JAVA PROGRAMMING BASICS

Module 1: Java Overview

Training program

1. Java Fundamentals

2. Start programming with Java, create simple
console application

Classification of Data Types
Primitive types in java
Control Flow Statements
Arrays

P e

Module contents

Primitive types in Java
Signed and unsigned number presentation
Representation of entire unsigned integers in bin, oct, hex number formats
Twos-complement number representation
Floating Point Number Representation
The integer types
The char type
The float and double types
The boolean type
Variables and identifiers
Type Casting
Scope of variables
Brief overview of operators in Java
Main arithmetic operators
Increments and decrements
Relational operators, Ternary operator
Logical operators, Short-Circuit Logical operators
Bit wise operators
Bit shift operators

Oﬁerators Erecedence

Primitive types in Java

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators Rrecedence

Signed and unsigned number representations

Unsigned Binary Hex Signed numbers
numbers

0 0000 0000 00 0

1 0000 0001 01 +1

2 0000 0010 02 +2

I I I I

I I I I

I I I I

I I I I
127 01111111 7F +127
128 1000 0000 80 -128
129 1000 0001 81 -127
I I I I

I I I I

I I I I
254 11111110 FE -2
255 1111 1111 FF -1

2 -1 .
255
4 13 3

Negative Positive
half half

127 -128
8 bit number system

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁe rators Rrecedence

Integer to Binary Representation

43210

19 = 1001112 ¢+ 8- 40~ 2% +1~2" 4 §-2° =119

1902
18 1 9
1

| 0o

—_

2

o
al 22
0

N NN

Representation of unsigned integers in binary,
octal and hexadecimal number formats 1/2

decimal | binary octal | hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 () 7 74
8 1000 10 8
9 1001 11 9
10 1010 12 a

As with all numbering systems most significant digits are at left, least
significant digits are at right.

Representation of unsigned integers in binary,
octal and hexadecimal number formats 2/2

decimal binary octal hexadecimal
11 1011 1.3 b
12 1100 14 C
13 1101 15 d
14 1110 16 e
15 1111 7 f
16 10000 20 10
7 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators Rrecedence

- %
Negative Integer to Binary Representation

43210

19 =10011

43210

-19=-10011

01100 inversion
¥ 1

-19= 01101 2-complement number representation

CHECK:
-19+19=0

01101
* 10011

¥00000

overflow

Twos-complement number representation

Number in decimal Number in two s complement binary

0000 0000 0000 0101

0000 0000 0000 0100

0000 0000 0000 0010

0000 0000 0000 0001

5
4
3 0000 0000 0000 0011
2
1
0

0000 0000 0000 0000

= MIT1111 1111 1111

-2 1M111111 11111110

= M11T 11111111 1101

-4 111111111111 1100

=5 1M11 11111111 1011

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
~ Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators Rrecedence

Floating Point Representation

31 30 2322 0
Exponent | Significand
Sign Single Precision
63 62 52 51 0
Exponent Significand
Sign Double Precision

IEEE Standard for Floating-Point Arithmetic (IEEE 754)
e

https://en.wikipedia.org/wiki/IEEE_754

Floating Point Representation

16,625 = 1018461 =41« 2+ B-2%+1 . 24+ 2° +1.- 2%+ @ -2%+ 127 = 10,635

10 [2 ..625
10 | 5|2 2
0 4l 1.250
L7
— 0.250
0 . 2
0.500
C 2
1.000
1010.101 = 1.010101 - 2° exponent=3+ 127 =130 =10000010
: \
mantissa 3130 2322 0

01000001001010100000000000000000
sign float

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

The integer types

Integer Length Name or Type Range

8 bits byte —27t027 -1
16 bits short -2 0215 -1
32 bits int =280 p 28 = 1
64 bits long —263 102 -1

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

Unicode Character Table

! " # $ 1% | & ' + - /
0 1 2 3 4 5 6 7 ; = ?
@||A|B|/C||D| E||F||G K M O
Pl Q//R||S||T| U V| W [] _

a b c d e t g k m 0
p q r S t u v W { } DEL

https://unicode-table.com/en/

Basic Latin

Open in an individual page o

Range: 0000-007F
Quantity of characters: 128

type: alphabet
Languages: english, german, french,

italian, polish

https://unicode-table.com/en/
https://unicode-table.com/en/

The char type

charcl="z; //Usesingle quotes -
char c2 =122; //Char code in decimal (z) Basic Multilingual Plane (BMP).

