JAVA PROGRAMMING BASICS

Module 3: Java Standard Edition

e 4@
Training program

Java I/O Streams

Java Serialization

Java Database Connectivity
Java GUI Programming

The basics of Java class loaders
Reflections

Annotations

The proxy classes

Java Software Development
10 Garbage Collection

© 00 NDU A WN

Module contents

Java |/0O Streams
The concept of input-output streams
Byte streams and character streams
The main I/0O stream classes
The RandomAccessFile class
Principles of handling 10 errors
A try-catch with resources
The "File" class. File operations
NIO.2

Module contents

« Java |/O Streams
— The concept of input-output streams
— Byte streams and character streams
— The main I/O stream classes
— The RandomAccessFile class
— Principles of handling IO errors
— A try-catch with resources
— The "File" class. File operations
— NIO.2

The concept of input-output streams 1/3

An [/0O Stream represents an input source or an
output destination

A stream is a sequence of data

A stream can represent many different kinds of
sources and destinations, including disk files,
devices, other programs, and memory arrays

The concept of input-output streams 2/3

+ A program uses an /nput stream to read data from a
source

Stream Program
. » - =
[m‘nmmmmn (mmmmmo
1 : b = *

- Reading information into a program

The concept of input-output streams 3/3

* A program uses an output strearm to write data to
a destination

= o

Program ‘ Stream

Lmtmmmmo | [010010101010
/ o > \

- Writing information from a program

=
The concept of input-output stream

Threads —

Some Job

Stream read / write

InputStream read() methods block the thread, executing these
methods, until it becomes accessible portion of the read data, or
the end of the InputStream is reached or an IOException is thrown.

OutputStream write() methods block the thread, executing these
methods, at the time of writing data portion, or until the end of

the OutputStream is reached or an IOException is thrown.
—_—

Module contents

« Java |/O Streams
— The concept of input-output streams
— Byte streams and character streams
— The main I/O stream classes
— The RandomAccessFile class
— Principles of handling 10 errors
— A try-catch with resources
— The "File" class. File operations
- NIO.2

Byte streams and character streams

J——
Java P S——
ava Program Input Source

“Character” Streams ~ char ;0‘ (keyboard, file,

network, program)

(Reader/Writer) _J (16-bit) Input Stream

el
“Byte” Streams _J BytE_ Output Sink
(InputStar‘eam/ (S—blt) ‘ ——d ! ' (CD“SDIE file
QutpidStreas) QOutput Stream network, program)
\"————-‘d
Internal Data Formats: External Data Formats:
= Text(char): UCS-2 = Textin various encodings
= int, float, double, (US-ASCII, 1ISO-8859-1, UCS-2, UTF-8,
etc. UTF-16, UTF-16BE, UTF16-LE, etc.)

= Binary (raw bytes)

Module contents

+ Java I/O Streams
— The concept of input-output streams
— Byte streams and character streams
— The main I/0O stream classes
— The RandomAccessFile class
— Principles of handling IO errors
— A try-catch with resources
— The "File" class. File operations
— NIO.2

The main I/O stream classes 1/16

* InputStream and OutputStream are abstract classes
that define the lowest-level interface for all byte
streams

ready) - InputStream

The main I/O stream classes 2/16

Modifier and Method and Description
Type

abstract int read()
Reads the next byte of data from the input stream.
int read(byte[]b)

Reads some number of bytes from input stream and stores them
into the buffer array b.

int read(byte[]b, int off, int len)
Reads up to len bytes of data from the input stream into array of
bytes.

void reset()

Repositions this stream to the position at the time the mark
method was last called on this input stream.

long skip(long n)
Skips over and discards n bytes of data from this input stream

The main I/O stream classes 3/16

Methods of InputStream class

Modifier Method and Description
and Type

int available()
Returns an estimate of the number of bytes that can be read(or
skipped over) from this input stream without blocking by next
invocation of a method for this stream

void close()
Closes this input stream and releases any system recourses
associated with stream.

void mark(int readlimit)
Marks the current position in this input stream.
boolean markSupported()

Tests if this input stream supports the mark and reset methods.

