

Training program

1. Java I/O Streams
2. Java Serialization
3. Java Database Connectivity
4. Java GUI Programming
5. The basics of Java class loaders
6. Reflections
7. Annotations
8. The proxy classes
9. Java Software Development
10. Garbage Collection

The concept of input-output stream

InputStream read() methods block the thread, executing these
methods, until it becomes accessible portion of the read data, or
the end of the InputStream is reached or an IOException is thrown.

OutputStream write() methods block the thread, executing these
methods, at the time of writing data portion, or until the end of
the OutputStream is reached or an IOException is thrown.

Modifier and
Type

Method and Description

int read() Reads a single character. Returns: The character
read, as an integer in the range 0 to 65535 (0x00-0xffff),
or -1 if the end of the stream has been reached

int read(char[] cbuf) Reads characters into an array.

abstract int read(char[] cbuf, int off, int len) Reads characters into a
portion of an array.

int read(CharBuffer target) Attempts to read characters into
the specified character buffer.

boolean ready() Tells whether this stream is ready to be read.

abstract void close() Closes the stream and releases any system
resources associated with it. Once the stream has been
closed, further read(), ready(), mark(), reset(), or skip()
invocations will throw an IOException.

abstract class Reader
implements Readable, Closeable

Modifier and
Type

Method and Description

void mark(int readAheadLimit) Marks the present position in
the stream. Subsequent calls to reset() will attempt to
reposition the stream to this point.

boolean markSupported() Tells whether this stream supports the
mark() operation.

void reset() Resets the stream. If the stream has been marked,
then attempt to reposition it at the mark. If the stream
has not been marked, then attempt to reset it in some
way appropriate to the particular stream, for example by
repositioning it to its starting point.

long skip(long n) Skips characters. This method will block until
some characters are available, an I/O error occurs, or the
end of the stream is reached.

abstract class Reader
implements Readable, Closeable

Modifier and
Type

Method and Description

void write(int c) Writes a single character. The character

to be written is contained in the 16 low-order bits of

the given integer value

void write(char[] cbuf) Writes an array of characters.

abstract void write(char[] cbuf, int off, int len) Writes a portion of an

array of characters.

void write(String str) Writes a string.

void write(String str, int off, int len) Writes a portion of a

string.

abstract class Writer implements
Appendable, Closeable, Flushable

Modifier and
Type

Method and Description

Writer append(char c) Appends the specified character to this

writer. An invocation of this method of the form

out.append(c) behaves in exactly the same way as the

invocation out.write(c)

Writer append(CharSequence csq) Appends the specified character

sequence to this writer.

Writer append(CharSequence csq, int start, int end) Appends a

subsequence of the specified character sequence to this

writer.

abstract void close() Closes the stream, flushing it first.

abstract void flush() Flushes the stream. If the stream has saved any

characters from the various write() methods in a buffer,

write them immediately to their intended destination.

abstract class Writer implements
Appendable, Closeable, Flushable

InputStreamReader
public class Main {

public static void main(String[] args) {
char[] chars = new char[12]; //char buffer
System.out.println("Input line and press Enter:");
try (InputStreamReader br = new //may be "UTF-8"

InputStreamReader(System.in, "CP1251")) {
int count = br.read(chars);
System.out.println("Received " + count + " characters: " +

Arrays.toString(chars));
} catch (IOException ex) {

Logger.getLogger(Main.class.getName()).log(Level.SEVERE,
null, ex);

}
}

}

DataInput interface
Modifier and
Type

Method and Description

boolean readBoolean() Reads one input byte and returns true if

that byte is nonzero,false if that byte is zero.

byte readByte() Reads and returns one input byte.

char readChar() Reads two input bytes and returns

a char value.

double readDouble() Reads eight input bytes and returns

a double value.

float readFloat() Reads four input bytes and returns

a float value.

void readFully(byte[] b) Reads some bytes from an input

stream and stores them into the buffer array b.

void readFully(byte[] b, int off, int len) Reads len bytes from

an input stream.

int readInt() Reads four input bytes and returns

an int value.