Integer Length Name or Type Range
16 bits char \u0000' (or 0)
to "\uffff' (or 65,535).
000H Unicode (UCS-2) FFFH
128 \ / 144 \ / 1024 \ / 42916 \
00-7FH 370-3FFH 900H CFFH 3000H D7A3H
Basic Greek Various Chinese, Japanese, Korean (CJK)
Latin Indians

Unicode 1000,, - 10FFFFH - supplementary characters

char values are unsigned integer values

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
~ Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

The float and double types

Integer Length Name or Type Range
32 bits float -3.4E38 to 3.4E38
64 bits double -1.7E308 to 1.7E308

The float data type is a single-precision 32-bit IEEE 754 floating point

The double data type is a double-precision 64-bit IEEE 754 floating point

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

The boolean type

Integer Length Name or Type Range

- boolean true, false

The boolean data type has only two possible values: true and false

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

e — |
Variable declaration
Variable name

boolean result = false;

Type of variable boolean literal

A literal is a fixed value that doesn’t need further calculations
in order for it to be assigned to any variable.

Java is a strongly typed language

Variables

A variable has a name and stores a value of the

declared type

Type
int

int
double

double

Name

Value

number

sum

Stored only Integer

radius

drea

yi 5697 Stored only Integer

105.678 Stored only floating - point number

A4

493 734 Stored only floating - point number

20

ldentifiers

|dentifier i< a name ojyen to a variable, class or
method or package

|ldentifiers must start with a letter. The following
characters can be digits.

|dentifiers are case sensitive.

userName
user_name
_sys_varT
$change

Literals 1/2

Literal in Java refer to fixed values that do not
change during the execution of the program

Java supports several types of constants

nteger Literal (prefixes: O - for octal, Ox - for hexadecimal,
Real Literal (suffixes: F - for float) ~ Ob - for binary,
Character Literal (in'" suffixes: L - for long)
String Literal (in"")

Backslash Literal (in"\")
long baseDecimal =100 267 760 435L; long hexVal =0x10_BA 75;

long binVal =0b1 0000 _10 11; longoctVal=0 4 13;

ﬂﬁiﬁ ﬂﬁﬁﬁ“ﬁﬁrﬁ' =1 gg. 48F:Java 7 introduced the use of

underscores as part of the literal

byte b1 = 100;

short s2 = 1000;

int i3 =20000;

Literals 2/2

The suffix L is required when the
value of the literal is greater than
the maximum int

/

long k4 = 2345678923456L,

float f5 = 18.456F;

“\

double d6 =77.234; The suffix F is required

charc/7 ="'a";

boolean b8 = true;:

for any float literal value

double incl = 1.201762e2; [/120.1762

You can use a literal decimal value
in scientific notation

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

Type casting 1/2

Type casting: In computer science, type
conversion, typecasting, and coercion are different
ways of, implicitly or explicitly, changing an entity
of one data type into another.

Byte (a-bit short (16- R long (64-bit float (32-bit double(64-
signed bit signed signed signed floafclng- bit flqatmg-
integers) integers) integers) integers) point) point)

char(16-
bit
unsigned)

Implicit vs Explicit Casting

Implicit conversion results in automatic widening:
byte number = 10;

short bigNumber = number; //implicit casting
System.out.printin(number); //10
System.out.printin(bigNumber); //10

On the contrary, explicit casting is a forceful conversion, which
might result in loss of data:

short charCode = 336; //character O ('\u0150')
byte by = (byte) charCode; //explicit casting (0x50)
System.out.printin(charCode); //336
System.out.printin(by); //80

Type casting 2/2

long bigVal = 99L,;

int x1 = bigVal,// Wrong, needs a cast
int x2 = (int) bigVal;,// Ok

Int x3 = 99L,;// Wrong, needs a cast

int x4 = (int) 99,/ OK but /oss of data
Int x5 = 99;// default integer literal

2 5 e

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

Scope of variables

Here are the available scopes of variables:

Local variables (also known as method-local variables)
(they also may be defined within code constructs
such as if-else constructs, looping constructs, switch
statements etc.

Method parameters (also known as method arguments)

Instance variables (also known as attributes, fields, and
nonstatic variables)

Class variables (also known as static variables)

The scope of a variable ends when the brackets

of the block of code it’s defined in get closed.

Variables with the same name
in different scopes

You can’t define a static variable and an instance variable
with the same name in a class:

class MyPhone {

static boolean softKeyboard = true;

boolean softKeyboard = true; // Variable s already defined
} // in the scope.

