

Microsoft Power BI
Cookbook
Second Edition

Gain expertise in Power BI with over 90 hands-on recipes,
tips, and use cases

Greg Deckler
Brett Powell

BIRMINGHAM—MUMBAI

Microsoft Power BI Cookbook
Second Edition

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Producer: Suman Sen
Acquisition Editor – Peer Reviews: Saby Dsilva
Project Editor: Parvathy Nair
Content Development Editor: Alex Patterson
Copy Editor: Safis Editor
Technical Editor: Aditya Sawant
Proofreader: Safis Editor
Indexer: Manju Arasan
Presentation Designer: Ganesh Bhadwalkar

First published: September 2017
Second edition: September 2021

Production reference: 1280921

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-304-4

www.packt.com

http://www.packt.com

Contributors

About the authors
Greg Deckler is a Vice President at Fusion Alliance and has been a professional of
consulting services for over 27 years. Recognized as an expert in Power BI, Greg is a six-time
Microsoft MVP for the Data Platform and an active member of the Power BI Community site
with over 5,000 solutions authored and hundreds of Quick Measure Gallery submissions.
Greg founded the Columbus Azure ML and Power BI User Group in Columbus, OH in 2016 and
continues to hold regularly monthly meetings.

I would like to thank the dynamic and vibrant Power BI community as a
whole and especially all of the Super Users and my User Group members.
Finally, I'd like to thank my son, Rocket, for keeping me supplied with
excellent graphics and videos!

Brett Powell owns Frontline Analytics LLC, a data and analytics consultancy specializing in
the Microsoft data platform. Brett has over ten years of experience in business intelligence
and data warehouse projects as both a developer and technical architect. In addition to
project engagements, Brett shares technical tips and examples via his popular Insights Quest
blog and has authored two commercially successful books – Mastering Microsoft Power BI
and Microsoft Power BI Cookbook.

I'd first like to acknowledge and praise Jesus Christ, my Lord and Savior,
for blessing me with these opportunities and for loving me and guiding me
each day. I'd also like to thank my mother, Cathy, and brother Dustin, for
their endless support and encouragement. Finally, I'd like to thank Packt for
their efforts to produce quality, valuable content.

About the reviewer
David R. Eldersveld is a Technical Specialist at Microsoft currently focused on Power
BI. Prior to joining Microsoft, he was a Data Platform MVP and spent nearly ten years as a
data and analytics consultant with CapstoneBI and BlueGranite. David has contributed to
technical communities as a blogger, speaker, and contributor to Workout Wednesday's Power
BI challenges.

v

Table of Contents
Preface xi
Chapter 1: Configuring Power BI Tools 1

Technical Requirements 1
Installing and Configuring Power BI Desktop 2
Creating an On-Premises Data Gateway 12
Installing Analyze in Excel from the Power BI Service 17
Installing and Configuring Additional Tools 22
Conclusion 28

Chapter 2: Accessing and Retrieving Data 29
Technical Requirements 30
Viewing and Analyzing M Functions 30
Managing Queries and Data Sources 39
Using DirectQuery 45
Importing Data 50
Applying Multiple Filters 58
Selecting and Renaming Columns 66
Transforming and Cleansing Data 70
Creating Custom Columns 74
Combining and Merging Queries 81
Selecting Column Data Types 87
Visualizing the M library 92
Profiling Source Data 95
Diagnosing Queries 98
Conclusion 104

Table of Contents

vi

Chapter 3: Building a Power BI Data Model 105
Technical Requirements 106
Designing a Data Model 106
Implementing a Data Model 112
Creating Relationships 118
Configuring Model Metadata 126
Hiding Columns and Tables 134
Enriching a Model with DAX 140
Supporting Virtual Table Relationships 153
Creating Hierarchies and Groups 160
Designing Column Level Security 167
Leveraging Aggregation Tables 172
Conclusion 176

Chapter 4: Authoring Power BI Reports 177
Technical Requirements 178
Building Rich and Intuitive Reports 178
Filtering at Different Scopes 187
Integrating Card visualizations 191
Using Slicers 196
Controlling Visual Interactions 202
Utilizing Graphical Visualizations 206
Creating Table and Matrix visuals 212
Enhancing Reports 218
Formatting Reports for Publication 223
Designing Mobile Layouts 230
Creating Paginated Reports 234
Conclusion 243

Chapter 5: Working in the Service 245
Technical Requirements 246
Building a Dashboard 246
Preparing for Q&A 254
Adding Alerts and Subscriptions 260
Deploying Content from Excel and SSRS 266
Streaming Datasets 270
Authoring Dataflows 274
Conclusion 280

Chapter 6: Getting Serious with Date Intelligence 281
Technical Requirements 282
Building a Date Dimension Table 282

Table of Contents

vii

Preparing the Date Dimension via the Query Editor 287
Authoring Date Intelligence Measures 293
Developing Advanced Date Intelligence Measures 298
Simplifying Date Intelligence with DAX and Calculated Tables 303
Leveraging Calculation Groups 306
Conclusion 311

Chapter 7: Parameterizing Power BI Solutions 313
Technical requirements 314
Filtering reports dynamically 314
Leveraging query parameters 317
Working with templates 322
Converting static queries to dynamic functions 326
Capturing user selections with parameter tables 331
Forecasting with what-if analysis 338
Conclusion 348

Chapter 8: Implementing Dynamic User-Based
Visibility in Power BI 349

Technical Requirements 350
Capturing Current User Context 350
Defining RLS Roles and Filter Expressions 353
Designing Dynamic Security Models 361
Building Dynamic Security for DirectQuery 365
Displaying the Current Filter Context 369
Avoiding Manual User Clicks 374
Conclusion 380

Chapter 9: Applying Advanced Analytics and Custom Visuals 381
Technical Requirements 382
Incorporating Advanced Analytics 382
Enriching Content with Custom Visuals and Quick Insights 386
Creating Geospatial Mapping with ArcGIS Maps 390
Democratizing Artificial Intelligence 396
Building Animation and Storytelling 401
Embedding Statistical Analyses 408
Grouping and Binning 415
Detecting and Analyzing Clusters 419
Forecasting and Anomaly Detection 424
Using R and Python Visuals 430
Conclusion 437

Table of Contents

viii

Chapter 10: Administering and Monitoring Power BI 439
Technical requirements 440
Creating a centralized IT monitoring solution with Power BI 440
Constructing a monitoring, visualization, and analysis layer 446
Importing and visualizing dynamic management view (DMV) data 450
Increasing DBA productivity 455
Providing documentation 461
Analyzing SSAS tabular databases and gateways 467
Analyzing Extended Events 473
Visualizing log file data 478
Leveraging the Power BI PowerShell Module 484
Conclusion 489

Chapter 11: Enhancing and Optimizing
Existing Power BI Solutions 491

Technical Requirements 492
Enhancing Data Model Scalability and Usability 492
Improving DAX Measure Performance 499
Pushing Query Processing Back to Source Systems 505
Strengthening Data Import and Integration Processes 510
Isolating and Documenting DAX Expressions 514
Improving Data Load Speeds with Incremental Refresh 518
Conclusion 522

Chapter 12: Deploying and Distributing Power BI Content 523
Technical Requirements 524
Preparing for Content Creation and Collaboration 524
Managing Content between Environments 532
Sharing Content with Colleagues 535
Configuring Workspaces 539
Configuring On-Premises Gateway Data Connections 545
Publishing Apps 551
Publishing Reports to the Public Internet 556
Enabling the Mobile Experience 561
Distributing Content with Teams 568
Conclusion 572

Chapter 13: Integrating Power BI with Other Applications 573
Technical Requirements 574
Integrating SSRS and Excel 574
Migrating from Power Pivot for Excel Data to Power BI 582
Accessing and Analyzing Power BI Datasets in Excel 586
Building Power BI Reports into PowerPoint Presentations 592

Table of Contents

ix

Connecting to Azure Analysis Services 596
Integrating with Power Automate and Power Apps 600
Leveraging Dataverse and Dynamics 365 610
Connecting Dynamics 365 Finance and Operations and the Power
Platform 615
Conclusion 621
Why subscribe? 629

Other Book You May Enjoy 625
Index 629

xi

Preface

Microsoft Power BI is a collection of business intelligence and analytics applications and
services designed to work in coordination with each other to provide visual, interactive
insights into data.

This book provides detailed, step-by-step technical examples of using all the primary Power
BI tools and features and also demonstrates end-to-end solutions that leverage and integrate
with Power BI technologies and services. You will become familiar with Power BI development
tools and services; go deep into data connectivity and transformation, modeling, visualization
and analytical capabilities of Power BI; and see Power BI's functional programming languages
of DAX and M come alive to deliver powerful solutions that address challenging scenarios
common to business intelligence.

This book is designed to excite and empower you to get more out of Power BI via detailed,
step-by-step recipes, advanced design and development tips, and guidance on enhancing
existing Power BI projects.

The second edition of this book includes even more recipes covering the latest enhancements
and integrations to Power BI. All other recipes have been updated and revised to make the
recipes more detailed, easier to follow, and entirely based on the stock Adventure Works DW
database.

Who this book is for
This book is for business intelligence professionals that want to enhance their knowledge of
Power BI design and development while increasing the value of the Power BI solutions they
deliver. Those interested in quick resolutions to common challenges and a reference guide to
Power BI features and design patterns are certain to find this book a useful resource.

Preface

xii

What this book covers
Chapter 1, Configuring Power BI Tools, covers the installation and configuration of the primary
tools and services that BI professionals utilize to design and develop Power BI content,
including Power BI Desktop, the On-Premises Data Gateway, Analyze in Excel, DAX Studio,
Tabular Editor, and ALM Toolkit.

Chapter 2, Accessing and Retrieving Data, dives into Power BI Desktop's Get Data experience
and walks through the process of establishing and managing data source connections and
queries.

Chapter 3, Building a Power BI Data Model, explores the primary processes of designing and
developing robust data models.

Chapter 4, Authoring Power BI Reports, develops and describes the most fundamental report
visualizations and design concepts. Additionally, guidance is provided to enhance and control
the user experience when consuming and interacting with Power BI reports in the Power BI
service as well as on mobile devices.

Chapter 5, Working in the Service, covers Power BI dashboards constructed to provide simple,
at-a-glance monitoring of critical measures and high-impact business activities.

Chapter 6, Getting Serious with Date Intelligence, contains recipes for preparing a data model
to support robust date intelligence as well as recipes for authoring custom date intelligence
measures.

Chapter 7, Parameterizing Power BI Solutions, covers both standard parameterization
features and techniques in Power BI as well as more advanced custom implementations.

Chapter 8, Implementing Dynamic User-Based Visibility in Power BI, contains detailed
examples of building and deploying dynamic, user-based security for both import and
DirectQuery models as well as developing dynamic filter context functionality to enhance the
user experience.

Chapter 9, Applying Advanced Analytics and Custom Visuals, contains a broad mix of recipes
highlighting many of the latest and most popular custom visualizations and advanced
analytics features of Power BI.

Chapter 10, Administering and Monitoring Power BI, highlights the most common and
impactful administration data sources including Windows Performance Monitor, SQL Server
Query Store, the Microsoft On-Premises Data Gateway, the MSDB system database, Extended
Events, Office 365 audit log, and Power BI REST API.

Chapter 11, Enhancing and Optimizing Existing Power BI Solutions, contains top data
modeling, DAX measure, and M query patterns to enhance the performance, scalability, and
reliability of Power BI datasets.

Preface

xiii

Chapter 12, Deploying and Distributing Power BI Content, contains detailed examples and
considerations for deploying and distributing Power BI content via the Power BI service and
Power BI mobile applications.

Chapter 13, Integrating Power BI with Other Applications, highlights new and powerful
integrations between Power BI, SSAS, SSRS, Excel, PowerPoint, PowerApps, Power Automate,
and Dynamics 365.

To get the most out of this book
 f Some prior knowledge of Power BI is recommended.

 f A Power BI Desktop and Power BI service account (both free).

 f Tabular Editor 2.x (free).

 f DAX Studio (free).

 f SQL Server (any edition, including Express and Developer, which are free) with the
AdventureWorksDW2019 database installed. This database is a free download and
instructions for installing are available here: http://bit.ly/2OVQfG7.

Download the example code files

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition. We also have other
code bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801813044_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; "After
completing these steps, the reports all have a live connection back to the dataset, CH5_R1_
SalesAndFinanceDataset."

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801813044_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801813044_ColorImages.pdf

Preface

xiv

A block of code is set as follows:

let
 Source = AdWorksDW,
 Data = Source{[Schema="dbo",Item="vCH3R2_Products"]}[Data]
in
 Data

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

Products Rows (Sales) = CALCULATE(COUNTROWS('Products'),'Internet Sales')

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes, also appear in the text like this. For example: "The
Manage roles dialog box includes the ability to set Precedence."

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the subject
of your message. If you have questions about any aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book we would be grateful if you would report this
to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packtpub.com with a link to the material.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata

Preface

xv

If you are interested in becoming an author: If there is a topic that you have expertise in and
you are interested in either writing or contributing to a book, please visit http://authors.
packtpub.com.

Share Your Thoughts
Once you've read Microsoft Power BI Cookbook, Second Edition, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for
this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://www.packtpub.com/

1

1
Configuring Power

BI Tools
Power BI is a suite of business analytics tools and services that work together to access data
sources, shape, analyze, and visualize data, and share insights. Although not all tools are
required for all projects or deployments of Power BI, synergies are available by utilizing the
unique features of multiple tools as part of integrated solutions encompassing diverse data
sources and visualization types.

In this chapter, we walk through the installation and configuration of the primary tools and
services business intelligence (BI) professionals utilize to design and develop Power BI
content. This includes official Microsoft tools such as Power BI Desktop, the on-premises data
gateway, and Analyze in Excel, as well as third-party tools such as DAX Studio, the ALM Toolkit,
and Tabular Editor. Since Power BI tools and services are regularly updated with new features
and enhancements, resources are identified to stay up to date and to best take advantage of
these tools for your projects.

The recipes in this chapter are as follows:

 f Installing and Configuring Power BI Desktop

 f Creating an On-Premises Data Gateway

 f Installing Analyze in Excel from the Power BI Service

 f Installing and Configuring Additional Tools

Technical Requirements
It is assumed that the reader has access to a Power BI Pro license, rights to download and
install the development tools on their machine, and has the necessary access and rights to
deploy and manage content in the Power BI service and utilize the Power BI mobile applications.

Configuring Power BI Tools

2

Power BI licensing options and assigning and managing these rights are outside the scope of
this book. In addition, the following are required to complete the recipes in this chapter:

 f A Windows PC running Windows 10 version 14393 or higher. There is no Power BI
Desktop for Apple computers or operating systems.

 f Microsoft Excel.

 f Ensure that you have at least 10 GB of disk space available; the Power BI Desktop
download is up to 600 MB in size and the installed application is over 1.5 GB.

 f A Power BI login for the Power BI service.

Additionally, the Microsoft on-premises data gateway requires the following:

 f .NET Framework 4.7.2 (Gateway release December 2020 and earlier)

 f .NET Framework 4.8 (Gateway release February 2021 and later)

 f A 64-bit version of Windows 8 or later or a 64-bit version of Windows Server 2012 R2
or later with current TLS 1.2 and cipher suites

 f 4 GB disk space for performance monitoring logs (in the default configuration)

Installing and Configuring Power BI Desktop
Power BI Desktop is the primary tool used to develop the visual and analytical content that is
then deployed and collaborated on in the Power BI service, embedded in other applications
and portals, or even shared on the public internet. Although Power BI Desktop runs as a
single application, it includes three tightly integrated components with their own options and
settings:

 f The Power Query and Power Query Editor experience, with its underlying M language
and data mashup engine.

 f The Analysis Services tabular data modeling engine and its DAX analytical language.

 f The interactive reporting and visualization engine.

Configuring and leveraging these capabilities, in addition to advanced analytics and
customization features such as R, Python, mobile layout, and natural language queries,
makes it possible to build robust and elegant BI and analytics solutions.

Getting ready

Most organizations restrict the ability of employees to install software such as Power BI
Desktop onto their corporate devices. These organizations typically define a policy and process
for pushing a particular version of Power BI Desktop to all user devices or to certain groups of
users thus avoiding compatibility issues and ensuring users have access to recent features.

Chapter 1

3

How to install and configure Power BI Desktop

There are actually three different versions of the Power BI Desktop application, as follows:

 f Power BI Desktop (Microsoft Store app)

 f Power BI Desktop (Microsoft Installer)

 f Power BI Desktop RS (Report Server Edition)

The preferred method of installation is by using the Microsoft Store app. In order to install
Power BI Desktop from the Microsoft Store, execute the following:

1. Open the Microsoft Store app and search for Power BI Desktop. Alternatively, you can
enter https://aka.ms/pbidesktop into any browser bar and the Microsoft Store app
will automatically open to the Power BI Desktop app, as shown in Figure 1.1.

2. It is important to make sure that you are getting the Power BI Desktop app and
not just the Power BI app. The Power BI app is for viewing reports published to the
Power BI service only.

Figure 1.1: The Power BI Desktop app in the Microsoft Store

https://aka.ms/pbidesktop

Configuring Power BI Tools

4

3. Click the Get button.

4. Once the download and installation is complete, click the Launch button.

For a variety of reasons, it may not be possible to install the Microsoft Store app version of
Power BI Desktop. This may be because of running an older version of Windows, corporate
policies, or a desire to use the 32-bit version of Power BI Desktop (the Microsoft Store app is
64-bit only). In this case, you can install the Microsoft Installer (MSI) version. To install the
MSI version, follow these steps:

1. The Microsoft Installer (MSI) version of Power BI Desktop can be downloaded on the
Power BI downloads page: https://powerbi.microsoft.com/downloads.

2. Under Microsoft Power BI Desktop, choose Advanced download options.

Figure 1.2: Download the MSI version using Advanced download options

3. Select your language preference and click the Download button.

4. Choose either the 64-bit version (PBIDesktopSetup_x64.exe) or the 32-bit version
(PBIDesktopSetup.exe) and then click the Next button.

5. Once the file downloads, click Open file.

6. The Microsoft Power BI Desktop Setup Wizard will launch. Select a language and click
the Next button.

7. Complete the rest of the installation wizard, including accepting the license terms
and destination folder, clicking the Next button each time.

8. On the final screen, click the Install button.

9. Once the installation finishes, click the Finish button.

https://powerbi.microsoft.com/downloads

Chapter 1

5

Figure 1.3: Successful installation of Power BI Desktop (MSI)

If you are using Power BI Report Server (on-premises) you need to download the
corresponding version of Power BI Desktop optimized for Report Server (RS version). Updates
for Power BI Report Server come out quarterly and there is a specific version of Power BI
Desktop released simultaneously that is optimized to work with each quarterly version. The
installation is the same as the MSI version. However, to find the download for the RS version,
follow these steps:

1. Use a browser to navigate to https://powerbi.microsoft.com/report-server.

2. Use the Advanced download options link directly under the DOWNLOAD FREE TRIAL
button.

Figure 1.4: Download the RS version using Advanced download options

How it works

Power BI Desktop supports a rich set of configuration options both for the currently open
file and for all instances of Power BI Desktop on the given device. These options control the
availability of preview and end user features and define default behaviors resource usage,
security, and privacy/isolation of data sources.

https://powerbi.microsoft.com/report-server

Configuring Power BI Tools

6

Regardless of the version of Power BI Desktop that is installed, these options are available by
using the File menu in the ribbon and then selecting Options and settings, and then Options,
as shown in Figure 1.5.

Figure 1.5: Power BI Desktop Options and settings

Selecting Options brings up the Options window, displayed in Figure 1.6.

Figure 1.6: Power BI Desktop Options (February 2021)

GLOBAL options are applied to all Power BI Desktop files created or accessed by the user,
while CURRENT FILE options must be defined for each Power BI Desktop file. The following
steps are recommended for GLOBAL options:

Chapter 1

7

1. On the Data Load tab, under Data Cache Management Options, confirm that the
currently used data cache is below the Maximum allowed (MB) setting. If it is near
the limit and local disk space is available, increase the value of Maximum allowed
(MB). Do not clear the cache unless local disk space is unavailable as this will require
additional, often unnecessary, queries to be executed.

Figure 1.7: Global Data Load options

In addition, under the Time intelligence heading, consider turning off Auto date/
time for new files. While its convenient to have out-of-the-box calendar hierarchy
functionality for date columns, this can also significantly increase the size of a
data model and its strongly recommended to utilize a common date dimension
table, preferably from an corporate data warehouse source. Finally, under the Type
Detection heading, it is recommended that you choose the option to Never detect
column types and headers for unstructured sources. The default detection of
column types from unstructured sources such as text or Excel files will create a
hardcoded dependency on the column names in the source file. Additionally, this
default transformation will be applied prior to any filter expression and thus can
require more time and resources to perform the refresh.

2. On the Power Query Editor tab, under the Layout header, ensure that Display the
Query Settings pane and Display the Formula Bar are both checked, as seen in
Figure 1.8.

Figure 1.8: Power Query Editor Layout settings

3. On the Security tab, under the Native Database Queries header, select the option to
Require user approval for new native database queries. Native queries are the user-
specified SQL statements passed to data sources as opposed to the queries Power BI
generates internally.

Figure 1.9: Security option for Native Database Queries

Configuring Power BI Tools

8

Optionally, set Show security warning when adding a custom visual to a report as
well. Custom visuals can be divided into three categories as follows:

 � Certified for Power BI (only on AppSource)

 � Uncertified but available in AppSource

 � Third-party, not available in AppSource

Certified custom visuals have been thoroughly tested for safety to ensure that the
visuals do not access external services or resources and that they follow secure
coding practices. Uncertified visuals available in AppSource have been through a
validation process, though there is no guarantee that all code paths have been
tested or that no external services or resources are accessed. Third-party visuals
not available in AppSource should be used with caution, and it is recommended that
organizations establish policies and procedures regarding their use.

4. On the Privacy tab, under the Privacy Levels heading, configure the privacy levels for
all data sources and enable the option to Always combine data according to your
Privacy Level settings for each source. Use the Learn more about Privacy Levels
link for details on these settings.

Figure 1.10: Global Privacy Level options

5. Use the Diagnostics tab to provide version information and diagnostics options if
there is a need to troubleshoot a particular problem with Power BI Desktop. The
Enable tracing option under the Diagnostic Options header writes out detailed
trace event data to the local hard drive and thus should only be activated for complex
troubleshooting scenarios.

Figure 1.11: Diagnostics Options in Power BI Desktop

Chapter 1

9

6. Use the Preview features tab to enable preview features for evaluation purposes.
The options under Preview features change with new versions as some previous
options become generally available and new preview features are introduced. The
monthly Power BI Desktop update video and blog post (see https://powerbi.
microsoft.com/en-us/blog/) provide details and examples of these new features.

7. Usually a restart of the Power BI Desktop application is required once a new preview
option has been activated.

Figure 1.12: Preview features available with the February 2021 release of Power BI Desktop

8. On the Data Load tab under CURRENT FILE, more experienced users should disable
all of the options under the Type Detection and Relationships headings; these
model design decisions should be implemented explicitly by the Power BI developer
with knowledge of the source data.

https://powerbi.microsoft.com/en-us/blog/
https://powerbi.microsoft.com/en-us/blog/

Configuring Power BI Tools

10

Also note that you can disable Auto date/time here on an individual file basis if you
did not disable this option at a GLOBAL level.

Figure 1.13: Current File Data Load Options

There's more…

As a modern cloud and service-oriented analytics platform, Power BI delivers new and
improved features across its toolset on a monthly basis. These scheduled releases and
updates for Power BI Desktop, the Power BI service, the on-premises data gateway, Power BI
mobile applications, and more reflect customer feedback, industry trends, and the Power BI
team's internal ideas and product roadmap.

BI professionals responsible for developing and managing Power BI content can both stay
informed of these updates as well as review detailed documentation and guidance on
implementing the features via the Microsoft Power BI blog (http://bit.ly/20bcQb4), Power
BI documentation (http://bit.ly/2o22qi4), and the Power BI Community (http:/bit.
ly/2mqiuxP).

http://bit.ly/20bcQb4
http://bit.ly/2o22qi4
https://community.powerbi.com/
https://community.powerbi.com/

Chapter 1

11

Figure 1.14: Blog post and supporting video for February 2021 update to Power BI Desktop

The Power BI Community portal provides a robust, searchable hub of information
across common topics as well as an active, moderated forum of user experiences and
troubleshooting. The community also maintains its own blog featuring examples and use
cases from top community contributors, and links to local Power BI User Groups (PUGs),
relevant events such as Microsoft Business Applications Summit (MBAS), along with various
galleries such as a Themes Gallery, Data Stories Gallery, R Script Showcase, and Quick
Measures Gallery.

The Power BI Ideas forum (https://ideas.powerbi.com) is a valuable source for identifying
requested features and enhancements, and their status relative to future releases. Ideas
are provided a status, such as "Planned," "Under Review," or "Needs Votes." The search
functionality allows for filtering by these status details. Filtering for Planned ideas, particularly
those with higher community vote counts, provides a sense of impactful updates to be
released over a longer time horizon.

See also

For additional information on topics covered in this recipe, refer to the following links:

 f Power BI Security white paper: http://bit.ly/22NHzRS

 f Data source privacy levels: http://bit.ly/2nC0Lmx

 f Power BI Auto date/time: http://bit.ly/3bH59cn

 f Change settings for Power BI reports: http://bit.ly/2OP8m0F

https://ideas.powerbi.com
http://bit.ly/22NHzRS
http://bit.ly/2nC0Lmx
http://bit.ly/3bH59cn
http://bit.ly/2OP8m0F

Configuring Power BI Tools

12

Creating an On-Premises Data Gateway
The Microsoft on-premises data gateway (or simply gateway) is a Windows service that runs
in on-premises environments or in infrastructure-as-a-service (IaaS) data sources running
in the cloud, such as virtual machines running SQL Server databases. The sole purpose of
the gateway is to support secure (encrypted) and efficient data transfer between on-premises
and IaaS data sources and Microsoft Azure services such as Power BI, Power Apps, Power
Automate, and Azure Logic Apps, via an outbound connection to Azure Service Bus. It is
important to note that if all data sources used in Power BI reports are in the cloud (and so
not on-premises) and accessible by the Power BI service, then the Microsoft on-premises
data gateway is not required, as the Power BI service will use native cloud gateways to access
native cloud data sources; this could be something such as Azure SQL Database or Azure SQL
Managed Instances.

Once installed, a gateway can be used to schedule data refreshes of imported Power BI
datasets, to support Power BI reports and dashboards built with DirectQuery, plus live
connections to Analysis Services databases.

A single on-premises data gateway can support the refresh and query activity for multiple data
sources, and permission to use the gateway can be shared with multiple users. Currently,
the gateway supports all common data sources via scheduled imports, including Open
Database Connectivity (ODBC) connections, and many of the most common sources via Live
Connection and DirectQuery.

Getting ready

The hardware resources required by the gateway vary based on the type of connection (import
versus live connection), the usage of the reports, and dashboards in the Power BI service,
and the proportion of data volume handled by the gateway versus the on-premises source
systems. It is recommended to start with 8-core CPUs, 8 GB of RAM server, and Windows
2012 R2 or later for the operating system. This machine cannot be a domain controller, and
to maintain the availability of Power BI content, the gateway server should always be on and
connected to the internet.

Another top consideration for the gateway is the location of the gateway server in relation to
the Power BI tenant and the data sources to be supported by the gateway. For example, if a
SQL Server database is the primary gateway source and it runs on a server in the Western
United States, and the Power BI Tenant for the organization is in the West US Azure region,
then the gateway should be installed on a server or potentially an Azure virtual machine (VM)
in the West US Azure region or a location in the Western United States.

Based on an analysis of current and projected workloads, the gateway resources can be
scaled up or down and, optionally, additional gateways can be installed on separate servers to
distribute the overall Power BI refresh and query deployment workload.

Chapter 1

13

For example, one gateway server can be dedicated to scheduled refresh/import workloads,
thus isolating this activity from a separate gateway server responsible for DirectQuery and Live
Connection queries.

The gateway does not require inbound ports to be opened and defaults to HTTPS but can be
forced to use TCP. For the default communication mode, it is recommended to whitelist the IP
addresses in your data region in your firewall. This list is updated weekly and is available via
the Microsoft Azure Datacenter IP list (http://bit.ly/2oeAQyd).

How to create the Gateway

The gateway has two modes, the Standard mode and the Personal mode. The Personal mode
is intended for personal use, and thus cannot be shared among users within an enterprise.
We will focus on the Standard mode, as the installation and configuration are essentially the
same for the Personal mode:

1. Download the latest Microsoft on-premises data gateway from https://powerbi.
microsoft.com/downloads/

Figure 1.15: Download the Microsoft on-premises data gateway

2. Select the Download standard mode link.

3. Once downloaded, choose Open file to run GatewayInstall.exe.

Figure 1.16: GatewayInstall.exe

4. Choose the file directory for the installation, accept the terms of use and privacy
agreement, and then click the Install button.

http://bit.ly/2oeAQyd
https://powerbi.microsoft.com/downloads/
https://powerbi.microsoft.com/downloads/

Configuring Power BI Tools

14

5. Sign in to the Power BI service to register the gateway:

Figure 1.17: Registering the gateway

6. On the next screen after signing in, choose to Register a new gateway on this
computer and then click the Next button.

7. Enter a user-friendly name for the gateway and a recovery key and then click the
Configure button.

Figure 1.18: Final configuration information for the gateway

Chapter 1

15

With the gateway installed and registered, data sources, gateway admins, and authorized
data source users can be added to the Power BI service. A Manage Gateways option will
be available under the gear icon in the Power BI service. See the Configuring On-Premises
Gateway Data Connections recipe of Chapter 12, Deploying and Distributing Power BI Content,
for details on this process.

Figure 1.19: Successfully installed gateway

How it works

As new versions of the gateway become available, a notification is made available in the
Status tab of the on-premises data gateway UI, as per Figure 1.19. The Power BI gateway
team recommends that updates should be installed as they become available.

The Standard mode on-premises data gateway, rather than the personal mode gateway, is
required for the DirectQuery datasets created in this book and the use of other Azure services
in the Microsoft business application platform.

The Power BI service uses read-only connections to on-premises sources, but the other
services (for example, Power Apps) can use the gateway to write, update, and delete these
sources.

Configuring Power BI Tools

16

The recovery key is used to generate both a symmetric and an asymmetric key, which encrypts
data source credentials and stores them in the cloud. The credentials area is only decrypted
by the gateway machine in response to a refresh or query request. The recovery key will be
needed in the following scenarios:

 f Migrating a gateway and its configured data sources to a different machine.

 f Restoring a gateway to run the service under a different domain account or restoring
a gateway from a machine that has crashed.

 f Taking over ownership of an existing gateway from an existing gateway administrator.

 f Adding a gateway to an existing cluster.

It is important that the recovery key is stored in a secure location accessible to the BI/IT
organization. Additionally, more than one user should be assigned as a gateway administrator
in the Power BI service to provide redundancy.

There's more…

The final configuration screen for the Microsoft on-premises data gateway shown in Figure
1.18 provides several advanced options, including the following:

 f Add to an existing gateway cluster

 f Change region

 f Provide relay details

Gateway clusters remove single points of failure for on-premises data access. Since only a
single standard gateway can be installed on a computer, each additional gateway cluster
member must be installed on a different computer. If the primary gateway is not available,
data refresh requests are routed to other gateway cluster members. When using gateway
clusters, it is important that all gateway cluster members run the same gateway version
and that offline gateway members are removed or disabled—offline gateway members will
negatively impact performance.

By default, the gateway is installed in the same Azure region as your Power BI tenant in the
Power BI service. In almost all cases, this setting should not be changed. However, with multi-
geo support in Power BI Premium, it may be necessary to install gateways in different Azure
regions. The Change Region option provides this flexibility.

Chapter 1

17

Azure relays are automatically provisioned for installed gateways at the time of installation.
However, the Provide relay details option allows you to provide your own relay details if you
wish to associate the relay with your Azure subscription and manage the sender and listener
keys for the relay. This is a very advanced option and you should fully understand Azure relays
and what you are trying to accomplish before attempting this configuration. It is important to
note that only WCF relays with NetTcp are supported for this feature.

See also

 f Details of configuring and managing data sources through the on-premises gateway
are covered in Chapter 12, Deploying and Distributing Power BI Content

 f Set the Azure relay for on-premises data gateway: http://bit.ly/3rMJMvP

Installing Analyze in Excel from the Power
BI Service

Excel-based data analysis and reporting artifacts, such as PivotTables, charts, and cell range
formula expressions with custom formatting, remain pervasive in organizations. Although a
significant portion of this content and its supporting processes can be migrated to Power BI,
and despite the many additional features and benefits this migration could provide, Power BI
is not intended as a replacement for all Excel-based reporting. Organizations, and in particular
those departments that use Excel extensively (such as Finance and Accounting), may prefer to
leverage these existing assets and quickly derive value from Power BI by both deploying Excel
content to Power BI and analyzing Power BI-hosted data from within Excel.

The Power BI service's Analyze in Excel feature replaces the deprecated Microsoft Power BI
Publisher for Excel. The Analyze in Excel feature allows you to use Power BI datasets in Excel
and use Excel features like PivotTables, charts, and slicers to interact with the datasets.

Getting ready

To get ready to install and use the Power BI service's Analyze in Excel feature, make sure that
Microsoft Excel is installed on your computer and then sign in to the Power BI service.

http://bit.ly/3rMJMvP

Configuring Power BI Tools

18

How to install Analyze

1. In the upper-right corner of any Power BI service page, click the ellipsis and then
choose Download and then Analyze in Excel updates.

Figure 1.20: Downloading Analyze in Excel

2. On the splash screen that appears, choose the Download button.

3. Once the file downloads, choose the Open file link or run the file from your
Downloads folder.

Figure 1.21: Analyze in Excel installer

4. The installation wizard for Microsoft Analysis Services OLE DB Provider Setup
launches. Click the Next button.

5. Accept the licensing terms and click the Next button.

Chapter 1

19

6. Click the Install button to begin the installation.

7. Once the installation finishes, click the Finish button.

Figure 1.22: Successful installation of the Analyze in Excel feature

How it works

Now that the Microsoft Analysis Services OLE DB provider is installed locally on your computer,
you can use the Analyze in Excel feature for reports. To use Analyze in Excel, follow these
steps:

1. Click on any workspace to see the dashboards, reports, and datasets available in that
workspace.

Configuring Power BI Tools

20

2. Hover over a report or dataset, click the "more" menu (three vertical dots), and then
choose Analyze in Excel.

Figure 1.23: Analyze in Excel

3. If you receive a splash screen informing you that you need some Excel updates, click
the I've already installed these updates link.

4. The Power BI service creates and downloads an Excel file that is designed and
structured for use with Analyze in Excel. The name of the Excel file will match the
name of the Power BI report or dataset from which the Excel file was created.

5. Open the Excel file using the Open file link, or open the file from your Downloads
folder.

6. Make sure to click the Enable Editing button in Excel, as the file will open in
PROTECTED VIEW.

7. Finally, click the Enable Content button to activate external data connections.

The Excel file contains a single page/tab with the same name as the report or dataset
from which the report/dataset was created. This page contains a PivotTable called
PivotTable1 that is tied to the Power BI dataset in the Power BI service. Clicking on
the PivotTable presents the dataset tables, columns, and measures in the PivotTable
Fields pane.

Chapter 1

21

There's more…

Depending on the Office license, users can also connect to Power BI datasets from the Insert
PivotTable option and from Data - Get Data experience in Excel.

Table 1.1 lists blogs that contain many articles and examples on Power BI's tools and features.

Blogger(s) Blog URL

Michael Carlo
Seth Bauer PowerBI.Tips http://powerbi.tips

Chris Webb Crossjoin https://blog.crossjoin.co.uk

Rob Collie and others P3 Adaptive https://powerpivotpro.com

Alberto Ferrari
Marco Russo SQL BI http://www.sqlbi.com

Kasper De Jonge Kasper On BI https://www.kasperonbi.com

Matt Allington ExceleratorBI http://exceleratorbi.com.au/blog

Ruth Martinez Curbal https://curbal.com/blog

Reza Rad RADACAD http://radacad.com/blog

Imke Feldman The BIccountant http://www.thebiccountant.com

Brett Powell Insight Quest https://insightsquest.com

Gilbert Quevauvilliers Fourmoo https://www.fourmoo.com/blog

Tom Martens Mincing Data https://www.minceddata.info/blog

Nicky van Vroenhoven Power BI, Power
Platform, Data Platform https://www.nickyvv.com/

Debbie Edwards
Debbie's Microsoft
Power BI, SQL and Azure
Blog

http://bit.ly/3eQsb2G

Zoe Douglas DataZoe
https://www.datazoepowerbi.com/
blog

Ibarrau LaDataWeb (Spanish) https://blog.ladataweb.com.ar/

Various Power BI Community
Blog http://bit.ly/3qIoDl9

Various Power BI Weekly https://powerbiweekly.info/

Table 1.1: A list of blogs that detail Power BI features and tools, with examples on how to use
them

http://powerbi.tips
https://blog.crossjoin.co.uk
https://powerpivotpro.com
http://www.sqlbi.com
https://www.kasperonbi.com
http://exceleratorbi.com.au/blog
https://curbal.com/blog
http://radacad.com/blog
http://www.thebiccountant.com
https://insightsquest.com
https://www.fourmoo.com/blog
https://www.minceddata.info/blog
https://www.nickyvv.com/
http://bit.ly/3eQsb2G
https://www.datazoepowerbi.com/blog
https://www.datazoepowerbi.com/blog
https://blog.ladataweb.com.ar/
http://bit.ly/3qIoDl9
https://powerbiweekly.info/

Configuring Power BI Tools

22

With the exception of Kasper On BI, all of these blogs are from non-Microsoft employees
and thus do not necessarily reflect the views of Microsoft or recommended practices with
its products. Additionally, several of these blogs are not exclusive to Power BI; they may also
include coverage of other MSBI, Azure, SQL Server, and Office 365 tools and services.

An additional resource for learning and deploying Power BI is Adam Saxton's and Patrick
LeBlanc's Guy in a Cube video channel (http://bit.ly/2o2lRqU). These videos feature
concise, hands-on reviews and resolutions to common issues and scenarios. They also have
high-level summaries of recent Power BI updates and releases. As members of Microsoft,
Adam and Patrick can incorporate specific guidance from Microsoft product and technical
teams, and they regularly identify recent blog posts from the wider Power BI community. It is
highly recommended that you subscribe to this channel so that you are always aware of new
posts!

See also

 f Analyze in Excel: http://bit.ly/3bIMSeM

 f Analyze in Excel – the Advanced Method: https://bit.ly/3bLbpzG

Installing and Configuring Additional Tools
Power BI professionals responsible for the development of semantic models (datasets)
routinely utilize additional tools beyond Power BI Desktop to create and manage their models.
For example, they use Tabular Editor to quickly implement changes to measures or add new
objects, such as perspectives and calculation groups. Likewise, the ALM Toolkit is routinely
used to deploy incremental and metadata-only changes to Power BI.

Another such tool is DAX Studio, a third-party tool used to query data models, edit
and format code, browse the structure and metadata of data models, and analyze the
performance and execution characteristics of DAX queries. For larger and more complex data
models and expressions, as well as projects involving multiple models, DAX Studio becomes
an essential supplement to the development and performance-tuning processes.

DAX (Data Analysis Expressions) is the "language of Power BI," as it is used to create the
measures and queries visualized in Power BI reports and dashboards. Power BI generates
and submits DAX queries to the source data model based on the structure of the visualization,
user selections, and filters—just as other tools such as Excel generate MDX queries based on
the selections and structure of pivot tables and slicers from workbooks. DAX expressions are
also used to define security roles and can optionally be used to create columns and tables
in data models based on other tables and columns in the model, which can be refreshed at
processing time and used by measures and queries. DAX serves the same function in Azure
Analysis Services (AAS) and SQL Server Analysis Services (SSAS) tabular models as well
as Power Pivot for Excel models, it's essential that BI professionals have a robust tool for
developing and analyzing DAX code and the data models containing these expressions.

http://bit.ly/2o2lRqU
http://bit.ly/3bIMSeM
https://bit.ly/3bLbpzG

Chapter 1

23

How to Install and Configure Additional Tools

1. Download the latest version from the DAX Studio website: https://daxstudio.
org/downloads/. The installer version is a single file that provides a wizard-based
installation and setup, while the portable version is a ZIP file that does not provide a
wizard-based installation.

2. Use the Open file link or run the file from your Downloads folder.

Figure 1.24: DAX Studio installation file

3. Once the installation starts, select the option to Install for all users (recommended).

4. Accept the license agreement and click the Next button.

5. Choose a folder path to install the tool and click the Next button.

6. Choose whether the DAX Studio add-in for Excel will also be installed. Click the Next
button. Note that:

 � The add-in for Excel is required to connect to Power Pivot for Excel data
models.

 � Additionally, when DAX Studio is opened from Excel, query results can be
exported directly to Excel tables.

7. Select the Start menu folder (the default is DAX Studio) and then click the Next
button.

8. Check the box to Create a desktop shortcut and then click the Next button.

9. Finally, click the Install button.

Figure 1.25: Successful installation of DAX Studio

https://daxstudio.org/downloads/
https://daxstudio.org/downloads/

Configuring Power BI Tools

24

How it works

Upon full installation, including the add-in for Excel, a DAX Studio icon will appear on the Add-
Ins tab in the Excel ribbon, like the one shown in Figure 1.26.

Figure 1.26: DAX Studio in the Add-Ins ribbon in Excel

The full installation with the Excel add-in is recommended, as this enables direct output of
DAX query results to Excel workbook tables and is required for connecting to Power Pivot data
models. For Power Pivot to be available, you must enable the Microsoft Power Pivot for Excel
COM Add-in using the File menu in Excel, and then choose Options. Click on the Add-Ins tab.
Select COM Add-ins from the drop-down control at the bottom of the dialog box and then
select the Go… button. The DAX Studio add-in can be deactivated using this same interface.
To demonstrate how this works in Excel, follow these steps:

1. Open an Excel workbook.

2. Open a Power BI Desktop file.

3. From the Add-Ins tab of the Excel toolbar, activate DAX Studio.

Figure 1.27: The DAX Studio add-in for the Excel Connect dialog

4. For now, click the Cancel button and then close the Excel workbook.

DAX Studio can also be used as a standalone application outside of Excel. The standalone
application provides the same functionality as the Excel add-in, excluding connectivity to
Power Pivot for Excel data models and Excel output options. To demonstrate this, follow these
steps:

Chapter 1

25

5. Launch the DAX Studio standalone Windows application.

6. Connect to a Power BI Desktop file or SSAS tabular instance.

The Advanced Options settings of the Connect dialog box allow you to control exactly
how DAX Studio connects to the model, such as the ability to specify a security role,
effective user name identity, and locale when defining connections to data models
and when analyzing trace events associated with DirectQuery data models (that is,
the SQL statements generated and passed to sources).