Modifier
and Type

Method and Description

String readLine() Reads the next line of text from the input stream.

long readLong() Reads eight input bytes and returns

a long value.

short readShort() Reads two input bytes and returns

a short value.

int readUnsignedByte() Reads one input byte, zero-extends it to

type int, and returns the result, which is therefore in the

range 0 through 255.

int readUnsignedShort() Reads two input bytes and returns

an int value in the range 0through 65535.

String readUTF() Reads in a string that has been encoded using

a modified UTF-8 format.

int skipBytes(int n) Makes an attempt to skip over n bytes of

data from the input stream, discarding the skipped bytes.

DataInput interface

DataOutput interface
Modifier
and Type

Method and Description

void write(byte[] b)Writes to the output stream all the bytes in

array b.

void write(byte[] b, int off, int len)Writes len bytes from array b,

in order, to the output stream.

void write(int b)Writes to the output stream the eight low-order

bits of the argument b.

void writeBoolean(boolean v)Writes a boolean value to this

output stream.

void writeByte(int v)Writes to the output stream the eight low-

order bits of the argument v.

void writeBytes(String s)Writes a string to the output stream.

void writeChar(int v)Writes a char value, which is comprised of

two bytes, to the output stream.

Modifier
and Type

Method and Description

void writeChars(String s)Writes every character in the string s, to the
output stream, in order, two bytes per character.

void writeDouble(double v)Writes a double value, which is comprised
of eight bytes, to the output stream.

void writeFloat(float v)Writes a float value, which is comprised of
four bytes, to the output stream.

void writeInt(int v)Writes an int value, which is comprised of four
bytes, to the output stream.

void writeLong(long v)Writes a long value, which is comprised of
eight bytes, to the output stream.

void writeShort(int v)Writes two bytes to the output stream to
represent the value of the argument.

void writeUTF(String s)Writes two bytes of length information to the
output stream, followed by the modified UTF-8 representation of
every character in the string s.

DataOutput interface

RandomAccessFile creation
RandomAccessFile raf =

new RandomAccessFile(String name, String mode)
throws FileNotFoundException

Value Meaning

"r" Open for reading only. Invoking any of the write methods of the
resulting object will cause an IOException to be thrown.

"rw" Open for reading and writing. If the file does not already exist then an
attempt will be made to create it.

"rws" Open for reading and writing, as with "rw", and also require that
every update to the file's content or metadata be written
synchronously to the underlying storage device.

"rwd" Open for reading and writing, as with "rw", and also require that
every update to the file's content be written synchronously to the
underlying storage device.

Mode values:

//FileNotFoundException

//IOException

//IOException

//IOException

this is a problem!!!

finally {
try {

is.close();
} catch (IOException ex) {

System.out.println(ex.getMessage());
} }

try (InputStream is = new FileInputStream("file.txt")) {
int data = is.read();
while (data != -1) {

System.out.println((char) data);
data = is.read();

}
} catch (FileNotFoundException ex) {

System.out.println(ex.getMessage());
} catch (IOException ex) {

System.out.println(ex.getMessage());
}

}

Principles of handling IO errors 2/2

try-with-resources:
//FileNotFoundException

//IOException

//IOException

Java NIO (Non-blocking IO
IO NIO

Потокоориентированный Буфер-ориентированный

Блокирующий (синхронный)
ввод/вывод

Неблокирующий
(асинхронный) ввод/вывод

Селекторы

Java NIO
try (RandomAccessFile aFile = new RandomAccessFile("file.txt", "rw");) {

FileChannel inChannel = aFile.getChannel();
ByteBuffer buf = ByteBuffer.allocate(48);
int bytesRead = inChannel.read(buf);

while (bytesRead != -1) {
System.out.println("Read " + bytesRead);
buf.flip();
while (buf.hasRemaining()) {

System.out.print((char) buf.get());
}
buf.clear();
bytesRead = inChannel.read(buf);

}
} catch (FileNotFoundException ex) {

...
} catch (IOException ex) {

...
} }

Java NIO - Path
• Since Java 7, the tools for working with files and directories have

changed. This was due to the limitations of the java.io.File class.
For example, it lacks a copy() method that allows you to copy a file
from one location to another (evidently, it's a necessary function).

