntax for an effect hook that only runs as the component
unmounts?

a useEffect(() => runOnUnmount(), []);

b useEffect(() => () => runOnUnmount(), []);

c useEffect(() => runOnUnmount());

d useEffect(() => () => runOnUnmount());

Quiz answers
1 False. Via the useEffect (and alternatively useLayoutEffect) hook, you can

run side effects inside functional components too.
2 You can run an effect on any particular render of the component and even as it

unmounts, so all of the scenarios are true.
3 If you want to run an effect only as a component mounts, you should supply an

empty dependency array.
4 False. Any time a component renders, all the child components of that compo-

nent will render too, regardless of whether their properties change or not.
5 useEffect(() => () => runOnUnmount(), []);. An unmount (also known as a

cleanup) effect has to be returned by the effect function, so double function
notation is required. In addition, the dependency array has to be empty, not
skipped.

Summary
 A React component has an individual life cycle for each instance of the

component.
 The useEffect hook is the primary way to trigger side effects that are relevant

for the particular component as a component mounts, renders, and unmounts.
 By carefully crafting the dependency array, you can trigger an effect hook to run

at exactly the times you need it to run, which is how you can make smart compo-
nents that interact with the browser, network, and user in many different ways.

 Components render whenever React determines that they need to under three
main circumstances: when the component mounts, when the state of the com-
ponent updates, and when the parent component renders.

 Class-based components can’t use hooks but rely on life cycle methods for simi-
lar behavior. These can be converted to hooks, but the conversion isn’t always
straightforward.

Hooks to fuel your
web applications
Hooks are what make modern React applications tick. They’re a pretty small part of
the overall React API, but very significant nonetheless. Hooks are also quite tricky
to use. In this chapter, we’ll discuss all the hooks, what they do, and some import-
ant things to know about using hooks in general.

 Hooks are a special kind of creature in the React biosphere. From the outside,
they seem completely unrelated in functionality, but when examined closer, they
have some common traits and behaviors that we need to account for when using
them. You could say that they stem from a common ancestor somewhere in the evo-
lutionary tree, even though they have advanced to become very different beings.

 We’ve dedicated this chapter to all the hooks for this very reason. So, while
we’re going to be covering some wildly different topics, all of them are concerned
with using hooks. We’ll tie a bow on it at the end by explaining how all of these
hooks are, in fact, related, despite their seemingly divergent purposes.

This chapter covers
 A larger perspective on creating stateful

components

 Introducing advanced topics solvable by hooks

 Rules to observe when using hooks in general
214

2157.1 Stateful components
 You’ve seen three different hooks so far: useState (in chapter 5) and useEffect
and useLayoutEffect (in chapter 6). At the time of writing, there are 15 built-in hooks
in React (as of React 18), which we’ll cover briefly, grouped by their functionality:

 Stateful hooks—These functions are concerned with making components and appli-
cations stateful on several different layers and levels of complexity: useState,
useReducer, useRef, useContext, useDeferredValue, and useTransition.

 Effect hooks—These functions are concerned with running effects inside a com-
ponent at different stages of the overall component life cycle as well as during
each individual render cycle: useEffect and useLayoutEffect.

 Memoization hooks—These functions are used for performance optimization by
avoiding recalculating values if their constituent parts haven’t changed: use-
Memo, useCallback, useId.

 Library hooks—These advanced functions are almost exclusively used in larger
component libraries that are created to be shared either with the community or
internally in a larger organization. These functions are rarely used in smaller or
medium-size applications: useDebugValue, useImperativeHandle, useInsertion-
Effect, and useSyncExternalStore.

These 15 hooks are the built-in “base” hooks that React comes with. You can build
more hooks on top of them, but you can’t build your own base hooks. You can only
build hooks that utilize one or more of the existing hooks. We’ll discuss custom hooks
in chapter 10.

 Note that React might be extended with more built-in hooks in future releases.
React 18.0 came with five new hooks, and incremental releases after React 18 might
come with even more.

NOTE The source code for the examples in this chapter is available at
https://rq2e.com/ch07. But as you learned in chapter 2, you can instantiate
all the examples directly from the command line using a single command.

7.1 Stateful components
We’ve covered stateful components in general in chapter 5, but we’ll gladly reiterate
that information here for completeness. Stateful components and, in turn, stateful
applications are essential for web applications to actually be interesting to use.

 An application without state is completely static. The application will be identical
for the entire time you have it open in the browser, and it will be identical for every
user using the application. If you need login, sessions, interaction, and variability and
changes over time, you need your application to be stateful.

 However, stateful components aren’t all the same, just like not all states are the
same. One state is only kept briefly, another state is hyperlocal to an individual com-
ponent, and yet another state is application-wide. In addition, state can be a single
variable or a huge complex web of interdependent variables that have to update in

https://rq2e.com/ch07

216 CHAPTER 7 Hooks to fuel your web applications
unison. In this section, we’ll cover some different use cases for stateful components
and applications, and discuss how to solve the given challenge via the proper hooks.

7.1.1 Simple state values with useState

useState is the bread and butter of stateful applications. You’ll probably find yourself
using this hook the majority of times that you need state, so it’s definitely an import-
ant one.

 If you have a menu that can open and close, you keep its state in a local useState
inside your menu component. This single simple value is only used inside this compo-
nent, and it’s unrelated to any other state values in the application.

 We discussed all the ins and outs of useState in chapter 5, so we won’t go into fur-
ther detail on this hook here. However, in the rest of this section, we’ll introduce
some more complex scenarios where useState isn’t enough or is suboptimal.

7.1.2 Creating complex state with useReducer

Imagine that we have a loader component, where we want to know whether loading
succeeded or failed, what the error message is in case of failure, and what the data is
in case of success. The value of the error message is only relevant if the loading fails. If
loading succeeds, the error message is completely irrelevant and shouldn’t even be
set—and vice versa for the result data. This is an example of interdependent state. The
individual values in the state depend on each other, and you’ll often be updating mul-
tiple values at the same time.

 useReducer is a stateful hook for exactly this purpose. It’s an advanced version of
useState where we can alter our state in a more complex and controlled way (almost
like a state machine, but not really) if we have a setup that’s more complex than a sin-
gle state value can reasonably represent.

 Using a reducer is a way to generate a new state (“reduce”) solely based on the cur-
rent state and some action that takes some payload. The concept of reducing state is
known from other frameworks such as Redux (hence, the name), so it’s already famil-
iar to many React developers.

 Note that useReducer is never strictly necessary—anything we can do with a
reducer can also be done with a combination of simpler useStates. There are many
cases where you would likely want to use a reducer rather than settle for multiple dis-
parate states to ensure stricter data flow and better control.

 We’ll present some examples of a reducer in chapter 10 when we move to more
complex application architecture. A reducer is only relevant for rather complex data
flows, so it’s not something we’ll use a lot in the simple applications that we’re build-
ing throughout this book.

7.1.3 Remembering a value without re-rendering with useRef

Imagine that we want to create a button that only works on double-clicking within a
certain number of milliseconds. To create this, we need to remember how much

2177.1 Stateful components
time has passed between successive clicks. Remembering data inside a component
is exactly what we have state for. We have a value that we want to persist between
renders, but we don’t use it for rendering. The button doesn’t change when we
click the first time. We just need to remember a value inside a component instance
for some amount of time, but we won’t use the value to determine the output of the
component.

 useRef is both one of the simplest hooks in React and also one of the least under-
stood hooks. It’s a hook with a passive state, which means the hook can contain state,
but setting or updating the state doesn’t cause a re-render.

 useRef is used for a number of purposes, including remembering values between
renders and serving as a reference to DOM elements used in the render. The latter is
a very important use case (and the reason for the name, useRef), as it’s the best and
simplest way to address DOM elements through script in your components.

PASSIVE STATE VALUES

You can use the useRef hook to remember some value that is relevant between ren-
ders of the component but that doesn’t directly affect the outcome of the compo-
nent. That sounds a bit complex and even rare. When would you have such a value
in a component? As an example, let’s recreate our counter component once again,
but this time with the added functionality that the increment button only works if
double-clicked.

 We need to store the time of the last click event somewhere in our component,
and it needs to be in a place that persists between renders. We already know that we
can store such a value in a state provided by the useState hook. A sketch of this sce-
nario is shown in figure 7.1, and the implementation is shown in listing 7.1.

Display current

double-click count.

Initialize double-click count to 0.

Initialize last click time to null.

User clicks

button.

Update last click

time to right now.

Tell React that a

value has been

updated.

Did this click

happen "just

after" last

click?

Increment

double-click counter.

Yes No

Tell React that a

value has been

updated.

Figure 7.1 As the user clicks the button, the execution bifurcates based on whether this click happens
within a very short time of the last recorded click.

218 CHAPTER 7 Hooks to fuel your web applications
import { useState } from "react";
const THRESHOLD = 300;
function DoubleClickCounter() {
 const [counter, setCounter] = useState(0);
 const [lastClickTime, setLastClickTime] =
 useState(null);
 const onClick = () => {
 const isDoubleClick =
 Date.now() - lastClickTime < THRESHOLD;
 if (isDoubleClick) {
 setCounter((value) => value + 1);
 } else {
 setLastClickTime(Date.now());
 }
 };
 return (
 <main>
 <p>Counter: {counter}</p>
 <button onClick={onClick}>Increment</button>
 </main>
);
}
function App() {
 return <DoubleClickCounter />;
}
export default App;

This isn’t necessary, however, and will cause needless extra re-renders. When we call
setLastClickTime, React will re-render the component because a state value changes.
However, the JSX won’t change in the component, and the same DOM output will be
rendered to the screen. The code in listing 7.1 works, but it’s less than optimal.

 Because we only need the state value internally in the component and don’t need
the component to re-render just because the value is updated, we can instead use a
reference via the useRef hook. To instantiate a useRef hook, you simply call the hook
and store it in a variable. You can optionally pass an initial value to the hook as well.
To read or update the current value of a useRef hook, you access the .current prop-
erty on the hook return value. Compare the sketch of this scenario in figure 7.2 with
the scenario in figure 7.1—we skip an entire cycle of rendering! This is implemented
in listing 7.2.

Listing 7.1 A double-click counter with useState

Remembers the time of the
last click in a state value

If the time since the last click is less
than 300 ms, it’s a double-click.

Increments the
counter only if
it’s a double-click

Remembers the time
of the current click if
it’s not a double-click

2197.1 Stateful components
import { useState, useRef } from "react";
const THRESHOLD = 300;
function DoubleClickCounter() {
 const [counter, setCounter] = useState(0);
 const lastClickTime = useRef(null);
 const onClick = () => {
 const isDoubleClick =
 Date.now() - lastClickTime.current < THRESHOLD;
 if (isDoubleClick) {
 setCounter((value) => value + 1);
 } else {
 lastClickTime.current = Date.now();
 }
 };
 return (
 <main>
 <p>Counter: {counter}</p>
 <button onClick={onClick}>Increment</button>
 </main>
);
}
function App() {
 return <DoubleClickCounter />;
}
export default App;

Listing 7.2 A double-click counter with useRef

Display current

double-click count.

Initialize double-click count to 0.

Initialize last click time to null.

User clicks

button.

Update last click

time to right now.

Did this click

happen "just

after" last

click?

Increment

double-click counter.

Yes No

Tell React that a

value has been

updated.

Figure 7.2 This time, if the user clicks the button the first time, the last click time is recorded, but it
doesn’t cause a re-render because it’s not an active state value, but a passive one. This means that we
can still access the value later (on this or future renders), but it doesn’t cause a new render by itself.

Remembers the
time of the last click
in a useRef value

Performs the same
check as before,
except now the value
is accessed through
the .current property

Updates the current
value of the state
through the .current
property

220 CHAPTER 7 Hooks to fuel your web applications

nt
This is a much better version of our component, because we don’t have needless re-
renders. We persist the state properly in a way that works, even if the component does
re-render for some other reason.

REFERENCES TO DOM ELEMENTS

The other use case for useRef is, as mentioned, to get references to DOM elements.
You’ll see this used many times throughout the remainder of this book. We use it to
have a reference to the actual DOM element that is rendered in the document as a
consequence of the JSX element that we’ve created. The syntax is very simple:

function Component() {
 const ref = useRef();
 return <div ref={ref} />;
}

This doesn’t use the reference for anything, but merely creates it. You can use the ref-
erence in an effect hook to, for example, invoke methods on the element, which isn’t
directly possible through properties of the DOM element.

 For instance, let’s autofocus an input field when a component is mounted:

function AutoFocusInput() {
 const ref = useRef();
 useEffect(() => ref.current.focus(), []);
 return <input ref={ref} />;
}

This latter use of useRef is the more common use (and the originally intended pur-
pose). There’s quite a bit more to say about how both useRef and the JSX ref prop-
erty work, but we’ll leave it here for now. We’ll expand a bit on this in future chapters
where relevant.

7.1.4 Easier multicomponent state with useContext

useContext is a stateful hook, meaning that it works similarly to useState. But rather
than load and update values in a local store, useContext works in a store in a parent

Repository: rq07-double-counter
This example can be seen in repository rq07-double-counter. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq07-double-counter --template rq07-double-counter

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq07-double-counter

Creates a reference
using the hook

“Assigns” the reference to the DOM node, which, when
the component is rendered, assigns a reference to
the DOM node inside the ref object

Creates an effect that runs on mount
only (empty dependency array) and
focuses the element through the ref
object. Note that it uses the ref.curre
syntax as mentioned previously.

https://rq2e.com/rq07-double-counter

2217.1 Stateful components
component somewhere up the component tree. This is the hook version of the React
Context API, and we’ll see a lot more about how this works in practice in chapter 10.
We can reveal that it’s one of the more powerful hooks when it comes to building
good architecture.

7.1.5 Low-priority state updates with useDeferredValue
and useTransition

NOTE This topic is both fairly advanced and also brand new. These are fea-
tures only just added with React 18, so there’s still a lot of discoveries around
best practices yet to be made. It’s also an advanced topic that probably isn’t
relevant for everyday applications. We won’t cover the functionality of these
hooks in full in this section, but we’ll only briefly outline why they exist. If you
don’t care about them at this point, feel free to skip this section.

Imagine that we’ve created an online document editor application similar to Google
Docs, and we’ve added many features to it. We’re now adding a spell-checker to the
application and want to do this by adding a button that can be clicked to enable spell-
checking and clicked again to disable it. The button has a different background color
if enabled.

 When a user clicks this button, it should react instantly. The button should change
display within a few milliseconds for the user to feel like the button works. We can
implement this using state by just toggling an enabled property inside the button
using a useState setter.

 But our button is going to do more than that. When spell-check is enabled, all the
typos in the document should be highlighted with a red line underneath them. If the
user is working on a large document, finding and highlighting all the errors might be
an expensive operation. You have to run a lot of operations on all the words in the
document to find errors and maybe even find suggestions for correct spellings for
each. These tasks can easily take tenths of a second or even whole seconds to execute.

 If we update both the internal enabled state flag inside the button as well as the
global flag that triggers the spell-check calculation with the same priority at the same
time in React, React’s internals will treat both updates as happening at the same time
and won’t render anything until both updates have been fully calculated. This isn’t
ideal because the spell-check button will seem nonfunctional. When the user clicks
the button and nothing happens, they will click it again. Then, all of a sudden, the
button will actually work after the calculation is completed, but because the user
had already clicked it again, the user disables the functionality. That’s a horrible
user experience.

 What if we could inform React that updating the button state is high priority and
should happen right away, whereas highlighting all the spelling errors in the docu-
ment is lower priority, and we don’t mind if that trails the button click by several ren-
der cycles? React 18 introduced a brand-new concept, Concurrent Mode, which allows
exactly that. The useDeferredValue and useTransition hooks are two different ways

222 CHAPTER 7 Hooks to fuel your web applications
of specifying low-priority state updates from two different angles. Given the complex-
ity of these hooks, we won’t cover them further in this book, but please refer to the fol-
lowing online materials for more information:

 Article: http://mng.bz/jPAP
 Video: http://mng.bz/WzM1

7.2 Component effects
This section is going to be short, so try not to blink or you might miss it completely!
Component effects are a group of hooks dedicated to running side effects from within
hooks with three different purposes:

 To influence the outside based on the component state
 To update the component state based on something from the outside
 To both influence the outside and update the component state at the same time

We’ve seen two such hooks already presented in the previous chapter, useEffect and
useLayoutEffect. There is only one more such hook, useInsertionEffect, but it’s
reserved for advanced use by specific libraries, so it’s not recommended to be used by
“regular” developers.

 We won’t add any information on useEffect and useLayoutEffect in this chapter,
as we covered everything there is to know in chapter 6. The last effect hook, use-
InsertionEffect, will be briefly covered in section 7.4.

7.3 Optimizing performance by minimizing re-rendering

NOTE This is an advanced topic not required by most simple applications.
We’ll only quickly introduce the topic here and not cover it in detail, as it’s
not necessary for your first, your second, or even your tenth application. Only
once you start moving into larger applications with dozens or even hundreds
of components do these hooks start to shine.

If you’re working on a larger application with many moving parts, data updating from
many sources, and events listening to many types of input, performance might start to
degrade if components render unnecessarily. Once your application gets to that point,
memoization might be the trick that can help your application regain its responsiveness.

 At its core, memoization is the principle of caching the result of a given calculation
so that if the same calculation is performed later, the cached result is returned. This
can be used in React in a number of ways, including the three hooks we’ll introduce
in this section.

 As mentioned, we won’t go into detail about these hooks in this chapter, as they
aren’t necessary when starting out as a React developer. In fact, wrongly applying
memoization might lead to worse performance, not better. So given the advanced
nature of this topic, we don’t use memoization at all in this book, and we’ll only briefly
introduce the three hooks in the following subsections.

http://mng.bz/jPAP
http://mng.bz/WzM1

2237.4 Creating complex component libraries
 You can read more about optimizing React performance in Job-Ready React (Morten
Barklund, Manning, 2024), which covers not only these hooks and memoization in
general, but also other ways to make your application more performant.

7.3.1 Memoizing any value with useMemo

Let’s say you need to display the cryptographic hash of a given password as entered in
an input field. The calculation of such a hash is pretty expensive, so you don’t want to
perform the calculation if the password doesn’t change. But your component re-renders
several times, even without the password changing. For this and similar occasions, you
can use the useMemo hook to recalculate a given value in a component only if its
dependencies change.

7.3.2 Memoizing functions with useCallback

useCallback is just a specialized version of useMemo, which is useful when useMemo is
used to memoize a function. But because this happens so often, the useCallback
hook exists for this purpose and is often used more than useMemo.

7.3.3 Creating stable DOM identifiers with useId

This is an even more advanced topic that is only relevant for server-generated React. It
requires quite a buildup of knowledge to understand the circumstances for this hook
that has such an extremely narrow usage.

 useId makes sure that for two completely identical component trees, if a particular
component inside either tree calls useId, it will get the same ID returned regardless of
which platform the hook is run on. This is used to ensure that generated HTML is
identical on the client and on the server.

7.4 Creating complex component libraries
This section is only included for completion, so we cover all the hooks in React. The
four hooks described in the next subsections are all very advanced and rarely used. They
are meant for reusable packages such as component libraries or open source modules.

 The last two hooks mentioned in this section are introduced in React 18 as a conse-
quence of the new Concurrent Mode. Some libraries have to be updated to correctly
render in Concurrent Mode to avoid calculating logic that isn’t required or is prema-
ture because of concurrency. Feel free to skip this section and go on to section 7.5 if
you want to get on with the more practical stuff.

7.4.1 Creating component APIs with useImperativeHandle

This hook is used for advanced component libraries where you want to expose an API
to parent components that is either custom for your particular component or that
mimics a built-in DOM element for ease of use. It’s almost exclusively used with
forwardRef, which allows you to create your own components that accept refs, but
pass them on to other elements or make a custom reference.

224 CHAPTER 7 Hooks to fuel your web applications
 A quick example of this is a generalized custom input component where you want
the parent component to be able to focus the input. Maybe you have an error message
saying “missing field,” and if the user clicks the error message, the correct field is
focused. However, inside your component, the input can be many different types of
elements (input, text area, or select) and can even have multiple input fields (imagine
a phone form field, consisting of both a country prefix field and another phone num-
ber field).

 To generalize this and make a unified API for all of these cases, you can use the
hook useImperativeHandle to expose a focus() method for your component. This
method can be used in imperative code (rather than declarative code through prop-
erties only), which will make sure to focus the proper element when invoked.

 We won’t go into details about how this hook nor forwardRef work in this book,
as that is an advanced subject beyond the scope of this chapter, but it’s good to know
this hook exists if you want to create an advanced custom component that exposes a
custom API through a reference. For more information, see this “ultimate guide” to
useImperativeHandle: http://mng.bz/EQ0O.

7.4.2 Better debugging of hooks with useDebugValue

This is a hook only meant for developer experience. It doesn’t change nor improve
the user experience of your application regardless of how it’s used.

 The useDebugValue hook allows you as a React library developer to display a cus-
tom message when other developers are inspecting your custom hooks in their React
application using the React Developer Tools plugin in their browser.

 Normally a custom hook would display all of its internal states in the React Devel-
oper Tools explorer, but that might be confusing to someone who doesn’t care about
the internals of your custom hook. With the useDebugValue hook, you can expose
only what the developer using your hook cares about. For more information, see
“How to Use useDebugValue in React” at http://mng.bz/N251.

7.4.3 Synchronizing non-React data with useSyncExternalStore

In Concurrent Mode, React can be updating a state value with low priority, and while
calculating the consequences of said update, an urgent update comes in that has to be
calculated irrespective of the incomplete update. Because React is running concur-
rently, React will have several completely separate instances of the application run-
ning and can thus spin off a new calculation based on a former state when an urgent
update comes in.

 If an application uses an external library to keep state updated, this external
library has to be able to support this kind of concurrent state logic so it, too, can keep
multiple instances of the state running at the same time. React 18 introduces the
useSyncExternalStore for that exact purpose. For more information, see this article
on useSyncExternalStore: http://mng.bz/8r1K.

http://mng.bz/EQ0O
http://mng.bz/N251
http://mng.bz/8r1K

2257.6 Quiz
7.4.4 Running effect before rendering with useInsertionEffect

If you have a library that creates stylesheets or similar HTML nodes in the document
as a side effect of component rendering, your library now needs to be aware of Con-
current Mode to render the correct nodes at the correct time. For that specific pur-
pose, React 18 introduces the useInsertionEffect hook.

 While this is and looks like an effect hook in the same vein as useEffect and use-
LayoutEffect, the useInsertionEffect hook is never applicable to regular compo-
nents. It was only created as a consequence of how some general-purpose libraries
have to be updated to account for the consequences of concurrency. For a bit more
detail, see this short article on useInsertionEffect: http://mng.bz/EQlq.

7.5 The two key principles of hooks
You only need to obey two rules regarding React hooks:

 Only call hooks unconditionally at the top level of functional components.
 Only call hooks inside functional components.

The first rule, we already discussed: you can only use hooks directly in your compo-
nents, and you must always include the same number of hooks. That means you can
never call hooks inside a function (including inside a function used in a hook) or a
nested block (either a conditional or loop), and you can’t have early returns in your
component before you’ve rendered all your hooks.

 The second rule is kind of obvious, but maybe kind of not obvious: you can only use
hooks inside functional components. You can’t create some helper function or call-
back that calls a hook. You also can’t use them inside class-based components.

 The only exception to this rule is that you can use hooks inside other hooks, which
are called custom hooks, and you can again use custom hooks inside other custom
hooks, and so on. But you can only use those custom hooks either in other custom
hooks or in your components, so you can’t circumvent this rule—you can just hide it
one layer (or multiple layers) down. We’ll cover custom hooks in chapter 10.

7.6 Quiz
1 React has always had and will always have 15 hooks. True or false?
2 Which of these are considered stateful hooks?

a useState

b useValue

c useId

d useReducer

3 useMemo is a specialized version of useCallback. True or false?
4 You can’t call a hook inside a function unless it’s a functional component or a

custom hook. True or false?

http://mng.bz/EQlq

226 CHAPTER 7 Hooks to fuel your web applications
5 Which of the following constructions aren’t allowed?

a function Component({ isVisible }) {
 if (!isVisible) return false;
 useEffect(() => { ... }, []);
 ...
 }

b function Component({ hasEffect }) {
 if (hasEffect) {
 useEffect(() => { ... }, []);
 }
 ...
 }

c function Component({ shouldRender }) {
 useEffect(() => { ... }, []);
 if (!shouldRender) return false;
 ...
 }

Quiz answers
1 False. React 16.8 introduced the first 10 hooks, and React 18.0 added another 5.

More will definitely come in future releases.
2 useState and useReducer are stateful hooks. useValue isn’t a built-in hook

(but you could make a custom hook named this if you wanted), and useId is
instead used for a rather specific memoization purpose.

3 False. It’s the other way around. useMemo is a general hook for memoizing any
value, whereas useCallback is a hook for memoizing functions only.

4 True. You shouldn’t attempt to call hooks inside functions that aren’t themselves
custom hooks. Even though it might seem to work at first, it will only lead to
problems down the line if you suddenly start calling one of these functions out-
side of a functional component. Obey the principles of hooks!

5 The illegal constructions are a and b. Only version c is a valid component. Ver-
sions a and b both use conditional rendering of hooks, which isn’t allowed.

Summary
 React has 15 different built-in hooks, but several of them are rarely used, leav-

ing about 10 as the core API on which all React applications are built.
 Hooks are used for a variety of purposes that make components smart and able

to interact with the web page as a whole. Even though all the hooks vary wildly
in their purposes, they all have some common features.

 Stateful hooks are required to make applications stateful. You can use several
different hooks depending on the complexity of your application and the val-
ues in your state. With React 18, you can even make lower priority and higher
priority state updates to help React make your UI as responsive as possible.

227Summary
 Effect hooks are used to run side effects inside components, as you learned in
chapter 6. By using the dependency array, you can trigger your effect to run at
the desired time(s).

 Memoization hooks are used for optimization of rendering in React, once your
application grows large and complex.

 Library hooks are meant for more complex codebases only and probably aren’t
relevant for your everyday applications.

 If you use a hook, you must obey the two laws of hooks: only call hooks at the
top level of a component (so no conditional hooks or loops of hooks), and only
use hooks inside functional components (so no hooks outside a component, in
a helper function, or even in a class-based component).

Handling
events in React
Events are the way that users interact with a JavaScript web application. Events can
be caused by mouse movement or clicking, touch interface clicks and drags, key-
board button presses, scrolling, copying and pasting, as well as indirect interactions
such as focusing and unfocusing elements or the entire application.

 So far, we’ve created React applications with very little user interaction. We’ve
handled clicking a button here and there, but not really talked in depth about how
the click event works, and how we as developers handle it. We’re going to change
that in this chapter, which is dedicated to event handling.

 You can think of events as the way to handle inputs from a user. Our web appli-
cation creates JavaScript XML (JSX), which is converted to HTML. The user then
interacts with that HTML, and the result of those interactions are events dis-
patched from the HTML elements to our React application. This simple flow of
information is illustrated in figure 8.1.

This chapter covers
 Reacting to user input using events

 Handling event capturing and bubbling

 Managing default event actions

 Attaching event listeners directly to the DOM
228

229
Events are also used internally in the browser to signify when things change between
elements. It can be when a video is playing/pausing/buffering, an animation is com-
pleted, a DOM node is mutated, data is loaded (or failed to load), and so on. There
are hundreds of possible events, and any interactive web application will be using a siz-
able chunk of them. (You can read more about all the possible DOM events in the
event reference document at http://mng.bz/9D1j.)

 There are two ways to handle events in React:

 You can use React to manage your event listener.
 You can manually add and remove your event listener directly on a DOM node.

Relying on React to handle listeners saves a bunch of tedious work and headaches
(and potential memory leaks), but it comes with a minor loss of flexibility. Directly
adding event listeners allows you to listen for all kinds of events and assign listeners to
whichever nodes you feel like when you need to, but comes with the cost of having to
manage listeners (and remember to remove them again) as well as dealing with native
events that might differ between browsers.

 In this chapter, we’ll show you both approaches and discuss when best to apply
one or the other. Note that handling events in React is both a whole lot easier as well
as recommended. Therefore, this scenario will be covered in a lot more detail in
this chapter.

 As we cover how you can listen to events using React’s interface, we’ll discuss a
number of topics about how React handles events and how you can work with the
React API to listen to the specific events that you need. We’ll answer the following
questions:

 Which events are supported?
 How do you create the event handler function?
 What event objects will you receive?
 How do event phases and propagation work?
 How do you handle events in the capture phase of the event dispatch?
 What are default actions and how do you prevent them?

Interaction Events

JSXHTML

Figure 8.1 Information flow between React and the user goes through the HTML. Imagine the
user visiting a login page. The user inputs the email and password, the browser forwards those
interactions as events to React, the application then generates the JSX required to display a green
checkmark next to each input as it’s filled, and the browser renders the corresponding HTML to
display to the user.

https://shortener.manning.com/9D1j

230 CHAPTER 8 Handling events in React
 When should you persist an event?
 Can you use properties as event handlers?
 What are event handler generators?

We’ll then proceed to situations where React’s built-in event handling isn’t capable
enough, and we need to handle events manually in the DOM. We’ll give you all the
insights into how to do this best, as well.

 All of this will lead to the next chapter, where we’ll use our newfound understand-
ing of event handling to create interactive form inputs and forms in general, which is
a cornerstone of many web applications.

NOTE The source code for the examples in this chapter is available at https://
rq2e.com/ch08. But as you learned in chapter 2, you can instantiate all the
examples directly from the command line using a single command.

8.1 Handling DOM events in React
Events are an essential way of communicating in the browser between the user and the
script as well as between different elements in the application. Because of this, proper
event handling is a first-class citizen in React, meaning that React has dedicated a big
part of its core API to this exact purpose.

 The API is very simple. If you define a property on a JSX element that references
an HTML node, and that property matches a known event from React’s list of sup-
ported events, React will treat the property as an event listener rather than as a DOM
attribute. React will then make sure to correctly add and remove the event listener, as
the component mounts and unmounts.

8.1.1 Basic event handling in React

The most important event of all in almost any web application is the click event. Con-
trary to its name, it’s not only used to accept clicks from a mouse. The click event in
HTML is also invoked when a touchscreen user taps on a button (or a link) or when a
keyboard user activates a button (or a link) using the Enter key.

 Let’s go back to our trusted counter component and take a closer look at how we
handle the click event. If you remember, this application had a button, and we incre-
mented the state value as a response to the user clicking. First, let’s repeat the code for
this simple application.

import { useState } from "react";
function Counter() {
 const [counter, setCounter] = useState(0);
 const onClick = () =>
 setCounter((value) => value + 1);

Listing 8.1 Counter component

Creates a local variable,
which is a function, that will
increment the state value
when invoked

https://rq2e.com/ch08
https://rq2e.com/ch08
https://rq2e.com/ch08

2318.1 Handling DOM events in React
 return (
 <>
 <h1>Value: {counter}</h1>
 <button onClick={onClick}>Increment</button>
 </>
);
}
function App() {
 return <Counter />;
}
export default App;

In this example, we handle a click event on an HTML object, which is a <button>. Any
HTML element will dispatch a click event if clicked, so we could have changed this
element to a <div> or any other type of element.

 Another event that we can listen for on all objects is the mouse (or pointer) event.
Any element can dispatch, for example, a mousemove event, when a mouse moves
inside that element’s boundary. We can listen for such an event in the same way.

 Let’s create a component that shows a checkmark if the mouse is moving around
inside the element, but changes to a cross if the mouse has stopped moving for half a
second or if the mouse moved outside the element.

 To do that, we need to listen for the mousemove event. In React, that means we
assign a function as the onMouseMove property on our target element. In this case,
we’ll use a <section> element and display our result in a heading inside of that. See
this implemented in the following listing and the result in figure 8.2.

import { useState, useEffect } from "react";
function MouseStatus() {
 const [isMoving, setMoving] = useState(false);
 const onMouseMove = () => setMoving(true);
 useEffect(() => {
 if (!isMoving) return;
 const timeout = setTimeout(() => setMoving(false), 500);
 return () => clearTimeout(timeout);
 }, [isMoving]);
 return (
 <section onMouseMove={onMouseMove}>
 <h2>
 The mouse is {!isMoving && "not"} moving: {isMoving ? "✓" : "✗"}
 </h2>
 </section>
);
}
function App() {
 return <MouseStatus />;
}
export default App;

Listing 8.2 Is the mouse moving?

Assigns that local
variable to the onClick

property on our button

Creates a local variable,
which is a function that
will set the moving flag
to true when invoked

Assigns that local variable to the
relevant property on our element—

this time, the onMouseMove property
on our section element

232 CHAPTER 8 Handling events in React
Not all events are dispatched by all types of elements, though. Video (and audio) ele-
ments dispatch a play event once the video (or audio) starts playing. Buttons don’t dis-
patch that event because they aren’t videos (or audios) that play.

 Let’s create an application that displays a Play/Pause button next to a video. When
the video is playing, the button is a Pause button; when the video is paused, the button
is a Play button.

 For this, we need a total of four listeners. We need to listen to the play and pause
events on the video object, and we need to listen for the click event on our button, but
with two different event listeners depending on whether the video is playing or not.
We’ll implement this in the next listing. If you run this application, you should see
something similar to figure 8.3 in your browser.

import { useState, useRef } from "react";
const VIDEO_SRC =

Repository: rq08-mouse-status
This example can be seen in repository rq08-mouse-status. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq08-mouse-status --template rq08-mouse-status

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-mouse-status

Listing 8.3 A very simple video player

Figure 8.2 Our mouse status component when the mouse isn’t moving or is moving, respectively

https://rq2e.com/rq08-mouse-status

2338.1 Handling DOM events in React
 "//images-assets.nasa.gov/video/One Small Step/One Small Step~orig.mp4";
function VideoPlayer() {
 const [isPlaying, setPlaying] = useState(false);
 const onPlay = () => setPlaying(true);
 const onPause = () => setPlaying(false);
 const onClickPlay = () => video.current.play();
 const onClickPause = () => video.current.pause();
 const video = useRef();
 return (
 <section>
 <video
 ref={video}
 src={VIDEO_SRC}
 controls
 width="480"
 onPlay={onPlay}
 onPause={onPause}
 />
 <button onClick={
 isPlaying ? onClickPause : onClickPlay
 }>
 {isPlaying ? "Pause" : "Play"}
 </button>
 </section>
);
}
function App() {
 return <VideoPlayer />;
}
export default App;

Listening to events in React is really only about three things:

 Knowing what event to listen for
 Knowing which element to listen on
 Assigning a listening function to the correct property on the correct element

Toggles the state
flag to true when
the video starts
playing

Toggles the
flag to false
when the
video pauses

Invokes play on the
reference to the video
DOM element when the
button is clicked to
play the video

Pauses the video when
the button is clicked

while the video is
already playing

Assigns the two video
event listeners to the
video element using the
appropriate properties

Assigns one of the button
click event listeners to
the onClick property
depending on the flag

Figure 8.3 The video player interface when the video is playing and paused, respectively

234 CHAPTER 8 Handling events in React
That’s really all there is to it. The rest of this chapter walks through a number of event
examples, so your toolbox will be ready to handle any event scenario that you come
across.

EVENTS SUPPORTED BY REACT

You can only use React to listen for events that are supported by React. Normally, this
isn’t something you have to worry about because almost all DOM events are supported
by React. You can see a full list of all the supported events in table 8.1.

 However, there are some JavaScript events that aren’t supported in React—mostly
because these events are dispatched from objects that aren’t in the DOM, but are
objects that you create in JavaScript only. These include events from objects such as
socket connections and request objects.

 Some other unsupported DOM events are events that are only sent to the window
or document nodes. They aren’t supported by React because these two nodes are
never inside your React application. React only lives somewhere inside the document
element, never above it.

 Note that if you set a property on a JSX element that matches a known event type
listed in table 8.1, React will convert that property to a listener on that element, regard-
less of whether that element can dispatch that event at all. You can, for instance, assign
an onPlay event listener to an <h1 /> element, even though that event will only ever be
dispatched from <video /> and <audio /> elements.

Repository: rq08-video-player
This example can be seen in repository rq08-video-player. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq08-video-player --template rq08-video-player

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-video-player

Table 8.1 List of events directly supported in React

Clipboard events onCopy onCut onPaste

Composition events onCompositionEnd onCompositionStart onCompositionUpdate

Keyboard events onKeyDown onKeyPress onKeyUp

Focus events onFocus onBlur

Form events onChange onInput onInvalid onReset onSubmit

https://rq2e.com/rq08-video-player

2358.2 Event handlers
8.2 Event handlers
To handle an event, simply assign any function to the relevant property of a JSX ele-
ment that might dispatch such an event. Your function doesn’t have to behave in any
particular way or accept any particular argument. The event handler function will be
called with a single argument—the event object—but you don’t have to accept it.

 Because there are no restrictions nor any defined best practices from an “official”
source on how to define an event handler function, you’ll see people do it in many
different ways. In this section, we’ll cover some of the different options and some con-
ventions that we’ve seen used in larger codebases.

Generic events onError onLoad

Mouse events onClick onContextMenu onDoubleClick onDrag onDragEnd
onDragEnter onDragExit
onDragLeave onDragOver onDragStart onDrop onMouseDown
onMouseEnter onMouseLeave
onMouseMove onMouseOut onMouseOver onMouseUp

Pointer events onPointerDown onPointerMove onPointerUp onPointerCancel
onGotPointerCapture
onLostPointerCapture onPointerEnter onPointerLeave
onPointerOver onPointerOut

Selection events onSelect

Touch events onTouchCancel onTouchEnd onTouchMove onTouchStart

UI events onScroll

Wheel events onWheel

Media events onAbort onCanPlay onCanPlayThrough onDurationChange
onEmptied onEncrypted
onEnded onError onLoadedData onLoadedMetadata onLoadStart
onPause onPlay
onPlaying onProgress onRateChange onSeeked onSeeking
onStalled onSuspend
onTimeUpdate onVolumeChange onWaiting

Image events onLoad onError

Animation events onAnimationStart onAnimationEnd onAnimationIteration

Transition events onTransitionEnd

Other events onToggle

Table 8.1 List of events directly supported in React (continued)

236 CHAPTER 8 Handling events in React
8.2.1 Definition of event handlers

NOTE This subsection doesn’t teach you anything new React-wise. It mainly
reiterates how you can define functions in different ways in JavaScript inside
other functions. If you’re a JavaScript expert, feel free to skip this section and
go straight to section 8.2.2.

You can define the event function any way you like. If it’s a valid function, it’s valid as
an event handler. Common options include the following:

 Define the function as a local variable using an arrow function.
 Define the function as a local variable using a function expression.
 Define the function as an inline function using an arrow function directly

assigned to the property.

Here’s an example of our counter component once again with a local variable using
an arrow function:

function Counter() {
 const [counter, setCounter] = useState(0);
 const onClick = () => setCounter(c => c + 1);
 return (
 <>
 <h1>Value: {counter}</h1>
 <button onClick={onClick}>Increment</button>
 </>
);
}

Here’s the very same component, but with the handler function defined using a func-
tion expression:

function Counter() {
 const [counter, setCounter] = useState(0);
 function onClick() {
 setCounter(c => c + 1);
 }
 return (
 <>
 <h1>Value: {counter}</h1>
 <button onClick={onClick}>Increment</button>
 </>
);
}

And, finally, here’s the same component with the handler defined inline using an
arrow function:

function Counter() {
 const [counter, setCounter] = useState(0); return (
 <>

Creates a variable using const
and assigns a function using
the arrow function notation

Assigns that
variable to the
onClick property

Creates the function using a
function expression, which
will scope the variable as a
local variable

Assigns that
variable to the
onClick property

2378.2 Event handlers
 <h1>Value: {counter}</h1>
 <button onClick={() => setCounter(c => c + 1)}>
 Increment
 </button>
 </>
);
}

The second approach, with a function expression inside your component, is a bit
unusual, albeit fully valid. We won’t use that syntax, and we haven’t seen it much in
the wild.