Figure 1.28: DAX Studio advanced connection options

There's more…

There are two additional tools that are useful for Power BI. Namely:

 f ALM Toolkit

 f Tabular Editor

The ALM Toolkit is a third-party tool from MAQ Software that provides advanced features such
as Power BI dataset comparison, code merging, partial deployments and bug fixes, source
control integration for dataset metadata, and definition reuse between tabular models. To
download and install the ALM Toolkit, follow these steps:

1. In a browser, navigate to http://alm-toolkit.com.

2. Near the top of the page, click the DOWNLOAD LATEST VERSION button.

http://alm-toolkit.com

Configuring Power BI Tools

26

3. Use the Open file link to launch AlmToolkitSetup.msi or open the file from your
Downloads folder.

Figure 1.29: ALM Toolkit installer

4. Click the Next button on the initial installation screen.

5. Accept the license agreement and click the Next button.

6. Choose a Folder path and click the Next button.

7. On the final installation screen, click the Next button to start the installation.

Figure 1.30: Successfully installed ALM Toolkit

The Power BI ALM Toolkit can now be launched from the Windows Start menu.

Another powerful tool is Tabular Editor. At the time of this book being published, Tabular
Editor comes in two versions, the free, open source version 2 and the commercial version
3. Tabular Editor is an alternative to SQL Server Data Tools (SSDT) for authoring and editing
tabular models for Analysis Services. Tabular Editor provides a hierarchical view of the objects
in your tabular model metadata, such as columns, measures, and hierarchies. Tabular Editor
integrates with Power BI Desktop, allowing batch changes to DAX measures and enabling
advanced capabilities such as calculation groups and perspectives. Finally, Tabular Editor also
enables offline editing capabilities by allowing you to open the tabular model directly from
Model.bim files. To install and use Tabular Editor, follow these steps:

1. Download the latest Tabular Editor from here: https://bit.ly/3bJFBvl.

2. Scroll to the bottom of the page and click the link for TabularEditor.Installer.msi.

https://bit.ly/3bJFBvl

Chapter 1

27

3. Once the file downloads, use the Open file link or open the file from your Downloads
folder.

Figure 1.31: Tabular Editor installer

4. Click the Next button on the initial installation screen.

5. Accept the license agreement and click the Next button.

6. Choose a Folder path and click the Next button.

7. Check the boxes Create Desktop shortcut and Create Program Menu shortcut, and
then click the Next button.

8. On the final installation screen, click the Next button to start the installation.

Figure 1.32: Successfully installed Tabular Editor

Tabular Editor can now be launched from the Windows Start menu.

See also

 f DAX Studio tutorials and documentation: https://daxstudio.org

 f ALM Toolkit documentation: http://alm-toolkit.com/HowToUse

 f Tabular Editor documentation: https://docs.tabulareditor.com/

https://daxstudio.org
http://alm-toolkit.com/HowToUse
https://docs.tabulareditor.com/

Configuring Power BI Tools

28

Conclusion
In this chapter, we walked through the installation and configuration of the primary tools that
BI professionals utilize to design and develop Power BI content, including official Microsoft
tools such as Power BI Desktop, the On-premises data gateway, and Analyze in Excel, as well
as third-party tools such as DAX Studio, the ALM Toolkit, and Tabular Editor. These tools,
coupled with the Power BI service, are the primary resources needed by BI professionals to
be productive with Power BI. Later chapters of this book explore the use of these tools in
developing and enhancing Power BI solutions.

29

2
Accessing and

Retrieving Data
Power BI Desktop contains a rich set of connectors and transformation capabilities that
support the integration and enhancement of data from many different sources. These
features are all driven by a powerful functional language and query engine, M, which
leverages source system resources when possible and can greatly extend the scope and
robustness of the data retrieval process beyond what's possible via the standard query editor
interface alone. As with almost all BI projects, the design and development of the data access
and retrieval process has significant implications for the analytical value, scalability, and
sustainability of the overall Power BI solution.

In this chapter, we dive into Power BI Desktop's Get Data experience and walk through the
process of establishing and managing data source connections and queries. Examples are
provided of using the Power Query Editor interface and the M language directly, to construct
and refine queries to meet common data transformation and cleansing needs. In practice
and as per the examples, a combination of both tools is recommended to aid the query
development process.

A full explanation of the M language and its implementation in Power BI is outside the scope
of this book, but additional resources and documentation are included in the sections titled
There's more... and See also.

The recipes included in this chapter are as follows:

 f Viewing and Analyzing M Functions

 f Managing Queries and Data Sources

 f Using DirectQuery

 f Importing Data

Accessing and Retrieving Data

30

 f Applying Multiple Filters

 f Selecting and Renaming Columns

 f Transforming and Cleansing Source Data

 f Creating Custom Columns

 f Combining and Merging Queries

 f Selecting Column Data Types

 f Visualizing the M Library

 f Profile Source Data

 f Diagnosing Queries

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop

 f SQL Server 2019 or newer with the AdventureWorksDW2019 database installed.
This database and instructions for installing it are available here: http://bit.
ly/2OVQfG7

Viewing and Analyzing M Functions
Every time you click on a button to connect to any of Power BI Desktop's supported data
sources or apply any transformation to a data source object, such as changing a column's
data type, one or multiple M expressions are created reflecting your choices. These M
expressions are automatically written to dedicated M documents and, if saved, are stored
within the Power BI Desktop file as Queries. M is a functional programming language like F#,
and it is important that Power BI developers become familiar with analyzing, understanding,
and later, writing and enhancing the M code that supports their queries.

Getting ready

To prepare for this recipe, we will first build a query through the user interface that connects
to the AdventureWorksDW2019 SQL Server database, retrieves the DimGeography table,
and then filters this table to a single country, such as the United States:

1. Open Power BI Desktop and click on Get Data from the Home tab of the ribbon.
Select SQL Server from the list of database sources. For future reference, if the data
source is not listed in Common data sources, more data sources are available by
clicking More… at the bottom of the list.

http://bit.ly/2OVQfG7
http://bit.ly/2OVQfG7

Chapter 2

31

2. A dialog window is displayed asking for connectivity information. Ensure that Data
Connectivity mode is set to Import. Enter the name of your SQL server as well as
the AdventureWorksDW2019 database. In Figure 2.1, my SQL server is installed
locally and running under the instance MSSQLSERVERDEV. Thus, I set the server
to be localhost\MSSQLSERVERDEV to specify both the server (localhost) and the
instance. If you leave the Database field blank, this will simply result in an extra
navigation step to select the desired database.

Figure 2.1: SQL Server Get Data dialog

3. If this is the first time connecting to this database from Power BI, you may be
prompted for some credentials. In addition, you may also be warned that an
encrypted connection cannot be made to the server. Simply enter the correct
credentials for connecting and click the Connect button. For the encryption warning,
simply click the OK button to continue.

4. A navigation window will appear, with the different objects and schemas of the
database. Select the DimGeography table from the Navigator window and click the
Transform Data button.

5. The Power Query Editor launches in a new window with a query called DimGeography;
preview data from that table is displayed in the center of the window. In the Power
Query Editor window, use the scroll bar at the bottom of the central display area to
find the column called EnglishCountryRegionName. You can also select a column
and then click Go to Column in the ribbon of the View menu to search for and
navigate to a column quickly. Click the small button in the column header next to this
column to display a sorting and filtering drop-down menu.

Accessing and Retrieving Data

32

Uncheck the (Select All) option to deselect all values and then check the box next to
a country, such as the United States, before clicking the OK button.

Figure 2.2: Filtering for United States only in the Query Editor

Note that the button for the EnglishCountryRegionName column changes to display
a funnel icon. Also notice that, in the Query Settings pane on the right side of the
window, a new option under APPLIED STEPS has appeared called Filtered Rows.

Figure 2.3: The Query Settings pane in the Query Editor

Chapter 2

33

How to View and Analyze M Functions

There are two methods for viewing and analyzing the M functions comprising a query; they are
as follows:

 f Formula bar

 f Advanced Editor

The formula bar exposes the M function for the current step only. This formula bar appears
just above the column headers for the preview data in the central part of the window. If you
do not see this formula bar, click the View tab and check the box next to Formula Bar in the
Layout section of the ribbon. All such areas of interest are boxed in red in Figure 2.4.

Figure 2.4: The Power Query Editor formula bar

When the Source step is selected under APPLIED STEPS in the Query Settings pane, as seen
in Figure 2.3, we see the connection information specified on the initial dialog after selecting
Get Data and then SQL Server. The M function being used is Sql.Database. This function is
accepting two parameters: the server name, localhost\MSSQLSERVERDEV, and the database
name, AdventureWorksDW2019. Clicking on other steps under APPLIED STEPS exposes the
formulas for those steps, which are technically individual M expressions.

The formula bar is useful to quickly understand the M code behind a particular query step.
However, it is more convenient and often essential to view and edit all the expressions in a
centralized window. This is the purpose of the Advanced Editor. To launch the Advanced
Editor, follow these steps:

1. Click on the Home tab and then select Advanced Editor from the Query section of
the ribbon, as shown in Figure 2.5. Alternatively, the Advanced Editor can also be
accessed from the View tab, shown in Figure 2.4.

Accessing and Retrieving Data

34

Figure 2.5: Advanced Editor on the Home tab of the Query Editor

2. The Advanced Editor dialog is displayed, exposing all M functions and comments that
comprise the query. The M code can be directly edited from within this dialog.

Figure 2.6: The Advanced Editor view of the DimGeography query

As shown in Figure 2.6, using the Advanced Editor will mean that all of the Power
Query code that comprises the query can be viewed in one place.

How it works

The majority of queries created for Power BI follow the let...in structure, as per this recipe.
Within the let block, there are multiple steps with dependencies among those steps. For
example, the second step, dbo_DimGeography, references the previous step, Source.
Individual expressions are separated by commas, and the expression referred to following
the in keyword is the expression returned by the query. The individual step expressions are
technically known as "variables".

Variable names in M expressions cannot have spaces without being preceded by a hash sign
and enclosed in double quotes. When the Query Editor graphical interface is used to create M
queries, this syntax is applied automatically, along with a name describing the M transformation
applied. This behavior can be seen in the Filtered Rows step in Figure 2.6. Applying short,
descriptive variable names (with no spaces) improves the readability of M queries.

Chapter 2

35

Note the three lines below the let statement. These three lines correspond to the three
APPLIED STEPS in our query: Source, Navigation, and Filtered Rows. The query returns the
information from the last step of the query, Filtered Rows. As more steps are applied, these
steps will be inserted above the in statement and the line below this will change to reference
the final step in the query.

M is a case-sensitive language. This includes referencing variables in M expressions
(RenameColumns versus Renamecolumns) as well as the values in M queries. For example, the
values "Apple" and "apple" are considered unique values in an M query.

It is recommended to use the Power Query Editor user interface when getting started with
a new query and when learning the M language. After several steps have been applied,
use Advanced Editor to review and optionally enhance or customize the M query. As a rich,
functional programming language, there are many M functions and optional parameters
not exposed via the Power Query Editor's graphical user interface. Going beyond the limits
of the Power Query Editor enables more robust data retrieval, integration, and data mashup
processes.

The M engine also has powerful "lazy evaluation" logic for ignoring any redundant or
unnecessary variables, as well as short-circuiting evaluation (computation) once a result is
determinate, such as when one side (operand) of an OR logical operator is computed as True.
Lazy evaluation allows the M query engine to reduce the required resources for a given query
by ignoring any unnecessary or redundant steps (variables). The order of evaluation of the
expressions is determined at runtime—it doesn't have to be sequential from top to bottom.

In the following example, presented in Figure 2.7, a step for retrieving Canada was added and
the "Filtered Rows" step for filtering the results for the United States was ignored. Since
the CanadaOnly variable satisfies the overall let expression of the query, only the Canada
query is issued to the server as if the "Filtered Rows" step were commented out or omitted.

Figure 2.7: Revised query that ignores the "Filtered Rows" step to evaluate Canada only

As a review of the concepts covered thus far and for future reference, Table 2.1 presents a
glossary of the main concepts of the M language utilized in this book.

Concept Definition

Expression Formulas evaluated to yield a single value. Expressions can reference other
values, such as functions, and may include operators.

Value
The result of evaluating an expression. Values can be categorized into types
which are either primitive, such as text ("abc"), or structured kinds, such as tables
and lists.

Accessing and Retrieving Data

36

Function
A value that produces a new one based on the mapping of input values to the
parameters of the function. Functions can be invoked by passing parameter
values.

Type A value that classifies other values. The structure and behavior of values are
restricted based on the classification of their type, such as Record, List, or Table.

let
An expression that allows a set of unique expressions to be assigned names
(variables) and evaluated (if necessary) when evaluating the expression following
the in expression in a let...in construct.

Variable A unique, named expression within an environment to be conditionally evaluated.
Variables are represented as Applied Steps in the Query Editor.

Environment A set of variables to be evaluated. The global environment containing the M
library is exposed to root expressions.

Evaluation The computation of expressions. Lazy evaluation is applied to expressions
defined within let expressions; evaluation occurs only if needed.

Operators A set of symbols used in expressions to define the computation. The evaluation
of operators depends on the values to be operated on.

Table 2.1: M Language elements

There's more...

M queries are not intended as a substitute for the data loading and transformation workloads
typically handled by enterprise data integration and orchestration tools such as Azure Data
Factory (ADF), Azure Databricks, or SQL Server Integration Services (SSIS). However, just as
BI professionals carefully review the logic and test the performance of SQL stored procedures
and ETL packages supporting their various cubes and reporting environments, they should
also review the M queries created to support Power BI models and reports. When developing
retrieval processes for Power BI models, consider these common ETL questions:

 f How are queries impacting the source systems?

 f Can we make our queries more resilient to changes in source data so that they avoid
failure?

 f Are our queries efficient and simple to follow and support, or are there unnecessary
steps and queries?

 f Are our queries delivering sufficient performance to the BI application?

 f Is our process flexible, such that we can quickly apply changes to data sources and
logic?

 f Can some or all of the required transformation logic be implemented in a source
system such as the loading process for a data warehouse table or a SQL view?

Chapter 2

37

One of the top performance and scalability features of M's query engine is called Query
Folding. If possible, the M queries developed in Power BI Desktop are converted ("folded") into
SQL statements and passed to source systems for processing.

If we use the original version of the query from this recipe, as shown in Figure 2.6, we
can see Query Folding in action. The query from this recipe was folded into the following
SQL statement and sent to the server for processing, as opposed to the M query engine
performing the processing locally. To see how this works, perform the following:

1. Right-click on the Filtered Rows step in the APPLIED STEPS section of the Query
Settings pane, and select View Native Query.

Figure 2.8: View Native Query in Query Settings

2. The Native Query dialog is then displayed, as shown in Figure 2.9.

Figure 2.9: The SQL statement generated from the DimGeography M query

Accessing and Retrieving Data

38

Finding and revising queries that are not being folded to source systems is a top technique
for enhancing large Power BI datasets. See the Pushing Query Processing Back to Source
Systems recipe of Chapter 11, Enhancing and Optimizing Existing Power BI Solutions, for an
example of this process.

The M query engine also supports partial query folding. A query can be "partially folded", in
which a SQL statement is created resolving only part of an overall query. The results of this
SQL statement would be returned to Power BI Desktop (or the on-premises data gateway) and
the remaining logic would be computed using M's in-memory engine with local resources.
M queries can be designed to maximize the use of the source system resources, by using
standard expressions supported by query folding early in the query process. Minimizing the
use of local or on-premises data gateway resources is a top consideration for improving query
performance.

There are limits, however, to query folding. For example, no folding takes place once a native
SQL query has been passed to the source system, such as when passing a SQL query directly
through the Get Data dialog using the Advanced options. Figure 2.10 displays a query
specified in the Get Data dialog, which is included in the Source step.

Figure 2.10: Providing a user-defined native SQL query

Chapter 2

39

Any transformations applied after this native query will use local system resources. Therefore,
the general implication for query development with native or user-defined SQL queries is
that if they are used, try to include all required transformations (that is, joins and derived
columns), or use them to utilize an important feature of the source database that is not being
utilized by the folded query, such as an index.

Some other things to keep in mind regarding Query Folding are the following:

 f Not all data sources support Query Folding, such as text and Excel files.

 f Not all transformations available in the Query Editor or via M functions are directly
supported by some data sources.

 f The privacy levels defined for the data sources will also impact whether folding is
used or not.

 f SQL statements are not parsed before they are sent to the source system.

 f The Table.Buffer function can be used to avoid query folding. The table output of
this function is loaded into local memory, and transformations against it will remain
local.

See also

 f Power Query M language specification: http://bit.ly/2oaJWwv

 f Power Query M Function reference: http://bit.ly/3bLKJ1M

Managing Queries and Data Sources
There are two primary components of queries in Power BI: the data source and the query logic
executed against this source. The data source includes the connection method (DirectQuery
or Import), a privacy setting, and the authentication credentials. The query logic consists
of the M expressions represented as queries in the Query Editor and stored internally as M
documents.

In a typical corporate BI tool, such as SQL Server Reporting Services (SSRS), the properties
of a data source such as the server and database name are defined separately from the
queries that reference them. In Power BI Desktop, however, by default, each individual query
created explicitly references a given data source (for example, server A and database B). This
creates an onerous, manual process of revising each query if it becomes necessary to change
the source environment or database.

This issue is addressed in the following steps by using dedicated M queries to centralize
and isolate the data source information from the individual queries. Additionally, detail and
reference information is provided on managing source credentials and data source privacy
levels.

https://docs.microsoft.com/en-gb/powerquery-m/power-query-m-language-specification
http://bit.ly/3bLKJ1M

Accessing and Retrieving Data

40

Getting ready

To prepare for this recipe, we will create a query from a database, which will serve as the
source for other queries via the standard Get Data and Power Query Editor experience
described in the previous recipe. To create this query, perform the following steps:

1. Open Power BI Desktop.

2. If you have already connected to your SQL Server, you can find the connection under
Recent sources on the Home tab. Otherwise, on the Home tab, select Get Data from
the ribbon, and choose SQL Server.

3. Select a table or view, and click on Transform Data to import the data.

4. The Power Query Editor window will launch and a preview of the data will
appear. In this example, we have chosen the DimEmployee table from the
AdventureWorksDW2019 database on our local SQL Server instance
MSSQLSERVERDEV. The full code of the query can be viewed in the Advanced Editor
window but is also shown below.
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),
 dbo_DimEmployee = Source{[Schema="dbo",Item="DimEmployee"]}[Data]
in
 dbo_DimEmployee

5. Copy just the Source line (in bold in the previous step).

6. Close the Advanced Editor window by clicking the Cancel button.

7. Remain in the Power Query Editor window.

How to Manage Queries and Data Sources

In this example, a separate data source connection query is created and utilized by individual
queries. By associating many individual queries with a single (or a few) data source queries,
it is easy to change the source system or environment, such as when switching from a
Development environment to a User Acceptance Testing (UAT) environment. We will then
further separate out our data source queries and our data load queries using query groups. To
start isolating our data source queries from our data load queries, follow these steps:

1. Create a new, blank query by selecting New Source from the ribbon of the Home tab
and then select Blank Query.

Chapter 2

41

2. Open the Advanced Editor and replace the Source line with the line copied from the
query created in Getting ready. Be certain to remove the comma (,) at the end of the
line. The line prior to the in keyword should never have a comma at the end of it. Your
query should look like the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Click the Done button to close the Advanced Editor window.

4. Rename the query by clicking on the query and editing the Name in the Query
Settings pane. Alternatively, in the Queries pane, right-click the query and choose
Rename. Give the source query an intuitive name, such as AdWorksDW.

5. Now click on the original query created in the Getting ready section above. Open the
Advanced Editor. Replace the Source step expression of the query with the name of
the new query. As you type the name of the query, AdWorksDW, you will notice that
IntelliSense will suggest possible values. The query should now look like the following:
let
 Source = AdWorksDW,
 dbo_DimEmployee = Source{[Schema="dbo",Item="DimEmployee"]}[Data]
in
 dbo_DimEmployee

6. Click the Done button to come out of Advanced Editor. The preview data refreshes
but continues to display the same data as before.

We can take this concept of isolating our data source queries from data loading queries
further by organizing our queries into query groups. You should also use query groups to help
isolate data source and staging queries from queries loaded to the dataset. To see how query
groups work, follow these steps:

1. Duplicate the revised data loading query that loads the DimEmployee table, created
in Getting ready. Simply right-click the query in the Queries pane and choose
Duplicate.

2. With the new query selected in the Queries pane, click the gear icon next to the
Navigation step in the APPLIED STEPS area of the Query Settings pane.

3. Choose a different dimension table or view, such as DimAccount, and then click the
OK button. Dimension tables and views start with "Dim".

Accessing and Retrieving Data

42

4. Rename this new query to reflect the new table or view being loaded.

5. Create a new group by right-clicking in a blank area in the Queries window and then
selecting New Group…

6. In the New Group dialog, name the group Data Sources and click the OK button.

7. Create another new group and name this group Dimensions.

8. Move the AdWorksDW query to the Data Sources group by either dragging and
dropping in the Queries pane or right-clicking the query and choosing Move To
Group…, and then select the group.

9. Move the other queries to the Dimensions group.

10. Finally, ensure that the query in the Data Source group is not actually loaded as a
separate table in the data model. Right-click on the query and uncheck the Enable
Load option. This makes the query available to support data retrieval queries but
makes the query invisible to the model and report layers. The query name will now be
italicized in the Queries pane.

Your Queries pane should now look similar to that in Figure 2.11:

Figure 2.11: Queries organized into query groups

How it works

The Query Dependencies view in Power Query provides a visual representation of the
relationships between the various queries. You can access this dialog by using the View tab
and then selecting Query Dependencies in the ribbon.

Chapter 2

43

Figure 2.12: The Query Dependencies View in Query Editor

In this example, a single query with only one expression is used by multiple queries, but more
complex interdependencies can be designed to manage the behavior and functionality of
the retrieval and analytical queries. This recipe illustrates the broader concept used in later
recipes called "composability", where functions call other functions; this is one of the primary
strengths of functional programming languages such as M, DAX, R, and F#.

There's more...

Power BI Desktop saves data source credentials for each data source defined, as well as a
privacy level for that source. It is often necessary to modify these credentials as passwords
change. In addition, setting privacy levels on data sources helps prevent confidential
information from being exposed to external sources during the Query Folding process. Data
source credentials and settings are not stored in the PBIX file, but rather on the computer of
the installed application.

Accessing and Retrieving Data

44

To manage data source credentials and privacy levels, perform the following steps:

1. From Power BI Desktop (not the Power Query Editor), click on File in the menu, then
click Options and settings, and finally click Data source settings.

2. Click on the Global Permissions radio button such that your settings are persisted
into other Power BI Desktop reports.

3. Select a data source.

4. Click the Edit Permissions button.

5. From the Edit Permissions dialog, you can click the Edit button under the
Credentials heading to set the authentication credentials for the data source. In
addition, you can set the privacy level for the data source using the drop-down under
the Privacy Level heading. Click OK to save your settings.

Figure 2.13: Edit credentials and privacy level for a data source

Definitions of the available Privacy Level settings are provided in Table 2.2.

Privacy Setting Description

None No privacy level defined.

Private
A Private data source is completely isolated from other data sources during
query retrieval. For example, marking a text file Private would prevent that
data from being processed on an external server.

Organizational An Organizational data source is isolated from all public data sources but is
visible to other organizational data sources during retrieval.

Chapter 2

45

Public A Public data source is visible to other sources. Only files, internet sources,
and workbook data can be marked as Public.

Table 2.2: Privacy Level Settings

Just as relational databases such as SQL Server consider many potential query plans, the
M engine also searches for the most efficient methods of executing queries, given that the
data sources and query logic are defined. In the absence of data source privacy settings, the
M engine is allowed to consider plans that merge disparate data sources. For example, a
local text file of customer names can be merged with an external or third-party server, given
the better performance of the server. Defining privacy settings isolates data sources from
these operations thus increasing the likelihood of local resource usage, and hence query
performance may be reduced.

See also

 f Authentication with a data source: http://bit.ly/30It2tV

 f Power BI Desktop privacy levels: http://bit.ly/29blFBR

Using DirectQuery
One of the most valuable features of Power BI is its deep support for real-time and streaming
datasets, with the ability to provide immediate visibility to business processes and events as
this data is created or updated. As Power BI Desktop's data modeling engine reflects the latest
Analysis Services features, it becomes feasible to design DirectQuery models or composite
models (DirectQuery and import) in Power BI Desktop, and thus avoid the scalability
limitations and scheduled refresh requirements of models based on importing data.

The three most common candidates for DirectQuery or composite model projects are as
follows:

 f The data model would consume an exorbitant amount of memory if all tables were
fully loaded into memory. Even if the memory size is technically supported by large
Power BI Premium capacity nodes, this would be a very inefficient and expensive use
of company resources as most BI queries only access aggregated data representing a
fraction of the size. Composite models which mix DirectQuery and Dual storage mode
tables with in-memory aggregation tables is the recommended architecture for large
models going forward.

 f Access to near-real-time data is of actionable or required value to users or other
applications, such as is the case with notifications. For example, an updateable
Nonclustered Columnstore index could be created on OLTP disk-based tables or
memory-optimized tables in SQL Server to provide near-real-time access to database
transactions.

http://bit.ly/30It2tV
http://bit.ly/29blFBR

Accessing and Retrieving Data

46

 f A high-performance and/or read-optimized system is available to service report
queries, such as a SQL Server or Azure SQL Database, with the Clustered
Columnstore index applied to fact tables.

This recipe walks through the primary steps in designing the data access layer that supports
a DirectQuery model in Power BI Desktop. As these models are not cached into memory and
dynamically convert the DAX queries from report visualizations to SQL statements, guidance
is provided to maintain performance. Additional details, resources, and documentation on
DirectQuery's current limitations and comparisons with the default import mode are also
included to aid your design decision.

Getting ready

1. Choose a database to serve as the source for the DirectQuery data model.

2. Create a logical and physical design of the fact and dimension tables of the model
including the relationship keys and granularity of the facts. The AdventureWorksDW
database is a good example of data designed in this manner.

3. Determine or confirm that each fact-to-dimension relationship has referential
integrity. Providing this information to the DirectQuery model allows for more
performant inner join queries.

4. Create view objects in the source database to provide efficient access to the
dimensions and facts defined in the physical design.

Be aware that DirectQuery models are limited to a single source database and not all
databases are supported for DirectQuery. If multiple data sources are needed, such as
SQL Server and Oracle, or Teradata and Excel, then the default Import mode model, with a
scheduled refresh to the Power BI Service, will be the only option.

How to use DirectQuery

For this recipe, we will use the AdventureWorksDW2019 database that has been used thus
far in this chapter. To implement this recipe, follow these steps:

1. Create a new Power BI Desktop file.

2. From the Home tab, click on Get Data in the ribbon and then SQL Server.

3. In the Data Connectivity mode section, choose the DirectQuery radio option.

Chapter 2

47

Figure 2.14: Creating a DirectQuery data source

4. Select a table or view to be used by the model via the Navigator dialog, such as the
FactResellerSales table, and then click the Transform Data button.

5. Duplicate the initial query and revise the Navigation step to reference an additional
view supporting the model, such as the DimReseller. This can be done by editing the
Item in the formula bar or by clicking on the gear icon next to the Navigation step
under APPLIED STEPS in the Query Settings pane. Also, rename this query to reflect
the data being referenced.

Figure 2.15: Editing the Navigation step in the formula bar

6. Repeat step 5 for all required facts and dimensions. For example:

 f DimEmployee

 f DimPromotion

 f DimCurrency

 f DimSalesTerritory

7. Click the Close and Apply button.

The Report Canvas view will confirm that the model is in DirectQuery mode via the status bar
at the bottom right (see Figure 2.16). In addition, the Data view in the left-hand pane, which is
visible for import models, will not be visible.

Figure 2.16: DirectQuery Status in Power BI Desktop

Accessing and Retrieving Data

48

How it works

The M transformation functions supported in DirectQuery are limited by compatibility with the
source system. The Power Query Editor will advise when a transformation is not supported in
DirectQuery mode, per Figure 2.17.

Figure 2.17: A warning in Query Editor that the IsEven function is not supported in DirectQuery mode

Given this limitation and the additional complexity the M-based transforms would add to the
solution, it is recommended that you embed all the necessary logic and transforms in the
source relational layer. Ideally, the base tables in the source database themselves would
reflect these needs. As a secondary option, a layer of views can be created to support the
DirectQuery model.

If the database objects themselves cannot be revised, the Value.Native M function can be
used to directly pass the SQL statement from Power BI Desktop to the source database, as
per Figure 2.18.

Figure 2.18: The Value.Native function used to pass a SQL statement to a source system

As report visualizations are refreshed or interacted with in Power BI, the DAX queries from
each visualization are translated into SQL statements, utilizing the source SQL statements to
return the results. Be aware that Power BI does cache query results with DirectQuery models.
Therefore, when accessing a recently utilized visual, a local cache may be used rather than a
new query sent to the source.

The SQL statements passed from Power BI to the DirectQuery data source include all columns
from the tables referenced by the visual.

Chapter 2

49

For example, a Power BI visual with SalesAmount from the FactResellerSales table grouped
by ResellerName from DimReseller would result in a SQL statement that selects the
columns from both tables and implements the join defined in the model. However, as the
SQL statement passed embeds these source views as derived tables, the relational engine
is able to generate a query plan that only scans the required columns to support the join and
aggregation.

There's more...

The performance and scalability of DirectQuery models are primarily driven by the relational
data source. A denormalized star schema with referential integrity and a system that is
isolated from OLTP workloads is recommended if near real-time visibility is not required.
Additionally, in-memory and columnar features available to supported DirectQuery sources are
recommended for reporting and analytical queries.

By default, DirectQuery models generate outer join SQL queries to ensure that measures
return the correct value even if there's not a related dimension. However, you can configure
DirectQuery models to send inner join queries. This is done by editing the relationship
between tables in the modeling view by checking the Assume referential integrity setting
(see Figure 2.19). Along with source system resources, this is one of the top factors
contributing to the DirectQuery model's performance.

Figure 2.19: Activating referential integrity assumption in relationships

Accessing and Retrieving Data

50

Of course, you should ensure that there is referential integrity in the source before enabling
this setting; otherwise, incorrect results could be returned.

The design of the source relational schema and the hardware resources of this system can, of
course, greatly impact the performance of DirectQuery models.

A classic star-schema design with denormalized tables is recommended to reduce the
required join operations at query time. Optimizing relational fact tables with column store
technologies such as the Clustered Columnstore Index for SQL Server and table partitions will
also significantly benefit DirectQuery models.

See also

 f Power BI Desktop DirectQuery documentation: http://bit.ly/2nUoLOG

 f The Power BI data sources documentation provides a detailed list of data sources
broken down by the connectivity options supported: http://bit.ly/30N5ofG

Importing Data
Import is the default data connectivity mode for Power BI Desktop. Import models created in
Power BI Desktop use the same in-memory, columnar compressed storage engine (VertiPaq)
featured in Analysis Services Tabular 2016+ import models. Import mode models support
the integration of disparate data sources (for example, SQL Server and DB2) and allow
more flexibility in developing metrics and row-level security roles via full support for all DAX
functions.

There are some limits for Import mode datasets, however. For example, Power BI Pro license
users cannot publish Power BI Desktop files to shared capacity in the Power BI service that
are larger than 1GB. Power BI Premium (dedicated, isolated hardware) supports datasets of
10GB in size and larger (with large datasets enabled, dataset size is limited by the Premium
capacity size or the maximum size set by the administrator). With such large datasets, it is
important to consider employing incremental refresh where only new and changed data is
refreshed and imported, instead of the entire dataset being refreshed.

This recipe describes a process of using M and the Query Editor to develop the Import mode
queries for a standard star-schema analytical model. A staging query approach is introduced
as a means of efficiently enhancing the dimensions of a model. In addition, tips are included
for using fewer resources during the refresh and avoiding refresh failures from revised source
data. More details of these methods are included in other recipes in this chapter.

http://bit.ly/2nUoLOG
http://bit.ly/30N5ofG

Chapter 2

51

Getting ready

In this example, the DimProduct, DimProductSubcategory, and DimProductCategory tables
from the AdventureWorksDW2019 database are integrated into a single import query. This
query includes all product rows, only the English language columns, and user-friendly names.
Many-to-one relationships have been defined in the source database.

To prepare for this recipe, do the following:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

4. Disable loading of this query.

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to import data

To implement this recipe, perform the following steps:

1. Right-click AdWorksDW and choose Reference. This creates a new query that
references the AdWorksDW query as its source.

2. Select this new query and, in the preview data, find the DimProduct table in the
Name column. Click on the Table link in the Data column for this row.

3. Rename this query DimProduct.

4. Repeat steps 1 – 3 for the DimProductCategory and DimProductSubcategory
tables.

5. Create a new query group called Staging Queries.

6. Move the DimProduct, DimProductCategory, and DimProductSubcategory queries
to the Staging Queries group.

Accessing and Retrieving Data

52

7. Disable loading for all queries in the Staging Queries group. Your finished set of
queries should look similar to Figure 2.20.

Figure 2.20: Staging Queries

The italics indicate that the queries will not be loaded into the model.

8. Create a new Blank Query and name this query Products.

9. Open the Advanced Editor for the Products query.

10. In the Products query, use the Table.NestedJoin function to join the DimProduct
and DimProductSubcategory queries. This is the same function that is used if you
were to select the Merge Queries option in the ribbon of the Home tab. A left outer
join is required to preserve all DimProduct rows, since the foreign key column to
DimProductCategory allows null values.

11. Add a Table.ExpandColumns expression to retrieve the necessary columns from the
DimProductSubcategory table. The Products query should now have the following
code:
let
 ProductSubCatJoin =
 Table.NestedJoin(
 DimProduct,"ProductSubcategoryKey",
 DimProductSubcategory,"ProductSubcategoryKey",
 "SubCatColumn",JoinKind.LeftOuter
),

 ProductSubCatColumns =
 Table.ExpandTableColumn(
 ProductSubCatJoin,"SubCatColumn",
 {"EnglishProductSubcategoryName","ProductCategoryKey"},
 {"Product Subcategory", "ProductCategoryKey"}
)
in
 ProductSubCatColumns

Chapter 2

53

The NestedJoin function inserts the results of the join into a column (SubCatColumn)
as table values. The second expression converts these table values into the
necessary columns from the DimProductSubcategory query and provides the simple
Product Subcategory column name, as shown in Figure 2.21.

Figure 2.21: Product Subcategory Columns Added

The query preview in the Power Query Editor will expose the new columns at the far
right of the preview data.

12. Add another expression beneath the ProductSubCatColumns expression with a
Table.NestedJoin function that joins the previous expression (the Product to
Subcategory join) with the DimProductCategory query.

13. Just like step 8, use a Table.ExpandTableColumn function in a new expression to
expose the required Product Category columns.
),

 ProductCatJoin =
 Table.NestedJoin(
 ProductSubCatColumns,"ProductCategoryKey",
 DimProductCategory,"ProductCategoryKey",
 "ProdCatColumn",JoinKind.LeftOuter
),

 ProductCatColumns =
 Table.ExpandTableColumn(
 ProductCatJoin,"ProdCatColumn",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 ProductCatColumns

Accessing and Retrieving Data

54

Be certain to add a comma after the ProductSubCatColumns expression. In addition,
be sure to change the line beneath the in keyword to ProductCatColumns.

The expression ProductCatJoin adds the results of the join to DimProductCategory
(the right table) to the new column (ProdCatColumn). The next expression,
ProductCatColumns adds the required Product Category columns and revises the
EnglishProductCategoryName column to Product Category. A left outer join was
necessary with this join operation as well since the product category foreign key
column on DimProductSubcategory allows null values.

14. Add an expression after the ProductCatColumns expression that selects the columns
needed for the load to the data model with a Table.SelectColumns function.

15. In addition, add a final expression to rename these columns via Table.
RenameColumns to eliminate references to the English language and provide spaces
between words.

),

 SelectProductColumns =
 Table.SelectColumns(ProductCatColumns,
 {
 "ProductKey", "EnglishDescription",
 "EnglishProductName", "Product Subcategory", "Product
Category"
 }
),
 RenameProductColumns =
 Table.RenameColumns(SelectProductColumns,
 {
 {"EnglishDescription", "Product Description"},
 {"EnglishProductName", "Product Name"}
 }
)
in
 RenameProductColumns

Be certain to add a comma after the ProductCatColumns expression. In addition, change the
line beneath the in keyword to RenameProductColumns.

The preview in the Power Query Editor for the Products query should now be similar to that
shown in Figure 2.22.

Chapter 2

55

Figure 2.22: Product Query Results

It is not necessary to rename the ProductKey column since this column will be hidden from
the reporting layer. In practice, the product dimension would include many more columns.
Closing and applying the changes results in only the Products table being loaded into the
model.

The denormalized Products table now supports a three-level hierarchy in the Power BI
Desktop model to significantly benefit reporting and analysis.

Figure 2.23: Product Hierarchy

How it works

The default join kind for Table.NestedJoin is a left outer join. However, as other join kinds
are supported (for example, inner, anti, and full outer), explicitly specifying this parameter in
expressions is recommended. Left outer joins are required in the Products table example,
as the foreign key columns on DimProduct and DimProductSubcategory both allow null
values. Inner joins implemented either via Table.NestedJoin or Table.Join functions are
recommended for performance purposes otherwise. Additional details on the joining functions
as well as tips on designing inline queries as an alternative to staging queries are covered in
the Combining and Merging Queries recipe in this chapter.

When a query joins two tables via a Table.NestedJoin or Table.Join function, a column
is added to the first table containing a Table object that contains the joined rows from the
second table. This column must be expanded using a Table.ExpandTableColumn function,
which generates additional rows as specified by the join operation.

Once all rows are generated by the join and column expansion operations, the specific
columns desired in the end result can be specified by the Table.SelectColumns operation;
these columns can then be renamed as desired using the Table.RenameColumns function.

Accessing and Retrieving Data

56

There's more...

Using Import mode, we can do many things to enhance our queries to aid in report
development and display. One such example is that we can add additional columns to
provide automatic sorting of an attribute in report visuals. Specifically, suppose that we
wish for the United States regional organizations to appear next to one another by default in
visualizations. By default, since the Organization column in the DimOrganization table in
AdventureWorksDW2019 is a text column, the Central Division (a part of the USA), appears
between Canada and France based upon the default alphabetical sorting of text columns.
We can modify a simple query that pulls the DimOrganization table to add a numeric sorting
column. To see how this works, follow these steps:

1. Using the same Power BI file used for this recipe, open the Power Query Editor, right-
click the AdWorksDW query, and select Reference.

2. Choose the DimOrganization table and rename the query to DimOrganization.

3. Open the Advanced Editor window for the DimOrganization query.

4. Add a Table.Sort expression to the import query for the DimOrganization
dimension. The columns for the sort should be at the parent or higher level of the
hierarchy.

5. Add an expression with the Table.AddIndexColumn function that will add a sequential
integer based on the table sort applied in the previous step. The completed query
should look something like the following:
let
 Source = AdWorksDW,
 dbo_DimOrganization =
 Source{[Schema="dbo",Item="DimOrganization"]}[Data],
 OrgSorted =
 Table.Sort(
 dbo_DimOrganization,
 {
 {"ParentOrganizationKey", Order.Ascending},
 {"CurrencyKey", Order.Ascending}
 }
),
 OrgSortIndex = Table.AddIndexColumn(OrgSorted,"OrgSortIndex",1,1)
in
 OrgSortIndex

6. Finally, with the Ctrl key pressed, select the OrganizationKey, OrganizationName,
and OrgSortIndex columns by clicking their column headers. Right-click on the
OrgSortIndex column and choose to Remove Other Columns. The preview data
should now show as presented in Figure 2.24.

Chapter 2

57

Figure 2.24: Modified Organization Dimension Query

With this expression, the table is first sorted by the ParentOrganizationKey column and then
by the CurrencyKey column. The new index column starts at the first row of this sorted table
with an incremental growth of one per row. The net effect is that all of the US divisions are
grouped together at the end of the table.

We can now use this new index column to adjust the default alphanumeric sorting behavior of
the OrganizationName column. To see how this works, perform the following steps:

1. Choose Close & Apply to exit Power Query Editor to load the DimOrganization table.

2. In the Data View, select the OrganizationName column.

3. From the Column tools tab, set the Sort by column drop-down to the OrgSortIndex
column.

Figure 2.25: Sort By in Data View

Accessing and Retrieving Data

58

4. Finally, right-click on the OrgSortIndex column and select Hide in report view.

Visuals using the OrganizationName column will now sort the values by their parent
organization such that the USA organizations appear together (but not alphabetically).

Figure 2.26: Organization automatically sorted

See also

 f Dataset modes in the Power BI service: http://bit.ly/30P2HKF

 f Data reduction techniques for Import modeling: http://bit.ly/30RsMZI

Applying Multiple Filters
The application of precise and often complex filter conditions has always been at the heart
of business intelligence, and Power BI Desktop supports rich filtering capabilities across its
query, data model, and visualization components. In many scenarios, filtering at the query
level via the Query Editor and M functions is the optimal choice, as this reduces the workload
of both Import and DirectQuery data models and eliminates the need for re-applying the same
filter logic across multiple reports or visualizations.

Although the Query Editor graphical interface can be used to configure filtering conditions, this
recipe demonstrates M's core filtering functions and the use of M in common multi-condition
filter scenarios. The M expression queries constructed in this recipe are intended to highlight
some of the most common filtering use cases.

http://bit.ly/30P2HKF
http://bit.ly/30RsMZI

Chapter 2

59

Note that applying data transformations as part of a data warehouse ETL (extract-transform-
load) or ELT (extract-load-transform) process is generally preferable to using Power Query
(M). BI teams and developers should be careful to avoid creating Power BI datasets that
significantly deviate from existing "sources of truth".

The following eight filtering queries will be developed in this recipe:

 f United States customers only

 f Customers with three or more children

 f Customers with null values for either the middle name or title columns

 f Customers with first purchase dates between 2012 and 2013

 f Customers in management with the female gender or a bachelor's education

 f The top 100 customers based on income

 f A list of distinct sales territory countries

 f Dates less than or equal to the current date and more than ten years prior to the
current date

Getting ready

To prepare for this recipe, import the DimCustomer and DimDate tables from the
AdventureWorksDW2019 database by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

4. Right-click AdWorksDW and choose Reference.

5. Choose the DimCustomer table and rename the query DimCustomer.

6. Repeat steps 4 and 5 for the DimDate table.

7. Group the dimension queries into a query group called Base Queries.

8. Disable the loading of all queries.

Accessing and Retrieving Data

60

9. For the DimCustomer query, find the DimGeography column. In the column header,
click the diverging arrows icon, uncheck (Select All Columns), and then check the
box next to CountryRegionCode and DimSalesTerritory before clicking the OK button.

Figure 2.27: Expanding DimGeography to Include CountryRegionCode and DimSalesTerritory

10. Now expand DimGeography.DimSalesTerritory and only select the
SalesTerritoryCountry column.

11. Rename the DimGeography.CountryRegionCode column to CountryCode
and the DimGeography.DimSalesTerritory.SalesTerritoryCountry column to
SalesTerritoryCountry.