The main I/O stream classes 4/16

Methods of OutputStream class

Modifier and | Method and Description
Type

void close()
Closes this output stream and releases any system recourses associated with
stream.

void flush()
Flushes this output stream and forces any buffered output bytes to be written
out.

void write(byte[]b)
Writes b.length bytes from the specified byte array to this output stream.

void write(byte[]lb, int off, int len)
Writes len bytes from the specified byte array starting at offset off to this output
stream.

abstract void write(int b)
Writes the specified byte to this output stream.

The main I/0 stream classes 5/16

{ InputStream | OutputStream I

f —1 FileInputStream I ? — FileOutputStream

FilterOutputStream

FilterInputStream

BufferedInputStream BufferedOutputStream

DatalnputStream ‘DataOutputStream

LineNumberInputStream PrintStream

PushbackInputStream

PipedOutputStream

PipedInputStream ByteArrayOutputStream

—{ SeguencelnputStream I | |

ByteArrayInputStream

ObjectOutputStream

StringBufferInputStream

ObjectInputStream

The main I/O stream classes 6/16

public class Main {
public static void main(String[] args) {
InputStream stdin = System.in;
try {
int val = System./in.read();
System.out.printin(val);
} catch (IOException e) {

/...

) Console output

) e

} 97

The main I/O stream classes 7/16

public class Main {
public static void main(String[] args) {
OutputStream stdout = System. out,
try {
stdout.write(new byte[]{97,98,99});
} catch (IOException e) {

/...
Hinally {
/...
) s Console output
1 abc

The main I/O stream classes 8/16

FilelInputStream in = null;
FileOutputStream out = null;
try {
in = new FileInputStream("input.txt");
out = new FileOutputStream("output.txt");
int ¢
while ((c = in.read()) !=-1) {
out.write(c);
}
} finally {
if (in = null) in.close();
if (out != null) out.close();

}

The main I/O stream classes 9/16

- Simple byte stream input and output
| n X |a n a d u d i d

¥
read (b)

Integer Variable (b)

e

write (b)

|l |'n X |a [n [a |d (u | |d

Output Stream

abstract class Reader

implements Readable, Closeable

Modifier and Method and Description
Type

int read() Reads a single character. Returns: The character
read, as an integer in the range 0 to 65535 (0x00-0xffff),
or -1 if the end of the stream has been reached

int read(char[] cbuf) Reads characters into an array.

abstract int read(char[] cbuf, int off, int len) Reads characters into a
portion of an array.

int read(CharBuffer target) Attempts to read characters into
the specified character buffer.

boolean ready() Tells whether this stream is ready to be read.

abstract void close() Closes the stream and releases any system

resources associated with it. Once the stream has been
closed, further read(), ready(), mark(), reset(), or skip()
= invocations will throw an IOException.

abstract class Reader

implements Readable, Closeable

Modifier and Method and Description
Type

void mark(int readAheadLimit) Marks the present position in
the stream. Subsequent calls to reset() will attempt to
reposition the stream to this point.

boolean markSupported() Tells whether this stream supports the
mark() operation.
void reset() Resets the stream. If the stream has been marked,

then attempt to reposition it at the mark. If the stream
has not been marked, then attempt to reset it in some
way appropriate to the particular stream, for example by
repositioning it to its starting point.

long skip(long n) Skips characters. This method will block until
some characters are available, an |/O error occurs, or the
= end of the stream is reached.

=
abstract class Writer implements

Appendable, Closeable, Flushable

Modifier and Method and Description
Type

void write(int c) Writes a single character. The character
to be written is contained in the 16 low-order bits of
the given integer value

void write(char[] cbuf) Writes an array of characters.

abstract void write(char[] cbuf, int off, int len) WWrites a portion of an
array of characters.

void write(String str) Writes a string.
void write(String str, int off, int len) Writes a portion of a
string.

=
abstract class Writer implements

Appendable, Closeable, Flushable

Modifier and Method and Description
Type

Writer append(char c) Appends the specified character to this
writer. An invocation of this method of the form
out.append(c) behaves in exactly the same way as the
iInvocation out.write(c)

Writer append(CharSequence csq) Appends the specified character
sequence to this writer.

