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a b s t r a c t

Plant diseases can drastically abate the crop yields as the degree of disease outbreak is getting severe
around the world. Therefore, plant disease management has always been one of the main objectives of
any crop improvement program. Plant disease resistance (R) genes have the ability to detect a pathogen
attack and facilitate a counter attack against the pathogen. Numerous plant R-genes have been used with
varying degree of success in crop improvement programs in the past and many of them are being
continuously exploited. With the onset of recent genomic, bioinformatics and molecular biology tech-
niques, it is quite possible to tame the R-genes for efficiently controlling the plant diseases caused by
pathogens. This review summarizes the recent applications and future potential of R-genes in crop
disease management.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Plant pathogen interaction is a well understood mechanism
which involves the activation of signals sometimes resulting in
a rapid defense response against an array of plant pathogens. This
response helps the host plant to avoid further infection of the
disease. Induction of plant defense signaling involves the recogni-
tion of specific pathogen effectors by the products of specialized
host genes called R-genes [13]. Numerous individual plant resis-
tance (R) genes have already been characterized and are being
efficiently used in crop improvement research programs. Using
plant resistance genes for developing disease-resistant varieties is
a convenient alternative to other measures like pesticides or other
chemical control methods employed to protect crops from diseases.
Benefits of using the plant resistance genes in resistance breeding
programs include the efficient reduction of pathogen growth,
minimal damage to the host plant, zero input of pesticides from the
farmers and most importantly the environment friendly nature of
Hypersensitive reaction; LRR,
; Pto, Pseudomonas tomato
nospora parasitica 5; RPS2,
rleukin-1-receptor homology
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such crops. However, in case of conventional breeding for resis-
tance, the introgression of resistance genes from one species into
the gene pool of another by repeated backcrossing is a long-term
process which usually takes many hybrid generations before the
backcrossing occurs. It is assumed that the complete functional
studies, cloning, characterization and genetic transformation of
plant resistance genes could help the researchers to overcome
these problems in near future.

Efficient and sustained control of pathogens such as bacteria,
fungi, oomycetes, viruses, nematodes and insects is an exigency for
all agricultural systems. In spite of the continued release of new
resistant cultivars, the global yield losses caused by pathogens are
substantial [8,188]. Plant pathogens not only decrease the crop
yields, they also lower the crop quality by releasing toxins that
affect human health. Moreover, pathogens are constantly becoming
resistant to existing resistance genes and pesticides. This situation
therefore demands some alternatemethods of disease control. Crop
improvement programs based on plant disease resistance genes are
being optimized by incorporating molecular marker techniques
and biotechnology. Therefore, plant resistance genes need to be
studied extensively to alleviate the existing problem of pest and
diseases apart from the abiotic challenges [147]. Facing selective
pressure imposed by the pathogens, plants have evolved post
invasion resistance mechanisms, often controlled by dominant
resistance genes, whose products directly or indirectly detect
specific pathogen effectors and trigger effective defense responses
[40,122]. R protein-triggered resistance to various pathogens is
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normally race-specific and only effective against pathogen strains
expressing the cognate effector protein (Avr protein) recognized by
the R protein. This resistance is often associated with a hypersen-
sitive response (HR), which is manifested as rapid death of the
invaded cell and in some cases a few surrounding cells
[89,96,179,260]. The structural and functional analysis of plant
resistance genes and R-gene loci is relevant for assembling various
resistance sources effectively and for engineering new strategies for
disease resistance in agriculture. Apart from that, it is highly
desirable to understand the plantepathogen interaction in order to
achieve the said goals. These aspects have been discussed in detail
later in the present review which would be beneficial for
researchers engaged in plant disease control based projects. The
present article also highlights the concernment of many recent
investigations regarding the plant resistance genes and their
dispensation in the field of plant disease management strategies.

2. Plant basal disease resistance

Plants possess two major types of disease resistance, basal
defense and R-gene mediated defense (Fig. 1). Basal defense, which
can be a constituent of both non-host and host resistance, provides
first line of defense to the infection by a wide range of pathogens.
Often, the plant disease resistance is cultivar or accession specific
which is referred as host resistance whereas non-host resistance is
the resistance against pathogens throughout all members of
a plant species [95,97,254] that is expressed when a plant comes
into contact with a pathogen which is incapable of provoking any
disease [98]. Elicitors of basal defense can be plant cell wall-
derived components released by hydrolytic activity of enzymes
secreted by invading pathogens, but also common features of the
pathogen, referred as pathogen-associated molecular patterns
(PAMPs), such as lipopolysaccharides, chitins, glucans and flagel-
lins [187,222,236,325]. Non-pathogens as well as pathogens can
trigger a basal resistance in plants due to the widespread presence
of these molecular components in their cells [69]. However,
adapted microbes express a suite of effector proteins that often act
to suppress these defenses. Subsequently, plants have evolved
other receptors (R proteins) that detect these pathogen effectors
and activate strong defenses [19].

3. R-gene mediated pathogen resistance

Phytopathogens produce certain molecules called ‘effectors’,
encoded by Avr (avirulence) genes, which are delivered directly into
the plant cells during initial stage of infection. These effectors either
Fig. 1. Plant pathogen interaction and d
change the physiological state of host plant in order to benefit
pathogen colonization or are used to interrupt the activation of host
plant defenses [44,91]. However, plants have subsequently devel-
oped a form of immunity that is based on perception of these
proteins [185] by host resistance proteins called R-gene mediated
pathogen resistance.

In gene-for-gene relationships, a plant carrying a resistance
gene resists pathogen races with the corresponding effectors
[67,132,281]. The effectors found in bacteria, virus, nematodes,
fungus, oomycetes and insects cause a plant pathogen to elicit
a resistance response in a host plant (Fig. 1). The effector genes are
defined by corresponding resistance genes of which a relatively
large number have now been cloned [162]. This resistance response
is appended with another reaction called hypersensitive reaction
(HR) which is a form of programmed cell death. The signaling
cascade behind the HR is triggered either when an appropriate
disease resistance gene recognizes an effector or by an elicitor of
plant defense responses recognized by a specific receptor [177,184].
Either of these signals accompanied by other factors like influx of
Ca2þ ions from the extracellular space and/or anion flux results in
an oxidative burst producing reactive oxygen intermediates (ROIs)
and defense gene activation, finally resulting in development of
local and systemic disease resistance [233,316,318].