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Apply Multiple Functions

To implement this recipe, use the following steps:

1. Right-click the DimCustomer query, choose Reference, and then open the Advanced
Editor window for this query. Use the Table.SelectRows function to apply the US
query predicate and rename the query United States Customers. The finished query
should appear the same as the following:

Chapter 2

61

let
 Source = DimCustomer,
 USCustomers = Table.SelectRows(Source, each [CountryCode] = "US")
in
 USCustomers

2. Repeat step 1, but this time filter on the TotalChildren column for >= 3 and rename
this query Customers w3+ Children:
let
 Source = DimCustomer,
 ThreePlusChildFamilies = Table.SelectRows(Source, each
[TotalChildren] >=3)
in
 ThreePlusChildFamilies

3. Repeat step 1, but this time use the conditional logic operator or to define the filter
condition for blank values in the MiddleName or Title columns. Use lowercase literal
null to represent blank values. Name this query Missing Titles or Middle Names:
let
 Source = DimCustomer,
 MissingTitleorMiddleName =
 Table.SelectRows(
 Source, each [MiddleName] = null or [Title] = null
)
in
 MissingTitleorMiddleName

4. Repeat step 1, but this time use the #date literal to apply the 2012-2013 filter on
the DateFirstPurchase column. Rename this query 2012-2013 First Purchase
Customers:
let
 Source = DimCustomer,
 BetweenDates =
 Table.SelectRows(
 Source,
 each [DateFirstPurchase] >= #date(2012,01,01) and
 [DateFirstPurchase] <= #date(2013,12,31)
)
in
 BetweenDates

Accessing and Retrieving Data

62

5. Repeat step 1, but this time use parentheses to define the filter conditions for an
EnglishOccupation of Management, and either the female gender (F), or Bachelors
education. The parentheses ensure that the or condition filters are isolated from the
filter on Occupation. Rename this query Management and Female or Bachelors:
let
 Source = DimCustomer,
 MgmtAndFemaleOrBachelors =
 Table.SelectRows(
 Source,
 each [EnglishOccupation] = "Management" and
 ([Gender] = "F" or [EnglishEducation] = "Bachelors")
)
in
 MgmtAndFemaleOrBachelors

6. Right-click the United States Customers query, select Reference, and open the
Advanced Editor. This time, use the Table.Sort function to order this table by the
YearlyIncome column. Finally, use the Table.FirstN function to retrieve the top 100
rows. Rename this query to Top US Customers by Income.
let
 Source = #"United States Customers",
 SortedByIncome =
 Table.Sort(
 Source,
 {{"YearlyIncome", Order.Descending}}
),
 TopUSIncomeCustomers = Table.FirstN(SortedByIncome,100)
in
 TopUSIncomeCustomers

7. Repeat step 1, but this time use the List.Distinct and List.Sort functions to
retrieve a distinct list of values from the SalesTerritoryCountry column. Rename
this query Customer Sales Territory List.
let
 Source = DimCustomer,
 SalesTerritoryCountryList = List.Distinct(Source[SalesTerritoryCount
ry]),
 OrderedList = List.Sort(SalesTerritoryCountryList,Order.Ascending)
in
 OrderedList

8. Group the queries created thus far into a Customer Filter Queries query group.

Chapter 2

63

9. Create a new query by referencing DimDate and open the Advanced Editor. Use the
DateTime.LocalNow, DateTime.Date, and Date.Year functions to retrieve the trailing
ten years from the current date. Rename this query Trailing Ten Years from Today
and place this query in its own group, Date Filter Queries.

let
 Source = DimDate,
 TrailingTenYearsFromToday =
 Table.SelectRows(
 Source,
 each
 [FullDateAlternateKey] <= DateTime.Date(DateTime.
LocalNow) and
 [CalendarYear] >= Date.Year(DateTime.LocalNow) - 10
)
in
 TrailingTenYearsFromToday

How it works

The Table.SelectRows function is the primary table-filtering function in the M language, and
is functionally aligned with the FROM and WHERE clauses of SQL. Observe that variable names
are used as inputs to M functions, such as the Source line being used as the first parameter
to the Table.SelectRows function.

Readers should not be concerned with the each syntax of the Table.SelectRows function. In
many languages, this would suggest row-by-row iteration, but when possible, the M engine
folds the function into the WHERE clause of the SQL query submitted to the source system.

In the queries United States Customers, Customers w3+ Children, Missing Titles or Middle
Names, and Management and Female or Bachelors, notice the various forms of the each
selection condition. The syntax supports multiple comparison operators as well as complex
logic, including the use of parenthesis to isolate logical tests.

In the 2012-2013 First Purchase Customers query, the #date literal function is used to
generate the comparison values. Literals are also available for DateTime (#datetime),
Duration (#duration), Time (#time), and DateTimeZone (#datetimezone).

In the Top US Customers by Income query, the Table.Sort function is used to sort the
rows by a specified column and sort order. The Table.Sort function also supports multiple
columns as per the Importing Data recipe in this chapter. The Table.FirstN function is then
used to return 100 rows starting from the very top of the sorted table. In this example, the set
returned is not deterministic due to ties in income.

Accessing and Retrieving Data

64

The Customer Sales Territory List query returns a list instead of a table. This is evident from
the different icon present in the Queries pane for this query versus the others. Lists are
distinct from tables in M, and one must use a different set of functions when dealing with lists
rather than tables. A list of distinct values can be used in multiple ways, such as a dynamic
source of available input values to parameters.

Finally, in the Trailing 10 Yrs from Today query, the current date and year are retrieved from
the DateTime.LocalNow function and then compared to columns from the date dimension
with these values.

There's more...

With simple filtering conditions, as well as in proof-of-concept projects, using the UI to develop
filter conditions may be helpful to expedite query development. However, the developer
should review the M expressions generated by these interfaces, as they are only based on the
previews of data available at design time, and logical filter assumptions can be made under
certain conditions.

To access the Filter Rows dialog, click on the drop-down button in a column header and then
choose the Text Filters option, before specifying a starting filtering condition.

Figure 2.28: Accessing the Filter Rows dialog

Chapter 2

65

The Basic option of the Filter Rows dialog only allows you to work with the currently selected
column. However, by clicking on the Advanced radio button, you can work with any column in
the table.

Figure 2.29: Advanced Filter Rows dialog in the Query Editor

Despite this, even the Advanced version of the Filter Rows dialog does not provide the ability
to group logical filtering criteria. While the dialog in Figure 2.29 looks like it recreates the
query for Management and Female or Bachelors, the generated M code does not include the
parenthesis that groups the Gender and EnglishEducation clauses. Thus, the code generated
would have to be edited manually in the Advanced Editor to return the same results as the
original Management and Female or Bachelors query. The M code generated by the Filter
Rows dialog shown in Figure 2.29 generates the following code:

 Table.SelectRows(
 Source,
 each
 [EnglishOccupation] = "Management" and
 [Gender] = "F" or
 [EnglishEducation] = "Bachelors"
)

See also
 f Table.SelectRows: http://bit.ly/3bSkEyj
 f Table.Sort: http://bit.ly/3qPaeUo
 f Table.FirstN: http://bit.ly/3ttb0In
 f List.Distinct: http://bit.ly/3lnCqwq

http://bit.ly/3bSkEyj
https://docs.microsoft.com/en-us/powerquery-m/table-sort
http://bit.ly/3ttb0In
http://bit.ly/3lnCqwq

Accessing and Retrieving Data

66

 f List.Sort: http://bit.ly/30QLEb1

 f 10 Common Mistakes You Do In #PowerBI #PowerQuery – Pitfall #3: http://bit.
ly/2nLX6QW

Selecting and Renaming Columns
The columns selected in data retrieval queries impact the performance and scalability of
both import and DirectQuery data models. For Import models, the resources required by the
refresh process and the size of the compressed data model are directly impacted by column
selection. Specifically, the cardinality of columns drives their individual memory footprint
and memory per column. This correlates closely to query duration when these columns
are referenced in measures and report visuals. For DirectQuery models, the performance
of report queries is directly affected. Regardless of the model type, the way in which this
selection is implemented also impacts the robustness of the retrieval process. Additionally,
the names assigned to columns (or accepted from the source) directly impact the Q&A or
natural language query experience.

This recipe identifies columns to include or exclude in a data retrieval process and
demonstrates how to select those columns as well as the impact of those choices on the
data model. In addition, examples are provided for applying user-friendly names and other
considerations for choosing to retrieve or eliminate columns of data for retrieval.

Getting ready

To get ready for this recipe, import the DimCustomer table from the AdventureWorksDW2019
database by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

4. Right-click AdWorksDW and choose Reference.

5. Select the DimCustomer table in the data preview area and rename this query
DimCustomer.

http://bit.ly/30QLEb1
http://bit.ly/2nLX6QW
http://bit.ly/2nLX6QW

Chapter 2

67

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Select and Rename Columns

To implement this recipe, use the following steps in Advanced Editor:

1. Create a name column from the first and last names via the Table.AddColumn
function.
 CustomerNameAdd =
 Table.AddColumn(
 dbo_DimCustomer, "Customer Name",
 each [FirstName] & " " & [LastName],
 type text
)

2. Use the Table.SelectColumns function to select 10 of the 30 available
columns now available in the DimCustomer table.
 SelectCustCols =
 Table.SelectColumns(CustomerNameAdd,
 {
 "CustomerKey", "Customer Name", "Annual Income",
 "Customer Gender", "Customer Education",
"MaritalStatus",
 "Customer Phone Number", "CommuteDistance",
"AddressLine1",
 "TotalChildren"
 }, MissingField.UseNull
)

Note that some of the column names specified do not actually exist. This is on
purpose and will be fixed in the next step. But note that instead of generating an
error, null values are displayed for those columns.

Figure 30: Non-existent columns return null instead of error

Accessing and Retrieving Data

68

Use the Table.RenameColumns function to apply intuitive names for users and benefit
the Q&A engine for natural language queries. Insert this statement above your
SelectCustCols statement and adjust as appropriate. The full query should now be
similar to the following:

let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 CustomerNameAdd =
 Table.AddColumn(
 dbo_DimCustomer, "Customer Name",
 each [FirstName] & " " & [LastName],
 type text
),
 #"Renamed Columns" =
 Table.RenameColumns(CustomerNameAdd,
 {
 {"YearlyIncome", "Annual Income"},
 {"Gender", "Customer Gender"},
 {"EnglishEducation", "Customer Education"},
 {"Phone", "Customer Phone Number"}
 }
),
 SelectCustCols =
 Table.SelectColumns(#"Renamed Columns",
 {
 "CustomerKey", "Customer Name", "Annual Income",
 "Customer Gender", "Customer Education",
"MaritalStatus",
 "Customer Phone Number", "CommuteDistance",
"AddressLine1",
 "TotalChildren"
 }, MissingField.UseNull
)
in
 SelectCustCols

How it works

The Table.AddColumn function concatenates the FirstName and LastName columns and
includes an optional final parameter that specifies the column type as text.

The Table.SelectColumns function specifies the columns to retrieve from the data source.
Columns not specified are excluded from retrieval.

Chapter 2

69

A different method of accomplishing this same effect would be to use the Table.
RemoveColumns function. However, in this case, 20 columns would need to be removed
versus explicitly defining 10 columns to keep. To avoid query failure if one of the source
columns changes or is missing, it is better to specify and name 10 than 20 columns. Query
resilience can further be improved by using the optional parameter for Table.SelectColumns,
MissingField.UseNull. Using this parameter, if the column selected is not available, the
query still succeeds and simply inserts null values for this column for all rows.

Another advantage of using the Table.SelectColumns function is that columns can be
reordered as selected columns are retrieved and presented in the order specified. This can be
helpful for the query design process and avoids the need for an additional expression with a
Table.ReorderColumns function. The initial column order of a query loaded to the data model
is respected in the Data view. However, the field list exposed in the Fields pane in both the
Report and Data views of Power BI Desktop is automatically alphabetized.

For import data models, you might consider removing a column that represents a simple
expression of other columns from the same table. For example, if the Extended Amount
column is equal to the multiplication of the Unit Price and Order Quantity columns, you
can choose to only import these latter two columns. A DAX measure can instead compute the
Extended Amount value. This might be done to keep model sizes smaller. This technique is not
recommended for DirectQuery models, however.

Use the Table.RenameColumns function to rename columns in order to remove any source
system indicators, add a space between words for non-key columns, and apply dimension-
specific names such as Customer Gender rather than Gender. The Table.RenameColumns
function also offers the MissingField.UseNull option.

There's more...

Import models are internally stored in a columnar compressed format. The compressed data
for each column contributes to the total disk size of the file. The primary factor of data size
is a column's cardinality. Columns with many unique values do not compress well and thus
consume more space. Eliminating columns with high cardinality can reduce the size of the
data model and thus the overall file size of a PBIX file. However, it is the size of the individual
columns being accessed by queries that, among other factors, drives query performance for
import models.

See also

 f Table.SelectColumns: http://bit.ly/38Qk7Lt

 f Table.RenameColumns: http://bit.ly/3rTVfd4

 f Table.RemoveColumns: http://bit.ly/3cJju7p

 f Table.ReorderColumns: http://bit.ly/3cEoOJg

http://bit.ly/38Qk7Lt
http://bit.ly/3rTVfd4
http://bit.ly/3cJju7p
http://bit.ly/3cEoOJg

Accessing and Retrieving Data

70

 f Table.AddColumn: http://bit.ly/3vGJZ6b

 f Power BI Documentation on preparing data for Q&A: http://bit.ly/2nBLAGc

Transforming and Cleansing Data
The transformations applied within Power BI's M queries serve to protect the integrity of the
data model and to support enhanced analysis and visualization. The specific transformations
to implement varies based on data quality, integration needs, and the goals of the overall
solution. However, at a minimum, developers should look to protect the integrity of the model's
relationships and to simplify the user experience via denormalization and standardization.
Additionally, developers should check with owners of the data source to determine whether
certain required transformations can be implemented in the source, or perhaps made
available via SQL view objects such that Power Query (M) expressions are not necessary.

This recipe demonstrates how to protect a model from duplicate values within the source data
that can prevent forming proper relationships within the data model, which may even result in
query failures. While a simple scenario is used, this recipe demonstrates scenarios you may
run into while attempting to merge multiple data sources and eliminating duplicates.

Getting ready

To prepare, start by importing the DimProduct and FactResellerSales tables from the
AdventureWorksDW2019 database by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

4. Right-click AdWorksDW and choose Reference, select the DimProduct
table in the data preview area, and rename this query DimProduct. Right-click the
EnglishProductName column and select Remove Other Columns.

5. Repeat the previous step, but this time choose FactResellerSales. Expand the
DimProduct column and only choose EnglishProductName. Rename this column to
EnglishProductName.

http://bit.ly/3vGJZ6b
http://bit.ly/2nBLAGc

Chapter 2

71

6. Drag the DimProduct and FactResellerSales queries into the Other Queries group
and apply the queries to the data model.

7. In the Model view of Power BI Desktop, attempt to form a relationship between the
tables using the EnglishProductName columns from both tables. Note the warning
that is displayed.

Figure 2.31: Many-Many relationship cardinality warning

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Transform and Cleanse Data

We wish to remove duplicates from the EnglishProductName column in our DimProduct
query. To implement this recipe, use the following steps:

1. Remove any leading and trailing empty spaces in the EnglishProductName column
with a Text.Trim function.

2. Create a duplicate column of the EnglishProductName key column with the Table.
DuplicateColumn function and name this new column Product Name.

3. Add an expression to force uppercase on the EnglishProductName column via the
Table.TransformColumns function. This new expression must be applied before the
duplicate removal expressions are applied.

4. Add an expression to the DimProduct query with the Table.Distinct function to
remove duplicate rows.

5. Add another Table.Distinct expression to specifically remove duplicate
values from the EnglishProductName column.

6. Drop the capitalized EnglishProductName column via Table.RemoveColumns.

The final query should resemble the following:

let
 Source = AdWorksDW,
 dbo_DimProduct = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 RemoveColumns = Table.SelectColumns(dbo_DimProduct,{"EnglishProductN
ame"}),
 TrimText =
 Table.TransformColumns(
 RemoveColumns,{"EnglishProductName",Text.Trim}
),

Accessing and Retrieving Data

72

 DuplicateKey =
 Table.DuplicateColumn(
 TrimText,"EnglishProductName","Product Name"
),
 UpperCase =
 Table.TransformColumns(
 DuplicateKey,{{"EnglishProductName", Text.Upper}}
),
 DistinctProductRows = Table.Distinct(UpperCase),
 DistinctProductNames =
 Table.Distinct(
 DistinctProductRows, {"EnglishProductName"}
),
 RemoveEnglishProductName =
 Table.RemoveColumns(
 DistinctProductNames,"EnglishProductName"
)
in
 RemoveEnglishProductName

How it works

In the TrimText expression, the Trim.Text function removes white space from the beginning
and end of a column. Different amounts of empty space make those rows distinct within the
query engine, but not necessarily distinct within the model. Therefore, it is always a good idea
to use Trim.Text first and then remove duplicate rows and values.

In the next expression, DuplicateKey, the Table.DuplicateColumn function is used to
duplicate the column where we will be removing duplicate values. We give this new column
the name that we desire for our final column. This is done because we will need to transform
the values in the column we are removing duplicates from, in order to account for mixed cases
such as "Fender Set" and "Fender set". Thus, we wish to preserve the original values and
casing by using this duplicate column.

In order to eliminate mixed casing issues, the UpperCase expression changes all values in
the EnglishProductName column to uppercase using the Table.TransformColumns function,
and specifying Text.Upper. The M engine considers mixed casing values unique, but the data
model engine does not.

The next two expressions, DistinctProductRows and DistinctProductNames, simply
demonstrate two different methods of using the Table.Distinct function. The first,
DistinctProductRows, eliminates rows where the entire row (all column values) are identical.
The second version looks only at the values in a single column when determining whether or
not the row is a duplicate.

Chapter 2

73

At this point, the query is now resilient to duplicate values and rows, mixed cases, and
spaces. However, the EnglishProductName column is now in the uppercase format. Since we
preserved a copy of the original values and casing in our Product Name column, we can simply
drop the EnglishProductName column using the Table.RemoveColumns function.

We can now form a one-to-many relationship between our DimProduct and FactResellerSales
tables.

Figure 2.32: Simple one-to-many relationship model

There's more...

To support troubleshooting, create a query that accesses the same source table and retrieves
the values from the EnglishProductName column with more than one row.

let
 Source = AdWorksDW,
 dbo_DimProduct = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 RemoveColumns = Table.SelectColumns(dbo_DimProduct,{"EnglishProductName"}),
 TrimText =
 Table.TransformColumns(
 RemoveColumns,{"EnglishProductName",Text.Trim}
),
 UpperCase =
 Table.TransformColumns(
 TrimText,{{"EnglishProductName", Text.Upper}}

Accessing and Retrieving Data

74

),
 GroupedRows =
 Table.Group(
 UpperCase, {"EnglishProductName"},
 {{"Rows", each Table.RowCount(_), Int64.Type}}
),
 Duplicates = Table.SelectRows(GroupedRows, each [Rows] > 1)
in
 Duplicates

The EnglishProductName column is selected, trimmed, converted to uppercase, grouped, and
then filtered to always retrieve any duplicate key values. Disable the loading of this query, as
the query would only exist for troubleshooting purposes.

See also

 f Table.SelectColumns: http://bit.ly/38Qk7Lt

 f Table.RemoveColumns: http://bit.ly/3cJju7p

 f Table.TransformColumns: http://bit.ly/3tsdxm2

 f Table.DuplicateColumn: http://bit.ly/3cIF63X

 f Table.Distinct: http://bit.ly/38V8mmN

 f Text.Trim: http://bit.ly/3eUmAZ0

 f Text.Upper: http://bit.ly/3vFW2R6

 f M functions reference for text: http://bit.ly/2nUYjnw

Creating Custom Columns
Business users often extend the outputs of existing reports and data models with additional
columns to help them analyze and present data. The logic of these columns is generally
implemented through Excel formulas or as calculated DAX columns. A superior solution,
particularly if the logic cannot quickly be migrated to a data warehouse or IT resource, is to
create the columns via the Power Query Editor and M language.

Developing custom columns can also significantly enhance the ease of use and analytical
power of data models and the visualizations they support. In this recipe, columns are created
to apply a custom naming format and simplify the analysis of a customer dimension via
existing columns.

http://bit.ly/38Qk7Lt
http://bit.ly/3cJju7p
http://bit.ly/3tsdxm2
http://bit.ly/3cIF63X
http://bit.ly/38V8mmN
http://bit.ly/3eUmAZ0
https://docs.microsoft.com/en-us/powerquery-m/text-upper
https://docs.microsoft.com/en-gb/powerquery-m/text-functions

Chapter 2

75

Getting ready

To get ready for this recipe, import the DimCustomer table from the AdventureWorksDW2019
database by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

4. Right-click AdWorksDW and choose Reference, select the DimCustomer table
in the data preview area, and rename this query DimCustomer.

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Create Custom Columns

To implement this recipe, perform the following steps:

1. Use Table.SelectColumns to retrieve the required source columns from the
DimCustomer table, FirstName, LastName, MiddleName, Title and BirthDate.
let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 SelectColumns =
 Table.SelectColumns(dbo_DimCustomer,
 {"FirstName", "LastName", "MiddleName", "Title",
"BirthDate"}
)
in
 SelectColumns

2. Write a Table.AddColumns function with an if...then expression that
accounts for the different scenarios given a target format of Mr. John A. Doe:
 NameFormatTble =
 Table.AddColumn(
 SelectColumns,"Formatted Name", each

Accessing and Retrieving Data

76

 if [Title] = null and [MiddleName] = null
 then [FirstName] & " " & [LastName]
 else if [Title] = null
 then [FirstName] & " " & Text.
Range([MiddleName],0,1)
 & ". " & [LastName]
 else
 [Title] & " " & [FirstName] & " "
 & Text.Range([MiddleName],0,1) & ". " &
[LastName]
)

3. Add variables that allow the expression to support the comparison between
the current system date and the BirthDate column.
let
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 CurrentYear = Date.Year(CurrentDate),
 CurrentMonth = Date.Month(CurrentDate),
 CurrentDay = Date.Day(CurrentDate),

 Source = AdWorksDW,

4. Use the Table.AddColumn function to create Customer Year, Customer Month, and
Customer Day columns based upon the BirthDate column.
 AddCustomerYear =
 Table.AddColumn(
 NameFormatTble, "Customer Year", each Date.
Year([BirthDate]),
 Int64.Type
),
 AddCustomerMonth =
 Table.AddColumn(
 AddCustomerYear, "Customer Month", each Date.
Month([BirthDate]),
 Int64.Type
),
 AddCustomerDay =
 Table.AddColumn(
 AddCustomerMonth, "Customer Day", each Date.
Day([BirthDate]),
 Int64.Type
)

Chapter 2

77

5. Add an Age column via an if...then expression.
 CustomerAge =
 Table.AddColumn(
 AddCustomerDay,"Customer Age", each
 if [Customer Month] < CurrentMonth
 then CurrentYear - [Customer Year]
 else if [Customer Month] > CurrentMonth
 then CurrentYear - [Customer Year] - 1
 else if [Customer Day] < CurrentDay
 then CurrentYear - [Customer Year]
 else CurrentYear - [Customer Year] - 1
)

6. Add a Customer Age Segment column via the column computed in step 4.

 CustomerSegment =
 Table.AddColumn(
 CustomerAge, "Customer Age Segment", each
 if [Customer Age] < 30 then "Less than 30"
 else if [Customer Age] < 40 then "30 to 39"
 else if [Customer Age] < 50 then "40 to 49"
 else if [Customer Age] < 60 then "50 to 59"
 else "60 or Older"
)

How it works

In the NameFormatTble expression the Table.AddColumn function is used, coupled with an
if...then expression. M is a case-sensitive language, so writing IF instead of if or Table.
Addcolumn instead of Table.AddColumn will return an error. if...then expressions follow the
following structure:

if <condition1> then <result1> else <result2>

All three inputs (condition1, result1, and result2) accept M expressions. if expressions
can be nested together with the following structure:

if <condition1> then <result1> else if <condition2> then <result2> else
<result3>

The equivalent of a SQL CASE expression is not available in M. However, the order of
conditions specified in if...then expressions drives the evaluation process. Multiple
conditions could be true but the second and later conditions will be discarded and not
evaluated. If the value produced by the if condition is not a logical value, an error is raised.

Accessing and Retrieving Data

78

The three if...then conditions in the NameFormatTble expression account for all scenarios
to return the formatted name, since the query must account for nulls in the Middle Name and
Title columns, as well as different values in the Middle Name column. Text.Range is used to
extract the first character of the middle name.

For the variables CurrentDate, CurrentYear, CurrentMonth, and CurrentDay, the DateTime.
LocalNow function is used as the source for the current date; it is then used for year, month,
and day.

For the AddCustomerYear, AddCustomerMonth, and AddCustomerDay expressions, the Int64.
Type value is passed to the optional type parameter of Table.AddColumn to set the new
columns as whole numbers.

For the CustomerAge and CustomerSegment expressions, nested if…then expressions are
used. This method is used because, currently, the equivalent of a DATEDIFF function (T-SQL,
DAX) with date intervals like Year, Month, Week, and so on, are not available in M. A Duration.
Days function can be used for day intervals and additional duration functions are available for
hour, minute, and second intervals.

The CustomerAge expression compares the CurrentMonth and CurrentDay variables against
the values of the customer columns created in the AddCustomerMonth and AddCustomerDay
expressions in order to compute the age of the customer using the CurrentYear variable
and the column created by the AddCustomerYear expression. The column created by the
CustomerAge column is then used in the CustomerSegement expression to derive the age
segmentation column. The new custom columns can be used to support various visualizations
based upon the ages and segmentation of customers.

There's more...

The Power Query Editor provides graphical user interfaces for adding columns. These
interfaces provide mechanisms for adding columns that are an alternative to writing out the
code manually. In essence, the M code for the added columns is generated as an output from
these interfaces.

One such interface is the Column From Examples feature, which allows users to simply type
examples of a desired column's output. The engine determines which M functions and series
of steps to add to the query that return results consistent with the examples provided. To
explore this feature, follow these steps:

1. Create a new query referencing the AdWorksDW query.

2. Select the DimCustomer table.

3. Select the Title, FirstName, MiddleName, LastName, and BirthDate columns and
remove all other columns.

Chapter 2

79

4. Select the Add Column tab and then choose the Column From Examples button in
the ribbon.

Figure 2.33: Column From Examples feature

5. Type the customer's FirstName, MiddleName, and LastName values into the first row
and hit the Enter key. Notice that the rest of the rows are automatically calculated
based upon this first row.

Figure 2.34: Column From Examples interface

6. Click the OK button to accept the transformation.

Another interface for adding columns is the Condition Column feature. This feature provides
a method of creating conditional columns as an alternative to writing out the if...then
expressions. To see how this feature operates, follow these steps:

1. Select the Add Column tab and then select Conditional Column from the ribbon.

Figure 2.35: Conditional Column feature

Accessing and Retrieving Data

80

2. Fill in the fields on the Add Conditional Column dialog, using the Add Clause button
to add additional else if statements; click the OK button to exit the dialog and
create the new column.

Figure 2.36: Add Conditional Column dialog

Any column from the table can be referenced, and multiple created steps can be moved up or
down the order of evaluation using the ellipses (…). Open the Advanced Editor to inspect the
code created.

Figure 2.37: Added conditional column M code

See also

 f Table.AddColumn: http://bit.ly/3vGJZ6b

 f Table.SelectColumns: http://bit.ly/38Qk7Lt

 f DateTime functions: http://bit.ly/3tPtKlJ

 f Add Column From examples: http://bit.ly/3eWTLv6

http://bit.ly/3vGJZ6b
http://bit.ly/38Qk7Lt
http://bit.ly/3tPtKlJ
http://bit.ly/3eWTLv6

Chapter 2

81

Combining and Merging Queries
The full power of Power BI's querying capabilities is in the integration of distinct queries
representing different data sources via its merge and append transformations. Retrieval
processes that consolidate files from multiple network locations or integrate data from
multiple data sources can be developed efficiently and securely. Additionally, the same join
types and data transformation patterns SQL and ETL developers are familiar with can be
achieved with the M language. This recipe provides examples of combining sources into a
single query and leveraging the table join functions of M to support common transformation
scenarios.

Getting ready

To follow along with this recipe, you can use the Merge Queries and Append Queries icons on
the Home tab of the Power Query Editor to generate the join expressions used in this recipe.
However, as joining queries is fundamental to the retrieval process, it is recommended to
learn how to use the Table.Join, Table.NestedJoin, and Table.Combine functions.

To get ready for this recipe, import the DimCustomer and FactCallCenter tables from the
AdventureWorksDW2019 database by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

4. Right-click AdWorksDW and choose Reference, select the DimEmployee table in the
data preview area, and rename this query DimEmployee.

5. Repeat step 4 but choose the FactInternetSales table and name this query
Sales2011. Filter the OrderDate column to be between January 1, 2011 and
December 31, 2011.
Let
 Source = AdWorksDW,
 dbo_FactInternetSales = Source{[Schema="dbo",Item="FactInternetSal
es"]}[Data],
 #"Filtered Rows" =
 Table.SelectRows(

Accessing and Retrieving Data

82

 dbo_FactInternetSales, each
 [OrderDate] >= #datetime(2011, 1, 1, 0, 0, 0) and
 [OrderDate] <= #datetime(2011, 12, 31, 0, 0, 0))
in
 #"Filtered Rows"

6. Right-click the Sales2011 query and choose Duplicate. Name this query Sales2012.
Edit the Table.SelectRows expression to filter dates between January 1, 2012 and
December 31, 2012.

7. Repeat step 6, naming this new query Sales2013 and filtering for dates between
January 1, 2013 and December 31, 2013.

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Combine Queries

The goal of this example is to produce an integrated table based on three "Sales" queries.
While in this example the three queries come from the same data source, it is important to
realize that the three queries could point to completely different data sources, such as three
text files or even a text file, an Excel spreadsheet, and a SQL database. What is important is
that the three queries have the same column names and number of columns. To implement
this recipe, perform the following steps:

1. Move the Sales2011, Sales2012, and Sales2013 queries to a new query group
called Staging Queries.

2. Disable the load for the Sales2011, Sales2012, and Sales2013 queries.

3. Create a new Blank query in the Other Queries group and call this query
FactInternetSales2011to2012.

4. Open the FactInternetSales2011to2012 query in Advanced Editor.

5. Use the Table.Combine (or Append Queries feature in the ribbon) function to return
a single table based on the rows of the Sales2011, Sales2012, and Sales2013
queries.
Let
 Source = Table.Combine({Sales2011, Sales2012, Sales2013})
in
 Source

6. Move the DimEmployees query to the Staging Queries group and disable loading.

Chapter 2

83

7. Duplicate the DimEmployees query and call this new query Managers.

8. Disable loading for the Managers query.

9. Open the Managers query in the Advanced Editor.

10. Add a Manager Name column using the Table.AddColumn function.
 ManagerName =
 Table.AddColumn(
 dbo_DimEmployee,
 "Manager Name", each [FirstName] & " " & [LastName]
)

11. Select only the EmployeeKey, Manager Name, and Title columns using the Table.
SelectColumns function.
 SelectCols =
 Table.SelectColumns(
 ManagerName,
 { "EmployeeKey", "Manager Name", "Title" }
)

12. Create a new Blank query in the Other Queries group and call this query
Employees.

13. Open the Employees query in Advanced Editor.

14. Join the Managers query and DimEmployee query using the Table.NestedJoin
function or the Merge Queries feature in the ribbon.
Let
 Source =
 Table.NestedJoin(
 DimEmployee, "ParentEmployeeKey", Managers, "EmployeeKey",
 "ManagerColumn", JoinKind.LeftOuter
)
in
 Source

15. Use the Table.ExpandTableColumn function to add the Manager Name and Manager
Title columns.
 ManagerColumns =
 Table.ExpandTableColumn(
 Source, "ManagerColumn",
 { "Manager Name", "Title" },
 { "Manager Name", "Manager Title" }
)

Accessing and Retrieving Data

84

16. Add an Employee Name column.
 EmployeeName =
 Table.AddColumn(
 ManagerColumns,
 "Employee Name", each [FirstName] & " " & [LastName]
)

17. Rename the Title column to Employee Title.
 RenameTitle =
 Table.RenameColumns(
 EmployeeName,
 { "Title", "Employee Title" }
)

18. Select the EmployeeKey, Employee Name, Employee Title, Manager Name, and
Manager Title columns.

 SelectCols =
 Table.SelectColumns(
 RenameTitle,
 {
 "EmployeeKey", "Employee Name", "Employee Title",
 "Manager Name", "Manager Title"
 }
)

How it works

For the FactInternetSales2011to2013 query, only a single expression is required using the
Table.Combine function. No other expressions are necessary in this example given that the
staging queries have identical column names and the same number of columns. The Table.
Combine function performs an append operation and does not remove duplicate rows similar
to a SQL UNION statement.

Any columns which are unique to one of the input tables in a Table.Combine function will be
added to the result set with null values for the rows from the other tables. Depending on the
scenario, the developer could apply the Table.Distinct function to avoid any duplicate rows
from reaching the data model.

The Employees query references the DimEmployees query as the left table in a Table.
NestedJoin function, and is joined to the Managers query via a left outer join. The left join is
required to retain all employee rows in this scenario, as the DimEmployees table includes one
employee that does not have a parent employee key, the Chief Executive Officer.

Chapter 2

85

The join is performed on the ParentEmployeeKey column in the DimEmployees query to the
EmployeeKey column in the Managers query. After this step, all of the rows from the matching
Managers table are stored within the row as a Table object in the column ManagerColumn.
When expanding the ManagerColumn column using the Table.ExpandTableColumn function,
the Manager Name column can retain the same name, but the Title column is renamed to
Manager Title in order to avoid conflicting with the Title column in the DimEmployees query.

In implementing the table joins, you can choose to use the Table.Join and Table.
NestedJoin functions. All six join types—inner, left outer, right outer, full outer, left anti, and
right anti—are supported by both functions. The Table.NestedJoin function enters the
results of the join (the right or second table) into a new column of table values and will use
local resources to execute the join operation, unless the Table.ExpandTableColumn function
is used to replace this new column with columns from the right table. A left outer join type
is the default if the JoinKind parameter is not specified. For performance reasons, Table.
NestedJoin should not be used without a Table.ExpandTableColumn function removing the
column of tables.

Conversely, the Table.Join function automatically expands the left table with the columns
from the right table input (a flat join) and defaults to an inner join if the JoinKind parameter
is not specified. The Table.Join function gets folded to the source without any additional
functions but requires that there are no matching column names between the joined tables
for a JoinKind other than inner join. For inner joins, the matching column names from both
tables must be specified in the join key parameters. A Table.SelectColumns function is
required to exclude any columns from the right table added with the join.

Whether implemented via Table.NestedJoin or Table.Join, developers should look to use
inner joins if the source tables have referential integrity, such as with foreign key constraints
and whether this meets requirements. For joins against larger tables, developers should
confirm that query folding is occurring and can evaluate the different query plans generated
by alternative retrieval designs in terms of performance.

Note that the two rows for Rob Walters are due to a Slowly Changing Dimension (SCD) Type 2
process applied in the source database. For more information on SCDs, refer to this Wikipedia
article: https://bit.ly/3yIQeI5.

There's more...

Rather than creating separate lookup/join staging queries, it is possible to consolidate
these expressions into a single let…in M expression. For example, the following single
query returns the exact same results as the Sales2011, Sales2012, Sales2013, and
FactInternetSales2011to2013 queries:

let
 Source = AdWorksDW,
 Sales = Source{[Sche"a=""bo",It"m="FactInternetSa"es"]}[Data],
 Sales2011Rows =

https://bit.ly/3yIQeI5

Accessing and Retrieving Data

86

 Table.SelectRows(
 Sales, each
 [OrderDate] >= #datetime(2011, 1, 1, 0, 0, 0) and
 [OrderDate] <= #datetime(2011, 12, 31, 0, 0, 0)
),
 Sales2012Rows =
 Table.SelectRows(
 Sales, each
 [OrderDate] >= #datetime(2012, 1, 1, 0, 0, 0) and
 [OrderDate] <= #datetime(2012, 12, 31, 0, 0, 0)
),
 Sales2013Rows =
 Table.SelectRows(
 Sales, each
 [OrderDate] >= #datetime(2013, 1, 1, 0, 0, 0) and
 [OrderDate] <= #datetime(2013, 12, 31, 0, 0, 0)
),
 Append = Table.Combine({Sales2011Rows, Sales2012Rows, Sales2013Rows})
in
 Append

Inline query approaches are helpful in limiting the volume of queries, but you lose the
management benefits provided by group folders and the Query Dependencies view. The
graphical support makes it easier to explain and quickly troubleshoot a data retrieval process
over a single but complex M expression. Staging queries are recommended for all but the
most trivial projects and retrieval processes. Staging queries should generally never be loaded
to the data model, as staging tables could both confuse the user and would require the data
model to use additional resources to process and store the additional data.

Similarly, merge queries can also be combined into a single query. The following table breaks
down the six different join types that can be specified in both the Table.NestedJoin and
Table.Join functions. Both the Parameter and Parameter Value can be used, though the
recipes in this book use Parameter as this makes the expressions easier to follow.

Join type Parameter Parameter value
Inner JoinKind.Inner 0
Left Outer JoinKind.LeftOuter 1
Right Outer JoinKind.RightOuter 2
Full Outer JoinKind.FullOuter 3
Left Anti JoinKind.LeftAnti 4
Right Anti JoinKind.RightAnti 5

Table 2.3: Power Query (M) join types, parameters, and parameter values

Chapter 2

87

One final note is that, for data source files with the same structure stored in the same network
directory folder, Power BI offers the Combine Binaries transformation, which can be used with
text, CSV, Excel, JSON, and other file formats. This feature can be used when creating a Folder
query. The Combine Binaries feature automatically creates an example query and a function
linked to this query, such that any required modification to the source files can be applied to
all files, and the source location of the files can be easily revised.

See also

 f Table.Combine: http://bit.ly/3c6L2o0

 f Table.NestedJoin: http://bit.ly/30ZO3jZ

 f Table.Join: http://bit.ly/3lxMRh7

 f Table.ExpandTableColumn: http://bit.ly/3eY6u0z

 f Table.AddColumn: http://bit.ly/3vGJZ6b

 f Table.SelectColumns: http://bit.ly/38Qk7Lt

 f Table.RenameColumns: http://bit.ly/3rTVfd4

 f M table function reference: http://bit.ly/2oj0k0I

 f Combining binaries in Power BI Desktop: http://bit.ly/2oL2nM4

Selecting Column Data Types
Setting the data types of columns in Power BI Desktop is usually the final step of data retrieval
queries, and has great implications for all layers of the solution, including data refresh, data
modeling, and visualization. Choosing appropriate data types reduces the risk of refresh
failures, ensures consistent report results, and provides analytical flexibility to the data model
and visualization layers.

This recipe demonstrates how to choose and define data types to load to Power BI Desktop.
Additional details on data types and the implications of data types for Power BI development
are contained in the sections following these examples.

Getting ready

In preparation for this recipe, import the FactCallCenter table from the
AdventureWorksDW2019 database by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

http://bit.ly/3c6L2o0
http://bit.ly/30ZO3jZ
http://bit.ly/3lxMRh7
http://bit.ly/3eY6u0z
 http://bit.ly/3vGJZ6b
http://bit.ly/38Qk7Lt
http://bit.ly/3rTVfd4
https://docs.microsoft.com/en-gb/powerquery-m/table-functions
https://docs.microsoft.com/en-us/power-bi/transform-model/desktop-combine-binaries

Accessing and Retrieving Data

88

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

4. Right-click AdWorksDW and choose Reference, select the FactFinance table
in the data preview area, and rename this query FactFinance.

5. Move the FactFinance query to the Other Queries group.

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Select Column Data Types

To implement this recipe, perform the following steps:

1. Use the Table.TransformColumnTypes function to revise the type of the numeric
integer FinanceKey column to text. Note that the column header for the FinanceKey
column is initially prefaced with a 123 icon and changes to an ABC icon. Also, note
that the row values are initially left justified and italicized and after transformation to
text are aligned to the right and not italicized.
let
 Source = AdWorksDW,
 dbo_FactFinance = Source{[Schema="dbo",Item="FactFinance"]}[Data],
 FinanceKeyText =
 Table.TransformColumnTypes(
 dbo_FactFinance, {{"FinanceKey", Text.Type}}
)
in
 FinanceKeyText

2. Add a numeric column from a source column stored as text using the Number.
FromText and Table.AddColumn functions.
 FinanceKeyNum =
 Table.AddColumn(
 FinanceKeyText, "FinanceKeyNum",
 each Number.FromText([FinanceKey]),Int64.Type
)

Chapter 2

89

3. Change the fixed decimal Amount column to currency using the Table.
TransformColumnTypes function. Note that the column header icon changes from 1.2
initially to a dollar sign, $.

 Currency =
 Table.TransformColumnTypes(
 FinanceKeyNum,{{"Amount", Currency.Type}}
)

How it works

For the FinanceKeyText expression, the Table.TransformColumnTypes function takes two
parameters. The first parameter is the table to operate upon; the second is a list of list pairs
that include the column name to transform and then the transformation data type. Multiple
pairs can be included in the form:

{ { "Column1", type }, { "Column2", type } }

Additional valid values for the type parameter include the following:

 f Currency.Type sets the column as a Fixed Decimal Number to two decimal places.

 f Decimal.Type or type number sets the new column as a Decimal Number.

 f Percentage.Type sets the column as a Percentage data type. Unlike Whole
Number, Fixed Decimal Number, and Decimal Number, this type does not have
a corresponding type in the data model. When loaded to the data model, the
Percentage data type is represented as a Decimal Number type.

 f Text.Type or type text sets the column to a Text data type.

 f Date.Type or type date sets the column to a Date data type.

 f DateTime.Type or type datetime sets the column to a Date Time data type.

 f DateTimeZone.Type or type datetimezone sets the column to a Date/Time/
Timezone data type.

 f Time.Type or type time sets the column to a Time data type.

 f Duration.Type or type duration sets the column to a Duration data type.

 f Logical.Type or type logical sets the column to a True/False data type.

 f Binary.Type or type binary sets the column to a Binary data type.

Like all M expressions, data type declarations are case-sensitive.

For the FinanceKeyNum expression, the type parameter for the Table.AddColumn function is
optional. Leaving this parameter blank results in an Any data type, which would be loaded into
the data model as a Text data type. By specifying Int64.Type as the optional type parameter
to Table.AddColumn, the new column stores whole numbers instead of text.

Accessing and Retrieving Data

90

Great care should be taken when choosing data types. For example, convert Decimal Number
to Fixed Decimal Number data types if consistent rounding results are required. Also,
converting from Decimal Number to Fixed Decimal Number can marginally improve data
compression and query performance. A Decimal data type is approximate and can produce
inconsistent reporting results due to rounding. Decimal Number data types are floating-point
(approximate) data types with 15 digits of precision. Fixed Decimal Number data types store
19 digits of precision and four significant digits after the decimal. Whole Number data types
store up to 19 digits of precision.

Revising Text data types to Numeric data types impacts the DAX metrics that can be written.
For example, if a Calendar Year column is stored as a Text data type, the following DAX
metric will fail due to the type incompatibility of the number 2016:

Figure 2.38: DAX measure expression

Revising Calendar Year to a whole number type avoids the need to use VALUE or FORMAT
functions in each DAX measure. Power BI Desktop provides rich analysis capabilities for
columns of the Date data type, including drill-down hierarchies, visual calendar pickers for
filters, custom date filtering logic in slicers, and calculations such as for the first and last date.
Given these capabilities, as well as DAX functionality with Date data types, converting Text
and Numeric types to Date data types can provide significantly more options to develop Power
BI content.