 Whether you define your event handler in a variable or inline in the JSX is up to
you. Many will mix and match the two options, and so will we throughout this book.
Your team will most likely find a convention that works for them, and if you’re work-
ing alone, find what works for you.

 A common convention is to define single-line event handlers inline, but multiline
event handlers in a separate variable. So, there’s nothing stopping you from doing this:

return (
 <button onClick={() => {
 setCounter(count => count + 1);
 toggleState();
 }}>Button</button>
);

But some developers will find it a bit messy and will prefer to have such multiline
event handlers defined separately in a variable before the JSX is returned:

const onClick = () => {
 setCounter(count => count + 1);
 toggleState();
};
return <button onClick={onClick}>Button</button>;

8.2.2 Event objects

When an event handler is invoked because an event has occurred, the event handler is
invoked with a single argument—the event object. This happens both in regular
HTML and JavaScript, as well as in React.

 React event objects are a bit special, but we’ll get to that in the next subsection. For
now, we’ll showcase a few things that regular JavaScript event objects and React event
objects have in common.

 Let’s try to build our counter component with both increment and decrement but-
tons again, but this time we’ll use the same event handler function to handle the click
event on both buttons. We do this to display an alternative way of structuring the code.
It’s not faster or better in terms of code performance, but some will prefer this style
over the previous one.

Creates the event handler inline and
directly assigns it to the relevant

property on the HTML element

238 CHAPTER 8 Handling events in React

del
c

 To do this, we need to know which button caused the event that was sent to the
event handler. We can do that by looking at the event object passed. It will have a
property, .target, that points to the HTML node that was clicked. To compare this
target property with the actual node, we need a reference to one of the nodes in our
component. Let’s implement this in the following listing.

import { useState, useRef } from "react";
function Counter() {
 const [counter, setCounter] = useState(0);
 const increment = useRef();
 const onClick = (evt) => {
 const delta =
 evt.target === increment.current ? 1 : -1;
 setCounter((value) => value + delta);
 };
 return (
 <section>
 <h1>Value: {counter}</h1>
 <button ref={increment} onClick={onClick}>
 Increment
 </button>
 <button onClick={onClick}>Decrement</button>
 </section>
);
}
function App() {
 return <Counter />;
}
export default App;

Is this better than having two separate event handlers? That’s a subjective question.
Both solutions are fine. Sometimes one seems more appropriate, and other times, the
other one does. The choice mostly comes down to personal preference. Do you feel
that having a single event handler makes the code more readable, or do you prefer
having separate handlers? There’s no difference in performance, so it’s completely up
to your preferred style.

 Event objects always have a target property that refers to the target of the event.
Another property that all events have is the type property. The value of this property is
the type of event invoked. Imagine that we assigned the same event handler to both
the onMouseEnter and the onFocus property of an input field. Then, our event han-
dler would fire if the user either moved their mouse over the field or used the key-
board to tab into the field. We could tell which event occurred by looking at the
evt.type property.

 Some event objects have extra properties that are specific for the event types that
dispatched them. For instance, mouse event objects always have the properties .clientX
and .clientY, which indicate where in the document the mouse event occurred, as

Listing 8.4 Increment and decrement with a single event handler

First, we need a ref,
so we can access the
HTML node.

Then, in our single event
handler, we compare the event
target with the increment node.
If it’s not that button, it must
be the other one.

Adds the
ta to the
urrently

stored
value

Assigns the same event
handler to both buttons
but only a ref to the
increment button

2398.2 Event handlers
well as .ctrlKey and .shiftKey, which indicate whether either of those keys were
pressed while the mouse event occurred. Mouse event objects have many other prop-
erties than these, though. To see the full list of available properties for all the different
event objects in React, check the online documentation here: http://mng.bz/D4Zy.

8.2.3 React event objects

React event handlers aren’t the same as “true” DOM event handlers. A DOM event
handler is added to a DOM node and passed a DOM event object when invoked. A
React event handler isn’t directly added to any DOM node and will be invoked by
React with a React event object when React detects that an event of the given type hap-
pened on that node. Compare and contrast the two approaches in figure 8.4.

In figure 8.4, notice that when you add a listener to a JSX element, React doesn’t add a
new listener anywhere. Instead, it just remembers that you want to be informed about
this specific type of event for this specific node. React already listens to all events on
all nodes, so when an event of the specified type occurs, React will check if the target

React event listeners

DOM event listeners

Add event listener: onClick

Button is clicked/pressed

Observe button

Invoke with DOM eventonClick

Add event listener: onClick

Invoke React listener

Add global click listener

Invoke with React eventonClick

Button is clicked/pressed

Observe every node

Figure 8.4 React doesn’t add a listener on the individual node, but listens to any event on any node, unlike
native DOM listeners.

http://mng.bz/D4Zy

240 CHAPTER 8 Handling events in React
matches the one you asked about; if so, React will invoke your event listener with a
custom React event object. The reasoning for React implementing this new event sys-
tem on top of the already existing native browser event system is two-fold: performance
and consistency.

PERFORMANCE

As we just mentioned, React doesn’t add listeners to individual nodes. React adds a
single listener of every event type to the document, and this is done for performance
reasons.

 The performance gain is real. If you add a thousand buttons and assign a click
event listener to each node in pure JavaScript, it requires a lot of memory. But if you
use React to do the same, React will only ever create a single click event listener on the
document as a whole and, when invoked, check if the target matches any that you
asked for. This significantly reduces memory usage.

 For this reason, you don’t have to worry about adding too many event listeners in
React. If you were implementing a web app in plain JavaScript, you might have to cre-
ate some workarounds to reduce how many listeners you have. When using React, this
is all taken care of for you, so you can just add listeners as you like and know that you
still have great performance.

CONSISTENCY

Despite browsers being more and more standards compliant, there are still older
browsers out there, and they might do things a bit differently. This is particularly rel-
evant when it comes to the event API. A lot of this concern is about browsers that are
5+ years old (older versions of Firefox and especially Internet Explorer 9 and ear-
lier), so it doesn’t seem extremely important today, but these browsers might still
exist in the wild.

 Another big reason for consistency might be slightly surprising. Some events aren’t
standardized but are still implemented by every browser. This includes events such as
the mouse wheel event. There is no standard for this event, nor is any such on the way,
but all browsers still support it, so React does as well. Because there is no standard,
browsers handle the mouse wheel event slightly differently when it comes to naming.
The scroll wheel change in the x direction is stored in a property called either .deltaX
or .wheelDeltaX in different browsers. React’s synthetic mouse wheel event takes care
of this and unifies this naming as .deltaX always. Similar unification happens for some
other nonstandard properties on this and other event types.

 For this reason, you don’t have to worry about browser differences at all when
using React events. You can rely on the React documentation only and trust that React
will take care of all the underlying details for you. Due to browser differences disap-
pearing as the use of older browsers decreases, it’s likely that this feature of the
React synthetic event system will disappear at some point in the future and be replaced
exclusively with browser-native events.

2418.2 Event handlers
THE SYNTHETIC EVENT API
React’s synthetic events have an API that’s based on the standard API model as
defined in the HTML specification. This means that you can use all the properties and
methods that you expect from an event.

 All synthetic events share a set of common properties and methods, and more spe-
cialized events have extra properties specific to certain events. For instance, all events
have a .type property and a .target property. They also all have .preventDefault()
and .stopPropagation() methods. We’ll get back to how these work later.

 Individual event types have extra properties as needed for specific events, includ-
ing, for example, the .pageX and .pageY properties on mouse and pointer events,
which include the coordinates of the clicks on the page.

NOTE For details on the specific properties and methods, please see the
React synthetic event API documentation: http://mng.bz/D4Zy.

ACCESS TO NATIVE EVENTS

If for some reason you need access to the underlying native event, maybe because
you’re doing something for a specific browser that can include some extra informa-
tion that is useful for your particular application, you can access it via the .native-
Event property. This is a nonstandard property and a React-only extension of the
event API.

8.2.4 Synthetic event object persistence

Events need no longer be persisted. That’s it, next section. Wait, what? This might
seem odd, but event persistence was a thing you had to do in earlier versions of React
up until the release of React 17, after which it was no longer needed.

 However, because persistence was a commonly used “feature” that only fairly
recently became obsolete, we’ll still cover it here in case you stumble upon it in the
wild. You’ll find event persistence in a codebase that hasn’t been fully updated when
moving to newer versions of React or even in tutorials and guides about React that
aren’t completely up to date.

 Back in the day, for performance reasons, React’s synthetic events were pooled in
order to not create too many objects all the time. Before version 17, React didn’t cre-
ate new event objects every time an event was dispatched. React instead held an inter-
nal pool (an array, basically) of events, and when it needed to send an event, React
would get one from the pool, and then immediately after dispatching the event,
return the event object to the pool. As the event object returned to the pool, the event
was “cleared out,” meaning that all properties were reset to have no value.

 As a developer, this meant that if you received an event in an event handler, you
had to consume the event right away. You couldn’t save it or otherwise access it in a
delayed manner.

 Let’s say that we want to create a counter that we can increase by a value selected
from a drop-down. We’ve created a ton of counters, but this is a new variant. The goal

http://mng.bz/D4Zy

242 CHAPTER 8 Handling events in React
is to display the current counter value (starting at 0) and also a drop-down with values
from 1 to 5. When you select one of the values, the counter will increase by that amount.
When you then select a new value, the drop-down will again increase by that new
amount, and so on. Let’s implement this in the next listing.

import { useState } from "react";
function DropdownCounter() {
 const [counter, setCounter] = useState(0);
 const onChange = (evt) => setCounter(
 (value) => value + parseInt(evt.target.value)
);
 const values = [1, 2, 3, 4, 5];
 return (
 <section>
 <h1>Counter: {counter}</h1>
 <select onChange={onChange}>
 {values.map((value) => (
 <option key={value} value={value}>
 {value}
 </option>
))}
 </select>
 </section>
);
}
function App() {
 return <DropdownCounter />;
}
export default App;

This works and all is well. However, if you were to create this in React 16.8 (when
React hooks were introduced) through React 16.14 (the latest React 16 version before
React 17 was introduced), this wouldn’t work. Instead, evt.target.value would throw
an error in the console because evt.target is undefined. This happens because we pass
an update function to the state setter, and that update function is invoked asynchro-
nously. By the time the function is invoked, React already has returned the event object

Listing 8.5 Drop-down counter

Repository: rq08-persistence
This example can be seen in repository rq08-persistence. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq08-persistence --template rq08-persistence

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-persistence

Adds the selected option
to the current counter
value in our change
event handler by using
an update function

Assigns the event
handler to the
select element

https://rq2e.com/rq08-persistence

2438.3 Event phases and propagation
to the pool and reset it, including clearing evt.target. We could have solved this in
React 16 in one of two ways:

 Make a local copy of the value from the event object we needed right away and
use that value asynchronously in our update function.

 Persist the event, meaning that React would know not to return this particular
event object to the pool, and instead discard it as a “one-time event object” and
create another new event object to return to the pool instead.

The first approach for copying the values we need would look like this:

const onChange = (evt) => {
 const delta = parseInt(evt.target.value);
 setCounter((value) => value + delta);
};

The second approach, where we persist the event object, would look like this:

const onChange = (evt) => {
 evt.persist();
 setCounter((value) =>
 value + parseInt(evt.target.value));
};

This whole mess of having to remember to persist events if used asynchronously was
pretty annoying. It didn’t happen very frequently and was a very common source of
confusion and errors, even for experienced developers, which is partially why it was
abandoned. The other reason was that the performance gained by pooling events
decreased as devices grew faster, so it became an unnecessary optimization.

8.3 Event phases and propagation
Events are not just sent to the target object. When you click a link, the link dispatches
a click event. But if the link had a bold text element inside it (e.g., <a href>A
bold link), you actually click the bold text element. The link
then dispatches a click event because you also click the link element. You “click” all
the parent elements of the bold text element. This is called event propagation.

 To introduce the concept of event propagation, let’s consider a new example. We
want to build a contact form that contains two different sections (field sets). The first
section is information about the user (name and email), and the second is about why
they are sending this contact request (subject and body).

 Because we want the form to look nice and user friendly, we’ll highlight the section
in which the user is currently inputting data. We want the result to look like what you
see in figure 8.5.

 To achieve this goal, we need to listen to the focus and blur events on the input
fields. When an input receives focus, store its section as the focused one. When an

First, we copy the value
from the event object we
need to access later.

Then, we use
that value.

We instruct React to not reuse this
event object, but persist it for our
use indefinitely.

Then, we can freely use the event
object even in asynchronous code.

244 CHAPTER 8 Handling events in React
input field loses focus, remember that no section has focus. With this approach, we
need to put two event listeners on every input in both sections. In this example, we
only have two inputs in each section, so that’s a total of eight listeners, but what if we
had a lot more inputs? We would have to duplicate the same two listeners to every
input field. If that seems like a terrible way to do this, it is. You should avoid repeating
yourself if possible. In this instance, it’s very much avoidable because events bubble!

 Every event in React bubbles up through all the nodes in the document tree above
it. To know which section has focus, we just need to listen for when anything inside a
section receives focus. Likewise, to know that an element loses focus, we just need to
know whenever any element inside the form loses focus. We can use this trick to place
our focus listeners on the two sections and the blur listener on the form itself. Then,
we only need a total of three event listeners to achieve this result rather than eight dif-
ferent listeners, of which most are identical. Let’s look at the resulting JSX structure
and where we want to put our listeners in figure 8.6.

 When you focus any input field, the event will first dispatch on the input field
itself, but after that, the same event will dispatch on every ancestor to the target ele-
ment in order from the parent all the way up to the root node of the React applica-
tion. When the bubbling reaches the field set, React will invoke our onFocus listener
placed there. Similarly, when an input blurs, React will invoke the onBlur listener placed
on the form element.

 Now that we know what we want to achieve and what the resulting JSX is going to
look like, all that remains is to put it all together into a single component. Let’s do
that in listing 8.6.

Figure 8.5 Our finished form when the user is inputting data into either section

2458.3 Event phases and propagation
import { useState } from "react";
const FOCUS_NONE = 0;
const FOCUS_USER = 1;
const FOCUS_REQUEST = 2;
function getStyle(isActive) {
 return {
 display: "flex",
 flexDirection: "column",
 backgroundColor: isActive ? "oldlace" : "transparent",
 };
}
function Field({ label, children }) {
 return (
 <label>
 {label}:

 {children}
 </label>

Listing 8.6 Highlighting contact form sections

<form>

<h1>

<fieldset>

<label> <label>

<fieldset>

<label> <label>

<textarea>

"Body:"

onFocus () => {...} onFocus () => {...}

"Contact"

onBlur () => {...}

<input>

"Subject:"

<input>

"Email:"

<input>

"Name:"

Figure 8.6 We add a blur listener to the entire form and focus listeners on both field sets. When an event
occurs on any input (in the bottom row), the event will travel up the tree and be handled by the proper event
handler.

First, we add a helper function to
generate the style for a section
depending on whether it’s the
active section or not.

246 CHAPTER 8 Handling events in React

w

As
lis
wh
ne
);
}
function Contact() {
 const [focus, setFocus] = useState(FOCUS_NONE);
 const onUserFocus = () => setFocus(FOCUS_USER);
 const onRequestFocus = () => setFocus(FOCUS_REQUEST);
 const onBlur = () => setFocus(FOCUS_NONE);
 return (
 <form onBlur={onBlur}>
 <h1>Contact</h1>
 <fieldset
 onFocus={onUserFocus}
 style={getStyle(focus === FOCUS_USER)}
 >
 <legend>User</legend>
 <Field label="Name">
 <input />
 </Field>
 <Field label="Email">
 <input type="email" />
 </Field>
 </fieldset>
 <fieldset
 onFocus={onRequestFocus}
 style={getStyle(focus === FOCUS_REQUEST)}
 >
 <legend>Request</legend>
 <Field label="Subject">
 <input />
 </Field>
 <Field label="Body">
 <textarea />
 </Field>
 </fieldset>
 </form>
);
}
function App() {
 return <Contact />;
}
export default App;

Repository: rq08-contact
This example can be seen in repository rq08-contact. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq08-contact --template rq08-contact

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-contact

Second, we need to remember
what section has focus right no
(at the start, none of them do).

Creates three
different and very
simple listeners that
we need to use

signs the
teners
ere we
ed them

Assigns the
correct style to
each section
depending on
whether it has
focus or not

https://rq2e.com/rq08-contact

2478.3 Event phases and propagation
That’s it! We now have a fancy styled contact form with some pretty clever focus listen-
ers. If you run this in a browser, you’ll get exactly the desired result that we saw in fig-
ure 8.5.

 In the rest of this section, we’ll discuss in a lot more detail how event propagation
works from a technical perspective. First, we’ll cover events in HTML and JavaScript in
general, and later, events in React specifically.

8.3.1 How phases and propagation work in the browser

React events bubble, as just mentioned. HTML events also bubble. When you click a
button, every ancestor of that button will dispatch an event. They will dispatch two
events—one before the target element itself and one after the target element itself.

NOTE This subsection is about events in HTML in general, and not React spe-
cifically. We need to cover this topic first in order for you to better under-
stand how events in React work. In the next subsections, we’ll discuss event
phases in React specifically, which are slightly different.

Previously, we discussed events bubbling, which is what happens when the ancestors
dispatch an event after the event has already dispatched to the target element. How-
ever, all events also capture, which is what happens before the event is dispatched to the
target element. The three stages of event dispatches are as follows:

 Capture phase—Events are dispatched to all parent DOM nodes in descending
order, starting with the window element, going through every ancestor, and
ending at the parent of the target element.

 Target phase—An event is dispatched to the target element itself.
 Bubble phase—Events are dispatched to all parent DOM nodes in ascending

order, starting with the parent of the target element and moving up through
the ancestors until the window element

See figure 8.7 for an illustration of this. This entire concept is called event propagation.
An event propagates first in the capture phase from the window object “down” to the
target element and then proceeds to propagate back “up” to the window object in the
bubble phase.

 When you want to listen for an event on a particular element, you can specify in
which phase you’re listening to the event. The default is to listen for an event in the
bubbling and target phases, but you can add an argument to listen for events in the
capture phase specifically.

 In JavaScript, you add a listener (bubble and target) by simply calling addEvent-
Listener with the event and callback function:

element.addEventListener("click", onClick);

248 CHAPTER 8 Handling events in React
If you wanted to use a capture listener instead, you would have to add a third argu-
ment with an object:

element.addEventListener("click", onClick, { capture: true });

When you receive an event, you can check the .eventPhase property of the event
object to see which event phase it belongs to. The possible values are listed here:

 Event.CAPTURING_PHASE (1) for capture
 Event.AT_TARGET (2) for target
 Event.BUBBLING_PHASE (3) for bubble

In the example in figure 8.7, a total of 14 potential events will be sent in this exact
order:

1 Capture phase:

a Capture event dispatched on window
b Capture event dispatched on document
c Capture event dispatched on the <html> element

window

document

<html>

<body>

<main>

<button>

<header> <footer>

<nav>

<button>

1. Capture

phase

2. Target

phase

3. Bubbling

phase

Capture phase

Target phase

Bubbling phase

Figure 8.7 When you click the black button, the browser will start propagating events
throughout the nodes in the document starting at the window, moving down through the
document tree in the capture phase until the target, and then moving back up the tree in the
bubbling phase until it reaches the window.

2498.3 Event phases and propagation
d Capture event dispatched on the <body> element
e Capture event dispatched on the <header> element
f Capture event dispatched on the <nav> element

2 Target phase:

a Target event (registered as capture listener) dispatched on the <button>
element

b Target event (registered as bubble listener) dispatched on the <button>
element

3 Bubbling phase:

a Bubble event dispatched on the <nav> element
b Bubble event dispatched on the <header> element
c Bubble event dispatched on the <body> element
d Bubble event dispatched on the <html> element
e Bubble event dispatched on document
f Bubble event dispatched on window

Events 2.a and 2.b might seem similar, but they will be grouped first into all dispatches
to listeners defined as capture listeners, and then into dispatches to listeners defined
as bubble listeners. You can, of course, have multiple listeners listening to the same
event on the same target. If that happens, events will be dispatched in order of assign-
ment of the listeners.

 Let’s make a simplified view of the previous figure with only three elements in
descending order in figure 8.8.

Let’s say that we add a number of listeners to the different elements in this order:

A Add a capture listener to <nav> element
B Add a bubble listener to <button> element
C Add a capture listener to <button> element
D Add a capture listener to <header> element
E Add a capture listener to <nav> element (again)
F Add a capture listener to <button> element (again)
G Add a bubble listener to <nav> element

These eight listeners (A through G) will be invoked in this order:

1 Capture listeners on <header>: D (eventPhase=CAPTURING_PHASE)
2 Capture listeners on <nav>: A, E (eventPhase=CAPTURING_PHASE)
3 Capture listeners on <button>: C, F (eventPhase=AT_TARGET)

<header> <nav> <button> Figure 8.8 Three elements in
descending order

250 CHAPTER 8 Handling events in React
4 Bubble listeners on <button>: B (eventPhase=AT_TARGET)
5 Bubble listeners on <nav> element: G (eventPhase: BUBBLING_PHASE)
6 Bubble listeners on <header> element: None

Note that even though the listeners on the target element itself will be dispatched in
the order of capturing listeners first, then bubbling listeners second, they will all be
invoked with an event phase of AT_TARGET, rather than capturing and bubbling
phases, respectively.

8.3.2 Handling event phases in React

Events in React aren’t added by adding a listener to a node using a method. Events in
React are added by assigning a property to the JSX element that represents that node.
Because of that, you can’t add an argument to say which phase you’re listening to an
event in. In React, as in JavaScript, the default is to add events as bubble listeners.
When you write

<main onClick={onClickHandler}>
 ...
</main>

this onClickHandler would be added as a bubble phase listener. If you want to add a
capture event listener, you have to postfix the event with *Capture. For a click han-
dler, that would be onClickCapture. So, if you have

<main onClickCapture={handler1} onClick={handler4}>
 <button onClickCapture={handler2} onClick={handler3} />
</main>

these click handlers would be invoked as handler1, handler2, handler3, and then
handler4.

 Capture handlers are pretty rare. You’ll likely never use them or maybe use them
only once or twice in a huge application, but they’re a great tool to have available
when you really need them. They’re the julienne peelers of React—rarely used, but
when they are, they are perfect for the job!

8.3.3 Unusual event propagation

Four event types have a very unusual event propagation flow in React. This concerns
the pairs mouseEnter/mouseLeave and pointerEnter/pointerLeave. These pairs of
events are related, as the mouse or pointer will enter one element as it leaves the
other. The propagation of these events bubble from the element being left to the ele-
ment being entered, and they don’t capture.

 Please see the following article for details on this flow if you ever need it: https://
barklund.dev/mouseevents. It would only come up in some very specialized cases
though, so this is probably not something you need to worry about.

https://barklund.dev/mouseevents
https://barklund.dev/mouseevents
https://barklund.dev/mouseevents

2518.4 Default actions and how to prevent them
8.3.4 Nonbubbling DOM events

In the DOM, some events don’t bubble at all, but they still capture. This only happens
for blur and focus events. However, in React, for ease of use, both of these events still
bubble as normal, like other events. So, let’s say you have this structure in React:

<label onFocusCapture={handler1} onFocus={handler3}>
 <input onFocus={handler2} />
</label>

If you put the cursor inside the input field, the three event handlers would fire in this
order: handler1, handler2, handler3. If you implemented the same thing without
React and added the event listeners using JavaScript, handler3 would never fire because
it’s an event in the bubbling phase of an event type that doesn’t bubble.

 There is a technical reason for these events not bubbling in HTML, but because
it’s pretty confusing for developers (and very easy to forget), React simply bubbles
these events as well. As a React developer, you don’t need to worry about this and can
just use the focus and blur events as normal events, which we actually already did in
the beginning of this section.

8.4 Default actions and how to prevent them
Browsers have default actions as the consequence of some events. Most of the time,
you as a developer want these default actions to occur, but sometimes you don’t. In
this next example, we’ll see a default action that you don’t want the browser to do,
and we’ll see how to prevent it from happening.

Why focus and blur events don’t bubble in HTML
When the window loses focus by the user (because the user switches tabs in the
browser or even switches to a different program), a blur event will be dispatched on
the window object. Similarly, when the window regains focus by a user returning to
the same window/tab in the browser, a focus event will be dispatched on the win-
dow object.

If a focus or blur event on an input field or button bubbled, it would have to bubble
all the way up to the window object. Then, you as a developer could be confusing the
event for the window losing/gaining focus by the user. You would be able to tell the
two occurrences apart by examining the .target property of the event, but for histor-
ical reasons, these events don’t bubble simply to make sure this confusion doesn’t
happen.

In React, that’s not a problem because you can’t assign a React event listener to the
window object. You can only assign React event listeners to actual HTML elements
(and the window object isn’t an HTML element) and only those inside your application
(which goes somewhere inside the <body> element). For this reason, focus and blur
events do bubble in React.

252 CHAPTER 8 Handling events in React
 Let’s say we want to create an administrator login form in React with a password
field and a login button. When the user clicks the button, we want our code to check if
the password matches the secret string "platypus". If it does, whatever secret infor-
mation we have inside our application should be revealed to the clearly legit adminis-
trator. Let’s start by creating this in the following listing.

import { useState } from "react";
function Admin() {
 const [password, setPassword] = useState("");
 const [isAdmin, setAdmin] = useState(false);
 const onClick = () => {
 if (password === "platypus") {
 setAdmin(true);
 }
 };
 return (
 <>
 {isAdmin && <h1>Bacon is delicious!</h1>}
 <form>
 <input
 type="password"
 onChange={
 (evt) => setPassword(evt.target.value)
 }
 />
 <button onClick={onClick}>
 Login
 </button>
 </form>
 </>
);
}
function App() {
 return <Admin />;
}
export default App;

If you spin this up in a browser, enter something into the input field, and click the but-
ton, something unexpected happens. The whole page reloads, and the input field is
cleared. That’s not at all what we wanted here and seems like a completely arbitrary
result. Why did this happen?

8.4.1 The default event action

If we create an HTML form with a button on a webpage and click the button, the page
will reload. This is the default behavior in HTML.

 Let’s say we put this HTML (note that we’re talking about plain HTML at this
point, not JSX) into a file and open it in a browser:

Listing 8.7 Admin form (potentially broken?)

Stores the entered
password in a
state value

Stores whether the user
is approved as an admin
user in another state value

When the user clicks the button, checks
if the entered password matches the
expectation and, if so, updates the state

Displays conditional JSX
depending on whether the
user is approved as an
admin user or notOur input field

will update the
state password
when changed.

Our button will call
the event handler
when clicked.

2538.4 Default actions and how to prevent them
<form>
 <button>Click me</button>
</form>

Clicking this button reloads the page. That’s because a button inside a form causes
the form to submit, and when a form submits, the variables inside the form will be
sent to the target URL of the form. This happens even if the form doesn’t have any
inputs and even if the form doesn’t have an explicit target URL (the default target
URL is the page itself).

 Knowing this information, we now see what we did wrong before. Our button
inside our application would submit the form, and submitting a form causes the page
to reload by default.

8.4.2 Preventing default

With our newfound knowledge, we’ll do two things in our form to make it work cor-
rectly. First, we’ll move the event handler from clicking the button to submitting the
form. It’s the same handler, we just assign it to the onSubmit property of the form
rather than the onClick property of the button.

 Second, we need to tell the form not to perform the default action that it normally
does when submitting. We do that by invoking evt.preventDefault() on the event
object passed to the event handler. Let’s implement this in the next listing.

import { useState } from "react";
function Admin() {
 const [password, setPassword] = useState("");
 const [isAdmin, setAdmin] = useState(false);
 const onSubmit = (evt) => {
 evt.preventDefault();
 if (password === "platypus") {
 setAdmin(true);
 }
 };
 return isAdmin ? (
 <h1>Bacon is delicious!</h1>
) : (
 <form onSubmit={onSubmit}>
 <input
 type="password"
 onChange={(evt) => setPassword(evt.target.value)}
 />
 <button>Login</button>
 </form>
);
}
function App() {
 return <Admin />;
}
export default App;

Listing 8.8 Admin form (potentially fixed?)

Accepts the event object as
an argument to the event
handler in order to prevent
the default action

Invokes the evt.preventDefault
method in the submit handler
regardless of what else happens
in the handler

Connects
the event
handler to
the form
element

254 CHAPTER 8 Handling events in React
And there we go. Our admin form works as intended! We prevented the default event
from happening in our form, so the browser native event handler didn’t kick in. You
can see the result in figure 8.9.

If you press Enter while focusing an input field inside a form that also has a Submit
button, the form will be submitted. If we just put our event handler on the button as
onClick, submitting the form by pressing Enter with focus in the input field would
not work as intended, and it would still reload the page because of form submission.
By moving our handler to the form’s submit event, we handle both ways of submitting
a form.

NOTE This example is, of course, not in any way proper web security. Any-
thing that happens in React is readable by any visitor on your web page, and
the preceding security would be compromised in seconds. Be sure to use
proper web architecture for creating secure logins.

Repository: rq08-admin
This example can be seen in repository rq08-admin. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq08-admin --template rq08-admin

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-admin

Figure 8.9 The admin login form works, and when we enter the correct password, the secrets of the
universe are revealed to us (and apparently those secrets are delicious).

https://rq2e.com/rq08-admin

2558.5 React event objects in summary
8.4.3 Other default events

Form submit events have a default action, where the form actually submits to the tar-
get URL with all the values entered into the form. This is one of the default events
used in the browser, but definitely not the only one.

 Clicking a link will create a click event on the link element. The default action for
this event is to follow the link and go to the new URL as indicated by the href prop-
erty. Again, you can prevent this default behavior by invoking the .preventDefault()
method on the click event object received in an event handler. This would mean the
browser wouldn’t go to the target URL, and effectively nothing would happen.

 You can check if an event is cancellable by checking the .cancellable property. If
true, .preventDefault() can be invoked to stop whatever the browser’s default action
would have been. If false, invoking .preventDefault() is still possible, but it just
doesn’t do anything. Here’s an inexhaustive list of cancellable events:

 Scroll events are cancellable, which causes the scroll not to occur and the scroll
offset to remain unchanged.

 Key-down, key-press, and key-up events are cancellable and cause the character
to not be inserted (if invoked on an input field or text area) or cause whatever
the browser would do in case of the given key not to happen (e.g., make the
browser not scroll the page when canceling the press of Page Up). On the other
hand, input events aren’t cancellable as they are dispatched after the fact (e.g.,
after the user typed something or pasted something).

 Drag-start and drag-enter events are cancellable (respectively, causing the drag
not to happen at all or causing the drag effect to remain unchanged), but the
drag-end and drag-leave events aren’t cancellable.

React follows the same procedures for default actions and preventable actions as
HTML, so refer to any online HTML guide on which events are cancellable and what
the default action is.

8.5 React event objects in summary
We’ve seen a number of different ways to use the event object that React sends to an
event handler. Table 8.2 lists a subset of properties that all event objects have in com-
mon. A lot of these properties have already been explained in detail in this chapter.
These aren’t all the properties available on all event objects, but in our opinion, they
are the most important ones.

Table 8.2 Important properties common for all event objects in both React and HTML

Property Purpose

bubbles A Boolean value indicating whether or not the event bubbles

cancelable A Boolean value indicating whether or not the event can be canceled

256 CHAPTER 8 Handling events in React
8.6 Event handler functions from properties
When you’re creating reusable UI elements, a vital part is to create generalized inter-
face elements that you can then use in other locations without having to style them
every time. For this purpose, let’s now create a styled generalized button component
that can be reused over and over. We’ll use this generalized button component to cre-
ate a counter with Increment and Decrement buttons—but styled. We want to create
something that looks like figure 8.10—look at those stylish buttons.

We’ll structure the application shown in the JSX diagram in figure 8.11.
 As you can see, we’ll pass a function, handleClick, to each of the button compo-

nent instances, which should internally be assigned to the button as the click handler.
Let’s implement this in listing 8.9.

eventPhase A numerical value indicating which phase in the event propagation this event
belongs to

preventDefault A method to prevent the browser from handling the event with its default action

stopPropagation A method to prevent the event from propagating any further

target The target node that this event was assigned to

timestamp The time at which the event was created in milliseconds

type The type of event that caused this event object to be dispatched

Table 8.2 Important properties common for all event objects in both React and HTML (continued)

Property Purpose

Figure 8.10 The final application with the counter already increased a few times.
Don’t these buttons look just a bit nicer than the default ones we’re used to seeing?

2578.6 Event handler functions from properties
import { useState } from "react";
function Button({ handleClick, label }) {
 const buttonStyle = {
 color: "blue",
 border: "1px solid",
 background: "transparent",
 borderRadius: ".25em",
 padding: ".5em 1em",
 margin: ".5em",
 };
 return (
 <button style={buttonStyle} onClick={handleClick}>
 {label}
 </button>
);
}
function StyledCounter() {
 const [counter, setCounter] = useState(0);
 const update = (d) => setCounter((v) => v + d);
 return (
 <section>
 <h1>Counter: {counter}</h1>
 <div>

Listing 8.9 Styled counter

div element

Button elementButton element

StyledCounter component Button component

handleClick () => update(-1)

label "Decrement"

button element

onClick

label

handleClick

section
element

h1 element

"Counter:"

counter

handleClick () => update(1)

label "Increment"

Figure 8.11 Our styled counter application will include two instances of our button component with slightly
different properties.

Directly assigns the received
handleClick property as the
onClick event handler inside

the button component

258 CHAPTER 8 Handling events in React
 <Button
 handleClick={() => update(1)}
 label="Increment"
 />
 <Button
 handleClick={() => update(-1)}
 label="Decrement"
 />
 </div>
 </section>
);
}
function App() {
 return <StyledCounter />;
}
export default App;

This looks pretty good and is a nice, compact, well-defined application. However,
something is slightly weird. When we use our button components, we assign a function
that should be invoked when the button is clicked. However, in listing 8.9, because we
assign the function directly as the onClick property to the button, the function is
invoked with an event object as the first and only argument. Sometimes, this might be
a good solution, but other times this isn’t ideal. The outside component should not
have access to this event object because it’s an internal implementation detail of the
button component.

 To remove this event from the function invocation, we have to create another func-
tion as the event handler and, when invoked, call the handleClick property (without
any arguments). That would look something like this:

function Button({ handleClick, label }) {
 const buttonStyle = {...};
 const onClick = () => handleClick();
 return (
 <button style={buttonStyle} onClick={onClick}>
 {label}
 </button>
);
}

Repository: rq08-styled-counter
This example can be seen in repository rq08-styled-counter. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq08-styled-counter --template rq08-styled-counter

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-styled-counter

When buttons are clicked,
sets the handleClick
property to a function
updating the state

Still receives a handleClick
property as before

Now creates a local
function that, when
called, invokes the
passed propertyAssigns this local function as

the event handler, not the
passed property

https://rq2e.com/rq08-styled-counter

2598.7 Event handler generators
Note that we’ve named the event listener as a property handle*. That is a fairly com-
mon practice when passing functions as properties to elements that aren’t directly
event listeners themselves, but rather just callbacks that will be invoked by event listen-
ers or effects as needed. We could also have named this property onClick, but that
would make it seem like an event listener, and users would expect it to act as an event
listener (and we would definitely have to send the event object to it as an argument).

 You’ll see many examples of function properties invoked as callbacks (either
directly as event listeners or inside event listeners) in real-life codebases because it’s a
very common way to design reusable UI component libraries. We’ll also use this struc-
ture in future chapters. We’ll use on* naming for direct event handlers (that receive
an event object) and handle* naming for callbacks (that either don’t take any argu-
ments or take some custom arguments).

8.7 Event handler generators
If you have many event handler functions that only vary slightly, you might want to
generalize them into an event handler generator. Let’s take our earlier example of a
counter with Increment and Decrement buttons. We generalized these two different
functions into a single function that updates the value based on an argument, and
then we called that function with different arguments in the click event handler on
the two buttons:

function Counter() {
 const [counter, setCounter] = useState(0);
 const update = (delta) =>
 setCounter((c) => c + delta);
 return (
 <>
 <h1>Value: {counter}</h1>
 <button onClick={() => update(1)}>
 Increment
 </button>
 <button onClick={() => update(-1)}>
 Decrement
 </button>
 </>
);
}

We can take this concept one step further. Note that in both event handlers, we’re still
defining a function that then calls update (both have an arrow definition such as () =>
update). We can move that function definition inside the update function with a curried
function. This turns the update function into an event handler generator, which returns
an event handler when invoked. So, it’s a function that returns another function:

function Counter() {
 const [counter, setCounter] = useState(0);
 const update = (delta) => () =>
 setCounter((c) => c + delta);

A generic function for updating
the counter value with a delta

Invokes update with two
different values in the
event handlers

A generic event handler generator for
updating the counter value with a delta

260 CHAPTER 8 Handling events in React
 return (
 <>
 <h1>Value: {counter}</h1>
 <button onClick={update(1)}>Increment</button>
 <button onClick={update(-1)}>Decrement</button>
 </>
);
}

This might look a bit esoteric, and it’s not essential that you fully understand the logic
here. Just note that this is a fairly common approach used by many developers, so you
might see it in your everyday work. We’ll revisit this approach of using event handler
generators in the next chapter on event handling in forms, so you’ll get some more
experience with the concept there.

8.8 Listening to DOM events manually
Sometimes, you want to be able to listen for events on nodes not directly controlled by
React, whereas other times, you want to manually control whether to listen for events at
all. For both of these purposes, you can listen for events directly on the DOM nodes in
regular JavaScript, circumventing React’s event listener setup. Here are some example
situations where you might want to manually manage event listeners:

 You want to listen for events on the window or document object.
 You want to listen for events on HTML nodes not directly included inside the

React application, such as body, which can never be inside your React appli-
cation, but could also just be some node outside of the control of the React
application.

 You want to listen for events on non-DOM objects, such as a request, socket, or
any other JavaScript object.

 You want to listen for a single event on a particular node but don’t care about
more than one instance of the event occurring.

 You want to conditionally listen for an event on a node.

The first three examples in this list are only possible by listening directly on the nodes,
but the two latter two are still possible using React. However, both would require extra
work that might not be necessary. In the following subsection, you’ll see how to
achieve each of the items in the preceding list through manually listening to DOM
events by going outside of the React architecture.

8.8.1 Listening for window and document events

Let’s say that we want to display the size of the browser window in our application. We
can display the size of the browser window when the component renders the first time
by looking at window.innerWidth and window.innerHeight. But if the user resizes the
window while our component is mounted, it won’t automatically re-render, and we
won’t update our displayed value.

Invokes the event handler
generator in the event
handlers to generate an
event handler with a
specific delta

2618.8 Listening to DOM events manually
 To make sure our component updates when the window resizes, we need to listen
for the resize event on the window object. Because this is an event not managed by
React, we need to attach our listener directly on the window object using window
.addEventListener. But we also need to make sure to remove our event listener again
if our component unmounts by calling window.removeEventListener.