• In addition, the java.io.File class has many methods that return
boolean values. On error, such a method returns false, rather than
throwing an exception, which makes diagnosing errors and
determining their causes very difficult.

• Instead of a single java.io.File class, the java.nio.file.Path interface
and the java.nio.file.Paths and java.nio.file.Files classes appeared.

since Java 7

Java NIO - Paths
• java.nio.file.Paths is a simple class that was created solely in order

to get an object of type Path from the passed string or URI.

since Java 7

public final class Paths {

private Paths() { }

public static Path get(String first, String... more) {
return Path.of(first, more);

}

public static Path get(URI uri) {
return Path.of(uri);

}
}

Java NIO - Path
• The java.nio.file.Path interface supports two types of operations:

syntactic operations (almost any operation that involves

manipulating paths without accessing the file system) and

operations over files referenced by paths.

• The java.nio.file.Path interface is an upgraded version of the well-

known java.io.File class, but the File class has kept a few specific

operations, so it is not deprecated and cannot be considered

obsolete.

• The Path object is a programmatic representation of a path in the file

system

Path basePath = Paths.get(“C:/Users/kgp/data");
Path fullPath = basePath.resolve("index.html");
System.out.println(“Full path: “ + fullPath);

//Full path: C:\Users\kgp\data\index.html

since Java 7

Java NIO - Path
Path path = Paths.get("C:/Windows/System32/cmd.exe");
System.out.println(“Path detalization: " + path);

//Path detalization: C:\Windows\System32\cmd.exe
System.out.println("toString(): " + path.toString());

//C:\Windows\System32\cmd.exe
System.out.println("getFileName(): " + path.getFileName()); //cmd.exe
System.out.println("getName(int index): " + path.getName(0)); //Windows
System.out.println("getNameCount(): " + path.getNameCount()); //3
System.out.println("subpath(0,2): " + path.subpath(0, 2));

//Windows\System32
System.out.println("getParent(): " + path.getParent());

//C:\Windows\System32
System.out.println("getRoot(): " + path.getRoot()); // C:\

System.out.println(path.endsWith("System32/cmd.exe")); //true

System.out.println(path.startsWith("C:/Windows")); //true

System.out.println(path.isAbsolute()); //true

Java NIO - Path
Path dir1 = Paths.get("/home/./joe/foo");
Path dir2 = Paths.get("/home/sally/../joe/foo");
System.out.println(dir1.normalize()); //\home\joe\foo
System.out.println(dir2.normalize()); //\home\joe\fo

String file = "manifest.mf"; //in the root of the application
Path p6 = Paths.get(file);
System.out.println("Absolute path to " + file + " is: " + p6.toAbsolutePath());
//check the real file path
try {

System.out.println("Real path to " + file + " is: " + p6.toRealPath());
} catch (IOException ex) {

System.out.println("There is not " + file + " in the root directory of this
application");
}

Java NIO - Path
/* Combining two paths */
Path p7 = Paths.get("/var");
System.out.format("%s%n", p7.resolve("log")); // \var\log

/* Creating a path between two paths */
Path p8 = Paths.get("C:\\Users");
Path p9 = Paths.get("C:\\Users\\Desktop\\testFile.txt");
System.out.println(p8.relativize(p9)); //Desktop\testFile.txt

Java NIO - Files
• NIO.2 comes with a set of brand new methods to accomplish the

most common tasks for managing files and directories, such as

create, read, write, move, delete, and so on, most of which are found

in the java.nio.file.Files class.

Path testFile1 =
Files.createFile(Paths.get("C:\\Users\\Username\\Desktop\\testFile111.txt"));

Path basePath = Paths.get("src/nio/filespath/data");
Path filePath = basePath.resolve("logging.properties");

/*Check if the file exists*/
LinkOption[] linkOptions = new LinkOption[]{LinkOption.NOFOLLOW_LINKS};
boolean pathExists = Files.exists(filePath, linkOptions});
System.out.println("File " + filePath + (pathExists == true ? " is exist“

: " doesn't exist"));
//File src\nio\filespath\data\logging.properties is exist

(public static Path createDirectory(Path dir, FileAttribute<?>... attrs) throws IOException
)