There's more...

While there are many topics that can be discussed regarding data types in Power Query, two are
worth exploring in greater detail: automatic data type detection and date with locale. When
enabled, automatic data type detection occurs when using unstructured data sources, such as
flat files and Excel workbooks. When importing such data, a Changed Type step is added that
uses a sampling or preview of each source column to determine the appropriate type.

Figure 2.39: Automatic Data Type Selection Step

If the data sample does not reflect the full or future set of values for the column, the data
type selected may be incorrect. Automatic type detection is not used with structured relational
database systems such as SQL Server.

You can avoid automatic type detection via the Data Load options in the File | Options and
settings | Options dialog.

Chapter 2

91

As automatic detection is a CURRENT FILE option only, and since the setting is enabled by
default, you currently need to disable this automatic type detection for each new file. It is
recommended that you disable this for each file or manually remove the Changed Type step
and make your own decisions regarding data type transformations.

Power Query also supports different locales or cultures. If there's any potential for Date data
types to be sourced from a region with a different date standard than your local system, you
should apply the Locale option to the Table.TransformColumnTypes function; for example,
when a date column stores date values in the format dd/mm/yyyy, whereas the local system
uses mm/dd/yyyy. Trying to convert this date directly on a desktop configured for US English
causes an error as the first two digits are greater than 12. However, specifying the source
locale in the transform expression allows for successful conversion. The Query Editor provides
a simple interface for the source locale. Simply right-click on the column, expand Change
Type, and then select Using Locale….

Figure 2.40: Change Type with Locale interface

Alternatively, you can add the locale to the expression itself directly:

DateLocale =
 Table.TransformColumnTypes(
 PreviousStep, {{ "Date", type date }}, "en-GB"
)

See also

 f Table.AddColumn: http://bit.ly/3vGJZ6b

 f Table.TransformColumnTypes: http://bit.ly/3s5AfjC

 f Data types in Power Query: http://bit.ly/392iWIP

http://bit.ly/3vGJZ6b
http://bit.ly/3s5AfjC
http://bit.ly/392iWIP

Accessing and Retrieving Data

92

 f Language ID and tag reference: http://bit.ly/3cXpPfw

 f 10 Common Mistakes You Do In #PowerBI #PowerQuery – Pitfall #2: http://bit.
ly/2otDbcU

 f Choosing Numeric Data Types in DAX: http://bit.ly/2nOWYAm

Visualizing the M library
To implement complex and less common data transformation requirements, it is often
necessary to browse the M library to find a specific function or review the parameters of a
specific function.

This short recipe provides a pre-built M query expression you can use to retrieve the M library
into a table for analysis in Power BI Desktop. Additionally, an example is provided of visualizing
and cross-filtering this table of functions on the Power BI report canvas.

Getting ready

To get ready for this recipe, do the following:

1. Open Power BI Desktop.

2. Click the Transform data icon in the ribbon of the Home tab.

3. Create a new Blank Query and call this query MLibrary.

How to Visualize M library

To implement this recipe, perform the following steps:

1. Enter the following M code in the Advanced Editor:
let
 Source = Record.ToTable(#shared),
 Rename = Table.RenameColumns(Source, {{"Name", "Function"}}),
 Sort = Table.Sort(Rename, {{"Function", Order.Ascending}}),
 Dupe = Table.DuplicateColumn(Sort, "Function", "Function2"),
 Split =

http://bit.ly/3cXpPfw
http://bit.ly/2otDbcU
http://bit.ly/2otDbcU
http://bit.ly/2nOWYAm

Chapter 2

93

 Table.SplitColumn(
 Dupe, "Function2",
 Splitter.SplitTextByDelimiter(".", QuoteStyle.Csv),
 {"Group", "Detail"}
),
 MLibraryTable =
 Table.TransformColumnTypes(
 Split, {{"Group", Text.Type}, {"Detail", Text.Type}}
)
in
 MLibraryTable

2. Click the OK button to close the Advanced Editor. The preview area should now look
similar to that shown in Figure 2.41.

Figure 2.41: Query Editor view of library table function

3. Click on Close and Apply from the Query Editor.

4. The 1,000+ rows from the M library are now loaded to the Data mode.

Accessing and Retrieving Data

94

5. Create a visualization that uses the Function Groups column for filtering.

Figure 2.42: Report page of M standard library

How it works

The M expression leverages the #shared variable, which returns a record of the names and
values currently in scope. The record is converted to a table value and then the Function
column, originally Name in the context of the library, is split based on the period delimiter to
allow for the Group column.

There's more...

M library details for every function are made available by entering the function without any
parameters.

Chapter 2

95

Figure 2.43: Library Function Details

See also

 f Power Query function reference: http://bit.ly/3bLKJ1M

Profiling Source Data
The topic of data quality deals with the overall utility of datasets, and the ability to easily
process and use the data for certain purposes, including analytics and reporting. Data
quality is an essential component of data governance, ensuring that business data is
accurate, complete, consistent, and valid. Good data quality is an essential element of any
data analytics and reporting endeavor. Poor data quality can lead to incorrect analysis and
decisions by the business—hence the phrase "garbage in, garbage out". Luckily, the Power
Query Editor provides powerful data profiling tools to assist in quickly determining the quality
of the data with which you are working. This recipe demonstrates how to unlock the powerful
tools within the Power Query Editor for profiling columns and gaining a sense of the quality of
the data being worked upon.

Getting ready

To get ready for this recipe, import the FactCallCenter table from the
AdventureWorksDW2019 database by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

http://bit.ly/3bLKJ1M

Accessing and Retrieving Data

96

3. Isolate this query in a query group called Data Sources.

4. Right-click AdWorksDW and choose Reference, select the FactFinance table
in the data preview area, and rename this query FactFinance.

5. Move the FactFinance query to the Other Queries group.

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Profile Source Data

To implement this recipe, perform the following steps:

1. Select the FactFinance query.

2. In the View tab, check the box for Column profile in the Data Preview area of the
ribbon.

3. Select a column to view the column statistics similar to those in Figure 2.44:

Figure 2.44: Column profile information

How it works

By default, the M query engine pulls the first 1,000 rows of data from the specified data
source. This is the data used in the data preview area. The default of using only the first 1,000
rows of data can be changed by clicking on Column profiling based on top 1000 rows in the
status bar in the bottom right and choosing Column profiling based on the entire data set.
Statistics are collected on each column in the data source. When the Column profile feature
is enabled, selecting a column causes column statistics and value distribution to display in
the bottom half of the data preview area, including alongside this error counts, the number
of distinct and unique values, minimum values, maximum values, and additional information
that depends upon the data type of the column, as shown in Figure 2.44.

Chapter 2

97

There's more...

Additional data quality dialogs are available in the Power Query Editor. From the View tab,
check the box next to Column quality and Column distribution. Small visuals appear under
the column headings. Hovering your mouse over this area provides a pop-up dialog that
provides suggested actions as well as common data cleansing activities via the ellipsis menu
(…).

Figure 2.45: Column quality and Column distribution visuals

See Also

 f Using the data profiling tools: http://bit.ly/3c46s5g

http://bit.ly/3c46s5g

Accessing and Retrieving Data

98

Diagnosing Queries
The Power Query M engine is an extremely powerful and fast data transformation and data
preparation engine used across an array of products, including:

 f Excel for Windows

 f Excel for Mac

 f Power BI

 f Power Apps

 f Power Automate

 f Azure Data Factory

 f SQL Server Integration Services

 f SQL Server Analysis Services

 f Dynamics 365 Customer Insights

While both fast and powerful, there are times when you may find that a particular query is
not as performant as desired. In these instances, Query Diagnostics can help you pinpoint
problematic expressions and better understand what Power Query is doing in order to
identify areas for query optimization. This recipe demonstrates how the user can use Query
Diagnostics to troubleshoot a query and identify how the query might be optimized to be more
performant.

Getting ready

To get ready, import the FactCallCenter table from the AdventureWorksDW2019 database
by doing the following:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources.

Chapter 2

99

4. Right-click AdWorksDW and choose Reference; select the FactCurrencyRate table in
the data preview area, and rename the AdWorksDW query to FactCurrencyRate.

5. Move the FactCurrencyRate query to the Other Queries group.

6. In the Power Query Editor, select the Tools tab and then Diagnostic
Options.

7. Ensure that the radio button for Enable in Query Editor (does not require running
as admin) is selected and check all the boxes under the Diagnostics Level and
Additional Diagnostics sub-headings.

Figure 2.46: Query Diagnostic options

Accessing and Retrieving Data

100

For additional details on performing these steps, see the Managing Queries and Data Sources
recipe in this chapter.

How to Diagnose Queries

To implement this recipe, perform the following steps:

1. Select the FactCurrencyRate query, open Advanced Editor, and modify the query to
calculate the daily change in currency rates.
let
 Source = AdWorksDW,
 dbo_FactCurrencyRate = Source{[Schema="dbo",Item="FactCurrencyRa
te"]}[Data],
 Sort =
 Table.Sort(
 dbo_FactCurrencyRate,
 {{"CurrencyKey", Order.Ascending}, {"DateKey", Order.
Ascending}}
),
 Index =
 Table.TransformColumnTypes(
 Table.AddIndexColumn(Sort, "Row Index", 1, 1),
 {{ "Row Index", Int64.Type }}
),
 PrevIndex =
 Table.TransformColumnTypes(
 Table.AddIndexColumn(Index, "Prev Index", 0, 1),
 {{ "Prev Index", Int64.Type }}
),
 SelfJoin =
 Table.NestedJoin(
 PrevIndex, {"Prev Index"}, PrevIndex, {"Row Index"},
 "NewColumn", JoinKind.LeftOuter
),
 PrevColumns =
 Table.ExpandTableColumn(
 SelfJoin, "NewColumn",
 {"EndOfDayRate", "CurrencyKey"}, {"PrevRate", "PrevKey"}
),
 AddChange =
 Table.AddColumn(
 PrevColumns, "Daily Change", each
 if [CurrencyKey] = [PrevKey] then [EndOfDayRate] -
[PrevRate]

Chapter 2

101

 else null, type decimal
),
 SelectColumns =
 Table.SelectColumns(
 AddChange,
 {"CurrencyKey", "EndOfDayRate", "Date", "Daily Change"}
)
in
 SelectColumns

2. You may have to wait several minutes for the preview data to display. To
investigate what is going on, click on the Tools tab and then Start Diagnostics.

3. Click back on the Home tab and click Refresh Preview.

4. Wait for the preview data to refresh and then click back on the Tools tab and Stop
Diagnostics.

Figure 2.47: Diagnostics processing display

5. When the Diagnostics processing completes, you will have a new query group called
Diagnostics containing four queries for Diagnostics_Counters, Diagnostic_Detailed,
Diagnostic_Aggregated, and Diagnostic_Partitions. Each of these queries is
suffixed with a date and time stamp of when the diagnostics were run, and each has
loading disabled.

Figure 2.48: Diagnostics queries

6. Click on the Diagnostics_Aggregated query. Select the Step, Category, Start Time,
End Time, Exclusive Duration (%), and Exclusive Duration columns and remove the
other columns.

Accessing and Retrieving Data

102

7. Sort the Exclusive Duration column in descending order.

Figure 49: Diagnostic results

8. Look for large jumps in the Exclusive Duration column; we see two such jumps
between lines 3 and 4, and 4 and 5, with the larger jump being between lines 3 and
4. Also, note the high Exclusive Duration (%) value for row 3.

9. Look at the Start Time and End Time columns for row 3 and note that this
operation took 4 minutes and 26 seconds to complete. The Step column shows that
the query step for row 3 is the PrevColumns step.

10. Having zeroed in on the PrevColumns step of the query, click on the
Diagnostics_Detailed query and filter the Step column to just show PrevColumns.
If the PrevColumns value does not appear in the filtering dialog, use the Load More
link or edit the query in Advanced Editor to add the Table.SelectRows expression
manually: Table.SelectRows(#"Changed Type", each [Step] = "PrevColumns").

11. Sort the query by the Exclusive Duration (%) column in Descending order.

12. Note that the Operation column for the top row is DbDataReader.

At this point, it should be evident that this query would likely be better done in the source
database system as a view or stored procedure.

How it works

The FactCurrencyRate query joins the base table with itself in order to compare subsequent
rows of data. The goal is to compare the values of one row with the previous row in order
to compute a value for a change in currency rate between days. This is done by sorting
the table by first the currency and then the date using the Table.Sort function. Next, the
Table.AddIndexColumn function is used twice, once to add an index column starting from 1
(Row Index column) and a second time to add an index column starting from 0 (Prev Index
column). These two index columns are then used in a Table.NestedJoin function to join the
table to itself. The Table.ExpandTableColumn function is used to expose the previous row's
CurrencyKey and EndOfDayRate columns of the previous row. This information can then be
used to create the Daily Change column using the Table.AddColumns function, and finally,
only the essential columns are selected using the Table.SelectColumns function.

Chapter 2

103

When you start Query Diagnostics, query diagnostic information is logged to JSON and CSV
files stored in the application's directory. These files can be located by looking at the Source
step for aggregated, detailed, and partition diagnostic queries and the CsvFiles step of the
Counters diagnostic query. For the Power BI Desktop Store App, the path should be similar to
the following:

C:\Users\[user]\Microsoft\Power BI Desktop Store App\Traces\Diagnostics

These files record diagnostic information performed by the query engine during processes
such as refreshing the preview data. Stopping Query Diagnostics ends logging of the
diagnostic data and generates queries for each enabled Query Diagnostics feature:
Aggregated, Detailed, Performance counters, and Data privacy partitions. As diagnostic
logging is costly in terms of performance and system resources, it is recommended to only use
Query Diagnostics when troubleshooting a query's performance. In addition, only enable the
minimal amount of diagnostic logging required to identify the problem—for example, often just
starting with the Aggregated diagnostic data is enough to identify the problematic step(s).

There's more...

There is also a Diagnose Step feature available for Query Diagnostics. To see how Diagnose
Step can be used, follow these steps:

1. Open the Diagnostic Options from the ribbon of the Tools tab and uncheck the
Performance counters and Data privacy partitions.

2. In the Query Settings pane, select the SelfJoin step. You can now either right-click
the SelfJoin step and select Diagnose or select Diagnose Step in the ribbon of the
Tools tab.

3. Once complete, two additional queries are added to the Diagnostics query group,
FactCurrencyRate_SelfJoin_Detailed and FactCurrencyRate_SelfJoin_Aggregated,
each suffixed with a date and time stamp.

4. Click on the FactCurrencyRate_SelfJoin_Aggregated query.

5. Add an Index column.

6. Sort the Exclusive Duration column in descending order.

7. Here we can see that the most expensive operation occurs early on in the
process, at index 15 out of 3,000+ rows, and appears to be the initial selection of
columns with the Data Source Query being the following:

select [_].[CurrencyKey],
 [_].[DateKey],
 [_].[AverageRate],
 [_].[EndOfDayRate],
 [_].[Date]

Accessing and Retrieving Data

104

from [dbo].[FactCurrencyRate] as [_]
order by [_].[CurrencyKey],
 [_].[DateKey]

It should be evident that diagnosing a single step of a query is faster and consumes fewer
system resources than analyzing the entire query. Thus, it is recommended that you run
only Aggregated diagnostics over an entire query to identify problematic steps, and then
run Detailed diagnostics on those steps individually. If you look at the FactCurrencyRate_
SelfJoin_Detailed, the most expensive operation is on line 60, and it is the DbDataReader
operation. The SQL statement identified is actually on line 59 with the operation Execute
Query. Thus, we can conclude that the most expensive operation performed was not in
executing the query, but rather reading the data generated by the query.

See Also

 f Recording Query Diagnostics in Power BI: http://bit.ly/2ND2yqF

 f Query Diagnostics: http://bit.ly/3lFz8ET

 f Reading query diagnostics: http://bit.ly/3s8IFXA

Conclusion
In this chapter, we dove into Power BI Desktop's Get Data experience and walked through
the process of establishing and managing data source connections and queries. The ability
to ingest and access data is crucial to every BI project. In Power BI, this data ingest and
access is driven by a powerful functional language and query engine, M. The Power Query M
language provides a robust, scalable, and flexible engine for data retrieval, cleansing, and
transformation.

http://bit.ly/2ND2yqF
http://bit.ly/3lFz8ET
http://bit.ly/3s8IFXA

105

3
Building a Power BI

Data Model
"The data model is what feeds and what powers Power BI."

- Kasper de Jonge, Senior Program Manager, Microsoft

The data models developed in Power BI Desktop are at the center of Power BI projects.
These data models support data exploration and drive the analytical queries visualized in
reports and dashboards. Properly designed data models leverage the data connectivity and
transformation capabilities described in Chapter 2, Accessing and Retrieving Data, to provide
an integrated view of distinct business processes and entities. Additionally, data models
contain predefined calculations, hierarchies and groupings, and metadata to greatly enhance
both the analytical power of the dataset and its ease of use. The combination of accessing
and retrieving data coupled with the additional enhancements available in the data model
serves as the foundation for the BI and analytical capabilities of Power BI.

In this chapter, we explore the primary processes of designing and developing robust
data models. Common challenges in dimensional modeling are mapped to corresponding
features and approaches in Power BI Desktop, including multiple grains and many-to-many
relationships. Examples are also provided on how to embed business logic and definitions,
develop analytical calculations with the DAX language, and configure metadata settings to
increase the value and sustainability of models.

In this chapter, we will cover the following recipes:

 f Designing a Data Model

 f Implementing a Data Model

 f Creating Relationships

Building a Power BI Data Model

106

 f Configuring Model Metadata

 f Hiding Columns and Tables

 f Enriching a Model with DAX

 f Supporting Virtual Table Relationships

 f Creating Hierarchies and Groups

 f Designing Column Level Security

 f Leveraging Aggregation Tables

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop

 f Tabular Editor

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing it are available here: http://bit.ly/2OVQfG7

 f Code samples and other materials can be downloaded from the following GitHub
repository: https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-
Second-Edition

Designing a Data Model
Power BI Desktop lends itself to rapid, agile development in which significant data insights can
be obtained quickly despite both imperfect data sources and an incomplete understanding
of business requirements and use cases. However, rushing through the design phase
can undermine the sustainability of the solution, as future needs cannot be met without
structural revisions to the model or complex workarounds. A balanced design phase in
which fundamental decisions, such as DirectQuery versus in-memory, are analyzed, while
simultaneously using a limited prototype model to generate visualizations and business
feedback can address both short- and long-term needs.

This recipe describes a process for designing a data model and identifies some of the primary
questions and factors to consider while doing so.

Getting ready

Visually and analytically impressive examples of Power BI's reporting capabilities can
often cause stakeholders to underestimate the effort and complexity associated with data
integration and data modeling.

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 3

107

It is important to rein in any unrealistic expectations and confirm feasibility. Power BI is not
the right tool for every job, so it is important to approach tasks through a methodical design
approach. It is important to identify the top pain points and any unanswered business
questions in the current state. Contrast this input with an assessment of feasibility and
complexity (for example, data quality and analytical needs) along with targeting realistic and
sustainable deliverables. A good design process will do just that.

Dimensional modeling best practices and star schema designs are directly applicable
to Power BI data models. Short, collaborative modeling sessions can be scheduled with
subject matter experts and the main stakeholders. With the design of the model in place, an
informed decision about the model's data mode (Import or DirectQuery) can be made prior to
development. The four-step dimensional design process is as follows:

1. Choose the business process(es): The number and nature of processes to include
depends on the scale of the sources and scope of the project. Business processes
might include planning, sales, time reporting, general ledger, and many others.

2. Declare the granularity: For each business process (or fact) to be modeled, define
the meaning of each row. These should be clear, concise business definitions,
and each fact table should only contain one grain. Consider scalability limitations
with Power BI Desktop and balance the needs between detail and history, such as
choosing to have greater history but less granularity. Examples include:

 � One Row per Sales Order Line

 � One Row per General Ledger Account Balance per fiscal month

In the first example, the granularity is at the sales order line versus, perhaps, the
purchase order header; in the second, the granularity is at the fiscal month versus
per day or fiscal quarter.

Separate business processes, such as planning and sales, should never be
integrated into the same table. Likewise, a single fact table should not contain
distinct processes, such as shipping and receiving. Fact tables can be related to
common dimensions but should generally never be related to each other in the data
model (for example, PO Header and Line level).

3. Identify the dimensions: Dimensions should have a natural relationship with the
business process or event at the given granularity. Compare the dimension with
any existing dimensions and hierarchies in the organization (for example, Store).
If so, determine whether there is a conflict, or whether additional columns may be
required. Be aware of the query performance implications with large, high-cardinality
dimensions, such as in customer tables with over two million rows. It may be
necessary to optimize this relationship in the model or the measures and queries
that use this relationship. See Chapter 11, Enhancing and Optimizing Existing Power
BI Solutions, for more details.

Building a Power BI Data Model

108

4. Identify the facts: Facts should align with the business processes being modeled;
for example, the sum of a quantity or a unique count of a dimension. Document the
business and technical definition of the primary facts and compare this with any
existing reports or metadata repository (for example, Net Sales = Extended Amount -
Discounts). At this stage, you should be able to walk through top business questions
and check whether the planned data model will support them. For example, the
business might wish to answer the following question, "What was the variance
between Sales and Plan for last month for Bikes?". Any clear gaps can be handled
in one of three ways:

 � Revisit and modify the prior steps of this process

 � Remove the question from the scope of the data model

 � Plan to address the issue with additional logic in the model (M or DAX)

Focus only on the primary facts at this stage, such as the individual source columns
that comprise the cost facts. If the business definition or logic for a core fact has
multiple steps and conditions, check whether the data model will naturally simplify it
or whether the logic can be developed during data retrieval in order to avoid complex
measures.

How to Design a Data Model

The Power BI model should preferably align with a corporate data architecture framework
of standard facts and dimensions that can be shared across models. Though consumed
by Power BI Desktop, existing data definitions and governance should be observed. Any
new facts, dimensions, and measures developed with Power BI should supplement this
architecture. To implement this recipe, follow these steps:

1. Create a data warehouse bus matrix: A matrix of business processes (facts) and
standard dimensions is a primary tool for designing and managing data models,
while also communicating the overall BI architecture. In this example, the business
processes selected for the model are Internet Sales, Reseller Sales, and General
Ledger.

Figure 3.1: Data Warehouse Bus Matrix

Chapter 3

109

2. Create an implementation bus matrix: An outcome of the model design process
should include a more detailed implementation bus matrix. Clarity and approval
of the grain of the fact tables, the definitions of the primary measures, and all
dimensions gives confidence when entering the development phase.

Figure 3.2: Implementation Bus Matrix: Internet Sales, Reseller Sales, and General Ledger

Power BI queries (M) and analysis logic (DAX) should not be considered as long-
term substitutes for issues with data quality, master data management, and the
data warehouse. If it is necessary to move forward, document the "technical debts"
incurred and consider long-term solutions such as Master Data Services (MDS).

3. Choose the dataset storage mode—Import, DirectQuery, or Composite: With the
logical design of a model in place, one of the top design questions is whether to
implement this model with DirectQuery mode or with the default imported In-Memory
mode.

The default Import mode is highly optimized for query performance and supports
additional modeling and development flexibility with DAX functions. With
compression, columnar storage, parallel query plans, and other techniques an import
mode model is able to support a large amount of data (for example, 50 million rows)
and still perform well with complex analysis expressions. Multiple data sources
can be accessed and integrated into a single data model and all DAX functions are
supported for measures, columns, and role security. The chief disadvantages of
import mode are dataset size limitations (1 GB for Pro, 10 GB for Premium) and the
fact that data refreshes must be scheduled (eight times per day for Pro, 48 per day
for Premium). An alternative to scheduled refreshes in the Power BI service is the
use of REST APIs to trigger a data refresh of a published dataset. For example, an
HTTP request to a Power BI REST API calling for the refresh of a dataset can be added
to the end of a nightly update or ETL process script such that published Power BI
content remains aligned with the source systems.

A DirectQuery mode model provides the same semantic layer interface for users and
contains the same metadata that drives model behaviors as Import mode models do.
The performance of DirectQuery models, however, is dependent on the source system
and how this data is presented to the model. By eliminating the import or refresh
process, DirectQuery provides a means to expose reports and dashboards to source
data as the data changes.

Building a Power BI Data Model

110

This also avoids the file size limit of import mode models. However, there are several
limitations and restrictions to be aware of with DirectQuery:

 � Only a single source from a single, supported data source can be used in a
DirectQuery model.

 � When deployed for widespread use, a high level of network traffic can be
generated, thus impacting performance, as Power BI visualizations will need
to query the source system, potentially via an on-premises data gateway.

 � Some DAX functions cannot be used in calculated columns or with role
security. Additionally, several common DAX functions are not optimized for
DirectQuery performance.

 � Many M query transformation functions cannot be used with DirectQuery.

 � MDX client applications, such as Excel, are supported, but less metadata (for
example, hierarchies) are exposed.

Given these limitations and the importance of a "speed of thought" user experience
with Power BI, DirectQuery should generally be used only on centralized and smaller
projects in which visibility of updates of the source data is essential. If a supported
DirectQuery system (for example, Teradata or Oracle) is available, the performance
of core measures and queries should be tested. Also, confirm referential integrity in
the source database and use the Assume Referential Integrity relationship setting
in DirectQuery mode models. This will generate more efficient inner join SQL queries
against the source database.
Composite models allow mixing DirectQuery and Import sources, or even multiple
DirectQuery sources. While more complex, when configured correctly, composite
models can combine the ability to retrieve near-real-time data from DirectQuery
sources with the high query performance of Import models. When using composite
models, the storage mode for each table can be specified within the model. It is best
to designate dimension-type tables as Import or Dual storage mode, and fact-type
tables as DirectQuery mode.

As an example, consider a model from this recipe with fact tables, Reseller Sales, Internet
Sales, and General Ledger, along with dimensions such as Product and Sales Territory. Setting
the dimension tables to Dual mode and the Internet Sales fact table to DirectQuery mode
would allow the dimension tables to be quickly and efficiently retrieved from the in-memory
(Import) model for rendering in a slicer, while simultaneously the Internet Sales table could
use DirectQuery mode with the related dimension tables to enable real-time sales reporting
via a single, efficient native SQL query.

How it works

Power BI can be fully delivered and managed by corporate BI professionals from data retrieval
through visualization and content distribution.

Chapter 3

111

Some BI and analytics organizations also adopt hybrid approaches in which different
components of Power BI are developed and owned by different teams, such as the BI/IT
teams providing an optimized data source, its supporting ETL process, and the analytical data
model, including its measure definitions, relationships, and data refresh process.

Business teams can then leverage these assets in developing Power BI reports and
dashboards, plus, optionally, Excel reports.

As Power BI projects can have widely varying and often overlapping needs (for example,
security, data refresh, and scalability) it is important to adopt a process for allocating the
appropriate resources and planning for the longer-term deployment, such as migrating
important, relatively mature Power BI datasets to Analysis Services Tabular.

Power BI datasets and SSAS share the same database engine and architecture. Both tools
support both Import and DirectQuery data models, and along with DAX and MDX client
applications such as Power BI (DAX) and Excel (MDX). The DAX query engine comprises a
formula and a storage engine for both Import and DirectQuery modes. The formula engine
produces query plans, requests data from the storage engine, and performs any remaining
complex logic not supported by the storage engine against this data.

In DirectQuery models, the source database is the storage engine—it receives SQL queries
from the formula engine and returns the results to it. For In-Memory (Import) models, the
imported and compressed columnar memory cache is the storage engine. See Chapter 11,
Enhancing and Optimizing Existing Power BI Solutions, for more details.

There's more…

Several topics and specific questions are so common that a standard "project ingestion" form
or document can be created to support design and planning meetings. These topics and
questions include the following:

 f Data Sources: Is all the data required in a given system? What other sources are
required or currently used?

 f Security: Will the data model contain PCII or sensitive data? Does any data need to
be secured from certain users?

 f Version Control: Are there existing reports or models with the same measures?

 f Complexity: Can the source data be used directly or are transformations required?

 f Analytics: Are any custom or advanced analytics required (for example, exception
measures, statistical analyses)?

 f Data Refresh: Is there a need for real-time access? If not, how frequently does the
data need to be refreshed?

Building a Power BI Data Model

112

 f Model Scale: How much historical data is required? How many rows per week/
month/year are in the largest fact table?

 f Distribution: Approximately how many users will need to access the reports and
dashboards that this model will support?

The Planning a Power BI Enterprise Deployment whitepaper identifies the fundamental
decisions and factors that guide Power BI deployments, including licensing, scalability
and performance, data sources (cloud and on-premises), report visualization options,
administration, and more.

See also

 f Planning a Power BI Enterprise Deployment: http://bit.ly/2NJ55Qg

 f The Ten Essential Rules of Dimensional Modeling: http://bit.ly/1QijUwM

 f Using DirectQuery in Power BI Desktop: http://bit.ly/2nUoLOG

 f DirectQuery in SSAS Tabular 2016 whitepaper: http://bit.ly/2oe4Xcn

 f Announcing Data Refresh APIs: http://bit.ly/2rOUd3a

 f Dataset modes in Power BI: http://bit.ly/30P2HKF

 f Use composite models in Power BI: http://bit.ly/3tKFTbr

 f Composite model guidance in Power BI: http://bit.ly/3sd3aCz

Implementing a Data Model
The implementation of a data model proceeds from the design phase described in the
previous recipe. The design process and its supporting documentation clarify which entities
to model, their granularity, the fact-to-dimension relationships, and the fact measures that
must be developed. Additionally, the model mode (Import or DirectQuery) has already been
determined, and any additional business logic to be implemented via M or DAX functions is
also known. The different components of the model can now be developed, including data
source connectivity, queries, relationships, measures, and metadata.

In this recipe, we walk through all the primary steps in the physical implementation of a model
design. Three fact tables and their related dimensions are retrieved, relationships are created,
and the core measures and metadata are added. When complete, the multi-fact data model
can be exposed to business users for initial testing and feedback.

Getting ready

To prepare for this recipe, follow these steps:

http://bit.ly/2NJ55Qg
http://bit.ly/1QijUwM
http://bit.ly/2nUoLOG
http://bit.ly/2oe4Xcn
http://bit.ly/2rOUd3a
http://bit.ly/30P2HKF
http://bit.ly/3tKFTbr
http://bit.ly/3sd3aCz

Chapter 3

113

1. Create a SQL view for each fact and dimension table to be represented in the data
model. If you're unfamiliar with SQL views, see the See also section of this recipe.

The views should only select the columns required of the model and apply the
model's column names. Create views for the fact tables FactResellerSales,
FactInternetSales, and FactFinance, as well as the dimensions
DimEmployee, DimReseller, DimPromotion, DimProduct, DimSalesTerritory,
DimDepartmentGroup, DimOrganization, DimAccount, DimCustomer, and
DimDate.

The layer of views protects the model from changes in the source system and
provides visibility to administrators of the model's dependencies. Additionally, the
views can de-normalize source tables via joins to conform to the structure of the
model tables, and potentially include derived columns not available in the source.
In the following SQL example, the product dimension view joins three tables,
DimProduct, DimProductCategory, and DimProductSubcategory, and applies
model column names.

select [$Outer].[ProductKey] as [ProductKey],
 [$Outer].[ProductSubcategoryKey2] as [ProductSubcategoryKey],
 [$Outer].[EnglishProductName] as [EnglishProductName],
 [$Outer].[Color] as [Color],
 [$Outer].[ListPrice] as [ListPrice],
 [$Outer].[Weight] as [Weight],
 [$Outer].[DaysToManufacture] as [DaysToManufacture],
 [$Outer].[EnglishDescription] as [EnglishDescription],
 [$Outer].[EnglishProductSubcategoryName] as
[EnglishProductSubcategoryName],
 [$Outer].[ProductCategoryKey2] as [ProductCategoryKey],
 [$Inner].[EnglishProductCategoryName] as [DimProductCategory.
EnglishProductCategoryName]
from
(
 select [$Outer].[ProductKey] as [ProductKey],
 [$Outer].[ProductSubcategoryKey2] as [ProductSubcategoryKey2],
 [$Outer].[EnglishProductName] as [EnglishProductName],
 [$Outer].[Color] as [Color],
 [$Outer].[ListPrice] as [ListPrice],
 [$Outer].[Weight] as [Weight],
 [$Outer].[DaysToManufacture] as [DaysToManufacture],
 [$Outer].[EnglishDescription] as [EnglishDescription],
 [$Inner].[EnglishProductSubcategoryName] as
[EnglishProductSubcategoryName],
 [$Inner].[ProductCategoryKey] as [ProductCategoryKey2]
 from
 (

Building a Power BI Data Model

114

 select [ProductKey] as [ProductKey],
 [ProductSubcategoryKey] as [ProductSubcategoryKey2],
 [EnglishProductName] as [EnglishProductName],
 [Color] as [Color],
 [ListPrice] as [ListPrice],
 [Weight] as [Weight],
 [DaysToManufacture] as [DaysToManufacture],
 [EnglishDescription] as [EnglishDescription]
 from [dbo].[DimProduct] as [$Table]
) as [$Outer]
 left outer join [dbo].[DimProductSubcategory] as [$Inner] on
([$Outer].[ProductSubcategoryKey2] = [$Inner].[ProductSubcategoryKey])
) as [$Outer]
left outer join [dbo].[DimProductCategory] as [$Inner] on
[$Outer].ProductCategoryKey2 = [$Inner].ProductCategoryKey

Defining the SQL views is especially important if a DirectQuery model is being
supported. For DirectQuery model views, evaluate the efficiency of the query plans
and the referential integrity between the views to support inner join DirectQuery
queries.

2. Open Power BI Desktop.

3. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

4. Isolate this query in a query group called Data Sources and disable loading.

5. Both of these can be done by right-clicking the query in the Queries pane.

6. Right-click AdWorksDW and choose Reference.

7. Build an M query for each dimension and fact table that accesses the SQL views
defined in step 1. In this example, the AdWorksDW query contains the data source
information, and a vCH3R2_Products view is accessed:
let
 Source = AdWorksDW,
 Data = Source{[Schema="dbo",Item="vCH3R2_Products"]}[Data]
in
 Data

8. Duplicate this query and replace the Item parameter with the source view for each
remaining fact and dimension.

Chapter 3

115

9. Separate the fact queries into a Facts query group.

10. Separate the dimension queries into a Dimensions query group.

Figure 3.3: Dimensions, Facts, and Data Sources queries in Power Query Editor

11. Confirm that the column data types align with the design (for example, a fixed decimal
number to avoid rounding issues).

12. Close the Power Query Editor and load the tables into the Power BI model by choosing
Close & Apply from the ribbon of the Home tab.

How to Implement a Data Model

To implement this recipe, use the following steps:

1. In Power BI Desktop, select Manage Relationships from the Modeling tab of the
Report view or the Table tools tab of the Data view and click the New button.

Building a Power BI Data Model

116

2. Create many-to-one, single-direction relationships from each fact table to its
corresponding dimension table. Bidirectional relationships should only be
implemented with clear guidance and evaluation. Date data type columns
should be used for the Date table relationships.

Figure 3.4: Relationships view of a multi-fact data model

3. Write the core measures for each fact table identified in the planning phase and
validate them for accuracy. If complex DAX expressions are needed for the core
measures, then the source and retrieval should be reviewed. Give each measure an
intuitive name and a standard format (for example, two decimal places, a thousands
separator).

4. Add multi-level hierarchies in commonly used dimension tables such Product and
Date. Hierarchies are essentially just groups of columns that allow for report authors
to more easily navigate or drill between different levels of detail.

5. Set the Default Summarization and Sorting of columns, such as Month Name,
sorted by Month Number.

6. Assign Data Categories to columns such as Address or Postal Code to support
geographical visualization.

7. Hide columns from the fact tables such that only measure groups are visible.

8. Validation and user testing of the new model should follow implementation.

9. Model documentation can be developed via Dynamic Management Views (DMVs)
to provide users with definitions and relationships. See the Importing and visualizing
dynamic management view (DMV) data recipe of Chapter 10, Administering and
Monitoring Power BI, for a detailed example of this pattern.

Chapter 3

117

How it works

The steps in this recipe align with the logical flow of model development and can be
implemented in discrete phases across teams or by an individual Power BI developer. Given
the different lead times associated with the components of the model, it can be advantageous
to move forward with a more mature or simple component such that business teams can
engage and provide feedback as enhancements and other components are deployed.

Details on all primary metadata settings are included in this chapter in the following recipes:

 f Configuring Model Metadata

 f Hiding Columns and Tables

 f Creating Hierarchies and Groups

All of these settings impact the usability and functionality of the data model and should not be
neglected.

There's more…

If a model's source view is shared with other applications and may change or include columns
not needed by the model, the Table.SelectColumns() M function can be used:

let
 Source = AdWorksDW,
 InternetSales = Source{[Schema="dbo",Item="vInternetSales"]}[Data],
 SalesColumns =
 Table.SelectColumns(
 InternetSales,{"ProductKey","OrderDateKey"},MissingField.UseNull
)
in
 SalesColumns

Each column required by the table in the model is explicitly selected, and the MissingField.
UseNull parameter allows the query to refresh successfully despite a specified column being
missing—such as when a column's name has changed.

See also

 f Create SQL Views: https://bit.ly/2T3FzHF

 f Create and manage relationships in Power BI: http://bit.ly/3tLwcJM

 f Model view in Power BI: http://bit.ly/3vUXwag

 f Model data in Power BI: http://bit.ly/3f8p7yT

 f Design a data model in Power BI: http://bit.ly/3d28LVW

https://bit.ly/2T3FzHF
http://bit.ly/3tLwcJM
http://bit.ly/3vUXwag
http://bit.ly/3f8p7yT
http://bit.ly/3d28LVW

Building a Power BI Data Model

118

Creating Relationships
One of the most important data modeling features of Power BI, as well as Analysis Services
Tabular, is the control the modeler has over defining the filtering behavior between tables via
relationships. In addition to one-to-many, single-direction relationships, Power BI models can
contain bidirectional relationships, one-to-one relationships, many-to-many relationships, and
even DAX measures that contain their own relationship filtering logic via functions such as
USERELATIONSHIP and CROSSFILTER. These relationship tools, along with modifying the filter
context of measures through DAX, can be used to support many-to-many modeling scenarios
and provide alternative model behaviors for multiple business requirements.

In this recipe, we look at single-direction relationships, as well as the primary use cases for
bidirectional relationships, and DAX-based cross-filtering.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop and choose Transform data from the ribbon of the Home tab
to open the Power Query Editor.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactInternetSales table and name this query Internet Sales.

6. Repeat steps 4 and 5 to create a Customers query that imports DimCustomer, and a
Dates query that imports DimDate tables.

7. Create a Products query based on the DimProduct, DimProductCategory, and
DimProductSubcategory tables using the following code. Alternatively, use the SQL
view for products from the previous recipe in this chapter, Implementing a Data
Model.

Chapter 3

119

let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

8. Separate the fact query Internet Sales into a Facts query group by right-clicking the
query in the Queries pane and choosing Move to Group and then New Group

9. Separate the dimension queries, Customers, Dates, and Products into a Dimensions
query group.

10. Create a Blank Query called Calculations in the Other Queries group.

11. Choose Close & Apply in the ribbon of the Home tab to load the tables to the data
model.

How to Create Relationships

To implement this recipe, use the following steps:

1. Create a relationship between the Products table and the Internet Sales table.
This can be done in the Model view by dragging and dropping the ProductKey
column in the Products table to the ProductKey column in the Internet Sales table.
Alternatively, select Manage relationships in the ribbon of the Modeling tab while in
the Report view or from the ribbon of the Table tools tab while in the Data view. This
relationship should be one-to-many relationships between the Products table on the
One side and the Internet Sales table on the Many side. The Cross-filter direction
should be set to Single.

Building a Power BI Data Model

120

Figure 3.5: Creating a relationship between Products and Internet Sales

2. Create additional relationships between the other dimension tables and the Internet
Sales table until your Manage relationships dialog box has the same relationships
checked as shown in Figure 3.6.

Figure 3.6: Table relationships in the Manage relationships dialog

Chapter 3

121

3. The Model view of the dataset should now present, as shown in Figure 3.7:

Figure 3.7: Model view of relationships

4. Right-click the Dates table and choose Mark as date table using
FullDateAlternateKey as the Date column.

5. Create the following four DAX measures by right-clicking the Calculations table in the
Data view and selecting New measure:
Sales Table Rows = COUNTROWS('Internet Sales')

Customers Table Rows = COUNTROWS('Customers')

Dates Table Rows = COUNTROWS('Dates')

Products Table Rows = COUNTROWS('Products')

Building a Power BI Data Model

122

6. Right-click the Calculations column in the Calculations table and choose Hide in
report view.

7. Use a Multi-row card visualization to display these four measures.

8. Add a Slicer visualization for CalendarYear from the Dates table, Product Category
from the Products table, and Gender from the Customers table.

Figure 3.8: Relationship and cross-filter testing visualizations

9. Select slicer values in the Slicer visualizations and note that with single-direction
relationships, a selection on any of the slicers only impacts the row counts in the
table used in the slicer and the Internet Sales table.

10. Open the Manage relationships dialog and edit the Cross-filter direction of the
relationship between the Internet Sales and Products tables.

Figure 3.9: Bidirectional Relationship Configuration (Both) from the Edit Relationships Dialog

11. Slicer selections for CalendarYear and Gender now also filter the Products table.

12. Create a DAX measure that applies an alternative cross-filter behavior to the
relationship in the model:
Products Table Rows (CF) =
 CALCULATE([Products Table Rows],
 CROSSFILTER('Internet Sales'[ProductKey],'Products'[ProductKey],O
neWay))

Chapter 3

123

13. Add this measure to the Multi-row card visualization and observe that this measure
is unaffected by the Gender and CalendarYear slicers.

14. Write a DAX measure to propagate filter context. The following measure respects the
filters applied to the Internet Sales table, such as Customer Gender = "M":
Products Rows (Sales) = CALCULATE(COUNTROWS('Products'),'Internet
Sales')

15. Add this measure to the Multi-row card visualization and observe that this measure
returns the same results as the bidirectional relationship when selecting values in
the Gender and CalendarYear slicers, except when there are no slicer selections at
all—then the measure returns 158.

16. Write a DAX measure to use an inactive relationship between the Dates and Internet
Sales tables:
Sales Table (Orders) =
 CALCULATE([Sales Table Rows],
 USERELATIONSHIP('Dates'[DateKey],'Internet Sales'[OrderDateKey])
)

17. Add this measure to the Multi-row card visualization and notice that different
numbers are returned from the Sales Table Rows measure when selecting
CalendarYear 2010 or higher.

How it works

Single-direction cross-filter relationships only propagate filters in the direction of the
relationship. Thus, when Products is set to filter Internet Sales in a single-direction, other
filters affecting Internet Sales are not propagated to the Products table. With bidirectional
cross-filter relationships, filters affecting one side of the relationship are always propagated to
the other side of the relationship unless DAX measures use functions such as CROSSFILTER()
to override the default behavior defined by the model relationships.

Bidirectional relationships between fact and dimension tables should generally be avoided
when the given dimension table is also related to other fact tables. This can cause over-
filtering or unintended filter contexts. However, bidirectional relationships are an integral part
of efficient solutions to common (and otherwise complex) modeling scenarios, such as actual
versus budget and classic many-to-many scenarios.