 If you remember back to chapter 6 on component life cycles, this might seem like
a perfect candidate for a useEffect hook—and, it is! We’ll combine this with a use-
State hook to achieve a component that works something like the flowchart outlined
in figure 8.12. The implementation in shown in listing 8.10.

import { useState, useEffect } from "react";
function getWindowSize() {
 return `${window.innerWidth}x${window.innerHeight}`;
}
function WindowSize() {
 const [size, setSize] = useState(getWindowSize());
 useEffect(() => {
 const onResize = () => setSize(getWindowSize());
 window.addEventListener("resize", onResize);

Listing 8.10 Window size display

On mount

On unmount

On resize

Listen for resize events using

window.addEventListener("resize", ...).

Render the current window size using

window.innerWidth window.innerHeightand .

Stop listening for resize events using

window.removeEventListener("resize", ...).

Figure 8.12 The WindowSize
component must add a listener on
mount and remove it again as the
component unmounts. While
mounted, the browser will invoke
our callback if the browser window
ever resizes.

First, a little utility function to get a nice display
value for the size of the browser window

Uses that utility
function to
initialize our
state value

Sets up an
effect hook

Inside this hook, we
define a function to
be called when the
window resizes.

Assigns this function as an event
listener directly on the window object

262 CHAPTER 8 Handling events in React
 return () =>
 window.removeEventListener("resize", onResize);
 }, [setSize]);
 return <h1>Window size: {size}</h1>;
}
function App() {
 return <WindowSize />;
}
export default App;

If you run this app in a browser, you’ll see something like figure 8.13.

This is a very basic example of how to listen for events on a permanent object such as
a window or document. This is a common approach for a number of events that only
occur on those two objects or to catch all events of some type that bubble all the way
up to them.

 Note the clever use of a cleanup function in our useEffect. Because we define our
listener function inside the effect, add the listener in the effect, and—in case we need

Repository: rq08-window-size
This example can be seen in repository rq08-window-size. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq08-window-size --template rq08-window-size

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-window-size

Makes sure that our effect hook returns a cleanup
function, which removes the listener again

Because it’s an effect hook, we need
to set up our dependencies. They
only contain the setSize function,
which we know to be stable, but is
included anyway for transparency.

Renders the actual window
size in the returned JSX

Figure 8.13 The window
size app in action with a
small window

https://rq2e.com/rq08-window-size

2638.8 Listening to DOM events manually

s
f

to clean up—remove the listener again, this structure works regardless of our depen-
dencies and regardless of whether our function mounts and remounts several times.

 However, also note that because we’re not using React’s clever trick of only listen-
ing to events once and manually remembering who listens for what, we’re adding a lis-
tener to the window object for every instance of our component. If this was an
element in a long list of similar elements, we would be adding a new listener for every
element that we added. That definitely seems pointless if we could instead be adding a
single listener. When adding events directly on DOM nodes, you might have to pay
extra attention to how to optimize them.

8.8.2 Dealing with unsupported HTML events

Now let’s look at how to listen for the few DOM events that are not supported by React,
for example, transition events. These events are dispatched by CSS actually, when a
CSS transition is assigned, started, ended, and canceled. Of these four events, only the
ended event is supported directly in React, using the onTransitionEnd property.

 Let’s create a component with an element with a transition. We want to display a
text in a transition from red to blue and back again. We’ll trigger this transition with
two different buttons that set the color directly on the HTML node using the node’s
style object. We then want to display in the headline whether the transition is running
or not.

 While we can listen for the transitionend event in React using the onTransition-
End property, we can’t listen to the transitionstart event in the same way. So, for
ease of use, we’ll listen for both events using a regular DOM listener. Let’s combine all
of this in the following listing. You can see the result in figure 8.14.

import { useState, useRef, useEffect } from "react";
function Transition() {
 const [isRunning, setRunning] = useState(false);
 const div = useRef();
 useEffect(() => {
 const onStart = () => setRunning(true);
 const onEnd = () => setRunning(false);
 const node = div.current;
 node.addEventListener("transitionstart", onStart);
 node.addEventListener("transitionend", onEnd);
 return () => {
 node.removeEventListener(
 "transitionstart", onStart
);
 node.removeEventListener("transitionend", onEnd);
 };
 }, [setRunning]);

Listing 8.11 Transition events

Because we need to
reference an HTML
element, we need to
use the useRef hook.

Creates two callbacks inside an
effect hook to use as listeners

We also need a local variable that points to
the DOM element so we can access the
element in the cleanup function.

Adds the listeners
in the effect hook
directly on the
DOM elementRemoves the

ame listeners
rom the same

object on
cleanup

264 CHAPTER 8 Handling events in React
 return (
 <section>
 <h1>Transition is {!isRunning && "not"} running</h1>
 <div
 style={{ color: "red", transition: "color 1s linear" }}
 ref={div}
 >
 COLORFUL TEXT
 </div>
 <button onClick={() => (div.current.style.color = "blue")}>
 Go blue
 </button>
 <button onClick={() => (div.current.style.color = "red")}>
 Go red
 </button>
 </section>
);
}
function App() {
 return <Transition />;
}
export default App;

Repository: rq08-transition
This example can be seen in repository rq08-transition. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq08-transition --template rq08-transition

Sets the ref
property on our
target element

Figure 8.14 If you click the two buttons, you’ll see the text change color from red to blue to red, and
the headline will reflect whether the animation is running or not. As a bonus, notice that if you click the
Go Red button while the text is already red, the transition never starts, so the headline never changes.

2658.8 Listening to DOM events manually

This is an example of one of those unique cases where you need to listen for one of
the few events not directly supported in React. That’s because this event is rarely used
in an application, but that doesn’t mean it doesn’t have its use cases.

 Applications with complex scenarios are more likely to use direct DOM listeners
on HTML nodes. In these situations, listeners can change based on other criteria, and
it makes more sense to manage the event listeners manually rather than relying on
JSX and React to add and remove listeners for us. We have an example of that coming
up next.

8.8.3 Combining React and DOM event handling

In this example, we’ll use a combination of React’s event listeners with manual DOM
event listeners. Let’s create a menu that pops up when we click a button, and then
closes again when we click the mouse anywhere outside the menu. We’ll create this
application in two iterations. We’ll first implement it in a slightly naive way, but as we
find a bug, we’ll fix that bug and then implement the component correctly.

 For now, let’s consider the flow of events. We need to listen for clicks on the button
that open the menu. We know how to do that using onClick in React. But then we
also need to listen for mouse-down events anywhere when the menu is opened. To do
that, we need to listen for any mouse down (or pointer down, so we also catch touch
events) on the window object, and we need to assign this handler in an effect hook.
This flow of events is illustrated in figure 8.15, and the implementation is shown in the
next listing.

import { useState, useEffect } from "react";
function Menu() {
 const [isExpanded, setExpanded] = useState(false);
 useEffect(() => {
 if (!isExpanded) {
 return;
 }
 const onWindowClick = () => setExpanded(false);
 window.addEventListener(
 "pointerdown", onWindowClick
);
 return () => window.removeEventListener(
 "pointerdown", onWindowClick
);

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-transition

Listing 8.12 An expandable menu (naive version)

Stores whether the menu is
expanded or not in a state
value (default false)

Aborts early inside our effect hook
if the menu isn’t expanded (nothing
to do, in this case)

If the menu is expanded,
we create a listener that
will collapse the menu
again to be invoked
when the mouse is
clicked anywhere inside
the window.

Adds the
listener to

the window
object

Removes the listener again on cleanup

https://rq2e.com/rq08-transition

266 CHAPTER 8 Handling events in React
 }, [isExpanded]);
 return (
 <main>
 <button onClick={() => setExpanded(true)}>
 Show menu
 </button>
 {isExpanded && (
 <div style={{ border: "1px solid black", padding: "1em" }}>
 This is the menu
 </div>
)}
 </main>
);
}
function App() {
 return <Menu />;
}
export default App;

Repository: rq08-naive-menu
This example can be seen in repository rq08-naive-menu. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq08-naive-menu --template rq08-naive-menu

Because we have isExpanded in the dependency array,
this hook will rerun every time the menu changes
state from expanded to collapsed and vice versa.

Causes the menu button
to simply toggle the
expanded flag to true

Renders our menu if the
expanded flag is true

User clicks the menu button

User clicks anywhere outside the menu

The menu opens

The menu closes

React invokes on the buttononClick

Add event listener for on the windowpointerdown

JavaScript dispatches on the windowpointerdown

Remove event listener for on the windowpointerdown

Figure 8.15 The flowchart that governs our menu component

2678.8 Listening to DOM events manually
Figure 8.16 shows this application running in the browser. However, there is a slight
problem. If you try this out, and click outside the menu when it’s expanded, the menu
does correctly close. However, if you click inside the menu, it also closes. That’s not
good. We want the user to be able to interact with our menu because we’ll probably
have some buttons or links in there at a later point.

What we want is to close the menu only when the user clicks the mouse outside the
menu, not when they do it inside the menu. The tricky part is to do something when
clicking the mouse “anywhere” except in a specific location. To do this, we’ll use three
techniques that we’ve learned so far:

 When we expand the menu, we’ll add a listener on the window object for any
pointer-down events that happen on the window. When invoked, we’ll collapse
the menu just like before.

 This time, we’ll also add an event listener on the menu itself that will block
these pointer events inside it from bubbling to the window object. We do this by
stopping the propagation of those events.

 Because we’re going to need a reference to our menu DOM node, we need to
use a useRef hook.

By combining these three things, we’ll ensure that any mouse down inside the window
(even on elements completely outside React’s control) will cause our menu to collapse,

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-naive-menu

Figure 8.16 The menu app when collapsed and expanded, respectively

https://rq2e.com/rq08-naive-menu

268 CHAPTER 8 Handling events in React
but any mouse down inside the menu won’t cause our menu to collapse because we’ve
ensured that these events don’t bubble to the window object. We’ve captured this flow
of events in figure 8.17 and implemented it in listing 8.13.

import { useRef, useState, useEffect } from "react";
function Menu() {
 const [isExpanded, setExpanded] = useState(false);
 useEffect(() => {
 if (!isExpanded) {
 return;
 }
 const onWindowClick = () => setExpanded(false);
 const onMenuClick = (evt) => evt.stopPropagation();

Listing 8.13 An expandable menu

User clicks the menu button

User clicks anywhere outside the menu

User clicks anywhere inside the menu

The menu opens

The menu closes

React invokes on the buttononClick

Add event listener for on the menupointerdown

Add event listener for on the windowpointerdown

JavaScript dispatches on the menupointerdown

Stop propagation of eventpointerdown

JavaScript dispatches on the windowpointerdown

Remove event listener for on the menupointerdown

Remove event listener for on the windowpointerdown

Figure 8.17 The flowchart that governs our menu component

Stops pointer events inside the menu itself to close the menu by suppressing
propagation of pointer events from “escaping” beyond the menu node

2698.8 Listening to DOM events manually

lis
t

 const menu = menuRef.current;
 window.addEventListener("pointerdown", onWindowClick);
 menu.addEventListener("pointerdown", onMenuClick);
 return () => {
 window.removeEventListener(
 "pointerdown", onWindowClick
);
 menu.removeEventListener(
 "pointerdown", onMenuClick
);
 };
 }, [isExpanded]);
 const menuRef = useRef();
 return (
 <main>
 <button onClick={() => setExpanded(true)}>Show menu</button>
 {isExpanded && (
 <div
 ref={menuRef}
 style={{ border: "1px solid black", padding: "1em" }}
 >
 This is the menu
 </div>
)}
 </main>
);
}
function App() {
 return <Menu />;
}
export default App;

If you run this app in a browser, you’ll see the same thing as before in figure 8.16.
Observe that when you expand the menu, you can collapse the menu by clicking
anywhere except on the menu itself (i.e., except when inside the big box with a
black border).

 Notice how we use a variety of hooks and even combine React event listeners with
DOM event listeners to achieve this result. All of these low-level elements go together
nicely in a simple component that does exactly what we want it to do.

Repository: rq08-menu
This example can be seen in repository rq08-menu. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq08-menu --template rq08-menu

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq08-menu

Before we assign
a listener to the
menu element, we
need to capture a
reference to said
element via the ref.

Adds a
tener to
he menu
element Removes

both of these
listeners on
cleanup

We need a useRef to store our
reference to the menu element.

Assigns our
reference to

the proper JSX
element

https://rq2e.com/rq08-menu

270 CHAPTER 8 Handling events in React
8.9 Quiz
1 What is the correct way to add a click listener to a JSX button?

a <button click={onClick}>Click me</button>

b <button click="onClick">Click me</button>

c <button onClick={onClick}>Click me</button>

d <button onClick="onClick">Click me</button>

2 React event handlers can also be assigned by calling addEventListener on the
JSX element. True or false?

3 Event bubbling is rare and only happens for a few event types. True or false?
4 If you don’t want a form to reload the page when submitted, what do you do?

a Assign the listener as a capture listener.
b Invoke evt.preventDefault() on the event object.
c Assign the listener manually on the HTML node.
d Invoke evt.stopPropagation() on the event object.

5 You can’t listen to events on HTML nodes that aren’t inside the React applica-
tion. True or false?

Quiz answers
1 <button onClick={onClick}>Click me</click>.
2 False. React event handlers can only be assigned using a property, for example,

onClick. They can’t be assigned using addEventListener.
3 False. All events bubble in React—even some events that don’t bubble in HTML.
4 If you want to cancel the default action, you must invoke evt.preventDefault()

on the event object. An HTML form would cause the page to reload on submis-
sion as the default action.

5 False. You can use manual DOM event listeners to listen for events on any
HTML node as long as you have a reference to it.

Summary
 Events are essential to creating interactive web applications. Events are the way

an application reacts to user input.
 Events are also used to communicate between HTML nodes and the React

application, for example, when a resource has loaded or a video has finished
playing.

 React event listeners are assigned to JSX elements using a property. A click listener
is assigned using onClick, a paste listener is assigned using onPaste, and so on.

 Event listeners are invoked with an event object, which can be used to tell which
event occurred, which node caused the event to happen, which phase in the
event propagation is currently in process, and several other properties relevant
for the specific event.

271Summary
 Event objects are also used to interrupt the normal progression of event han-
dling by either preventing the browser’s default action, stopping further propa-
gation of the event to other event listeners, or both.

 Events propagate from the window object down to the target node and back up
to the window again. You can assign listeners to listen for events as they go up or
down the tree in order to, for example, interrupt the regular flow or listen for
events on multiple targets.

 You can still assign regular event listeners to JavaScript objects and HTML
nodes using regular JavaScript. You have to do this sometimes, as not all event
types are supported in React, nor are all HTML nodes accessible through React.

Working with
forms in React
Imagine the web without forms: You can’t log in anywhere. You can’t order any-
thing in a web shop. You can’t chat with anyone. And, you can’t even complain
about it because there’s no contact form!

 Forms are the backbone of many interactive web applications. Forms, and form
elements in particular, are the primary way to capture user input in input fields,
check boxes, drop-downs, file uploads, and a bunch more related elements.

 Because forms are so important, any decent web framework has to support han-
dling form data. React is very capable of dealing with forms. In fact, proper han-
dling of form data was one of the earliest priorities in the React codebase because it
was essential for the work React was developed for.

This chapter covers
 Defining forms and form elements

 Capturing changes to form data

 Updating data in form elements

 Accessing form elements through events
and references

 Using controlled or uncontrolled inputs
272

273
 You can work with forms in React in one of two ways. You can let React control the
state of the form and store the current values in the component state, which is the rec-
ommended and primary way. It’s the recommended way because you keep the logic
and data flow inside React. Having your React application be in control of your entire
application is often preferred over handing out control to other parties or applica-
tions. In this instance, you take control from the browser’s automatic form handling
and let React deal with it.

 Alternatively, you can let HTML have the responsibility of the form state and only
read it in React when required. This has the benefit of using the browser’s built-in
form handling, but it comes with a loss of control in your application. An uncon-
trolled input value is at the mercy of the user and the browser. Your application can’t
(easily) force it to conform to any rules you might want to apply.

 We call these two options controlled and uncontrolled, respectively. We’ll dig into what
those two different modes entail and how they affect your options and your architec-
ture in this chapter.

 By the end of this chapter, you’ll be able to create complex forms with all sorts of
inputs, including text fields, date fields, number inputs, ranges, buttons, and drop-
downs. Figure 9.1 shows a full list of all the input variants that you can use in React, and,
by the end of this chapter, you’ll be able to wield all of them in your React applications.
You’ll also be able to spot the instances where an uncontrolled form might be better
than the default of using a controlled form, although those instances are likely rare.

Figure 9.1 All the different HTML input controls that you can also use in React

274 CHAPTER 9 Working with forms in React
NOTE The source code for the examples in this chapter is available at https://
rq2e.com/ch09. But as you learned in chapter 2, you can instantiate all the
examples directly from the command line using a single command.

9.1 Controlled vs. uncontrolled inputs
When an input is controlled, React is in charge of what gets displayed. React has to
“confirm” that a given change to the input value is going to cause the input to change.
When an input is uncontrolled, the input changes based on the user’s interactions,
and React can only passively read the state, but not affect or change it.

 The difference between these two approaches is highlighted in figure 9.2. Note
actions 4 and 5 on the controlled version of the diagram, in particular. These two
interactions are mandatory. On the other hand, in the uncontrolled version, action
4.b is optional, and action 5.b is completely missing because this action isn’t possible.

Uncontrolled input

2.b React renders initial value

1.b User opens form

3.b User enters data in input

4.b Change event updates React

6.b User sees updated value

Controlled input

2.a React renders initial value

1.a User opens form

3.a User enters data in input

4.a Change event updates React

5.a React confirms updated value

6. User sees updated value

Figure 9.2 The flow of data in controlled versus uncontrolled inputs differs in the fact that React
doesn’t control the value after the input has been rendered. Action 5.a highlights React’s control over
the input even after the user interacts with it—React can intercept updates and change them on the
fly or even ignore them. In the uncontrolled input on the bottom, React has no such control, and
whatever the user enters will be displayed in the input.

https://rq2e.com/ch09
https://rq2e.com/ch09
https://rq2e.com/ch09

2759.2 Managing controlled inputs
On both versions of the diagram, React can decide what the initial value is. But only
on the controlled version of the diagram can React control what the value is after the
user starts inputting data.

 In situations where you don’t need to control the input after the initial value, you
can use either mode. In situations where you want to control the input as the user is
entering data—for example, when you want to filter the input or apply some format-
ting mask on it—then you have to use a controlled input. There are never situations
where you must use an uncontrolled input, so there is no reason to use it. The option
exists mostly for performance reasons. In the next two sections, we’ll look at some
examples of how to indicate that your input is of the given type and then use it.

9.2 Managing controlled inputs
For this example, we want to create a very basic input form. We’ll build a simple calcula-
tor with two different inputs and an output, which will display the sum of the two values.
To achieve this result, we need to create JSX, as shown in figure 9.3.

<form>

<label>

<input>"B:"

<div>

"A+B: "

first setFirst

second setSecond

State

first + second

value second

onChange /* update second */

<label>

<input>"A:"

value first

onChange /* update first */

Figure 9.3 The desired output JSX for our calculator contains two inputs. Note how we pass two specific
properties to both inputs: value and onChange.

276 CHAPTER 9 Working with forms in React
As you can see, we specify both the value and onChange properties for our inputs, which
is required to make a controlled input. In fact, this is the definition of a controlled input.
If you set the value directly in React, you must also listen for the change event and update
the value, which makes your input controlled. If you don’t set a value in React, you don’t
need to listen for updates because you can’t control the input anyway.

 As a bonus, to make sure the inputs are numbers, we’ll also set their types to
"number". Let’s go ahead and implement this in the following listing. If you try this
out in the browser, you should see something like figure 9.4.

import { useState } from "react";
function Sum() {
 const [first, setFirst] = useState(0);
 const [second, setSecond] = useState(0);
 const onChangeFirst = (evt) =>
 setFirst(evt.target.valueAsNumber);
 const onChangeSecond = (evt) =>
 setSecond(evt.target.valueAsNumber);
 return (
 <form style={{ display: "flex", flexDirection: "column" }}>
 <label>
 A:
 <input
 type="number"
 value={first}
 onChange={onChangeFirst}
 />
 </label>
 <label>
 B:
 <input
 type="number"
 value={second}
 onChange={onChangeSecond}
 />
 </label>
 <div>A+B: {first + second}</div>
 </form>
);
}
function App() {
 return <Sum />;
}
export default App;

Listing 9.1 Summation

Repository: rq09-controlled-sum
This example can be seen in repository rq09-controlled-sum. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq09-controlled-sum --template rq09-controlled-sum

Initializes two state values.
We don’t have to initialize
them to 0; any start numbers
will work here.

Creates two almost identical change
handlers that just update different
state values from the input events

Assigns the
correct values
and change
listeners to the
two inputs

Displays the output
in the end, which is
the sum of the two
state values

2779.2 Managing controlled inputs
Note that we’ve set both value and onChange as properties on the inputs—that’s not a
coincidence. These two properties are the exact properties you need to specify to use
a controlled input, and you need to make sure that the value changes when the
change handler is invoked. You can also change the value at other times, but you must
update the value when the change handler updates. If not, the information entered
by the user will be ignored.

9.2.1 Filtered input

If you don’t update the state value when data has been entered, the input field
doesn’t update. You can, of course, use this behavior selectively. Let’s say we want to
add an input for a hex color and next to that a small square that displays that same
color.

 A hex color is six hexadecimal digits, so 0–9 and A–F. Because nondigits are
allowed, we can’t rely on type="number" as we did before. We’ll use a regular
type="text" input for this, but we need to filter the input so only the valid characters
make it into the actual text field after the user has entered some data. See the diagram
in figure 9.5.

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq09-controlled-sum

Figure 9.4 Our summation component in action. The sum of 1000 and 729 is indeed
1729 (as Ramanujan pointed out).

https://rq2e.com/rq09-controlled-sum

278 CHAPTER 9 Working with forms in React
NOTE We’re aware of the special input for selecting colors, namely, <input
type="color" />, which is supported by all modern browsers. We won’t use it
here, however, as that would make it too easy.

To do this, we simply apply a filter in the onChange function before setting the state
value. The input field will then correctly update when we enter valid characters, but
ignore any invalid characters. On top of this, we’re also going to force all the charac-
ters to be uppercase because it just looks nicer. When we display the color, we only dis-
play six-character color strings. If the string isn’t six characters long, we display a
placeholder background to indicate no valid input. Let’s implement this in the next
listing. If you run this in the browser, you get the result in figure 9.6.

import { useState } from "react";
const PLACEHOLDER = `conic-gradient(
 gray 0.25turn, white 0 0.5turn,
 gray 0 0.75turn, white 0 1turn
)`;
function HexColor() {
 const [color, setColor] = useState("BADA55");
 const onChange = (evt) =>
 setColor(
 evt.target.value
 .replace(/[^0-9a-f]/gi, "")
 .toUpperCase()
);
 const outputStyle = {
 width: "20px",
 border: "1px solid",

Listing 9.2 Hex color display

<input />

Is the

character

hexadecimal?

State value: color

value={color}

onChange

YesNo

Update the state

to include the

new character
Ignore the new

character

Figure 9.5 The data flow in
our color display component
includes a filter in the onChange
event handler. We’ll strip out
nonhexadecimal characters
from the input string before we
“confirm” the value back to JSX.

Defines a static placeholder,
which uses a conic gradient
to display a checkered
background

Initializes our state to
a valid color input

In the change handler, examines the current
value of the input field after the event, filters
the input against a regular expression, and
uppercases the entire result

2799.2 Managing controlled inputs
 background: color.length === 6
 ? `#${color}`
 : PLACEHOLDER,
 };
 return (
 <form style={{ display: "flex" }}>
 <label>
 Hex color:
 <input value={color} onChange={onChange} />
 </label>

 </form>
);
}
function App() {
 return <HexColor />;
}
export default App;

Repository: rq09-color
This example can be seen in repository rq09-color. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq09-color --template rq09-color

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq09-color

When we want to output the color value,
we first check if the color string is exactly
six characters. If good, we precede it with a
hash mark in front; otherwise, we display
the placeholder instead.

Adds the value and
change handler to
the input field as
before

Figure 9.6 0FF1CE
is a valid color—a nice
cyan shade.

https://rq2e.com/rq09-color

280 CHAPTER 9 Working with forms in React
Note that in the diagram in figure 9.5, we discussed evaluating the newly input char-
acter to either include or discard it, but in the actual source code in the onChange
callback in listing 9.2, we don’t look at an individual character, but the entire input
value every time. This is because inputs aren’t necessarily entered one character at a
time. The user could paste in a string of characters from their clipboard. If they did
so, we would have to check the entire new input rather than a single character. The
user can also decide to enter a new character anywhere in the new string, which
would complicate things even further. To circumvent all such extra work, we always
evaluate the whole input and validate it against our filter.

 In addition, note that we decided to initialize the state value to something other
than just the empty string this time. This is literally all it takes to set a default value in
the input field.

9.2.2 Masked input

A more advanced variant of a change handler is to apply a mask to a given input field
as the user is typing. For this example, we want to add an input for entering a ticket
number for a fictional website. These fictional ticket numbers are defined as three
alphanumeric characters followed by a dash followed by another three alphanumeric
characters, for example, R1S-T2U.

 When we have an input like that, it makes sense to help the user as they are typing.
For one thing, we want to display the characters in uppercase regardless of the user
entering them as such (we already know how to do that!). Secondly, we want to add a
dash after the first three characters. Finally, we want to limit the input to only seven
characters total.

 This does sound complicated, but it’s fairly easy. We just have to modify our
onChange to only update the state value with the valid and correctly formatted
string and ignore any other input. The actual JavaScript code to accomplish this
task is a set of string-formatting operations that together achieve the desired busi-
ness logic.

 This time, we also want to add a placeholder to our input, guiding the user as they
are about to enter some data. Let’s implement all of this in the next listing. If you run
this in the browser, you get the result shown in figure 9.7.

import { useState } from "react";
function TicketNumber() {
 const [ticketNumber, setTicketNumber] = useState("");
 const onChange = (evt) => {

Listing 9.3 Ticket number input

2819.2 Managing controlled inputs
 const [first = "", second = ""] = evt.target.value
 .replace(/[^0-9a-z]/gi, "")
 .slice(0, 6)
 .match(/.{0,3}/g);
 const value = first.length === 3
 ? `${first}-${second}`
 : first;
 setTicketNumber(value.toUpperCase());
 };
 const isValid = ticketNumber.length === 7;
 return (
 <form style={{ display: "flex" }}>
 <label>
 Ticket number:
 <input
 value={ticketNumber}
 onChange={onChange}
 placeholder="E.g. R1S-T2U"
 />
 </label>
 {isValid ? "✓" : "✗"}
 </form>
);
}
function App() {
 return <TicketNumber />;
}
export default App;

This time we have some more validation of the
input value, which results in breaking it down into
at most two parts of up to three characters.

If there are exactly three characters
in the first part, we help the user by
adding a dash to the input field.

If the input is exactly seven
characters long, it must be
a valid ticket number.

Adds all the properties to
the input field, including
a placeholder value

Displays an icon at the
end indicating whether
the input is valid or not

Figure 9.7 This is the output of the Ticket Number input field before and while entering a value. When you try
this out, note how the dash is automatically added after entering three characters.

282 CHAPTER 9 Working with forms in React
Note that this isn’t a perfect solution. If you press Backspace to delete some of the
characters, you’re prohibited from deleting the dash character because after delet-
ing it, the script will notice that the string is three characters long and automatically
add the dash again. Creating such masked inputs can be very tricky. There are some
libraries and tutorials out there that can help you if you need to create complex
masked inputs like this.

9.2.3 Many similar inputs

If you have a form with many inputs, it can get tedious (and cause duplicated code) to
create separate state values and change handlers for all of them. Instead, you can have
a single state value that contains all your form values and a generic change handler
generator that can update any input.

 For example, this works for a simple address form that has inputs for address line
1, address line 2, city, zip code, state, and country. We’re using plain input fields for all
of these without validation because different countries have all sorts of different rules
for validating them. Without more information, we’ll just let the users enter any data
they like in these fields.

 We’ll keep a single object in state with all the relevant form data, initialized to an
empty string. Because we have all the values in the same object indexed by a key, we
can use that single key to identify which field to update on each update handler. The
resulting JSX will look something like the partial JSX tree displayed in figure 9.8.

Repository: rq09-ticket-no
This example can be seen in repository rq09-ticket-no. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq09-ticket-no --template rq09-ticket-no

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq09-ticket-no

https://rq2e.com/rq09-ticket-no

2839.2 Managing controlled inputs
All we need to do now is create an event handler generator function that takes the
property of the state object to set and updates it with the input value from the event
object as the event handler is invoked. For this, we must create a function that
returns a function, as we saw in chapter 8. Let’s put this all together in listing 9.4. If
you run this in the browser, you get the result shown in figure 9.9.

<form>

data {
address1: '',
address2: '',
zip: '',
city: '',
state: '',
country: '',

}

State

<input>

<input>

<input>

<input>

<input>

<input>

value data.address1

onChange onChange('address1')

value data.addres2

onChange onChange('address2')

value data.zip

onChange onChange('zip')

value data.city

onChange onChange('city')

value data.state

onChange onChange('state')

value data.country

onChange onChange('country')

Figure 9.8 A partial DOM tree (it doesn’t show labels and other trivial elements) that focuses
on the inputs and their properties. Note that we’ve switched to a left-to-right tree rather than a
top-to-bottom tree merely to fit all the elements in.

284 CHAPTER 9 Working with forms in React

import { useState } from "react";
function Address() {
 const [data, setData] = useState({
 address1: "",
 address2: "",
 zip: "",
 city: "",
 state: "",
 country: "",
 });
 const onChange = (key) => (evt) => {
 setData((oldData) =>
 ({ ...oldData, [key]: evt.target.value })
);
 };
 return (
 <form style={{ display: "flex", flexDirection: "column" }}>
 <label>
 Address line 1:
 <input

Listing 9.4 Address form

Figure 9.9 The complete address form in the browser—not the prettiest,
but fully functional.

The state is an object
this time, holding all the
variables that we need.

The onChange function is now
a generator that first takes a
key and then returns an
event handler.

When an input changes,
we update the state with

the entire old state (to
not override any existing
values), but we then add

in the new value with
the indicated key.

2859.2 Managing controlled inputs
 value={data.address1}
 onChange={onChange("address1")}
 />
 </label>
 <label>
 Address line 2:
 <input
 value={data.address2}
 onChange={onChange("address2")}
 />
 </label>
 <label>
 Zip:
 <input
 value={data.zip}
 onChange={onChange("zip")}
 />
 </label>
 <label>
 City:
 <input
 value={data.city}
 onChange={onChange("city")}
 />
 </label>
 <label>
 State:
 <input
 value={data.state}
 onChange={onChange("state")}
 />
 </label>
 <label>
 Country:
 <input
 value={data.country}
 onChange={onChange("country")}
 />
 </label>
 </form>
);
}
function App() {
 return <Address />;
}
export default App;

Repository: rq09-address
This example can be seen in repository rq09-address. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq09-address --template rq09-address

Applies the value
and change handler
to all the inputs

286 CHAPTER 9 Working with forms in React
USING THE NAME PROPERTY

We can take this idea one step further. Form elements can have a name attribute,
which is the ID of the field that will be submitted if you use a regular HTML form. We
can use that property to contain the key to be updated in the change handler. Then,
we don’t need to pass the key to the change handler at all because it can examine the
name property of the event target. Our JSX would look like figure 9.10 instead (com-
pare with figure 9.8).

(continued)

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq09-address

<form>

data {
address1: '',
address2: '',
zip: '',
city: '',
state: '',
country: '',

}

State

<input>

<input>

<input>

<input>

<input>

<input>

value data.address1

name "address1"

onChange onChange

value data.address2

name "address2"

onChange onChange

value data.zip

name "zip"

onChange onChange

value data.city

name "city"

onChange onChange

value data.state

name "state"

onChange onChange

value data.country

name "country"

onChange onChange

Figure 9.10 A partial DOM tree with our simpler event handlers

https://rq2e.com/rq09-address

2879.2 Managing controlled inputs
Now, we can use the same event handler for every element. The event handler will
update the state object with the key taken from the event target name and the value
taken from the event target value.

 This time, we also want to see that our state actually contains what we think it does.
So, at the end, we’ll include a <pre> element, which dumps out the data variable as a
JSON document. We put this all together in the following listing. Take a look at fig-
ure 9.11 to see this in action.

import { useState } from "react";
function Address() {
 const [data, setData] = useState({
 address1: "",
 address2: "",
 zip: "",
 city: "",
 state: "",
 country: "",
 });
 const onChange = (evt) => {
 const key = evt.target.name;
 const value = evt.target.value;
 setData((oldData) =>
 ({ ...oldData, [key]: value }));
 };
 return (
 <form style={{ display: "flex", flexDirection: "column" }}>
 <label>
 Address line 1:
 <input
 value={data.address1}
 name="address1"
 onChange={onChange}
 />
 </label>
 <label>
 Address line 2:
 <input
 value={data.address2}
 name="address2"
 onChange={onChange}
 />
 </label>
 <label>
 Zip:
 <input
 value={data.zip}
 name="zip"
 onChange={onChange}
 />
 </label>
 <label>

Listing 9.5 Simpler address form

The onChange function is now
back to being a simple event
handler, and we extract the name
of the input from the target.

Also extracts the current value
in the input field the same way

Updates the state object with
the newly changed input

Assigns the name
property and a
simple event handler
to each input node

288 CHAPTER 9 Working with forms in React
 City:
 <input
 value={data.city}
 name="city"
 onChange={onChange}
 />
 </label>
 <label>
 State:
 <input
 value={data.state}
 name="state"
 onChange={onChange}
 />
 </label>
 <label>
 Country:
 <input
 value={data.country}
 name="country"
 onChange={onChange}
 />
 </label>
 <pre>{JSON.stringify(data, true, 2)}</pre>
 </form>
);
}
function App() {
 return <Address />;
}
export default App;

Assigns the name
property and a
simple event handler
to each input node

Prints out a nice JSON
representation of the
current data state so we
can see that we’re doing
everything correctly

Figure 9.11 Our smart but simple address form seems to be working
exactly as designed!

2899.2 Managing controlled inputs
This idea of using the input name property to store the key for the information
entered in the input is very common. It’s not a requirement but is a very convenient
way of organizing forms, especially if they grow large.

 This form (and all the forms we created previously in this chapter) is missing some-
thing, however. How do we submit this form? What do we do with the data when we
submit it? Let’s get to that in the next section.

9.2.4 Form submission

Let’s create a very simple to-do application that is complete, useful, and fully functional.
It’s a classic exercise to complete in a web framework, so we might as well get it over with.

 We want to be able to create new to-do items with a title, category, duration, and
due date. We then want to be able to see a list of to-do items created, and, of course,
delete items as we complete them. We’ll have two different screens: one for displaying
the list of items and another for adding a new item.

 The important part at this stage is the form handling. We want to create a form
with some inputs. When the user submits the form, we want to create a new data
object based on the entered data, add it to the list of items, clear the form, and allow
the user to add a new one. This flow is shown in figure 9.12.

 In this application, we’ll store the list of to-do items in memory only, so if you
reload the page, you lose all the data. Persisting the data isn’t the interesting part; for
now, we just want to handle the form data in a logical way. Let’s create this application
using three components (see their structure in figure 9.13):

 <App />—This main component contains the list of items as local state as well as
methods for adding and deleting items. It also knows whether we’re currently
adding an item or looking at the list of all items and provides a small menu for
switching between the two views.

 <List />—This component accepts a list of items to display as well as a function
to call when deleting an item.

 <Add />—This component contains a form for entering information about a new
item and submitting it. When an item is submitted, you go back to the list. You
can also cancel the submission and go back to the list without adding anything.

Repository: rq09-smart-address
This example can be seen in repository rq09-smart-address. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq09-smart-address --template rq09-smart-address

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq09-smart-address

https://rq2e.com/rq09-smart-address

290 CHAPTER 9 Working with forms in React
In the end, we want to create an application that looks like figure 9.14.
 Now, let’s start implementing the main <App /> component. For this example,

we’ll use multiple files, so the app component goes in the App.js file. The contents
are shown in listing 9.6

List of items

Add new item

User loads application

User submits

a new item

User cancels

adding an item

User wants to

add an item

User deletes

an item

setItems([]);

setItems(items =>
items.filter(...)

);

setItems(items =>
items.concat(...)

);

Figure 9.12 The flow of data in our to-do application

<App>

State

<Add><List>

items items

handleDelete () => {...}

items []

if (!isAdding) {...}

false

handleAdd () => {...}

handleCancel () => {...}

if (isAdding) {...}

isAdding

Figure 9.13 A very rough overview of the three components in our application and their
relationships

2919.2 Managing controlled inputs
import { useState } from "react";
import List from "./List";
import Add from "./Add";
function App() {
 const [items, setItems] = useState([]);
 const [isAdding, setAdding] = useState(false);
 const handleDelete = (item) =>
 setItems((oldItems) =>
 oldItems.filter((oldItem) => oldItem !== item));
 const handleAdd = (newItem) => {
 setItems((oldItems) => oldItems.concat([newItem]));
 setAdding(false);
 };
 const handleCancel = () => setAdding(false);
 return (
 <main>
 <nav>
 <button onClick={() => setAdding(false)}>
 View list
 </button>
 <button onClick={() => setAdding(true)}>
 Add new item
 </button>
 </nav>
 {isAdding ? (
 <Add
 handleAdd={handleAdd}
 handleCancel={handleCancel}
 />
) : (

Listing 9.6 The main component in App.js

Figure 9.14 The final application when viewing a list of items and adding a new item

Imports the two detail
views from separate files

The initial state of the
application reflects an
empty list of to-do items
and that we’re not
currently adding an item.

When we delete an item,
we update the state with
all the items except the
one to be deleted.

When we add an item, we update the state with
all the existing items plus the newly added item.
We then return to the list view.

When we cancel adding
an item, we just return
to the list view.

Our menu simply toggles the
flag about whether we’re
adding an item or not.

The main
part of the
application
depends on
the current
state—are
we adding an
item or not?

If we’re adding an item, we
include the relevant component
with the two necessary callbacks
as properties.

292 CHAPTER 9 Working with forms in React
 <List
 items={items}
 handleDelete={handleDelete}
 />
)}
 </main>
);
}
export default App;

With the main <App /> component out of the way, let’s turn our focus to the <List />
component in List.js. It’s a lot simpler because it just displays a table of all the items
and includes a button next to each one that allows you to delete that item. The com-
ponent takes two properties: the list of items to display and the callback to call when
deleting an item, as implemented in the next listing.

function List({ items, handleDelete }) {
 if (!items.length) {
 return <h2>To-do list empty, go out and play!</h2>;
 }
 return (
 <>
 <h2>{items.length} item(s) to do</h2>
 <table border="1">
 <thead>
 <tr>
 <th>Title</th>
 <th>Category</th>
 <th>Due date</th>
 <th>Options</th>
 </tr>
 </thead>
 <tbody>
 {items.map((item) => (
 <tr key={JSON.stringify(item)}>
 <td>{item.title}</td>
 <td>{item.category}</td>
 <td>{item.date}</td>
 <td>
 <button
 onClick={() => handleDelete(item)}
 >
 Delete
 </button>
 </td>
 </tr>
))}
 </tbody>
 </table>
 </>
);
}
export default List;

Listing 9.7 The list component in List.js

If we’re not adding an item, we
display a list of all the items, so
we need to pass the relevant
properties here as well.

The important part of this
component is the early

return in case of no items.
There’s no need to display

a table if there’s nothing
to fill it with.

When there is something to
display, we loop over all the
items and display a table
row for each.

The Delete button
invokes the cancel
callback function with
the entire item as an
argument.