Awell characterized example of HR elicitation through gene-for-
gene interaction is provided by the tomato (Solanum lycopersicon)
Cf-9 gene, which confers resistance to races of the fungus Clado-
sporium fulvum expressing the Avr9 gene [279]. Treatment of leaves
of Cf-9 tomato or transgenic Cf-9 tobacco (Nicotiana tabacum) with
the Avr9 peptide induces HR [90] and Avr9-treated Cf-9 tobacco cell
cultures showed rapid production of ROS and activation of MAP
(Mitogen Activated Protein) kinases and calcium-dependent
protein kinases [220,221]. The interaction between rice (Oryza
sativa) and the fungal pathogen Magnoporthe grisea (Hebert) Barr
(anamorph Pyricularia grisea Sacc.) causing the devastating rice
blast disease is another example of well documented gene-for-gene
system [134,247,278].M. grisea has the Avr-Pita gene containing the
C-terminal 176 amino acids which functions as an elicitor molecule
that directly binds the Pita protein of rice and triggers a signal
cascade leading to resistance [113].

Despite several studies and intense efforts with numerous sets
of R and Avr proteins [113,266], the interaction between R and Avr
proteins remained inexplicit and the insufficiency of verifiable R-
Avr interactions led to the formulation of the ’guard hypothesis’
[165,270,279,280]. According to this model, the R proteins activate
resistance when they interact with another plant protein known as
guardee protein that is targeted and modified by the pathogen in
evelopment of disease resistance.
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order to create an appropriate environment. Resistance is initiated
when the R protein detects an attack of its guardee or, in some cases
when the R protein recognizes the product of the pathogen attack
[244], which might not necessarily involve direct interaction
between the R and Avr proteins [165], (Fig. 2). To date, the most
convincing evidence for the guard hypothesis has been found in
Arabidopsis thaliana bacterial R-Avr systems [158] where RIN4
(RPM1- interacting protein 4) was identified as a cellular protein
that is required for the resistance to Pseudomonas syringae pv.
tomato mediated by RPM1 and RPS2. The RIN4 (guardee) is modi-
fied in various ways, depending on the Avr that it associates with,
and these modifications then serve to activate the corresponding R
protein (guard). Another example is the cleavage of the A. thaliana
kinase PBS1 (guardee) by the cysteine protease AvrPphB from
P. syringae pv. tomato, which results in activation of RPS5 (guard)-
mediated resistance [244]. Recently, it was shown that AvrPphB,
a cysteine protease, binds PBS1 and cleaves it, which triggers RPS5-
mediated resistance, indicating that RPS5 might sense the integrity
of PBS1 [242,243].

Several genes have been implicated in the regulation of resis-
tance gene function; of these,Rar1 and Sgt1 are among the most
extensively studied genes. It has been reported that Rar1 and Sgt1
are required in multiple R-gene mediated and non-host resistance
responses to a variety of pathogens [198,199,234]. A notable
example is in barley where the regulation of Mla transcript accu-
mulation is not constitutive and that induction is coordinately
controlled by recognition-specific factors [88]. Rar1 from barley has
been identified as a required component for resistance against
powdery mildew (Blumeria graminis f. sp. Hordei) mediated by
Mla12 [274] which is required for a subset of R-gene mediated
resistance responses in monocot and dicot plant species
[155,182,237,246]. Sgt1 interacts with Rar1, and contributes to R-
gene mediated resistance [7,154,155] although recently, Bhaskar
et al. [21] demonstrated that Sgt1, but not Rar1, is essential for the
RB-mediated broad-spectrum resistance to potato late blight.
Similarly, Hein et al. [99] reported that Hsp90 (heat shock protein
90), a molecular chaperone and one of the most abundant proteins
expressed in cells was found as a required component for Mla13-
mediated race-specific resistance.

4. Major classes of R proteins

Plant resistance genes can be broadly divided into eight groups
based on their amino acid motif organization and their membrane
Fig. 2. Guard hypothesis e the plant R proteins (guard) are associated with the endogeno
interaction of effector pathogen proteins with the host proteins, causes a change in their stru
signaling cascade is triggered against the microbial evasion.
spanning domains (Fig. 3, Table 1). The LRRs (Leucine rich repeats)
represents the components having an important role for recogni-
tion specificity and these domains are present in the majority of R
proteins [121].

First major class of R-genes include the genes encoding for
cytoplasm proteins with a nucleotide-binding site (NBS), a C-
terminal leucine rich repeat (LRR) and a putative coiled coil domain
(CC) at the N- terminus. The examples of this class of resistance
genes include the P. syringae RPS2 and RPM1 resistance genes of
Arabidopsis and the tomato Fusarium oxysporum resistance gene I2.
The second class of resistance genes consists of cytoplasmic
proteins which possess LRR and NBS motifs and an N-terminal
domain with homology to the mammalian toll-interleukin-1-
receptor (TIR) domain. The tobacco N gene, flax L6 gene and RPP5
gene are a few examples categorized under this class [146]. Third
major class of resistance genes family devoid of NBS motif consists
of extra cytoplasmic leucine rich repeats (eLRR), attached to
a transmembrane domain (TrD). eLRRs are known to play an
important role for certain defense proteins such as, poly-
galacturonase inhibiting proteins (PGIPs) [119] even though they
are not directly involved in pathogen recognition and activation of
defense genes [121,256]. The C. fulvum resistance genes (Cf-9, Cf-4
and Cf-2) having an extracellular LRR (eLRR), a membrane span-
ning domain, and a short cytoplasmic C terminus [150] are some
examples of this class of resistance genes. The rice Xa21 resistance
gene for Xanthomonas is an example of the fourth class of resistance
genes which consists of an extracellular LRR domain, a trans-
membrane domain (TrD) and an intracellular serine-threonine
kinase (KIN) domain [252].

The fifth class of resistance genes contain the putative extra-
cellular LRRs, along with a PEST (Pro-Glu-Ser-Thr) domain for
protein degradation (found only in Ve2, and not Ve1), and short
proteins motifs (ECS) that might target the protein for receptor
mediated endocytos (e.g. tomato Ve1 and Ve2 genes) However,
these Ve1 and Ve2 proteins have recently been proposed as PAMP
receptors [270].