Writer append(CharSequence csq, int start, int end) Appends a
subsequence of the specified character sequence to this
writer.

abstract void close() Closes the stream, flushing it first.

abstract void flush() Flushes the stream. If the stream has saved any

characters from the various write() methods in a buffer,
=] write them immediately to their intended destination.

The main I/0 stream classes 10/16

[Readér l jwriter l

JAY AN

OutputStreamhiriter

InputStreamReader

- FileReader ' FileWriter

[BUffEPEdReﬂdEF I - BufferedWriter

LineNumberReader FilterWriter

FilterReader |]

PushbackReader Rinoducizor
—{CharArrayReader ‘Stringﬂriter

—1Pipedﬂeader

‘StringReader

CharArrayWriter

The main I/O stream classes 11/16

FileReader inputStream = null;
FileWriter outputStream = null;
try {
inputStream = new FileReader("input.txt");
outputStream = new FileWriter("output.txt");
int ¢
while ((c = inputStream.read()) != -1) {
outputStream.write(c);
}
} finally {
if (inputStream != null) inputStream.close();
if (outputStream != null) outputStream.close();

}

The main I/O stream classes 12/16

+ Layered (or Chained) I/0 Streams

q FileInputStream BufferedInputStream (|

Disk ® Java
Program

File -
I byte block of bytes
(buffer) 4
q FileInputStream BufferedInputStream DatalnputStream |
- Java

Disk
File ® | @ — Program
. I byte block of bytes data
| | (buffer) (int, double, etc.) Y

The main I/O stream classes 13/16

BufferedInputStream in = null;
BufferedOutputStream out = null;
try {
in = new BufferedIinputStream(new FilelnputStream("input.txt"));
out = new BufferedOutputStream(new FileOutputStream("output.txt™));
int byteRead;
while ((byteRead = in.read()) !=-1) {
out.write(byteRead);
}
} catch (IOException ex) {
/1...
} finally {
try {
if (in = null) in.close();
if (out != null) out.close();
} catch (IOException ex) {
//...

}
}

InputStreamReader

public class Main {
public static void main(String[] args) {
char[] chars = new char[12];
System.out.printin("Input line and press Enter:");
try (InputStreamReader br = new
InputStreamReader(System.in, "CP1251")) {
int count = br.read(chars);
System.out.printin("Received " + count + " characters: " +
Arrays.toString(chars));
} catch (IOException ex) {
Logger.getLogger(Main.class.getName()).log(Level.SEVERE,
null, ex);

}
}

_

Datalnput interface
Modifier and Method and Description

Type

boolean readBoolean() Reads one input byte and returns true if
that byte is nonzero,false if that byte is zero.

byte readByte() Reads and returns one input byte.

char readChar() Reads two input bytes and returns
a char value.

double readDouble() Reads eight input bytes and returns
a double value.

float readFloat() Reads four input bytes and returns
a float value.

void readFully(byte[] b) Reads some bytes from an input
stream and stores them into the buffer array b.

void readFully(byte[] b, int off, int len) Reads len bytes from
an input stream.

int readint() Reads four input bytes and returns

an int value.

Modifier
and Type

String
long

short

int

int
String

int

Datalnput interface

Method and Description

readLine() Reads the next line of text from the input stream.
readLong() Reads eight input bytes and returns

a long value.

readShort() Reads two input bytes and returns

a short value.

readUnsignedByte() Reads one input byte, zero-extends it to
type int, and returns the result, which is therefore in the
range O through 255.

readUnsignedShort() Reads two input bytes and returns

an int value in the range Othrough 65535.

readUTF() Reads in a string that has been encoded using

a modified UTF-8 format.

skipBytes(int n) Makes an attempt to skip over n bytes of
data from the input stream, discarding the skipped bytes.

- 1]
DataOutput interface
Modifier Method and Description

and Type

void write(byte[] b)Writes to the output stream all the bytes Iin
array b.

void write(byte[] b, int off, int len)Writes len bytes from array b,
In order, to the output stream.

void write(int b)Writes to the output stream the eight low-order
bits of the argument b.

void writeBoolean(boolean v)Writes a boolean value to this
output stream.

void writeByte(int v)Writes to the output stream the eight low-
order bits of the argument v.

void writeBytes(String s)Writes a string to the output stream.

void writeChar(int v)Writes a char value, which is comprised of

— two bytes, to the output stream.