2939.2 Managing controlled inputs
Finally, we need to implement the important component for this application: the
form to add a new item in the <Add /> component in Add.js. We’ll use all the tricks
we’ve seen in this chapter, including a generic change handler for all the inputs that
update the component state, based on the input name property. Let’s implement this
in listing 9.8.

import { useState } from "react";
function Add({ handleAdd, handleCancel }) {
 const [data, setData] = useState({
 title: "",
 category: "",
 date: "",
 });
 const onChange = (evt) => {
 const key = evt.target.name;
 const value = evt.target.value;
 setData((oldData) =>
 ({ ...oldData, [key]: value }));
 };
 const onSubmit = (evt) => {
 handleAdd(data);
 evt.preventDefault();
 };
 return (
 <form
 onSubmit={onSubmit}
 style={{ display: "flex", flexDirection: "column" }}
 >
 <label>
 Title:
 <input
 value={data.title}
 name="title"
 onChange={onChange}
 />
 </label>
 <label>
 Category:
 <input
 value={data.category}
 name="category"
 onChange={onChange}
 />
 </label>
 <label>
 Due date:
 <input
 type="date"
 value={data.date}
 name="date"
 onChange={onChange}

Listing 9.8 The form component in Add.js

Initializes our
state as before

This is the same change
handler we used in listing
9.5—it’s a very versatile
construct!

When we submit the form, we need to send the form
data to the relevant callback and prevent the default
form action. If we forget the latter, the page will
reload and all data will be lost.

Assigns
the submit
handler to

the form

Assigns the
properties to the
inputs as normal.
Note how we also add
type="date" to the
due date input.

294 CHAPTER 9 Working with forms in React
 />
 </label>
 <div>
 <button>Submit</button>
 <button type="button" onClick={handleCancel}>
 Cancel
 </button>
 </div>
 </form>
);
}
export default Add;

This is our first larger application, so we strongly encourage you to play with the
source code for this one, if you aren’t already doing that for every example. You
should begin to see how all the things we’ve discussed about properties, events, state,
JSX, and component composition go together in this application and are rounded
off by our new knowledge about form handling to create a small but very powerful
application.

 Nothing is stopping us from expanding this to include all sorts of new elements.
We can have a separate form for creating categories for new items and then display a
drop-down of categories to choose from in the form. We just need to know how to use
drop-downs, but we’ll get to that in the next section. We can also create a calendar dis-
play mode, where all the items will be displayed in a grid. We can add all the extra
properties we want on the items, for example, expected duration. We can then sum-
marize the expected duration for all items each day.

FORM SUBMISSION VERSUS BUTTON CLICK

When you want to submit your form, you basically want to collect the data in the form
and send it to a remote service or some other storage location. Because we’re using
controlled inputs in this section, the React component state is the source of truth, so
we can read the value directly from the state.

 We want to create a submit handler on the form. As we’ve previously discussed,
a form’s submit handler will automatically be invoked by the browser in two differ-
ent instances:

Repository: rq09-todo
This example can be seen in repository rq09-todo. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq09-todo --template rq09-todo

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq09-todo

A button is by default a
Submit button unless
explicitly set to
type="button", so this
is the Submit button.
We don’t need a click
handler because the
form submit handler
will take care of that.

The Cancel button must not
submit the form, so we have

to add an explicit type and
then invoke the cancel

callback on click.

https://rq2e.com/rq09-todo

2959.2 Managing controlled inputs
 If the user clicks a Submit button inside the form
 If the user has focus inside an input field in the form with a Submit button and

presses Enter

Because the form’s submit handler handles both of those use cases, it’s the proper
place to deal with it. If we placed the handler directly as a click handler on the Submit
button, we would be mishandling form submission if the user has focus inside an
input field with a Submit button and presses Enter.

9.2.5 Other inputs

We briefly saw a different type of input in that previous example. We had a date input
and, as you could see in figure 9.14, it displayed differently in the browser. That’s not
the only special type we have, as there are many other useful input variants. Figure 9.15
(a copy of figure 9.1) shows a list of all the input types that you can use in HTML
forms in general and in React forms in particular.

Some of these inputs are merely variants that make it easier to input data on smaller
devices. For instance, type="tel", when focused on a mobile device, will display a
keyboard with only the buttons that are relevant for entering phone numbers (dig-
its, +, -, and a few others). Others are a lot more complex and have more intricate
interfaces.

Figure 9.15 A table of various inputs available in HTML and React forms. Note how this includes mostly
variations of input fields, but also a range of buttons and a drop-down.

296 CHAPTER 9 Working with forms in React
 A few of these inputs aren’t actually inputs, but just buttons. These include the
reset, submit, button, and image types that you can see in figure 9.15.

 Most of these inputs have the same API as text input fields though, so they are very
easy to work with from a React perspective. Notice how, in the previous example, we
didn’t have to change anything in React just because we used a date field. We used the
properties and events in the same way.

 However, some of these input types are slightly different and require you to use
the inputs and the events in a different way. We’ll go over each input type in the
next subsections with some small examples to display how you can use the different
input types.

NOTE All the examples in this section will be included in the rq09-todo
repository mentioned previously, as they are all variants of the add form used
in that example. These files will only be partially functioning though, as the
list component in that application is only set up to work with the regular add
form we used previously.

One input type will be skipped. The file input isn’t possible to use in a controlled
input, so we’ll describe that one a bit later, when we get to the uncontrolled inputs.

NUMERIC INPUTS

Number inputs are almost identical to text inputs with a single exception. The normal
value property on the target object is a string, but because we’re working with num-
bers, we want to get the current value of the input field as a number. To do that, we
can look at the evt.target.valueAsNumber property rather than the regular evt
.target.value property. We don’t have to manually parse the input and convert it to
a string using a given base because JavaScript will do that for us automatically.

 There are two categories of numeric inputs: number inputs and calendar inputs.
Number inputs include the input types "number" and "range", and the calendar inputs
include the input types "date", "datetime-local", "month", "time", and "week".

 If you have a calendar input, the value property will return the selection as a string,
depending on your local language and other settings. So, for a type="week" input,
the value might return "2022-W52" as a string. The valueAsNumber property, on the
other hand, returns a timestamp for most calendar input types, which is the number
of milliseconds between midnight on January 1 in 1970 and the selected date and/or
time. So, for the same week 52 in 2022, this would return the number 1672012800000.

 Month inputs are again a special variant of the calendar inputs as they return the
number of months between January 1970 and the selected month. So, if you select
December 2022 in the input, the valueAsNumber would return 635, as that is the num-
ber of months passed since then. Numeric inputs also take min, max, and step proper-
ties that indicate the valid value range as well as the default amount the input can
change by if you’re using the keyboard to change the value.

 React doesn’t care if you set the value of a number input as a number or a string. It
will be converted to a number before being displayed though, so if you pass something

2979.2 Managing controlled inputs
that can’t be displayed in the given input, it will display incorrectly. For this reason, it
makes sense to store the values as numbers in JavaScript to avoid conversion problems.

CHECK BOXES AND RADIO BUTTONS

Check boxes and radio buttons are special because they don’t have a value—or at least
they don’t have a value that changes. The value is just an identifier that denotes what
the check box or radio button signifies, but it doesn’t hold information about whether
the input is checked or not.

 For instance, consider the form shown in figure 9.16. The four radio buttons are
all independent <input> elements, but their values are static—they are just the four
priorities. The dynamic part of this input element is the information about which
radio button is currently selected in the list. For this reason, these two types of input,
check boxes and radio buttons, have a checked property that you have to set to true
or false to control the state of the component.

First, we’ll create the form with the four radio buttons. The following listing shows
what that will look like.

import { useState } from "react";
function Radio({ value, label, onChange, current }) {
 return (
 <label>
 <input
 type="radio"
 name="importance"

Listing 9.9 The form component if we want radio buttons (excerpt)

Figure 9.16 Radio buttons are used to set a priority.

Creates a helper
component to
render a label
with a radio
button inside

Set the name of all the
radio buttons to the same
name in this component so
they are part of the same
radio button group.

298 CHAPTER 9 Working with forms in React
 checked={value === current}
 value={value}
 onChange={onChange}
 />
 {label}
 </label>
);
}
function Add({ handleAdd, handleCancel }) {
 const [data, setData] = useState({ title: "", importance: "low" });
 const onChangeTitle = (evt) =>
 setData((oldData) => ({ ...oldData, title: evt.target.value }));
 const onChangeImportance = (evt) =>
 setData((oldData) =>
 ({ ...oldData, importance: evt.target.value }));
 ...
 <Radio
 value="low"
 label="Low"
 current={data.importance}
 onChange={onChangeImportance}
 />
 <Radio
 value="medium"
 label="Medium"
 current={data.importance}
 onChange={onChangeImportance}
 />
 <Radio
 value="high"
 label="High"
 current={data.importance}
 onChange={onChangeImportance}
 />
 <Radio
 value="urgent"
 label="Urgent"
 current={data.importance}
 onChange={onChangeImportance}
 />
 ...

Let’s create another variant of our to-do form from earlier. This time, we just want to
record the title of the task and whether this is an urgent task or not. This will be a
Boolean flag that we store in the item object. We’ll use a check box for this purpose.

import { useState } from "react";
function Add({ handleAdd, handleCancel }) {
 const [data, setData] = useState({ title: "", isUrgent: false });

Listing 9.10 The form component with a check box (excerpt)

Sets checked to true on only
the radio button that is
currently selected

Sets the value that is
static for each instance
of this component

Adds the
same change
handler to all

of them

The change handler
works as usual.

Creates four
instances of
the Radio
component

2999.2 Managing controlled inputs
 const onChangeTitle = (evt) =>
 setData((oldData) =>
 ({ ...oldData, title: evt.target.value }));
 const onChangeUrgent = (evt) =>
 setData((oldData) =>
 ({ ...oldData, isUrgent: evt.target.checked }));
 ...
 <label>
 Title:
 <input
 value={data.title}
 onChange={onChangeTitle}
 />
 </label>
 <label>
 <input
 type="checkbox"
 checked={data.isUrgent}
 onChange={onChangeUrgent}
 />
 Urgent?
 </label>
 ...

SELECT BOXES

Select boxes, also known as drop-downs, are seemingly very different from other input
types in HTML. Select boxes use multiple elements and have their selection indicated
in a completely different way. But React makes it easy to use this input type. You can
use select boxes identically to regular input elements in terms of the properties to use.
Of course, you still have to add the option elements.

 Let’s implement the priority example we saw in figure 9.16, but with a drop-down
instead. This would look something like figure 9.17. This is surprisingly simple to do
because React makes it easy for us.

import { useState } from "react";
function Add({ handleAdd, handleCancel }) {
 const [data, setData] = useState({
 title: "",
 priority: "low",
 });
 const onChange = (evt) => {
 const key = evt.target.name;
 const value = evt.target.value;
 setData((oldData) =>
 ({ ...oldData, [key]: value }));
 };

Listing 9.11 The form component with a drop-down (excerpt)

The change handler for the
title input works, as we’ve
seen many times, by looking
at the value on the target
property.

The change handler for the check box is different,
though. It examines the Boolean property
.checked on the target property.

Assigns the value and
onChange properties as
normal to the regular
text input

Assigns checked and onChange
properties to our check box input.
Note that we don’t need a value
property because it doesn’t serve
any useful function in this instance.

Initializes the
priority to a
simple string

We can use the same
change handler for
regular inputs as well
as for select boxes.

300 CHAPTER 9 Working with forms in React
 ...
 <label>
 Priority:
 <select
 value={data.priority}
 name="priority"
 onChange={onChange}
 >
 <option value="low">Low</option>
 <option value="medium">Medium</option>
 <option value="high">High</option>
 <option value="urgent">Urgent</option>
 </select>
 </label>
 ...

If you’ve used select boxes in HTML before, you know that you normally have to set
the selected property on the individual <option> elements to indicate which one is
selected. There is no value property on the select element in HTML. But React has
made sure to make this easy to use, so the API is the same for inputs as it is for select
boxes, and that’s pretty nifty!

 You can even use multiselect boxes, where the user is able to select more than one
option. Imagine if we had a select box with a list of people, where the user could select
which persons were involved in a given task. If we store an array of people in the local
state, we can use the array of selections as the value for the component, as shown in
the next listing.

Assigns the value and onChange
properties like on a regular input
directly on the select element

Adds the options using
option elements with a
value and a display text

Figure 9.17 Priority can now be set using a drop-down.

3019.2 Managing controlled inputs
import { useState } from "react";
function Add({ handleAdd, handleCancel }) {
 const [data, setData] = useState({
 title: "",
 people: [],
 });
 const onChange = (evt) => {
 const key = evt.target.name;
 const value = evt.target.value;
 setData((oldData) => ({ ...oldData, [key]: value }));
 };
 const onChangePeople = (evt) => {
 const options =
 Array.from(evt.target.selectedOptions);
 const value = options.map((opt) => opt.value);
 setData((oldData) => ({ ...oldData, people: value }));
 };
 ...
 <label>
 People:
 <select
 value={data.people}
 name="people"
 onChange={onChangePeople}
 multiple
 >
 <option>Tinky Winky</option>
 <option>Po</option>
 <option>Laa-Laa</option>
 <option>Dipsy</option>
 </select>
 </label>
 ...

Handling multiselect boxes is a bit more work, but it’s rarely required. However, it’s a
great tool to have in the toolbox for those once-in-a-blue-moon occasions.

MULTILINE INPUTS

Multiline inputs are known as text areas in HTML. Text areas are seemingly identi-
cal to inputs in HTML with the main exception that the value of the text field isn’t
added as the value property on the element but as a child text node. If we want to
set the value of an input field in HTML to "this text", we do it using the value
property:

<input value="this text" />

If we want to do the same in a text area, we have to set it as the child of the element:

<textarea>this text</textarea>

Listing 9.12 The form component with multiselect (excerpt)

The state value is just an
array, and we can initialize
it to an empty array.

We need to create a
custom change handler,
however, because we
have to look at the list of
selected options on the
target object.

For each of the
selected options, we
have to extract the
value property. We
can then store the
resulting array of
option values in
the state.We assign the

properties as normal,
but now we also set
the "multiple"
property.

302 CHAPTER 9 Working with forms in React
However, in React, we don’t do that. In React, we use text areas as if they are text
fields. So, if we wanted to add a description field to our to-do form, we would simply
extend the form.

import { useState } from "react";
function Add({ handleAdd, handleCancel }) {
 const [data, setData] = useState({
 title: "",
 description: "",
 });
 const onChange = (evt) =>
 setData((oldData) =>
 ({ ...oldData, [evt.target.name]: evt.target.value }));
 ...
 <label>
 Description:
 <textarea
 value={data.description}
 name="description"
 onChange={onChange}
 />
 </label>
 ...

With all these extra input types, you should now be well equipped to create even the
most complex forms and handle the data both properly and cleverly with a great deal
of code reuse, to avoid repeating yourself.

9.2.6 Other properties

All the other properties still work as expected on all the different types of inputs. That
is because most of the extra functionality is managed in HTML, so we don’t need to
do anything in React to get the benefits from these extra capabilities. Following is a an
inexhaustive list of extra properties you can add to your inputs to change how your
form works:

 required—If set on an input field, the input will be required. If the field is left
empty, the form cannot be submitted—the browser won’t invoke the onSubmit
callback. If the field is non-empty, submitting works as normal. This is a Bool-
ean property, so you just need to include it as <input required />.

 min, max, and step—The properties are used for number inputs and ranges to
control the allowed ranges for the values. You can use them in a range input
like so: <input type="range" min="100" max="200" step="10" />.

 readOnly—This property does exactly what it says: makes your input read-only.
You can’t edit the value in the input field, nor will it ever invoke the onChange
handler. This is also a Boolean property. Note the spelling with a capital O.

Listing 9.13 The form component with textarea (excerpt)

The state value is
again initialized
to a string.

Sets the value property
directly on the textarea
element—no need to set
it as a child node

Uses the same generalized change
handler as before as long as we make
sure to set the name property as well

3039.3 Managing uncontrolled inputs
 disabled—If set, the input is disabled. This is different from a read-only input
in that you can can’t focus a disabled input like you can a read-only input. Read-
only inputs are also still considered part of the submittable data in a form, but
disabled inputs aren’t. This is a Boolean property.

 list—If set to the ID of a <datalist> element elsewhere in the document, that
data list will serve as a list of options that you can enter into the input. It’s kind
of like a drop-down, except that the list is only a list of suggestions, so the input
isn’t limited to those values.

 maxLength—This indicates the maximum number of characters allowed in the
input and is managed by most browsers automatically. Note the capital L in
the spelling.

There are many more properties not covered here. None of these are React-specific
but work in HTML in general. We suggest checking the MDN documentation for
input fields if you would like to know more: http://mng.bz/WzAg.

9.3 Managing uncontrolled inputs
Let’s create another very simple calculator—this time with only a single input. We
want to create a component that, given an input, will return the sum of all the integers
leading up to that number. So, given an input of 4, it would return 1+2+3+4=10.
There’s a very simple formula for this, which is just n*(n+1)/2, with n being the num-
ber to calculate the sum for. This time we’re not going to calculate the final value until
the user clicks the Submit button. The component tree for creating this as a con-
trolled component is shown in figure 9.18.

<form>

<label>

<input>"Number:"

<div>

"Sum: "

number setNumber

State

sum

value number

onChange /* update number */

sum setSum

<button>

onSubmit /* find sum */

Figure 9.18 The output JSX for an integer sum calculator. When the form submits, we calculate the
sum, which is displayed in the output element.

http://mng.bz/WzAg

304 CHAPTER 9 Working with forms in React
As we’ve done many times, we create a local state variable that holds the input value.
This time, we also need another variable to hold the sum, as the sum only changes
when the form is submitted.

 So, what do we need the number variable for at all? The only reason for the num-
ber variable is to be able to pass it back into the controlled input component. Sure, it’s
very convenient to have, and we have full control over the input, but we don’t really
need that control because the user can enter whatever they want (as long as we set
min="0", as you can’t calculate the sum for negative numbers).

 There is another way we could do this. We could let go of all control of the input
and just have the HTML control and keep it there until we need it. We only need the
value when the form submits and don’t really need to burden our component with
controlling the state of the input while we work.

 The downside to this is that we can only control the initial value in the component;
after that, we can’t really do anything. But we also don’t need to keep control of the
value in this component, so that’s fine. If we implemented this, we would only have
the sum variable in the state and calculate that in the form submit event handler. The
resulting component tree is shown in figure 9.19.

The trick now becomes how to access the number in the input. We could make a refer-
ence to the input and go through ref.current.valueAsNumber, but that’s not neces-
sary. The submit event will have a target property, which is a reference to the form
element, and the form element has a direct reference to all its inputs by name through
the .elements collection. So, because we’ve named the input "operand", we can access

<form>

<label>

<input>"Number:"

<div>

"Sum: "

sum setSum

State

sum

defaultValue 0

name "operand"

<button>

onSubmit /* find sum */

Figure 9.19 The output JSX for the integer sum calculator with an uncontrolled input component

3059.3 Managing uncontrolled inputs
it through the form submit event object as evt.target.elements.operand.valueAs-
Number. That’s not too shabby. Let’s implement this as shown in the next listing.

import { useState } from "react";
function NaturalSum() {
 const [sum, setSum] = useState(0);
 const onSubmit = (evt) => {
 const value =
 evt.target.elements.operand.valueAsNumber;
 const naturalSum = (value * (value + 1)) / 2;
 setSum(naturalSum);
 evt.preventDefault();
 };
 return (
 <form
 onSubmit={onSubmit}
 style={{ display: "flex", flexDirection: "column" }}
 >
 <label>
 Number:
 <input
 type="number"
 min="1"
 defaultValue="1"
 name="operand"
 />
 </label>
 <div>
 <button>Submit</button>
 </div>
 <div>Sum: {sum}</div>
 </form>
);
}
function App() {
 return <NaturalSum />;
}
export default App;

Listing 9.14 The sum of natural numbers

Repository: rq09-natural-sum
This example can be seen in repository rq09-natural-sum. You can use that repos-
itory by creating a new app based on the associated template:

$ npx create-react-app rq09-natural-sum --template rq09-natural-sum

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq09-natural-sum

We don’t store
the input data
in state at all.

Instead of reading input
values from the state, we
must read them through
the DOM. Fortunately, that’s
very easy to do for form
elements.

Sets defaultValue but not
value on the input element,
and sets the name so it’s
easy to find via the form

https://rq2e.com/rq09-natural-sum

306 CHAPTER 9 Working with forms in React
This should work. Let’s try to run it in the browser, where you should see something
like figure 9.20.

Note that we could have had a change event handler on the input, reading the value
as it changes, but we didn’t need to.

 So, what did we gain here and what did we lose? We’ve summarized the differences
of the two approaches in table 9.1.

Table 9.1 Differences between controlled versus uncontrolled inputs

Controlled input Uncontrolled input

Set initial value Yes. Yes.

Read value as it changes We have to. We can if we want to, but we don’t
have to.

Read values on submit Easy, we have them in state. We have to go through the DOM, but
definitely possible.

State values We need them for every input. We don’t need any at all.

Change values on the fly Easy. Very difficult (but could be done
through the DOM).

Source of truth Component state value. DOM value.

Figure 9.20 The natural sum calculator in action correctly calculating the sum
for the input 4

3079.3 Managing uncontrolled inputs
9.3.1 Opportunities

When would you want to use an uncontrolled input, then? Table 9.1 gives us some
hints. If you think back to the previous address form we had in listing 9.5, we needed a
bunch of state values and change handlers, but we didn’t actually do anything with all
of them. We simply copied the DOM values to state values and back again.

 If we want to implement that same form with uncontrolled inputs, it would be sur-
prisingly simple. Recall that in listing 9.5 we didn’t actually use the form for anything.
We didn’t have a submit handler on the form. We edited the data, but didn’t send it
anywhere.

 So, let’s say we want to make an address form, and on submit, we want to send the
data to a remote service using a POST request at this URL: / /salespower.invalid/
api/address. Note that this is just an example URL; it doesn’t work (the .invalid
top-level domain also indicates that). If we expand the example in listing 9.5 with a
submit handler that sends the data as post data to this URL, it becomes listing 9.15.

import { useState } from "react";
const URL = "//salespower.invalid/api/address";
function Address() {
 const [data, setData] = useState({
 address1: "",
 address2: "",
 zip: "",
 city: "",
 state: "",
 country: "",
 });
 const onChange = (evt) => {
 const key = evt.target.name;
 const value = evt.target.value;
 setData((oldData) =>
 ({ ...oldData, [key]: value }));
 };
 const onSubmit = (evt) => {
 fetch(URL, {
 method: "POST",
 body: JSON.stringify(data),
 });
 evt.preventDefault();
 };
 return (
 <form
 onSubmit={onSubmit}
 style={{ display: "flex", flexDirection: "column" }}
 >
 <label>
 Address line 1:
 <input
 value={data.address1}

Listing 9.15 Controlled address form with submit

Initializes
state first

Creates a change
handler that can
update the state

Uses the state as
the data to send
in the submit
handler

308 CHAPTER 9 Working with forms in React
 name="address1"
 onChange={onChange}
 />
 </label>
 <label>
 Address line 2:
 <input
 value={data.address2}
 name="address2"
 onChange={onChange}
 />
 </label>
 <label>
 Zip:
 <input
 value={data.zip}
 name="zip"
 onChange={onChange}
 />
 </label>
 <label>
 City:
 <input
 value={data.city}
 name="city"
 onChange={onChange}
 />
 </label>
 <label>
 State:
 <input
 value={data.state}
 name="state"
 onChange={onChange}
 />
 </label>
 <label>
 Country:
 <input
 value={data.country}
 name="country"
 onChange={onChange}
 />
 </label>
 <button>Submit</button>
 </form>
);
}
export default Address;

Let’s look at this with uncontrolled inputs. First of all, we don’t need any state value at
all, and we don’t need any change handlers anywhere. Just those two things will greatly
reduce the complexity of our form.

Assigns an
onChange handler
to every input

The Submit
button

3099.3 Managing uncontrolled inputs
 The submit handler will get a bit more complex, though, because even though we
have an object of the state values in evt.target.elements, it’s not directly a list of
state values, but an object of the input elements themselves. However, this object also
contains all the form inputs as numbered indices, so form.elements[0] is the first ele-
ment in the form, and so on. The Submit button is also an element of the form, but
we can look at only the first six form inputs because we know they are the only rele-
vant ones. We need to go over this list of elements, extract the name and value of
each, and put that into an object.

const URL = "//salespower.invalid/api/address";
function Address() {
 const onSubmit = (evt) => {
 const data = Object.fromEntries(
 Array.from(evt.target.elements)
 .slice(0, 6)
 .map((input) => [input.name, input.value])
);
 fetch(URL, {
 method: "POST",
 body: JSON.stringify(data),
 });
 evt.preventDefault();
 };
 return (
 <form
 onSubmit={onSubmit}
 style={{ display: "flex", flexDirection: "column" }}
 >
 <label>
 Address line 1:
 <input name="address1" />
 </label>
 <label>
 Address line 2:
 <input name="address2" />
 </label>
 <label>
 Zip:
 <input name="zip" />
 </label>
 <label>
 City:
 <input name="city" />
 </label>
 <label>
 State:
 <input name="state" />
 </label>
 <label>
 Country:
 <input name="country" />

Listing 9.16 Uncontrolled address form with submit

The primary change here
is in the submit handler,
where we extract the
current data directly
from the form rather
than reading it from
the local component
state as before.

Adds the submit
handler to the
form object

310 CHAPTER 9 Working with forms in React
 </label>
 <button>Submit</button>
 </form>
);
}
export default Address;

If we count characters in the two different listings, the controlled variant in listing 9.15
comes in at 1,441 characters, whereas the uncontrolled example in listing 9.16 is
only 1,022 characters. That’s an ~30% reduction in code! Plus, the controlled compo-
nent renders every time the user types something, whereas the uncontrolled com-
ponent never re-renders at all!

 This almost sounds like an uncontrolled form is better, and it is in this extremely
simple case with a form, where you don’t need to control anything. But if you want to
control the form smartly with things such as validations, limitations, formatting, and
so on, then you do need to make at least those fields controlled. To be honest, if you
have such a simple address form that has no validation or rules and just sends the
input values to a target URL using POST, you don’t need React (or JavaScript) at all. A
regular old HTML form can do that for you.

 React only really shines once web applications become complex, and ditto for your
forms. If you want to add something such as validation to any of the two preceding
forms, it’s so much easier to do in the controlled example in listing 9.15 than in the
uncontrolled one in listing 9.16. If you don’t need any of that, you might not need to
control your inputs inside your React component. In fact, you might not even need
React at all.

9.3.2 File inputs

File inputs can only be uncontrolled because the value property is protected in the
DOM as a browser security feature. You can’t directly set the value of a file input; you
can only read it once the user selects a file to upload. The only thing you can do is
clear the value, but you can’t in any way alter or set it to an initial value.

 Thus, in React, file inputs can never be controlled. If you create a component with
<input type="file" value={file} />, the browser will tell you to stop fooling
around with a message like this:

Uncaught DOMException: Failed to set the 'value' property on
'HTMLInputElement': This input element accepts a filename, which
may only be programmatically set to the empty string.

It’s not something React prevents you from doing. It’s just that the browser simply
won’t allow you to try to set the value of a file input.

 So, if you need a file input in your React form, you must make (at least) that input
uncontrolled. But because you never need to validate, limit, or format the current
value of a file input anyway, this should be just fine.

The Submit
button

311Quiz answers
9.4 Quiz
1 You can only specify an initial value in a controlled input, not in an uncon-

trolled input. True or false?
2 Which event handler do you use to handle input in a select box?

a onValue

b onChange

c onSelect

d onClick

3 Which of the following properties would you use to read the new state of a
check box input in the event handler?

a evt.target.value

b evt.target.selected

c evt.target.checked

d evt.target.valueAsBoolean

4 When you need to target an uncontrolled input node with the name "email" in
a form submit handler, which of the follow is the correct way to do it?

a evt.target.inputs.email

b evt.target.email

c evt.target.nodes.email

d evt.target.elements.email

5 Which two properties are required on a controlled input element?

a name

b value

c defaultValue

d onChange

Quiz answers
1 False. Setting the initial value is possible in both modes. You can’t update the value

after the initial value in the uncontrolled input, but you can set the initial value.
2 You always use the onChange event handler, regardless of which form input ele-

ment you’re using.
3 The state of a check box input element is stored in the checked property, so you

would access it as evt.target.checked in the change handler.
4 Form elements are accessible through the form element in the DOM via the

elements property. A form element named "email" would be reachable from a
form submit handler through evt.target.elements.email.

5 All controlled inputs must always have the value and the onChange properties
defined.

312 CHAPTER 9 Working with forms in React
Summary
 Handling form data is a first-class priority in React, and forms and inputs are

very easy to work with.
 Form input elements can be either controlled or uncontrolled.
 The recommended approach is to use controlled inputs, which give you the

option to validate, modify, and filter input on the fly.
 To use a controlled input, you must specify the value and onChange properties

on the input element in JSX and “confirm” every change by updating the value
property.

 The alternative is to use uncontrolled inputs, which reduce your options of
modifying data but also reduce the amount of code you need to work with for
forms that require little data control.

 Uncontrolled inputs can specify the initial value using defaultValue, but must
not set the value property.

 You can use all types of HTML inputs in React, including but not limited to,
text inputs, number inputs, calendar and time inputs, password inputs, check
boxes, radio buttons, drop-downs, range meters, and text areas.

 Some input types have some slight variations in the API, for example, reading
the state of check boxes, radio buttons, and multiselect boxes.

 File inputs can only ever be uncontrolled, as you can’t control the value of a file
input in JavaScript.

Advanced React
hooks for scaling
So far, you’ve learned all you need to know to build small, simple React applica-
tions by yourself. You have all the knowledge and tools required to create stateful,
interactive, and relevant React widgets with a few interconnected components—
but only as long as you’re working on fairly small projects.

 In the real world, your React applications will most likely be a lot bigger and
more complex than any of the examples we’ve examined thus far. You could create
small widgets (e.g., a BMI calculator) for a website that have just a couple of com-
ponents and still do a good job, but those are few and far between and mostly rele-
vant to the hobby developer.

 As a professional React engineer, you’ll more likely either be developing a
larger application on your own or an even larger application as part of a team. As
applications grow larger, component interfaces grow more complex, and working
on the codebase requires more finesse.

This chapter covers
 Structuring data flow with React Context

 Managing complex state with reducers

 Creating custom hooks for code reuse
313

314 CHAPTER 10 Advanced React hooks for scaling
 A couple of things might start to become a problem if you develop your applica-
tions without structure or procedure:

1 Complex data flow can lead to an abundance of properties on all the compo-
nents to transfer all the data required.

2 Intricate state flows can result in invalid states if attention is not paid carefully
to synchronization of related state values.

3 Duplicated code can sometimes be hard to generalize if you only try to general-
ize whole components and not also parts of components.

All of these problems will arise regardless of whether you’re working on your own or
in a larger team. These are scaling problems. What works at a small scale, doesn’t nec-
essarily work at a large scale.

 We saw similar scaling problems when we created more complex forms in chap-
ter 9. When you have just 1 or 2 inputs, using a state value for each is fine. But if you
have 5 or 10 inputs, having a separate state value for each is a nuisance and, frankly,
bad software design. When concepts are applied to larger items, they are often tweaked
to allow for better scaling.

 In this chapter, we’ll discuss tools that can greatly help you organize and structure
your React application and React project as a whole to create better software and bet-
ter developer experiences.

 The solutions to the preceding three scaling problems will be covered in this chapter:

1 You can make values available to components regardless of depth using React
Context, which is a great way to organize complex data flow. We’ll cover this
in section 10.1.

2 When you have multivalue state that is interdependent, you can perform state
updates using a reducer, which is an idea borrowed from functional program-
ming. We’ll cover this in section 10.2.

3 Custom hooks are a great way to generalize both small and large chunks of busi-
ness logic, and we’ll cover that in section 10.3. Custom hooks are quickly
becoming the main way of providing reusable functionality both internally in
projects and also as open source libraries available on GitHub and/or npm.

NOTE The source code for the examples in this chapter is available at
https://rq2e.com/ch10. But as you learned in chapter 2, you can instantiate
all the examples directly from the command line using a single command.

https://rq2e.com/ch10

31510.1 Resolving values across components
10.1 Resolving values across components
Let’s once again build an application that solves a real-world problem. This time, we’ll
use a user dashboard, which is the screen you see after you log into some application.
This dashboard shows a message that welcomes you by name, as well as a button in the
top-left corner that displays your name and links to your settings page. The trick here
is that the name is dynamic and will be returned to us by some backend. The end
result is supposed to look like figure 10.1.

Let’s break this down into components. We want the top menu to be part of a header.
The central welcome page is just one of many pages that can be displayed by our
application. We know we’ll add more stuff in the future, so let’s add some extra layers
in expectation of that. We’ll use a component approach as laid out in figure 10.2.

 However, as you can see in figure 10.2, we didn’t display how we got the name
from the very top of the component tree, where it’s passed into the dashboard com-
ponent all the way down to the two smaller components at the end that need to dis-
play it.

Figure 10.1 The desired end result for our user dashboard. The user’s name is
displayed twice in this screenshot, which is the core of the problem here.

316 CHAPTER 10 Advanced React hooks for scaling
Using what we’ve done so far, we would need to pass the property through every
component on its way to the component that needs it. If we did so, it would look like
figure 10.3.

 But note, in this component tree, we’re passing the name property to both the
Header and the Main component. Neither of those components needs this property by
itself. The only reason why we have to pass this property to these two components is so
that they can forward the property to yet another component. Nevertheless, this works
and can be implemented, as shown in listing 10.1.

<Header> <Main>

<Welcome>

<h1>

<Button> <Button> <Button> <UserButton>

<Button>

"Welcome, !"name<a>

" "name

<a>

"Profile"

<a>

"Groups"

<a>

"Home"

name "Alice"

<Dashboard>

Figure 10.2 Our component structure with the necessary placeholders needed for the name. Note how
the "name" property is used twice, but still not passed along as a property anywhere.

31710.1 Resolving values across components
const BUTTON_STYLE = {
 display: "inline-block",
 padding: "4px 10px",
 background: "transparent",
 border: "0",
};
const HEADER_STYLE = {
 display: "flex",
 justifyContent: "flex-end",
 borderBottom: "1px solid",
};
function Button({ children }) {
 return (
 <button style={BUTTON_STYLE}>
 {children}

Listing 10.1 Dashboard with a lot of name properties

<Header> <Main>

<Welcome>

<h1>

<Button> <Button> <Button> <UserButton>

<Button>

"Welcome, !"name<a>

" "name

<a>

"Profile"

<a>

"Groups"

<a>

"Home"

name "Alice"

<Dashboard>

name "Alice" name "Alice"

name "Alice"name "Alice"

Figure 10.3 Our component structure if we pass the name to every component that needs to pass
it on. Five components need the name property, but only two of them display it.

318 CHAPTER 10 Advanced React hooks for scaling
 </button>
);
}
function UserButton({ name }) {
 return <Button> {name}</Button>;
}
function Header({ name }) {
 return (
 <header style={HEADER_STYLE}>
 <Button>Home</Button>
 <Button>Groups</Button>
 <Button>Profile</Button>
 <UserButton name={name} />
 </header>
);
}
function Welcome({ name }) {
 return (
 <section>
 <h1>Welcome, {name}!</h1>
 </section>
);
}
function Main({ name }) {
 return (
 <main>
 <Welcome name={name} />
 </main>
);
}
function Dashboard({ name }) {
 return (
 <>
 <Header name={name} />
 <Main name={name} />
 </>
);
}
function App() {
 return <Dashboard name="Alice" />;
}
export default App;

Repository: rq10-dashboard-props
This example can be seen in repository rq10-dashboard-props. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq10-dashboard-props --template rq10-dashboard-props

Did you know you can
use emojis directly in
React? You can!

Passes a name property to a
component that doesn't actually
need to use the property itself

The component is only
passed the property to
be able to pass it on to
another component.

31910.1 Resolving values across components
This is a reasonable approach, and it works. If you open this up in the browser, you see
exactly what we wanted in figure 10.1.

10.1.1 React Context

Those properties being passed to components, only for them to be passed on to
another component, doesn’t look like good software design. There must be a better
way. What if we could have a storage object encapsulating a number of components
that could feed data to all its child components when they asked for it without having
any extra properties passed around?

 Congratulations, we’ve just invented React Context. A context does exactly that—it
wraps a number of components with a value that all descendant components can
access without going through properties at all.

A context in React consists of two parts. It needs a provider that contains the value you
want to pass to any descendant component, and it needs a consumer that you use in
each descendant component that wants access to the provided value.

 The context provider is a pretty simple React component. The consumer can most
easily be created as a useContext hook. In essence, using a context looks something
like figure 10.4.

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq10-dashboard-props

Prop drilling
The practice of adding properties to a component with the sole purpose of allowing
that component to pass those properties on to other components, which might in
turn only be necessary to allow those components to pass those properties on to
yet another layer of components, is called prop drilling. You drill your property
through many layers of components because you need to get it from the outside to
the inside.

Prop drilling can very quickly become a problem in large codebases, and React Con-
text is one of the best tools to combat this. Without proper design patterns such as
using context providers, you might end up with dozens of properties on some compo-
nents, only added because they are needed further down the component tree.

This is obviously bad software design and one of the reasons React Context is so
popular.

https://rq2e.com/rq10-dashboard-props

320 CHAPTER 10 Advanced React hooks for scaling
We need two pieces of the React Context API here. First, we need createContext to
define the context, which we store in a variable. This variable is created outside any
component and lives in the same places as other components, so it can be referenced
just like any other component. Second, we need the useContext hook. This hook
takes a reference to the context and returns the current context value. Let’s add a
NameContext to our dashboard application from earlier to the component tree, as
shown in figure 10.5.

 That’s literally all it takes. We can implement this as shown in the following listing.
We get the same result as before, but with a much nicer flow of data.

import { createContext, useContext } from "react";
const BUTTON_STYLE = {
 display: "inline-block",
 padding: "4px 10px",
 background: "transparent",
 border: "0",
};
const HEADER_STYLE = {
 display: "flex",
 justifyContent: "flex-end",
 borderBottom: "1px solid",
};

Listing 10.2 Dashboard with context

<SomeContext.Provider>

value "any value"

...

<SomeChild>

const SomeContext = createContext();

const value = useContext(SomeContext);

"Value is: "value

Figure 10.4 Passing a value from a provider to a consumer using the useContext hook

Imports the two
functions from the
React package

32110.1 Resolving values across components
const NameContext = createContext();
function Button({ children }) {
 return <button style={BUTTON_STYLE}>{children}</button>;
}
function UserButton() {
 const name = useContext(NameContext);
 return <Button> {name}</Button>;
}
function Header() {
 return (
 <header style={HEADER_STYLE}>
 <Button>Home</Button>
 <Button>Groups</Button>
 <Button>Profile</Button>
 <UserButton />
 </header>
);
}
function Welcome() {
 const name = useContext(NameContext);
 return (
 <section>
 <h1>Welcome, {name}!</h1>
 </section>
);
}
function Main() {
 return (
 <main>
 <Welcome />
 </main>
);
}
function Dashboard({ name }) {
 return (
 <NameContext.Provider value={name}>
 <Header />
 <Main />
 </NameContext.Provider>
);
}
function App() {
 return <Dashboard name="Alice" />;
}
export default App;

The context is created
in the global scope, so
we can access it from
anywhere.

A lot of our components
don't take any properties
at all anymore.

The two components that need
access to the name can do so
by hooking into the context
using useContext.