The Arabidopsis RPW8 protein is an example of the sixth major
class of resistance genes which contains a membrane protein
domain (TrD), fused to a putative coiled coil domain (CC) [299]
whereas, the seventh major class of resistance genes includes the
Arabidopsis RRS1-R gene conferring resistance to the bacterial
phytopathogen Ralstonia solanacearum, and it is a new member of
the TIReNBSeLRR R protein class. RRS1-R has a C-terminal exten-
sion with a putative nuclear localization signal (NLS) and a WRKY
us host protein (guardee) which are common target proteins for the pathogens. The
cture which is then recognized by the guard proteins. As a result, a pathogen response



Fig. 3. Major classes of plant resistance (R) genes based on the arrangement of the functional domains. LRR e Leucine rich repeats; NBS e Nucleotide-binding site; TIRToll/
Interleukin-1- receptors; C-C e Coiled coil; TrD e Transmembrane domain; PEST e Protein degradation domain (proline-glycine-serine-threonine); ECS e Endocytosis cell
signaling domain; NLS e Nuclear localization signal; WRKY e Amino acid domain; HM1 e Helminthosporium carbonum toxin reductase enzyme.
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domain [52,53]. TheWRKY domain is a 60 amino acid region that is
defined by the conserved amino acid sequence WRKYGQK at its N-
terminal end, together with a novel zinc-finger-like motif.

The eighth major class of resistance genes includes the enzy-
matic R-genes which contain neither LRR nor NBS groups. For
example the maize Hm1 gene which provides protection against
southern corn leaf blight caused by the fungal pathogen Cochlio-
bolus carbonum [117]. Unlike other resistance genes, Hm1 encodes
the enzyme HC toxin reductase, which detoxifies a specific cyclic
tetrapeptide toxin produced by the fungus (HC toxin) that is
essential for pathogenicity. Therefore, cereal resistance genes like
Hm1 can be seen to encode a range of different proteins that in
some cases have obviously very different functions. Another
notable example, Pto protein in P. syringae contains a Ser-Thr kinase
domainwithout LRRs [161] whereas, the Rpg1 gene of barley which
confers resistance to stem rust encodes a receptor kinase-like
protein with two tandem protein kinase (kinaseekinase) domains
and does not contain a strong membrane-targeting motif and
known receptor sequences [31].
Table 1
Major classes of plant resistance genes e LRR e Leucine rich repeats; NBS e Nucleotid
membrane domain; PESTeAmino acid domain; ECSe Endocytosis cell signaling domain;
Helminthosporium carbonum toxin reductase enzyme.

S. no Major R-gene classes Domains

LRR NBS TIR Kinase

I NBSeLRReTIR U U U X
II NBSeLRReCC U U X X
III LRReTrD U X X X
IV LRReTrDeKinase U X X U

V TrDeCC X X X X
VI TIReNBSeLRReNLS- WRKY U U U X
VII LRReTrDePESTeECS U X X X
VIII Enzymatic R-genes X X X U

X X X X

U ¼ present.
X ¼ absent.
Though most of the resistance genes show dominant inheri-
tance, recessive resistance is fairly common in viral systems [130],
(Section 4.5) Recessive resistance genes in bacterial and fungal
plant pathogen interactions have also been reported, such as barley
mlo [32], Arabidopsis RRS1-R [53], rice xa13 [42], and xa5 [106,116].

With the onset of functional genomics approaches and complete
genome sequencing of some important crop plants, the identifi-
cation and deployment of R-genes has become easier. Numerous
resistance genes conferring resistance against a range of pathogens
have been successfully used in development of transgenic crops.
Therefore, the possibility of discerning some novel classes of
resistance genes in near future cannot be ruled out.

4.1. Bacterial resistance genes

A number of plant resistance genes conferring resistance against
bacterial attack have been studied so far (Table 2) and for the
majority of plant diseases, the genetics of susceptibility are less
tangible. It has been known that bacterial pathogens of both plants
e-binding site; TIR e Toll/Interleukin-1- receptors; CC e Coiled coil; TrD e Trans-
NLSeNuclear localization signal;WRKYeAmino acid domain; HC toxin reductasee

Example

CC TrD PEST ECS NLS WRKY

X X X X X X N, L6, RPP5
U X X X X X I2, RPS2, RPM1
X U X X X X Cf-9, Cf-4, Cf-2
X U X X X X Xa21
U U X X X X RPW8
X X X X U U RRS1R
X U U U X X Ve1, Ve2
X X X X X X Pto, Rpg1
X X X X X X Hm1



Table 2
Bacterial pathogens and interacting Avr-genes and R-genes.

Pathogen Host Avr-gene R-gene Reference

Xanthomonas
campestris

Capsicum
annumm

AvreBs2 Bs2 [177,259]

Xanthomonas
oryzae

Oryza sativa e NPR1 [39]
AvreXa1 Xa1 [321]
AvreXa21 Xa21 [252]

Pseudomonas
syringae pv
tomato

Lycopersicum
esculentum

AvrePto,
AvrePtoB

Pto [1,135,161,223]

P. syringae Arabidopsis
thaliana

AvrRpm1,
AvrB

RPM1 [50,82,105,263]

AvrRpt2 RPS2 [17,102,176,304]
AvrPphB RPS5 [108,257,301]
AvrRps4 RPS4 [77,101]
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and animals deliver virulence proteins into the host cytoplasm via
the type-III secretion system (T3SS), also called injectisome [54]
which enables Gram negative bacteria to secrete and inject path-
ogenicity proteins into the cytosol of eukaryotic host cells [71,94].
The T3SS is encoded by hrp (HR and pathogenicity) and hrc (HR and
conserved) genes, whose mutations eliminate bacterial pathoge-
nicity in susceptible host plants and the ability to elicit HR in non-
host or cultivar-specific resistant plants. Many of the T3SS effector
proteins have been shown to be dependent on molecular chaper-
ones, which keep the effector in a partially unfolded form in the
bacterial cytoplasm [255]. The emergent results on their role in
pathogenesis have indicated that they act as molecular double
agents betraying the pathogen to plant defenses in some interac-
tions and suppressing host defenses in others [181].

In rice, resistance and susceptible alleles of Xa27 encode iden-
tical proteins however, expression of only the resistance allele
occurs when a rice plant is challenged by bacteria harboring
AvrXa27, whose product is a nuclear localized T3SS effector.
Induction of Xa27 occurs only in the immediate vicinity of infected
tissue, whereas ectopic expression of Xa27 results in resistance to
otherwise compatible strains of the pathogen. The Xa27 specificity
Table 3
Fungal pathogens and interacting R-genes.