Java NIO - Files
…
/*Create subdirectory*/
Path subDirPath = basePath.resolve("subdir");
try {

Path newDir = null;
if (Files.exists(basePath, linkOptions)) {

newDir = Files.createDirectory(subDirPath);
System.out.println("Subdirectory " + newDir + " is created");

} else {
System.out.println("Parent directory " + basePath+ " doesn't exist");

}
} catch (FileAlreadyExistsException e) {

// the directory already exists
} catch (IOException e) {

//something else went wrong
e.printStackTrace();

}
//Subdirectory src\nio\filespath\data\subdir is created

Java NIO - Files
…
/*File copy*/
Path sourcePath = filePath;
Path destinationPath = basePath.resolve("logging-copy.properties");
try {

if (Files.exists(sourcePath, linkOptions)
&& Files.exists(destinationPath.getParent(), linkOptions)) {

Files.copy(sourcePath, destinationPath);
System.out.println("File " + sourcePath + " is copied to "

+ destinationPath);
} else {

System.out.println("Source file path " + sourcePath
+ " or/and destination parent directory path "
+ destinationPath.getParent() + " is wrong");

}
} catch (IOException e) {

e.printStackTrace();
}

//File src\nio\filespath\data\logging.properties
//is copied to src\nio\filespath\data\logging-
//copy.properties

Java NIO - Files…
/*File copy with replace*/
sourcePath = filePath;
destinationPath = basePath.resolve("logging-copy.properties");
try {

if (Files.exists(sourcePath, linkOptions)
&& Files.exists(destinationPath.getParent(), linkOptions)) {

Files.copy(sourcePath, destinationPath,
StandardCopyOption.REPLACE_EXISTING);

System.out.println("File " + sourcePath + " is copied with replace to "
+ destinationPath);

} else {
System.out.println("Source file path " + sourcePath

+ " or/and destination parent directory path "
+ destinationPath.getParent() + " is wrong");

}
} catch (IOException e) {

e.printStackTrace();
}

//File src\nio\filespath\data\logging.properties
//is copied with replace to
//src\nio\filespath\data\logging-copy.properties

Java NIO - Files…
/*File move*/
sourcePath = basePath.resolve("logging-copy.properties");
destinationPath = basePath.resolve("subdir/logging-moved.properties");
try {

if (Files.exists(sourcePath, linkOptions)
&& Files.exists(destinationPath.getParent(), linkOptions)) {

Files.move(sourcePath, destinationPath,
StandardCopyOption.REPLACE_EXISTING);

System.out.println("File " + sourcePath + " is moved to "
+ destinationPath);

} else {
System.out.println("Source file path " + sourcePath

+ " or/and destination parent directory path "
+ destinationPath.getParent() + " is wrong");

}
} catch (IOException e) {

e.printStackTrace();
}

//File src\nio\filespath\data\logging.properties
// is moved to src\nio\filespath\data\subdir\
l//ogging-moved.properties

Java NIO - Files…
/*File/directory delete – directory must be empty!!!*/
Path path = basePath.resolve("subdir/logging-moved.properties");
Path path1 = subDirPath;
try {

if (Files.exists(path, linkOptions)) {
Files.delete(path);
Files.delete(path1);
System.out.println("File " + path + " and directory " + path1

+ " are deleted");
} else {

System.out.println("File path " + path + " is wrong");
}

} catch (IOException e) {
//deleting file failed
e.printStackTrace();

}

// File src\nio\filespath\data\subdir\logging-
//moved.properties and directory
//src\nio\filespath\data\subdir are deleted

Java NIO - Files
List<String> lines =
Files.readAllLines(Paths.get("C:\\Users\\Username\\Desktop\\pushkin.txt"),
UTF_8);
for (String s: lines) {

System.out.println(s);
}

Stream<String> stream =
Files.lines(Paths.get("C:\\Users\\Username\\Desktop\\pushkin.txt"));
List<String> result = stream

.filter(line -> line.startsWith("Как"))

.map(String::toUpperCase)

.collect(Collectors.toList());
result.forEach(System.out::println);