In the dashboard component, we
make sure to wrap the entire tree
in a context provider with the
name as the context value.

In the main application
component, we initialize
the entire dashboard with
the name "Alice".

322 CHAPTER 10 Advanced React hooks for scaling
Repository: rq10-dashboard-context
This example can be seen in repository rq10-dashboard-context. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq10-dashboard-ctx --template rq10-dashboard-context

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq10-dashboard-context

<NameContext.Provider>

<Header> <Main>

<Welcome>

<h1>

<Button> <Button> <Button> <UserButton>

<Button>

"Welcome, !"name<a>

" "name

<a>

"Profile"

<a>

"Groups"

<a>

"Home"

name "Alice"

<Dashboard>

value name

Figure 10.5 The dashboard application component tree with a context surrounding it all. The dash
arrows show components that use the context and refer back to the current value as defined by the
context provider.

https://rq2e.com/rq10-dashboard-context

32310.1 Resolving values across components
10.1.2 Context states

Using a context to store a static value that is used throughout an application is defi-
nitely nice, but what’s even nicer is that we can store dynamic information there as
well. The useContext hook is stateful, so if the context value changes, the useContext
hook will cause the component using it to re-render automatically.

 Let’s imagine that same dashboard, but this time you’re an administrator who
wants to be able to see what the dashboard looks like for any user in the database. As
an administrator, you have a drop-down of users that you can see the dashboard for.
We’ll implement this like figure 10.6, where the dashboard component is the same
component as before (we just don’t show all of its child components to save space).

We’ll use a simple select element to allow the user to select between the three users in
the system: Alice, Bob, and Carol. We can use a simple useState for remembering the
selected user and pass that on to the components as needed. Let’s extend the previous
example with this new administrator dashboard.

import {
 useState,
 createContext,
 useContext,
} from "react";
const BUTTON_STYLE = {
 display: "inline-block",
 padding: "4px 10px",
 background: "transparent",
 border: "0",
};

Listing 10.3 Administrator dashboard

<AdminDashboard>

...

<Dashboard><select>

value user

onChange () => setUser name user

Figure 10.6 The admin dashboard allows the user to choose which user to see the dashboard for.
The admin dashboard includes a select box and the regular user dashboard.

We need to import
the useState hook
as well.

324 CHAPTER 10 Advanced React hooks for scaling
const HEADER_STYLE = {
 display: "flex",
 justifyContent: "flex-end",
 borderBottom: "1px solid",
};
const NameContext = createContext();
function Button({ children }) {
 return <button style={BUTTON_STYLE}>{children}</button>;
}
function UserButton() {
 const name = useContext(NameContext);
 return <Button> {name}</Button>;
}
function Header() {
 return (
 <header style={HEADER_STYLE}>
 <Button>Home</Button>
 <Button>Groups</Button>
 <Button>Profile</Button>
 <UserButton />
 </header>
);
}
function Welcome() {
 const name = useContext(NameContext);
 return (
 <section>
 <h1>Welcome, {name}!</h1>
 </section>
);
}
function Main() {
 return (
 <main>
 <Welcome />
 </main>
);
}
function Dashboard({ name }) {
 return (
 <NameContext.Provider value={name}>
 <Header />
 <Main />
 </NameContext.Provider>
);
}
function AdminDashboard() {
 const [user, setUser] = useState("Alice");
 return (
 <>
 <select
 value={user}
 onChange={(evt) => setUser(evt.target.value)}
 >
 <option>Alice</option>

Everything inside the
dashboard component is
exactly as before.

Creates a simple
state, defaulting
to Alice

Uses a controlled
select element to
choose a user

32510.1 Resolving values across components
 <option>Bob</option>
 <option>Carol</option>
 </select>
 <Dashboard name={user} />
 </>
);
}
function App() {
 return <AdminDashboard />;
}
export default App;

If we try this in the browser, it looks like figure 10.7. Go ahead and select a different
name from the drop-down, and see the name correctly update in the dashboard in
both the menu and the headline.

Repository: rq10-dashboard-admin
This example can be seen in repository rq10-dashboard-admin. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq10-dashboard-admin --template rq10-dashboard-admin

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq10-dashboard-admin

Passes the currently
selected user to the
dashboard component

Figure 10.7 The admin dashboard displaying the user dashboard for Carol, as we’ve
selected her name in the admin drop-down in the top left

https://rq2e.com/rq10-dashboard-admin

326 CHAPTER 10 Advanced React hooks for scaling
10.1.3 React Context deconstructed

At this point, let’s take a step back and look more at React Context in detail. As men-
tioned, to use React Context, you need to create a provider and a consumer. You can
create consumers in two different ways: either as a hook or by using a render prop. But
before you can do any of this, you need to create the context itself by using the func-
tion createContext, which exists in the React package:

import { createContext } from 'react';
const MyContext = createContext(defaultValue);

There are two things to note here:

 It’s common to name the context variable with an uppercase letter as it kind of
serves the purpose of a React component (or at least the properties on it do).

 createContext takes a single argument, which is the default value. We’ll get
back to how that plays out in just a little bit.

CONSUMING A CONTEXT

When you have a context variable, for example, MyContext in the preceding snippet,
it has two properties, which are what we care about: MyContext.Provider and
MyContext.Consumer. We’ve already explained how you can consume a context using
the useContext hook. You can do a similar thing with the MyContext.Consumer prop-
erty, but it’s a bit trickier.

 Let’s say we want to display a paragraph with the name provided by the nearest
name context in a component named DisplayName. We can do that using the use-
Context hook:

function DisplayName() {
 const name = useContext(NameContext);
 return <p>{name}</p>
}

This is pretty simple. We invoke the hook and get the current value back as a variable,
which we can directly use in the component.

 If we try to do the same thing using the Consumer component, we have to invoke
the consumer component with a function as the first and only child, and that function
will be invoked with the value of the context:

function DisplayName() {
 return (
 <p>
 <NameContext.Consumer>
 {(name) => name}
 </NameContext.Consumer>

32710.1 Resolving values across components
 </p>
);
}

Passing a function that returns JSX as a child to a component is a render prop (as
mentioned earlier) because it’s a property that can render JSX when invoked. You
can probably see how this is a lot more work to type, and if we need to do some cal-
culations or logic with the returned value, we have to restructure our component
quite a bit.

 Using the Consumer component is quite rare in functional codebases. It’s mainly
used in older class-based projects.

CONTEXT COMPOSITION

The provider is used to create a context that can be consumed. The consumer is
used to consume the nearest provided context. Note that you can provide the same
context many times throughout your application, and you can even provide the
same context nested. You can also use the same context many times, even outside
any provider.

 When you consume a context, you’ll get the value provided by the nearest pro-
vider going up the JSX document tree. If no provider exists above the consumer,
you’ll get the default value as defined when the context was created. All of this is
illustrated in figure 10.8.

 Following are a few things to note in figure 10.8:

 If you consume a context that doesn’t have a provider above it, as in Top-
Component, you’ll get the default value from the definition of the context (0 in
this case).

 If you consume a context that has multiple providers above it, as in Bottom-
Component, you’ll get the value from the nearest provider looking up through
the document tree (e.g., 17 rather than 2 in this case).

NESTED CONTEXT EXAMPLE

You can imagine a use case for nested contexts for UI variables, such as an app where
we have buttons with different border widths throughout the application. Our web
application is a web shop with different items for purchase and pages about the busi-
ness. We have some buttons in the header and another in the footer. We also have but-
tons to open the shopping cart in both the header and the footer.

328 CHAPTER 10 Advanced React hooks for scaling
By default, all buttons have a border width of 1 pixel, but all buttons have a border
width of 2 pixels in the footer. Furthermore, every button that leads to the shopping
cart must always have a border width of 5 pixels because it’s an important button. Let’s
sketch this system first, as shown in figure 10.9.

<App>

NumberContext = createContext(0);

<NumberContext.Provider>

value 2

<TopComponent>

const value =
useContext(NumberContext);

// returns 0

<NumberContext.Provider>

value 3

<LeftComponent>

const value =
useContext(NumberContext);

// returns 2

<RightComponent>

const value =
useContext(NumberContext);

// returns 3

<NumberContext.Provider>

value 17

<BottomComponent>

const value =
useContext(NumberContext);

// returns 17

Figure 10.8 You can have many providers and consumers of the same context.

32910.1 Resolving values across components
Now, every button component will look up the component tree to find the nearest
border context provider and use the border width taken from there. If no provider is
found up the tree, the button will use the default value as defined in the original con-
text creation. Let’s annotate the tree with all these lookups for the nearest provider in
figure 10.10.

<App>

BorderContext = createContext(1);

<BorderContext.Provider>

value 2

<Footer><Header>

<Button>

"Clothes"

<Button>

"Toys"

<Button>

"Cart"

<CartButton>

<BorderContext.Provider>

value 5

<Button>

"About"

<Button>

"Cart"

<CartButton>

<BorderContext.Provider>

value 5

Figure 10.9 Our component tree for our shopping website. Note how we have both a default context
value and several context providers throughout.

330 CHAPTER 10 Advanced React hooks for scaling
Now that we have all the information we need, let’s implement this, as shown in list-
ing 10.4. Once we open this in the browser, we’re treated with figure 10.11.

<App>

BorderContext = createContext(1);

<BorderContext.Provider>

value 2

<Footer><Header>

<Button>

"Clothes"

<Button>

"Toys"

<Button>

"Cart"

<CartButton>

<BorderContext.Provider>

value 5

<Button>

"About"

<Button>

"Cart"

<CartButton>

<BorderContext.Provider>

value 5

width=1 width=1

width=5

width=2

width=5

Figure 10.10 The component tree with the nearest provider (or the root) is marked with a
heavier arrow for every button component, and the border width is resolved for that component.

33110.1 Resolving values across components
import { useContext, createContext } from "react";
const BorderContext = createContext(1);
function Button({ children }) {

 const borderWidth = useContext(BorderContext);
 const style = {
 border: `${borderWidth}px solid black`,
 background: "transparent",
 };
 return <button style={style}>{children}</button>;
}
function CartButton() {
 return (
 <BorderContext.Provider value={5}>
 <Button>Cart</Button>
 </BorderContext.Provider>
);
}
function Header() {
 const style = {
 padding: "5px",
 borderBottom: "1px solid black",
 marginBottom: "10px",
 display: "flex",
 gap: "5px",
 justifyContent: "flex-end",
 };

Listing 10.4 Border width by context

Figure 10.11 Our shop website shows all the buttons with the correct widths exactly
as designed. It doesn’t look good, but it’s what the client wanted for some reason!

Creates the initial context
with a default value of 1

In the button component,
we consume whatever value
is provided by the nearest
provider and use that as the
border width property in CSS.

Adds a border width provider
around the button inside the
cart button to provide this
button with exactly 5 px

332 CHAPTER 10 Advanced React hooks for scaling
 return (
 <header style={style}>
 <Button>Clothes</Button>
 <Button>Toys</Button>
 <CartButton />
 </header>
);
}
function Footer() {
 const style = {
 padding: "5px",
 borderTop: "1px solid black",
 marginTop: "10px",
 display: "flex",
 justifyContent: "space-between",
 };
 return (
 <footer style={style}>
 <Button>About</Button>
 <Button>Jobs</Button>
 <CartButton />
 </footer>
);
}
function App() {
 return (
 <main>
 <Header />
 <h1>Welcome to the shop!</h1>
 <BorderContext.Provider value={2}>
 <Footer />
 </BorderContext.Provider>
 </main>
);
}
export default App;

Repository: rq10-border-context
This example can be seen in repository rq10-border-context. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq10-border-context --template rq10-border-context

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq10-border-context

We surround the footer with a
provider that makes sure all the
buttons inside by default will have
2 px borders, unless another, more
specific provider tells them otherwise.

https://rq2e.com/rq10-border-context

33310.2 How to handle complex state
10.2 How to handle complex state
Let’s go back to our favorite example of all time: the counter with increment and dec-
rement buttons! This time, we’ll use a different approach. Instead of using a regular
useState hook to hold and manage the state value, we’ll use a reducer and the use-
Reducer hook.

 We’ll give you a quick introduction to how the useReducer hook works now just to
get started on the example, but you’ll get more details in the following subsections.

 The useReducer API looks like this:

const [state, dispatch] = useReducer(reducer, initialState);

These four elements go together somewhat, as shown in figure 10.12.

There are four separate parts to this. The state and initialState work just like they
do for useState(). So, for our counter, the initial state will be 0, and the state will be
whatever our counter has reached at that moment.

 The two new things in this single piece of code are the dispatch function and the
reducer function. dispatch works as our enhanced setter function, which allows us to
not set the value directly, but rather instruct the reducer function on how to set the
value. The reducer function is hence a function that takes the current state and a dis-
patched action and returns a new state based on them. You invoke dispatch with an
action object, which is then passed to the reducer along with the old state, and the
reducer is expected to return the new state. For now, let’s implement this for our up-
and-down counter.

import { useReducer } from "react";
function reducer(state, { type }) {
 switch (type) {

Listing 10.5 Counter component with reducer

state

initialState

newState = reducer(
oldState, action

)

dispatch
(action)

newState

Figure 10.12 The flow of data in a
useReducer hook is somewhat
similar to a regular useState hook,
in that it starts with an initial value
and then updates as the application
progresses. But the way you update
the internal state is more complex, in
that you “reduce” the new state from
the old one using functions and
actions.

Creates a reducer function that takes the
old state (the current value) and the
action object, which has a type

334 CHAPTER 10 Advanced React hooks for scaling
 case "INCREMENT":
 return state + 1;
 case "DECREMENT":
 return state - 1;
 default:
 return state;
 }
}
function Counter() {
 const [counter, dispatch] = useReducer(reducer, 0);
 return (
 <section>
 <h1>Counter: {counter}</h1>
 <div>
 <button onClick={
 () => dispatch({ type: "INCREMENT" })
 }>
 Increment
 </button>
 <button onClick={
 () => dispatch({ type: "DECREMENT" })
 }>
 Decrement
 </button>
 </div>
 </section>
);
}
function App() {
 return <Counter />;
}
export default App;

É voilà! We have once again re-implemented the counter. We did it in a much more
complex and elaborate way, but this reducer concept can be utilized for more com-
plex state scenarios, as you’ll see in the next subsection.

Repository: rq10-counter-reducer
This example can be seen in repository rq10-counter-reducer. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq10-counter-reducer --template rq10-counter-reducer

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq10-counter-reducer

Returns the old value plus
or minus 1, depending on
the type

Initializes the hook
with the reducer
function and the
initial value, 0

Invokes the dispatch
function with the
relevant action objects

https://rq2e.com/rq10-counter-reducer

33510.2 How to handle complex state
10.2.1 Interdependent state

Another problem that can come up as your application grows more complex is
interdependent state. This happens when you have different values in state that are
related, but aren’t just copies of each other. For instance, let’s imagine a simple
component for loading some external content and displaying the content once
loaded. Because this is external content, the load might fail. If so, we need to show
an error message.

 The simple way to construct such a component is to have three different state values.
One value represents the loading progress (is it loading, did loading succeed, did load-
ing fail), another holds the result object if the loading succeeded, and the last state holds
the error message if the load failed. We can picture this simple state flow in figure 10.13.

We have three different values that are interdependent, which means we only have
semantic meaning for certain combinations of values. For instance, if the status is
LOADING, it makes no sense for the error or result to be anything but null because we

Component loads

status = INITIAL
error = null
result = null

Data begins loading

status = LOADING
error = null
result = null

Display result

Download

succeeds?

Display error message

status = FAILURE
error = "404"
result = null

status = SUCCESS
error = null
result = "data"

No Yes

Figure 10.13 The state flow in a simple loading component. The dashed boxes indicate the desired state at
the given point in the program execution.

336 CHAPTER 10 Advanced React hooks for scaling
haven’t downloaded anything (or failed to do so) yet. Likewise, if the status is FAIL-
URE, the result state can’t have a value because it just can’t.

 As a developer, however, you must keep this relationship between the values in
mind. We can’t directly code this relationship with simple state values when using
useState(). We have to remember to clear the error and result states when reloading
the external resource because, if we don’t, it can lead to the component being in an
invalid state and not knowing what it’s supposed to show.

 A better solution here is to create a single function that allows us to move between
the different semantic states of the system rather than just the individual variables. For
example, imagine what happens when loading fails if we have three separate variables
and need to set two of them:

fetch(...).catch(() => {
 setStatus(FAILURE);
 setError("Loading failed");
});

If we adopted the recommended approach of calling a single function that changed
the semantic state, we would instead do the following:

fetch(...).catch(() => {
 failureHappenedAndThisIsTheErrorMessage("Loading failed");
});

The difference here is pretty big. The former syntax has a lot of room for error, whereas
the latter is a much cleaner API with very little room to misinterpret what to do.

USEREDUCER TO THE RESCUE

All of this is to say that this is exactly where useReducer comes into the picture. But
instead of having a single primitive value as our state, we can hold an object of multi-
ple values of state. We can then also use dispatched action objects to manipulate this
entire object of state values as we need to.

 So, let’s go back to our state flow diagram and look at which action objects we need
to advance the state and what payload arguments they require to update the state val-
ues as needed (see figure 10.14). Now we just need to define the reducer function,
which takes the existing state and an action object and then generates a new state
based on that.

 The overall structure of a reducer is commonly organized as follows:

function reducer(state, { type, payload }) {
 switch (type) {
 case "TYPE_A":
 // return new state based on TYPE_A
 case "TYPE_B":
 // return new state based on TYPE_B
 }
}

33710.2 How to handle complex state
So, for our particular use case, the action types are already defined as "INITIALIZE",
"LOADING", "ERROR", and "SUCCESS". The following states result from each of these
actions:

 When initializing, set the status to "INITIALIZE", and all other variables to
null, regardless of their existing value.

 When loading, set the status to "LOADING", and keep everything else as is.
 When loading fails, set the status to "FAILURE", and set the error to the passed

payload.
 When loading succeeds, set the status to "SUCCESS", and set the result to the

passed payload.

Now, let’s implement that in the preceding reducer structure:

function reducer(state, { type, payload }) {
 switch (type) {
 case "INITIALIZE":
 return {

Component loads

Data begins loading

Display result

Download

succeeds?

Display error message

No Yes

{
type: "INITIALIZE",

}

{
type: "LOADING",

}

{
type: "FAILURE",
payload: "404",

}

{
type: "SUCCESS",
payload: "data",

}

Figure 10.14 The state flow with the desired action API. In this diagram, the dashed boxes indicate the
action object that we’ll dispatch to the reducer to have the reducer update the internal state as desired.

338 CHAPTER 10 Advanced React hooks for scaling

FA
 status: "INITIALIZE",
 result: null,
 error: null,
 };
 case "LOADING":
 return {
 ...state,
 status: "LOADING",
 };
 case "FAILURE":
 return {
 ...state,
 status: "FAILURE",
 error: payload,
 };
 case "SUCCESS":
 return {
 ...state,
 status: "SUCCESS",
 result: payload,
 };
 }
}

Alright, let’s get back to the original purpose. We need a component that can load some
data and display status along the way. We’ll use a reducer as defined previously to handle
the state, but we’ll also change a few things.

import { useReducer, useEffect } from "react";
const URL = "//swapi.dev/api/films";
const INITIAL_STATE = {
 status: "INITIALIZE",
 result: null,
 error: null,
};
function reducer(state, { type, payload }) {
 switch (type) {
 case "LOADING":
 return { ...state, status: "LOADING" };
 case "FAILURE":
 return { ...state, status: "FAILURE", error: payload };
 case "SUCCESS":
 return { ...state, status: "SUCCESS", result: payload };
 default:
 return state;
 }
}
function Loader() {
 const [state, dispatch] =
 useReducer(reducer, INITIAL_STATE);
 useEffect(() => {

Listing 10.6 Loading component with reducer

When we initialize, we clear
everything regardless of
what the state was before.

When loading happens, we
only change the status and
nothing else.

When an error happens, we change
the status and set the error.

When loading succeeds, we change
the status and set the result.

We’ve extracted the initial state
to a variable rather than one of
the options inside the reducer.

We now
only expect

actions
of type

LOADING,
ILURE, and

SUCCESS. We've added a default case to the switch
to handle the case where some unknown
nonsense is dispatched.

When the loading succeeds, we
change the status and set the result.

33910.2 How to handle complex state
 dispatch({ type: "LOADING" });
 fetch(URL)
 .then((res) => res.json())
 .then(
 ({ results }) =>
 dispatch({
 type: "SUCCESS",
 payload: results,
 })
)
 .catch(
 ({ message }) =>
 dispatch({
 type: "FAILURE",
 payload: message,
 })
);
 }, []);
 const { status, error, result } = state;
 if (status === "INITIALIZE") {
 return <h1>Initializing...</h1>;
 }
 if (status === "LOADING") {
 return <h1>Loading...</h1>;
 }
 if (status === "FAILURE") {
 return <h1>Error occurred: {error}</h1>;
 }
 return (
 <>
 <h1>Results are in</h1>

 {result.map(({ title }) => (
 <li key={title}>{title}
))}

 </>
);
}
function App() {
 return <Loader />;
}
export default App;

Repository: rq10-reducer-load
This example can be seen in repository rq10-reducer-load. You can use that
repository by creating a new app based on the associated template:

$ npx create-react-app rq10-reducer-load --template rq10-reducer-load

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq10-reducer-load

In an effect hook, we start by
setting the status to LOADING by
dispatching the proper action.

If the results are returned,
we set them in the state by
dispatching the SUCCESS
action.

If some error occurs along the
way, we dispatch an ERROR
action with a message.

With all of this out of the way, we
can now destructure the state into the
three variables we know it contains.

Finally, we display the proper
message depending on the
status variable using the
values of error and result
where necessary.

https://rq2e.com/rq10-reducer-load

340 CHAPTER 10 Advanced React hooks for scaling
If we spin this up in the browser, it works! Check out figure 10.15.

If we change the URL to something that doesn’t exist, for example, if we change it
as follows:

const URL = '//swapi.dev.invalid/api/films';

our load will fail and we’ll instead see the error message shown in figure 10.16.

Figure 10.15 Our loading component in action—first in the loading state and second in the success state

Figure 10.16 If the load fails, an
error message is displayed.

34110.3 Custom hooks
One of the nice things about this reducer we’ve created is that it’s completely gener-
alized. It doesn’t care what we’re loading or how we’re loading it. The reducer only
manages the state around things that can be loaded and potentially fail to load.
Those things can be data, images, videos, fonts, baby otters, or anything else.

10.3 Custom hooks
Let’s go back to the dashboard example earlier in this book. We had this bit of code in
multiple locations:

const name = useContext(NameContext);

Even though this piece of code is quite simple, it does require you to combine the two
pieces, useContext and NameContext, correctly. Instead, we can make it a bit easier by
moving this functionality to a new function and replacing the preceding code with this:

const name = useName();

Can we do this? Yes, of course, we can! We just create a custom function that does this
work behind the scenes. So, this function uses the useContext hook to extract the cur-
rent value from the NameContext context:

function useName() {
 return useContext(NameContext);
}

That’s it—simply generalizing functionality by moving the duplicated part of the code
to a common function.

 But there’s a twist here in that we’re generalizing functionality based on a React hook
and there are rules for how we can use React hooks. First, we can’t use React hooks

What is a reducer?
The term reducer comes from the software engineering model MapReduce, which is
a way to think about data models and data streams regarding how to update your
data models on the fly based on records in a data stream.

Reducers are generally thought to be pure, simple, and side-effect-free functions that
are deterministic and defined solely by their parameters. A reducer generally takes
the current state of the world and some new record/action and updates the state of
the world based on that.

In large-scale computing and data analysis, reducers are used to quickly and effi-
ciently traverse complex data structures.

In React, reducer refers to the function or set of functions that converts the current
state into a new state based on a given action. In React, we expect reducers to be
pure, deterministic, and free of side effects as well.

342 CHAPTER 10 Advanced React hooks for scaling
outside of functional components. Second, we can only use React hooks if we always
use the same hooks in the same order.

 This new function that we’ve created here, useName, also has to obey those rules.
This function is now also a hook. It’s a custom hook, and you’ve just created the very
first one in this book! Note that this hook is very simple and doesn’t take any argu-
ments, but custom hooks can take arguments if they need to. You’ll see some custom
hooks in the next subsection. Now let’s explore exactly what makes a function a cus-
tom hook, how you decide when and where to use custom hooks, and where you can
find more of them.

10.3.1 When is something a custom hook?

A custom hook is a function that uses a hook. A hook can be any built-in hook or a
custom hook, so it almost seems like a self-referential definition, but it’s not. The
whole thing starts with the 10 built-in hooks that we laid out earlier. If you create a
function using any of those 10 hooks, then you’ve created a custom hook. If you cre-
ate a function using any of those 10 hooks or using a custom hook that has used one
of those 10 hooks, you’ve also created a custom hook, and so on. Thus, you do need to
have one or more built-in hooks in there somewhere down the line for a function to be
a custom hook. Some examples of this are shown in figure 10.17.

 Note the naming of the functions here. It’s a common practice to name all custom
hooks as use* and name nothing else like that. However, there is no special magic
associated with the naming itself. It’s up to you as a developer to make sure that your

Functions that custom hooksare Functions that custom hooksare not

function useToggle(default = false) {
const [value, setter] = useState(default);
const toggle = () => setter(v => !v);
return [value, toggle];

}

function useSomeLogic() {
const value = {};
const setter = (v) => value.v = v;
return [value, setter];

}

Not using any hooks at allUsing one or more built-in hooks

function useDarkMode() {
const [isDarkMode, toggleDarkMode] =

useToggle(false);
return { isDarkMode, toggleDarkMode };

}

Using one or more custom hooks

function useRefToggle() {
const [value, toggle] = useToggle(false);
const ref = useRef(value);
return [ref, toggle];

}

Using both custom hooks and built-in hooks

function useValue(v) {
return useProperty(v);

}
function useProperty(p) {

return useValue(p);
}

Two functions but neither using built-in hooks

Figure 10.17 Examples of what a custom hook is and is not

34310.3 Custom hooks
custom hook is named use*. Likewise, you must check that something named use* is
in fact a custom hook.

10.3.2 When should I use a custom hook?

You should use a custom hook whenever you see the need for it. You can almost
never make your code too streamlined and compact. Well, you can, but that limit is
pretty far off.

 You’ll often find that your custom hooks take one of two forms:

 You’re creating a custom hook for functionality that you’re going to need in
multiple places.

 You’re moving functionality to a custom hook to clean up a component and
make it simpler to read.

Both of these goals are completely valid and you’ll often see developers using them
both. The difference between the two is often found in the naming of the hooks. If
the hook has a generic-sounding name, it’s probably a reusable functionality. If it has
a very specific name, it’s probably just an extraction of complex logic to an external
file to make the overview easier. Let’s get started with some examples from previous
applications we’ve built in this book.

USETOGGLE

Let’s look at one of our earlier components from chapter 6, where we had this excerpt
of code in the interactive countdown:

function Countdown({ from }) {
 ...
 const [isRunning, setRunning] = useState(false);
 ...
 onClick={() => setRunning((v) => !v)}
 ...
}

This functionality of creating a Boolean flag in state and having a toggle function that
allows the flag to alternate seems like a pretty general procedure.

 Let’s generalize that into a hook that kind of looks like the regular useState hook,
except that instead of a setter function, it returns a toggle function. Only Boolean val-
ues are allowed as state values:

function useToggle(default = false) {
 const [value, setter] = useState(Boolean(default));
 const toggle = () => setter(v => !v);
 return [value, toggle];
}

Note how this hook returns an array of a value and a function as the normal useState
hook. This is a common pattern in custom hooks too, as it makes the custom hook
familiar to work with. The value returned from the useToggle hook can be used in the

344 CHAPTER 10 Advanced React hooks for scaling
same way as the value returned from the useState hook, but the function is different.
Where the setter function returned by the useState hook can be used to set the value
to any value, the toggle function returned by the useToggle hook can only be used to
invert the current Boolean value—the toggle function doesn’t take an argument.

 That’s all it takes. This is a nice generic toggle. We can apply it to our interactive
countdown like this:

function Countdown({ from }) {
 ...
 const [isRunning, toggleRunning] = useToggle();
 ...
 onClick={toggleRunning}
 ...
}

We didn’t save a lot of characters, but it looks a lot simpler now without the extra func-
tion in there. We also can use this hook elsewhere, if we need a stateful toggle for
something else.

USEFORM

You might remember from chapter 9 that we had this functionality in our form
component:

function Address() {
 const [data, setData] = useState({
 address1: "",
 address2: "",
 zip: "",
 city: "",
 state: "",
 country: "",
 });
 const onChange = (evt) => {
 const key = evt.target.name;
 const value = evt.target.value;
 setData(oldData => ({ ...oldData, [key]: value }));
 };
 ...
}

We can also generalize this functionality into a custom hook that can be used, not just
for this form with its six specific inputs, but for any form with any number of inputs:

function useForm(initialValues) {
 const [data, setData] = useState(initialValues);
 const onChange = (evt) => {
 const key = evt.target.name;
 const value = evt.target.value;
 setData(oldData => ({ ...oldData, [key]: value }));
 };
 return [data, onChange];
}

34510.3 Custom hooks
We can use that in our specific form as follows:

function Address() {
 const [data, onChange] = useForm({
 address1: "",
 address2: "",
 zip: "",
 city: "",
 state: "",
 country: "",
 });
 ...
}

That definitely looks nice and reusable.

USELOADER

Remember the reducer that we created earlier in this chapter? It was a generic hook
for loading content of any type that allowed the component to specify whether load-
ing was underway, successful, or failed. However, we didn’t actually make the
reducer generic, but just kept it inside our component. The component looked like
this before:

import { useEffect, useReducer } from "react";
function reducer(state, { type, payload }) {
 switch (type) {
 case "LOADING":
 return { ...state, status: "LOADING" };
 case "FAILURE":
 return { ...state, status: "FAILURE", error: payload };
 case "SUCCESS":
 return { ...state, status: "SUCCESS", result: payload };
 default:
 return state;
 }
}
const INITIAL_STATE = { status: "INITIALIZE", result: null, error: null }
function Loader() {
 const [state, dispatch] = useReducer(reducer, INITIAL_STATE);
 useEffect(() => {
 dispatch({ type: "LOADING" });
 fetch(URL)
 .then((res) => res.json())
 .then(
 ({ results }) => dispatch({ type: "SUCCESS", payload: results })
)
 .catch(
 ({ message }) => dispatch({ type: "FAILURE", payload: message })
);
 }, []);
 ...
}

346 CHAPTER 10 Advanced React hooks for scaling
We can again extract the generic parts of the logic to an external hook and use that in
the component. The hook would become the following:

import { useReducer } from "react";
function reducer(state, { type, payload }) {
 switch (type) {
 case "LOADING":
 return { ...state, status: "LOADING" };
 case "FAILURE":
 return { ...state, status: "FAILURE", error: payload };
 case "SUCCESS":
 return { ...state, status: "SUCCESS", result: payload };
 default:
 return state;
 }
};
function useLoader(initialState) {
 return useReducer(reducer, initialState);
}
export default useLoader;

If we save the preceding snippet to the file useLoader.js located next to the original
component, our component will be simplified to just this:

import { useEffect } from "react";
import useLoader from "./useLoader";
const INITIAL_STATE = { status: "INITIALIZE", result: null, error: null };
function Loader() {
 const [state, dispatch] = useLoader(INITIAL_STATE);
 useEffect(() => {
 dispatch({ type: "LOADING" });
 fetch(URL)
 .then((res) => res.json())
 .then(
 ({ results }) => dispatch({ type: "SUCCESS", payload: results })
)
 .catch(
 ({ message }) => dispatch({ type: "FAILURE", payload: message })
);
 }, [actions]);
 ...
}

This separation of logic into two separate units makes both parts read a lot more
clearly.

USECOUNTER

In this example, we extract our business logic inside a component to an external one
just to make the original component easier to get an overview of without seeking to
create generic functionality. Let’s take our counter component from earlier with
increment and decrement buttons. We don’t need to use this specific functionality
elsewhere; we’re seeking to make our component less cluttered.

34710.3 Custom hooks
 Before, the component looked like this:

function StyledCounter() {
 const [counter, setCounter] = useState(0);
 const update = (d) => setCounter((v) => v + d)
 const handleIncrement = () => update(1);
 const handleDecrement = () => update(-1);
 return (
 <section>
 <h1>Counter: {counter}</h1>
 <div>
 <Button handleClick={handleIncrement} label="Increment" />
 <Button handleClick={handleDecrement} label="Decrement" />
 </div>
 </section>
);
}

If we extract the following part into a custom hook like

import { useState } from "react";
function useCounter() {
 const [counter, setCounter] = useState(0);
 const update = (d) => setCounter((v) => v + d);
 const handleIncrement = () => update(1);
 const handleDecrement = () => update(-1);
 return {counter, handleIncrement, handleDecrement};
}
export default useCounter;

and save the preceding snippet to the file useCounter.js located next to the original
component, our component then becomes just this:

import useCounter from "./useCounter";
function StyledCounter() {
 const {counter, handleIncrement, handleDecrement} = useCounter();
 return (
 <section>
 <h1>Counter: {counter}</h1>
 <div>
 <Button handleClick={handleIncrement} label="Increment" />
 <Button handleClick={handleDecrement} label="Decrement" />
 </div>
 </section>
);
}

Now that’s a clean component! Just a single hook up top creates all the state values
and callbacks needed to fulfill the responsibility, and the rest of the code in the com-
ponent is the JSX.

348 CHAPTER 10 Advanced React hooks for scaling
10.3.3 Where can I find custom hooks?

You can find custom hooks everywhere! Custom hooks are one of the best ways to expose
complex logic rules, and you’ll find that many libraries and online utilities come in the
form of custom hooks. Hooks are much more versatile than components because they
don’t come with implicit ideas about semantics, UIs, or HTML elements. Custom hooks
are pure functionality that you can apply in whatever way fits your application. Here’s an
inexhaustive list of excellent custom hooks you can use directly in your application:

 useHooks (https://usehooks.com)—A collection of various general-purpose hooks
for everyday work.

 Collection of React Hooks (https://nikgraf.github.io/react-hooks)—A huge library
of more than 400 user-submitted hooks for all sorts of purposes.

 React Aria (https://react-spectrum.adobe.com/react-aria)—An open source
library of accessibility-specific hooks providing proper keyboard and pointer
bindings for many different more or less complex widgets developed and main-
tained by Adobe

 awesome-react-hooks (https://github.com/rehooks/awesome-react-hooks)—A
curated list of React hooks sorted by category with a short description for each

10.4 Quiz
1 Which of the following is the correct way to create a context provider for a con-

text named StyleContext with the value style?

a <StyleProvider value={style}>
 ...
 </StyleProvider>

b <StyleContext.Provider value={style}>
 ...
 </StyleContext.Provider>

c <StyleProvider style={style}>
 ...
 </StyleProvider>

d <StyleContext.Provider style={style}>
 ...
 </StyleContext.Provider>

2 If you use the useContext hook with a context that does not have an associated
provider above the component in question in the JSX document tree, the hook
throws an error. True or false?

3 The useState hook is superior to the useReducer hook in every way, and anything
you can do with the latter, you can do better with the useState hook. True or false?

4 If you define a custom hook, you have to register it as an official custom hook
using a specific React function. True or false?

5 Custom hooks are a great way to generalize functionality in your applications
and make components simpler to read and use. True or false?

https://usehooks.com
https://nikgraf.github.io/react-hooks
https://react-spectrum.adobe.com/react-aria
https://github.com/rehooks/awesome-react-hooks

349Summary
Quiz answers
1 <StyleContext.Provider value={style}>

 ...
</StyleContext.Provider>

You always provide a context through the context’s .Provider property and you
always provide the context value using the value property.

2 False. The useContext hook will return the default value provided to create-
Context, if no associated provider is found.

3 Mostly false, however, there are definitely situations where you want to use a
useState hook over a useReducer hook. These two hooks serve slightly differ-
ent purposes and are rarely in direct competition with each other.

4 False. Any function you define that makes use of another hook automatically becomes
a custom hook. You don’t have to do anything else to make it work as a hook.

5 True. Custom hooks are one of the primary ways to share complex business logic
between components in an application, and even between different applications.
Many React libraries expose their functionality in the form of custom hooks.

Summary
 React Context and the useContext hook are extremely versatile and useful

tools in your React developer toolbox.
 React Context is the perfect tool to avoid prop drilling—the practice of passing

properties to a component with the sole purpose of having the component pass
the property on to the next component down the line. This is bad software
design, and React Context helps you avoid this.

 A React Context consumer (either through the .Consumer property or via the
useContext hook) will get the current context value from the nearest React
Context provider of the same type when looking up the component tree—or
the default value if no provider is found.

 The useContext hook is recommended for any functional codebase over the
.Consumer component property.

 React Context can be used for very complex data management in large applica-
tions with great success.

 Reducer hooks are ideal for managing complex state in your applications.
They’re a great tool to handle interdependent variables and ensure that invalid
state configurations aren’t possible.

 Reducers are functions that reduce state to a new state based on a given action.
 Reducers are pure and free of side effects in their nature.
 You can create custom hooks to generalize functionality.
 Custom hooks are often a lot easier to generalize than whole components and are

often the primary way to share business logic between parts of your application.
 You can find a ton of custom hooks online in packages or for simple copy-paste.

Project: Website menu
We’ve reached a milestone. With the completion of chapter 10, you now know all
you need to know about React itself to start building some pretty complex web
applications. This and the next two chapters are all project chapters. These projects
are much larger examples that guide you through the first steps of creating a full-
featured web application and set you up for creating more advanced variants of
those same applications.

 The project in this chapter is a website menu. It’s a top-bar menu component
that you can directly use in a website. We’ll create this project in five steps, as out-
lined in figure 11.1.

 The scaffold is where you start out building this application. Each additional
step of the application adds more advanced features to the menu while utilizing
new parts of the React API. We’ll set up step 1 first in this chapter, and then we’ll

This chapter covers
 Creating the necessary scaffolding for a menu

component

 Rendering a static website menu

 Homework: Adding advanced features to the
menu
350

351
solve step 2 together. From then on, we’ll introduce the subsequent steps to you, but
then you have to solve them yourself.

 Of course, we’ll provide a reference solution to all the steps, including steps 3 to 5,
but we won’t tell you how we got there. Your solution to steps 3 to 5 will most definitely
not be identical to ours because there are so many different ways to do things. If
you’re ever stuck, feel free to peek at our solutions to the latter steps, but please first
try to solve them yourself.

 Table 11.1 outlines exactly what happens at each step in terms of what functional-
ity we’re creating as well as which parts of the React API we’re utilizing.

Table 11.1 The five steps of the menu project

Step Feature Additional React API used Difficulty

Step 1: Scaffold Create the basic component struc-
ture for a website with an empty
menu.

Chapters 1–4: Functional
components using JSX

★☆☆☆☆

Step 2: Static
menu

Add a static JSX menu using a cus-
tom menu item component with
dynamic properties.

Chapters 3–4: Using JSX
with dynamic properties

★☆☆☆☆

Step 3: Dynamic
menu from a list of
links

Render the menu from a list of
objects describing the menu items.

Note: This is homework. You have to
create this step yourself!

Chapters 3–4: Rendering
lists of JSX elements

★★☆☆☆

Step 4: Retrieving
links from context

Retrieve the list of menu items from
a context provided around the entire
application.

Note: This is homework. You have to
create this step yourself!