Pathogen Host

Blumeria graminis Hordeum vulgarae

Cochliobolus carbonum Zea mays
Cladospoium fulvum Lycopersicum

esculentum

Erysiphe orontii, E. cichoracearum
and Oidium lycopersici

Arabidopsis thaliana

Fusarium oxysporium Lycopersicum esculentum
Melamspora lini Linum usitatissimum

Magnoporthe grisea Oryza sativa
Puccinia sorghi Zea mays
Puccinia triticina Triticum aestivum
Puccinia graminis f sp. tritici Hordeum vulgarae

Verticillium alboeatrum Lycopersicum esculentum
Mentha arvensis
Mentha longifolia

Verticillium dahliae Lycopersicum esculentum
toward incompatible pathogens involves the differential expression
of the resistance gene in presence of the AvrXa27 effector [85]. A
dominant rice gene Os8N3 is an exception as it is up- regulated by
a bacterial type-III effector protein, and that confers gene-for-gene-
specified disease susceptibility [126].

Some bacterial resistant plant resistance genes may confer
resistance against unrelated or distantly related pathogens. Zhao
et al. [323] demonstrated the feasibility of non-host resistance gene
transfer between two cereal crops maize and rice. They proposed
that a maize non-host resistance gene Rxo1 recognizes a rice
pathogen, Xanthomonas oryzae pv. oryzicola and causes bacterial
streak disease. Interestingly, Rxo1 was also found to confer resis-
tance to the unrelated pathogen Burkholderia andropogonis, known
to cause bacterial stripe of sorghum and maize indicating that the
same gene controls resistance to both pathogens and non-patho-
gens of maize. The function of Rxo1 in rice thus demonstrates that
an NBS-LRR type of resistance gene can be effectively transferred
between distantly related cereals [323].
4.2. Fungal resistance genes

Fungal diseases are rated either the most important or second
most important factor contributing to yield losses in almost all the
major crops [300]. So far, several fungal resistance genes (Table 3)
have been reported and used in crop improvement programs.
However, the sequence variation occurring within the central LRR
domain and the variation in LRR copy number of the gene plays an
important role in determining recognition specificity [27,141]. For
example, the sequence variations in tomato Cf-4 and Cf-9 genes
play an important role in determining recognition specificity,
which confer resistance to biotrophic leaf mold pathogen Clado-
sporium and induce a hypersensitive response (HR) upon recogni-
tion of the fungus-encoded Avr4 and Avr9 peptides [27]. In tomato,
Ve is involved in race-specific resistance to infection by Verticillium
species [126]. The Ve1-mediated resistance signaling only partially
overlaps with signaling mediated by Cf- proteins [191]. Recently,
a virus induced gene silencing approach for the characterization of
Avr- gene R-gene Reference

AvrMla Mla [324]
e Mlo [32]
e Hm1 [117]
Avr2 Cf-2 [157,224,251,284]
Avr4 Cf-4 [27,123,269]
Avr5 Cf-5 [55]
Avr9 Cf-9d [120]
e RPW8.1,

RPW8.2
[299,314,317]

Avr1 I2 [189,248]
AyrL L [56,57,146]
AvrM M
AvrN AvrL567 genes,
whose products are
recognized by the
L5, L6, and L7

N

Avr-Pita Pieta [113,134]
AvrRPeIeD Rp1 [43]
e Lr46 [164,168]
AvreRpg1 Rpg1, [31,103,136]

Rpg4,
Rpg5

e Ve1, Ve2
mVe1

[2,131,293]

e Ve1 [68]
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Ve mediated signaling revealed that signaling cascade downstream
of Ve1 requires two genes EDS1 (Enhanced Disease Susceptibility 1)
and NDR1 (non race-specific disease resistance 1). Moreover, the
results showed that the locus Ve consists of two closely linked
inversely oriented genes, Ve1 and Ve2 encoding cell surface
receptor proteins of the extracellular LRR receptor-like protein. Out
of them, only Ve1 provides resistance in tomato against race 1
strains of Verticillium dahliae and Verticillium albo-atrum and not
against race 2 strain. Based on the sequence analysis and the
expression study, Ve1 and Ve2 expression is induced in resistant as
well as susceptible tomato genotypes and that no single mutation
in the CDS of Ve2 discriminates resistant and susceptible tomato
genotypes. However, a single point mutation in Ve1, resulting in
a premature stop codon, was found in all susceptible genotypes and
was absent in all resistant genotypes. This suggested that Ve1, but
not Ve2, governs Verticillium resistance in tomato [68].

A disease epidemic broke out in oats in the 1940’s due to the
extensive planting of ’’Victoria-type’’ oats carrying the Pc-2 gene
for resistance against the rust fungus, Puccinia coronata. Oats
carrying Pc-2 were highly susceptible to another disease, Victoria
blight, caused by a fungus Cochliobolus victoriae [151,169]. Patho-
genicity of C. victoriae is dependent on the production of a toxin
called victorin, and in oats, both toxin sensitivity and Victoria
blight disease susceptibility are conferred by the dominant Vb
gene. Despite extensive efforts, rust resistance (Pc-2) and Victoria
blight susceptibility (Vb) have not been genetically separated and
are suspected to share identity [298,312] thus suggesting an
unexpected relationship between plant disease resistance and
susceptibility.

Stem rust-susceptible barley cv. Golden Promise was trans-
formed into a highly resistant one to pathotype Pgt-MCC of the
stem rust fungus Puccinia graminis f. sp. tritici by Agrobacterium-
mediated transformation with the dominant Rpg1 gene. A single
copy of Rpg1 against stem rust, and progenies from several trans-
formants segregated in a 3:1 ratio for resistance: susceptibility as
expected for Mendelian inheritance and unequivocally demon-
strated that the DNA segment isolated by map-based cloning is the
functional Rpg1 gene for resistance to stem rust and the trans-
formants exhibited a higher level of resistance than the original
sources of Rpg1 like cvs. Chevron and Peatland [103]. Another
fungal resistance plant resistance gene RUS1 from Setaria italica
Beauv. cv. Shilixiang resistant to Uromyces S. italica, was cloned and
it was found to contain an NB- ARC (nucleotide-binding adapter
shared by APAF-1, R proteins, and CED-4) domain as well as three
conserved motifs P-loop, kinase 2, and kinase 3, having the char-
acteristics of NBS-LRR type resistance gene of plant [303].