DataOutput interface

Modifier Method and Description

and Type

void

void

void

void

void

void

void

writeChars(String s)Writes every character in the string s, to the
output stream, in order, two bytes per character.

writeDouble(double v)Writes a double value, which is comprised
of eight bytes, to the output stream.

writeFloat(float v)Writes a float value, which is comprised of
four bytes, to the output stream.

writelnt(int v)Writes an int value, which is comprised of four
bytes, to the output stream.

writeLong(long v)Writes a long value, which is comprised of
eight bytes, to the output stream.

writeShort(int v)Writes two bytes to the output stream to
represent the value of the argument.

writeUTF(String s)Writes two bytes of length information to the
output stream, followed by the modified UTF-8 representation of
every character in the string s.

The main I/0O stream classes 14/16

try {
DataOutputStream out = new DataOutputStream(

new BufferedOutputStream(
new FileOutputStream("dataout.dat")));

out.writeShort(1200);
out.writelnt(50000);
out.writeLong(1234567/8L),
out.writeDouble(55.66);
out.writeBoolean(true);
out.writeUTF("Hello!!™);
out.flush();

} catch (IOException ex) {
/...

}
A S

The main I/0O stream classes 15/16

try {
DatalnputStream in = new DatalnputStream(

new BufferedInputStream(
new FilelnputStream("dataout.dat")));
System.out.printin("short: " + in.readShort());
System.out.printin(int: " + in.readInt());
System.out.printin("long: " +in.readLong());
System.out.printin(*double: ™ + in.readDouble());
System.out.printin("boolean: " + in.readBoolean());
System.out.printin("String UTF: " + in.readUTF());
System. out.printin();
} catch (IOException ex) {
/...

}
oo

The main I/0O stream classes 16/16

Console output:
short: 1200

int: 50000

long: 12345678
double: 55.66
boolean: true
String UTF: Hello!!!

Module contents

« Java |/O Streams
— The concept of input-output streams
— Byte streams and character streams
— The main I/O stream classes
— The RandomAccessFile class
— Principles of handling IO errors
— A try-catch with resources
— The "File" class. File operations
— NIO.2

The RandomAccessFile class 1/3

RandomAccessFile. Instances of this class support
both reading and writing to a random access file.

A random access file behaves like a large array of
bytes stored in the file system.

Sequential access

Random access

L | = | & | 2 | = | » [& [» |

1 3 7 2 8 ©6 4 5

RandomAccessFile creation

RandomAccessFile raf =

new RandomAccessFile(String name, String mode)
throws FileNotFoundException

Mode values:

Value

Meaning

Open for reading only. Invoking any of the write methods of the
resulting object will cause an I0Exception to be thrown.

rw" |Open for reading and writing. If the file does not already exist then an
attempt will be made to create it.

"rws" |Open for reading and writing, as with "rw", and also require that
every update to the file's content or metadata be written
synchronously to the underlying storage device.

"rwd"

Open for reading and writing, as with "rw", and also require that
every update to the file's content be written synchronously to the
underlying storage device.

The RandomAccessFile class 2/3

There is a kind of cursor, or index into the implied
array, called the 7ile pointer; input operations read

bytes starting at the file pointer and advance the
file pointer past the bytes read.

t ' t
0 S — — End-of-File

(EOF)
File Pointer

The RandomAccessFile class 3/3

RandomAccessFile raf = null: Console output

try 0,1, 2,3,4,66,77, 88, 8, 9]
{

//...

raf = new RandomAccessFile("C:\\ra_test.txt", "rw");
raf.write(new byte[]{0,1,2,3,4,5,6,7,8,9}),

raf.seek(5);
raf.write(new byte[]{66,77,88}),
raf.seek(0);

byte[] buf = new byte[10];

int n =raf.read(buf,0,10);
System.out.printin(Arrays. toString(buf));
raf.close();

-
e —

Module contents

+ Java I/O Streams
— The concept of input-output streams
— Byte streams and character streams
— The main I/O stream classes
— The RandomAccessFile class
— Principles of handling 10 errors
— A try-catch with resources
— The "File" class. File operations

Principles of handling IO errors 1/3

IOException is the general class of exceptions
produced by failed or interrupted I/O operations

IOException signals that an I/0 exception of some
sort has occurred.

