

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

Primitive types in Java

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

Integer to Binary Representation

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

Negative Integer to Binary Representation

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

IEEE Standard for Floating-Point Arithmetic (IEEE 754)

https://en.wikipedia.org/wiki/IEEE_754

Floating Point Representation

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

https://unicode-table.com/en/

Unicode Character Table

https://unicode-table.com/en/
https://unicode-table.com/en/

Basic Multilingual Plane (BMP).

Unicode 1000H - 10FFFFH - supplementary characters

char c1 = 'z'; //Use single quotes
char c2 = 122; //Char code in decimal (z)

char values are unsigned integer values

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

Variable declaration

Java is a strongly typed language

A literal is a fixed value that doesn’t need further calculations
in order for it to be assigned to any variable.

or package

(prefixes: 0 - for octal, 0x - for hexadecimal,
0b - for binary,
suffixes: L - for long)

(suffixes: F - for float)

(in ' ')

(in " ")

(in '\ ')

Java 7 introduced the use of
underscores as part of the literal

long baseDecimal = 100_267_760_435L; long hexVal = 0x10_BA_75;
long binVal = 0b1_0000_10_11; long octVal = 0_4_13;
float floatLiteral = 1_00. 48F;

double incl = 1.201762e2; //120.1762

You can use a literal decimal value
in scientific notation

The suffix L is required when the
value of the literal is greater than
the maximum int

The suffix F is required
for any float literal value

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

Implicit vs Explicit Casting

Implicit conversion results in automatic widening:
byte number = 10;
short bigNumber = number; //implicit casting
System.out.println(number); //10
System.out.println(bigNumber); //10

On the contrary, explicit casting is a forceful conversion, which
might result in loss of data:
short charCode = 336; //character Ő ('\u0150')
byte by = (byte) charCode; //explicit casting (0x50)
System.out.println(charCode); //336
System.out.println(by); //80

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

Scope of variables
Here are the available scopes of variables:

• Local variables (also known as method-local variables)
(they also may be defined within code constructs
such as if-else constructs, looping constructs, switch
statements etc.

• Method parameters (also known as method arguments)

• Instance variables (also known as attributes, fields, and
nonstatic variables)

• Class variables (also known as static variables)

The scope of a variable ends when the brackets
of the block of code it’s defined in get closed.

Variables with the same name
in different scopes

• You can’t define a static variable and an instance variable
with the same name in a class:

class MyPhone {
static boolean softKeyboard = true;
boolean softKeyboard = true; // Variable s already defined

} // in the scope.

• Local variables and method parameters can’t be defined
with the same name:

void myMethod(int weight) {
int weight = 10; // Variable s already defined

} // in the scope.

...

Variables with the same name
in different scopes

• A class can define local variables with the same name as
the instance or class variables, also referred to as
shadowing:

class MyPhone {
static boolean softKeyboard = true;
String phoneNumber;
void myMethod() {

boolean softKeyboard = true; //Variable shadowing
String phoneNumber; //Variable shadowing

}
}

Local variable type inference - var keyword

since Java 10

• Inference is a capability of the Java compiler to
determine the type of the local variable, by using
the information that is already available in the code –
like literal values, method invocations and their
declaration

• The compiler infers the type using the information
that is already available in the code and adds it
to the bytecode it generates.

Local variable type inference - var keyword

public class VarKeyword {

// var x = 5; //it isn't local variable

// static var y = 6; //it isn't local variable

{

var name = "Aqua Blue";

}

static {

var anotherLocalVar = 19876;

}

public static void main(String[] args) {

var a = 2; // int

var b = 2.5; // double

var c = 'y'; // char

var d = true; // boolean

var e = "Hi"; // String

... since Java 10

Local variable type inference - var keyword
...

var f = 2L; // long

var g = 2F; // float

var h = 2D; // double

var i = (short) 2; // short

e = "Bye";

// e = 5; //incompatible types: int can't

//be converted to String

int[] arr = {1, 2, 3};

for (var j = 0; j < 10; j++) {

System.out.println(arr[j]);

}

// var nullVar = null; //Cannot infer type

// for local variable nullVar

var nullVar = (String) null;

... since Java 10

Local variable type inference - var keyword
...

// var z; //Cannot use 'var' on variable

// without initializer

// var[] arr = {1,2,3}; //'var' isn't

// allowed as an element type

// of an array

// void someMethod(var a){ // Can't use

// as parameter type

}

}

since Java 10

Where you can and can’t use var

since Java 10

You can use var - for local variables:
• For the variables defined within both instance and

static initializers;
• Within a method – both instance and static (including

constructors);
• For the variables defined in control statements like:

if-else, loops (for, while, do), switch statements etc;
• Within try-with-resources statement;
You can't use var:
• For static and instance variables (fields), for arrays;
• For method parameter types, return types or

to the variable defined with catch handlers.
• For variable that is not initialized or equals null.

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

char ch1 = '1'; //49

char ch2 = '2'; //50

System.out.println(ch1 + ch2); //99

System.out.println(ch1 & ch2); //49 & 50 = 00110001 & 00110010 = 00110000 = 48

We can use char as operands.
It is interpreted as integers.

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

Relational operators

Operator Name
Example

Expression
Meaning

== test for equality a == 0 Is a equal to 0

!= test for
inequality

s != null Is s not equal to null

< less than b < c Is b value less than c
value

> greater than d > 5 Is d value less than 5

<= less than or
equal

e <= 0 Is e value less or
equal than 0

>= greater than or
equal

f >= 0 Is f value greater than
or equal to 0

All relational operators returns boolean type value - true or false

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

We use logical operators for composite relational operators,
e.g. (a > 0) | (a % 2 == 0),

(s == t) & (s != null)

We use rather short circuit logical operators for composite
relational operators, e.g. (a > 0) || (a % 2 == 0),

(s == t) && (s != null)

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

• Primitive types in Java
⁻ Signed and unsigned number presentation
⁻ Representation of entire unsigned integers in bin, oct, hex number formats
⁻ Twos-complement number representation
⁻ Floating Point Number Representation
⁻ The integer types
⁻ The char type
⁻ The float and double types
⁻ The boolean type
⁻ Variables and identifiers
⁻ Type Casting
⁻ Scope of variables
⁻ Brief overview of operators in Java
⁻ Main arithmetic operators
⁻ Increments and decrements
⁻ Relational operators, Ternary operator
⁻ Logical operators, Short-Circuit Logical operators
⁻ Bit wise operators
⁻ Bit shift operators
⁻ Operators precedence

Module contents

The operator on top has the highest precedence, and operators within the

same group have the same precedence and are evaluated from left to right