Another notable example of fungal resistance genes is the
broad-spectrum mildew resistance gene RPW8.2 from Arabidopsis
thalianawhich is induced by powderymildew [299] and is assumed
to be involved in enhancing the formation of a callosic encasement
of the haustorial complex (EHC) with onsite accumulation of H2O2,
in order to constrain the haustorium while reducing oxidative
damage to the host cell. Targeting of RPW8.2 to the EHM (Extra
haustorial membrane) requires normal function of the actin cyto-
skeleton while microtubules are not involved in the process.
Despite its critical role for the defense function, SA signaling is
dispensable for targeting RPW8.2 to the EHM and both EHM
localization and defense activation are required for RPW8.2 to
induce resistance against powdery mildew [314].

The majority of resistance genes reside in clusters, and the
frequency of recombination between clustered genes can vary
remarkably, evenwithin a single cluster. The Apple Vf locus, derived
from the crab apple species Malus floribunda, confers resistance to
five races of the apple scab fungus Venturia inaequalis. The Vf locus
comprises a cluster of four RLP genes, HcrVfa1 to HcrVfa4 (for
homolog of the C. fulvum resistance genes of the Vf region), of
which HcrVfa1, HcrVfa2 and HcrVfa4 encode typical RLPs while
HcrVfa3 contains an insertion at the end of the LRR motif, resulting
in truncated transcripts [292,315]. Only expression of HcrVfa1 or
HcrVfa2 in susceptible apple cultivars provided resistance against
V. inaequalis strains [12,159].

4.3. Oomycetes resistance genes

Phytopathogenic oomycetes are responsible for economically
important diseases, such as late blight of potato and sudden oak
death caused by Phytophthora infestans and Phytophthora ramorum
respectively. The oomycetes (Pseudofungi) have been classified
within the phylum Heterokontophyta comprising a number of
microbial lineages with phenotypic similarities to true fungi [216].
It was only with the use of molecular phylogenetic methods
starting with small subunit rDNA analysis [34,35] followed by
multiple concatenated gene phylogenies [9] that the oomycetes
were demonstrated to group within the heterokont radiation [216].

Several functional resistance genes from potato conferring
resistance to late blight have been cloned and all of them
belong to the NBS-LRR class of plant resistance genes
[10,14e16,104,190,250,282,283]. In addition to the resistance to
P. infestans genes Rpi-blb1 (RB) and Rpi-blb2, Solanum bulbocas-
tanum appears to harbor Rpi-blb3 located at a major late blight
resistance locus on LG IV, which also harbors Rpi-abpt, R2, R2-
like, and Rpi-mcd1 in other Solanum spp [156]. Vleeshouwers
et al. [294] used a candidate gene approach for the rapid cloning
of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are
functionally equivalent to Rpi-blb1. Cloning and functional anal-
yses of four Rpi genes, Rpi-blb3, Rpi-abpt, R2, and R2-like revealed
that these genes contain all signature sequences characteristic of
leucine zipper nucleotide-binding site leucine rich repeat (LZ-
NBS-LRR) proteins, and share 34.9% of amino acid sequences
similar to RPP13 from A. thaliana [149,193e195]. So far, a number
of Hyaloperonospora parasitica resistance (RPP) genes against the
downy mildew have been cloned from Arabidopsis which belong
to the NBS-LRR class of resistance genes [119,264]. These resis-
tance genes are distinguished by their N-terminal regions,
showing homology to the TIR domain (RPP1 and RPP5 clusters)
and leucine zipper motifs (RPP8 cluster) [25,166,172]. Another
example of oomycetes resistance genes with NBS-LRR motifs is
downy mildew resistance gene, Dm3 [45,244,245] in Bremia lac-
tucae which is a member of the large RGC2 (Resistance Gene
Candidate2) multigene family similar to the genes cloned from
other species for resistance to downy mildews and other patho-
gens [167].

Several oomycete effector genes (Table 4) encoding products
that are recognized by R proteins situated in the plant cytoplasm
have been discovered which indicate toward a mechanism of
transporting fungal and oomycete effectors into plant cells
[5,241,271,273,294]. This mechanism has recently been character-
ized using gene ontology by Torto-Alalibo et al. [275] while the
motifs in their amino acid sequence have already been identified in
the past [8,13,16]. The identification of the first effectors from
oomycetes, together with whole genome sequencing projects has
revealed a special class of secreted effector proteins, RXLR that are
delivered into host cells [4,6,81,83,212,277]. The RXLR effectors
constitute large super families of rapidly evolving proteins in all
oomycete genomes [58,115] and include Avr1b-1, Avr1a and Avr3a
from Phytophthora sojae [207,241], Avr3a, Avr4, and Avrblb1 from
P. infestans [5,6,286,294], ATR1 and ATR13 from Hyaloperonospora
arabidopsidis [5,212] and IpiO and IpiB from certain Phytophthora
species including P. infestans [36,203,294]. While the majority of
IPI-O proteins are recognized by RB gene to elicit host resistance,



Table 4
Oomycetes pathogens and interacting Avr-genes and R-genes.

Pathogen Host Avr-gene R-gene Reference

Bremia lactucae Lactuca sativa Avr3 Dm3 [173,174]
Hyaloperonospora arabidopsis Arabidopsis thaliana ATR1 RPP1-Nd/WsB [212]

ATR13 RPP13eNd [5,23]
Perenospora parasitica A. thaliana AvrB, AvrRPP1A,

AvrRPP1B, AvrRPP1C, AvrRPP2,
AvrRPP4, AvrRPP5, AvrRPP8

RPP1,
RPP2
RPP4, RPP5, RPP8

[25,166,196,197,280]

Phytophthora infestans Solanum tuberosum Avr1 R1 [10]
P. infestans Solanum tuberosum Avr-blb1 Rpieblb1 [294]
P. infestans Solanum tuberosum PiAvr2 Rpi [156,296]
P. infestans Solanum demissum Avr3a R3a [6]
P. infestans Solanum bulbocastanum Ipio, Ipib, Ipieo4 RB [36,287]
P. infestans Solanum tuberosum Avr3beAvr10eAvr11 locus, R3b, R10, R11 [114]
Phytophthora sojae Glycine max Avr1a, Avr3a and Avr3c, Rps1a

Rps3a
Rps3c

[58,160,207]
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some variants exist that are able to elude detection (e.g. Ipi-O4)
[87]. Intriguingly, few oomycete effectors that do not encode RXLR
effectors have also been proposed, such as Avr3b, Avr10 and Avr11 in
P. infestans [114,208] and Avr1b-2 in P. sojae [241]. So far, the host
targets of RXLR effectors have not been well described in the
literature [268], while the target proteins of several oomycete
apoplastic effectors have been determined [128,178,271,272].