Streams need to be closed properly when you are
done using them. This is done by calling the close()
method.

Principles of handling IO errors 2/3

Exception

|OException

mmm CharConversionException

EOFException

FileNotFoundException

mmm |NterruptedlOException

ObjectStreamException

Principles of handling IO errors 3/3

Try-Catch-Finally, Old School Style
InputStream input = null;
try {
input = new FileInputStream("file.txt");//FileNotFoundException
int data = input.read(); //10Exception
while(data != -1}
System.out.print((char) data);
data = input.read(); //|0Exception

} finally {
} finally { try {
if(input != null){ is.close(); .
input.close(); //10Exception } catch (IOException ex) {
} is i 1"
1 this is a problem!!! System.out.println(ex.getMessage());

Module contents

« Java |/O Streams
— The concept of input-output streams
— Byte streams and character streams
— The main I/O stream classes
— The RandomAccessFile class
— Principles of handling IO errors
— A try-catch with resources
— The "File" class. File operations

Principles of handling IO errors 1/2

From Java 7 on and forward Java contains a new
exception handling mechanism called "try with
resources’.

This exception handling mechanism is especially
targeted at handling exception handling when you
are using resources that need to be closed
properly after use.

interface java.lang.AutoCloseable

Principles of handling 10 errors 2/2

try-with-resources: . _
Y //FileNotFoundException

try (InputStream is = new FilelnputStream("file.txt")) {
int data =is.read(); //IOException
while (data !=-1) {
System.out.printin((char) data);
data = is.read(); //I0Exception

}
} catch (FileNotFoundException ex) {

System.out.printin(ex.getMessage());
} catch (IOException ex) {
System.out.printin(ex.getMessage());

}
}

Module contents

« Java |/O Streams
— The concept of input-output streams
— Byte streams and character streams
— The main I/O stream classes
— The RandomAccessFile class
— Principles of handling IO errors
— A try-catch with resources
— The "File" class. File operations

The "File" class. File operations 1/3

Most of the classes defined by java.io operate on
streams, the File class does not.

File deals directly with files and the file system.
That is, the File class does not specify how
information is retrieved from or stored in files; it
describes the properties of a file itself.

The "File" class. File operations 2/3

The File class in the Java IO API gives you access to the
underlying file system. Using the File class you can:

Check if a file or directory exists.
Create a directory if it does not exist.
Read the length of a file.

Rename or move a file.

Delete a file.

Check if path is file or directory.
Read list of files in a directory.

The "File" class. File operations 3/3

File file = new File("c:\\testfile.txt");

//Check if Path is File or Directory

boolean isDirectory = file.isDirectory();

//Check if File Exists

boolean fileExists = file.exists();

//File Length

long length = file.length();

//Rename or Move File

boolean sucMov =

file.renameTo(newFile("c:\\newfile.txt"));

//Delete File

'.boolean successDel = file.delete();
N

Java NIO (Non-blocking 10

10 NIO
[TOTOKOOPMEHTNPOBAHHbIN bydbep-opmeHTMPOBaHHbIN
Bhoknpytowmin (CMHXPOHHBLIN) | HeEGNOKMpYOLLMIA
BBO/,/BbIBO/, (acMHXPOHHbLINM) BBOA/BbIBOL,

CeneKTtopol
Thread

Channel

Channel | Channel l

+

| Channel I

=
Java NIO
try (RandomAccessFile aFile = new RandomAccessFile("file.txt", "rw");) {
FileChannel inChannel = aFile.getChannel();
ByteBuffer buf = ByteBuffer.allocate(48);
int bytesRead = inChannel.read(buf);
while (bytesRead !=-1) {
System.out.printin("Read " + bytesRead);
buf.flip();
while (buf.hasRemaining()) {
System.out.print((char) buf.get());
}
buf.clear();
bytesRead = inChannel.read(buf);

}
} catch (FileNotFoundException ex) {

} catch (IOException ex) {

=
Java NIO - Path

Since Java 7, the tools for working with files and directories have
changed. This was due to the limitations of the java.io.File class.
For example, it lacks a copy() method that allows you to copy a file
from one location to another (evidently, it's a necessary function).