Local variables and method parameters can’t be defined
with the same name:

void myMethod(int weight) {
int weight = 10; // Variable s already defined
} // in the scope.

Variables with the same name
in different scopes

A class can define local variables with the same name as
the instance or class variables, also referred to as
shadowing:

class MyPhone {
static boolean softKeyboard = true;
String phoneNumber;
void myMethod() {
boolean softKeyboard = true; //Variable shadowing
String phoneNumber; //Variable shadowing

}
}

S ———|
Local variable type inference - var keyword

Inference is a capability of the Java compiler to
determine the type of the local variable, by using

the information that is already available in the code —
like literal values, method invocations and their
declaration

The compiler infers the type using the information
that is already available in the code and adds it
to the bytecode it generates.

since Java 10

e ——— .
Local variable type inference - var keyword

public class VarKeyword ({

// var x = 5; //it isn't local variable
// static var y = 6; //it isn't local wvariable
{
var name = "Aqua Blue';
}
static {

var anotherlocalVar = 19876;

}

public static void main (String[] args) {

var a = 2; // int
var b = 2.5; // double
var ¢ = 'y'; // char
var d = true; // boolean
var e = "Hi"; // String

S
- . since Java 10

//

//

Local variable type inference - var keyword

var £ = 2L; // long
var g = 2F; // float
var h = 2D; // double
var i = (short) 2; // short
e = "Bye";

e = 5; //incompatible types: int can't
//be converted to String
int[] arr = {1, 2, 3};
for (var jJ = 0; jJ < 10; Jj++) {
System.out.println (arr[j]);
}
var nullVar = null; //Cannot infer type
// for local wvariable nullVar
var nullVar = (String) null;

since Java 10

|
Local variable type inference - var keyword

// var z; //Cannot use 'var' on wvariable
// without initializer
// var[] arr = {1,2,3}; //'wvar' isn't

// allowed as an element type
// of an array

// void someMethod(var a){ // Can't use
// as parameter type

I 090
since Java 10

|
Where you can and can’t use var

You can use var - for local variables:
For the variables defined within both instance and
static initializers;
Within a method — both instance and static (including
constructors);
For the variables defined in control statements like:
if-else, loops (for, while, do), switch statements etc;
Within try-with-resources statement;

You can't use var:
For static and instance variables (fields), for arrays;

For method parameter types, return types or
to the variable defined with catch handlers.

For variable that is not initialized or equals null.

|
since Java 10

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators Rrecedence

Brief overview of operators in java

Operators Associative
++ --+unary - unary ~ ! (<data_type>) RtolL
*/ % LtoR
+ - LtoR
<< >> >>> LtoR
< ><= >=instanceof LtoR
== l= LtoR
& LtoR
A LtoR
| LtoR
&& LtoR
| | LtoR
<boolean_expr> ? <exprl> : <expr2> Rtol
= #=l = 00= sl s acs an s R A= Rtol

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
~ Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

]
Main arithmetic operators

Operator Name Example Meaning
expression
= Multiplication |a* b atimesb
/ Division al/b a divided by
b
% Remainder a%b a the
(modulus) remainder
dividing a by
b
+ Addition a+b aplusb
- Subtraction a-b aminusb
char chl ="1"; //49 We can use char as operands.
char ch2 =2 //50 It is interpreted as integers.

System.out.printin(chl + ch2); //99

System.out.printin(chl & ch2); //49 & 50 = 00110001 & 00110010 = 00110000 = 48
—

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
~ Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

Increments and decrements

Expression Process Example End Result

i++ Add 1toa int i=10,x; i=11
variable after X=i++ x=10
use

++i Add 1toa int i=10,x; i=11
variable before | x=++i; x=11
use

i-- Subtract 1 from | int i=10,x; i=9
a variable after | x=i--; x=10
use

-i Subtract 1 int i=10,x; i=9
from a variable | x=--i; x=9
before use

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
~ Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators Rrecedence

S —
Relational operators

Example :
Operator Name p. Meaning
Expression

== test for equality a == Is a equalto O

= test for s |=null Is s not equal to null
inequality

< less than b<c Is b value less than ¢

value

> greater than d>5 Is d value less than 5

<= less than or e<=0 Is e value less or
equal equal than O

>= greater than or f>=0 Is f value greater than
equal or equalto 0

All relational operators returns boolean type value - true or false
_—

Ternary operator

Any expression that evaluates
to a boolean value.