P. sojae encodes numerous putative host cytoplasmic effectors
[1,24,59] with conserved FLAK (F, Phe; L, Leu; A, Ala; and K, Lys)
motifs following signal peptides, termed crinkling- and necrosis-
inducing proteins (CRN) or Crinkler. Recently, the functional
studies of CRN revealed that two functional genes, PsCRN63 and
PsCRN115 encode proteins that induce contrasting responses when
expressed in Nicotiana benthamiana and soybean (Glycine max).
Silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable
transformants exhibited a reduction of virulence on soybean and
a loss of ability to suppress host cell death and callose deposition on
inoculated plants. These results suggested a role for CRN effectors
in the suppression of host defense responses [152]. In future, more
studies on oomycete effectors and their cognate host targets will
undoubtedly explore novel plant immune pathways.
4.4. Nematode resistance genes

Plant parasitic nematodes are obligate parasites that obtain
nutrition from the cytoplasm of living plant cells and comprise
many species including ectoparasites and endoparasites. Nematode
resistance genes are present in several crop species (Table 5) and
form an important component in many breeding programs
including those for tomato, potato, soybeans and cereals [276].
Table 5
Nematodes and interacting R-genes.

Pathogen Host Avr-gene R-gene Reference

Melidogyne
incognita

Lycopersicum
esculentum

e Mi [175,239]

Globodera
pallida

Solanum
tuberosum

e Hero, Gpa2 [66,227,297]

Globodera
rostochiensis

Solanum
tuberosum

e Hero, Gro1e4 [310]

Heterodera
schachtii

Beta
vulgaris

e HS1pro-1 [33]

Heterodera
avenae

Triticum spp. e Cre3 [144,238]

Melidogyne
incognita

Capsicum
annuum

e CaMi [37]
Numerous sources of nematode resistance have been identified and
several of the responsible genes have been genetically mapped
[125,276,289,309,316].

Resistance to root-knot nematode was first identified in Lyco-
persicum peruvianum Mill., a wild relative of cultivated tomato
[302]. The single dominant Mi gene of tomato confers resistance to
three major root-knot nematodes Meloidogyne arenaria, Meloido-
gyne incognita and Meloidogyne javanica [79] but it does not confer
resistance toMeloidogyne hapla, a nematode present in overlapping
geographic locations [218].Mi gene encodes a proteinwith CC-NBS-
LRR motifs [175] was introduced into cultivated tomato using
embryo culture of an interspecific cross between Lycopersicum
esculentum and L. peruvianum [249], followed by extensive back-
crossing with L. esculentum. Later this gene was isolated by posi-
tional cloning approach [175]. Mi-1 confers resistance to the root-
knot nematodes. The mechanism of resistance to nematodes
conferred by Mi appeared to involve a hypersensitive response on
the part of the host [60,61].Mi-1 remains the only cloned root-knot
nematode resistance gene [310] and the resistance mediated byMi-
1 acts in a gene-for-gene manner.

Several common components that interact with R proteins or
required for resistance gene function have been recently identified
[235]. Bhattarai et al. [22] demonstrated the role of Hsp90, Sgt1, and
Rar1 in Mi-1-mediated aphid and nematode resistance. Studies
with approaches however identified the requirement of Rme1 gene
for Mi-1-mediated resistance to nematodes, aphids, and whiteflies
[22,163]. In addition to Rme1, Mi-1 resistance requires the salicylic
acid (SA) signaling pathway and mitogen activated protein kinase
(MAPK) cascades [26,148]. The tomato MAPK kinases MKK2 and
MAPKs LeMPK1, LeMPK2, andLeMPK3 are required for Mi-1-
mediated aphid resistance [148]. However, their role in root-knot
nematode resistance has not yet been identified.

The first nematode resistance gene to be cloned was Hs1pro-1,
a gene from a wild relative of sugar beet conferring resistance
against Heterodera schachtii, the beet cyst nematode [33]. Hs1pro-1
cloned under the control of the CaMV35S promoter, was shown to
confer nematode resistance to susceptible sugar beet roots trans-
formed with Agrobacterium rhizogenes [65] however, the resistance
mediated by Hs1pro-1, does not appear to involve a hypersensitive
response [124]. Complementation analysis by stable potato trans-
formation showed that the gene Gro1-4 conferred resistance to
Globodera rostochiensis pathotype Ro1 and it encodes a protein of
1136 amino acids containing the TIR, NBS and LRR homology
domains along with a C-terminal domain with unknown function
[190]. The Gpa2 gene that confers resistance against some isolates
of the potato cyst nematode Globodera pallida, is a member of the
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NBS-LRR-gene family and contains a possible LZ near its amino
terminus. Gpa2 is highly similar in predicted amino acid sequence
to the Rx1 gene which confers extreme resistance to Potato Virus X
[227].

The Cre3 gene confers a high level of resistance to the root
endoparasitic nematode Heterodera avenae in wheat. As a result of
map-based cloning of a disease resistance gene family at the Cre3
locus, two genes related to members of the cytoplasmic NBS-LRR
class of plant disease resistance genes have been analyzed. One
encodes a polypeptide with a nucleotide-binding site (NBS) and
a leucine rich region; this member of the disease resistance gene
family is expressed in roots. The second Cre3 gene sequence
appears to be a pseudo gene, with a frame shift caused by a deletion
event [144]. Based on the conserved regions of known resistance
genes, an NBSeLRR-type CCN (cereal cyst nematode) resistance
gene analogwas isolated from the CCN resistant Ee10 near isogenic
lines (NILs) of wheat, designated as CreZ. The expression profiling of
CreZ indicated that it was specifically expressed in the roots of
resistant plants and expression levels drastically increased when
the plants were inoculated with cereal cyst nematodes [322]. In
addition, the wheat and barley resistance gene analogs (RGAs)
contain other conserved motifs present in known resistance genes
from other plants and share between 55 and 99% amino acid
sequence identity to the NBS-LRR sequence at the Cre3 locus and
have been found to be associated with CCN and aphid resistance in
barley [238].

In another example, a candidate root-knot nematode resistance
gene (designated as CaMi) was isolated from the resistant pepper
line PR 205 which was highly expressed in roots, leaves, and
flowers, and at a lower level in stems, and not detectable at all in
fruits. Transgenic plants expressing CaMi gene triggered a hyper-
sensitive response (HR) as well as many necrotic cells around
nematodes and thus conferred significant resistance to root-knot
nematodes when compared to susceptible control plants [37].