Chapter 10: Context ★★★☆☆

Step 1

Scaffold

Step 2

Dynamic properties Lists Context State + events +

custom hook

Static

Step 3

Dynamic

Step 4

Context

Step 5

Profile

Figure 11.1 We start this project with a scaffold, and through the steps in this chapter, we’ll build
a fully fledged dynamic menu with an optional link to a profile page.

352 CHAPTER 11 Project: Website menu
Before we get started, let’s take a look at what we’re building. It’s a minimalist website
with a top bar with menu links. Take a look at figure 11.2 for a screenshot of the menu
in action.

For a little flair, we’ll also add some UX, including a slight hover effect when you move
your pointer over one of the menu items. Figure 11.3 shows what this looks like. With
the design and end goal out of the way, let’s get started!

NOTE The source code for the scaffolding and suggested solutions to all the
sections in this chapter are available at https://rq2e.com/ch11. But as you
learned in chapter 2, you can instantiate all the examples and solutions
directly from the command line using a single command.

Step 5: Adding an
optional link

Add a login/logout button that will
dynamically add and remove a profile
link to/from the menu.

Note: This is homework. You have to
create this step yourself!

Chapter 5: State
Chapter 8: Events
Chapter 10: Complex con-
text and custom hooks

★★★★☆

Table 11.1 The five steps of the menu project (continued)

Step Feature Additional React API used Difficulty

Figure 11.2 This is the website we’ll build. The menu at the top—Home, Services,
Pricing, and Blog—is the main focus. In the first iteration, the menu items are
statically defined.

https://rq2e.com/ch11

35311.1 Scaffolding for the menu
11.1 Scaffolding for the menu
Okay, here we go. Our first “real” React project is on the line. To do this, we need a
plan. We’ll think this through as if it was a real project that we had to solve for a cli-
ent, an employer, or your uncle’s lawn mowing and babysitting business, aka Laps &
Naps Inc.

 Starting with the desired result as illustrated in figures 11.2 and 11.3, we’ll go
through these steps:

1 Define the HTML output that will render the desired result.
2 Create a number of React components that will render JSX to achieve the

desired HTML.
3 Place static images in the public folder that we can load at runtime.
4 Create a stylesheet.
5 Implement the components that we need to get the necessary functionality.

Let’s get cracking!

11.1.1 HTML output

In this project, we’re starting out by building a static HTML page with React and JSX.
In general, you neither would nor should use React for this, but because it’s only the
first step, and we’ll be adding dynamic functionality on top of that later, it makes sense
to start out with static output. The desired output HTML for the scaffolding looks like
figure 11.4.

Figure 11.3 When the user hovers over a menu item, the background turns a slightly
darker gray to highlight what the user is interacting with.

354 CHAPTER 11 Project: Website menu
11.1.2 Component hierarchy

To render the desired HTML tree, we need a React application that renders a similar
set of JSX nodes. We could use any number of React components to implement this.
We could create a component for every HTML node if we wanted to, or we could cre-
ate a single component that renders the entire thing. This is where the developer’s
judgment comes into play.

 You’ve seen us devise the desired React component structure for all the examples
so far in this book. But soon (later in this chapter), this will be on you. You have to be
in charge. You have to come up with a component tree for a given desired output.

 Figuring out how to cut the cake and split a given desired output into components
is a task central to being a React developer. In figure 11.5, you can see two different
approaches to how to create components that render the desired output.

 There’s more than one way to skin a component tree, and no one way is the right
one. When deciding how to structure your components, you should aim for a balance
between complexity and responsibility. In this case, we could easily implement the
whole application in a single component as in the left-most case in figure 11.5; but
knowing we’ll add extra functionality inside the <nav> element in the header, we’ll
encapsulate that as its own component. It will be a very small component for now, but
we’ll expand it later.

11.1.3 Icons

As you might have noticed in the original screenshot in figure 11.2, we have some
icons in the menu. Let’s take a closer look at those in figure 11.6.

 There are many ways to render icons in React, but we’re using the simplest one for
now. We’ll render scalable vector graphics (SVG) images loaded from an external file.

<div id="root">

<header> <main> <footer>

<h1> <a><nav> <a> <a>

Figure 11.4 The HTML node tree for the scaffold of the menu application consists of just
these elements.

35511.1 Scaffolding for the menu
We can do that by placing files inside the public folder in the React application folder
like so:

public/
 icons/
 blog.svg
 home.svg
 pricing.svg
 profile.svg
 services.svg
 favicon.ico
 index.html

<App>

<header> <main> <footer>

<h1> <a><nav> <a> <a>

<App>

<header> <main> <footer>

<h1> <A><Menu> <A> <A>

<nav>

<Header> <Main> <Footer>

<a> <a> <a>

Single component Many components

Figure 11.5 Two different approaches to creating components for a desired output. We're
actually going to go for neither, but rather a medium approach between the two because
we're focusing on the menu only.

Figure 11.6 A close-up of the
icons in the menu

Creates an icons
folder inside the
public folder

Places five SVG
files inside the
icons folder

The public folder also has these
two files, created by create-
react-app (CRA) by default.
We don't touch those.

356 CHAPTER 11 Project: Website menu
When these files are inside the public folder, we can load them wherever via the path
"/icons/blog.svg". For example, we can render the blog icon as an tag:

Note that we also have a profile.svg image in the icons folder. We don’t need that
for the first versions of the menu, but we’ll need it later, so it’s already there if you
keep working on the same application. All the icons are public domain and com-
pletely free to use in whatever context you desire.

11.1.4 CSS

Finally, we’ll need quite a bit of CSS for this application. So far, we’ve used inline
styles via the style attribute on JSX elements. This has worked okay because we only
had very limited styling to apply. In this application, however, we need a lot of styles,
and we need hover styling. Rendering a lot of styles is possible using inline styles,
though it’s not optimal. But hover styling is impossible using inline styles, so we’ll
need a proper stylesheet.

 React and CRA, fortunately, make this incredibly simple. We haven’t discussed this
much, but in a React file, you can import a stylesheet directly, and the React compiler
will convert it to a regular stylesheet inserted in the HTML when needed.

 The pros and cons of loading styles inline or using stylesheets is outside the scope
of this book, so, for now, we’ll use this approach because it’s simple and it works well
for smaller applications:

1 Create a stylesheet, style.css, inside the src folder.
2 Load the stylesheet inside the main App.js file where the root application is

defined.
3 Apply class names to JSX elements and have them render using the rules defined

in the stylesheet.

And that’s it!
 Loading a stylesheet in JavaScript means importing the file. You don’t import it as

something, like you do for components, you simply import the file like this:

import "./style.css";

That’s all it takes. You can now apply class names where relevant.

35711.1 Scaffolding for the menu
11.1.5 Template

We’ve created this whole scaffold as a template for you to start your work on.

This template comes with the following files relevant for your application:

public/
 icons/
 blog.svg
 home.svg
 pricing.svg
 profile.svg
 services.svg
 favicon.ico
 index.html
src/
 App.js
 index.js
 Menu.js
 style.css

However, if you want to start from scratch, you can do so. You can use the following
template that only contains the icons and stylesheet, but no custom components. The
src folder is completely standard based on the regular minimal template except for
the stylesheet needed:

npx create-react-app web-menu --template rq11-minimal

If you do use this latter approach, you’ll have to start editing src/App.js. Remember
to import the stylesheet as well. This minimal template contains these files:

Repository: rq11-scaffold
This example can be seen in repository rq11-scaffold. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq11-scaffold --template rq11-scaffold

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq11-scaffold

Icons used
to render the
menu items

Default files included in
a CRA minimal project
untouched by us

Custom
components with
the basic scaffold

A complete
stylesheet with all
the rules required to
complete this project

https://rq2e.com/rq11-scaffold

358 CHAPTER 11 Project: Website menu
public/
 icons/
 blog.svg
 home.svg
 pricing.svg
 profile.svg
 services.svg
 favicon.ico
 index.html
src/
 App.js
 index.js
 style.css

11.1.6 Source code

The source code for the scaffolding application, defined in src/App.js, follows.

import Menu from "./Menu";
import "./style.css";
function App() {
 return (
 <>
 <header>
 <Menu />
 </header>
 <main>
 <h1>Welcome to this website</h1>
 </main>
 <footer>
 About
 Contact
 React Quickly 2E
 </footer>
 </>
);
}
export default App;

The source code for the CSS file, src/style.css, is defined in the next listing.

html,
body {
 margin: 0;
 font-family: Verdana;
}

Listing 11.1 src/App.js in the scaffolding

Listing 11.2 src/style.css in the scaffolding

Icons used
to render the
menu items

Default files included in
a CRA minimal project
untouched by us

A complete stylesheet with
all the rules required to
complete this project

The menu is defined
in an external file and
imported at the top.

Defines the CSS
externally in a file
named style.cssRenders

the menu
component in
the header at

the relevant
place

35911.1 Scaffolding for the menu
main,
header,
footer {
 padding: 8px;
}

header {
 border-bottom: 1px solid darkgray;
 background: #eee;
}
footer {
 border-top: 1px solid darkgray;
 display: flex;
 flex-direction: column;
}
.menu {
 display: flex;
 gap: 16px;
 padding: 0;
 margin: 0;
 list-style: none;
 justify-content: flex-end;
}
.menu-link {
 text-decoration: none;
 color: inherit;
 display: flex;
 align-items: center;
 gap: 5px;
 padding: 8px 16px;
 border: 1px solid lightgray;
 border-radius: 8px;
}
.menu-link:hover {
 background: lightgray;
}

The source code for the menu, defined in src/Menu.js, follows.

function Menu() {
 return <nav></nav>;
}
export default Menu;

11.1.7 In the browser

If we run this in the browser, we get a nice website with an empty menu, as shown in
figure 11.7.

Listing 11.3 src/Menu.js in the scaffolding

The menu only renders an empty
<nav> element for now.

360 CHAPTER 11 Project: Website menu
11.2 Rendering a static menu
In this step of the project, we’ll take the current state of affairs after completing the
first part of the exercise and add the required functionality to render a static menu
with a fixed list of menu items.

 You can start the project by either implementing the scaffolding yourself based on
the information given in the previous section or starting from the application defined
in the rq11-scaffold template. The result of this step is the application defined in
the following repository.

Repository: rq11-static
This example can be seen in repository rq11-static. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq11-static --template rq11-static

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq11-static

Figure 11.7 A website with a temporarily empty menu that we'll soon fill with some
great links

https://rq2e.com/rq11-static

36111.2 Rendering a static menu
11.2.1 The goal of this exercise

The goal of this exercise is to populate the empty menu in the previous step. The
menu component was just this—a completely empty element with no menu items:

function Menu() {
 return <nav></nav>;
}

Before we get started, we first need to define the desired HTML output, then decide
on a component tree that best creates this output, and, finally, implement these
components.

11.2.2 Desired HTML output

We’re focusing on the HTML output inside the <nav> component only. To render a list
of links in a menu, the HTML tree visualized in figure 11.8 renders the desired outcome.

11.2.3 Component tree

The component tree for this one kind of writes itself. We want to create a component
that encapsulates the duplicated HTML in the HTML tree in figure 11.8. We can call
that a MenuItem component, which takes three properties:

 href—The actual target URL that the link will point to
 icon—The name of the SVG file to load as an icon
 children—The text that goes inside the link

<nav>

<a> <a><a> <a>

"Services""Home" "Blog"

"Pricing"

Figure 11.8 The HTML node tree for the navigation element is an unordered list of links.

362 CHAPTER 11 Project: Website menu
We can illustrate this as a component tree in figure 11.9.

With that out of the way, we can now implement the required changes in the relevant
components.

href

icon "home"

"/" href

icon "blog"

"/blog"

href

href

icon "services"

"/services"

src

href

icon "pricing"

"/pricing"

href href

"/icons/ .svg"icon

<MenuItem>

<Menu>
<nav>

<MenuItem> <MenuItem><MenuItem> <MenuItem>

<a>

"Home" "Pricing" "Blog""Services"

children

src

Figure 11.9 Along with having two components, we pass two properties and children to the
MenuItem component.

36311.2 Rendering a static menu
11.2.4 Source code

First, we implement the updated Menu.js component in the next listing. As illustrated
in figure 11.7, we need to render a list of four MenuItem instances.

import MenuItem from "./MenuItem";
function Menu() {
 return (
 <nav>
 <ul className="menu">
 <MenuItem href="/" icon="home">
 Home
 </MenuItem>
 <MenuItem href="/services" icon="services">
 Services
 </MenuItem>
 <MenuItem href="/pricing" icon="pricing">
 Pricing
 </MenuItem>
 <MenuItem href="/blog" icon="blog">
 Blog
 </MenuItem>

 </nav>
);
}
export default Menu;

Second, we implement the new component, MenuItem.js.

function MenuItem({ href, icon, children }) {
 const iconSrc = `/icons/${icon}.svg`;
 return (

 {children}

);
}
export default MenuItem;

Listing 11.4 src/Menu.js for a static menu

Listing 11.5 src/MenuItem.js for a static menu

Four instances of our
MenuItem component,
each with slightly
different properties

The MenuItem component takes
three properties, of which one is
the special children property.

Defines the icon source
based on the known
location of the icon files
as well as the passed
icon property

The anchor
element needs an
href, which we
take from the
properties.

The image element
needs a source, which

we’ve calculated
in a variable.

Renders the children
property next to the
image as the link text

364 CHAPTER 11 Project: Website menu
11.2.5 In the browser

If we run this in the browser, we get exactly what we wanted as originally illustrated in
figure 11.2, but repeated here in figure 11.10 for comparison.

11.3 Homework: A dynamic menu
After step 2, we have a nice static menu, so you might now be wondering why we
would want to do that differently. Well, the thing is, the menu items will be dynamic in
a later stage of this project (management told us some time ago), so we might as well
prepare ourselves for that.

 Dynamic menu items mean that the number of items as well as the text, icon, and
perhaps href of the individual menu items might be updated as the user interacts with
the site. Imagine that you log into the website as a customer, and suddenly some of the
menu items are removed and others are added. Different customers might see different
menu items once logged in. So, while the current approach works, it’s not ideal for a
dynamic menu, where we have to update the menu items depending on state and exter-
nal data.

11.3.1 Goal for this step

The goal for this step is to prepare the project for dynamic rendering by switching to a
list of objects to be rendered as menu items, rather than manually typing all the menu
items out in JSX. The structure of the project will be the same as you’ll probably have the
same number of components, but a bit more data will be passed between components.

 However, it’s a requirement that the list of menu items is defined in the App
component (because some senior architect says so, and who are we to question

Figure 11.10 Our static menu works! Try hovering the menu items in your browser to
see the slight hover effect achieved by the stylesheet rules.

36511.3 Homework: A dynamic menu
seniority?). Because we’ll use this list in the Menu component, we need to pass this list
as a property.

11.3.2 Hints for solving this step

The central points of this step require answering these two questions:

1 How will the list items be structured to capture all the information we need to
render the menu items?

2 How will we render the menu items based on a list of objects?

We’ll give you a hint for each of these questions.

DEFINING LIST ITEMS

The list items need to contain information about where the menu item link points to
(the href), which icon is going to be displayed, and what text is going to be displayed.
This can be captured in an object like this:

{ title: "Home", href: "/", icon: "home" }

Naming properties is completely up to you, and you might do it differently than this if
you want to.

RENDERING LIST ITEMS

To render JSX nodes based on a list of items, think back to section 3.2.8 on rendering
a list of JSX objects. This generally takes the following structure:

<parent>
 {list.map((object) => (
 <node
 key={object.id}
 otherProp={object.other}
 ...
 />
))}
</parent>

Importantly, remember to define a unique key on each node in the mapped response.

11.3.3 Component hierarchy

The number of components doesn’t change, but we use them a bit differently. Where
we previously had a static list of four MenuItem component instances inside the Menu
component, we now have a dynamic list of MenuItem instances based on the length of
the array of links. We need to pass this list of links from the App component to the
Menu component. The only unchanged component is the MenuItem component, as it
was already dynamic and capable of displaying dynamic content.

 Our recommendation for a component hierarchy is displayed in figure 11.11, but
you’re free to come up with your own structure, if you so desire. There is no single
correct solution to this.

Maps the list of objects
to a list of JSX nodes

Adds a unique
key for each node

Adds any other relevant
properties from the

mapped list element

366 CHAPTER 11 Project: Website menu
11.3.4 What now?

We strongly recommend that you have a go at this yourself. If you followed in step 2
implementing the static list yourself, we recommend that you just keep going from
there. But if you want to start from a clean slate, you can also start with our implemen-
tation of step 2 from the rq11-static repository.

 After completing this exercise, you might want to compare your solution to our
version, not to see if you got it 100% identical (because odds are small that you did),
but just to see if we had a different approach.

links [{...}, ...]

href

icon item.icon

item.href

href href

<App>

<MenuItem>

<Menu>

<nav>

<MenuItem>

<a>

 children

item.title

<Fragment>

<header> <main> <footer>

<h1>
<a>

<Menu>

<a>

<a>

for each item in links

src "/icons/ .svg"icon

Figure 11.11 We now pass a property to the Menu component from App, and we then use that
property to generate a dynamic number of MenuItem instances.

36711.4 Homework: Retrieving items from context
If you enjoyed this step, we recommend that you try the next two steps in this project,
though they do get a little bit harder.

11.4 Homework: Retrieving items from context
We’ve made the menu dynamic now, which is a great first step. But to make it truly
dynamic, we need to be able to manipulate the list of menu items from throughout
the application. Passing lists of links around to a lot of components would be annoy-
ing, so we would rather move the list of links to a context that surrounds the entire
application. This will ensure that we have access to the list easily from anywhere.

11.4.1 Goal for this step

In this step, we’ll take the abstraction up another level. Rather than pass the list of
links around as a property between components, we’ll move it to a context. For now,
this context will only contain our list of links, which is used inside the Menu compo-
nent. To prepare for the next step, where the context will need to also be accessible
from the rest of the application, we recommend wrapping the context around the
entire application.

11.4.2 Hints for solving this step

To load the links from a context, we need to do three things:

1 Define a React context in a variable that is accessible from multiple components.
2 Create a context provider around the relevant part of the application.
3 Apply the useContext hook where we need access to the context variable.

DEFINING A CONTEXT

To define a React context, you simply invoke the createContext() function from
the React package. To make sure this variable is accessible from multiple compo-
nents, you can create it in a separate file and export it. This is the shortest way to
achieve this goal:

import { createContext } from 'react';
const Context = createContext([]);
export default Context;

Repository: rq11-dynamic
This example can be seen in repository rq11-dynamic. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq11-dynamic --template rq11-dynamic

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq11-dynamic

The default argument is an
empty array in this instance.

https://rq2e.com/rq11-dynamic

368 CHAPTER 11 Project: Website menu
Note how we supply an empty array as the default context value. If, for some reason,
we tried to access the context where it isn’t defined, we would get an empty list of links
as the value.

CREATING A CONTEXT PROVIDER

To create a context provider, wrap the relevant components inside a Context.Provider
component. This component instance should be supplied with a value property, which
will contain the current context value.

 If you have the context in a variable named MenuContext and a list of links in a
variable named links, you can provide a context for a set of components, A, B, and C,
like this:

return (
 <MenuContext.Provider value={links}>
 <A />

 <C />
 </MenuContext.Provider>
);

ACCESSING THE CONTEXT VALUE

To access the context value, you use the useContext hook inside a component that
exists somewhere inside the context provider. If the context in question is named
MenuContext, you can access the current value like this:

import { useContext } from 'react';
function SomeComponent() {
 const value = useContext(MenuContext);
 ...
}

11.4.3 Component hierarchy

Once again, you can do this in many ways. We’ve outlined our suggestion for how to
accomplish this in figure 11.12, but it’s just one such tree diagram. Many other solu-
tions are possible.

11.4.4 What now?

We recommend that you have a go at this yourself. If you’ve completed step 3, we rec-
ommend that you keep going from there. But if you don’t like your result or for some
other reason want to start from a fresh slate, you can start with our implementation of
step 3 in the rq11-dynamic repository. When complete, you’ll probably want to com-
pare your solution to ours for educational purposes.

 Now that you’ve come this far, we suggest that you also try the next step. It’s a bit
harder, but most likely worth it, as you’ll really see how things start to work together.

36911.4 Homework: Retrieving items from context
Repository: rq11-context
This example can be seen in repository rq11-context. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq11-context --template rq11-context

<App>

<MenuItem>

<Menu>

<nav>

<MenuItem>

<a>

 children

item.title

<Context.Provider>

<header> <main> <footer>

<h1>
<a>

<Menu>

<a>

<a>

const links = useContext(Context)

value [{...}, ...]

for each item in links

href

icon item.icon

item.href

href href

src "/icons/ .svg"icon

Figure 11.12 The whole application is wrapped in a context provider, and we use the same context
to retrieve the context value inside the menu component.

370 CHAPTER 11 Project: Website menu
11.5 Homework: Optional link
We’ve reached the last step of this project. We’ll now add some very simple authentica-
tion mechanics, and, once authenticated, the user will be presented with an addi-
tional link in the menu.

 How basic of an authentication scheme, you ask? Trust-based. If you click the Log
In button, you’re logged in. If you then click the Log Out button, you’re logged out.
This isn’t useful for any real authentication, of course, but for demonstration pur-
poses, it will serve us fine. The flowchart for this application is incredibly simple, as
you can see in figure 11.13.

To achieve this, we’ll add a very simple Log In button to the main section of the page
below the headline. You can see what the website should look like in this state in fig-
ure 11.14.

 If you click the button, you’re considered logged in and can see the new profile
link in the menu. You can see what this should look like in figure 11.15.

11.5.1 Goal for this step

The goal for this step is to extend the context provider with the extra properties
required to know the state and to manipulate it. We also need to store the state some-
where in an updatable way.

 While doing this work, feel free to reorganize components as you see fit. You might
want to add extra components if that seems like the right thing to do. As mentioned
earlier, that is a judgment call for the developer to make.

(continued)

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq11-context

User is not logged in.

Display menu for unknown

users.

User is logged in. Display

menu for authenticated

users.

User clicks

Log ut.O

User clicks

Log n.I

User enters website.

Figure 11.13 A user will either be logged in or not, and the menu will
reflect that.

https://rq2e.com/rq11-context

37111.5 Homework: Optional link
Figure 11.14 When the user is unknown, the main section of the website
contains a Log In button, and the menu still has four menu items like before.

Figure 11.15 When the user is authenticated, the main section of the website
now contains a Log Out button, and the menu has an extra, fifth, menu item.

372 CHAPTER 11 Project: Website menu
11.5.2 Hints for solving this step

Here are some hints that might help you solve this:

 In step 4, the context value was only a list of links. You now need the context to
hold more than one value, so you probably want to use an object.

 You can create a custom hook to more easily access the value of a context.
 To keep track of the Boolean state of whether the user is authenticated or not,

you probably need a stateful hook.
 Moving the context provider to a dedicated component might make the appli-

cation easier to understand.
 Because the main section of the application now has more logic, it could bene-

fit from becoming its own component.
 Remember that you can use the special property children to pass components

“through” another component.

OBJECT AS A CONTEXT VALUE

While we did not directly address this in chapter 10, you can store multiple values in a
context. You do so by using an object:

const value = {
 someValue,
 someFunction,
);
return (
 <Context.Provider value={value}>
 ...
 </Context.Provider>
);

Remember, if you change the value of a provider, you might also want to change the
initial default value passed to createContext.

CUSTOM HOOK FOR CONTEXT ACCESS

If you have a context that you want to use in multiple places—let’s say it’s an API con-
text for access to some general API functionality—you can use the useContext hook
directly in multiple places like so:

// In Component.js
import { useContext } from 'react';
import APIContext from './API';
...
function Component() {
 const value = useContext(APIContext);
 ...
}

But to make life simpler for yourself (and perhaps your fellow team members), you
can create a custom hook that does this for you. Then, you only have to import a sin-
gle thing:

We can have as many values as
we want in a provider object.

We can even put
functions in there.

37311.5 Homework: Optional link
// In API.js
...
export function useAPI() {
 return useContext(APIContext);
};
// In Component.js
import { useAPI } from './API';
...
function Component() {
 const value = useAPI();
 ...
}

Creating tiny custom hooks like that might look a bit silly, but it’s actually helpful and
a very common practice.

STATEFUL BOOLEAN

If you need a simple value to be stateful in React, the easiest way is to apply the use-
State hook, as explained in chapter 5:

import { useState } from 'react';
const [isVisible, setVisible] = useState(false);

Remember that you don’t have to expose the state setter directly. You can create your
own functions to make it easier to work with:

const [isVisible, setVisible] = useState(false);
const show = () => setVisible(true);
const hide = () => setVisible(false);

These are just general examples, of course; you have to modify them for the applica-
tion in question.

 In addition, remember to actually use this stateful variable in your application. In
this application in particular, you want to vary the value of the links variable depend-
ing on the stateful Boolean.

DEDICATED CONTEXT PROVIDER COMPONENT

When we add more logic and more values to our context, it often makes sense to
move it to a dedicated component. So rather than

function App() {
 ...
 const value = { a, b, c };
 return (
 <Context.Provider value={value}>
 ...
 </Context.Provider>
);
}

The return value from useState
can be deconstructed into the
value and the setter function.

374 CHAPTER 11 Project: Website menu
we can instead create two components, App and ValueProvider, and split them up
like this:

function ValueProvider() {
 const value = { a, b, c };
 return (
 <Context.Provider value={value}>
 ...
 </Context.Provider>
);
}
function App() {
 ...
 return (
 <ValueProvider>
 ...
 </ValueProvider>
);
}

CONVERTING PART OF A COMPONENT TO A SEPARATE COMPONENT

If a component grows too complex, it can make sense to split a part of it out. Let’s say
we have a component with several different sections, and we’re adding complexity to
one of them:

// In App.js
function App() {
 const onClickButton = () => { ... };
 return (
 <>
 <header>
 ...
 </header>
 <main>
 <p>This is main</p>
 <button onClick={onClickButton}>
 ...
 </button>
 </main>
 <aside>
 ...
 </aside>
 </>
);
}

At some point, you might feel that the main section of the application grows a bit large
and it should become its own component. If you want to do so, you take the relevant
JSX (and associated variables) of the component and move it to a new component:

// In Main.js
function Main() {

This variable is
only used inside
the main section.

The main section here is
growing a bit large and
can be refactored into a
new component.

We created a new component
(in a new file) with only part of
the previous component.

37511.5 Homework: Optional link
 const onClickButton = () => { ... };
 return (
 <main>
 <p>This is main</p>
 <button onClick={onClickButton}>
 ...
 </button>
 </main>
);
}
// In App.js
function App() {
 return (
 <>
 <header>
 ...
 </header>
 <Main />
 <aside>
 ...
 </aside>
 </>
);
}

Both components are now much simpler, and it’s easier to understand their purpose.

THE CHILDREN PROPERTY

Sometimes you might create a new component, but you don’t want to make it too spe-
cific. You still want to be able to populate it with different content in different circum-
stances. Let’s say that you have an application with multiple identically styled sections,
but the contents are different:

function App() {
 return (
 <main>
 <section className="section section-fancy">
 <A />
 </section>
 <section className="section section-fancy">

 </section>
 <section className="section section-fancy">
 <C />
 </section>
 </main>
);
}

Here, it can make sense to create a component for the sections that still allow you to
pass in arbitrary children. You can do just that with the children property:

We can now safely replace
the entire main section
from before with our
new component.

We have the
same class on
all the sections.

But the
contents are

different.

376 CHAPTER 11 Project: Website menu
function Section({ children }) {
 return (
 <section className="section section-fancy">
 {children}
 </section>
);
}
function App() {
 return (
 <main>
 <Section>
 <A />
 </Section>
 <Section>

 </Section>
 <Section>
 <C />
 </Section>
 </main>
);
}

Why do we mention that in this step? Well, this is often used for dedicated provider
components, so you can do something like this:

function App() {
 ...
 return (
 <ValueProvider>
 <h1>Some title in here</h1>
 </ValueProvider>
);
}

11.5.3 Component hierarchy

You have a lot more choices to make in this last step, so we’re not going to try to influ-
ence you too much. However, figure 11.16 shows a high-level overview of how we
might see the components laid out in the final application.

11.5.4 What now?

If you want to have a go at this yourself, and we really think you should, you can
keep working on your application from the previous step. If you want to start from
our application as completed after step 4, you can start with the rq11-context
repository. When complete, you probably want to compare your solution to ours for
educational purposes.

This is a new component
with the generic section
markup.

Remember to render
the children property
where you want the
children to appear.

We can now replace
the sections with our
new component, which
makes the app look a
lot neater without the
repeated logic.

37711.6 Final thoughts
And that’s it. That’s the end of the project for now. But feel free to expand this to add
more functionality and play around with just how powerful contexts are for data con-
trol. You can add a different login button that would log you in as an administrator,
which might render even more menu items—or maybe a completely different menu.

11.6 Final thoughts
This first project had a lot of handholding, and we went through the steps very slowly
with lots of rather detailed hints on how to complete them. In the next two projects,
there will be less handholding and fewer verbose hints. But don’t hesitate to refer
back to this project to see which steps you might want to go through to complete an
exercise.

Repository: rq11-profile
This example can be seen in repository rq11-profile. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq11-profile --template rq11-profile

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq11-profile

<DataProvider>

<header> <Main> <footer>

<a> <a> <a><Menu>

<App>

<h1> <button>

<MenuItem> <MenuItem>...

... ...

Figure 11.16 A high-level overview of how the components could be laid out in the
application in this final step

https://rq2e.com/rq11-profile

378 CHAPTER 11 Project: Website menu
 The final product in this project is a solid foundation for building a website with
a dynamic menu. However, a lot of things are still missing to make this useful in a
real website. These include proper hosting, server-side rendering, backend authen-
tication, and much more, but those topics are beyond the scope of this book.

Summary
 In this project, we learned the steps that you would go through in a real project

when working with React on a regular basis.
 Start the process with the desired result, and try to create the HTML that would

render the desired output.
 From there, devise the component tree that would create the equivalent JSX.

You can make it completely static and stateless in the first iteration.
 Then, slowly add more and more complexity until you end up where you want

your application to be.
 Becoming more experienced as a React developer, you’ll gain the confidence to

skip more steps in this process and perhaps jump directly to the last step because
you’re already very familiar with how to best use contexts, lists of JSX objects,
stateful variables, and all the other things required.

Project: Timer
Welcome to this next project, where we’re going to build a countdown timer. It’s
just like the timer app on your phone, only you build this one yourself! We’ll also
get a bit more ambitious on your behalf in this exercise, so, compared to chapter 11,
there will be less so, and guidance from us and more development work to figure
out on your own. But don’t worry, you have our full trust and confidence—we know
you can do it!

 We’ll set up the foundations for the project for you, so you don’t have to mess
too much with design or semantics. For that purpose, we’ve set up a scaffold for
you in step 1, which contains the static HTML and semantics required for step 2,
but also all the images, icons, and styles that you need for the whole project. See
figure 12.1 for the high-level overview of this project.

This chapter covers
 Creating the necessary scaffolding for a timer

component

 Implementing a fixed-duration timer

 Homework: Adding advanced features to
the timer
379

380 CHAPTER 12 Project: Timer
In step 2, together we’ll convert the static output from step 1 to a working, albeit func-
tionally limited, timer with a fixed duration, by adding statefulness. In step 3, we’ll add
an initialization step so you can set the timer to an arbitrary number and also dismiss a
running timer. This requires adding form and event handling. When we add the extra
option of resetting the timer in step 4, we’ll also refactor how the state is being kept by
moving to a reducer and a custom hook. Finally, in step 5, we’ll add the option of hav-
ing multiple timers running independently of each other.

 As mentioned, we’re getting more ambitious on your behalf in this project, so the
last two steps are fairly complicated. You can see a more detailed overview of the pro-
cess and the technologies involved in table 12.1.

Table 12.1 The five steps of the timer project

Step Feature Additional React API used Difficulty

Step 1: Scaffold Create the basic component struc-
ture for a time display and buttons.

Chapters 1–4: Functional
components using JSX

★☆☆☆☆

Step 2:
Play/Pause

Implement a stateful component
that will count down when started
until paused or done.

Chapter 5: State
Chapter 6: Effect hook

★★☆☆☆

Step 3: Initialize Initialize the timer at a custom time
defined by the user through a form
with inputs.

Note: This is homework. You have to
create this step yourself!

Chapter 8: Listening for
events
Chapter 10: Handling user
input in forms

★★☆☆☆

Step 4: Reset Convert the state logic to a reducer,
and add more logic to handle reset-
ting the timer as well.

Note: This is homework. You have to
create this step yourself!

Chapter 10: Reducer and
custom hook

★★★★☆

Step 1

Scaffold

Step 2

State + effect Forms + events
Reducer +

custom hooks

Play/Pause

Step 3

Initialize

Step 4

Reset

Step 5

Multiple

Figure 12.1 When you’re completing the timer project, you’ll go through these five steps to end up
with a fairly advanced timer.

381
As a further enticement before we get going, we’ll present some screenshots of the
final product. Note that although the book is printed in grayscale, the actual timer
comes with a pleasing purple gradient as background. The initial result of step 1 is dis-
played in figure 12.2, whereas the final multi-timer is displayed in figure 12.3.

Alright, let’s start the countdown!

NOTE The source code for the scaffolding and suggested solutions to all the
sections in this chapter are available at https://rq2e.com/ch12. But as you
learned in chapter 2, you can instantiate all the examples and solutions
directly from the command line using a single command.

Step 5: Multiple
timers

Allow the user to define multiple tim-
ers that will run independently of
each other.

Note: This is homework. You have to
create this step yourself!

★★★★☆

Table 12.1 The five steps of the timer project (continued)

Step Feature Additional React API used Difficulty

Figure 12.2 Step 1 sets up the project structure and styles required to
render a static timer like this one. The button doesn’t do anything at this
point, and the time doesn’t tick down.

https://rq2e.com/ch12

382 CHAPTER 12 Project: Timer
12.1 Scaffolding for the timer
To help you focus on implementing React code and not fiddling with HTML and CSS,
we’ll provide all the required styles and semantics for you. We’ll also set it all up here
in the scaffolding for the application. As in the previous project (and really any web
development project), we’ll go through these steps to complete the project:

1 Define the HTML output that will render the desired result.
2 Create a number of React components that will render JSX to achieve the

desired HTML.

Figure 12.3 After you’ve completed step 5, you’ll have created this monster
of an application, where you can have as many independently running timers
as you want. Just imagine how many differently sized eggs you can boil
simultaneously!

38312.1 Scaffolding for the timer
3 Place static images in the public folder that we can load at runtime.
4 Create a stylesheet.
5 Implement the components that we need to get the necessary functionality.

The last point is the interesting bit, and we’ll solve that in steps 2–5 in this project.
Step 1 will complete the first four points in the preceding list.

12.1.1 HTML output

For the HTML output for this project, we’ll go over one part at a time and detail how
we’ll model it using HTML. We’ll then add some appropriate CSS classes to each
node, which we can target in our stylesheet in the next part. When we have all the
individual parts, we can start putting them together to form the whole project. The
parts of this project are highlighted in the graphic in figure 12.4.

Let’s go over each of these parts and detail the associated HTML structure.

1. Number and unit

2. Button

3. Time parts

4. Timer

5. Form input

6. Form

7. Timers

Figure 12.4 The seven parts that make up the complete timer application.
Starting from the innermost, we have a number and unit, a button, a collection
of two numbers with a colon between them, a complete timer, a form input, a
form with multiple inputs and a button, and, finally, the whole list of timers.

384 CHAPTER 12 Project: Timer
NUMBER AND UNIT

Each number in the time display has an associated unit below it. The number and
unit text fields are combined in the list item. This list item will be used in the time
display as a whole. Therefore, each individual number and unit is a list item with
paragraphs inside:

<li class="part">
 <p class="number">05</p>
 <p class="unit">minutes</p>

BUTTON

A button is, of course, a button, but with an icon that matches the title:

<button title="Play" class="toggle">

</button>

TIME PARTS

The time display is a list of parts, namely, a number and unit, then a colon, and then
another number and unit:

<ul class="parts">
 <!-- number + unit -->
 <li class="colon">:
 <!-- number + unit -->

TIMER

The timer is a section that consists of a list of time parts followed by one or more
buttons:

<section class="timer">
 <!-- time parts -->
 <!-- button(s) -->
</section>

While the timer is running, add a class timer-ticking to make the colon in the time
display blink:

<section class="timer timer-ticking">
 <!-- time parts -->
 <!-- button(s) -->
</section>"

If the timer has reached 0 and should start blinking to indicate that the time has run
out, it can be marked by adding the class timer-ringing:

38512.1 Scaffolding for the timer
<section class="timer timer-ringing">
 <!-- time parts -->
 <!-- button(s) -->
</section>

FORM INPUT

The input is a number and unit, but instead of the two elements being two para-
graphs, they are an input and a label. They still form a part, which is an element in
a list:

<li class="part">
 <input class="number" type="number" name="seconds" id="seconds" />
 <label class="unit" for="seconds">Seconds</label>

FORM

The inputs make up the form along with a button. Because a button automatically
serves as a Submit button when inside a form, we don’t need to do anything special to
get the form to work:

<form class="timer timer-new">
 <ul class="parts">
 <!-- input -->
 <li class="colon">:
 <!-- input -->

 <!-- button -->
</form>

TIMERS

The list of timers is just an element surrounding all the timers and potentially the
form to add a new one at the end:

<div class="timers">
 <!-- timer(s) -->
 <!-- optional form -->
</div>

If the timer list has a plus button at the end to start a new timer, it can be added as a
button with classes timer and timer-add:

<div class="timers">
 <!-- timer(s) -->
 <button class="timer timer-add">+</button>
</div>

12.1.2 Component hierarchy

The previous section lists some parts of the application that might very well translate
directly to the React components that we need to render the application. However, for

386 CHAPTER 12 Project: Timer
the scaffold, we’ll have far fewer components, and only once we start adding function-
ality in step 2 will we start splitting the components up into all the parts. For this scaf-
fold, we’ll only have three components, as you can see in figure 12.5.

Once we get to future steps, we’ll start adding more functionality and logic, which will
inherently increase the complexity of the component tree.

12.1.3 Project structure

For this project, we’ll need some icons. We need four different types of buttons to
complete the whole project. You can see them all displayed in figure 12.6.

Just like in chapter 11, we’ll place these icon files in the public folder inside a separate
icons folder. Besides that, we’ll need the three components that we laid out in the
previous section in the component tree, and then, of course, we need a stylesheet.
This leads us to the following list of files in the scaffold:

App

TimerManager

Timer

Figure 12.5 This might be our simplest
component tree in a very long time. Note
that we only display the React components
here and not all the plain JSX nodes that
we're also rendering.

Figure 12.6 The four types of buttons we need include a play, pause,
reset, and trash.

38712.1 Scaffolding for the timer

A
f

u

ou
public/
 icons/
 pause.svg
 play.svg
 reset.svg
 trash.svg
 favicon.ico
 index.html
src/
 index.js
 App.js
 style.css
 Timer.js
 TimerManager.js

From there, you’re ready to go. Keep reading this section (12.1) for some extra details
about the source in the scaffold, but if you like what you see, you can also skip ahead
to section 12.2, where we start implementing the simplest version of the timer.

12.1.4 Source code

This section includes the source code for the base components included in the scaf-
folding. You don’t have to copy it from here, though, as these sources are ready to go
in the previously mentioned template.

STYLESHEET

We aren’t listing the whole stylesheet because it’s just a lot of simple CSS rules, but
there are a few things we want to highlight. First, we’re loading a font from the Google
Fonts API, named Fira Sans, which has some nice numbers that we want to use for the
actual clock display. This font also supports a feature called tabular numbers. We want
our numbers to be displayed in a fixed-width format; that is, we don’t want the num-
bers to change width when the clock ticks down from 10 to 09. But in many fonts, the
1 and the 0 don’t have the same width, and this would cause our numbers to jump a
bit unless we put each number in a separate box.