In addition, the java.io.File class has many methods that return
boolean values. On error, such a method returns false, rather than
throwing an exception, which makes diagnosing errors and
determining their causes very difficult.

Instead of a single java.io.File class, the java.nio.file.Path interface
and the java.nio.file.Paths and java.nio.file.Files classes appeared.

since Java 7/

Java NIO - Paths

java.nio.file.Paths is a simple class that was created solely in order
to get an object of type Path from the passed string or URI.

public final class Paths {
private Paths() { }

public static Path get(String first, String... more) {
return Path.of(first, more);

}

public static Path get(URI uri) {
return Path.of(uri);

}
}

since Java 7/

Java NIO - Path

The java.nio.file.Path interface supports two types of operations:
syntactic operations (almost any operation that involves
manipulating paths without accessing the file system) and
operations over files referenced by paths.

The java.nio.file.Path interface is an upgraded version of the well-
known java.io.File class, but the File class has kept a few specific
operations, so it is not deprecated and cannot be considered

obsolete.
The Path object is a programmatic representation of a path in the file

system

Path basePath = Paths.get(“C:/Users/kgp/data");
Path fullPath = basePath.resolve("index.html");

System.out.printin(“Full path: “ + fullPath);
//Full path: C:\Users\kgp\data\index.html|

since Java 7/

=T
Java NIO - Path

Path path = Paths.get("C:/Windows/System32/cmd.exe");
System.out.printin(“Path detalization: " + path);
//Path detalization: C:\Windows\System32\cmd.exe
System.out.printIn("toString(): " + path.toString());
//C:\Windows\System32\cmd.exe
System.out.printin("getFileName(): " + path.getFileName()); //cmd.exe
System.out.printin("getName(int index): " + path.getName(0)); //Windows
System.out.printin("getNameCount(): " + path.getNameCount()); //3
System.out.printin("subpath(0,2): " + path.subpath(0, 2));
//Windows\System32
System.out.printIn("getParent(): " + path.getParent());
//C:\Windows\System32
System.out.printin("getRoot(): " + path.getRoot()); // C:\

System.out.printin(path.endsWith("System32/cmd.exe")); //true
System.out.printin(path.startsWith("C:/Windows")); //true

sttem.out.ﬁrintlniEath.isAbsqute()); //true

Java NIO - Path

Path dirl = Paths.get("/home/./joe/foo");

Path dir2 = Paths.get("/home/sally/../joe/foo");
System.out.printin(dirl.normalize()); //\home\joe\foo
System.out.printin(dir2.normalize()); //\home\joe\fo

String file = "manifest.mf"; //in the root of the application
Path p6 = Paths.get(file);
System.out.printin("Absolute path to " + file + " is: " + p6.toAbsolutePath());
//check the real file path
try {
System.out.printin("Real path to " + file + " is: " + p6.toRealPath());
} catch (IOException ex) {
System.out.printIin("There is not " + file + " in the root directory of this
application");

}

Java NIO - Path

/* Combining two paths */
Path p7 = Paths.get("/var");
System.out.format("%s%n", p7.resolve("log")); // \var\log

/* Creating a path between two paths */

Path p8 = Paths.get("C:\\Users");

Path p9 = Paths.get("C:\\Users\\Desktop\\testFile.txt");
System.out.printin(p8.relativize(p9)); //Desktop\testFile.txt

Java NIO - Files

NIO.2 comes with a set of brand new methods to accomplish the
most common tasks for managing files and directories, such as
create, read, write, move, delete, and so on, most of which are found
In the java.nio.file.Files class.