4.5. Viral resistance genes

The majority of characterized viral resistance genes from plants
fall into the NBS-LRR class of resistance genes, providing
Table 6
Viral pathogens and interacting R-genes.

Pathogen Host Avr-

Bean dwarf mosaic virus Phaseolus vulgaris Bdm
Cucumber mosaic virus Arabidopsis thaliana Coat
Cucumber mosaic virus A. thaliana Vpg (

Lettuce mosaic virus (LMV) Lettuce (Lactuca sativa) 3’hal
Pea seed borne mosaic virus Pea (Pisum sativum) Vpg

P3 an
Potato virus X Solanum tuberosum Coat
Potato virus Y Capsicum annuum VPg
Potato virus X Solanum tuberosum Nla p
Potato virus Y Solanum tuberosum e

Potato virus Y, Tobacco etch virus Tomato (Lycopsersicon spp.) Vpg
Rice yellow mottle virus Oryza sativa Vpg
Soybean mosaic virus Glycine max HceP
Tobacco etch virus Arabidopsis thaliana e

Tobacco mosaic virus Solanum lycopersicon e

Repli
30 kD

Turnip mosaic virus, Arabidopsis thaliana VPg
Turnip mosaic virus

Turnip mosaic virus

Brassica napus TuRB
TuRB
TuRB
TuRB
TuRB
TuMV

Capsicum annumm Coat
monogenic dominant resistance (Table 6). Although, these R
proteins appear to be similar, they confer resistance to highly
divergent viruses. For example, A. thaliana RCY1 (resistance to C
strain Y1) and HRT (HR to turnip crinkle virus) are allelic, encode
proteins that share 91% similarity [261] but confer resistance to
unrelated viruses such as cucumber mosaic virus (CMV, a cucumo-
virus) and turnip crinkle virus (TCV, a carmovirus), respectively
[253].

The viral R protein-Avr system that strongly justifies the guard
hypothesis is the HRT-TCV pair. The TCV coat protein is the Avr
determinant for HRT-mediated resistance responses and its inter-
actionwith a host transcription factor, TCV-interacting protein (TIP)
is required for HRT-elicited defense responses [214]. Although,
a direct interaction between HRT and TIP has not been reported,
TCV coat protein inhibits the nuclear localization of TIP [215],
however it is possible that HRT detects the altered cellular distri-
bution of TIP which might therefore be the guardee of the guard
protein HRT. However knock out mutation studies [112] showed
that loss of TIP does not alter HR or resistance to TCV. Moreover, the
mutation in TIP neither impaired the salicylic acidemediated
induction of HRT expression nor the enhanced resistance
conferred by overexpression of HRT. Noticeably, the mutation in TIP
resulted in increased replication of TCV and Cucumber mosaic virus,
suggesting that TIP may play a role in basal resistance but is not
required for HRT-mediated signaling. Resistance to Tomato Spotted
Wilt Virus (TSWV) in tomato is conferred by Sw-5 gene which was
introgressed from Solanum peruvianum into tomato, and has
demonstrated broad and stable resistance [225]. The positional
cloning of Sw-5 locus was revealed that the resistance allele
encodes a CC-NBS-LRR R protein and is remarkably similar to the
tomato Mi gene for nematode resistance with the exception of four
leucine zippers at the N terminus [29].

In cultivated tomato, ToMV (Tomato mosaic virus) infections are
controlled by the introgressed Tm-1, Tm-2 and Tm-22 genes. The
Tm-22 resistance gene was shown to be strikingly durable [86,202]
and it has been cloned and well characterized by Lanfermeijer et al.
[145]. The susceptible tomato plants, which were transformed with
the Tm-22 gene, displayed resistance against ToMVinfection and the
resistance was conserved in all transgenic lines. Similarly, Rai [209],
gene R-gene Reference

BV1 protein [76]
protein RCY1 [262]
viral genomeelinked protein) At-eIF4E1 (cum1)

At-eIF4G (cum2)
[72,320]

f of genome mo1(1), mo1(2) [183,211]
sbm1 [73,133]

d 6K1 cistron sbm2 [118]
protein Rx1, Rx2 [14,15,205]

pvr1, pvr12 [129,180,228]
roteae Ry [170]

Ye1 [291]
pot-1 [180]
eIF(iso)4G1 [100]

ro and P3 cistron Rsv1 [64]
RTM1, RTM2 [41,307]
N gene [305,306]

case Tm1 [145]
movement protein Tm2, Tm22

At-eIF(iso)4E [311]
O1,
O1b,
O3,
O4,
O5,
P3

CI

P3
P3
CI

[109e111]

protein L1, L2, L3 [20,48,78]
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cloned a single dominant gene Ctv-R present in the trifoliate rela-
tive of Citrus, Poncirus trifoliata conferring broad-spectrum resis-
tance against Citrus tristeza virus (CTV), a major pathogen of citrus
[11,74,75,80,171,209]. Transgenic grapefruit plants carrying Citrus
Ctv-R gene were developed and it was found that two of the
candidate resistance genes, R-2 and R-3were exclusively expressed
resulting in either an absence of initiation of infection or its slow
spread in R-2 plant lines or an initial appearance of infection and its
subsequent eradication in some R-1 and R-4 plant lines [209].

Seo et al. identified the TIR-NBS-LRR gene RT4-4 involved in
a viral resistance response in common bean (Phaseolus vulgari cv.
Othello) [240] which functions across two plant families. The
functional analysis revealed that the RT4-4 gene in transgenic N.
benthamiana lines is up- regulated in a non-virus-specific manner,
although RT4-4 did not confer resistance to the reporter virus,
it activated a resistance-like response (systemic necrosis) to
Cucumber Mosaic Virus (CMV).

Recent molecular cloning of recessive resistance genes to
potyviruses led to the identification of resistance genes corre-
sponding to mutations in translation initiation factors, eukaryotic
initiation factors 4E (eIF4E) and to a lesser extent, the eukaryotic
initiation factor 4G (eIF4G) [204]. The eIF4E gene provides resis-
tance to several Potyviridae family viruses and has been identified
in the dicots, pepper (pvr1), pea (sbm1), lettuce (mo1 (1), mol (2)),
tomato (pot1), and melon (nsv) and in the monocot barley (rym4/5)
[130,217,229]. Similarly, translation initiation factor eIF4G is
responsible for resistance of rice to Yellow mottle virus [3] and in
Arabidopsis to Cucumber mosaic virus and Turnip crinkle virus [320].