Regarding the Date table relationships, the DAX time intelligence functions, such as DATESYTD,
DATEADD, and SAMEPERIODLASTYEAR, all require either a relationship based on a date data type
or a Mark as date table setting. Since the relationships for the Date table were formed on
surrogate keys (20150101), the Date table needs to be marked as a date table in order for
DAX time intelligence functions to operate properly.

Building a Power BI Data Model

124

The measure Product Table Rows (CF) overrides the bidirectional relationship to apply
single-direction cross-filtering using the DAX function CROSSFILTER. Though limited to specific
measures, the CROSSFILTER function can provide a simple and powerful supplement to the
relationship cross-filtering defined in the model. The CROSSFILTER function requires an existing
relationship (active or inactive) and always overrides the relationship settings of the model.
The third parameter accepts the following values:

 f OneWay

 f Both

 f None

Both bidirectional relationships and the CROSSFILTER function can be used with DirectQuery
models. The Global DirectQuery setting Allow unrestricted measures needs to be enabled to
use CROSSFILTER.

The Products Rows (Sales) measure implements bidirectional cross-filtering between the
Products and Internet Sales tables by using the CALCULATE function to evaluate the Products
table in the context of the Internet Sales table. Thus, filters affecting the Internet Sales table
also impact the result of the COUNTROWS function on the Products table. This is true even when
no slicers have selections, which is why the Product Rows (Sales) measure returns 158,
because only 158 products were sold over the internet. Keep in mind that relationships on
their own only propagate active filters against a table. This is why the Products Table Rows
measure returns all 606 products when no slicer selections are active.

The Sales Table (Orders) measure uses the USERELATIONSHIP function to utilize an inactive
relationship in the model. Power BI data models reject ambiguous relationships, in which
there are multiple possible cross-filtering paths between two tables. These duplicate
relationships are set to an inactive status, but can still be used in DAX. As with the
CROSSFILTER function, the USERELATIONSHIP function requires an existing relationship (active
or inactive) and always overrides the relationship settings of the model.

There's more...

In the many-to-many model shown in Figure 3.10, multiple customers are associated with a
given account, and some customers have multiple accounts.

Chapter 3

125

Figure 3.10: Many-to-many model with single-direction cross-filtering relationships

Given the highlighted single-direction relationship from the Accounts table to the
CustomerAccount bridge table, a filter selection on the Customer table does not filter
the Transactions table. By modifying the cross-filter direction of the relationship between
Accounts and CustomerAccount to Both, a report visual by customer will now correctly display
both the total amount from the fact table and the amounts associated with each customer.

A DAX alternative to the bidirectional relationship is the following:

M2M Tran Amount =
 CALCULATE([Tran Amount], SUMMARIZE(CustomerAccount,Accounts[Account ID]))

The SUMMARIZE function leverages the one-to-many relationships of Customers and Accounts
with the bridge table, via the CALCULATE function, and passes the filter context of Customers to
the Accounts table, which filters transactions.

For similar many-to-many scenarios, bidirectional relationships are recommended over the
DAX approach for manageability and performance reasons.

See also

 f Create and manage relationships in Power BI Desktop: http://bit.ly/3tLwcJM

 f Bidirectional cross-filtering whitepaper: http://bit.ly/2oWdwbG

http://bit.ly/3tLwcJM
http://bit.ly/2oWdwbG

Building a Power BI Data Model

126

Configuring Model Metadata
Metadata is information about information. There are many metadata settings in Power
BI data models, such as column names, data types, object descriptions, and others. Four
important metadata properties to configure for any column visible on the Power BI report
canvas are the format, data category, default summarization, and the option to sort by
column. The data formats should be consistent across data types and efficiently convey the
appropriate level of detail. Data categories serve to enhance the data exploration experience
by providing Power BI with information to guide its visualizations. Default summarization
determines the aggregation, if any, to apply to the column when added to the report canvas.
The ability to Sort by Column enables the displaying of the values in a column based on the
order of a separate column. Although all of these settings are relatively simple to configure,
careful attention to these properties helps to deliver higher-quality Power BI visualizations and
a more user-friendly platform for self-service.

In this recipe, we demonstrate how to configure the format, data category, default
summarization, and the Sort by Column option for columns and measures within a data
model—and show the impact of these settings on visualizations.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactFinance table and name this query General Ledger.

6. Repeat steps 4 and 5 to create a Dates query that imports DimDate and a
Departments query that imports DimDepartmentGroup.

Chapter 3

127

7. Repeat steps 4 and 5 to create a Customers query that imports DimCustomer.
let
 Source = AdWorksDW,
 Data = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 #"Expanded DimGeography" =
 Table.ExpandRecordColumn(
 Data, "DimGeography",
 {"City", "StateProvinceName",
 "EnglishCountryRegionName", "PostalCode"},
 {"City", "StateProvinceName",
 "CountryRegionName", "PostalCode"}
)
in
 #"Expanded DimGeography"

8. Separate the dimension queries, Customers, and Dates into a Dimensions query
group and the General Ledger query into a query group called Facts.

9. Create a Blank Query called Calculations in the Other Queries group.

10. Choose Close & Apply on the ribbon of the Home tab to load the tables to the data
model.

11. Create the relationships shown in Figure 3.11, using the Manage relationships
dialog box.

Figure 3.11: Relationships

How to Configure Model Metadata

To implement this recipe, use the following steps:

1. Select the Data view.

2. Use the Fields list on the right to navigate to the Dates table and select the
FullDateAlternateKey column.

Building a Power BI Data Model

128

3. Use the Format drop-down in the ribbon of the Column tools tab to change the
format to 3/14/2001 (m/d/yyyy) or some other format.

Figure 3.12: Column Formatting

4. Right-click the Calculations table and click New measure to create a measure with
the code:
Finance = SUM('General Ledger'[Amount])

5. Select the Finance measure and change the format to Currency using the Format
option in the Measure tools tab.

Figure 3.13: Measure Formatting

6. Right-click on the Calculations column in the Calculations table and choose Hide in
report view.

7. While still in the Data view, select the StateProvinceName column in the Customers
table, and from the Column tools tab change the Data category to State or
Province.

Chapter 3

129

Figure 3.14: Data Category Selection

8. Repeat this procedure, setting the City column to City, the CountryRegionName
column to Country, and the PostalCode column to Postal code. Note that a globe
icon appears next to all of these columns in the field list.

9. Switch to Report view and create a Map visualization with CountryRegionName and
PostalCode in the Location area and CustomerKey in the Size area. You can drill
down to the postal code level and zoom in to investigate how many customers are in
particular areas.

Figure 3.15: Default Visual of the Geographical Data Category

Building a Power BI Data Model

130

10. While still in the Report view, create a Table visualization with the
EnglishMonthName column only. Note that the names of months appear in the table
in alphabetical order.

11. Select the EnglishMonthName column in the Fields list, and from the Column tools
tab change Sort by column to the MonthNumberOfYear column. After this action, the
month names are sorted in the correct calendar order.

Figure 16: Sort by column

12. Switch back to the Data view and select the AccountKey column from the General
Ledger table.

13. On the Column tools tab, change the default Summarization from Count to Don't
summarize.

Figure 3.17: Default Summarization for Columns

Chapter 3

131

How it works

The metadata settings for Formatting, Data category, Summarization, and Sort by column
are all available from the Column tools or Measure tools tabs, whether you are in the Data
view or Report view. Note that Summarization and Sort by column are not available for
Measures tools. These metadata settings cannot be modified in the Power BI service once
the model is published. Reports can be created and edited in the service, but data types,
names, and other metadata are not available.

Formatting decisions should consider the impact of precision on visualizations. Fewer decimal
places and more abbreviated date formats consume less space in reports and are easier to
visually comprehend on dashboards. To understand how formatting works, consider a date
data type. Date data types are actually stored as decimal numbers in the model engine. The
integer portion of the number is the number of days since December 30, 1899. The decimal
portion is the fraction of a day, with hours being 1/24 or , minutes being 1/24/60 or

, and seconds being 1/24/60/60 or . Thus, the display formats for
dates simply visually change how the base data is displayed to the user while keeping the
underlying data unchanged. The user may see 1/1/1900 00:00:00 displayed on their screen,
but internally in the data model, this is simply stored as 2.

Assigning a location Data category to columns assists Bing maps with geolocation and
changes the default visualization for such columns to the Map visualization. The Web URL
is important for such things as mailto email address links and any URL links exposed in
reports. When the column is used in Table visualizations, email and link icons are displayed,
respectively. Similarly, assigning an Image URL to a column displays the actual image when
using Table visualizations. The Barcode data category can be useful for mobile applications.

When considering the use of Sort by columns, identify columns requiring custom sorting.
Calendar text columns such as Month and Weekday are the most common candidates. Other
columns may represent an organizational structure or entity hierarchy, such as general ledger
accounts. The Sort by column sort must contain only one distinct value for each value in
the column to be sorted. It is recommended to embed the sorting logic as deep into the BI
architecture as possible. For example, the sorting column could be added to a dimension
table in a data warehouse or the SQL view used to load the data model. If these options are
not available, M query transformations are recommended over DAX calculated columns.

Text and date data type columns are set to Don't summarize by default when first loaded
to Power BI models. These data types have default summarizations of Count and Count
(Distinct). In addition, the Report view provides the following aggregation options when using
these data types in visualizations:

 f Text: First, Last, Count (Distinct), or Count

 f Date: Earliest, Latest, Count (Distinct), or Count

Building a Power BI Data Model

132

By default, Whole number, Decimal number, and Fixed decimal number are set to Sum as
the default summarization. For numeric columns with default summarization applied, the
Fields list applies a summation symbol and aggregates the column's values according to
the default summarization setting when used in a report visualization. The same symbol is
applied regardless of the default summarization configured (for example, Average and Count).

Simple DAX measures can deliver all default summarization options (Sum, Min, Max,
Average, Count, and Count Distinct). Additionally, measure names such as Count of
Products can help eliminate confusion regarding the default summarization icon. Many
BI professionals prefer to replace fact columns with measures for this reason. Simple DAX
expressions are used to perform the various aggregations or summarizations required in the
data model; the fact columns are then hidden. When all fact columns are hidden, associated
measures display at the top of the Field list. Additionally, using measures allows business
logic to be applied, such as including or excluding certain values.

There's more…

While serving as an intern at Microsoft, Chelsie Eiden solved a long-standing issue with
Power BI involving duration by implementing custom format strings in the September 2019
release of Power BI Desktop. Since the release of Power BI Desktop, there was always an
issue aggregating durations and displaying them in the format of HH:MM:SS. This was the
result of the model engine not including a true Duration data type, unlike the M query engine.
You could convert durations to seconds to aggregate it, but you could not display aggregated
durations that properly aggregated as numbers and displayed in the hours, minutes, seconds
format in a visual. The reason was that there was no numeric formatting option for duration,
and using the DAX FORMAT function turned a number into text. Custom format strings solved
this issue by allowing the column to remain as a number, but also allowing the creation of
a custom format for display purposes. Custom format strings can be applied to a column or
measure using the Properties pane of the Model view, as shown in Figure 3.18.

Figure 3.18: Custom format strings

Chapter 3

133

DAX can be used to assist with sorting issues; for example, a DAX-calculated column can be
created to support sorting of the Calendar Yr-Mo column with values such as 2016-Jan. The
DAX formula to create a CalYr-Mo Sort column is:

CalYr-Mo Sort = YEAR('Dates'[Date]) * 100 + MONTH('Dates'[Date])
This calculation results in values such as 201601. The YEAR function is applied against the
Date column and multiplied by 100 to add two digits. This product is then added to the results
of the MONTH function applied against the Date column, which returns a value between 1
and 12. Although this approach is simple to implement and inexpensive in terms of resource
usage, the values of the new column are not sequential, thus limiting the use of the column
in Time Intelligence measures (for example, trailing 3 months). Sequential surrogate key
columns for each grain of the date dimension, including fiscal calendars, is an essential
component of robust date intelligence logic.

The DAX RANKX function can also be leveraged for sorting. For example, use the following DAX
code to create a ranking column in the Departments table based upon the funding each
Department Group receives in the General Ledger.

 DeptGroupRank = RANKX('Departments',[Finance])

The ranking is based on the Finance measure created in this recipe. The DeptGroupRank
column is re-evaluated during each refresh and thus the sort order could change to reflect the
source data.

Figure 3.19: RANKX Calculated Column

The DepartmentGroupName column can now have a Sort by column specified of
DeptGroupRank to order departments by their funding, with Sales and Marketing being first
(the most funding) and Quality Assurance being last (the least funding).

Building a Power BI Data Model

134

See also

 f Specify data categories in Power BI Desktop: http://bit.ly/2peNqPm

 f Tag barcode fields to enable barcode-scan filtering in mobile apps: http://bit.
ly/3re4dAV

 f Add hyperlinks (URLs) to a table or matrix: http://bit.ly/39dxJ3r

 f Display images in a table or matrix in a report: http://bit.ly/2Pkx1dE

 f Sort by column in Power BI Desktop: http://bit.ly/2pFXhgh

 f Chelsie Eiden's Duration: http://bit.ly/3lKFUtf

 f Custom format strings: http://bit.ly/3sj648B

 f Use custom format strings in Power BI Desktop: http://bit.ly/3cXAW8o

Hiding Columns and Tables
Data models must balance the competing demands of functionality, scope, and usability.
As additional tables, columns, measures, and other structures are added to meet various
analytical needs, a model can quickly become confusing to end users. Therefore, it is
important to minimize the visibility of columns and tables to provide an intuitive interface.

In this recipe, we demonstrate how to hide columns and even entire tables from report
consumers.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactInternetSales table and name this query Internet Sales.

6. Repeat steps 4 and 5 to create a Departments query that imports
DimDepartmentGroup and an Accounts query that imports DimAccount.

http://bit.ly/2peNqPm
http://bit.ly/3re4dAV
http://bit.ly/3re4dAV
http://bit.ly/39dxJ3r
http://bit.ly/2Pkx1dE
http://bit.ly/2pFXhgh
http://bit.ly/3lKFUtf
http://bit.ly/3sj648B
http://bit.ly/3cXAW8o

Chapter 3

135

7. Create a Products query based upon the DimProduct, DimProductCategory, and
DimProductSubcategory tables using the following code. Alternatively, use the SQL
view for products from a prior recipe in this chapter, Implementing a Data Model.
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
),
 RemoveColumns =
 Table.SelectColumns(
 Category,
 {"ProductKey", "EnglishProductName", "DaysToManufacture",
 "Product Subcategory", "Product Category"}
)
in
 RemoveColumns

8. Move the Internet Sales query to a query group called Facts and the Departments,
Accounts, and Products queries to a query group called Dimensions.

9. Click Close & Apply in the ribbon of the Home tab to load the tables to the data
model.

10. Create a relationship based on the ProductKey columns of both the Products table
and the Internet Sales table.

11. Create the following four measures in the Internet Sales table:

Internet Sales = SUM('Internet Sales'[SalesAmount])

Internet Sales Freight = SUM('Internet Sales'[Freight])

Internet Sales Order Quantity = SUM('Internet Sales'[OrderQuantity])

Internet Sales Distinct Products =
 COUNTROWS(DISTINCT('Internet Sales'[ProductKey]))

Building a Power BI Data Model

136

How to Hide Columns and Tables

To implement this recipe, use the following steps:

1. In the Data view's Fields pane, right-click a column in the Internet Sales table and
select Hide in Report view. Notice that the "visible" icon with a strike-through is
displayed to the right of the column in the Fields pane. Also, the columns are grayed
out in the data viewing area.

Figure 3.20: Hide in report view

2. Repeat this procedure for all columns (but not measures) in the Internet Sales table.

3. Once all the columns are hidden, switch to the Report view and observe that the
Internet Sales table is now displayed above the other two tables, out of alphabetical
order. In addition, the icon for this table is a calculator instead of a table.

Figure 3.21: Measure table in the Report view Fields list

Chapter 3

137

4. Switch back to the Data view, right-click the EnglishProductName column in the
Products table, and choose Create hierarchy.

5. Right-click the Product Category column and choose Add to hierarchy, then the
EnglishProductName Hierarchy.

6. Add Product Subcategory to the EnglishProductName Hierarchy.

7. Hide the EnglishProductName, Product Category, Product Subcategory, and
ProductKey columns.

8. Switch to Report view and confirm that only the DaysToManufacture column and the
EnglishProductName Hierarchy are visible under the Products table in the Fields
pane.

9. Switch to the Model view, right-click the Departments table, and choose Hide in
report view.

10. Switch to the Report view and confirm that the Departments table is no longer visible
in the Fields pane.

How it works

Hiding columns and tables is an important step in developing professional data models that
can be easily consumed by end users for self-service purposes; too many columns and tables
can be confusing to end users. In general, hide any column which is not directly required in
Power BI reports. Relationship key columns, fact table columns represented via measures,
custom Sort by columns, and any degenerate dimensions should be hidden. Additionally, hide
any measure which exclusively supports other measures and is not used directly in reports.
Also hide entire tables if they exist solely for data modeling purposes, such as a bridge table in
a many-to-many relationship. As this is only a visibility metadata setting, the hidden columns,
measures, and tables can still be used in measures and accessed from other tools via DAX
queries.

As demonstrated in this recipe, columns visible within hierarchies can be hidden as individual
columns. Exposing both an individual column and a hierarchy that includes that same column
can confuse users and lengthen the Fields list. Conversely, not hiding the individual column
contained within a hierarchy provides greater flexibility, such as viewing the columns in the
hierarchy on separate axes. The same is true when grouping columns. The grouping of column
values described in the Creating Hierarchies and Groups recipe in this chapter is still possible
with hidden columns. It should be noted that Groups and Hierarchies can both be hidden
from the Fields list as well. In general, however, such structures would not have been created
if those structures' visibility was not required.

Hiding columns and tables should also be considered in role-based security scenarios
involving row-level security (RLS). Users mapped to security roles that forbid them from
accessing all the rows of a table are still able to see related metadata, such as the table
name, the table's column names, and any metric names not hidden. New object-level security
features of SSAS 2017 and later can eliminate this visibility.

Building a Power BI Data Model

138

One option to simplify the Fields list is to consolidate measures into fewer home tables and
hide unused tables. Dedicated measure group tables can be created to organize and group
similar measures. Dedicated measure groups are empty tables created with queries that do
not return rows or other sources, and that do not require a refresh. One method of creating
dedicated measure group tables is to create a Blank Query called something along the lines
of "Calculations", and then to load and apply this to the model. In the Desktop, create at least
one measure in this table and hide the single column automatically created by the query that
is named the same as the query/table. Measures can be created directly in this table, or
existing measures can be associated with any table of the model via the Home table property
available in the ribbon of the Measure tools tab.

Figure 3.22: Measure Home table

There's more…

Pages can also be hidden from report readers in the case of reports that include multiple
pages. To hide pages, right-click the Page tab and choose Hide Page. This can be useful to
preserve pages used during development and troubleshooting, or when using tooltip pages.

Perspectives are essentially view definitions of models such that only a defined set of tables,
columns, and metrics of a model are exposed to a given view. Power BI Desktop supports
perspectives, although they must be created using an external tool such as Tabular Editor. To
see how perspectives can be created and used, follow these steps:

1. From the Report view, select Tabular Editor in the ribbon of the External Tools tab.

2. In Tabular Editor, note that only the visible tables are displayed—the Departments
table is missing. You can view hidden objects by choosing Hidden Objects from the
View menu.

3. Right-click the Perspectives folder, choose New Perspective, and name the
perspective New Perspective.

4. In the Tables folder, right-click the Internet Sales table and choose Show in
Perspectives, then All Perspectives.

5. Repeat step 4 for the Products table.

Chapter 3

139

6. Expand the Products table, right-click the DaysToManufacture column, and choose
Hide in Perspectives and then New Perspective.

Figure 3.23: Tabular Editor

7. Right-click the Accounts table, choose Hide in Perspectives, and then All
Perspectives.

8. Choose Save from the File menu.

9. Close the Tabular Editor.

10. Back in Power BI Desktop, create a second page, and then save the report.

11. Choose Options and settings and then Options from the File menu.

12. Under CURRENT FILE in Report settings, turn on the Allow report readers
to personalize visuals to suit their needs option.

13. In the Format section of the Visualizations pane for your second page,
notice the new Personalize visual section.

14. Set Report-reader perspective to New Perspective.

Building a Power BI Data Model

140

As the report editor, you will continue to see the entire model of all tables and columns not
hidden in the model while in Report view in Power BI Desktop. However, when users are
personalizing visuals on Page 2 in the Power BI service, the users will not see any tables and
columns not included in the perspective. Note that perspectives should not be considered to
be a security mechanism in any regard.

Figure 3.24: Personalize dialog visuals in Service

See also

 f Let users personalize visuals in a report: http://bit.ly/3cljuvm

 f Personalize visuals in a report: http://bit.ly/2OZX8a8

Enriching a Model with DAX
In order to drive user adoption and to provide a foundation to support more advanced
analytics, it's essential that the logic embedded in core or 'base' DAX measures accurately
reflect business definitions. These fundamental measures deliver version control across the
many reports built from a data model and avoid the need for additional logic to be applied at
the report layer. Clear definitions for required business metrics should be documented and
the corresponding DAX measures should be validated for accuracy prior to deploying any
reports using these new measures to a production environment.

Performance, usability, and version control are all fundamental characteristics of effective
data models, but it is often the additional analytical context that sets models apart. Once
fundamental measures have been implemented, additional DAX measures can be developed
to support common and high-priority business analysis. These measures can often replace
ad hoc and manual data analysis for business users as well as dedicated custom reports
maintained by the BI organization. As measures are stored within the data model, the logic
can be re-used in various combinations and in future projects.

http://bit.ly/3cljuvm
http://bit.ly/2OZX8a8

Chapter 3

141

When developing these metrics, it is important to identify the set of base measures to create,
the data source to validate against, and the subject matter experts. Reconcile differences
in definitions between source systems and any custom logic applied in reports. Request
a project sponsor from a business organization to review and approve the definitions and
validation. Finally, identify any conflicts with existing business definitions and advise of
complexity in implementing the measures.

In this recipe, DAX measures are created to represent business definitions and support
deeper analysis.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactResellerSales table and name this query Reseller Sales.

6. Repeat steps 4 and 5 to create a Currency Rates query that imports
FactCurrencyRates, an Internet Sales query that imports FactInternetSales,
a Dates query that imports DimDate, and a Customers query that imports
DimCustomer.

7. Add an Index column starting from 1 to the Currency Rates query, and filter
the CurrencyKey column to 98.

8. Create a Products query based on the DimProduct, DimProductCategory,
and DimProductSubcategory tables using the following code. Alternatively, use the
SQL view for products from a prior recipe in this chapter, Implementing a Data Model.
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",

Building a Power BI Data Model

142

 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

9. Move the Reseller Sales, Internet Sales, and Currency Rates queries to a
query group called Facts and the Dates, Products, and Customers queries to a query
group called Dimensions.

10. Create four blank queries called Reseller Measures, Pricing Measures,
Customer Measures, and Currency Measures in the Other Queries group.

11. Click Close & Apply in the ribbon of the Home tab to load the tables to the
data model.

12. Create the relationships shown in Figure 3.25.

Figure 3.25: Model relationships

13. All of these relationships' cross-filtering directions should be Single, except for the
Internet Sales to Customers relationship, which should be set to Both.

14. Switch to the Data view and hide the single columns in the Reseller
Measures, Pricing Measures, Customer Measures, and Currency Measures tables.

15. Right-click on the Date table and choose Mark as date table using
FullDateAlternateKey as the Date column.

Chapter 3

143

How to Enrich a Model with DAX

To implement this recipe, use the following steps:

1. Switch to the Data view.

2. Create the following eight sales and cost DAX measures in the Reseller Measures
table:
Reseller Discount Amount = SUM('Reseller Sales'[DiscountAmount])

Reseller Gross Sales =
 SUMX('Reseller Sales',
 'Reseller Sales'[UnitPrice] * 'Reseller Sales'[OrderQuantity])

Reseller Net Sales =
 CALCULATE([Reseller Gross Sales] - [Reseller Discount Amount],
 'Reseller Sales'[ShipDate] <> DATEVALUE("12/31/2099"))

Reseller Product Cost =
 SUMX('Reseller Sales',
 'Reseller Sales'[OrderQuantity]*'Reseller
Sales'[ProductStandardCost])

Reseller Gross Margin % =
 DIVIDE([Reseller Gross Sales] - [Reseller Product Cost],
 [Reseller Gross Sales])

Reseller Margin % =
 DIVIDE([Reseller Net Sales] - [Reseller Product Cost],
 [Reseller Net Sales])

Reseller Count of Products Sold =
 CALCULATE(DISTINCTCOUNT('Products'[ProductAlternateKey]),
 'Reseller Sales')

Reseller Count of Sales Orders = DISTINCTCOUNT('Reseller
Sales'[SalesOrderNumber])

3. Create the following seven sales and cost DAX measures in the Pricing
Measures table:
Effective Unit Price =
 DIVIDE(SUM('Reseller Sales'[ExtendedAmount]),
 SUM('Reseller Sales'[OrderQuantity]))

Building a Power BI Data Model

144

25th Percentile Unit Price = PERCENTILE.INC('Reseller
Sales'[UnitPrice],.25)

75th Percentile Unit Price = PERCENTILE.INC('Reseller
Sales'[UnitPrice],.75)

Maximum Unit Price = MAX('Reseller Sales'[UnitPrice])

Median Unit Price = MEDIAN('Reseller Sales'[UnitPrice])

Minimum Unit Price = MIN('Reseller Sales'[UnitPrice])

Range of Unit Prices = [Maximum Unit Price] - [Minimum Unit Price]

4. Create the following three sales and cost DAX measures in the Pricing
Measures table:
Count of Accessory But Not Bike Customers =
VAR BikeCustomers =
 SUMMARIZE(
 CALCULATETABLE('Internet Sales','Products'[Product Category] =
"Bikes"),
 'Customers'[CustomerAlternateKey])
VAR AccessoryCustomers =
 SUMMARIZE(
 CALCULATETABLE('Internet Sales',
 'Products'[Product Category] = "Accessories"),
 'Customers'[CustomerAlternateKey])
RETURN
 CALCULATE(
 DISTINCTCOUNT('Customers'[CustomerAlternateKey]),
 EXCEPT(AccessoryCustomers,BikeCustomers))

Count of Bike Only Customers =
VAR BikeCustomers =
 SUMMARIZE(
 CALCULATETABLE('Internet Sales','Products'[Product Category] =
"Bikes"),
 'Customers'[CustomerAlternateKey]
)
VAR ClothesAndAccessoryCustomers =
 SUMMARIZE(
 CALCULATETABLE('Internet Sales',
 'Products'[Product Category] IN {"Accessories","Clothing"}
), 'Customers'[CustomerAlternateKey])

Chapter 3

145

RETURN
 CALCULATE(
 DISTINCTCOUNT('Customers'[CustomerAlternateKey]),
 EXCEPT(BikeCustomers,ClothesAndAccessoryCustomers))

Count of Last Year Customers ex Current Year =
VAR CurrentYear = 2012
VAR LastYear = CurrentYear - 1
VAR LYCustomers =
 SUMMARIZE(
 CALCULATETABLE('Internet Sales',
 FILTER(ALL('Dates'),'Dates'[CalendarYear] = LastYear)
), 'Customers'[CustomerAlternateKey])
VAR CYCustomers =
 SUMMARIZE(
 CALCULATETABLE(
 'Internet Sales',
 FILTER(ALL('Dates'),'Dates'[CalendarYear] = CurrentYear)
), 'Customers'[CustomerAlternateKey])
RETURN
 CALCULATE(
 DISTINCTCOUNT('Customers'[CustomerAlternateKey]),
 EXCEPT(LYCustomers,CYCustomers))

5. Create the following two DAX columns in the Dates table:
YearMonth = [CalendarYear]*100 + [MonthNumberOfYear]

YearMonthIndex =
 COUNTROWS(

SUMMARIZE(FILTER('Dates',[YearMonth]<EARLIER([YearMonth])),[YearMonth])
) + 1

6. Create the following eleven sales and cost DAX measures in the Currency
Measures table:

Max Daily Rate = MAX('Currency Rates'[EndOfDayRate])

Last Rate =
 CALCULATE(DISTINCT('Currency Rates'[EndOfDayRate]),
 LASTNONBLANK('Dates'[FullDateAlternateKey],[Max Daily Rate]))

Previous Daily Rate =
 CALCULATE([Last Rate],
 FILTER(ALL('Currency Rates'),

Building a Power BI Data Model

146

 'Currency Rates'[Index] = MAX('Currency Rates'[Index]) – 1)
)

Previous Monthly Rate =
 CALCULATE([Last Rate],
 FILTER(ALL('Dates'),
 'Dates'[YearMonthIndex] = MAX('Dates'[YearMonthIndex]) – 1)
)

Previous Year Rate =
 CALCULATE([Last Rate],
 FILTER(ALL('Dates'),
 'Dates'[CalendarYear] = MAX('Dates'[CalendarYear]) - 1))

Daily Change % = DIVIDE([Last Rate],[Previous Daily Rate])
Monthly Change % = DIVIDE([Last Rate],[Previous Monthly Rate])
Yearly Change % = DIVIDE([Last Rate],[Previous Year Rate])
Daily Geometric Return = GEOMEANX('Currency Rates',[Daily Change %])-1
Daily Geometric Change = GEOMEANX('Currency Rates',[Daily Change %])-1
Yearly Geometric Change = GEOMEANX(DISTINCT('Dates'[CalendarYear]),[Year
ly Change %])-1

How it works

Measure definitions can be straightforward when the data is internally managed with
processes and tools such as a data governance council, Master Data Services (MDS), Data
Quality Services, and Azure Data Catalog. As per the Power BI Governance and Deployment
whitepaper, Power BI projects and all BI projects greatly benefit from these data cleansing
and information management tools. The data warehouse bus matrix and stakeholder matrix
referenced in this chapter and Chapter 4, Authoring Power BI Reports, respectively, can help
to focus the measure definition process on version control and transparency.

The names used for measures should be intuitive and specific to the business process.
Preferably, a naming standard is followed to balance the detail of the name with the impact
of text on visualizations. In a real project scenario, several additional measures would likely
be created following validation. These might include Net Sales as a percentage of Gross
Sales, Sales per Order, Quantity per Order, and Sales Not Shipped. These measures and more
advanced measures would all leverage the validated measures.

For the Reseller Measures, the following business definitions are specified:

 f Gross Sales is equal to Unit Price multiplied by Order Quantity with no discounts
applied.

Chapter 3

147

 f Net Sales are Gross Sales reduced by Discounts and must have been shipped.

 f Product Cost is equal to Product Standard Cost multiplied by Order Quantity.

Two columns exist in the source database reflecting Reseller Gross Sales and Reseller
Product Cost. Performance and memory usage can be improved only by importing the price
and quantity columns and multiplying them within the measure. For the Reseller Gross Sales
measure, the SUMX function is used to iterate over the table specified in the first parameter.
The calculation specified in the second parameter is performed for each row and then all rows
are summed. The net sales measure deducts discounts from gross sales and only includes
shipped products. Here it is assumed that the date value of 12/31/2099 is assigned for any
sales orders that have not shipped.

Margin percentage measures reflecting both gross and net sales (with discounts) are
required. These are the Reseller Gross Margin % and Reseller Margin % measures,
respectively. Margin Amount measures might also be created and could replace the
numerator of the Margin % measures. DISTINCTCOUNT can be used directly against foreign
key relationship columns and any degenerate dimension columns on the fact table, such as
SalesOrderNumber. Always use the DIVIDE function with the optional third parameter to avoid
division by zero errors.

The distinct count of sales orders and products sold are also core measures used in many
reports and are referenced by other measures. These are the Reseller Count of Products
Sold and Reseller Count of Sales Order measures. The Reseller Count of Products Sold
measure uses the natural key of the product in the filter context of the fact table to count
unique products. Using the product key on the fact table would count multiple versions of a
product, given slowly changing dimensions.

The Pricing Measures provide an example of supporting the deeper analysis of pricing trends.
These measures are designed to accomplish the following:

 f Describe the central tendency and distribution of prices.

 f Account for the impact of product sales mix to support analysis of effective pricing
versus product pricing.

The Effective Unit Price measure accounts for the impact of quantity sold and uses the
existing sales and quantity metrics. The percentile and median measures 25th Percentile
Unit Price, 75th Percentile Unit Price, and Median Unit Price help to better describe the
distribution of prices. The MEDIAN function returns the 50th percentile of values in a column.
The PERCENTILE.INC function is used for the 25th and 75th percentile.

Building a Power BI Data Model

148

The minimum, maximum, and range of unit prices provide additional context to the variability
of the prices. Visuals can be created that use these measures to analyze pricing; see Figure
3.26 as an example.

Figure 3.26: Example Power BI Pricing Reports

The visuals compare the average unit price metric to the new effective unit price metric.
Pricing metrics are added to visual tooltips such that hovering over values in the charts
provides additional context. Performance is not negatively impacted when adding measures to
visuals from the same table due to measure fusion. The tooltip measures shown are from the
same table and did not create additional DAX queries.

Embedding hierarchies in visuals with supporting measures can allow users to investigate
interesting values by drilling up and down. Additionally, exception reports and notifications can
be developed using the new measures as thresholds.

The Customer Measures serve as an example for finding cross-selling opportunities, as well
as lapsed customers. The objective of these measures is to identify customer segments
based on their purchase history across product categories. For example, the business wants
to identify customers who have purchased a bike, but no bike accessories.

By creating a Table visualization that includes the Product Category column from the
Products table and the distinct count of the CustomerKey from the Customers table, we can
see that 18,484 distinct customers have made purchases across three product categories;
this information can be seen in Figure 3.27.

Chapter 3

149

Figure 3.27: Unique Customers by Product Category

The Count of Accessory But Not Bike Customers and Count of Bike Only Customers
measures help us to determine the number of customers that have bought clothing or
accessories but not bikes, or bought bikes but not accessories, respectively. These measures
can be used in Card visuals to show that there are far fewer bike-only customers than
customers that only buy clothing or accessories, but not bikes. In addition, these measures
can be used in Table visualizations that include the CustomerAlternateKey column to identify
individual customers; when these measures are calculated at the individual customer level,
the measures return either zero, or one and zero values are automatically filtered from the
Table visualization by default. Note that you can click the drop-down arrow in the Values
area for CustomerAlternateKey and choose Show items with no data to change this default
behavior.

Figure 3.28: Measures Count of Accessory But Not Bike Customers and Count of Bike Only Customers

The Count of Accessory But Not Bike Customers measure uses variables (VAR) to create
the virtual tables BikeCustomers and AccessoryCustomers that store the distinct customer
keys associated with the two product categories, Bikes and Accessories, respectively. The
SUMMARIZE function groups the customer key values and EXCEPT performs the set-based
operation. For the Count of Bike Only Customers measure, the syntax aligns with the
structure of the first measure except for the use of the DAX IN operator to include accessories
and clothing in the same group of customer keys. Given the power of these measures, they
could be candidates for sales and marketing dashboards and exception reports; sales teams
could focus on cross-selling bike-only customers and selling bikes to non-bike customers.

The Count of Last Year Customers ex Current Year measure demonstrates how to identify
customers who made a purchase last year but have not yet made a purchase this year. The
structure of this measure is similar to the two previous measures, except for the use of the
CALCULATETABLE function to create a filtered table set. In the recipe, the CurrentYear variable
is hardcoded to be 2012. In a production dataset, this would likely be changed to something
like YEAR(TODAY()) in order to get the current year or YEAR(MAX('Dates'[Date])) to get the
most current year in context. This measure can be used in Card or Table visualizations as
well.

Building a Power BI Data Model

150

The Currency Measures provide an example of computing the geometric mean at the day,
month, and year grains. In the Last Rate measure, the LASTNONBLANK function is needed for
days where there might not be a rate logged in the data. This measure is used to compute the
previous rate at the day, month, and year granularity (Previous Daily Rate, Previous Monthly
Rate, and Previous Year Rate). The percentage change measures, Daily Change %, Monthly
Change %, and Yearly Change % are the source values for the geometric mean calculations
and thus are expressed as positive numbers. The GEOMEANX function iterates over tables at
the different grains and computes the Change % measure for each row. The geometric mean
(the product of values taken to the Nth root) is computed last against this list of values. The
geometric change measures can be used in a multi-row card visualization, with 10 decimal
points specified:

Figure 3.29: Geometric Mean Measures

There's more…

A common scenario with many data models is comparing tables with different grains, for
example, when comparing actual versus budget, where actuals are reported daily and budgets
are assigned monthly or quarterly. In such scenarios, you can create bridge tables where each
bridge table contains the unique values of the dimension at the grain of the budget table.
These bridge tables can potentially leverage the existing M queries in the model used to load
the dimension tables. Take the following example, where the M expression references the
Dates table query as its source and selects only the distinct values of the Calendar Yr-Mo
column. If this is the grain of the budget table, this single-column table could be used as the
bridge table.

let Source = Dates,
 YearMonthColumn = Table.SelectColumns(Source,{"Calendar Yr-Mo"}),
 RemoveDuplicates = Table.Distinct(YearMonthColumn)
in RemoveDuplicates

Alternatively, a simple SQL view could be created ('Select Distinct [Calendar Yr-
Mo] From dbo.DimDate') that selects the distinct values of the column; this view could be
accessed from a new bridge table M query.

One-to-many relationships with single-direction cross-filtering from the bridge tables to the
budget table can be created. Additional many-to-one relationships with bidirectional cross-
filtering are then created between the bridge tables and their corresponding dimension tables.
An example final model might look the same as that shown in Figure 3.30.

Chapter 3

151

Figure 3.30: Internet Sales versus Budget Data Model

The two bidirectional relationships highlighted in the image allow filters on the Date and
Product tables to propagate to the Internet Sales Budget table, in addition to the Internet
Sales fact table.

The only remaining steps requiring some level of code are to avoid invalid filter contexts. For
example, the Internet Sales fact table can of course be filtered by individual products and
dates, but this granularity is not available for the Internet Sales Budget table and thus a
blank value should be returned.

A filter test measure can be created to test for filter context. The filter test is used to protect
against invalid sales to budget reports, with different filters applied to each fact table. The
following measure checks whether filters have been applied at higher grains than the budget
table:

Budget Filter Test =
 VAR CustomerFilter = ISCROSSFILTERED(Customer)
 VAR ProductGrain =
 ISFILTERED('Product'[Product Class]) || ISFILTERED('Product'[Product Color])
||
 ISFILTERED('Product'[Product Subcategory]) || ISFILTERED('Product'[Product
Name])
 VAR DateGrain =

Building a Power BI Data Model

152

 ISFILTERED('Date'[Calendar Yr-Wk]) || ISFILTERED('Date'[Date]) ||
ISFILTERED('Date'[Wk End Date])
RETURN
IF(CustomerFilter = TRUE() || ProductGrain = TRUE() || DateGrain =TRUE(),
 "Higher Grain", "Common Grain")

The ISFILTERED and ISCROSSFILTERED functions return Boolean values based on the filter
context of the table or columns. The ISFILTERED function is limited to a single column in the
model and is specific to the given column. The ISCROSSFILTERED function can check a single
column or an entire table. Filters from other tables are included in the evaluation.

The Budget Filter Test measure can then be used to create a budget measure and an actual-
to-budget variance measure:

Internet Sales Budget =
 VAR BudgetSales = sum('Internet Sales Budget'[Online Sales Budget])
RETURN
IF([Budget Filter Test] = "Common Grain", BudgetSales, BLANK())

Internet Sales Actual to Budget Variance =
IF(ISBLANK([Internet Sales Budget]),BLANK(), [Internet Sales] - [Internet Sales
Budget])

In this scenario, the requirement is to only test for a common grain, and return a blank
otherwise. It is possible to build allocation logic into the DAX budget measure to account for
higher grains. In general, these allocation rules are better implemented in the budget process
itself or via ETL tools and query languages, such as SQL and M. These measures can be used
to visualize variances between actuals and budget.

Figure 3.31: Internet Sales Actual versus Budget by Product Category and Year-Month

Matrix visuals provide functionality similar to Excel pivot tables and are therefore a good
choice for budget versus actuals.

See also

 f DAX function reference: http://bit.ly/3rrQFlt

 f Governance and deployment approaches: http://bit.ly/1VLWdVg

http://bit.ly/3rrQFlt
http://bit.ly/1VLWdVg

Chapter 3

153

Supporting Virtual Table Relationships
Virtual table relationships are DAX expressions implemented to filter one table from another
when a relationship does not exist between the two. Report visualizations can then be
constructed using both tables (and those related to it), and the DAX measures will update
as though a normal relationship is defined. Virtual relationships are often used to address
disparate grains of tables and to leverage performance segmentation tables.

Although physical relationships are the preferred long-term solution for both performance
and manageability, virtual relationships provide an attractive alternative when physical
relationships are not feasible. In this recipe, we provide virtual relationship examples
that use both a custom performance segmentation table and an aggregated table.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactInternetSales table and name this query Internet Sales.

6. Repeat steps 4 and 5 to create a Dates query that imports DimDates.

7. Create a Customers query using the following code:
let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 Country =
 Table.ExpandRecordColumn(
 dbo_DimCustomer, "DimGeography",
 {"EnglishCountryRegionName"}, {"Country"})
in
 Country

Building a Power BI Data Model

154

8. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
)
in
 Subcategory

9. Move the Internet Sales query to a query group called Facts, and the Dates,
Products, and Customers queries to a query group called Dimensions.