4

boolean_expression ? expression_1 : expression_2

D

If true this expression is If false this expression is
evaluated and becomes the evaluated and becomes the
value entire expression. value entire expression.

boolean cond = true;
int x = cond? 25:17;

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
~ Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators Rrecedence

Logical operators

A B A|B A&B AAB 1A

false false false false false true
true false true false true false
false true true false true true
true true true true false false

| the OR operator
& the AND operator
A the XOR operator
I the NOT operator

We use logical operators for composite relational operators,
e.g. (a>0) | (a% 2==0),
(s ==t) & (s != null)
-

Short-Circuit Logical Operators

Meaning Short circuit?
&& and yes
& and no
| | or yes
| or no

If you use the | | and && forms, rather than

the | and & forms of these operators, Java will not
bother to evaluate the right-hand operand when the
outcome of the expression can be determined by
the left operand alone.

We use rather short circuit logical operators for composite

relational operators, e.g. (a>0) || (a % 2==0),

(s ==1t) && (s != null)
—_————————

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
~ Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

AND

OR

XOR

NOT

Bitwise Operators

int a = 10; // 00001010 = 10
int b = // 00001100 = 12
a 00000000000000000000000000001010 10
b 00000000000000000000000000001100 Lt
a &b 00000000000000000000000000001000 8
a 00000000000000000000000000001010 10
b 00000000000000000000000000001100 12
a | b 00000000000000000000000000001110 14
a 00000000000000000000000000001010 10
b 00000000000000000000000000001100 L
a b 00000000000000000000000000000110 6
a 00000000000000000000000000001010 10
~a 11111111111111111111111111110101 -11

<<

Left

>>

Right

Bit shift operators 1/2

int a = 3; // ...00000011 = 3

int b =-4; // ...11111100 = -4
a 00000000000000000000000000000011 3
a << 2 00000000000000000000000000001100 12
b 11111111111111111111111111111100 -4
b<< 2 11111111111111111111111111110000 -16
a 00000000000000000000000000000011 3
a > 2 00000000000000000000000000000000 0
b 11111111111111111111111111111100 -4
b>»>2 11111111111111111111111111111111 -1

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
~ Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ Oﬁerators ﬁrecedence

Bit shift operators 2/2

int a= 3; // ...00000011
int b =-4; // ...11111100 = -4

[
W

a 00000000000000000000000000000011 3
>>> a >>> 2 00000000000000000000000000000000 0
Right 0 b 11111111111111111111111111111100 -4

b >»>»>2 00111111111111111111111111111111 +big

Module contents

* Primitive types in Java
- Signed and unsigned number presentation
- Representation of entire unsigned integers in bin, oct, hex number formats
- Twos-complement number representation
- Floating Point Number Representation
- The integer types
- The char type
- The float and double types
- The boolean type
~ Variables and identifiers
- Type Casting
Scope of variables
~ Brief overview of operators in Java
- Main arithmetic operators
~ Increments and decrements
- Relational operators, Ternary operator
~ Logical operators, Short-Circuit Logical operators
- Bit wise operators
- Bit shift operators

~ OEerators Erecedence

Operator Precedence 1/4

Precedence Operator Description Association
1 . Member LtoR
0 Function call LtoR
[Array element LtoR
reference
2 ++,-- Postincrement, RtolL
Postdecrement
3 ++,-- Preincrement, RtolL
Predecrement
+,- Unary plus, unary | RtolL
minus
~ Bitwise RtolL
compliment
! Boolean NOT RtolL

The operator on top has the highest precedence, and operators within the

same group have the same precedence and are evaluated from left to right

Operator Precedence 2/4

Precedence Operator Description Association
4 new Create object RtolL
(type) Type cast RtolL
5 * 1% Multiplication, LtoR
division, remainder
6 +,- Addition, LtoR
subtraction
+ String LtoR
concatenation

Operator Precedence 3/4

Precedence Operator Description Association
7 <<l Sh SoS Shift operator LtoR
8 € = 5 5o Less than, Less than or LtoR
equal to, greater than,
greater than or equal to
instanceof Type comparison LtoR
=== Value equality and LtoR
inequality
==, |= Reference equality and
inequality
10 & Boolean AND LtoR
& Bitwise AND

Operator Precedence 4/4

Precedence Operator Description Association
11 4 Boolean XOR LtoR
12 A Bitwise XOR L toR
| Boolean OR LtoR
13 | Bitwise OR LtoR
14 && Conditional AND LtoR
15 | | Conditional OR LtoR
7 Conditional Ternary LtoR
Operator
16 =, +=, -5, %=, /= | Assignment RtolL
%=, &=, =, | =, Operators
<<= B> = B>>=

