

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

abstract double int provides…with♦♦ throws

assert*** else interface public transitive♦♦

boolean enum♦ long record■ transient

break extends module♦♦ requires♦♦ true

byte false native return try

case final non-sealed■■ sealed■■ uses♦♦

catch finally null short var♦♦

char float new static void

class for open♦♦ strictfp**+* volatile

const* goto* opens…to♦♦ super while

continue if package switch yield■

exports♦♦ implements permits■■ synchronized

default import private this

do instanceof protected throw

Keywords in the Java programing language

* not used, ** 1.2 added, *** 1.4 added, ♦ 5 added, ♦ ♦ 9 added, ■14 added, ■ ■15 added

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

7. The compiler forces local variable to be initialized when it is used in other

statements.

Local variables: initialization and lifetime
public static void main(String[] args) {

/*The local variable must be explicitly initialized.*/
int localVar = 0;
/*The compiler forces it to be initialized when it is used

in other statements.*/
System.out.println("Local int localVar= " + localVar);

}

void anotherMethod() {
/*The local variable must be explicitly initialized.
int a = 0;
/*The compiler forces it to be initialized when it is used

in other statements.*/
System.out.println("a=" + a);

}

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

Argument types passed
to a switch and if statements

int a=10, b=20, c=30; //if variable has final modifier then it is constant
switch (a) {

/*The value of a case label must be a compile-time constant value*/
case b+c: System.out.println(b+c); break;
case 10*7: System.out.println(10*7512+10); break;

}

The enhanced switch

since JDK 14

enhanced switch is a statement

a statement have to end with ;

terminates the switch
and returns result

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

iterator

must change in the body of the loop

iterator

must change in the body of the loop

while vs do-while loop

iterator

must change in the body of the loop

You may define multiple initialization statements

and/or multiple update clause. But there can be only one termination condition for a for loop.

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

The break and continue statements 1/2
public static void main(String[] args){

int i = 0;
while(true) {

if (i > 10) {
break;

}
System.out.println("i="+i);
i++;

}
System.out.println("Program exit");

}

Output:
i=0
i=1
...
i=10
Program exit

break terminates a for, while, or do-while loop and switch case

continue terminates a current iteration for, while, or do-while loop

Continue with label

You can use a labeled continue statement to skip an iteration
of the outer loop.

Output:

0

0 1

0 2 4

0 3 6 9

0 4 8 12 16

outer:

for (int i = 0; i < 5; i++) {

for (int j = 0; j < 5; j++) {

if (j > i) {

System.out.println("");

continue outer;

}

System.out.print(" " + (i * j));

}

}

The return statement

public static void main(String args[]) {
boolean t = true;
System.out.println(“Before return statement");

if(t) // if commented out it would be an unreachable
// operator System.out.println compiler error

return;
System.out.println(“Program exit");

}

Output:
Before return statement

return terminates a method

The return statement (2 statements)

public static void main(String args[]) {
System.out.println(someMeth(2, 1));
System.out.println(someMeth(Integer.MAX_VALUE, 1));

}
public static int someMeth(int a, int b) {

if (a == Integer.MAX_VALUE || b == Integer.MAX_VALUE) {
return 0;

}
return a + b;

} Output:
3
0

return terminates a method

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

Studies on approximately 100,000 lines of C code determined that roughly
90 percent of the goto statements were used purely to obtain the effect
of breaking out of nested loops

Module contents

•Control Flow Statements
⁻ Identifiers and Literals
⁻ Local variables: initialization and lifetime
⁻ Declaring a Variable as a Constant
⁻ The if-then and if-then-else statements
⁻ The switch statement
⁻ Loops: the while, do-while and for statements
⁻ The break and continue statements
⁻ The goto keyword
⁻ Program exit