10. Use an Enter Data query to create a GrowthTiers query in the Other Queries group.

Figure 3.32: Sales Growth Segmentation Table, GrowthTiers

11. Create a SubCatPlan query in the Other Queries group with the following code:
let
 Source = Products,
 Sales =
 Table.ExpandTableColumn(
 Source, "FactInternetSales",
 {"SalesAmount", "OrderDate"}, {"SalesAmount", "OrderDate"}
),
 RemoveNulls = Table.SelectRows(Sales, each [SalesAmount] <> null),
 Year =
 Table.AddColumn(
 RemoveNulls, "Calendar Year", each Date.Year([OrderDate])
),

Chapter 3

155

 Month =
 Table.AddColumn(
 Year, "Calendar Month", each Date.MonthName([OrderDate])
),
 Group =
 Table.Group(
 Month,
 {"Calendar Year", "Calendar Month", "Product Subcategory"},
 {{"SalesAmount", each List.Sum([SalesAmount]),
 type nullable number}}
),
 Index = Table.AddIndexColumn(Group, "Index", 1, 1, Int64.Type),
 Plan =
 Table.AddColumn(
 Index, "Plan Amt",
 each if Number.IsEven([Index])
 then 1/Number.RandomBetween(5,10) * [SalesAmount] +
[SalesAmount]
 else (-1 * 1/Number.RandomBetween(5,10) * [SalesAmount])
+ [SalesAmount]
),
 Remove = Table.RemoveColumns(Plan,{"SalesAmount", "Index"}),
 Currency = Table.TransformColumnTypes(Remove,{{"Plan Amt", Currency.
Type}})
in
 Currency

12. Create a Blank Query called Calculations in the Other Queries group.

13. Click Close & Apply in the ribbon of the Home tab to load the tables to the data
model.

14. Create the single cross-filtering relationships shown in Figure 3.33; note that there
are no relationships for the GrowthTiers or SubCatPlan tables:

Figure 3.33: Model relationships

15. Switch to the Data view and hide the single column in the Calculations table.

Building a Power BI Data Model

156

16. Create the following measures in the Calculations table:
Sales Current Year =
 CALCULATE(SUM('Internet Sales'[SalesAmount]),
 FILTER(ALLEXCEPT('Internet Sales','Customers'),
 YEAR('Internet Sales'[OrderDate]) =
MAX('Dates'[CalendarYear])))

Sales Previous Year =
 CALCULATE(
 SUM('Internet Sales'[SalesAmount]),
 FILTER(ALLEXCEPT('Internet Sales','Customers'),
 YEAR('Internet Sales'[OrderDate]) =
MAX('Dates'[CalendarYear])-1))

Sales Growth =
 DIVIDE([Sales Current Year] - [Sales Previous Year],
 [Sales Previous Year], BLANK())

17. Right-click the Date table and choose Mark as date table using
FullDateAlternateKey as the Date column.

How to Support Virtual Table Relationships

To implement this recipe, use the following steps:

1. Create the Sales Growth Tier measure in the Calculations table:
Sales Growth Tier =
 VAR Growth = [Sales Growth]
 VAR Level1 =
 CALCULATE(MIN('GrowthTiers'[Max]), 'GrowthTiers'[GrowthTierKey]
= 1)
 VAR Level2 =
 CALCULATE(MIN('GrowthTiers'[Max]), 'GrowthTiers'[GrowthTierKey]
= 2)
 VAR Level3 =
 CALCULATE(MIN('GrowthTiers'[Max]), 'GrowthTiers'[GrowthTierKey]
= 3)
 VAR Level4 =
 CALCULATE(MIN('GrowthTiers'[Max]), 'GrowthTiers'[GrowthTierKey]
= 4)
RETURN

Chapter 3

157

 SWITCH(TRUE(),
 ISBLANK(Growth), BLANK(),
 Growth <= Level1, CALCULATE(DISTINCT('GrowthTiers'[Growth
Tier]),
 'GrowthTiers'[GrowthTierKey] = 1),
 Growth <= Level2, CALCULATE(DISTINCT('GrowthTiers'[Growth
Tier]),
 'GrowthTiers'[GrowthTierKey] = 2),
 Growth <= Level3, CALCULATE(DISTINCT('GrowthTiers'[Growth
Tier]),
 'GrowthTiers'[GrowthTierKey] = 3),
 Growth <= Level4, CALCULATE(DISTINCT('GrowthTiers'[Growth
Tier]),
 'GrowthTiers'[GrowthTierKey] = 4
),"Unknown")

2. Create the virtual table relationship measure Customer Countries in the
Calculations table:
Customer Countries =
 CALCULATE(DISTINCTCOUNT('Customers'[Country]),
 FILTER(ALL('Customers'[Country]),
 [Sales Growth] > MIN('GrowthTiers'[Min]) &&
 [Sales Growth] < MAX('GrowthTiers'[Max])))

3. Create a Slicer visualization that uses the CalendarYear column from the
Dates table.

4. Create a Matrix visualization with the Country column from the Customers
table as Rows and the measures Sales Growth, Sales Current Year, Sales Previous
Year, and Sales Growth Tier as Values.

5. Create a Clustered column chart visualization with the Growth Tier column from the
GrowthTiers table as the Axis, and the Customer Countries measure as Values.

Figure 3.34: Virtual relationship segmentation example

6. Save your work.

Building a Power BI Data Model

158

How it works

The goal of this recipe is to apply the Growth Tier segmentations from the disconnected
GrowthTiers table to the measures of the data model. Two measures are used to form this
virtual relationship, Sales Growth Tier and Customer Countries. The measures apply filters
based on the segmentation table thresholds and the Sales Growth measure. In effect, these
measures form the relationship between the tables in the data model through the calculations
performed.

The Sales Growth Tier measure returns the text value of the Growth Tier column for the
specified Sales Growth measure value in context. The existing Sales Growth measure and
the four segment threshold values are stored in DAX variables (the VAR statements). The
SWITCH function compares sales growth with the segment thresholds to assign the Growth
Tier value. Providing TRUE() as the first parameter of the SWITCH function allows independent
logical conditions to be evaluated in order (from top to bottom). This is similar to the CASE
expression in SQL. The Customer Countries measure uses a simple CALCULATE statement to
return a DISTINTCOUNT of countries filtered by the MIN and MAX limits of each Growth Tier.

The Sales Growth Tier measure could be used for analyzing other dimensions of the model,
and at different grains; for example, if StateProvinceName was added to the Customers table
and a hierarchy created, you could drill down with the matrix visual and see growth tiers by
state/province.

Figure 3.35: Drill Down into Problem Customer Country

There are options to modify data models to support physical relationships and thus avoid the
limitations of virtual relationships. For example, a concatenated column such as Year-Month
could be created for each table via SQL, M, or a DAX-calculated column.

Chapter 3

159

Alternatively, bridge tables with bidirectional cross-filtering relationships provide simple
solutions to many-to-many scenarios. Finally, for small fact tables, the LOOKUPVALUE function
could be used in a calculated column supporting the relationship.

There's more...…

The DAX TREATAS function was added in early 2017 and provides both simpler syntax and
better performance than alternative virtual relationship methods involving INTERSECT or
FILTER with a CONTAINS function parameter. We can use the TREATAS function to integrate a
summary table, SubCatPlan, into our Power BI data model. This is useful when a business
wants to filter plan data via the same Products and Dates tables they use regularly and to
create actual versus plan reports. The grain of the SubCatPlan table is Product Subcategory
by Calendar Year and Calendar Month; this is shown in Figure 3.36.

Figure 3.36: Plan Summary Table for Virtual Relationships

Relationships from the SubCatPlan table to the Date and Product tables cannot be created
directly given the many-to-many relationship. Each physical relationship in Power BI is based
on a single column from each table, with one of the relationship columns uniquely identifying
all the rows of its host table. This is consistent with SSAS Tabular and Power Pivot for Excel
models.

To create a virtual table relationship with DAX, follow these steps:

1. Create the Subcat Plan Amt measure in the Calculations table. This measure filters
the subcategory plan measure by the Products table and the Dates table:
Subcat Plan Amt =
 VAR ProductSubCats = VALUES('Products'[Product Subcategory])
 VAR DateTbl =
 SUMMARIZE('Dates','Dates'[CalendarYear],'Dates'[EnglishMonthNa
me])
RETURN
 CALCULATE(
 SUM('SubCatPlan'[Plan Amt]),
 TREATAS(ProductSubCats,'SubCatPlan'[Product Subcategory]),
 TREATAS(DateTbl,'SubCatPlan'[Calendar Year],'SubCatPlan'[Calendar
Month]))

Building a Power BI Data Model

160

2. Create a Sales vs Plan measure:
Sales vs Plan = SUM('Internet Sales'[SalesAmount]) - [Subcat Plan Amt]

3. Create a Matrix visualization with the Product Subcategory column from the
Products table as Rows, the EnglishMonthName column from the Dates table as
Columns, and the Subcat Plan Amt measure, Sales vs Plan measure, and the SUM
of the SalesAmount column from the Internet Sales table as Values.

Figure 3.37: Subcategory Plan versus Actual Matrix Visual

In the Subcat Plan Amt measure, variables are used to store tables representing the filtered
values of the Products and Dates dimension tables. The TREATAS function transfers the
variables to the corresponding plan column(s), thus filtering the SubCatPlan table. Any
column with the same grain (or lower) than the Product Subcategory, Calendar Year, and
Calendar Month columns can be used. Columns from other tables or columns without a
virtual relationship will not filter the SubCatPlan table.

Bridge tables to support physical relationships to the Products and Dates tables could be
created in this scenario. The two bridge tables would contain the unique product subcategory
and month values, and one-to-many relationships would link the bridge tables to the
SubCatPlan, Product, and Date tables. The SubCatPlan and bridge tables could be hidden
from the Report view, and bidirectional relationships would be configured between the
bridge tables and the Products and Dates tables. For better performance and manageability,
physical relationships are recommended over virtual ones.

See also

 f DAX function reference: http://bit.ly/3rrQFlt

 f Physical and Virtual Relationships in DAX: http://bit.ly/2oFpe8T

Creating Hierarchies and Groups
Hierarchies and groups are data model structures that can be implemented to simplify the
user and report authoring experience. Hierarchies provide single-click access to multiple
columns of a table, enabling users to navigate through pre-defined levels, such as the weeks
within a given month. Groups comprise individual values of a column that enable analysis
and visualization of the combined total as though it is a single value. Hierarchies and groups
have useful applications in almost all data models, and it is important to understand the
relationship of these structures to the data model and visualizations.

http://bit.ly/3rrQFlt
http://bit.ly/2oFpe8T

Chapter 3

161

This recipe provides an example of utilizing DAX parent- and child-hierarchy functions to create
columns of a hierarchy. The hierarchy is then implemented into the data model, and a group is
created to further benefit analysis.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactInternetSales table and name this query Internet Sales.

6. Repeat steps 4 and 5 to create a General Ledger query that imports
FactFinance.

7. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
in
 Subcategory

8. Create an Accounts query using the following code:
let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimAccount"]}[Data],
 Parent =
 Table.ExpandRecordColumn(
 dbo_DimCustomer, "DimAccount(ParentAccountKey)",

Building a Power BI Data Model

162

 {"AccountDescription"}, {"ParentAccountDescription"})
in
 Parent

9. Move the Internet Sales and General Ledger queries to a query group called
Facts, and the Products and Accounts queries to a query group called Dimensions.

10. Click Close & Apply in the ribbon of the Home tab to load the tables to the
data model.

11. Create the Single cross-filtering relationships shown in Figure 3.38.

Figure 3.38: Model relationships

How to Create Hierarchies and Groups

To implement this recipe, use the following steps:

1. In the Data view, create the following seven calculated columns in the Accounts
table:
Path = PATH('Accounts'[AccountKey],'Accounts'[ParentAccountKey])

Account Level 1 =
 VAR __Key = PATHITEM('Accounts'[Path],1,1)
RETURN
 LOOKUPVALUE('Accounts'[AccountDescription],'Accounts'[AccountKey],
__Key)

Account Level 2 =
 VAR __Key = PATHITEM('Accounts'[Path],2,1)
RETURN
 LOOKUPVALUE('Accounts'[AccountDescription],'Accounts'[AccountKey],
__Key)

Account Level 3 =
 VAR __Key = PATHITEM('Accounts'[Path],3,1)
RETURN
 LOOKUPVALUE('Accounts'[AccountDescription],'Accounts'[AccountKey],
__Key)

Chapter 3

163

Account Level 4 =
 VAR __Key = PATHITEM('Accounts'[Path],4,1)
RETURN
 LOOKUPVALUE('Accounts'[AccountDescription],'Accounts'[AccountKey],
__Key)

Account Level 5 =
 VAR __Key = PATHITEM('Accounts'[Path],5,1)
RETURN
 LOOKUPVALUE('Accounts'[AccountDescription],'Accounts'[AccountKey],
__Key)

Account Level 6 =
 VAR __Key = PATHITEM('Accounts'[Path],6,1)
RETURN
 LOOKUPVALUE('Accounts'[AccountDescription],'Accounts'[AccountKey],
__Key)

2. In the Fields list of the Data view, right-click the Account Level 1 column
and choose Create hierarchy.

3. Rename the Account Level 1 Hierarchy to Account Hierarchy by right-
clicking the hierarchy and choosing Rename.

4. Right-click the Account Level 2 column and choose Add to hierarchy, and then
Account Hierarchy.

5. Repeat step 4 for the Account Level 3, Account Level 4, Account Level 5, and
Account Level 6 columns in order.

Figure 3.39: Hierarchy in the Fields list

6. Right-click the individual columns that comprise the hierarchy and choose Hide in
report view.

Building a Power BI Data Model

164

7. Switch to the Report view and create a Matrix visualization with Account Hierarchy
as Rows and the Amount column from the General Ledger table as Values.

Figure 3.40: Matrix Visual of Account Hierarchy

8. In the Fields list, right-click the Product Subcategory column in the Products table
and choose New group.

9. Rename the group Product Subcategories by editing the Name field.

10. Select Caps from the Ungrouped values area, press the Group button, and
name the group Bike Attire Accessories.

11. Select Gloves from Ungrouped values, select Bike Attire Accessories from
Groups and members, and then click the Group button to add Gloves to the Bike
Attire Accessories group.

12. Check the box for Include Other group and click the OK button.

Figure 3.41: Groups Dialog

Chapter 3

165

13. Create a Clustered bar chart visualization with the Product Subcategories group
in the Products table as the Axis, and the SalesAmount column from the Internet
Sales table as the Values.

Figure 3.42: Product Subcategories Group with the Other group enabled

How it works

For the hierarchy created, the PATH function compares a child key column with the parent key
column and returns a delimited text string containing all the parent members for the given
row. The PATHITEM function returns the key value from a path from highest to lowest based on
the position parameter. The third and final parameter of the PATHITEM function (1) specifies to
return this value as an integer. The LOOKUPVALUE function compares the account key with the
key returned by the PATHITEM function and returns the column specified by the first parameter,
AccountDescription. Some rows have blank values for a given column because it is higher in
the structure; for example, the Balance Sheet account does not have values for the columns
of level 2 through 6. The calculated columns will appear in the Fields list with formula icons.

The hierarchy can now be added to visuals with a single click. Drilldown is available to
navigate all six columns. Alternatively, in Matrix visualizations, the expand and collapse
controls at the beginning of each row can be used to investigate the hierarchy. With the
hierarchy in the Fields list, usability may be improved by hiding the individual columns.
However, individual columns are needed to view a different order of the columns or to view
the individual columns of the hierarchy on opposing axes.

Consider the hierarchy created in this recipe as a natural hierarchy versus an unnatural
hierarchy. A natural hierarchy contains unique child values for each parent value and is the
recommended structure of hierarchies. For example, each unique value in a Fiscal Year
column would have 12 unique child values, such as "2017-Mar". An unnatural hierarchy would
have the same child value repeated across multiple parent values.

In almost all scenarios, the SQL source views or M queries are preferable alternatives to DAX-
calculated columns. The DAX parent-child functions used were developed for this scenario,
and the Accounts table only has 100 rows.

Building a Power BI Data Model

166

Calculated columns and tables in DAX use the resources of the model during processing/
refresh operations and are not compressed, thus increasing the memory footprint of the
model. Thus, you should avoid calculated columns on large fact tables.

Grouping can make Power BI reports and dashboards more intuitive and help simplify
analyses. Often, grouping is used with less common dimension values that might clutter
data visualizations. If a particular grouping created in Power BI Desktop becomes pervasive
throughout reports and dashboards, it may be appropriate to build the equivalent into the
data warehouse or the retrieval queries of the data model. The name for the new groups,
Product Subcategories, is exposed in the Fields list with a shape icon of a square segmented
into four equal parts. In addition, the name for the new groups is also exposed in the Data
view as a column.

By default, the Include Other group option in the Groups dialog box is not enabled. If enabled,
all other distinct values or members of the column not included in a group are grouped into
the Other group. In the Data view, members of the Other group are displayed as having the
value (Blank).

Creating and editing groups and hierarchies is only available in Power BI Desktop with the
data model loaded. Users accessing the data model in the Power BI service are only able
to use the existing groups and hierarchies. Groups and hierarchies can also be created in
DirectQuery data models. Calculated columns can be created in DirectQuery models too,
though performance can be negatively impacted.

There's more…

Grouping is also available for date and numerical data type columns and includes the concept
of "binning," or grouping based upon values falling into particular ranges. For example, the
ListPrice column from the Products table can be divided into equally sized bins for analysis
across the ranges of prices. The specific size of a bin or a set number of bins can be selected.
A similar dialog is available for date data types.

Figure 3.43: Grouping Bins for Numeric Data Type Column

Chapter 3

167

See also

 f DAX function reference: http://bit.ly/3rrQFlt

 f Use grouping and binning in Power BI Desktop: http://bit.ly/2pALaBc

Designing Column Level Security
While not as common as row-level security (RLS), there are times when you may wish to hide
particular columns in a data model from one group of report viewers, but not others. Power BI
Desktop does not natively support column security. However, a carefully designed data model
can achieve column level security using Power BI's native RLS functionality.

It should be noted that Microsoft has recently released object-level security (OLS) for
securing tables and columns in Power BI Premium and Pro. This method of securing objects
currently requires third-party tools, such as Tabular Editor. In addition, this method has the
advantage of securing even the metadata about the objects such that report viewers without
access will not even know that the tables and columns exist in the model. However, there are
disadvantages to OLS as well; namely, by completely hiding the tables and columns in the
model, it becomes difficult to create measures and report visualizations that work for a variety
of users with and without access to certain tables and columns. This is such an issue that you
may well conclude that it is not worth the time and trouble, and the reports should indeed be
separate data models.

This recipe demonstrates a method of implementing column level security in Power BI
Desktop that does not require OLS and works natively with Power BI Desktop at any licensing
level. While the metadata about the secured column is viewable with report viewers without
access to the secured column's values, this method has the advantage of being easier to
author measures and report visualizations that work at any level of security within the model.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

http://bit.ly/3rrQFlt
http://bit.ly/2pALaBc

Building a Power BI Data Model

168

3. Isolate this query in a query group called Data Sources and disable loading.

4. Add a query called Reseller Sales Intermediate that references the
AdWorksDW query, imports the FactResellerSales table, and adds an Index column
starting at 1:
let
 Source = AdWorksDW,
 dbo_FactResellerSales = Source{[Schema="dbo",Item="FactResellerSal
es"]}[Data],
 Index =
 Table.AddIndexColumn(dbo_FactResellerSales, "Index", 1, 1,
Int64.Type)
in
 Index

5. Add a query called Reseller Sales that references the Reseller Sales
Intermediate query and removes the ProductStandardCost and TotalProductCost
columns:
let
 Source = #"Reseller Sales Intermediate",
 RemoveColumns =
 Table.RemoveColumns(Source,{"ProductStandardCost",
"TotalProductCost"})
in
 RemoveColumns

6. Add a query called Reseller Costs that references the Reseller Sales
Intermediate query and selects the ProductTotalCost, TotalProductCost, and Index
columns.
let
 Source = #"Reseller Sales Intermediate",
 SelectColumns =
 Table.SelectColumns(
 Source,{"ProductStandardCost", "TotalProductCost", "Index"})
in
 SelectColumns

7. Move the Reseller Sales and Reseller Sales queries to a query group called
Facts, and the Reseller Sales Intermediate query to the Other Queries query group.

8. Click Close & Apply in the ribbon of the Home tab to load the tables to the data
model.

Chapter 3

169

How to Design Column Level Security

To implement this recipe, use the following steps:

1. Create a relationship between the Reseller Costs and Reseller Sales tables using
the Index columns in both tables. Set this relationship to be one-to-many with the
Reseller Sales table on the One side and the Reseller Costs table on the Many side.

Figure 3.44: Many-to-one relationship required

2. Click Manage roles in the ribbon of the Home tab in the Model view or the Modeling
tab in the Report view.

3. Use the Create button to create a Sales Person role with RLS on the
Reseller Cost table with the DAX formula, ISBLANK([Index]), and Save the role.

Figure 3.45: Manage roles dialog box

4. In the Report view, create a simple Table visualization using the SalesOrderNumber
and SalesAmount columns from the Reseller Sales table, and the
ProductStandardCost and TotalProductCost columns from the Reseller Costs table.
Note that values are displayed for all columns.

5. Click on View as in the ribbon of the Modeling tab, select Sales Person, and then
click the OK button.

Figure 3.46: View as roles dialog

Building a Power BI Data Model

170

6. Wait for the visualization to refresh and notice that the ProductStandardCost and
TotalProductCost columns are now blank.

Figure 3.47: Viewing as a role

How it works

The keys to this recipe are the implementation of the Index column in an intermediate query,
the characteristics of the relationship between the Reseller Sales and Reseller Costs tables,
and the implementation of RLS via the Sales Person role.

Since the Index column is created in an intermediate table that both the Reseller Sales and
Reseller Costs queries reference as their Source, we can be certain that there is a one-to-one
match between the rows in the Reseller Sales and Reseller Costs tables.

It is vitally important that the relationship between the Reseller Sales and Reseller Costs
tables be one-to-many and have a Single cross-filter direction, even though there is technically
a one-to-one relationship between the tables. The reason is that one-to-one relationships
must be bidirectional. This means that the DAX RLS rule that filters out all rows in the Reseller
Costs table would in turn filter out all rows in the Reseller Sales table, which is not what is
desired.

The DAX RLS rule, ISBLANK([Index]), filters out all rows in the Reseller Costs table for the
Sales Person role since the Index column is never blank. Note that while the values are
hidden, the metadata for the secured columns is still available in the model.

There's more…

There are alternative approaches to column level security. One such method is to have a
single fact table and use measures to implement column security. In this approach, a dummy
Security table is created with a single column and row, containing a single value. A similar
DAX RLS rule is created for roles such as ISBLANK([Column]) for this dummy table. Using
this method, all of the columns requiring security are hidden in the model and replaced with
measures with a syntax similar to the following:

IF(ISBLANK(COUNTROWS('Security')),BLANK(),SUM('Reseller
Sales'[TotalProductCost]))

Chapter 3

171

This approach could be extended to handle multiple roles requiring different column security
for each role by having a single row per role in the Security table with corresponding RLS
rules such as [Column] = "Sales Person", [Column] = "Marketing" and [Column] =
"Accounting". The DAX measures would be adjusted as appropriate. Note that while the
values are hidden, the metadata for the secured columns is still available in the model.
It is also possible to edit Table Permissions in Tabular Editor.

Figure 3.48: Table permissions for roles in Tabular Editor

Unfortunately, this is not fully supported by Power BI Desktop.

Figure 3.49: Error in Power BI Desktop

Finally, SSAS Tabular 2017 and newer versions implements true OLS that allows tables and
columns to be completely shielded from Roles, including their metadata. Azure Analysis
Services and Power BI Premium also support OLS.

Building a Power BI Data Model

172

See also

 f Column Level Security: http://bit.ly/2P5Gc20

 f Analysis Services tabular model object-level security: http://bit.ly/2PEbCMs

 f Object Security in Analysis Services 2017: http://bit.ly/39m1P4S

 f Announcing public preview of Object-Level Security in Power BI: https://bit.
ly/3x182N0

Leveraging Aggregation Tables
DirectQuery mode is a great tool for overcoming the scalability issues of Import mode, or
for providing real-time reporting to business users. However, DirectQuery can be slow and
place a lot of strain on the backend server system, since every visual refresh and interaction
causes queries to be sent to the source system. Aggregation tables and dual-mode storage
tables were designed to fix the speed issues associated with using DirectQuery against large
datasets in the millions, billions, and trillions of rows. In essence, aggregation tables pre-
aggregate data and store it in Import mode. Power BI uses these aggregation tables behind
the scenes when possible to limit the number of queries sent to the data source.

This recipe demonstrates how to create and configure an aggregation table for use in Power BI
reports.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create a DirectQuery query called Internet Sales that accesses the
FactInternetSales table.

3. Create a DirectQuery query called Customers that accesses the
DimCustomers table.

4. Create a DirectQuery query called Dates that accesses the DimDates table.

5. Add a query called Sales Agg using the following code (edit the Source line):
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),
 Navigation = Source{[Schema="dbo",Item="FactInternetSales"]}[Data],
 Group =
 Table.Group(Navigation, {"OrderDateKey", "CustomerKey"},
 {{"SalesAmount_Sum", each List.Sum([SalesAmount]), type number},

http://bit.ly/2P5Gc20
http://bit.ly/2PEbCMs
http://bit.ly/39m1P4S
https://bit.ly/3x182N0
https://bit.ly/3x182N0

Chapter 3

173

 {"UnitPrice_Sum", each List.Sum([UnitPrice]), type number}}),
 ChangeType =
 Table.TransformColumnTypes(Group,
 {{"SalesAmount_Sum", Currency.Type},
 {"UnitPrice_Sum", Currency.Type}})
in
 ChangeType

6. Move the Internet Sales query to a query group called Facts, the Customers
and Dates queries to a query group called Dimensions, and the Sales Agg query to
the Other Queries query group.

7. Click Close & Apply on the ribbon of the Home tab to load the tables to the
data model.

8. Create the following Single-direction, one-to-many relationships in the model, as
shown in Figure 3.50.

Figure 3.50: Model relationships

Note that you may have to use Database credentials for your data source instead of
Windows credentials. In testing, we experienced problems using Windows credentials when
attempting to create relationships with the Sales Agg table and the dimension tables.

Building a Power BI Data Model

174

How to do it

To implement this recipe, use the following steps:

1. In the Model view, right-click the Sales Agg table and choose Manage aggregations.

2. Create the aggregations shown below for the Sales Agg table and then click on the
Apply all button.

Figure 3.51: Manage aggregations dialog

3. While in the Model view, select the Customers table, and in the Advanced area of
the Properties pane, set the Storage mode to Dual.

4. Repeat step 3 for the Dates table.

5. Open SQL Server Profiler from the Tools menu of SQL Server Management
Studio and run a trace.

6. Create a Table visualization with the EnglishEducation column from the
Customers table, and the SalesAmount column from the Internet Sales table. Note
that nothing is logged in the trace.

7. Create a Clustered column chart with the CalendarYear column from the Dates
table as the Axis, and the SalesAmount column from the Internet Sales table as
Values. Again, nothing is logged.

Chapter 3

175

How it works

It is imperative that the core fact table, Internet Sales, be set to DirectQuery storage mode,
as aggregation tables only work with detail tables that are set to DirectQuery storage mode.
The aggregation table itself, Sales Agg, must be set to Import storage mode. The two-
dimensional tables, Customers and Dates, that have relationships to both the Internet Sales
table and the Sales Agg table, should be set to Dual storage mode so that these tables can
operate optimally in either mode. Configuring aggregation for a table automatically hides the
table in the data model, as aggregation tables must be hidden.

Relationships must exist between the dimension tables and the aggregation table. This is
because the aggregation table is used as a surrogate to the detailed, DirectQuery mode fact
table when possible, and thus the aggregation table should have the same relationships to
dimension tables as the fact table.

It is also important to keep column datatypes in mind when configuring aggregations. This is
because the Manage aggregations dialog box enforces the rule that the Detail Column must
have the same datatype as the Aggregation Column. The only exception to this rule is for
Summarizations of Count and Count table rows. Count and Count table rows require integer
aggregation columns but do not require matching datatypes for the Detail Column.

Additional restrictions include chained aggregations, the use of inactive relationships
supported by the DAX USERELATIONSHIP function, and duplicate aggregations using the same
Summarization, Detail Table, and Detail Column. None of those scenarios are supported.

There's more...

In order to operate properly, RLS expressions should filter the detail table as well as the
aggregation table. In fact, once aggregations have been set on a table, RLS expressions that
only filter the aggregation table and not the associated Detail Table are not allowed by the
Manage roles dialog box.

The Manage roles dialog box includes the ability to set Precedence. This means that you can
have multiple aggregation tables at different granularities, and set these aggregation tables'
Precedence to allow them to be considered by a single subquery. For example, if the Products
table was included in this model, you might create an aggregation table for Product Category
and a separate aggregation table for Product Subcategory. You would set the granularity
of the aggregation table for Product Category to 10, and the granularity of the aggregation
table for Product Subcategory to 0. Subqueries will consider the aggregation table with the
highest granularity first, and if that level of granularity is not sufficient, it will consider other
aggregation tables of lower granularity.

Building a Power BI Data Model

176

See also

 f Use aggregations in Power BI Desktop: http://bit.ly/2Pgckjp

 f Power BI Fast and Furious with Aggregations: https://bit.ly/3cpReI1

Conclusion
In this chapter, we explored the primary processes of designing and developing robust data
models in Power BI Desktop. Common data modeling challenges, including multiple grains
and many-to-many relationships, were shown to be handled relatively easily with standard
Power BI features. In addition, examples were provided for adding business logic and
definitions developed using the DAX language. Finally, use cases for increasing the value and
sustainability of models via metadata settings and advanced features were explored.

http://bit.ly/2Pgckjp
https://bit.ly/3cpReI1

177

4
Authoring Power

BI Reports
Power BI reports serve as the basic building blocks for dashboards, data exploration, and
content collaboration and distribution in Power BI. Power BI Desktop provides abundant data
visualization features and options, enabling the construction of highly targeted, user-friendly
reports across devices. As each Power BI Desktop report can contain multiple pages with
each page including multiple visuals, a single Power BI report can support multiple use cases,
audiences, and business needs. For example, a KPI visual can be pinned to a dashboard
in the Power BI Service, while a report page can support detailed, domain-specific analysis.
These capabilities compete directly with visualization offerings from competitor analytics
platforms and can be further extended with custom visuals and report themes.

The selection and configuration of Power BI visualization features in report design are
essential to derive value from the data retrieval and modeling processes covered in Chapter 2,
Accessing and Retrieving Data, and Chapter 3, Building a Power BI Data Model, respectively.
In this chapter, we develop and describe the most fundamental report visualizations
and design concepts. Additionally, guidance is provided to enhance and control the user
experience when interacting with Power BI reports and consuming them on both Windows and
mobile devices.

In this chapter, we will cover the following recipes:

 f Building Rich and Intuitive Reports

 f Filtering at Different Scopes

 f Integrating Card Visualizations

 f Using Slicers

 f Controlling Visual Interactions

Authoring Power BI Reports

178

 f Utilizing Graphical Visualizations

 f Creating Table and Matrix visuals

 f Enhancing Reports

 f Formatting Reports for Publication

 f Designing Mobile Layouts

 f Creating Paginated Reports

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop and a Power BI service account.

 f Tabular Editor.

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing are available here: http://bit.ly/2OVQfG7.

 f CH4_Start.pbix contains the model used for this chapter and can be downloaded
from the following GitHub repository: https://github.com/PacktPublishing/
Microsoft-Power-BI-Cookbook-Second-Edition.

Building Rich and Intuitive Reports
Power BI Desktop provides the means to design reports that are both highly customized to
specific use cases and requirements and aligned with a corporate BI standard. The design
and development process for a report should naturally flow from the data modeling process
as the measures, relationships, and dimensions from the model are utilized to visualize and
analyze business questions. As the purpose and scope of Power BI reports can range widely,
from dashboard visualizations to interactive analytical experiences to role-specific detail
reporting, it is essential that report authoring features are aligned closely to these distinct use
cases.

In this recipe, a report design planning process is shared to bring clarity to the primary design
elements of Power BI reports, such as visualization types. Two finished report pages are
described with supporting details included in the How it works section, and additional report
design features and practices are discussed in There's more....

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 4

179

Getting ready

A stakeholder matrix can help structure the report design planning process around the needs
of the different parties accessing the model and reports. The stakeholders or business units,
such as Merchandising, appear on the columns axis and replace the conformed dimensions
(that is, Product or Vendor) that were used in the data warehouse bus matrix described in
Chapter 3, Building a Power BI Data Model.

Figure 4.1: Stakeholder matrix

In this example, the data model contains the four highlighted fact tables: Internet Sales,
Internet Sales Plan, Reseller Sales, and General Ledger. When there can be multiple
stakeholders within a given business function with their own unique needs and use cases,
these stakeholders can be added as columns to the stakeholder matrix. In Power BI, there
are many options for meeting the unique needs of different stakeholders with the same data
model and underlying retrieval and data architecture.

How to Build Reports

While report development should be an agile process where feedback is regularly solicited
from stakeholders as the report is designed and developed, having a solid planning and
design process for a report upfront is extremely beneficial in understanding the scope
and requirements of it. A single report should not attempt to address unrelated business
questions or meet the needs of highly diverse users such as a corporate financial analyst or a
store manager. Multi-scope reports can lead to convoluted user experiences and report-level
customization that can be difficult to maintain and scale. The report planning and design
process should answer the following five questions:

1. Who will be accessing this report?

2. What are the top priorities of this report in terms of business questions?

3. How will the report be accessed and utilized?

Authoring Power BI Reports

180

4. What is the velocity of data required, and does this impact the model?

5. Is Power BI the right tool for the report?

Regarding the first of these questions, just like a PowerPoint presentation, report pages
should support a single theme and target a specific audience. As per the stakeholder matrix,
there are often many disparate users and use cases for a given data model. Consider the
following:

 f If identified users have highly disparate needs, choose one user role and address the
others separately.

 f Page-level filtering and row-level security can provide a robust solution for a single
team.

 f Reports for various teams can be developed quickly if models include the required
data and grain.

 f Users deeply familiar with the data require less in the way of titles and descriptive
text and labels.

 f It is recommended to involve the business users or a representative early on in the
report design process, and potentially before all elements of the data model are
complete. Any initial iterations of the report and feedback can contribute to the
design of the final report to be published.

The second question can be addressed as follows: The prioritized business questions directly
drive visualization choices, such as line/bar charts and tables. If the trend or fluctuations
of measures is the top priority, then line charts, with custom scales and supporting trend
and reference lines, may be chosen. If precise individual data points are required, either as
standalone numbers or in relation to one or two dimensions, then cards, KPIs, and tables or
matrices should be used. The choice of visuals and the visuals' sizes, colors, and positioning
on the canvas relative to other visuals should not be an arbitrary decision or guess. Consider
the following:

 f Establish the starting point for the analysis, including measures and grain such as
weekly sales.

 f Stakeholders often have many related questions and need to navigate the model
quickly.

 f Additional drilling and filtering features can be added to a report's starting point.

 f Standard line, bar/column, and scatter chart visualizations have natural advantages
in terms of visual perception and user comprehension. Other visuals should be
utilized for their specific use cases and strengths, such as a Funnel visualization for
stages of a process and a Waterfall visualization for the contributions of dimension
values to an overall total.

Chapter 4

181

How will the report be accessed and utilized? How a report will be accessed and how
business users desire to interact with the report are key questions that should be answered
before beginning report development. Report access and interactivity are key components
that a report designer should understand in order to ensure that the report contains the
proper elements, views, filters, and measures. Consider the following:

 f Will users only view the report, or is the report a starting point for further analysis?

 f If there is no interaction or limited interaction desired, plan to embed conditional
logic and exceptions in the report.

 f If there is high interaction, plan to use hierarchies, tooltips, and slicers to enable data
exploration.

 f How does the report relate to existing dashboards?

 f Identify the components of the report that will contribute to an existing dashboard.

 f If creating a new dashboard based on the report, identify the tiles and interaction.

 f Will the report only be accessed via the web browser, or will mobile devices be used
regularly?

 f If mobile consumption is expected, reports can be designed to optimize this
experience.

 f Power BI dashboards can also be optimized for phone layout in the Power BI service.

What is the velocity of data required, and does this impact the model? The velocity of data
required can impact the chosen storage mode, whether that is Import, DirectQuery, or Dual
mode, or even streaming datasets. An Import mode model may work fine for business users
that only need data to be refreshed once or twice a day, but business users with more
immediate velocity may be better served by a DirectQuery model. Other factors can also
influence the need to revise a data model, including:

 f If a report requirement is systemic to all reports for a stakeholder group, consider
revising the model.

 f If complex report-level customization is required, or if the performance is poor,
consider revising the model.

 f These revisions often include new logical attributes or new DAX measures.

Finally, it's critical to understand that Power BI reports created in Power BI Desktop are not
appropriate for every report type. Report requirements such as multi-page printing, email
subscriptions with data attached in various file formats, and pixel-perfect formatting control
are much more closely aligned with paginated reports created in Power BI Report Builder.
Similarly, financial statement and accounting reports with custom layouts involving cell-level
control and formatting are generally more suited for Excel. Thankfully these other two report
types are fully supported in Power BI such that solutions can be developed that include all
three distinct report types.

Authoring Power BI Reports

182

How it works

In this example, the stakeholder is the European Sales Territory Group, comprised of France,
Germany, and the United Kingdom. The planning process revealed two primary types of users.
The first type of user is the Europe Sales Group manager, who manages the entire sales
territory. The second type of user is those managers that are responsible for the individual
countries.

The top priorities identified are viewing and analyzing Internet Sales versus Plan, Reseller
Sales, and sales margins at the monthly grain—by country and by product breakdowns in
relation to category, subcategory, and model. The country managers desire a more granular
geographic data at the state/province, city, and postal code levels. The overall organization
operates on a fiscal calendar for accounting purposes, but the business stakeholders desire
that the report uses calendar months when reporting data, instead of fiscal months. The
business is also interested in comparing customers counts with internet sales over time.

With regard to how the reports will be accessed and utilized, the Europe Sales Group Manager
needs key facts, figures, and trends for the entire European Sales Territory; the manager is
not expected to interact heavily with the report, but should still have the opportunity to drill
into the data if desired. The Europe Sales Group Manager desires a mobile report that they
can view on their phones, since this individual is often traveling between countries and so
is constantly mobile. The individual country managers desire the ability to analyze their own
data in a highly interactive manner. Country-level managers are also accountable for the sales
plan, but are interested in greater self-service flexibility and require some detailed reporting
in tabular formats to expose specific values for several measures. Country managers are
expected to access the report from their desktops in a web browser.

In terms of velocity, both Sales Group managers and country managers find it acceptable if
the data is refreshed once or twice per day, given that the primary granularity of interest is
monthly data. All parties also agree that using US English names, descriptions, and currency
best meets the needs of the group. Given the requirements identified in the planning process,
it is determined that the model must contain fact tables for Internet Sales, Reseller Sales,
General Ledger, and Internet Sales Plan. In addition, the following dimensions are required:
Products, Accounts, Customers with geographic data, Dates, Departments, Organizations,
Employees, Resellers, Promotions, and Sales Territories. No single model currently contains all
the information desired, and so it is determined that a new model will be developed.

With the gathering of requirements completed, it is determined that the report will consist of
two to four primary report pages, one page per country (or a single drill-through country page),
and one page for the Europe Sales Group Manager. All the report pages will include the same
four priority measures of Monthly Internet Sales, Monthly Internet Margin %, Monthly Reseller
Sales, and Monthly Reseller Margin % in the top left, as well as an Internet Sales to Plan
chart displayed by calendar year and month. For the measures that do not have a target or
goal (plan), a trailing 6-month average measure is used.

Chapter 4

183

Considering performance and usability, it is determined to limit the number of visuals per
page to four or five and to avoid dense "data extract or dump" visuals. This limit does not
apply to Cards, Gauges, and KPI visualizations. DAX queries are generated for report visuals,
and the queries associated with dense visuals such as tables or matrices with many rows
and columns are much slower than Cards and KPI visuals. Additionally, report pages with
many visuals can appear crowded and be complex to use. Additionally, opportunities will be
investigated to apply simple filters (Current Year or Prior Year) at the report and page levels
to further aid performance. The report will be filtered by Europe at the report level and by the
individual countries at the page level for these particular pages.

A reliable predictor of a report's effectiveness is the ratio of business insights (measures,
context, or analysis) to the user effort required to consume the information. Ideally, a report
will offer out-of-the-box analytics that require nothing from the user beyond access and a
basic knowledge of the terminology and domain. The more a user is required to scroll, click,
and avoid unnecessary colors or data elements, the less effective the report will be.

After planning and design, mock-ups of the report pages are created, shown to users, and
refined.

Figure 4.2: Europe Monthly Sales and Margin Report page

Figure 4.2 is a mock-up of a report at a regional level, while Figure 4.3 displays similar
information at the country level.

Authoring Power BI Reports

184

Figure 4.3: United Kingdom report page

Based on user feedback, a KPI visualization with a monthly trend and a goal measure is used
to provide greater context compared to Card or Gauge visualizations. Overall, a standard
visualization type with advantages in visual perception and additional analysis context was
chosen. For example, KPIs were used instead of Card visuals; gauges, treemaps, and pie
charts were avoided. A clustered column chart was chosen over a line chart for Internet
Sales to Plan, given the importance of the individual values for each month. At a glance, each
country report page also offers values with the KPIs visuals updating automatically.

Additional design decisions include the following:

 f The slicer visuals as well as the Play axis on the scatter chart are organized on the
left to support user filter selections.

 f By hovering over the bubbles in the map or the bars in the chart, additional measures
are exposed as tooltips.

 f A textbox is used for the page titles, and the last refreshed date footer is a Card
visual. An M query with the DateTime.LocalNow function is retrieved and passed to a
DAX measure, returning text.

 f The chart titles are customized, and the y-axis is removed when possible.

Chapter 4

185

More details on the individual report components used in this example are contained within
other recipes in this chapter.

There's more...

Similar to the simple—yet important—details with data modeling shared in Chapter 3, Building
a Power BI Data Model, a number of design practices significantly improve the value and user
adoption of Power BI reports:

 f Minimalism: Any report element that is not strictly required for comprehension
should be removed. Examples include images, redundant chart axes, verbose text,
and unnecessary data legends.

 f Efficient visuals: Leverage visuals and features that provide additional insights with
the same amount of space; examples include KPI and combination chart visuals,
tooltips, trend lines, and color saturation.

 f Meaningful colors: Colors should be used to convey meaning, such as high or low
variances to a target or measure. Use colors selectively and avoid overwhelming or
distracting users with color variety or density.

 f Organized: Report visuals should be aligned, distributed evenly, and situated near
related visuals. The most important visuals should be near the top-left corner of the
canvas, and white space should separate visuals.

 f Consistent: Layout and formatting choices, such as visual placement, fonts, and text
alignment should be consistent. For example, slicer visuals should always be placed
on the left or top of the visual.

Regarding consistency, Power BI supports report themes that include a standard color
palette, fonts, font sizes, and other metadata elements that control the defaults for reports
and visualizations. Nearly every aspect of the default settings for a Power BI report can be
controlled, including whether axis titles are shown, label orientation, legend markers, and
essentially anything that appears in the Format pane for pages and visualizations.

Many organizations will have a standard report theme, or even standard report layouts. Often,
these themes reflect the corporate brand and identity. In this example, a report theme is
applied to a report such that users with color vision deficiency can comprehend it clearly:

 f Download the Color Blind Friendly theme from the report theme gallery https://
aka.ms/pbithemes. Use the ColorblindSafe-Longer.json file.

 f Open CH4_Start.pbix in Power BI Desktop and save this file as CH4_R1.pbix.

https://aka.ms/pbithemes
https://aka.ms/pbithemes

Authoring Power BI Reports

186

In the ribbon of the View tab, click the drop-down arrow in the Themes area and choose
Browse for themes:

Figure 4.4: Report Themes

Browse to the downloaded JSON file, select it, and click Open. A message will appear, stating
that the theme was imported successfully. Theme settings will be applied to the report. The
colors available for formatting visuals now reflect the theme's colors. Save CH4_R1.pbix.

Figure 4.5: Report Theme colors applied to Formatting Pane of Power BI Report

Themes cannot be applied in the Power BI service, and some custom visuals do not apply
report themes. Additionally, report themes do not impact the colors of images and do not
override any custom color applied to a specific data point in a visual. It is important to apply
themes early when developing reports to avoid situations where hours of formatting are
suddenly undone after applying a theme!

Each report theme JSON file has a structure of elements of color code mapping consistent
with that shown in Figure 4.6.

Figure 4.6: Color Blind Report Theme JSON file structure

Only the Name field is required in the JSON file. Any number of distinct codes can be entered
in the dataColors field.