4.6. Insect resistance genes

Studies using the model plant Arabidopsis have contributed
greatly to our understanding of R-gene mediated plant defense,
especially against pathogens [103], as well as the basal defense
mechanisms against aphid feeding [46,143,200,201]. Resistance to
insects has been identified in various plant species since long back
[18,51,62,191,206] and a number of single dominant R-genes have
been mapped, and molecular markers linked to these loci have
been identified [30,107,139,153,155,288,319]. The majority of these
mapped genes (Table 7) are in staple crops like wheat and rice. In
addition to these mapped genes, several single dominant aphid
resistance genes have been identified that confer resistance to
a single species of insects [213]. Cloning of number of insect
resistance genes has been accelerated with the advent of high
throughput molecular tools, such as genome mapping, sequencing,
and gene cloning.

To date, only few insect resistance genes belonging to NBS-LRR
group of plant resistance genes have been cloned and character-
ized. For example, The tomatoMi-1 confers resistance to the potato
aphid (Macrosiphum euphorbiae) and whitefly (Bemisia tabaci),
Lettuce Nr-gene confers resistance to a single species of aphid
Table 7
Insects and interacting R-genes.

Pathogen Host Avr-gene Regene Reference

Macrosiphum
euphorbiae

Lycopersicum
esculentum

e Mi [226]

Nasanova
ribisnigri

Lactuca sativa e Nr [285]

Dysaphis
devecta

Malus domestica e Sd1 [219]

Sogatella
furcifera,
Nilaparvata
lugens

Oryza sativa e Qbp1,
Qbp2

[265]
(Nasanova ribisnigri) [213], Sd1 gene confers resistance rosy leaf
curling aphid (Dysaphis devecta) in apple [219] and the melon Vat
gene against the melon/cotton aphid Aphis gossypii [126,192].

Triticum aestivum resistance to Hessian fly, Mayetiola destructor
(Say), has also been demonstrated to be a gene-for-gene mecha-
nism [92], although no genes have been cloned yet, 26 resistance
genes have been described as being effective against 13 biotypes of
Hessian fly [63]. The occurrence of a hypersensitive response (HR)
in case of an insect attack still remains dubious, since both presence
and absence of HR have been reported in incompatible interactions
between wheat and Hessian fly [84,93,308].

Recently, Klingler and co workers reported the presence of an
HR response to bluegreen aphid and pea aphid in Medicago trun-
catula [138]. A single gene AIN was found responsible to trigger HR
response against those two pathogens. However, it was also
concluded that although the HR response is triggered in both cases,
the resistance is conferred only to bluegreen aphid [138]. Irre-
spective of presence or absence of HR, a common mechanism of R-
gene mediated resistance to piercing, sucking insects appears to be
limited phloem-feeding [127,137,285]. A detailed description on
planteaphid interactions along with a summary of recent studies
has recently been reviewed by Tagu et al. [258].

4.7. R-genes with broad range host resistance

A common strategy proposed to achieve broad-range host
resistance is to modify the narrow pathogen specificity of R-gene
mediated resistance. Therefore, elucidation of R protein domains
that control recognition of specific pathogens and subsequent
activation of the downstream defense response has been the
subject of intense research [290]. The function of a particular
resistance gene totally depends on the pathogen’s genotype
[4,47,49,132,140] but there are some resistance genes which confer
resistance against a broad range of pathogens. For instance, theMi-
1 gene in tomato confers resistance to root-knot nematodes
(Meloidogyne spp.), potato aphid M. euphorbiae [175,226,239,295],
whitefly B. tabaci [186], viruses [28], bacteria [231] and fungi
[189,248]. Tomato Pto-overexpressing plants show resistance not
only to P. syringae pv. tomato but also to Xanthomonas campestris pv.
vesicatoria and to the fungal pathogen C. fulvum [267,314]. Simi-
larly, the lettuce Dm3 gene confers resistance to lettuce downy
mildew (B. lactucae) as well as to lettuce root aphid [172]. Moreover,
several other Dm specificities as well as resistance to lettuce root
aphids have been shown to be conferred by members of the RGC2
family using RNAi approach [142,313].

5. Challenges and future directions

With the advent of high throughput techniques and efficient
genomic approaches, researchers have managed to produce a large
amount of experimental data in the form of ESTs, whole genome
sequences, gene expression data etc. Still, the progress in under-
standing the functional mechanism of resistance genes has been
moderate. For instance, little is known about the structural basis of
pathogen recognition. Furthermore, there is still an inadequacy of
a reference set of sequences to be used as model for resistance
genes that usually cluster in genomic regionswith a high number of
homologs and pseudo genes. The difficulties in performing the
plantepathogen interaction studies pose another obstacle [70].
Nevertheless, efficacious applications are being continuously
developed based on our rather finite knowledge base. For example,
recently PRGdb, a web accessible open source database providing
a comprehensive overview of resistance genes has been developed
[232], which is definitely going to help filling some gaps in the
models of the plant defense signal transduction network.
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The primary benefit of deploying resistance genes in transgenic
technology is its ability to overcome the fertility restraints for the
dispersal of genes originating from a different species; for example,
Bs2 resistance gene was identified originally in pepper and its
resistance has been found durable in the field against isolates of
B. campestris [259]. Another advantage of resistance genes usage in
transgenic technology is that it allows introducing several different
resistance gene alleles, each effective against a single pathogen
species or race, into semi-elite and elite germplasm. Moreover,
most resistance genes exhibit exquisite recognition specificity and
to overcome this deficit, new resistance genes have been created in
the laboratory through single point mutations, which are autoac-
tivating [91]. Cloned resistance and effector genes can be used in
combination to promote acquired resistance. The rapid activation of
localized defense responses at the site of pathogen infection, often
associated with an HR, is the most prevalent and effective mecha-
nism used by plants to minimize pathogen attack. By combining R
and Avr gene expression in a single plant genotype, it is possible to
engineer a ‘trigger’ for HR [230].

Efficient application of functional genomics tools for disease
resistance could not only help us better understand the plant
defense signaling, it could reveal novel insights on the interactions
between these signaling pathways and other plant processes
[38,210]. Even though, the progress toward the overall plant
defense mechanism studies is going on at a considerable pace, it
would still be imprudent to expect a great breakthrough in
impervious broad-spectrum resistance. However, it is judicious to
anticipate an array of highly useful tools aided by other control
measures providing adequate protection in certain contexts.
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