Path testFilel =
Files.createFile(Paths.get("C:\\Users\\Username\\Desktop\\testFile111.txt"));
(public static Path createDirectory(Path dir, FileAttribute<?>... attrs) throws IOException

Phth basePath = Paths.get("src/nio/filespath/data");

Path filePath = basePath.resolve("logging.properties");

/*Check if the file exists*/
LinkOption[] linkOptions = new LinkOption[]{LinkOption.NOFOLLOW __LINKS};
boolean pathExists = Files.exists(filePath, linkOptions});
System.out.printin("File " + filePath + (pathExists == true ? " is exist”

: " doesn't exist"));

dbile STCADIONfilespath\datallogging. properties is exist

N
Java NIO - Files

/*Create subdirectory*/
Path subDirPath = basePath.resolve("subdir");
try {
Path newDir = null;
if (Files.exists(basePath, linkOptions)) {
newDir = Files.createDirectory(subDirPath);
System.out.printIn("Subdirectory " + newDir + " is created");
} else {
System.out.printIn("Parent directory " + basePath+ " doesn't exist");
}
} catch (FileAlreadyExistsException e) {
// the directory already exists
} catch (IOException e) {
//something else went wrong
e.printStackTrace();

—

//Subdirectory src\nio\filespath\data\subdir is created

Java NIO - Files
/*File copy*/
Path sourcePath = filePath;

Path destinationPath = basePath.resolve("logging-copy.properties");
try {

if (Files.exists(sourcePath, linkOptions)
&& Files.exists(destinationPath.getParent(), linkOptions)) {
Files.copy(sourcePath, destinationPath);
System.out.printIn("File " + sourcePath + " is copied to "

+ destinationPath);
} else {

System.out.printIn("Source file path " + sourcePath
+ " or/and destination parent directory path "
+ destinationPath.getParent() + " is wrong");

} //File src\nio\filespath\data\logging.properties
} catch (IOException e) { //is copied to src\nio\filespath\data\logging-

e.grintStackTrace‘ “ //copy.properties

@@= 171
/*File copy with replace"‘?va NIO B Flles
sourcePath = filePath;
destinationPath = basePath.resolve("logging-copy.properties");
try {
if (Files.exists(sourcePath, linkOptions)
&& Files.exists(destinationPath.getParent(), linkOptions)) {
Files.copy(sourcePath, destinationPath,
StandardCopyOption.REPLACE_EXISTING);
System.out.printin("File " + sourcePath + " is copied with replace to "

+ destinationPath);
}else {

System.out.printIn("Source file path " + sourcePath
+ " or/and destination parent directory path "
+ destinationPath.getParent() + " is wrong");

}
} catch (IOException e){ //File src\nio\filespath\data\logging.properties

e.printStackTrace(); /is copied with replace to
/src\nio\filespath\data\logging-copy.properties

il move, Java NIO - Files

sourcePath = basePath.resolve("logging-copy.properties");
destinationPath = basePath.resolve("subdir/logging-moved.properties");
try {
if (Files.exists(sourcePath, linkOptions)
&& Files.exists(destinationPath.getParent(), linkOptions)) {
Files.move(sourcePath, destinationPath,
StandardCopyOption.REPLACE_EXISTING);
System.out.printin("File " + sourcePath + " is moved to "

+ destinationPath);
}else {

System.out.printIn("Source file path " + sourcePath
+ " or/and destination parent directory path "
+ destinationPath.getParent() + " is wrong");

}
} catch (IOException e) { //File src\nio\filespath\data\logging.properties

e.printStackTrace(): is moved to src\nio\filespath\data\subdir\
ogging-moved.properties

Java NIO - Files

/*File/directory delete — directory must be empty!!!*/

Path path = basePath.resolve("subdir/logging-moved.properties");
Path pathl = subDirPath;

try {

if (Files.exists(path, linkOptions)) {
Files.delete(path);

Files.delete(path1);
System.out.printIn("File " + path + " and directory " + path1

+ " are deleted");
} else {

System.out.printIn("File path " + path + " is wrong");

}

} catch (IOException e) {
//deleting file failed
e.printStackTrace();

// File src\nio\filespath\data\subdir\logging-
//moved.properties and directory

//src\nio\filespath\data\subdir are deleted
}

-]
Java NIO - Files
List<String> lines =

Files.readAllLines(Paths.get("C:\\Users\\Username\\Desktop\\pushkin.txt"),
UTF_8);
for (String s: lines) {

System.out.printin(s);

}

Stream<String> stream =
Files.lines(Paths.get("C:\\Users\\Username\\Desktop\\pushkin.txt"));
List<String> result = stream

filter(line -> line.startsWith("Kak"))

.map(String::toUpperCase)

.collect(Collectors.tolList());
result.forEach(System.out::printin);