Chapter 4

187

See also

 f Visualizations in Power BI reports: http://bit.ly/2poUeMv

 f Tips For Power BI Report Design – Best Practices: http://bit.ly/3fmfXPf

 f Power BI Best Practices Guide: http://bit.ly/3cxCs29

 f Power BI Community Themes Gallery: https://aka.ms/pbithemes

 f Use report themes in Power BI Desktop: http://bit.ly/31vBixz

 f Theme generator: https://themes.powerbi.tips/

Filtering at Different Scopes
Filters can be configured against Power BI reports at each level of the report architecture,
including the entire report, the report page, and the individual visual. As report filters are
configured at design time and not exposed on the canvas like slicers, filters provide a
powerful, efficient method of customizing elements of reports to specific needs. Report- and
page-level filters that align with the user or team accessing the report, or with specific entities
to be analyzed, deliver immediate focus and a certain degree of organization. For example,
a report page built for one product category can be duplicated for other product category
pages, with each page containing a different page-level filter. Visual-level filters deliver greater
flexibility, as complex filtering conditions, including measures, can be defined in addition to
any report- and page-level filters.

In this recipe, examples are provided of implementing filters at the three different scopes. The
Top N visual-level filter condition is demonstrated in this section, and an example of the DAX
queries generated by the filter types is shared in How it works.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R1.pbix file and save it as CH4_R2.pbix.

2. Rename Page 1 to Europe by right-clicking the page tab and choosing Rename Page:

Figure 4.7: Page renaming and creation

http://bit.ly/2poUeMv
http://bit.ly/3fmfXPf
http://bit.ly/3cxCs29
https://aka.ms/pbithemes
http://bit.ly/31vBixz
https://themes.powerbi.tips/

Authoring Power BI Reports

188

3. Use the + icon to create four additional report pages named France, Germany and
United Kingdom, and Scratch:

Figure 4.8: Report pages

4. Save your work.

How to Filter at Different Scopes

To implement this recipe, use the following steps:

1. Switch to the Europe page.

2. In the Fields pane, drag the Sales Territory Group column from the Sales Territories
table to the Filters on all pages area in the Filters pane.

3. Select Europe using Basic filtering.

Figure 4.9: Report-level filter for European Sales and Margin Monthly Report

4. Similarly, on the country pages for France, Germany, and United Kingdom, drag the
Sales Territory Country column from the Sales Territories table in the Fields pane to
the Filters on this page area in the Filters pane, and select the respective country
for the page from Basic filtering.

5. Now select the Scratch page.

6. Create a Table visualization by choosing the Table visual from the Visualizations
pane, and then from the Fields pane, add the Sales Territory Country from the Sales
Territories table and the Internet Gross Sales measure from the Internet Sales
table.

Chapter 4

189

7. Select the Table visualization, and in the Filters pane, expand the Internet Gross
Sales area in the Filters on this visual section.

8. Select is greater than from the drop-down under Show items when the value, and in
the field below the drop-down type 3000000.

9. Click Apply filter to apply the filter to the visual.

Figure 4.10: Visual-level filter

How it works

Report-level filters affect all pages in a report; thus, when filters are applied to the Filters on
all pages area of the Filters pane, all visuals on all pages of the report respect this filter if a
relationship to the dimension exists in the model and if DAX does not override the filter. For
the report described in the previous recipe, it is determined that the European team does not
need to view other sales groups or countries, and thus we filtered the entire report (all pages)
for a Sales Territory Group of Europe. Similarly, page-level filters only affect the visuals on the
page to which they are applied. Thus, we filtered each country page to the appropriate Sales
Territory Country.

Report- and page-level filters are most commonly implemented at different levels of a
dimension hierarchy that is relatively static and has few unique values, such as the example in
this recipe. Date range filters should generally be applied either in the data retrieval queries or
the report canvas, with visuals such as the date slicer. As these filters are applied to all visuals
in the report or page, respectively, try to avoid filters against high-cardinality columns such
as ProductKey or Sales Order Number. DAX measures cannot be used to define report- and
page-level filters.

Visual-level filters can be based on both measures and columns from the data model. These
measures and columns can be present in the visualization or not present.

Authoring Power BI Reports

190

The DAX queries created by Power BI reveal how the different layers of filters are implemented.
Using DAX Studio, we can view the DAX variables used to store the report- and page-level
filters (as well as slicer selections):

Figure 4.11: DAX report-level filter variable in DAX Studio

Visual-level filters are also variables, but use the report- and page-level variables as inputs.
The DAX queries created by Power BI take advantage of the latest functions and features,
such as variables, VAR, and TREATAS.

There's more...

There are more advanced filtering options than just Basic filtering. These include Advanced
filtering and Top N filtering. Both text and numeric columns support AND conditions as well
as OR conditions to create more complex filter conditions. To see how this works, follow these
steps:

1. Select the Table visualization created on the Scratch page.

2. In the Filters pane, clear the visual-level filter from Internet Gross Sales.

3. Expand the Sales Territory Country area in the Filters on this visual section and
switch the Filter type to Advanced filtering.

4. Select contains from the Show item when the value drop-down, type the letter a in
the field below, and then click Apply filter. The United Kingdom disappears from the
Table visualization.

5. Clear this filter and change the Filter type to Top N.

6. Under Show items, choose Top and type the number 2.

7. Drag the Reseller Net Sales measure from the Reseller Sales table to the By value
area and click Apply filter. Germany now disappears from the table.

If complex filtering conditions are required, or if filters are needed against columns with many
distinct values (for example, Sales Order Number), it may be beneficial to account for this
logic in the data retrieval or model, thus simplifying the DAX queries generated.

Additionally, report-, page-, and visual-level filters can be overridden with DAX measures. To
see how this works, create the following measure in the Sales Territories table:

Count Countries = COUNTROWS(ALL('Sales Territories'))

Chapter 4

191

Use a Card visualization on the Scratch page to display this new measure and observe that
the measure's value is 11. Regardless of the report-, page-, and visual-level filters applied,
this measure will always have a value of 11. The DAX function ALL overrides the filters being
applied to the Sales Territories table.

See also

 f Filters and highlighting in Power BI reports: http://bit.ly/39y0msh

 f Types of filters in Power BI reports: http://bit.ly/3sBkMrQ

Integrating Card visualizations
Card and Multi-row Card visualizations are often positioned at the top and left sections of
report pages, given the importance of individual measures and small sets of measures.
Although less graphically powerful and interactive than other visuals, cards are also the most
common tiles pinned to Power BI dashboards and are also used frequently in phone layouts
for mobile consumption. A common practice in report design is to start with a few high-level
measures represented as card or KPI visuals and build additional chart and Table visuals
around these.

This recipe demonstrates how to use card, Multi-row card, KPI, and Gauge visualizations—as
well as text boxes.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R2.pbix file and save it as CH4_R3.pbix.

2. Switch to the Scratch page, and use Ctrl-A then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Integrate Card visualizations

To implement this recipe, carry out the following steps:

1. Select the Europe page.

2. Create a Card visualization using the Visualizations pane and then in the Fields list
select the Last Full Month measure from the Calculations table.

http://bit.ly/39y0msh
http://bit.ly/3sBkMrQ

Authoring Power BI Reports

192

3. In the Format pane, switch the Category and Background sliders to Off.

Figure 4.12: Format pane

4. Expand the Data label section, set the Text size to 18 and the Font family to Segoe
(Bold).

5. Expand the General section and set the X Position to 0, Y Position to 0, Width to
448, and Height to 48. It is generally considered better to set the Width and Height
first, then the X Position and Y Position.

6. Click a blank area of the page canvas and repeat steps 2, 3, and 4 to create another
Card visualization that displays the Date Last Refreshed measure; in the General
section set the X Position to 168, Y Position to 680, Width to 305, and Height to 36.

7. Click a blank area of the page canvas, select Text box in the ribbon of the Insert tab,
and type Europe Monthly Sales and Margin Report.

8. Use Ctrl-A to select all of the text and then change the font to Segoe (Bold), set the
text size to 18, and right-justify the text.

Figure 4.13: Settings to select when formatting

9. In the Format text box pane, switch the Background slider to Off, and in the General
section set the X Position to 624, Y Position to 0, Width to 656, and Height to 48.

10. Select the Text box element just created and use Ctrl-C and then Ctrl-V to copy and
paste the visual on the page.

11. Reposition the new Text box element, replace the text with Last Refreshed: and left-
justify the text.

12. In the General section of the Format text box pane, set the X Position to 0, Y
Position to 675, Width to 190, and Height to 45.

Chapter 4

193

13. Click a blank area of the canvas, and from the Visualizations pane select the KPI
visualization.

14. From the Fields list, expand the Internet Sales Table and select the Internet Monthly
Net Sales measure as the Indicator, and the Internet Monthly Sales Goal measure
as the Target goals. From the Dates table, use the Year Month column as the Trend
axis.

15. Format the KPI visual just created by expanding the Title section, renaming the Title
to Monthly Internet Sales and center-aligning the Title.

16. In the Indicator section, set the Display units to Thousands, the Value decimal
places to 0, and the Text size to 40.

17. In the General section, set the X Position to 0, Y Position to 48, Width to 225, and
Height to 122.

18. Turn the Border slider to On, expand the Border section, and set the Radius to 5.

19. In the Goals section, change the Label from Percent to Value.

Figure 4.14: KPI visualization

20. Select the KPI visualization and use Ctrl-C and then Ctrl-V to copy and paste the
visual.

21. Reposition the new KPI visual on the page and replace the Indicator and Target
goals with the Internet Monthly Margin % and Internet Monthly Margin % Goal
measures from the Internet Sales table, respectively.

22. Format this new KPI visualization by changing Title to Monthly Internet Margin %,
the Indicator Display units to Auto, and in the General section set the X Position to
224 and the Y Position to 48.

23. Hold down the Ctrl key and use your mouse to select both KPI visuals.

24. Use Ctrl-C and Ctrl-V to copy and paste both visuals and then reposition the visuals on
the page.

25. For the Monthly Internet Sales visual, replace the Indicator and Target goals with
the Reseller Monthly Net Sales and Reseller Monthly Sales Goal measures from
the Reseller Sales table, respectively.

26. Format this new KPI visualization by changing Title to Monthly Reseller Sales and in
the General section set the X Position to 0 and the Y Position to 168.

Authoring Power BI Reports

194

27. For the Monthly Internet Margin % visual, replace the Indicator and Target goals
with the Reseller Monthly Margin % and Reseller Monthly Margin % Goal measures
from the Reseller Sales table, respectively.

28. Format this new KPI visualization by changing Title to Monthly Reseller Margin %
and in the General section set the X Position to 224 and the Y Position to 168.

29. Click a blank area of the page canvas, then use Ctrl-A and Ctrl-C to select and copy all
visualizations on the Europe page.

30. Switch to the France page, use Ctrl-V to paste all of the visuals, and edit the Text box
in the upper right to read France instead of Europe.

31. Repeat step 30 for the Germany and United Kingdom pages.

32. Save your work.

How it works

To integrate Card visualizations most effectively, identify the following two items:

1. Which measures does the user need to have maximum visibility to (such as all
devices, reports, and dashboards)?

2. Which measures are available or can be created to serve as a target or goal to
compare these measures to?

Numbers without well-defined targets nor any trending indicators, such as standard Card
visualizations, are simply less valuable than KPIs that provide this additional context.
However, KPI visualizations require both an Indicator and a Trend axis. In addition, goal and
target measures are one of the main benefits of integrating Plan and Budget fact tables into
data models. If this integration is not an option, a historical average of the indicator measure
such as the trailing three or six months can be used as the KPI's target goal.

The data model used in this recipe actually does both. The Internet Sales Plan table
(hidden in Report view) has internet sales plan numbers broken down by region, country,
year, month, and product subcategory. This fact table is used for the Internet Monthly
Sales Goal measure. This measure looks at the Today measure in the Dates Table and
determines the last fully completed month from Today. Because we are dealing with the
AdventureWorksDW2019 database where data is only posted until early 2014, we have set
the Today measure to be 1/28/2014. In a real-world scenario, the Today measure would be
set to be equal to the DAX TODAY function. The other goal measures are calculated using an
average of the previous six months, after the last fully completed month. The measure that
calculates this date is the 6 Months Ago measure in the Dates table.

Similarly, the target measures calculate their values for the most current, complete month, in
this case December 2013. Alternatively, DAX measures could have been created that factored
in the percentage of days completed in the month and applied that percentage to the target
and goal measures.

Chapter 4

195

While the KPI visualization should be preferred when displaying numeric values, the Card
visualization can also be used quite effectively to display dynamic text data, such as the Date
Last Refreshed column and Last Refreshed measure. The formula for the Last Refreshed
measure is the following:

Last Full Month = "Last Full Month: " & FORMAT(EOMONTH([Today],-1),"yyyy-mmm")

The Date Last Refreshed column was created using the following Power Query query:

let Source = #table(type table[Date Last Refreshed=datetime], {{DateTime.
LocalNow()}}) in Source

Static text information can be displayed using a simple Text box element, such as the report/
page title in the upper right and Last Refreshed: in the lower left. However, text boxes can
also be made dynamic via Q&A functionality, accessed in the Value and Review dialogs of the
Text box formatting dialog.

There's more...

Two additional card- and KPI-style visualizations are available in Power BI Desktop's default
visualization library: the Multi-row card and Gauge visualizations. Multi-row cards are best
organized around a common dimension and measure and are often placed to the right of
KPI or Gauge visuals as supplemental details. To see Multi-row Card visualizations in action,
follow these steps:

1. Switch to the Scratch page.

2. Select the Multi-row Card visualization from the Visualizations pane and place the
Internet Customer Count France, Internet Customer Count Germany, and Internet
Customer Count United Kingdom measures from the Internet Sales table in the
Fields field of the visualization.

Figure 4.15: Multi-row Card visualization

Power BI Desktop also includes a Gauge visualization that is a popular alternative to Card and
KPI visualizations for dashboards. To see the Gauge visualization in action, follow these steps:

1. Copy the Monthly Internet Sales KPI visualization from the Europe page and paste it
onto the Scratch page.

2. With the KPI visual selected, click the Gauge visualization in the Visualizations pane
to convert the KPI visualization to a Gauge visualization.

Authoring Power BI Reports

196

3. Set the Value to the Internet Monthly Net Sales measure and the Target value to
the Internet Monthly Sales Goal measure.

Figure 4.16: Gauge visualization comparing two measures (Value to Target value)

See also

 f Key Performance Indicator (KPI) visuals: http://bit.ly/3rFPxe7

 f Radial Gauge charts in Power BI: http://bit.ly/2PgtTjv

 f Card visualizations (big number tiles): http://bit.ly/3uaMPib

 f Copy and paste a visualization in Power BI: http://bit.ly/39vECNL

 f Get started formatting Power BI visualizations: http://bit.ly/3sGqzwm

Using Slicers
Slicer visuals are the primary means for users to apply filter selections to other visuals of a
report page, and thus their implementation greatly affects usability and analytical flexibility.
Although user interaction with other visuals also applies cross-filtering to other visuals, slicers
provide the fastest and most intuitive method to define specific filtering criteria, such as three
specific months and two product categories. Slicer visuals also have unique formatting options
for defining the selection behavior, including a Select All option.

An alternative to slicers is the use of the Filter pane. While perhaps not as obvious to end
users and requiring specific training, the use of the Filter pane as opposed to slicers does
provide the benefit of preserving space on the Canvas. However, while the Filter pane can
provide some of the basic usage scenarios common to slicers, slicers provide much greater
flexibility in terms of interactions with different visuals on a page, synchronization of slicers
across specific pages, and the layout and position of filtering elements relative to other
visuals.

In this recipe, we look at the primary use cases for slicers and the report design
considerations, including selection properties and formatting options. The slicer filter
configurations available for Date data types are also reviewed, and additional details on text
search and alternative slicer visuals are provided.

http://bit.ly/3rFPxe7
http://bit.ly/2PgtTjv
http://bit.ly/3uaMPib
http://bit.ly/39vECNL
http://bit.ly/3sGqzwm

Chapter 4

197

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R3.pbix file and save the file as CH4_R4.pbix.

2. Switch to the Scratch page and use Ctrl-A and then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Use Slicers

To implement this recipe, use the following steps:

1. Select the Europe page.

2. Create a Slicer visualization using the Visualizations pane, and then in the Fields list
select the Year Month column from the Dates table.

3. With the slicer selected, use the ellipses (…) to change the sorting to Sort
descending.

Figure 4.17: Slicer options

4. In the Format pane, switch the Slicer header to Off, the Title to On, and change the
Title to Calendar Month.

5. In the Format pane, switch Border to On and set the Radius to 5; in the General
section, set the X Position to 0, Y Position to 295, Width to 160, and Height to 178.

6. Create a second slicer for the Product Category column in the Products table.

7. Right-click the (Blank) option in the Slicer and choose Exclude. Repeat this for
Components.

8. In the Format pane, switch the Slicer header to Off, the Title to On, and change the
Title to Product Category.

Authoring Power BI Reports

198

9. Also, in the Format pane, switch Border to On and set the Radius to 5; in the General
section, set the X Position to 0, Y Position to 479, Width to 160, and Height to 95.

10. Use Ctrl-C and then Ctrl-V to copy and paste the Product Category slicer.

11. Reposition the new slicer on the page, replace the slicer's Field with the Sales
Territory Country column from the Sales Territories table, and edit the slicer's Title
to Country.

12. Edit the Country slicer's General settings to set the X Position to 0, Y Position to
580, Width to 160, and Height to 94.

13. Select the three slicers and use Ctrl-C to copy.

14. Switch to the France page, use Ctrl-V to paste the slicers, and at the Sync visuals
prompt select Sync.

Figure 4.18: Sync visuals prompt

15. Select Sync slicers from the ribbon of the View tab, select the Country slicer, and
then uncheck the syncing for the France page. The correct configuration is displayed
in Figure 4.19.

Figure 4.19: Sync slicer controls

16. Close the Sync slicers pane, replace the Country slicer's Field with the State/
Province column from the Customers table, and edit the Title to be Regions.

17. Copy the Calendar Month and Product Category slicers to the Germany and United
Kingdom pages, choosing to Sync both times.

18. Copy the Regions slicer from the France page to the Germany and United Kingdom
pages, but this time choose Don't sync in both instances.

Chapter 4

199

19. On the Germany page, change the Regions slicer's Title to States.

20. On the United Kingdom page, replace the Regions slicer's Field with the City column
from the Customers table, and change the Title to Cities.

21. On the Europe page, select the following values in the Calendar Month slicer: 2013-
Dec, 2013-Nov, 2013-Oct, 2013-Sept, 2013-Aug, and 2013-Jul.

22. When switching to other pages, the Calendar Month slicer on those pages also has
those selections.

23. Save your work.

How it works

Slicers are important Power BI visuals, and so careful thought should be given when
identifying slicer column(s). Typically, slicer columns are parent-level dimensions such as year
or region with few individual values. Choosing a column with few values allows these items
to be exposed on the canvas as a list, instead of using a drop-down. Using too many slicers,
or slicers with too many distinct values, detracts from the usability of report pages. Without
significant DAX customization to interpret filter selections, users can be uncertain as to what
filters have been applied. Measures cannot be used in slicers, but slicers support the use of
hierarchies and ad hoc hierarchies in their Field area.

It is recommended to position slicers to the left of all other visuals on the page. Format
the slicer visuals with borders and/or background colors to make the slicers stand out on
the page. With regards to using the Slicer header or the Title, pick one of the two and be
consistent for all slicers on the page. The Slicer header provides a Clear selections option
(the eraser icon), as well as allowing you to switch a slicer from List to Drop-down, and vice
versa.

Figure 4.20: Slicer header options

Selecting items in the slicer cross-filters the other visuals on the page. Select the box next
to an option once to select that value, and select the same box again to deselect the same
value. Hold down the Ctrl key to select multiple values. This behavior can be controlled using
the Selection controls area of the Format pane.

Authoring Power BI Reports

200

Figure 4.21: Slicer selection controls

You can also force only Single select. Turning off Multi-select with CTRL makes multiple
selection possible without holding down the Ctrl key on the keyboard. Slicer item selection
essentially becomes a set of checkboxes. The Show "Select all" option provides a quick
method to select and deselect all values. The Select all option can be helpful if the slicer
contains more than seven to 10 values. With Select all, the user can easily construct a filter
to exclude only a few items from a long list.

Figure 4.22: Select All Slicer Selection Control Turned On

Slicers can be searched by activating the Search option from the ellipses (…) menu of the
slicer.

Figure 4.23: Slicer Search option

Chapter 4

201

Activating this option presents a Search bar at the top of the items list. Search is useful for
long lists of items.

Slicers can also be synchronized between report pages. Sync'd slicers means that items
selected in a slicer on one page affect any other pages where there is a sync'd slicer. Copying
and pasting a slicer between pages prompts the Sync visuals dialog box but can also be
controlled via the Sync slicers pane. By default, slicers with the same Field on different pages
are "grouped," but you can use the Advanced options to control these groupings. In addition
to synchronization, the Sync slicers dialog box allows you to control whether a slicer is visible
on a page. Coupling sync'd slicers with making slicers invisible on pages can be used to free
up page canvas space.

There's more...

There are many options when it comes to slicers. In addition to the options discussed so far,
there are also special types of slicers, such as horizontal slicers, range slicers, and relative
date slicers.

Horizontal slicers are an alternative design that can be activated by changing the Orientation
setting in the General format section of the Format pane. Horizontal orientation slicers are
often placed along the top of report pages and can benefit mobile consumption.

Figure 4.24: Slicer visual with Horizontal Orientation

Slicer visuals contain powerful filtering options when used with Date data types, including
graphical date selection, before/after criteria, relative dates, and relative times. The default
slicer type for a Date data type is a date range slicer or Between slicer. The start and end
points of the timeline can be selected and dragged to revise the filter condition. Alternatively,
selecting the date input cells exposes a graphical calendar picker element for choosing a
date. The Before and After filter options gray out the start and end date input cells of the
Between dialog, respectively. The Relative Date option provides three input boxes. The first
input box allows the selection of Last, Next, or This.

Authoring Power BI Reports

202

The middle input box allows the entry of a number and the last input box provides a drop-
down for various date intervals; see Figure 4.25.

Figure 4.25: Standard slicer based on a Date column configured for a Relative Date Filter

In the Format pane, you can specify whether the current day is included in the relative date
filter as well as an Anchor Date. The relative date filtering options of slicer visuals are also
available as report-, page-, and visual-level filters. The Relative Time option function is similar
to the Relative Date option, only the intervals are in Minutes and Hours.

The default slicers format for numeric data types is also the Between slicer. The Less than
or equal to and Greater than or equal to options for numeric slicers are analogous to a Date
slicer's Before and After options.

See also

 f Slicers in Power BI: http://bit.ly/3mkZcFX

 f Using slicers in the Power BI service: http://bit.ly/3fsCdHr

Controlling Visual Interactions
Power BI report pages are interactive by default, with all visuals, excluding slicers, cross-
filtered via the selections applied to one visual. While this dynamic filter context is often
helpful in exploring and analyzing across dimensions, there is often also a need to exclude
certain visuals from this behavior. For example, a high-priority measure reflected in a card or
KPI visual may be configured to ignore any filter selections from slicers and other visuals on
the page. Additionally, rather than the default highlighting of cross-filtered visuals, it can be
beneficial to exclusively display the related values in other visuals.

http://bit.ly/3mkZcFX
http://bit.ly/3fsCdHr

Chapter 4

203

In this recipe, we provide examples of configuring interactivity between visuals.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R4.pbix file and save the file as CH4_R5.pbix.

2. Switch to the Scratch page and use Ctrl-A and then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Control Visual Interactions

To implement this recipe, use the following steps:

1. Select the Europe page.

2. Select any visual and click Edit interactions in the ribbon of the Format tab.

3. Select the Calendar Month slicer.

Figure 4.26: Edit interactions

4. Click on the None circle icon for the four KPI visualizations.

5. Repeat steps 3 and 4 with the Product Category and Country slicers.

Authoring Power BI Reports

204

6. Repeat steps 3, 4, and 5 for the France, Germany, and United Kingdom pages.

7. Select any visual and click Edit interactions in the ribbon of the Format tab
to toggle off editing interactions.

8. Save your work.

How it works

In this example, it was determined that the KPI visualizations should always show the last full
month's statistics for all products and all countries, states/provinces, and cities. To ensure
this is the case, interactivity with all other visualizations on the pages is set to None instead of
the default Filter, using the Edit interactions feature on Power BI Desktop.

It is important to realize that DAX measures can override cross-filtering behavior by using filter
functions such as ALL, ALLEXCEPT, and REMOVEFILTERS. In fact, there actually was no need to
set the interaction between the Calendar Month slicer and the KPI visuals to None because
the DAX measures that drive the KPI visuals include the use of the ALL function for the Dates
table as part of their calculations.

There's more...

The cross-filtering interactions between visualizations have the options of Filter, Highlight,
and None—some visualizations, such as KPI visualizations, only include Filter and None
options, whereas other visualizations, such as bar and column charts, include a Highlight
option as well. To see the Highlight option, do the following:

1. From the Visualizations pane, create a Clustered column chart.

2. From the Fields list, add the Year Month column from the Dates table as the Axis,
and add the Internet Net Sales and Internet Plan measures from the Internet Sales
table as Values.

3. In the Format pane, expand Legend and change the Position to Bottom,
turn off the Title on the X axis, turn the Y axis completely off, expand Data labels,
and change the Display units to Thousands, the Value decimal places to 0, and
Orientation to Horizontal; expand the Title section and change the Title text to
Internet Sales to Plan with an Alignment of Center, and turn the Background to Off.

4. In the General section, set the X Position to 449, Y Position to 47, Width to
831, and Height to 241.

5. Create a Stacked bar chart with the Sales Territory Country column from the Sales
Territories table as the Axis, and in the Values field well, place the Internet Net
Sales measure from the Internet Sales table, and the Reseller Net Sales measure
from the Reseller Sales table.

Chapter 4

205

6. In the Format pane, expand Legend and change the Position to Bottom, turn off
the Title on the Y axis, turn off the Title on the X axis, and then turn the X axis
completely off; expand Data labels and change the Display units to Thousands,
expand the Title section and change the Title text to Internet and Reseller Sales by
Country with an Alignment of Center, and turn the Background to Off.

7. In the General section, set the X Position to 753, Y Position to 295, Width
to 527, and Height to 212.

8. Select the Stacked bar chart visual and click Edit interactions in the ribbon
of the Format tab.

9. Change the cross-filtering on the Clustered column chart visual from
Highlight to Filter.

Figure 4.27: Cross-filtering icons

10. Click on the None circle icon for the four KPI visualizations.

11. Select the Clustered column chart visual and click on the None circle icon
for the four KPI visualizations.

12. Select any visual and click on Edit interactions in the ribbon of the Format
tab to toggle editing interactions off.

13. Click on columns in the Internet Sales Plan visual and observe the
highlighting on the Internet and Reseller Sales by Country visual.

14. Similarly, click on the bars in the Internet and Reseller Sales by Country
visual and observe that the Internet Sales Plan visual is filtered.

15. Copy the Internet Sales Plan visual to the France, Germany, and United
Kingdom pages.

16. Save your work.

See also

 f Change how visuals interact in a report: http://bit.ly/3cGQazB

 f Understand how visuals interact in a report: http://bit.ly/3wgsQR3

http://bit.ly/3cGQazB
http://bit.ly/3wgsQR3

Authoring Power BI Reports

206

Utilizing Graphical Visualizations
Data visualization and exploration is central to Power BI, and the visualization types chosen
in reports contribute greatly to user comprehension and adoption. Power BI Desktop includes
an array of modern visuals, such as the Treemap and the Funnel, but also includes a set
of rich formatting options for traditional line, bar/column, combination, and scatter charts.
Additionally, five map visuals are available to analyze geographical data, and an entire library
of custom visuals is available via the AppSource store, which is integrated into the Home
ribbon and Visualizations pane of Power BI Desktop.

A common mistake of inexperienced report developers is the overuse of fancy or complex
graphical visuals. Report developers should choose visuals based on their alignment to the
business questions within the scope of the report and should always prioritize simplicity and
ease-of-use.

This recipe provides examples of utilizing various graphical visualization types, such as the
Line chart, Line and Clustered column chart, Map, and Shape map.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R5.pbix file and save the file as CH4_R6.pbix.

2. Switch to the Scratch page and use Ctrl-A then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Utilize Graphical Visualizations

To implement this recipe, use the following steps:

1. Select the Europe page.

2. From the Visualizations pane, select the Scatter chart visualization and add the
Sales Territory Country column from the Sales Territories table as the Legend.

3. From the Internet Sales table, add the Internet Net Sales measure as the
X Axis, the Internet Customer Count measure as the Y Axis, and the Internet Order
Quantity Total measure as the Size.

4. From the Dates table, add the Date column (not a Date hierarchy) to the Play Axis.

Chapter 4

207

5. In the General section of the Format pane, set the X Position to 160, Y Position to
295, Width to 594, and Height to 381.

6. In the Format pane, set the Legend to Off, and expand the Y Axis section, and
change the Axis title to Distinct Customers; then expand the Title section, change
the Title text to Internet Sales and Customer Count Trend by Country, and set the
Alignment to Center.

Figure 4.28: Scatter chart visualization

7. Click a blank spot on the page canvas, and from the Visualizations pane, select the
Line chart.

8. Use the Year Month column from the Dates table as the Axis, the Sales
Territory Country column from the Sales Territories table as the Legend, and the
Internet Margin % measure from the Internet Sales table for Values.

9. In the General section of the Format pane, set the X Position to 754, Y
Position to 508, Width to 526, and Height to 212.

10. Expand the Legend section, set the Position to Bottom, and delete the
Legend Name.

11. Expand the X Axis and Y Axis sections and toggle the Title to Off for both.

12. Toggle Data labels to Off.

13. Expand the Title section, change the Title text to Internet Sales Margin % by
Country, and set the Alignment to Center.

Authoring Power BI Reports

208

Figure 4.29: Line chart visualization

14. Switch to the France page.

15. From the Visualizations pane, select the Map visualization, add the
Location column from the Customers table as the Location, and the Internet
Customer Count measure from the Internet Sales table as the Size.

16. In the General section of the Format pane, set the X Position to 160, Y
Position to 295, Width to 288, and Height to 381.

17. Toggle the Category labels to Off and the Title to Off.

18. Click a blank area of the canvas and choose the Line and clustered column
chart from the Visualizations pane.

19. From the Fields list, add the Year Month column from the Dates table as the
Axis.

20. From the Reseller Sales table, add the Reseller Net Sales measure as the
Column values and the Reseller Margin % measure as the Line values.

21. In the General section of the Format pane, set the X Position to 448, Y
Position to 295, Width to 832, and Height to 232.

22. Expand the Legend section and change the Position to Bottom.

23. Expand the X Axis and Y Axis sections and toggle the Title to Off for both,
and then toggle the Y Axis to Off.

24. Expand the Data labels section and change the Orientation to Horizontal.

25. Expand the Title section and change the Title text to Reseller Sales and
Margin %, with an Alignment of Center.

26. Turn the Background to Off.

27. Copy the Map and the Line and clustered column chart and paste onto the
Germany and United Kingdom pages.

28. Switch to the Germany page and select the Map visual.

29. Change to using the State/Province column from the Customers table for Location.

Chapter 4

209

30. With the Map visual selected, select Shape map from the Visualizations pane. If
Shape map is not present, this visualization can be activated using Preview features,
found by selecting File from the menu/ribbon, then Options and settings, and finally
Options.

31. In the Format pane, expand the Shape section and change the Map to
Germany states.

32. Save your work.

Figure 4.30: Shape map visualization

How it works

Choose column charts when individual values and their comparison is more important than
the trend. Select bar charts when the axis category labels are long, as bar charts will display
more of the label text than column charts. Use line charts when the trend or shape of data
is more important than individual values and their comparison. Select scatter charts to
demonstrate a correlation of a dimension between two measures. Choose special-purpose
visuals such as Treemaps and Waterfall charts as supplements to standard visuals.

It is generally recommended to avoid pie charts, donut charts, gauges, and treemap visuals,
given the advantages in visual perception and comprehension of other visuals. For example,
the curved shapes of pie charts and gauges are more difficult to interpret than straight lines
and the distance between points in column/bar and scatter charts, respectively.

Authoring Power BI Reports

210

On the Scatter chart visual, you can click the Play button to have the measures calculated for
each date in the Play axis. The shapes will move and change sizes over time.

For the Shape map visuals, states with higher sales have greater color saturation by default,
and the tooltips display when hovering over states. The available shape maps include a Map
keys dialog that is used to plot your location column. Map keys can be viewed by clicking
View map keys from the Shape option in the Formatting pane. Ensure that your location data
matches the keys before using the given shape map.

The Map and Filled map visuals can be used when a custom shape map is either not
available for the location data or is not appropriate for the given use case. Both visuals use
Bing to plot location points.

There's more...

The waterfall chart visual is best used to show the contributions of individual values to an
overall total. To see how the waterfall chart works, follow these steps:

1. Switch to the Scratch page.

2. Create a Waterfall chart using the Sales Territory Country column from the Sales
Territories table as the Category and the Internet Plan Variance measure from the
Internet Sales table as the Values.

Figure 4.31: Waterfall chart

Chapter 4

211

Waterfall charts should be sorted by the measure in order to support an intuitive "walk" from
the components to the Total column. The default color formatting of red for negative and
green for positive is usually appropriate. Additional columns can be added to the Category
field in order to enable a drill-down dimension. The Year Month column from the Dates table
or the Product Category from the Products table are good candidates. Additionally, a column
can also be added to the Breakdown field. The Breakdown field calculates the variance and
percentage variance of an individual dimension value between two category values. Adding
the Product Category column to the Breakdown field displays the product categories with the
most significant variances between the countries, with details available in tooltips.

Many chart types, such as line charts, have useful analytics options. To demonstrate these
analytics capabilities, do the following:

1. On the Scratch page, create a Line chart with the Year Month column from the
Dates table as the Axis, and the Internet Net Sales measure from the Internet Sales
table as the Values.

2. Select the line chart and choose the Analytics tab.

Figure 4.32: Analytics tab

3. Expand the Average line section and click Add.

4. Toggle the Data label to On and change the Text to Name and value.

5. A Trend line is available but only when the x-axis is set to Continuous. Date
columns are a good choice to provide a Continuous axis. Date columns also make a
Forecast analytic available.

6. A useful trick with line chart visuals is using a measure to add conditional formatting.
Create the following measure in the Internet Sales table:
Variance Less Than 12% =
 IF(
 ABS([Internet Plan Variance]) < [Internet Net Sales]*.12,
 [Internet Net Sales],BLANK()
)

7. Add this measure to the Values field well of the line chart. The conditional measure
will be included in the line chart but will have a value (and not be blank) only when
the condition is met. This approach follows general report design goals in providing
more analytical value in the same space without impacting usability. Drill-down via
the data hierarchy in the axis and additional measures in the tooltips provide further
support in the same space on the report canvas.

Authoring Power BI Reports

212

See also

 f Visualization types in Power BI: http://bit.ly/3cHg2vh

Creating Table and Matrix visuals
Table and Matrix visuals are appropriate when visibility of precise, individual values are
needed, or when data is viewed at a detailed level, such as in individual transactions. Table
visuals in Power BI conform to the classic "list" report format of columns and rows but support
powerful cross-highlighting and formatting options, including conditional formatting. Matrix
visuals include Table visual features and correspond to the layout and general functionality of
pivot tables in Excel: two-dimensional representations of measures with the ability to drill up
and down the row and column axes.

In this recipe, the various capabilities of Table and Matrix visualizations are demonstrated,
including conditional formatting, drill-down, and cross-highlighting.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R6.pbix file and save the file as CH4_R7.pbix.

2. Switch to the Scratch page and use Ctrl-A and then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Create Table and Matrix visuals

To implement this recipe, use the following steps:

1. Select the France page.

2. From the Visualizations pane, select the Table visualization.

3. Add the Product Category column from the Products table, the Internet Net
Sales, Internet Margin %, and Internet Customer Count measures from the Internet
Sales table, and the Reseller Net Sales and Reseller Margin % measures from the
Reseller Sales table.

4. Rearrange the measures as necessary in the Values area for the
visualization.

5. In the Values well for the visualization, double-click the Internet Customer Count
measure and rename it to Internet Customers.

http://bit.ly/3cHg2vh

Chapter 4

213

6. In the General section of the Format pane, set the X Position to 448, Y Position to
526, Width to 832, and Height to 194.

7. Expand the Style section and choose Contrast alternating rows.

8. Copy this visual to the Germany, United Kingdom, and Scratch pages.

9. On the Scratch page, use the drop-down for the Reseller Margin % measure in the
Values well to apply Conditional formatting to the Background color.

Figure 4.33: Conditional formatting

10. In the conditional formatting dialog, check the Diverging checkbox, and then click the
OK button.

Figure 4.34: Diverging colors for conditional formatting

Authoring Power BI Reports

214

11. Conditionally format the background for Internet Net Sales, but this time change
Format by to Rules and in the Rules change the drop-down to is blank.

Figure 4.35: Format by rules

12. Conditionally format the Reseller Net Sales measure, but this time choose Data bars
and click OK in the Data bars dialog to accept the default settings.

Figure 4.36: Table with conditional formatting applied

13. Copy and paste the Table visual on the Scratch page and reposition.

14. Remove the Reseller Net Sales and Reseller Margin % measures from this
new visual and note that the Components row disappears from the table.

15. In the Values well for the visual, expand the menu for Product Category,
choose Show items with no data, and note that the Components row reappears
along with an entirely blank row.

16. In the Values well for the visual, expand the menu for Internet Customers,
choose Show value as and then Percent of grand total, and note that percentages
are now displayed in the Internet Customers column, and the blank row and the
Components row disappear.

17. Add a Matrix visualization to the Scratch page.

18. Use the Sales Territory Hierarchy from the Sales Territories table for the rows,
the Product Category Hierarchy from the Products table for Columns, and the Internet
Net Sales measure from the Internet Sales table for Values.

19. Expand Europe using the + icon for the row.

Chapter 4

215

20. Switch Drill on to Columns, choose the down arrow to turn on drill mode and click on
the Bikes column.

Figure 4.37: Matrix visualization

21. Save your work.

How it works

Table and Matrix visualizations automatically filter out rows and columns for which there is no
data. In effect, if the aggregations or measures in the Values area all evaluate to blank space,
then the row is not displayed in the table. The Show items with no data feature overrides this
default behavior but is not foolproof, as shown in the case of using the Show value as feature.
An alternative approach is to construct measures in such a way that they return zero instead
of a blank, as in the examples below:

Measure =
 VAR __Sum = SUM('Internet Sales'[Sales Amount])
RETURN
 IF(ISBLANK(__Sum),0,__Sum)

or

Measure = SUM('Internet Sales'[Sales Amount]) + 0

or

Measure =
 COALESCE(
 SUM('Internet Sales'[Sales Amount]),
 0
)

Data bars can be displayed with the measure values, as per this example, or as standalone
bars. Specific minimum and maximum threshold values can also be entered to drive the
conditional formatting of the bars.

Authoring Power BI Reports

216

In addition to conditionally formatting background colors and data bars, conditional formatting
is also available for fonts as well as icons. If the same formatting logic and colors are used
for both font color scales and background color scales, only the color of the value will be
displayed, such as in a heat map.

A Show values as option is available for measures added to Table and Matrix visuals to
display the measure value as a percentage of the row, column, or grand total. However,
measures in Table and Matrix visuals cannot currently be formatted to display units, nor
decimal places, such as thousands or millions. For Table visuals, only Percent of grand total
is available, given the single dimension of the visual.

With Matrix visuals, the rows hierarchy can be navigated via the + and - icons at the start
of each row. Alternatively, selecting Rows for the Drill on drop-down allows the drill-down
icons to be used to navigate to the row hierarchy. Similarly, selecting Columns for the Drill on
dropdown allows the columns to be navigated to via the same drill-down icons. There are four
drill-down icons: the up arrow icon drills up one layer in the hierarchy; the down arrow icon
turns on drill mode. When drill mode is active (solid circle), then clicking on a row or column
drills one layer deeper into the hierarchy for that particular column, or row, only. The double
down arrow icon drills one layer deeper into the hierarchy for all rows or columns, but the
parent hierarchy context is lost in this case. To drill one layer deeper into the hierarchy for all
rows or columns and preserve the parent hierarchy context, use the forked down arrow icon.

There's more...

An additional conditional formatting option for Table and Matrix visualizations is Web URL.
Using the Web URL conditional formatting makes the displayed value into a live link. To
demonstrate how this works, do the following:

 f On the Scratch page, create a Table visualization using the Customer Name, Email,
and Service URL columns from the Customers table.

 f In the Values well for the Table visual, access the Conditional formatting for the
Customer Name measure and choose Web URL.

 f In the Web URL dialog box, change Based on field to the Email column in the
Customers table.

Figure 4.38: Web URL conditional formatting

Chapter 4

217

 f In the Format pane, expand the Values section and toggle the URL icon setting to
On.

Figure 4.39: Web URL conditional formatting and URL icons as live links

A unique option for Matrix visualizations is the ability to show multiple measures displayed on
the rows of Matrix visuals. This is a very common use case in financial reporting. To see how
this works, do the following:

 f Create a Matrix visualization on the Scratch page with the Product Category from
the Products table in the Rows, Calendar Year from the Dates table in the Columns,
and the Total Net Sales, Total Margin, and Total Margin % measures from the
Calculations table as Values.

 f In the Format pane, expand the Values section and toggle the Show on rows option
to On.

Figure 4.40: Matrix visual with three measures in the Values well displayed on rows

See also

 f Table visualizations in Power BI reports and dashboards: http://bit.ly/3fzJ6a4

 f Create a Matrix visual in Power BI: http://bit.ly/2PN4Cxd

http://bit.ly/3fzJ6a4
http://bit.ly/2PN4Cxd

Authoring Power BI Reports

218

 f Conditional table formatting in Power BI Desktop: http://bit.ly/3rMwvma

Enhancing Reports
There are many report features that can add greater context and enhance the self-service
data exploration experience. Three such features are Tooltips, Tooltip pages, and Drill through
report pages.

In this recipe, we walk through the using Tooltips, Tooltip pages, and Drill through report
pages to enhance our report.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R7.pbix file and save the file as CH4_R8.pbix.

2. Switch to the Scratch page and use Ctrl-A then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Enhance Reports

To implement this recipe, use the following steps:

1. Select the Germany page.

2. Select the Shape map visualization.

3. In the Fields well, add the Internet Net Sales, Internet Margin %, and
Internet Sales Per Customer measures from the Internet Sales table to the Tooltips
field.

4. Hover over a colored German state to see the new measures in the Tooltip pop-up:

Figure 4.41: Additional measures displayed in Tooltip

http://bit.ly/3rMwvma

Chapter 4

219

5. Create a new Page called Product Tooltip.

6. In the Format pane, expand the Page Information section and toggle Tooltip
to On.

7. Expand the Page size section and change the Type to Tooltip.

8. Create a Clustered bar chart visualization and resize to consume the entire
page.

9. Add the Product Subcategory column from the Products table to the Axis.

10. Add the Internet Net Sales measure from the Internet Sales table to the
Values.

11. In the Filter pane, apply a visual-level filter on Product Subcategory, choosing a Top
N filter showing 5 items by Internet Net Sales.