 Some font families have a feature in which you can request your numbers to be dis-
played as fixed-width characters so that they all take the same number of pixels in

Repository: rq12-scaffold
This example can be seen in repository rq12-scaffold. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq12-scaffold --template rq12-scaffold

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq12-scaffold

Icons that
we’ve added for
the buttons

Default files that
we haven't toucheddefault

ile that
we’ve

pdated
to suit

r needs

Three new files we’ve
added to display the
scaffold application

https://rq2e.com/rq12-scaffold

388 CHAPTER 12 Project: Timer
width at the same font size. We load the font and trigger this tabular variant for num-
bers in CSS by using this declaration:

@import url("https:/ /fonts.googleapis.com/css2

➥ ?family=Fira+Sans:wght@300&display=swap");
.number, .colon {
 font-family: "Fira Sans", sans-serif;
 font-variant-numeric: tabular-nums;
}

Not all fonts support this font variant, so if you want to use a different font for your
numbers, check that it supports this for the most visually pleasing result.

 Secondly, if you look through the stylesheet, you might note that we do most of the
layouts in the stylesheet using Flexbox. It’s just a very handy tool for aligning elements
in an application like this.

MAIN APPLICATION

The main application component is the starting point for the application. It remains
completely identical to this first version (listing 12.1) throughout the exercise, as it
contains only a headline and the TimerManager component. All the logic of the timers
will go inside there, so there will be no global state in this application.

 Note that we also load the CSS stylesheet in this root component. We only need to
load it once, so it makes sense to load it in the root. You can see the file src/App.js in
the following listing.

import "./style.css";
import TimerManager from "./TimerManager";
function App() {
 return (
 <main className="wrapper">
 <h1 className="title">Countdown</h1>
 <TimerManager />
 </main>
);
}
export default App;

THE TIMER MANAGER

The timer manager is the container that will hold one or more timers as well as con-
tain the logic for initializing or adding new timers. This component won’t be in
charge of actually managing the individual timers (e.g., ticking time ahead), but
rather will manage the different timers and the starting times.

Listing 12.1 src/App.js in the scaffolding

Instructs these
classes to use
the loaded font

Triggers the font to use the font
variant "tabular-nums" to ensure

the use of fixed-width numbers

Imports the stylesheet
so we can use the styles
from the start

Loads the timer
manager component

Renders it
where needed

38912.1 Scaffolding for the timer
 In the scaffold, the timer manager contains a single timer instance with no proper-
ties. This file, src/TimerManager.js, is displayed next.

import Timer from "./Timer";
function TimerManager() {
 return (
 <div className="timers">
 <Timer />
 </div>
);
}
export default TimerManager;

THE INDIVIDUAL TIMER

The timer component is where most of the future work will take place. In this initial
scaffold, it’s a purely static component with a fixed JSX response that displays 05 min-
utes and 00 seconds and a Play button. None of it’s functional for now, though.

 Note that this contains some duplicated JSX that can be optimized later by turning
it into individual components, including the number and unit display. The button is
also ripe for componentization, as it will be used in multiple places later. This file,
src/Timer.js, is shown in the next listing.

function Timer() {
 return (
 <section className="timer">
 <ul className="parts">
 <li className="part">
 <p className="number">05</p>
 <p className="unit">minutes</p>

 <li className="colon">:
 <li className="part">
 <p className="number">00</p>
 <p className="unit">seconds</p>

 <button title="Play" className="toggle">

 </button>
 </section>
);
}
export default Timer;

Listing 12.2 src/TimerManager.js in the scaffolding

Listing 12.3 src/Timer.js in the scaffolding

The timer manager imports
the timer component to
display an instance of it.

Renders the instance
without any properties
or other logic

We’ve hardcoded
a remaining time of
05 minutes and 00
seconds for now.

390 CHAPTER 12 Project: Timer
12.1.5 Running the application

If we spin this application up in the browser, we see what we displayed in the begin-
ning in figure 12.2, repeated here in 12.7. This application doesn’t do anything, but it
looks pretty nice, no?

12.2 Adding a simple play/pause timer
The previous step resulted in a nice but very boring application because it didn’t do
anything. We’re going to change that now. First, we’ll make this simplest of count-
down timers work by making the play button play the countdown. You can also pause
the countdown, if the explosion looms close—or the egg is almost done cooking.

12.2.1 The goal of this exercise

The goal of this exercise is to create the required functionality to make a working
countdown. To achieve this goal, we recommend going about it in these steps, but
they’re definitely not the only or even necessarily best way to do it. It’s just our way:

1 Identify parts of the timer to componentize to make the timer simpler to work
with.

2 Create state in the timer component to record the progression of the count-
down as well as the Boolean state of whether the countdown is running or not.

3 Add an effect to the timer to decrease the remaining time every second.
4 Display a play button that starts the countdown if the timer is paused, and a

pause button that pauses it if the timer is running.

Figure 12.7 The scaffold for the
timer doesn’t do anything—yet.

39112.2 Adding a simple play/pause timer
PRECISION

Note that timing precision is not a goal of this exercise. We’re fine with doing the
countdown in a setInterval, even though the precision of setInterval is notori-
ously untrustworthy. This will result in a countdown that’s probably a few hundredths
up to a tenth of a second off on every tick of the countdown. When a full 5 minutes
have passed on the countdown in the app, this offset could account for about half a
minute extra in “real time.”

 If you’re using this timer for anything requiring actual precision, this isn’t the way
to do it. But precision timing isn’t the goal of this exercise, so we’ll use this approach
for the entire project.

 Feel free to improve the precision of the actual countdown by the end, if you feel
so inclined. Look into performance.now() for precision timing (down to the micro-
second, if the OS supports it).

12.2.2 Component hierarchy

As mentioned, the first goal of this exercise is to componentize the timer parts into
relevant atoms that can be combined into a whole as appropriate. For this purpose,
we’ll refer back to the initial list of HTML parts and split the component along the
lines divided there. Thus:

 Timer—A timer consists of a time display and one or more buttons.
 TimeDisplay—A time display is a list of a number and unit, followed by a colon,

followed by a number and unit.
 Number—A number and unit is just that, with the proper class names to elicit

the desired styling.
 Button—A button has a label for accessibility and an icon for visual recognition.

These four components now make up a timer and are connected as you see in fig-
ure 12.8. You can also see that we’ll pass in the starting time to the timer directly from
the timer manager.

 The timer will only have a single button, but the button icon, label, and click han-
dler will vary depending on whether the timer is currently running or not. In addition,
note that the time display will only get a single time as input, which is the remaining sec-
onds to display. The time display component then has to split that into minutes and
seconds to pass to the two number components.

392 CHAPTER 12 Project: Timer
12.2.3 Updated project structure

In this step of the project, we’re adding some new components as well as updating
others. This leads to the following updated file structure after completing this step:

public/
src/
 App.js
 index.js
 style.css
 TimeDisplay.js
 Timer.js
 TimerManager.js
 Button.js
 Number.js

We recommend that you try to implement this step yourself, and you can do so either
by starting from your own implementation of the scaffolding in step 1 of this project

App

TimerManager

Timer

startTime 300

Number Number

Button

value ...

label minutes

value ...

label minutes

onClick play/pause

icon "play"/"pause"

label "Play"/"Pause"

TimeDisplay

time ...

Figure 12.8 The component tree for our single timer application consists of a few instances
of three new components: time display, number, and button.

Unchanged
files

New files
Updated

files

39312.2 Adding a simple play/pause timer

n
or from our implementation in the rq12-scaffold repository. Once completed, feel
free to compare your solution to ours.

12.2.4 Source code

In this section, we’ll provide the full source code for all the updated and new files
added in this step along with some implementation details that will be relevant for
understanding our choices.

THE TIMER MANAGER

The timer manager still doesn’t really do anything. The only thing changed here is
that we explicitly set the default time for the timer. Feel free to change that to some-
thing else to test it out. See the full contents of src/TimerManager.js next.

import Timer from "./Timer";
function TimerManager() {
 return (
 <div className="timers">
 <Timer startTime={300} />
 </div>
);
}
export default TimerManager;

A GENERIC BUTTON COMPONENT

We need a new button component. It’s very simple and renders a button element with
an appropriate title and an icon inside. If we pass extra properties to the button com-
ponent, we forward them to the button element. See the following listing for the full
contents of src/Button.js.

function Button({ icon, label, ...rest }) {
 return (

Repository: rq12-playpause
This example can be seen in repository rq12-playpause. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq12-playpause --template rq12-playpause

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq12-playpause

Listing 12.4 src/TimerManager.js in the simple timer

Listing 12.5 src/Button.js in the simple timer

Adds a property
with the default
start time

We need to pass an icon and a label,
but we can also pass any other butto
properties to this component.

https://rq2e.com/rq12-playpause

394 CHAPTER 12 Project: Timer
 <button title={label} className="toggle" {...rest}>

 </button>
);
}
export default Button;

THE NUMBER AND UNIT DISPLAY

The number and unit display just displays properties. The number has to be format-
ted to always be two digits, though, so we convert it to a string and add leading zeros if
required, as shown in the following listing.

function Number({ value, label }) {
 return (
 <li className="part">
 <p className="number">
 {String(value).padStart(2, "0")}
 </p>
 <p className="unit">{label}</p>

);
}
export default Number;

THE TIME DISPLAY COMPONENT

This component takes in the time to display, splits it into minutes and seconds (using
division, flooring, and modulo), and then passes those values on to two number com-
ponent instances. You can see the source for src/TimeDisplay.js next.

import Number from "./Number";
function TimeDisplay({ time }) {
 const minutes = Math.floor(time / 60);
 const seconds = time % 60;
 return (
 <ul className="parts">
 <Number value={minutes} label="minutes" />
 <li className="colon">:
 <Number value={seconds} label="seconds" />

);
}
export default TimeDisplay;

Listing 12.6 src/Number.js in the simple timer

Listing 12.7 src/TimeDisplay.js in the simple timer

All the extra properties will be
added to the button element. This is

where things like onClick should be added.

We display the number here, but we
make sure it’s always two characters
long by converting it to a string and
padding it with leading zeros. This
causes a number like 7 to be
displayed as 07.

The label is displayed as is—
we later use CSS to make it
uppercase for visual appeal.

The number of minutes remaining
is the time remaining divided by
60 rounded down.

The number of seconds
remaining is the remainder
after division by 60.

39512.2 Adding a simple play/pause timer
THE TIMER COMPONENT

This is where it all comes together. We’ve illustrated the flow of logic in the timer com-
ponent in a state diagram in figure 12.9.

Remember that the timer now takes a single property, startTime, which determines
what the timer will start at. From that, we can initialize the local state with the remain-
ing seconds that we can tick down, as well as a separate state that contains a Boolean
about whether the timer is even ticking at all.

 Then, we do different things depending on whether time is running or not. If run-
ning, we run an effect hook decrementing (until it reaches zero, then we reset every-
thing). We also display a pause button if running.

 If time isn’t running, we don’t run any effect hook (or we do, because we have to,
but we don’t do anything inside the hook), and we display a play button. The full file,
src/Timer.js, is displayed in the following listing.

import { useState, useEffect } from "react";
import Button from "./Button";
import TimeDisplay from "./TimeDisplay";
function Timer({ startTime }) {
 const [remaining, setRemaining] =
 useState(startTime);

Listing 12.8 src/Timer.js in the simple timer

Time is running:

- Display timer with class.timer-ticking
- Display remaining time in the time display.

- Display a pause button.

Time is not running:

- Display timer without class.timer-ticking
- Display remaining time in the time display.

- Display a play button.

User clicks Play.

User clicks Pause.

Component loads:

Set time to startTime.

Has time

run out?
No:
Decrement the

remaining time.

1 second

passes.

Yes:

Reset time

and pause.

Figure 12.9 The state chart for the simple timer component—time is either running or not, which
determines what is displayed and which effects are running.

To have a timer, we need two
stateful values. First, we need
to know how many seconds
are remaining.

396 CHAPTER 12 Project: Timer

t
is c

Pa
r

co
 const [isRunning, setRunning] = useState(false);
 useEffect(() => {
 if (!isRunning) {
 return;
 }
 function tick() {
 setRemaining((oldValue) => {
 const value = oldValue - 1;
 if (value <= 0) {
 setRunning(false);
 return startTime;
 }
 return value;
 });
 }
 const interval = setInterval(tick, 1000);
 return () => clearInterval(interval);
 }, [isRunning, startTime]);
 const play = () => setRunning(true);
 const pause = () => setRunning(false);
 return (
 <section className={
 `timer ${isRunning ? "timer-ticking" : ""}`
 }>
 <TimeDisplay time={remaining} />
 {isRunning ? (
 <Button
 icon="pause"
 label="Pause"
 onClick={pause}
 />
) : (
 <Button
 icon="play"
 label="Play"
 onClick={play}
 />
)}
 </section>
);
}
export default Timer;

12.2.5 Running the application

If you spin this application up in the browser, you’ll see the web app in figure 12.10.

Second,
we need
to know
whether
he timer
urrently
running
or not.

We implement the eternal progress of time toward the eventual
heat death of the universe as an effect hook. The hook only does
something if the timer is actually running, though.

If the timer is running, we
schedule an interval to be
run every second that will
decrement the remaining
seconds or stop the timer
if it reaches 0 (and then
reset the timer).

Always
clean up

after
yourself.

This hook depends on whether the
timer is running or not as well as the
start time (as we need it to reset the
timer upon completion).

Adds a conditional class
to the timer section to
display the ticking colon
when running

sses the
emaining

time to
the time

display
mponent

Displays a
different

button
depending

on whether
the time is

running
or not

If running, we
display a pause
button that
pauses the timer.
If not running, we
do the opposite.

39712.3 Homework: Initializing the timer to a custom time
12.3 Homework: Initializing the timer to a custom time
The goal for this step is to initialize the timer at a custom time defined by the user
through a form with inputs. Here are a few hints to complete this objective:

1 Create a new component to handle adding a new timer. See the stylesheet for
some classes that will help you out in styling this form and its inputs.

2 Decide between making the new timer form controlled or not. Both are valid
options for this component.

3 Remember that adding a button to a form will make it a Submit button, even if
it doesn’t have a click handler.

4 Make the timer manager stateful, and remember whether you have a timer set
or not and what the starting time of that timer is.

5 Add a Trash button (with the trash icon) to the timer component.
6 The timer component wants a new property, that is, a callback to invoke when

the timer has either run out or been discarded. This callback should reset the
timer manager so you can use the new timer form again.

We, of course, want you to work from your existing application that you developed in
the previous step, but if you want to start from our solution to that step, you can do so
by checking out the rq12-playpause repository. Once completed, feel free to com-
pare your solution to ours.

Figure 12.10 The timer can be running or paused. While running, the colon
flashes as time ticks down. The button changes appearance and behavior
depending on the play state.

398 CHAPTER 12 Project: Timer
12.4 Homework: Resetting timers
The goal for this step is to convert the state logic to a reducer and add more logic to
handle resetting the timer as well. Here are a few hints to complete this objective:

1 Convert the state in the timer to a reducer.
2 Add a new Reset button to the timer, and allow a timer to be restarted by invok-

ing the proper action on the reducer. Think carefully about what should hap-
pen to both values in the reducer on reset.

3 Finally, you might want to change what happens when a timer completes. So
rather than just deleting it, you could leave it in place until actively deleted.

We, of course, want you to work from your existing application that you developed in
the previous step, but if you want to start from our solution, you can do so by checking
out the rq12-initialize repository. Once completed, feel free to compare your solu-
tion to ours.

12.5 Homework: Multiple timers
The goal for this step is to allow the user to define multiple timers that will run inde-
pendently of each other. Here are a few hints to complete this objective:

1 Update the state kept in the timer manager to allow multiple managers to be
running at the same time (with different starting times).

Repository: rq12-initialize
This example can be seen in repository rq12-initialize. You can use that reposi-
tory by creating a new app based on the associated template:

$ npx create-react-app rq12-initialize --template rq12-initialize

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq12-initialize

Repository: rq12-reset
This example can be seen in repository rq12-reset. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq12-reset --template rq12-reset

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq12-reset

https://rq2e.com/rq12-initialize
https://rq2e.com/rq12-reset

399Summary
2 Make sure to still support deleting timers at any point.
3 Allow a timer to display completion by flashing (there’s a class in the stylesheet

for that), so that the user can either reset or discard the timer at this point.
4 In the timer manager, allow the user to press a button to add a new timer, but

don’t display the new timer form until the Add button is pressed. When a new
timer is added, reset to the Add button again.

We, of course, want you to work from your existing application that you developed in
the previous step, but if you want to start from our solution to that step, you can do so
by checking out the rq12-reset repository. Once completed, feel free to compare
your solution to ours.

Summary
 In this project, we take on a more complex application that has some real-world

usage possibilities.
 We once again go over the steps that you would be going through if taking on

such a project in a professional setting—whether working alone or in a team.
 Remember to study your designs and your subject matter up front, as this will

often give you a good idea about how to structure your final application. In this
project, we were able to deduce which components we needed directly from the
design alone and keep that separation of logic throughout.

 Also think about the internal state of components, and remember that you can
have state in many different layers at the same time. In this project, we have
state in three different layers that work independently of each other, though
they have an interface between themselves as they interact.

 The list of timers has just that—a list of timers. It knows what each timer is
started at, but doesn’t actually know which ones are running, if they have
expired, or if they’re just ticking away.

 The individual timer runs on its own until it’s deleted. When that happens, it
invokes a callback provided from its parent without actually caring what hap-
pens afterward.

Repository: rq12-multiple
This example can be seen in repository rq12-multiple. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq12-multiple --template rq12-multiple

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq12-multiple

https://rq2e.com/rq12-multiple

400 CHAPTER 12 Project: Timer
 The form to add a new timer remembers the state of the form and calls a call-
back once submitted. It has no idea what happens after the form has been
submitted.

 If you’re building real-world applications, think about proper semantics (not
everything should be a <div>), and pay attention to accessibility (add proper
roles and labels to elements where applicable).

Project: Task manager
Welcome to the third and final project for this book. You’ll now have to wield all
the magic and spells that you’ve learned so far as well as some extra knowledge
about JavaScript and HTML that you’ve hopefully picked up elsewhere—however,
that’s only required for the very advanced homework at the end of this chapter.

 In this project, we’ll build a task manager. By task manager, we mean a slightly
more complex variant of a to-do list. The task manager at first consists of a sim-
ple to-do list implemented as cards that can be started and completed. We then
add in substeps to each task, so the user can add some finer details to their tasks
at hand. Next, we add in the option of changing the order of the steps in each
task, first only using buttons, but then also using drag and drop. It’s that last bit
in step 5, the drag and drop part, that’s going to be tricky to complete. You can

This chapter covers
 Creating the necessary scaffolding for a task

manager

 Implementing a simple list of tasks

 Homework: Adding advanced features to the
task manager
401

402 CHAPTER 13 Project: Task manager
see this development in figure 13.1, where we’ll use advanced events to get to the
final step 5.

Once again, we’ll set up the foundations for the project in the first step so you don’t
have to mess around too much with HTML, icons, and CSS to get the basics to work.
However, the foundation created in step 1 will be completely inert and won’t do any-
thing. To add functionality, you’ll have to go through the steps to increase the com-
plexity of the project as we go along.

 We’ve also listed the steps in table 13.1 with some more detail about what you’ll be
doing and which chapters you’ll be referring to when completing the exercises.

Table 13.1 The five steps of the task manager project

Step Feature Additional React API used Difficulty

Step 1: Scaffold Create the basic component structure
for a list of tasks and a form for adding
new tasks.

Chapters 1–4: Functional
components using JSX

★☆☆☆☆

Step 2: List Convert static structure to a dynamic list
of tasks stored in state, with options for
editing and deleting tasks as well.

Chapter 5: State
Chapter 8: Events
Chapter 9: Forms

★★★☆☆

Step 3: Steps Add steps and progress to each task,
including the option of deleting and com-
pleting steps. The task list also works
as an accordion, where only one is
expanded at a time.

Note: This is homework. You have to cre-
ate this step yourself!

Chapter 10: Context ★★★★☆

Step 1

Scaffold

Step 2

Forms + events +

state

Context Reducer +

custom hooks

Advanced

events

List

Step 3

Steps

Step 4

Priority

Step 5

Dragging

Figure 13.1 As you implement the task manager, you’ll go through these five steps to add more
and more functionality and complexity to the application.

403
The first iteration of this exercise, which you’ll reach after completing step 2, is a very
simple task manager, as shown in figure 13.2.

However, when you complete this project all the way through step 5, you’ll have a much
more advanced application, as you can see in figure 13.3, with a lot more options.

Step 4: Priority Add the option to prioritize the steps of
a task by reordering items. This is made
simpler by converting the state to a
reducer.

Note: This is homework. You have to cre-
ate this step yourself!

Chapter 10: Reducer and
custom hook

★★★★☆

Step 5: Drag-
ging

Allow the user to drag the steps around
to change the prioritization, rather than
only use the arrows to move one step up
and down.

Note: This is homework. You have to cre-
ate this step yourself!

Chapter 8: Event handlers ★★★★★

Table 13.1 The five steps of the task manager project (continued)

Step Feature Additional React API used Difficulty

Figure 13.2 The first iteration of the
task manager simply has a list where
you can add, delete, and edit the tasks.

404 CHAPTER 13 Project: Task manager
You can even drag the steps around inside each task, as you can see in figure 13.4.

Figure 13.3 Now each task has a list
of steps, and you can add, complete,
edit, delete, and reprioritize these
steps inside the task.

Figure 13.4 You can drag steps in
the list for easier reprioritization.

40513.1 Scaffolding for the task manager
With all that to get through, let’s get started with this final project of the last chapter
of the book.

NOTE The source code for the scaffolding as well as suggested solutions to all
the steps in this chapter is available at https://rq2e.com/ch13. But as you
learned in chapter 2, you can instantiate all the examples and solutions
directly from the command line using a single command.

13.1 Scaffolding for the task manager
Once again, we’re going to get you started with a basic scaffold for this application.
We’re going to create the HTML output for a static task manager and provide all the
styles necessary as well. It won’t be dynamic nor even functional, but it’ll look like the
finished thing; it just needs some React magic to get going.

 We’re also going to provide you with some icons that you’ll need for some icon
buttons through the solution.

13.1.1 Component hierarchy

In this step for this project, we’re going to cheat a bit. We’re creating the entire
(static) application in a single component. We could split things up, but we feel that
this allows you to decide better how to split things up into components yourself.

 With a single component returning all the JSX for the entire application in a static,
fixed setup, you can see exactly how the whole thing is created and how best to move
forward from here. That leaves a trivially simple component diagram for this applica-
tion, as you can see in figure 13.5.

13.1.2 Project structure

With such a simple component hierarchy in this step, there’s not much to say about
the source folder. We have a main application file and a CSS file as usual, along with
our single application-specific component, TaskList.

 We do, however, also have some icons for this project, and we’ve added eight dif-
ferent SVGs in the public folder that we’ll need throughout the project. That leaves us
with the following file structure:

public/
 icons/
 caret.svg

App

TaskList

Figure 13.5 Although we mentioned
that the component tree in figure 12.5
was our simplest yet, we think we have
it beat with this one!

https://rq2e.com/ch13

406 CHAPTER 13 Project: Task manager
 check.svg
 down.svg
 drag.svg
 pencil.svg
 plus.svg
 trash.svg
 up.svg
 favicon.ico
 index.html
src/
 App.js
 index.js
 style.css
 TaskList.js

13.1.3 Source code

There are only two source files of significance to list in this step. We have the main
application file, which is almost identical to all the other ones we’ve been using, and
then the application-specific task list.

THE MAIN APPLICATION

The main application is included in src/App.js, and it should look very familiar to
you by now. The file is shown in the following listing.

import "./style.css";
import TaskList from "./TaskList";
function App() {
 return (
 <main>
 <h1>Task Manager</h1>
 <TaskList />
 </main>
);
}
export default App;

Repository: rq13-scaffold
This example can be seen in repository rq13-scaffold. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq13-scaffold --template rq13-scaffold

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq13-scaffold

Listing 13.1 src/App.js in the scaffolding

Loads the
CSS file

Loads the top-
level component
of the application

Renders that
component in the
relevant JSX tree

https://rq2e.com/rq13-scaffold

40713.1 Scaffolding for the task manager
THE TASK LIST

The file src/TaskList.js is displayed in listing 13.2. It contains all the JSX to render
a list of two tasks as well as a form for adding a new task at the bottom. All of it is com-
pletely inactive though, so nothing (interesting) happens when you click the buttons.

function TaskList() {
 return (
 <ol className="lane">
 <li className="card">
 <header className="card-header">
 <p className="card-title">This is a task</p>
 </header>
 <ul className="card-controls">

 <button className="card-control">Edit</button>

 <button className="card-control">Delete</button>

 <li className="card">
 <header className="card-header">
 <p className="card-title">This is another task</p>
 </header>
 <ul className="card-controls">

 <button className="card-control">Edit</button>

 <button className="card-control">Delete</button>

 <li className="card">
 <header
 className="card-header card-header-new"
 >
 <form className="card-title-form">
 <input
 className="card-title card-title-input"
 placeholder="Add new task"
 name="title"
 />
 <button className="icon-button">

 </button>
 </form>
 </header>

);

Listing 13.2 src/TaskList.js in the scaffolding

The lane of tasks
is an ordered list.

Each
task is a
list item.

A task has a header
with a title.

Below the
task title is an
unordered list
of buttons.

A task has a
header with
a title.

The last task in the list
is slightly different, as
it contains a form to
add a new task using
an input and an icon
button

408 CHAPTER 13 Project: Task manager
}
export default TaskList;

13.1.4 Running the application

The scaffold results in a nice-looking but otherwise completely useless application
with a static list of tasks and a form at the bottom, as you can see in figure 13.6.

13.2 A simple list of tasks
Now that we have all the basics out of the way—that is, we have the JSX, styles, and icons
all under control—we go to the next step of creating the actual task manager applica-
tion. What we have so far is “just” regular web development, and all that work required
skills mostly outside the scope of this book. What comes now is React development,
and this is where we have to apply all the skills we’ve learned so far in this book.

13.2.1 The goal of this exercise

In this step of the project, we’ll add the actual functionality to the structure that was
outlined in the scaffold. After completing this step, we want to have a simple task man-
ager that can do the following:

 Show a list of tasks
 Allow the user to add a new task by writing the task title
 Allow the user to delete a task
 Allow the user to rename a task

Figure 13.6 If only the buttons
actually worked, this would be a
somewhat useful application.

40913.2 A simple list of tasks
We’ll do this in two steps:

1 Split the single big component into multiple smaller components that make
sense in terms of component size, responsibility, and visual representation.

2 Make the application stateful, so it starts with a predefined list, and users can
then append, delete, and update tasks as they see fit.

13.2.2 Component hierarchy

While we only had a single component, TaskList, related to the actual task manager
in the scaffold, we’ll extend that to multiple components in this step. You can see the
breakdown in figure 13.7.

To start at the innermost level, the title of a task can be a large paragraph or an input
where you can edit the title and click to submit that new title. We’ll create that as our
first component, TaskHeader. Building on top of this, each task is then an individual
component, Task, which handles the state of a task, namely, whether the title is being
edited or not.

3. New task form

2. Task

1. Task header

4. Icon button

5. Task list

Figure 13.7 The task manager in this step breaks down neatly into five
different components: the task header with the title or input to edit the
title; the task, including the header and some controls; the form to add new
tasks; an icon button; and, finally, the full task list.

410 CHAPTER 13 Project: Task manager
 At the bottom of the task list, we’ll create a new component for adding a new task.
That’s where our third new component, TaskAdd, will be, which contains a form and
will invoke a callback once submitted.

 Finally, we need to add an icon button for this project, so we might as well add that
now. Let’s be super inventive and call this component Button. We’ll only need the
icon button inside the new task form, but we have many future uses for it in the next
steps. This all comes together as you can see in figure 13.8, where the component tree
is laid out.

13.2.3 Updated project structure

As mentioned earlier, in this step of the project, we’re adding some new components
as well as updating others. As a new thing, we’re also adding a plain JavaScript file for
setting up the initial value of our stateful task array. We’re naming this file fixture
.js, as fixture is often used as the term for “fixed” data that you want to populate your
application with.

 Finally, as another new improvement, we’ll use a nested file structure. We aren’t
adding a lot of components yet, but we’re expecting more components to be added
later, so we’ll encapsulate the four components related to tasks specifically, to go in
their own folder. To make these easier to import, we’re adding an index file to this
folder as well that will export only the necessary components from this folder.

 This leads to the following updated file structure after completing this step:

App

TaskList

Task

TaskHeader

Task

task {...}

TaskHeader

... TaskAdd

addTask () => {}

Button

task {...}

Figure 13.8 The component tree of step 2 of this project has five components. The task component
in particular is used several times depending on the number of actual tasks to display.

41113.2 A simple list of tasks

U

public/
src/
 index.js
 style.css
 App.js
 Button.js
 task/
 fixture.js
 index.js
 Task.js
 TaskAdd.js
 TaskHeader.js
 TaskList.js

We recommend that you try to implement this step yourself, and you can do so either
by starting from your own implementation of the scaffolding in step 1 of this project
or from our implementation in rq13-scaffold. Once completed, feel free to com-
pare your solution to ours.

13.2.4 Source code

In this section, we’ll provide the full source code for all the updated and new files
added in this step along with some implementation details that will be relevant for
understanding our choices.

THE MAIN APPLICATION FILE

The only change to the main application component is the location of the imported
task list. Instead of importing the task list as a default import from a file named Task-
List, we instead import it as a named import from the folder named task. You can
see this change in the next listing.

import "./style.css";
import { TaskList } from "./task";
function App() {
 return (
 <main>

Repository: rq13-list
This example can be seen in repository rq13-list. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq13-list --template rq13-list

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq13-list

Listing 13.3 src/App.js in the simple task list

Unchanged
files

pdated
files

New files

The only change here is
the location and import
style of the task list
component.

https://rq2e.com/rq13-list

412 CHAPTER 13 Project: Task manager
 <h1>Task Manager</h1>
 <TaskList />
 </main>
);
}
export default App;

THE ICON BUTTON

We create a very simple icon button in the file src/Button.js.

function Button({ className = "", icon, label, ...rest }) {
 return (
 <button className={`icon-button ${className}`} {...rest}>

 </button>
);
}
export default Button;

THE PUBLIC INTERFACE FOR THE TASK FOLDER

We use the task folder as a kind of separated module, in which we use a number of
components internally as we see fit, but to the outside world we only expose the task
list component as the “public” component. This isn’t a technical limitation, though, as
you could import any component from the task folder, but it’s a first step toward a
packaged project structure. This leaves src/task/index.js as a very simple index file,
as you can see in the following listing.

export { default as TaskList } from "./TaskList";

THE FIXTURE WITH DEFAULT TASKS

We store the task list in local storage in the browser, but the first time you visit the
application, you won’t have a task list to restore, so we need some default content for
the application to function. We could use an empty list, but you’ll often see apps pop-
ulate an application with some sample data to inspire you.

 While our sample data might not be all that inspiring, we’ve definitely set you up
for a quick start. You can see the file src/task/fixture.js in the next listing.

Listing 13.4 src/Button.js in the simple task list

Listing 13.5 src/task/index.js in the simple task list

We can pass in a number of named
properties and then any other properties
that can go on a link.

The only thing that's a bit special here is the draggable
attribute on the image. This is done in preparation for

the last step, where we don't want our icon buttons
to drag independently of the entire step.

We only expose the task list component from this
folder, and we do so as a named export.

41313.2 A simple list of tasks
const initialState = [
 { id: 1, title: "Make task manager" },
 { id: 2, title: "Now add some more tasks" },
];
export default initialState;

THE TASK HEADER

The task header seems simple because it’s just the title. However, the title can be
edited, and if it’s editable, the header changes to a form with a checkmark icon as a
Submit button. You can see src/task/TaskHeader.js implemented next.

function TaskHeader({
 task,
 isEditable,
 setEditable,
 editTask,
}) {
 const { title } = task;
 const handleEditTask = (evt) => {
 evt.preventDefault();
 editTask(task.id, evt.target.title.value);
 setEditable(false);
 };
 if (isEditable) {
 return (
 <header className="card-header">
 <form
 className="card-title-form"
 onSubmit={handleEditTask}
 >
 <input
 className="card-title card-title-input"
 defaultValue={title}
 name="title"
 />
 <button className="icon-button">

 </button>
 </form>
 </header>
);
 }
 return (
 <header className="card-header">
 <p className="card-title">{title}</p>
 </header>
);
}
export default TaskHeader;

Listing 13.6 src/task/fixture.js in the simple task list

Listing 13.7 src/task/TaskHeader.js in the simple task list

This component accepts
some properties necessary
to make the header
editable.

When the edit form is
submitted, we prevent the
default action (i.e., reload the
page), update the current task
with the new value, and, finally,
set the header to be not
editable again.

If the header is editable,
we return one set of JSX.

This JSX includes a form
with our submit handler
defined earlier.

If the header isn’t
editable, we simply
return some static JSX
with the current header.

414 CHAPTER 13 Project: Task manager
THE ENTIRE TASK

The preceding task header is included inside each task. A task can be edited and
deleted. When a task is edited, the header is updated with the relevant properties,
including the callback to update the task as passed from the parent component.
When a task is deleted, we simply invoke the delete callback directly. All of this is
implemented in src/task/Task.js.

import { useState } from "react";
import TaskHeader from "./TaskHeader";
function Task({ task, editTask, deleteTask }) {
 const [isEditable, setEditable] = useState(false);
 return (
 <li className="card">
 <TaskHeader
 task={task}
 isEditable={isEditable}
 setEditable={setEditable}
 editTask={editTask}
 />
 <ul className="card-controls">
 {!isEditable && (

 <button
 className="card-control"
 onClick={() => setEditable(true)}
 >
 Edit
 </button>

)}

 <button
 className="card-control"
 onClick={() => deleteTask(task.id)}
 >
 Delete
 </button>

);
}
export default Task;

Listing 13.8 src/task/Task.js in the simple task list

The task takes all the information about
the current task to display, as well as
two callbacks to edit and delete
a task, respectively.

Keeps a local state inside each
task capturing whether the

user is currently trying to
edit the task title or not

Renders the previously defined task header
component with all relevant properties at
the top of the component

Below the header we
have two buttons; the
first toggles the local
editable flag to true.

The second button invokes
the delete callback.

41513.2 A simple list of tasks
THE NEW TASK FORM

When we want to add a new task, we do so in a form with a single uncontrolled input
for the task title and a Submit button in the form of an icon button. See file src/
task/TaskAdd.js in the following listing.

import Button from "../Button";
function TaskAdd({ addTask }) {
 const handleAddTask = (evt) => {
 evt.preventDefault();
 addTask(evt.target.title.value);
 evt.target.reset();
 };
 return (
 <li className="card">
 <header className="card-header card-header-new">
 <form
 className="card-title-form"
 onSubmit={handleAddTask}
 >
 <input
 className="card-title card-title-input"
 placeholder="Add new task"
 name="title"
 />
 <Button icon="plus" label="Add task" />
 </form>
 </header>

);
}
export default TaskAdd;

THE COMPLETE AND STATEFUL LIST OF TASKS

The last component in this step—the task list—is both the most important one and
the one with the most responsibilities. It takes care of three different things:

1 Manages the state of all the tasks and provides callbacks to add, edit, and delete
tasks

2 Initializes the task list either from local storage or from the fixture
3 Displays all the tasks in a list, followed by the new task form

This is a lot of responsibility for a single component, and it could make sense to move
a part of it (especially items 1 and 2) to a custom hook to simplify the overview of this
component. However, we’ll keep it as a single file for now, but this is one of the things
that we recommend you change in future steps in this project. The file src/task/
TaskList.js is implemented in the next listing.

Listing 13.9 src/task/TaskAdd.js in the simple task list

The task form component takes a single
property, which is the callback to invoke
with the new task to be added.

When the task form is submitted,
we do three things: cancel the
default action, invoke the callback,
and reset the form so it's ready for
a new task to be added.

This submit handler is
added to the form node.

416 CHAPTER 13 Project: Task manager

sk
w

s.
import { useState, useEffect } from "react";
import Task from "./Task";
import TaskAdd from "./TaskAdd";
import initialState from "./fixture";
function getInitialState() {
 return (
 JSON.parse(localStorage.getItem("task-manager-items-list")) ||
 initialState
);
}
function TaskList() {
 const [tasks, setTasks] = useState(getInitialState);
 useEffect(() => {
 localStorage.setItem(
 "task-manager-items-list",
 JSON.stringify(tasks)
);
 }, [tasks]);
 const addTask = (title) =>
 setTasks((ts) => ts.concat(
 [{ id: Math.random() * 1000000, title }]
));
 const editTask = (id, title) =>
 setTasks((ts) => ts.map(
 (task) =>
 (task.id === id ? { ...task, title } : task)
));
 const deleteTask = (id) => setTasks(
 (ts) => ts.filter((task) => task.id !== id)
);
 return (
 <ol className="lane">
 {tasks.map((task) => (
 <Task
 key={task.id}
 task={task}
 editTask={editTask}
 deleteTask={deleteTask}
 />
))}
 <TaskAdd addTask={addTask} />

);
}
export default TaskList;

Listing 13.10 src/task/TaskList.js in the simple task list

The initial state of the task list is a
parsed value from local storage if it
exists or the initial state as
returned by the fixture.

We use this function that returns the initial state as
an argument for the stateful hook. Remember that this
function will then only be invoked on the first render of
this component and not on subsequent re-renders.

Adds an effect to store
the task list in local
storage every time the
task list changes

First, the first of three callbacks is
the function to add a new task. It
appends the argument to the task
list using the update function.

Second, the callback to edit a ta
maps the entire task list to a ne
array and updates the relevant
task as it loops over all the item

Third, the callback to delete a
task filters the existing task list to
remove the now-irrelevant task.

Two callbacks are passed
to a task component for
each task in the list of
all tasks.

Finally, the new task
form is added at the
end of the list.

41713.3 Homework: Task steps and progress
13.2.5 Running the application

Let’s see this in action in figure 13.9 and then start creating some tasks that we can
delete later.

13.3 Homework: Task steps and progress
The goal for this step is to complete the following:

 Add an ordered list of “completable” steps inside each task.
 At the bottom of the list, always include an input field to allow the user to add a

new item to the end of the list.
 For each step in the list, add a checkbox to mark the step as completed or not,

as well as a button to delete the step.
 Allow the user to hide and show the steps of a task (hidden by default).
 Summarize the completion of the task with a progress bar that shows the ratio

of the steps in the task that have been completed. This progress bar should be
visible even if the list of steps is hidden.

Here are a few hints to help you complete this objective:

1 While we could get away with keeping the state as a simple array maintained
by a useState hook, we need more fine-grained control of the state now, so

Figure 13.9 The first iteration of our
application that actually works. We can
create, delete, and edit tasks.

418 CHAPTER 13 Project: Task manager
convert the state to a reducer, and add actions for the different updates neces-
sary, for example: addTask, editTask, deleteTask, addStep, editStep, and
deleteStep.

2 You might also want to wrap the task list in a context provider to make access to
the preceding actions easier inside nested components.

3 To add a progress bar, use the <progress /> HTML element. It’s simple to use
and already styled in the existing CSS file in the scaffold.

4 To display a list of steps with a checkbox, use the proper semantic HTML ele-
ments for all of those things (, , <label />, and <input
type="checkbox" /> would be a good start).

5 Adding a new step requires a form with an input and a button. That should be
pretty straightforward at this point.

Of course, we want you to work from your existing application that you developed in
the previous step, but if you want to start from our solution to that step, you can do so
by checking out this application in rq13-list. Once completed, feel free to compare
your solution to ours.

13.4 Homework: Prioritization of steps
The goal for this step is to complete the following:

 Add a button to rename a step inside a task.
 Add buttons to reprioritize the steps inside each task.

Here are a few hints to help you complete this objective:

1 If you didn’t already convert the data structure to a reducer rather than a sim-
ple state array in the previous step, you definitely want to do so now. Moving ele-
ments in an array isn’t too complex, but remember that you have to create a
new array every time; you can never mutate the existing one. That’s why it can
be nice to centralize and organize the functionality in a reducer function.

Repository: rq13-steps
This example can be seen in repository rq13-steps. You can use that repository by
creating a new app based on the associated template:

$ npx create-react-app rq13-steps --template rq13-steps

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq13-steps

https://rq2e.com/rq13-steps

41913.5 Homework: Drag and drop
2 Allowing a step to be renamed works exactly as allowing the overall task to be
renamed—set a local state value that the text should be replaced with, and
input and update the data using the provider once the input form is submitted.

3 Other than that, adding the three extra buttons next to each step and calling
the right functions in the reducer should be a piece of cake at this point.

4 For added bonus and ease of development, consider this: All the functions to
be invoked inside a single task (e.g., adding steps, moving steps, deleting steps,
etc.) need the ID of the task to be able to reference the correct object in the
overall task object. You might be able to use an additional provider around each
single task that abstracts this task ID away from the individual calls inside the
task itself.

Of course, we want you to work from your existing application that you developed in
the previous step, but if you want to start from our solution to that step, you can do so
by checking out this application in rq13-steps. Once completed, feel free to com-
pare your solution to ours.

13.5 Homework: Drag and drop
The goal for this step is to make the steps draggable inside each task. Here are a few
hints to help you complete this objective:

1 Drag and drop can be implemented in two ways in HTML. You can either use
the built-in functionality in HTML5 with the draggable attribute and the drag-
start, dragover, dragenter, dragleave, and drop events (all of which are sup-
ported in React), or you can roll your own functionality using pure mouse
events, for example, mousedown, mousemove, and mouseup.

2 Whichever way you go, this won’t be an easy task to complete. There are many
things to consider. For instance: If you start dragging element number 3 in a
list, you have to be able to drop it into any other position in the list, including
before the first item and after the last item. You must make sure that your appli-
cation supports this correctly.

Repository: rq13-priority
This example can be seen in repository rq13-priority. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq13-priority --template rq13-priority

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq13-priority

https://rq2e.com/rq13-priority

420 CHAPTER 13 Project: Task manager
3 You also have to update your reducer to allow moving a step to an arbitrary posi-
tion inside the list of steps for the given task. A possible interface could be
moveStepTo({ taskId, step, position }). In addition, consider the difference
between moving a step to an earlier position in the list versus to a later position.

4 In the rq13-dragging application repository, we’ve used the HTML5 native drag-
and-drop functionality. To have a place to drop an item when dragging a step
around, we display new elements between all the existing steps in the list with
an onDrop handler attached, so the user is able to drop the items there. Note
that you also have to attach onDragEnter, onDragLeave, and onDragOver event
handlers (where you prevent the default action, which is to not allow dropping)
for an element to be considered a valid drop target.

5 Don’t worry if you find this to be a difficult exercise. It is! Our implementation
isn’t particularly clean either, but it works and looks okay.

Of course, we want you to work from your existing application that you developed in
the previous step, but if you want to start from our solution to that step, you can do so
by checking out this application in rq13-priority. Once completed, feel free to com-
pare your solution to ours.

13.6 Conclusion
This third project in the book is the most challenging yet. We gave you a solid founda-
tion, but you still had to do a lot of engineering and apply a lot of common sense as
well as computer science intuition to solve the steps.

 This project is an example of a real-world project situation, including the iterated
increase in complexity as well as utilizing useful and transferable React coding pat-
terns. For this final project, you were definitely thrown into the deep end of the pool
if you tried to go all the way and complete step 5. Sometimes, we need a push to go
that extra mile—we might be mixing metaphors here, though.

Repository: rq13-dragging
This example can be seen in repository rq13-dragging. You can use that repository
by creating a new app based on the associated template:

$ npx create-react-app rq13-dragging --template rq13-dragging

Alternatively, you can go to this website to browse the code, see the application in
action directly in your browser, or download the source code as a zip file:

https://rq2e.com/rq13-dragging

https://rq2e.com/rq13-dragging

421Summary
Summary
 Breaking a design down into visual parts and then converting each part to a sep-

arate React component is a great practice that will come in handy often.
 Choosing between useState and useReducer can be difficult at times because

the line between them is blurry, and it comes down to personal preference. In
this project, we started out with useState, but moved to a reducer as things got
more complex for convenience, even though we didn’t strictly have to.

 The provider pattern is so versatile that we managed to use it again for this proj-
ect, but in a slightly different way than earlier. Try to remember this pattern
because it will often prove useful.

 Writing state updates can be tricky when you need to remember to keep objects
and arrays immutable. Array manipulation can be especially tricky, moving ele-
ments around by copying all the elements to a new array in the correct order.

 Single events are easy to work with in React, but complex event patterns, such as
drag and drop, are still annoyingly difficult to manage even in a nice system like
React. This might become easier in the future, but for now, it’s a lot of work.

index
A

<a> tag 73
abstractions 7
Accessible Rich Internet Appli-

cations (ARIA)
properties 131

action object 333
App component 55, 58, 67, 105,

109, 290, 365, 374
application data, storing in

state 141–142
App root 55
App structure 68
ARIA (Accessible Rich Internet

Applications)
properties 131

autoplay attribute 94

B

Barklund, Morten 223
<body> element 17
<body> node 35
Booleans

attribute values 95–96
properties 95–96
stateful 373

branching, in JSX 76–83
early return 76–77
extra components for com-

plex branching 79–83
logical operators 77–78
switching 78–79
ternary operator 77

build command 28

buttons
form submission vs. button

click 294–295
radio buttons 297–298
task manager project 412
timer project

generic button
component 393

HTML output 384

C

<Captcha /> component 2
Cascading Style Sheets

(CSS) 107, 200, 356
CBA (component-based

architecture) 5–7, 42
checkboxes 297–298
checked property 297, 311
children property

in JSX 74–75
overview of 52–55
website menu project 375–376

class attribute 94
class-based components

conversion to functional
components 121–134

complexity and 133–134
using constructor 131–133
using render method

122–125
using secondary method as

utility only 125–128
using secondary method

with class access
128–131

life cycle of 210–212
converting life cycle meth-

ods to hooks 211–212
legacy life cycle

methods 211
life cycle methods 210–211

state 176–180
differences from functional

component
process 179–180

similarities with functional
component process
178

classes
class-based codebase 120
implementation using

105–107
libraries requiring class-based

components 120–121
className attribute 94
colon-blinking class 384
comments, in JSX 83–84
community 9–10
component-based architecture

(CBA) 5–7, 42
componentDidCatch method

120
componentDidUnmount()

method 211
component effects 222
components

class-based
conversion to functional

components 121–134
life cycle of 210–212
state 176–180
423

INDEX424
components (continued)
custom

in JSX 67–68
in React 42–45
with Boolean

properties 95–96
functional 103–135

conversion from class-based
components to 121–134

menu example
application 105–108

state 143–176
types of 116–119
when not to use 119–121

running effects in 183–201
and cleanup on some

renders 195–198
on mount 185–187
on mount, and cleanup on

unmount 187–190
on some renders 192–194
on unmount 190–191
synchronously 198–201

state 215–222
creating complex state 216
low-priority state

updates 221–222
multicomponent state

220–221
remembering value without

re-rendering 216–220
simple state values 216

task manager project 405,
409–410

timer project
component hierarchy

385–386, 391
generic button component

393
time display component 394
timer component 395

website menu project
dynamic menu 365
optional link 374–376
retrieving items from

context 368
scaffolding for 354
static menu 361–362

Consumer component 326–327
Context.Provider

component 368
controlled form inputs 275–303

checkboxes 297–298
extra properties 302–303
filtered input 277–280

form submission 289–295
many similar inputs 282–289
masked input 280–282
multiline inputs 301–302
numeric inputs 296–297
radio buttons 297–298
select boxes 299–301
uncontrolled vs. 274–275

Countdown component 76
CRA (create-react-app) tool

24–32, 66, 107, 355
file structure 29
project commands 27–29
pros and cons of 31–32
templates 30

createContext() function 326,
367

createElement() parameter 41
CSS (Cascading Style

Sheets) 107, 200, 356
.current property 218
custom components

in JSX 67–68
in React 42–45
with Boolean properties

95–96
custom hooks 225, 341–348

D

dangerouslySetInnerHTML
property 91

data- attributes 100
<datalist> element 303
data- prefix 100
<DatePicker /> component 2
DateTimeNow component 70
debugging hooks 224
declarative style 4–5
default actions 251–255

default event action 252–253
other default events 255
preventing 253–254

default values 111–113
dispatch function 333
DisplayName component 326
<div> container 17
<div> node 17
<div h1> container 40
div HTML element 41
document events 260–263
DOM diffing 6
DOM (Document Object

Model) 3, 33, 85
creating stable identifiers 223

event handling 228–270
combining React and DOM

event handling 265–269
listening to DOM events

manually 260–269
nonbubbling DOM

events 251
manipulating elements

directly 207
references to elements 220

dragenter event 419
dragleave event 419
dragover event 419
dragstart event 419
drop event 419
Dynamic SSR (server-rendered

React) 14

E

early return 76–77
ecosystem of React 9–10
effect hook 183
effects 182–213

life cycle methods 210–212
converting to hooks

211–212
legacy 211
overview of 210–211

rendering 201–210
inside functions 207–210
on mount 202–203
on parent render 203–205
on state update 205–207

running before
rendering 225

running in components
183–201

and cleanup on some
renders 195–198

on mount 185–187
on mount, and cleanup on

unmount 187–190
on some renders 192–194
on unmount 190–191
synchronously 198–201

eject command 29
elements

creating in JSX 66–67
manipulating directly 207
nesting 33–41
references to 220
self-closing 90

.elements collection 304
elements property 311

INDEX 425
em element 36
EmptyMenu component 109
error boundaries 119–120
event handling 228–270

default actions 251–255
default event action

252–253
other default events 255
preventing 253–254

defining event handlers
236–237

event handler functions from
properties 256–259

event handler
generators 259–260

event objects 255
access to native events 241
consistency 240
overview of 237–239
performance 240
synthetic event API 241
synthetic event object

persistence 241–243
event phases and

propagation 243–251
handling event phases 250
in browsers 247–250
nonbubbling DOM

events 251
unusual event

propagation 250
events supported by

React 234
listening to DOM events

manually 260–269
combining React and

DOM event handling
265–269

unsupported HTML
events 263–265

window and document
events 260–263

overview of 230–234
event objects 255

access to native events 241
consistency 240
overview of 237–239
performance 240
synthetic event API 241
synthetic event object

persistence 241–243
event phases and propagation

243–251
handling event phases 250
in browsers 247–250

nonbubbling DOM
events 251

unusual event
propagation 250

evt.target.valueAsNumber
property 296

F

falsy values 78, 92
file inputs 310
file structure 29
filtered input 277–280
focus() method 224
for attribute 94
forms 272–311

controlled inputs 275–303
checkboxes 297–298
extra properties 302–303
filtered input 277–280
form submission 289–295
many similar inputs

282–289
masked input 280–282
multiline inputs 301–302
numeric inputs 296–297
radio buttons 297–298
select boxes 299–301
uncontrolled vs. 274–275

storing data in state 142
timer project 385
uncontrolled inputs 303–310

controlled vs. 274–275
file inputs 310
opportunities for

using 307–310
form submission

button click vs. 294–295
overview of 289–294

Fragment element 38, 86–87
fragments, in JSX 86–88
functional components

103–135
conversion from class-based

components to 121–134
complexity and 133–134
using constructor

131–133
using render method

122–125
using secondary method as

utility only 125–128
using secondary method

with class access
128–131

menu example
application 105–108

default values 111–113
destructuring properties

109–111
implementation using

classes 105–107
implementation using

functions 107–108
pass-through properties

113–116
rest syntax 114–116

state 143–176
destructuring state value

and setter 154–155
importing and using

hooks 146–148
initializing state 148–154
multiple states 169–171
rules of hooks 146–148
setting state 158–169
state scope 172–176
using state value 156–158

types of 116–119
benefits of 117
choosing 118–119
disadvantages of 118
nonfactors between 118

when not to use 119–121
class-based codebase 120
error boundaries 119–120
libraries requiring class-

based components
120–121

snapshots before updating
121

functions
event handler functions from

properties 256–259
implementation using

107–108
initializing state to 153–154
memoizing 223
rendering effects inside

207–210
setting state to 160–162

G

generatePassword() function
152–153

getDerivedStateFromError
method 119

getSnapshotBeforeUpdate built-
in function 121

INDEX426
H

<h1> node 35–36, 67, 98
Header component 316
Hello World app 15–21

going to local website 20–21
installing and running web

server 19
output 16
writing 16–19

hooks 214–226
complex component

libraries 225
creating component

APIs 223–224
debugging hooks 224
running effects before

rendering 225
synchronizing non-React

data 224
converting life cycle methods

to 211–212
custom hooks 341–348

context access 372–373
finding 348
overview of 342–343
when to use 343–347

importing and using
146–148

key principles of 225
minimizing re-rendering

creating stable DOM
identifiers 223

memoizing functions 223
memoizing values 223

rules of 146–148
scaling 313–349
stateful components 215

creating complex state 216
low-priority state

updates 221–222
multicomponent state

220–221
remembering value with-

out re-rendering
216–220

simple state values 216
href property 72, 114–115
HTML

JavaScript and 64–66
timer project 383–385

button 384
form 385
form input 385
number and unit 384

time parts 384
timer 384
timers 385

unsupported HTML
events 263–265

website menu project 353,
361

<html> node 35

I

icons
task manager project 412
website menu project 354–356

 nodes 35–36, 125
imperative style 4–5
initializer function 152–153
<input> element 297
internal state 5
isActive flag 185
isError Boolean flag 96
isMenuVisible 150
isRunning flag 198
isVisible property 147

J

JavaScript
component-based

architecture 5–7
HTML and 64–66

Job-Ready React (Barklund) 223
JSON (JavaScript Object

Notation) 287
JSX (JavaScript XML) 7, 31, 62–

101, 108, 137, 182, 275, 382,
405

branching 76–83
early return 76–77
extra components for com-

plex branching 79–83
logical operators 77–78
switching 78–79
ternary operator 77

comments 83–84
creating elements 66–67
custom components 67–68
edge cases and oddities 89–

100
Boolean attribute

values 95–96
data- attributes 100
multiword attributes 94–95
reserved names 94
self-closing elements 90

special characters 90–91
string conversion 91–93
style attribute 93–94
whitespace 97–100

fragments 86–88
lists of objects 84–86
multiline objects 69–70
outputting variables 70–72
properties 72–75
reasons for using 63–66
transpiling 89

JSX ref property 220

K

key property 85–87
KISS (keep it simple, stupid)

principle 3

L

label property 72, 114–115
layout effect hook 199
life cycle methods 210–211

converting to hooks 211–212
legacy 211

Link component 43, 55, 58–59,
72

links variable 368, 373
Link type 46
list items

defining 365
rendering 365

lists
in JSX 84–86
task manager project 407–417

complete and stateful list of
tasks 415

component hierarchy
409–410

entire task 414
fixture with default tasks 412
goal of exercise 408–409
icon button 412
in action 417
main application file 411
new task form 415
public interface for task

folder 412
source code 411–415
task header 413
updated project

structure 410–411
logical and expression 92
logical operators, in JSX 77–78

INDEX 427
M

<main> element 70, 98
Main component 316
main HTML element 41
many similar inputs 282–289
MapReduce software engineer-

ing model 341
masked input 280–282
max property 296
memoizing

functions 223
values 223

Menu component 105, 365, 367
MenuContext variable 368
menu example application

105–108
default values 111–113
destructuring properties

109–111
implementation using

classes 105–107
implementation using

functions 107–108
pass-through properties

113–116
rest syntax 114

in practice 114–115
property ordering and 116

MenuItem component 114, 361,
365

MenuItem instances 363, 365–366
MenuItem.js component 363
Menu.js component 363
min property 296
multiline inputs 301–302
multiline objects, in JSX 69–70
multiword attributes 94–95
MVC (Model-View-Controller) 5
MyContext.Consumer property

210, 326
MyContext.Provider

property 326

N

NameContext context 341
name property 286–289
NaN (Not a Number) 92, 154
<nav> component 361
nested context 327–330
nesting elements 33–41

node hierarchy 35–36
siblings 38–41
simple nesting 36–38

node hierarchy 35–36
Not a Number (NaN) 92, 154
npm (Node Package Manager)

alternatives 26
npm start command 26
npx (node package runner)

tool 25
numeric inputs 296–297

O

Object.isFrozen() method 46
onChange event handler 278,

311
onChange property 276–277,

311
onClick event 7
onDragEnter event handler 420
onDragLeave event handler 420
onDragOver event handler 420
onDrop handler 420
onSubmit callback 302
<option> element 84, 300

P

<p> node 9, 35–36
package.json 29
partially server-rendered web

applications 11
passive state 217
pass-through properties

113–116
pnpm package manager 26
<pre> element 287
ProfileLink dynamic

component 72
prop drilling 319
properties 45–55

children property
in JSX 74–75
overview of 52–55
website menu project

375–376
destructuring 109–111
event handler functions

from 256–259
in JSX 72–75
multiple 48–52
name property 286–289
ordering 112–113
pass-through properties

113–116
single 46–48

props object 109

R

radio buttons 297–298
React 1–61

advantages of 2–10
ecosystem and community
9–10
simplicity 3–8
speed and testability 8–9

application structure 55–60
create-react-app tool 24–32

file structure 29
project commands

27–29
pros and cons of 31–32
templates 30

custom components
42–45

disadvantages of 10
effects 182–213
forms 272–311
functional components

103–135
Hello World app 15–21

going to local website
20–21

installing and running
web server 19

output 16
writing 16–19

hooks 214–226
nesting elements 33–41

node hierarchy 35–36
siblings 38–41
simple nesting 36–38

project examples in book
32–33

properties 45–55
children property 52–55
multiple 48–52
single 46–48

scaling 313–349
single-page applications

10–13
stack 13–15
state 136–181

React API 320, 350
React boilerplate 30
React.Component class 43
React Context API 210, 319–320,

326–330
composition 327
consuming 326–327
nested 327–330
states 323–325

INDEX428
React Context API (continued)
website menu project 367–368

accessing context value 368
creating context

provider 368
custom hook for context

access 372–373
dedicated context

provider 373–374
defining context 367–368
object as context value 372

React.createElement()
statements 65

React Developer Tools 164
ReactDOM.createRoot()

method 18
ReactDOM.createRoot().ren-

der() method 38
React.Fragment component 40
React Quickly 32
readOnly Boolean attribute 95
reconciliation of state and

view 6
reducer function 333
reducing state 216
RemoteDropdown

component 202
render() method 43, 45
render props 202, 209, 326
reserved names 94
rest syntax

in practice 114–115
overview of 114
property ordering and 116

rest variable 115
root ID 17
root.render() method 18
rq02-custom-links repository 45
rq02-link-props repository 50
rq02-links-app-alt repository 59
rq02-links-app repository 57
rq02-links-children

repository 54
rq02-nesting-italic repository 37
rq02-nesting repository 32, 34
rq02-siblings-div repository 39
rq02-siblings-fragment

repository 40
rq03-alert repository 96
rq03-bad-whitespace

repository 97
rq03-cart-multi repository 82
rq03-cart-single repository 81
rq03-children repository 75
rq03-correct-select repository 86

rq03-dog-breeds repository 88
rq03-good-whitespace

repository 100
rq03-jsx-links repository 69
rq03-naive-select repository 85
rq04-gallery-class-v1 repository

123
rq04-gallery-class-v2 repository

126
rq04-gallery-class-v3 repository

129
rq04-gallery-class-v4 repository

132
rq04-gallery-function-v1

repository 124
rq04-gallery-function-v2

repository 127
rq04-gallery-function-v3

repository 130
rq04-gallery-function-v4

repository 133
rq04-menu-class repository 107
rq04-menu-default repository

112
rq04-menu-destruct repository

110
rq04-menu-function repository

108
rq04-menu-rest repository 115
rq05-accordion repository 159
rq05-bad-todo repository 167
rq05-calculator repository 162
rq05-filter-todo repository 171
rq05-functional-counter

repository 145
rq05-nice-todo repository 175
rq05-proper-todo repository 169
rq05-reset-counter repository

163
rq05-triple-counter repository

150
rq06-blog-title repository 193
rq06-countdown repository 198
rq06-dice-roller repository 205
rq06-email-input repository 194
rq06-push-button2

repository 209
rq06-push-button repository 208
rq06-remote-dropdown

repository 186
rq06-stopwatch repository 189
rq07-double-counter

repository 220
rq09-address repository 285
rq09-color repository 279

rq09-controlled-sum repository
276

rq09-natural-sum repository 305
rq09-smart-address

repository 289
rq09-ticket-no repository 282
rq09-todo repository 294, 296
rq10-border-context

repository 332
rq10-counter-reducer

repository 334
rq10-dashboard-admin

repository 325
rq10-dashboard-context

repository 322
rq10-dashboard-props

repository 318
rq10-reducer-load

repository 339
rq11-context repository 369,

376
rq11-dynamic repository 367–368
rq11-profile repository 377
rq11-scaffold repository 357
rq11-static repository 360, 366
rq12-initialize repository 398
rq12-multiple repository 399
rq12-playpause repository 393,

397
rq12-reset repository 398–399
rq12-scaffold repository 387,

393
rq13-dragging repository 420
rq13-list repository 411
rq13-priority repository 419
rq13-scaffold repository 406
rq13-steps repository 418

S

scalable vector graphics
(SVGs) 94, 354, 405

scaling 313–349
complex state 333–341
custom hooks 341–348

finding 348
overview of 342–343
when to use 343–347

interdependent state 335–341
React context 319–320,

326–330
composition 327
consuming 326–327
nested 327–330
states 323–325

INDEX 429
<script> element 17–18
<section> node 35–36
section HTML element 41
<select> element 84
select boxes 299–301
Select component 84
self-closing elements 90
SEO (search engine

optimization) 8
set* prefix 155
setCounter function 143
setSeconds variable 189
setState method 180
setter function 158–169, 344
sibling elements 38–41
simplicity of React 3–8

abstractions 7–8
component-based architec-

ture 5–7
declarative vs. imperative

style 4–5
snapshots 121
SPAs (single-page applications)

10–13
special characters 90–91
speed of React 8–9
src property 125
SSG (Static site generators) 14
stack 13–15
start command 28
startTime property 395
state 136–181, 215–222

class-based components
176–180

differences from functional
component process
179–180

similarities with functional
component process
178

complex state
creating 216
scaling 333–341

functional components
143–176

destructuring state value
and setter 154–155

importing and using
hooks 146–148

initializing state 148–154
multiple states 169–171
rules of hooks 146–148
setting state 158–169
state scope 172–176
using state value 156–158

information to avoid storing
in 142

information to store in
141–142

application data 141–142
form data 142
UI state 142

interdependent state 335–341
low-priority state updates

221–222
multicomponent state 220–221
overview of 139
React context 323–325
reconciliation of 6
reducing 216
remembering value without

re-rendering 216–220
passive state values 217–220
references to DOM

elements 220
rendering effects on state

update 205–207
manipulating DOM ele-

ments directly 207
storing higher-level

information 206
simple state values 216
where to put 139–140

stateful components 137–138
stateless components 137–138
state value

destructuring 154–155
passive 217–220
using 156–158

static value, setting state to
158–159

step property 296
string conversion 91–93
style attribute 93–94
StyleContext context 348
SVGs (scalable vector

graphics) 94, 354, 405
switching, in JSX 78–79
switch statement 79
synchronizing non-React

data 224
syntactic sugar 7, 63
synthetic events

API 241
object persistence 241–243

T

tabular numbers 387
TaskAdd component 410

Task component 409
TaskHeader component 409
Task instances 173
TaskList component 405, 409
task manager project 401–421

component hierarchy 405
drag and drop 419–420
list of tasks 408–417

component hierarchy
409–410

goal of exercise 408–409
in action 417
source code 411–415
updated project

structure 410–411
prioritization of steps

418–419
project structure 405
running app 408
source code 406–407

main application 406
task list 407

task steps and progress
417–418

templates
overview of 30
website menu project 357

ternary operator, in JSX 77
testability of React 8–9
test command 28
thick clients 12
this.props object 46
this.state class member 178
TimerManager component

388
timer project 379–400

adding play/pause
timer 390–396

component hierarchy 391
generic button

component 393
goal of exercise 390–391
in browser 396
number and unit

display 394
precision 391
source code 393–395
time display

component 394
timer component 395
timer manager 393
updated project

structure 392–393
component hierarchy

385–386

INDEX430
timer project (continued)
HTML output 383–385

button 384
form 385
form input 385
number and unit 384
time parts 384
timer 384
timers 385

initializing timer to custom
time 397

multiple timers 398–399
project structure 386–387
resetting timers 398
source code 387–389

in browser 390
individual timer 389
main application 388
stylesheet 387–388
timer manager 388–389

title property 72
TodoApplication

component 172, 176
toggle function 344
transpiling, in JSX 89
truthy value 78

U

UI state 142
UIs (user interfaces) 42, 64, 191
uncontrolled form inputs

303–310
controlled vs. 274–275
file inputs 310
opportunities for using

307–310
updaters, setting state 160
url property 48, 72
use* hook 146
useCallback hook 223
useContext hook 210, 220–221,

319–320, 323, 326, 341,
367–368, 372

useCounter hook 146, 346–347
useDebugValue hook 224

useDeferredValue hook 221–222
useEffect hook 152, 183–184,

191, 199, 201, 211–213
useForm hook 344–345
useId hook 223
useImperativeHandle

hook 223–224
useInsertionEffect hook 225
useLayoutEffect hook 199, 201
useLoader hook 345–346
useMemo hook 133, 223
useName hook 342
useReducer API 333
useReducer hook

interdependent state 336–341
overview of 216

useRef hook 216–220
useState hook 137, 146–147,

154–155, 157, 169, 179, 181,
189, 216–217, 333, 343–344,
349, 373, 417

useState React package 143
useState setter 221
useSyncExternalStore hook 224
useToggle hook 343–344
useTransition hook 221–222

V

valueAsNumber property 296
value property 74, 276–277, 311,

349, 368
ValueProvider component 374
variables, outputting in JSX

70–72
view, reconciliation of 6
virtual DOM 6

W

website menu project 350–378
dynamic menu 364–367

component hierarchy 365
defining list items 365
goal for step 364–365
rendering list items 365

optional link 370–377
children property 375–376
component hierarchy 376
converting part of compo-

nent to separate
component 374–375

custom hook for context
access 372–373

dedicated context
provider 373–374

goal for step 370
object as context value 372
stateful Boolean 373

retrieving items from
context 367–368

accessing context value 368
component hierarchy 368
creating context

provider 368
defining context 367–368
goal for step 367

scaffolding for 353–359
component hierarchy 354
CSS 356
HTML output 353
icons 354–356
in browser 359
source code 358–359
template 357

static menu 360–364
component tree 361–362
desired HTML output 361
goal of exercise 361
in browser 364
source code 363

whitespace 97–100
widgets 11
window events 260–263
window.ReactDOM global

object 17
window.React global object 17

Y

yarn command 26
Yarn package manager 26

function Component() {
useEffect(
function effect() {
// some effect here
return function cleanup() {
// some cleanup here

};
},
[dependency1, dependency2,...]

);
// rest of component

}

Mount

Run effect()

Mounted

Did any

dependency

change?

DOM is updated

No Yes

Unmount

Run cleanup()

Component is

removed

DOM is updated

Run cleanup()
Run effect()

Component renders

The React component effect life cycle

The useEffect hook is displayed here both as a code snippet and a flowchart. The hook contains an optional effect
as well as an optional cleanup function. The effect runs on mount, and the cleanup runs on unmount—if they’re defined,
of course. Furthermore, if the effect has a dependency array, the cleanup and effect will also run every time any value
reference in the dependency array changes.

MORTEN BARKLUND AND AZAT MARDAN

ISBN-13: 978-1-63343-929-0

React makes it a breeze to build beautiful, reliable web
frontends. This amazing JavaScript library has a modular
architecture, so you can create, combine, and test com-
ponents seamlessly. React is perfect for small prototypes,
enterprise scale sites, and everything in between.

React Quickly, Second Edition offers a unique approach
to learning the React framework. More than 80 concise
examples guide you from your fi rst steps through
advanced applications. You’ll appreciate the up-to-date
coverage of functional components, React hooks, and
web accessibility, along with interesting projects to
practice your new skill.

WHAT’S INSIDE
● Master React fundamentals
● Best practices of component-based design
● Create dynamic components with JSX
● Make your app interactive with stateful components

For developers comfortable building web applications
with JavaScript.

Morten Barklund is an expert in React, web testing, and
accessibility and is the founder of Coding Heaven.
Azat Mardan is a seasoned software engineer, startup
mentor, and best-selling author.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

React Quickly SECOND EDITION

REACT / JAVASCRIPT

“Simple, clear, and compre-
hensive with easy-to-follow
examples and challenging
projects. The perfect balance
between theory and practice.”

—Samer Buna, author of books
 and courses on React and
 Node

“I learned new things even
after eight years of React
experience.”

—Swizec Teller, React expert,
 swizec.com

“More than a book! Includes a
brilliant website with code in
a run-time environment.
A very accessible learning
experience!”

—Brendan O’Hara, Untapped AI

“An invaluable resource for
beginners and seasoned
developers alike.”

—Ahmad Nassri, Startup Advisor
 and Investor

See first page

M ANNING

	React Quickly, Second Edition
	Praise for the First Edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Audience
	Roadmap
	Source code
	Software requirements
	Command-line environment with Node.js and npm
	Text editor

	liveBook discussion forum software requirements

	about the authors
	about the cover illustration
	1 Meeting React
	1.1 Benefits of using React
	1.1.1 Simplicity
	1.1.2 Speed and testability
	1.1.3 Ecosystem and community

	1.2 Disadvantages of React
	1.3 How React can fit into your website
	1.3.1 Single-page applications and React
	1.3.2 The React stack

	1.4 Your first React app: Hello World
	1.4.1 The result
	1.4.2 Writing the application
	1.4.3 Installing and running a web server
	1.4.4 Going to the local website

	1.5 Quiz
	Quiz answers
	Summary

	2 Baby steps with React
	2.1 Creating a new React app
	2.1.1 React project commands
	2.1.2 File structure
	2.1.3 Templates
	2.1.4 Pros and cons

	2.2 A note about the examples in this book
	2.3 Nesting elements
	2.3.1 Node hierarchy
	2.3.2 Simple nesting
	2.3.3 Siblings

	2.4 Creating custom components
	2.5 Working with properties
	2.5.1 A single property
	2.5.2 Multiple properties
	2.5.3 The special property: children

	2.6 Application structure
	2.7 Quiz
	Quiz answers
	Summary

	3 Introduction to JSX
	3.1 Why do we use JSX?
	3.1.1 Before and after JSX
	3.1.2 Keeping HTML and JavaScript together

	3.2 Understanding JSX
	3.2.1 Creating elements with JSX
	3.2.2 Using JSX with custom components
	3.2.3 Multiline JSX objects
	3.2.4 Outputting variables in JSX
	3.2.5 Working with properties in JSX
	3.2.6 Branching in JSX
	3.2.7 Comments in JSX
	3.2.8 Lists of JSX objects
	3.2.9 Fragments in JSX

	3.3 How to transpile JSX
	3.4 React and JSX gotchas
	3.4.1 Self-closing elements
	3.4.2 Special characters
	3.4.3 String conversion
	3.4.4 The style attribute
	3.4.5 Reserved names: class and for
	3.4.6 Multiword attributes
	3.4.7 Boolean attribute values
	3.4.8 Whitespace
	3.4.9 data- attributes

	3.5 Quiz
	Quiz answers
	Summary

	4 Functional Components
	4.1 The shorter way to write React components
	4.1.1 An example application
	4.1.2 Destructuring properties
	4.1.3 Default values
	4.1.4 Pass-through properties

	4.2 A comparison of component types
	4.2.1 Benefits of functional components
	4.2.2 Disadvantages of functional components
	4.2.3 Nonfactors between component types
	4.2.4 Choosing the component type

	4.3 When not to use a functional component
	4.3.1 Error boundary
	4.3.2 Codebase is class-based
	4.3.3 Library requires class-based components
	4.3.4 Snapshot before updating

	4.4 Conversion from a class-based to a functional component
	4.4.1 Version 1: Render only
	4.4.2 Version 2: Class method as utility
	4.4.3 Version 3: Real class method
	4.4.4 Version 4: Constructor
	4.4.5 More complexity equals harder conversion

	4.5 Quiz
	Quiz answers
	Summary

	5 Making React interactive with states
	5.1 Why is React state relevant?
	5.1.1 React component state
	5.1.2 Where should I put state?
	5.1.3 What kind of information do you store in component state?
	5.1.4 What not to store in state

	5.2 Adding state to a functional component
	5.2.1 Importing and using a hook
	5.2.2 Initializing the state
	5.2.3 Destructuring the state value and setter
	5.2.4 Using the state value
	5.2.5 Setting the state
	5.2.6 Using multiple states
	5.2.7 State scope

	5.3 Stateful class-based components
	5.3.1 Similarities with the useState hook
	5.3.2 Differences from the useState hook

	5.4 Quiz
	Quiz answers
	Summary

	6 Effects and the React component life cycle
	6.1 Running effects in components
	6.1.1 Running an effect on mount
	6.1.2 Running an effect on mount and cleanup on unmount
	6.1.3 Running cleanup on unmount
	6.1.4 Running an effect on some renders
	6.1.5 Running an effect and cleanup on some renders
	6.1.6 Running an effect synchronously

	6.2 Understanding rendering
	6.2.1 Rendering on mount
	6.2.2 Rendering on parent render
	6.2.3 Rendering on state update
	6.2.4 Rendering inside functions

	6.3 The life cycle of a class-based component
	6.3.1 Life cycle methods
	6.3.2 Legacy life cycle methods
	6.3.3 Converting life cycle methods to hooks

	6.4 Quiz
	Quiz answers
	Summary

	7 Hooks to fuel your web applications
	7.1 Stateful components
	7.1.1 Simple state values with useState
	7.1.2 Creating complex state with useReducer
	7.1.3 Remembering a value without re-rendering with useRef
	7.1.4 Easier multicomponent state with useContext
	7.1.5 Low-priority state updates with useDeferredValue and useTransition

	7.2 Component effects
	7.3 Optimizing performance by minimizing re-rendering
	7.3.1 Memoizing any value with useMemo
	7.3.2 Memoizing functions with useCallback
	7.3.3 Creating stable DOM identifiers with useId

	7.4 Creating complex component libraries
	7.4.1 Creating component APIs with useImperativeHandle
	7.4.2 Better debugging of hooks with useDebugValue
	7.4.3 Synchronizing non-React data with useSyncExternalStore
	7.4.4 Running effect before rendering with useInsertionEffect

	7.5 The two key principles of hooks
	7.6 Quiz
	Quiz answers
	Summary

	8 Handling events in React
	8.1 Handling DOM events in React
	8.1.1 Basic event handling in React

	8.2 Event handlers
	8.2.1 Definition of event handlers
	8.2.2 Event objects
	8.2.3 React event objects
	8.2.4 Synthetic event object persistence

	8.3 Event phases and propagation
	8.3.1 How phases and propagation work in the browser
	8.3.2 Handling event phases in React
	8.3.3 Unusual event propagation
	8.3.4 Nonbubbling DOM events

	8.4 Default actions and how to prevent them
	8.4.1 The default event action
	8.4.2 Preventing default
	8.4.3 Other default events

	8.5 React event objects in summary
	8.6 Event handler functions from properties
	8.7 Event handler generators
	8.8 Listening to DOM events manually
	8.8.1 Listening for window and document events
	8.8.2 Dealing with unsupported HTML events
	8.8.3 Combining React and DOM event handling

	8.9 Quiz
	Quiz answers
	Summary

	9 Working with forms in React
	9.1 Controlled vs. uncontrolled inputs
	9.2 Managing controlled inputs
	9.2.1 Filtered input
	9.2.2 Masked input
	9.2.3 Many similar inputs
	9.2.4 Form submission
	9.2.5 Other inputs
	9.2.6 Other properties

	9.3 Managing uncontrolled inputs
	9.3.1 Opportunities
	9.3.2 File inputs

	9.4 Quiz
	Quiz answers
	Summary

	10 Advanced React hooks for scaling
	10.1 Resolving values across components
	10.1.1 React Context
	10.1.2 Context states
	10.1.3 React Context deconstructed

	10.2 How to handle complex state
	10.2.1 Interdependent state

	10.3 Custom hooks
	10.3.1 When is something a custom hook?
	10.3.2 When should I use a custom hook?
	10.3.3 Where can I find custom hooks?

	10.4 Quiz
	Quiz answers
	Summary

	11 Project: Website menu
	11.1 Scaffolding for the menu
	11.1.1 HTML output
	11.1.2 Component hierarchy
	11.1.3 Icons
	11.1.4 CSS
	11.1.5 Template
	11.1.6 Source code
	11.1.7 In the browser

	11.2 Rendering a static menu
	11.2.1 The goal of this exercise
	11.2.2 Desired HTML output
	11.2.3 Component tree
	11.2.4 Source code
	11.2.5 In the browser

	11.3 Homework: A dynamic menu
	11.3.1 Goal for this step
	11.3.2 Hints for solving this step
	11.3.3 Component hierarchy
	11.3.4 What now?

	11.4 Homework: Retrieving items from context
	11.4.1 Goal for this step
	11.4.2 Hints for solving this step
	11.4.3 Component hierarchy
	11.4.4 What now?

	11.5 Homework: Optional link
	11.5.1 Goal for this step
	11.5.2 Hints for solving this step
	11.5.3 Component hierarchy
	11.5.4 What now?

	11.6 Final thoughts
	Summary

	12 Project: Timer
	12.1 Scaffolding for the timer
	12.1.1 HTML output
	12.1.2 Component hierarchy
	12.1.3 Project structure
	12.1.4 Source code
	12.1.5 Running the application

	12.2 Adding a simple play/pause timer
	12.2.1 The goal of this exercise
	12.2.2 Component hierarchy
	12.2.3 Updated project structure
	12.2.4 Source code
	12.2.5 Running the application

	12.3 Homework: Initializing the timer to a custom time
	12.4 Homework: Resetting timers
	12.5 Homework: Multiple timers
	Summary

	13 Project: Task manager
	13.1 Scaffolding for the task manager
	13.1.1 Component hierarchy
	13.1.2 Project structure
	13.1.3 Source code
	13.1.4 Running the application

	13.2 A simple list of tasks
	13.2.1 The goal of this exercise
	13.2.2 Component hierarchy
	13.2.3 Updated project structure
	13.2.4 Source code
	13.2.5 Running the application

	13.3 Homework: Task steps and progress
	13.4 Homework: Prioritization of steps
	13.5 Homework: Drag and drop
	13.6 Conclusion
	Summary

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