Figure 4.42: Tooltip visual filter

12. On the Germany page, select the Table visual.

13. In the Format pane, toggle the Tooltip to On.

14. Expand the Tooltip section, set Type to Report page, and Page to Product Tooltip.

Authoring Power BI Reports

220

15. Hovering over any cell in the table brings up the Product Tooltip page as a Tooltip for
the subcategories within the Product Category for that row.

Figure 4.43: Report page tooltip

16. Create a Page called Customer Drill through.

17. In the Fields well for the page, add the State/Province column from the Customers
table to the drillthrough fields area.

Figure 4.44: Page drillthrough fields

18. Note that a Back button is created automatically in the upper-left corner of the page.

Figure 4.45: Back button

Chapter 4

221

19. Create customer-centric visuals, such as those shown in Figure 4.46.

Figure 4.46: Customer Drill through page

20. On the Germany page, right-click one of the colored states, choose Drill through and
then Customer Drill through.

21. Note that the drillthrough filters adopt the context passed in from the page and visual.

Figure 4.47: Drillthrough filters after drilling through

How it works

Tooltips and report page tooltips are excellent methods for increasing the information and
analytical density of reports, providing additional insights within the same amount of report
page real estate. Both tooltips and report page tooltips inherit the context of the visual at
the granularity of the visual element being hovered over with the cursor. This means that any
measures within tooltips and any visuals within a report page tooltip will reflect the current
context of the user interacting with the report.

Authoring Power BI Reports

222

Report authors can also design drillthrough report pages to enable users to quickly and easily
explore the details associated with a specific item of interest. All visuals on the drillthrough
report page update to reflect the filter context of the chosen item upon which drillthrough was
initiated.

Drillthrough is a very powerful and popular feature in that it effectively serves as a custom-
generated report tailored to a user's questions as the user views the report. Therefore,
multiple drillthrough report pages across common dimensions may be included with popular
reports that are actively interacted with. Consider utilizing the Power BI templates (.pbit
files) described in the Working with templates recipe of Chapter 7, Parameterizing Power BI
Solutions, to leverage existing drillthrough report pages in new reports.

Drillthrough pages are especially valuable for high-cardinality dimension columns, since the
individual values of these columns will likely not have their own dedicated reports or report
pages. For example, the Product Category and Product Subcategory columns may already
have their own reports and dashboards, but an individual Product Model (third level of this
hierarchy) may be a good candidate for one or multiple drillthrough report pages.

The back button is created automatically when a column is added to the drillthrough filters
field well. This button can be formatted or removed entirely but is often helpful, particularly
with reports containing several pages. Alternatively, any Shape or Image that can be added
via the Insert tab of the ribbon in Power BI Desktop can also be used as a back button for a
drillthrough page.

There's more...

In the drillthrough area for a page, you may have noticed the Cross-report toggle. Power BI
does indeed allow you to drill through between reports, and not just pages. The source report
must be enabled to use drillthrough targets from other reports, either in the Report settings
of the CURRENT FILE in Options and settings, or in the Power BI service. The target report
would then be configured to toggle the Cross-report option to On and the drillthrough fields
configured appropriately. It is important to note that Cross-report filtering requires that the
dataset schema of the reports match.

Chapter 4

223

Figure 4.48: Cross-report drill through

See also

 f Using report tooltip pages in Power BI: http://bit.ly/2OdzeHA

 f Extend visuals with report page tooltips: http://bit.ly/3cGwBHC

 f Set up drill through in Power BI reports: http://bit.ly/31SH2lv

 f Use report page drillthrough: http://bit.ly/3sKg5w0

 f Use cross-report drillthrough in Power BI Desktop: http://bit.ly/3fzfQjJ

Formatting Reports for Publication
Power BI Desktop includes features to control and enhance the formatting and layout of
reports at a detailed level. Prior to publishing reports to the Power BI service, visuals can be
aligned, sized, and evenly spaced to deliver an organized, symmetrical layout. Additionally,
supplemental report elements, such as shapes, text boxes, and images, can be added to
further organize and enrich report pages with textual and visual aids.

This recipe demonstrates how to control the positioning, alignment, and distribution of report
visuals, as well as tips for presenting and working with visuals in groups. Additionally, helpful
tips are presented for final clean-up items prior to publishing a report, as well as setting up
Q&A after publishing.

http://bit.ly/2OdzeHA
http://bit.ly/3cGwBHC
http://bit.ly/31SH2lv
http://bit.ly/3sKg5w0
http://bit.ly/3fzfQjJ

Authoring Power BI Reports

224

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R8.pbix file and save the file as CH4_R9.pbix.

2. Switch to the Scratch page and use Ctrl-A, then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Format Reports

To implement this recipe, use the following steps:

1. Copy and paste the four KPI visuals from the Europe page to the Scratch page.

2. Move the KPI visuals around on the page, spacing them out vertically at different
horizontal positions.

3. Notice the automatic alignment guides (the dashed red lines called smart guides)
that appear when moving or resizing visuals.

Figure 4.49: Automatic alignment guides

4. Use Ctrl-A to select all of the KPI visuals.

5. Select the Format tab in the ribbon, choose Align, and then Align left.

Figure 4.50: Arrange options in the Format ribbon

Chapter 4

225

6. The visuals are all aligned to the leftmost visual.

7. Select Align again and choose Distribute vertically.

8. The visuals are distributed vertically on the page with equal spacing.

9. Select Group and then Group from the ribbon of the Format tab.

10. The visuals can now be moved around on the page as a single unit.

11. Select Group and then Ungroup.

12. Stack the visuals roughly on top of one another.

13. Click on a blank area of the page and then select the top visual.

14. From the Format tab, select Send backward and then Send to back.

15. Click on a blank area of the page canvas and note that the visual is now
beneath all of the other visuals.

16. Select one of the visuals, and this time choose Selection from the ribbon of the
Format tab to expose the Selection pane.

Figure 4.51: Selection pane

17. Use the up and down icons to change the Layer order of the visuals.

18. Switch to Tab order and again use the up and down icons to change the tab
order of the visuals.

19. Close the Selection pane.

20. Space the KPI visualizations out horizontally on the page.

21. Select all of the visuals using Ctrl-A.

22. Select the Format tab, and in the ribbon choose Align | Align top and then
Align | Distribute horizontally.

23. Convert each of the KPI visuals to Card visuals.

24. Toggle the Border and Background to Off for one of the KPI visuals.

Authoring Power BI Reports

226

25. With the Card visual selected, choose the Format painter from the ribbon of the
Home tab.

26. Note that the cursor is now a paintbrush; select one of the other Card visuals.

27. Click the Format painter again and select the next Card visual; repeat for the last
Card visual until all the Card visuals no longer have a Border or a Background.

28. Click on the Insert tab and choose Shapes in the ribbon and then
Rectangle.

29. Enclose all of the Card visuals in the rectangle.

30. From the Format tab, use Send backward and then Send to back to put the
rectangle behind the Card visuals.

31. Select Ctrl-A and then choose Group | Group from the ribbon of the Format tab.

Figure 4.52: Grouped Card visuals with no Border or Background

32. From the View tab, check the options for Gridlines and Snap to grid in the Page
options section of the ribbon.

Figure 4.53: Page options in the View ribbon

33. Moving the group of visuals or resizing visuals now snaps to the grid points.

34. Deactivate Gridlines and Snap to grid.

35. Right-click the Scratch page tab and choose Hide Page.

Figure 4.54: Hide Page

Chapter 4

227

36. Repeat step 32 for the Product Tooltip and Customer Drill through pages.

37. Use the + tab to add a page called Information.

38. On the Information page, use the Insert tab of the ribbon to create a Text box similar
to the image in Figure 4.55.

Figure 4.55: Information page of report with active mailto link

39. In this case, Helpdesk was selected and made into an active mailto: link.

40. From the View tab, choose Lock objects in the ribbon.

41. Select the Europe page and save your work.

42. From the Home tab, choose Publish in the ribbon to publish the report to the Power
BI service.

How it works

Once a report is ready to be published, it is a good idea to use the Lock objects setting to
prevent unintended movement or resizing of visual elements. It is important to note, however,
that Lock objects only affects the movement or resizing of visuals by mouse and keyboard.
The X Position, Y Position, Width, and Height settings in the General section of the Format
pane can still reposition and resize visuals.

Before publishing a report, you should hide or remove pages used during development, such
as the Scratch page. Pages used for report page tooltips should also be hidden. Drillthrough
pages may or may not be hidden, depending on their utility in the report. Hidden pages will
not be shown to the report reader when viewing the report in the Power BI service.

It is often a good idea to include an Information page. Information pages can be used to
describe the data sources used in the report, helpful tips for navigating the report, and even
support information.

Positioning and alignment are key qualities in a professional report. As demonstrated in this
recipe, Power BI provides many options for ensuring that visuals are aligned and sized in
symmetrical ways. The automatic alignment guides are present whenever moving or resizing a
visual element on a page.

Authoring Power BI Reports

228

These alignment guides appear relative to the edges of other visual elements on the page,
as well as "common" edges, such as the center of the page. Alternatively, the Align options
present in the Format ribbon offer a way to mass-align many visuals simultaneously. In
addition, the distribution options present in the Align options are a great way to ensure even
spacing between similar visuals. The Gridlines and Snap to grid features available in the View
ribbon can also assist you in getting the visuals properly oriented on the page.

Shapes can better organize visuals and can improve report aesthetics relative to the borders
and backgrounds of each visual. Shapes are commonly used for report title backgrounds, and
they can also customize the plot area of charts, such as by splitting a scatter chart into four
squares, with each square having a distinct background color.

There's more...

With a report and dataset published to the Power BI service, we can now configure Q&A for
the report. To see how this works, do the following:

1. View the Germany page in the Power BI service. Hover over one of the KPI visuals and
use the pin icon to pin the visual to a dashboard.

Figure 4.56: Pin visual

2. Select New dashboard, enter a name for the dashboard, and click the Pin button.

Figure 4.57: Pin to dashboard dialog

Chapter 4

229

Q&A natural language queries are submitted from dashboards against the underlying
datasets. In order for Q&A queries to access a dataset and its dependent reports, at least one
tile of the given Q&A dashboard must be dependent on this dataset.

3. Navigate to the dashboard and note the Ask a question about your data prompt,
then click the prompt.

Figure 4.58: Dashboard Q&A

4. Test Q&A using your own questions, or one of the suggested questions; for example:
top Germany resellers by reseller net sales.

5. Click on the gear icon in the top-right corner of the Power BI service and select
Settings.

6. Select the Datasets tab and the specific dataset to be queried via Q&A.

7. Expand the Featured Q&A questions section and add questions; these questions will
now appear as suggestions when using Q&A from the dashboard.

Figure 4.59: Featured Q&A questions option in Datasets Settings

Authoring Power BI Reports

230

See also

 f Power BI best design practices for reports and visuals: http://bit.ly/2poUeMv

 f Words and terminology that Q&A recognizes: http://bit.ly/2pRIZdQ

Designing Mobile Layouts
Power BI reports can be optimized for consumption on mobile devices via the Mobile layout
view in Power BI Desktop. This layout allows users accessing reports through the Power BI
mobile applications to more easily view and interact with the most important content of these
reports on iOS, Android, or Windows mobile devices. Given the importance of the mobile
experience and the unique design considerations for reports with multiple pages, optimizing
Power BI reports for mobile access is essential.

In this recipe, the Europe and United Kingdom report pages of the example report provided
in the first recipe of this chapter are configured with the Mobile layout. Additional details for
optimizing Power BI dashboards are included in the There's more... section.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the CH4_R9.pbix file and save the file as CH4_R10.pbix.

2. Switch to the Scratch page and use Ctrl-A and then Delete to remove any visuals.

3. Check the Filters pane and ensure that only the Europe filter is active.

How to Design Mobile Layouts

To implement this recipe, use the following steps:

1. Select the Europe page.

2. From the View tab, select Mobile layout in the ribbon.

Figure 4.60: Mobile layout

http://bit.ly/2poUeMv
http://bit.ly/2pRIZdQ

Chapter 4

231

3. Populate the Mobile layout view: click and drag the visualizations to the desired
position in the device grid.

Figure 4.61: Populated Mobile layout

4. Switch to the United Kingdom page and also configure the Mobile layout.

Figure 4.62: United Kingdom Sales and Margin Mobile layout

Authoring Power BI Reports

232

5. Exit Mobile layout by clicking on Mobile layout in the ribbon of the View tab.

6. Save your work.

7. Publish the report to the Power BI service.

8. Test the mobile views using the Power BI app on your phone.

How it works

The utilization of Power BI reports often varies significantly across devices. For example, a
report page with multiple slicers and table or Matrix visuals may be appropriate for a detailed,
interactive experience on a laptop but may not lend itself well to mobile consumption. In many
scenarios, the user prefers simple, easy access to only a few high-level visuals, such as Cards
or KPIs on their mobile device, rather than a sub-optimal representation of all the visuals
included on the page.

If mobile consumption is expected, the report's authors should collaborate with users on
this layout and overall experience. Given that the Mobile layout is at the report page scope
and visuals cannot be combined from multiple pages, a dedicated report page containing
the most important measures or KPIs can be helpful. These report pages often contain only
numbers via Card, Gauge, or KPI visuals to provide a single, at-a-glance mobile view of the
most important data points.

The phone layout presents a rectangular mobile device grid and a Visualizations pane
containing the different elements of the given report page, including text boxes and shapes.
Though it is possible to design mobile-optimized layouts for each report page, for most reports
it may only be necessary to design one or two mobile layouts that highlight the most important
measures or trends of the report.

The Visualizations pane of Mobile layout makes it easy to identify the elements to include or
exclude. The visualizations snap to the grid at a default size and scale up or down on different
sizes of mobile devices.

Once saved and published back to the Power BI service, users accessing the report from
mobile devices will see the defined phone layout. In the absence of a mobile layout, mobile
users will be advised that this has not been configured, and can adjust the orientation of their
devices (to horizontal) to view the report page in a landscape view. Switching to a landscape
orientation will open the report in the standard desktop view, regardless of whether or not
the phone layout has been configured. The pages of a Power BI report can be accessed via
swiping gestures from the side of the screen or the pages icon.

Chapter 4

233

Figure 4.63: Switch to landscape view

There's more...

Many of the same interactive features of Power BI reports, such as drill mode and slicers,
are also available through Power BI mobile applications. However, given the form factor
limitations, it is important to evaluate the usability of these elements and consider whether
mobile-friendly visuals, such as Cards or KPIs, can provide the necessary visibility.

As dashboards are created and modified in Power BI, the service allows a similar mobile
optimization authoring experience for dashboards. From a dashboard in the Power BI service,
click on the Edit drop-down, as demonstrated in Figure 4.64.

Figure 4.64: Mobile view for dashboard in the Power BI service

Authoring Power BI Reports

234

The mobile view and functionality are very similar to the mobile layout in Power BI Desktop.
A pinned live page to a dashboard becomes one dashboard tile, and thus only one mobile
visual. Therefore, pinning individual report visuals to tiles in dashboards is necessary to
effectively configure mobile-optimized dashboards.

See also

 f Power BI apps for mobile devices: http://bit.ly/2q6SG8f

 f Tips for Mobile Friendly Report Development with Power BI: https://bit.ly/3wpUJX8

Creating Paginated Reports
Microsoft has made great strides to ensure that paginated reports (SSRS-style reports) are
first-class citizens in the Power BI universe. Power BI Premium supports such reports, as does
the Power BI Report Server (PBIRS). The most recent evidence that Microsoft still embraces
paginated reports for Power BI is the announcement of a planned report-building experience
within Power BI Desktop for the creation of paginated reports and the Paginated report visual
released in May 2021.

At this time, however, paginated reports must still be created in a separate tool, Power BI
Report Builder. This recipe demonstrates how to download and install Power BI Report Builder
and use this tool to build a paginated report.

Getting ready

To prepare for this recipe, follow these steps:

1. Download Power BI Report Builder from this location: https://bit.ly/2XOp1G1.

2. Open the PowerBIReportBuilder.msi file.

3. Complete the installation using the wizard.

When considering paginated reports, it is useful to confirm whether a paginated report should
indeed be developed. The following questions can help confirm that a paginated report is
required:

1. Does the report need to be printed across multiple pages?

2. Is the report more of a static operational report with just a table of data?

3. Does the report data itself need to be delivered to people via email subscriptions?

http://bit.ly/2q6SG8f
https://bit.ly/3wpUJX8
https://bit.ly/2XOp1G1

Chapter 4

235

Yes answers to one or more of these questions can help provide confirmation that a paginated
report is required.

How to Create Paginated Reports

To implement this recipe, use the following steps:

1. Run the Power BI Report Builder app.

2. Upon opening Power BI Report Builder, choose New Report and Table or Matrix
Wizard.

Figure 4.65: Report Builder Getting Started dialog

3. Choose Create a dataset and click Next.

4. Select New to create a new data source connection.

5. Choose the connection type Microsoft SQL Server.

Authoring Power BI Reports

236

6. Use the Build option to configure the data source; when finished, click the OK button.

Figure 4.66: Creating a new data source

7. Click the OK button.

8. Click the Next button.

9. Expand Views and then expand the vProducts view to select the following
fields:

 � ProductKey

 � EnglishProductName

 � EnglishProductCategoryName

 � EnglishProductSubcategoryName

 � DaysToManufacture

 � Color

10. Expand Tables, and then expand the FactInternetSales table to select the following
fields:

Chapter 4

237

 � ProductKey

 � OrderQuantity

 � UnitPrice

 � DiscountAmount

 � SalesAmount

 � TaxAmt

 � Freight

 � OrderDate

11. Expand the Relationships area, deselect Auto Detect, and press the Add
Relationship icon.

Figure 4.67: Add Relationship

12. Select vProducts for the Left Table and FactInternetSales as the Right Table.

Figure 4.68: Join tables

13. Double-click the area under Join Fields.

Authoring Power BI Reports

238

14. In the Edit Related Fields dialog box, click the Add Field icon and then choose the
ProductKey field from each table; click the OK button.

Figure 4.69: Edit related fields

15. In the Design a query dialog box, click the Next button.

16. In the Arrange fields dialog, put the following fields into the Row groups
area, in this order:

 � EnglishProductCategoryName

 � EnglishProductSubcategoryName

 � EnglishProductName

17. Put the following fields into the Values area:

 � OrderQuantity

 � UnitPrice

 � DiscountAmount

 � SalesAmount

 � TaxAmt

 � Freight

18. Leave the aggregation as Sum; this can also be changed using the drop-
down for the field in the Values area.

19. Click the Next button.

20. In the Choose the layout dialog, choose Stepped, subtotal above and click
the Next button.

21. Click Finish >> on the Preview screen.

Chapter 4

239

Figure 4.70: Report Builder design view

22. Click the Run button in the ribbon.

Figure 4.71: Report matrix

23. Save the report as CH4_R11.rdl.

How it works

Report Builder is the newest report-building tool in a long line of such tools that use the
Report Definition Language (RDL). RDL files are actually XML files. Here is the first part of the
XML for the report just created:

<?xml version="1.0" encoding="utf-8"?>
<Report MustUnderstand="df" xmlns="http://schemas.microsoft.com/sqlserver/
reporting/2016/01/reportdefinition" xmlns:rd="http://schemas.microsoft.com/
SQLServer/reporting/reportdesigner" xmlns:df="http://schemas.microsoft.com/
sqlserver/reporting/2016/01/reportdefinition/defaultfontfamily">
 <df:DefaultFontFamily>Segoe UI</df:DefaultFontFamily>

Authoring Power BI Reports

240

 <AutoRefresh>0</AutoRefresh>
 <DataSources>
 <DataSource Name="DataSource1">
 <ConnectionProperties>
 <DataProvider>SQL</DataProvider>
 <ConnectString>Data Source=localhost\MSSQLSERVERDEV;Initial
Catalog=AdventureWorksDW2019</ConnectString>
 <IntegratedSecurity>true</IntegratedSecurity>
 </ConnectionProperties>
 <rd:SecurityType>Integrated</rd:SecurityType>
 <rd:DataSourceID>a781f7ac-7bae-4de2-bf08-240a90e5e558</
rd:DataSourceID>
 </DataSource>
 </DataSources>
 <DataSets>
 <DataSet Name="DataSet1">
 <Query>
 <DataSourceName>DataSource1</DataSourceName>

RDL files have been used in conjunction with SSRS since SSRS was first released. Power
BI Report Server and Power BI Premium both support RDL files. If you have either Power BI
Report Server or Power BI Premium, you can use the Publish button in the ribbon of the Home
tab to publish the report.

Unlike Power BI Desktop, you do not import data into an RDL file. Datasets comprise the data
source, queries, and field definitions stored within the RDL file. Thus, running a report always
makes one or more queries back to the data source(s).

There's more...

There is a tremendous amount of functionality and capability present in Power BI Report
Builder—functionality that is far beyond the scope of a single recipe. However, some of
the highlights include the ability to use Power BI datasets in the service as data sources,
numerous available visual elements, calculated fields, and formatting.

When adding a Data Source, the option exists to Add Power BI Dataset Connection. After
signing into the Power BI service, you can select any dataset in any workspace to which
you have access. Once you have added the Power BI dataset data source, you can create a
dataset with that data source. A Query Designer window is available for constructing queries
against the dataset.

Chapter 4

241

Figure 4.72: Query Designer

Power BI Report Builder includes a number of visual elements available in the Insert menu,
including:

 f Table

 f Matrix

 f List

 f Column Chart

 f Line Chart

 f Pie Chart

 f Bar Chart

 f Area Chart

Authoring Power BI Reports

242

 f Gauge

 f MAP

 f ESRI Shapefile

 f Data Bar

 f Sparkline

 f Indicator

Also available are elements such as Text Box, Image, Line, and Rectangle. Reports can also
include Subreports, Headers, and Footers.

Calculated fields can be created using numerous functions and operators; the following two
formulas create calculated fields for TaxAndFreight and Year, respectively:

=Fields!TaxAmt.Value+Fields!Freight.Value
=Year(Fields!OrderDate.Value)

Figure 4.73: Dataset Properties

You can format cells by clicking on the cell in the grid and then using the ribbon of the Home
tab to format information that appears in the column and row. For example, row headers can
be put in bold and monetary fields set to Currency.

Chapter 4

243

Figure 74: Paginated report

See also

 f Power BI Report Builder: http://bit.ly/3rLCg3I

 f Sample Power BI paginated reports: http://bit.ly/2PonXVE

 f What are paginated reports in Power BI Premium?: http://bit.ly/31F4tOS

Conclusion
Power BI reports serve as the foundation for dashboards, data exploration, and content
collaboration and distribution in Power BI. Power BI Desktop provides data visualization
features and options in abundance, enabling the construction of highly targeted and user-
friendly reports across devices. In this chapter, we developed and described the most
fundamental report visualizations and design concepts. Additionally, guidance was provided
to enhance and control the user experience when interacting with Power BI reports and
consuming them on Windows and mobile devices.

http://bit.ly/3rLCg3I
http://bit.ly/2PonXVE
http://bit.ly/31F4tOS

245

5
Working in the Service

"A dashboard is really a content aggregator. It lets you bring together lots of different
data sources in one place so you can have a 360 degree view of your business on
one dashboard."

- Adam Wilson, group program manager for the Power BI service

Power BI dashboards are collections of tiles created in the Power BI service, representing the
visuals from one or many Power BI reports and, optionally, other sources, such as Excel and
SQL Server Reporting Services (SSRS). Dashboards are best utilized to centralize essential
key performance indicators (KPIs), measures, and trends in a visual- and mobile-optimized
layout. Additionally, dashboards can provide an entryway to other dashboards or reports and
are further enhanced with URL links, streaming data, images, web content, and interactivity.

In this chapter, Power BI dashboards are constructed to provide intuitive, at-a-glance
monitoring of critical measures and high-impact business activities. The unique features of
dashboards, such as Q&A natural language queries, data alerts, and the integration of other
report types—such as Excel and SSRS—are also included. Finally, the creation of additional
content objects, such as streaming datasets and dataflows, is also included.

In this chapter, we will cover the following recipes:

 f Building a Dashboard

 f Preparing for Q&A

 f Adding Alerts and Subscriptions

 f Deploying Content from Excel and SSRS

 f Streaming Datasets

 f Authoring Dataflows

Working in the Service

246

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop and a Power BI service account.

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing it are available here: http://bit.ly/2OVQfG7.

 f Files for this chapter and can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition.

Building a Dashboard
With a robust dataset and multiple reports created in Power BI Desktop, dashboards can
be developed in the Power BI service to consolidate the most valuable KPIs, measures, and
visualizations onto a single pane of glass. Additionally, dashboards provide an access point
to the detailed reports supporting the tiles and are optimized for mobile access through the
Power BI mobile application.

Power BI dashboards are commonly used by executives and senior managers who desire
an intuitive, consolidated view of relevant KPIs and visualizations. In many cases, these
stakeholders will almost exclusively rely on dashboards rather than the more detailed and
interactive reports underlying the dashboards. Such dashboards are often sourced from
reports built against multiple datasets reflecting different business processes and functional
areas such as Accounting and Supply Chain. Enterprise dashboards typically utilize card and
KPI visuals to focus on strategic objectives and maximize canvas space. Given the scale and
breadth of data sources for a modern enterprise, a significant level of coordination is required
to ensure that all datasets supporting the dashboard represent an appropriate level of data
quality and governance.

The report design planning process described in Chapter 4, Authoring Power BI Reports,
is directly applicable to dashboards as well. It is important to confirm that the existing
data model (or models) support the required business questions and metrics exposed in a
dashboard.

In this recipe, a sales dashboard is created for the North American sales management team.
Four reports have been built against the same Power BI dataset (data model) and the visuals
from these reports are pinned as tiles to the sales dashboard.

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 5

247

Figure 5.1: North America sales dashboard structure: 4 reports and 1 dataset

Getting Ready

To prepare for this recipe, follow these steps:

1. Log in to the Power BI service.

2. Click on Workspaces in the left navigation pane and select Create a workspace at
the bottom of the fly-out. If you cannot create a workspace, check with your Power BI
administrator, as they may have disabled this option.

Figure 5.2: Create a workspace

3. In the Create a workspace dialog, enter a Workspace name and click Save.

4. In the center area, click Add content.

5. In the Get Data dialog, click the Get button for Files.

Figure 5.3: Get Data, Files

Working in the Service

248

6. Choose Local File.

7. Select the CH5_R1_SalesAndFinanceDataset.pbix file and click Open.

8. Open the CH5_R1_RegionMonthlyReport.pbix file in Power BI Desktop.

9. Sign in to the Power BI service if necessary, and in the Unable to connect dialog,
choose Edit. If you receive an error, contact your administrator to allow a connection
to live datasets.

10. On the Select a dataset to create a report page, choose the CH5_R1_
SalesAndFinanceDataset, and then click the Create button.

11. Save and Publish the report to the service in the Workspace created in step 3.

12. Repeat steps 8, 9, 10, and 11 for CH5_R1_CountryMonthlyReport.pbix, and CH5_R1_
MarginAnalysisReport.pbix.

If you are unable to create a Workspace in the Power BI service, you can use My workspace
instead. After completing these steps, the reports all have a live connection back to the
dataset, CH5_R1_SalesAndFinanceDataset.

How to Build a Dashboard

To implement this recipe, use the following steps:

1. In the Power BI service, select the workspace created in the Getting started section of
this recipe.

2. In the central area, click New and then choose Dashboard.

Figure 5.4: Create a new dashboard

3. In the Create dashboard dialog, enter North American Sales for Dashboard name
and then click Create.

4. A blank dashboard is created; click on the workspace in the left navigation pane and
note that the North American Sales dashboard is shown in the list.

5. In the service, open the CH5_R1_RegionMonthlyReport report and navigate to the
North America page.

Chapter 5

249

6. Hover your mouse over the Monthly Internet Sales KPI visualization and click the pin
visual icon.

Figure 5.5: Pin visual

7. In the Pin to dashboard dialog, choose Existing dashboard, select North American
Sales, and then click the Pin button.

Figure 5.6: Pin to dashboard

8. Pin the Monthly Internet Margin % KPI visualization to the North American Sales
dashboard.

9. Open the CH5_R1_MarginAnalysisReport report in the service.

10. In the Sales Group slicer, choose North America.

11. In the Calendar Month slicer, choose 2013-Dec, 2013-Nov, 2013-Oct, 2013-Sep,
2013-Aug, and 2013-Jul.

12. Pin the Net Sales vs. Last Year clustered column chart visualization to the North
American Sales dashboard.

13. Open the CH5_R1_CustomerActivityReport report in the service.

14. In the Sales Group slicer, choose North America.

15. In the Calendar Month slicer, choose 2013-Dec, 2013-Nov, 2013-Oct, 2013-Sep,
2013-Aug, and 2013-Jul.

16. Pin the Monthly Customers KPI visualization to the North American Sales
dashboard.

Working in the Service

250

17. Pin the YTD Net Sales vs. Last Year gauge visualization to the North American Sales
dashboard.

18. Pin the Customer Count by Region stacked column chart visualization to the North
American Sales dashboard.

19. Pin the YTD Net Sales by Region clustered bar chart visualization to the North
American Sales dashboard.

20. Open the CH5_R1_CountryMonthlyReport report in the service.

21. Navigate to the United States report page.

22. Pin the filled map visualization to the North American Sales dashboard.

23. Navigate to the Canada report page.

24. Pin the Filled map visualization to the North American Sales dashboard.

25. Open the North American Sales dashboard in the service.

26. Move and resize the dashboard tiles such that the most important visuals are in the
top-left corner.

27. On the Filled map for the United States, hover over the tile and select the ellipsis (…)
from the upper-right corner.

28. Choose Edit details.

29. Edit the Title to be Internet Net Sales by State, remove the Subtitle text, and click
Apply.

30. Repeat steps 27 to 29 for the Canada map using Internet Net Sales by Province as
the Title.

Figure 5.7: North American Sales dashboard

Chapter 5

251

31. Just above the main dashboard area, select Edit and then Add a tile.

Figure 5.8: Dashboard Edit menu

32. In the Add a tile panel, choose Image, then click Next.

33. In URL, place the following link: https://bit.ly/3mhzBxv.

34. Check the Set custom link checkbox.

35. Set Link type to External link and URL to http://www.adventure-works.com.

Figure 5.9: Image tile settings

The dashboard provides an overview of the measures most important
to the North America sales team. You can access any of the four
underlying reports by clicking on a dashboard tile.

Note that resizing and moving dashboard tiles can be tricky at first.
Hovering over a dashboard tile with your cursor displays a single
resizing handle in the bottom-right corner of the tile. Click on this
resizing handle to resize the tile. Tiles resize to preconfigured tile sizes
displayed by the gray box displayed around the tile while resizing.
When moving a tile, click and hold on the tile to move the tile around
on the dashboard. Other tiles will automatically move depending upon
where you place the tile. Release the mouse button to place the tile.

https://bit.ly/3mhzBxv
http://www.adventure-works.com

Working in the Service

252

36. Click the Apply button.

37. Add another tile, this time a Text box.

38. Add text to the Content area; notice that you can use the Insert link icon to add
active links.

Figure 5.10: Text box tile settings

39. Click the Apply button.

40. From the Edit menu of the report, choose Mobile view.

41. In the Unpinned tiles pane, pin the new tiles to the Phone view.

42. Drag and drop tiles to reposition or resize them using the sizing handle at the lower
right.

Figure 5.11: Dashboard Mobile view

Chapter 5

253

43. When finished, at the upper right, select the dropdown for Phone view and switch to
Web view.

How it works

It is important to understand that dashboard tiles maintain the filter context at the time the
report visual is pinned. This is often a source of confusion for users and designers alike, as
depending upon the design, a tile may appear to not update. For example, in the recipe, the
last six months of 2013 were selected in the slicer before pinning the Net Sales vs. Last Year
tile. Assuming that December 2013 is "today," when the data comes in for January 2014, this
Net Sales vs. Last Year tile would not reflect data for January 2014. The tile would have to be
unpinned and re-pinned with the new month included. To avoid situations like this, use Relative
Date slicers/filters or base filtering on a flag field column that returns 1 if data is within a
chosen range and 0 otherwise. This can be done in DAX or M; a DAX example is as follows:

6MonthFlag Column =
 VAR __Today = TODAY()
 VAR __EOM6Months = EOMONTH(__Today,-6)
 VAR __MinDate = DATE(YEAR(__EOM6Months),MONTH(__EOM6Months),1)
RETURN
 IF('Dates'[Date] >= __MinDate && 'Dates'[Date] <= __Today,1,0)

As demonstrated, dashboard tiles do not have to come from reports and can be added
manually to include Image, Video, Text box, Web content, and Streaming data. In addition,
a single dashboard can have tiles that come from reports that do not share the same
dataset. Thus, if each of the four recipes in this model used different datasets, the exact
same dashboard could still be created, as long as the reports all existed within the same
workspace. In large enterprise organizations with many dashboards and reports, dashboards
are sometimes used purely as a navigation device. By adding tiles of images or text, and
using the ability to set custom links, a dashboard could be configured simply to link to other
organizational dashboards.

There's more

By default, the tiles of a dashboard are independent of each other, and cannot be filtered or
interacted with, such as when cross-filtering between visualizations. Additionally, modifications
to reports after visuals have been pinned to dashboards, such as filter and layout changes,
are not automatically reflected in the dashboards. In many scenarios, the users consuming
a dashboard want to retain the interactive filtering experience of Power BI reports from
within their dashboard, and so it can be helpful to automatically synchronize reports with
dashboards. Luckily, Power BI supports the pinning of entire report pages to a dashboard. To
see how this works, do the following:

1. Open the report CH5_R1_RegionMonthlyReport in the service.

Working in the Service

254

2. From the menu bar of the report, click the ellipsis (…) and choose Pin to a
dashboard.

Figure 5.12: Pin to a dashboard

3. After selecting Pin to a dashboard, choose Existing dashboard, select the North
American Sales dashboard, and click the Pin live button.

4. Navigate to the North American Sales dashboard, scroll down, and note that the
report is now pinned as a tile.

The user of the dashboard can interact with the region and date slicers and other visuals
on the live page. Given the size of the report page, it is generally not a good idea to pin a
live report page to the Mobile view. The ellipsis at the top right of the live page tile includes
the option Go to report link to access all pages of the live page report. Modifications to the
underlying report will be reflected on the pinned live page. The other visuals link to their report
pages.

See also

 f Intro to dashboards for Power BI designers: http://bit.ly/31KvIrv

 f Tips for designing a great Power BI dashboard: http://bit.ly/2PspxG3

 f Add images, videos, and more to your dashboard: https://bit.ly/31QypHP

Preparing for Q&A
Q&A can be a powerful method of enabling users to explore datasets, enabling them to
directly submit their own questions in both the Power BI service and through the Power BI
mobile application. The tables and measures of each dataset, represented by a tile on the
dashboard, are available to answer Q&A questions.

http://bit.ly/31KvIrv
http://bit.ly/2PspxG3
https://bit.ly/31QypHP

Chapter 5

255

This recipe provides data model design and metadata tips to prepare a dataset for Q&A.
Additionally, synonyms are added to a Power BI Desktop data model to improve the accuracy
of natural language queries.

Getting ready

To prepare for this recipe:

 f Complete the first recipe in this chapter, Building a Dashboard.

How to Prepare for Q&A

To implement this recipe, use the following steps:

1. Open the North American Sales dashboard.

2. At the upper left of the dashboard, click Ask a question about your data.

Figure 5.13: Power BI Q&A

3. Type the following: wholesaler net sales by country.

4. Notice that the word wholesaler is double-underlined in red, net sales is underlined
in blue, and country is underlined with a dashed red line.

Figure 5.14: Showing results for net sales by reseller country

5. Hover over one of the map bubbles displayed and notice that the tooltip reads Total
Net Sales, and not Reseller Net Sales.

6. Click the thumbs-down icon in the lower-right corner of the screen.

7. Open the file CH5_R1_SalesAndFinanceDataset.pbix.

8. Change to the Model view.

9. Click Q&A setup in the ribbon of the Home tab.

Working in the Service

256

10. In the Q&A setup dialog, click the Review questions tab and notice that the question
asked is present in the list. Note that you may have to wait a few minutes, using the
refresh icon for the question to display.

Figure 5.15: Review questions

11. Click the pencil icon under the Fix needed column. Note that if the question does not
appear after a few minutes, simply proceed to the Teach Q&A tab, enter the question
wholesaler net sales by country, click the Submit button, and proceed to Step 13.

12. The Teach Q&A tab is opened with the question displayed.

13. The word "wholesaler" is flagged between two handles; in Define the terms Q&A
didn't understand, type reseller in the input field (see Figure 5.16).

Figure 5.16: Adding synonym for reseller

14. Click Save, but notice that the map visual is still not correct.

15. Drag the right handle (the red stick and circle) to include the entire phrase
wholesaler net sales and click Submit.

Figure 5.17: Adding term for wholesaler net sales

16. In the Define the terms Q&A didn't understand dialog box, type reseller net sales
in the input field and notice that the map updates; the correct information is now
displayed in the tooltip.

Chapter 5

257

17. Click the Save button.

18. Click the Manage terms tab and notice that wholesaler and wholesaler net sale are
now defined as terms with the correct definitions.

19. Click on the Field synonyms tab, expand the Resellers table and note that the
wholesaler synonym has been added for the Resellers table.

Figure 5.18: Table synonym

20. Expand the Reseller Sales table, scroll down, and see that the wholesaler net sale
synonym has been added to the Reseller Net Sales measure.

Figure 5.19: Measure synonym

21. Close the Q&A setup dialog using the close button in the upper-right corner.

How it works

Power BI Q&A supports Import mode and live connections to Azure Analysis Services, SQL
Server Analysis Services (with a gateway), and Power BI datasets. RLS is supported for those
data sources. Additionally, Q&A supports DirectQuery to SQL DirectQuery sources, such as
Azure SQL Database, Azure Synapse Analytics, and SQL Server 2019. Q&A is not supported
for composite data models or Reporting Services.

Synonyms are a crucial part of making sure that business users find the Q&A experience
easy and intuitive—as well as getting the right answers to their questions. Synonyms allow
a semantic layer to be added to the data model that uses business terminology instead of
purely just the names of tables, columns, and measures within the model. Tables, columns,
and measures can be included or excluded from Q&A and can have synonyms defined.

Working in the Service

258

Some general tips for setting up a Q&A include the following:

 f Revise any columns with incorrect data types, such as dates or numbers that are
stored as text data types.

 f Set the default summarization for dimension columns to Do not summarize.

 f Associate geographical columns, such as states and zip codes, with a related data
category.

 f Split columns containing multiple values into distinct columns.

 f Normalize tables such that entities within the tables are moved to their own distinct
table; for example, columns of a vendor in a products table can be moved to a vendor
table.

 f Q&A queries only work with the active relationships of a model. Consider dedicated
role-playing dimensions with active relationships. Alternatively, consider de-
normalizing an inactive relationship dimension into a fact table.

 f Define the top or most common natural language questions and test for accuracy in
Power BI.

 f Identify the gaps between the names of data model entities and the names used in
natural language queries.

 f Focus on entities with longer and less intuitive names that are not used casually by
the users.

 f Avoid reusing the same synonym across multiple entities, as this can lead to incorrect
query results.

 f Ensure that the primary synonym for each entity of the model is unique.

There's more

Q&A may not be appropriate for certain dashboards and datasets. For example, the Q&A
search bar Ask a question about your data may be a distraction to users who only want
to view the KPIs and other information as presented. Additionally, if the dataset requires a
gateway, such as an on-premises SSAS server or a DirectQuery Power BI Desktop model to
an on-premises source, Q&A may be avoided, given the additional (and potentially inefficient)
queries and performance considerations.

To enable or disable Q&A, follow these steps:

1. In the Power BI service, access the app workspace containing the dashboard.

2. Use the three vertical dots and click Settings.

Chapter 5

259

Figure 5.20: Dashboard settings

3. Check or uncheck the box for Show the Q&A search box on this dashboard.

Figure 5.21: Show the Q&A search box on this dashboard

The entire semantic layer definition that drives Q&A can be exported, modified, and imported
via Power BI Desktop using the Linguistic schema option in the ribbon of the Home tab
while in Model view. The exported file is a YAML file. YAML (YAML Ain't Markup Language) is a
human-readable text file used for data serialization. The portion of the YAML file after adding
the wholesaler net margin synonym looks like the following:

 reseller_sale.reseller_net_sales:
 Definition:
 Binding: {Table: Reseller Sales, Measure: Reseller Net Sales}
 State: Generated
 Terms:
 - reseller net sales: {State: Generated}
 - wholesaler net sale: {LastModified: '2021-04-05T16:58:30.2996117Z'}
 - sales: {State: Generated, Weight: 0.97}
 - net sales: {State: Generated, Weight: 0.97}
 - sale: {State: Suggested, Weight: 0.97}
 - net sale: {State: Suggested, Weight: 0.97}
 - reseller net sale: {Type: Noun, State: Suggested, Weight: 0.739}
 - wholesaler net auction: {Type: Noun, State: Suggested, Weight: 0.492}
 - net auction: {Type: Noun, State: Suggested, Weight: 0.485}

Working in the Service

260

 - wholesaler net transaction: {Type: Noun, State: Suggested, Weight:
0.482}
 - auction: {Type: Noun, State: Suggested, Weight: 0.476}
 - net transaction: {Type: Noun, State: Suggested, Weight: 0.475}
 - wholesaler net deal: {Type: Noun, State: Suggested, Weight: 0.468}
 - wholesaler net trade: {Type: Noun, State: Suggested, Weight: 0.468}
 - wholesaler net vending: {Type: Noun, State: Suggested, Weight: 0.468}
 - wholesaler net retailing: {Type: Noun, State: Suggested, Weight:
0.468}

See also

 f Use Power BI Q&A to explore and create visuals: http://bit.ly/2QYa7JN

 f Best practices to optimize Q&A: http://bit.ly/3cSddYp

 f Limitations of Power BI Q&A: http://bit.ly/2PtCrDL

Adding Alerts and Subscriptions
Alerts can be configured on the tiles of dashboards to provide a notification that a specific
condition has been met. Alert rules and options can be managed in the Power BI service, and
notifications can be limited to the notification center in Power BI or shared via email. Data-
driven alerts enhance the value of Power BI dashboards, as they immediately bring attention
to significant events or outcomes as the dataset supporting the dashboard tile is refreshed.
Power BI dashboards and reports also support subscriptions. Subscriptions send images and
links of refreshed reports and dashboards directly to user inboxes according to the defined
schedule. Additionally, paginated report subscriptions can be configured to attach report data
to subscription emails in common file formats such as Excel and PDF.

This recipe demonstrates how to create and configure alerts and subscriptions, as well as how
to use this functionality to unlock even more powerful functionality through the use of Power
Automate.

Getting ready

To prepare for this recipe:

 f Complete the first recipe in this chapter, Building a Dashboard.

http://bit.ly/2QYa7JN
http://bit.ly/3cSddYp
http://bit.ly/2PtCrDL

Chapter 5

261

How to Add Alerts and Subscriptions

To implement this recipe, use the following steps:

1. Open the North American Sales dashboard in the Power BI service.

2. Hover over the Monthly Customers KPI tile, click the ellipsis (…) in the upper-right
corner, and select Manage alerts.

3. In the Manage alerts pane, click Add alert rule.

4. Edit Alert title, Condition, and Threshold and ensure that the Send me email, too
checkbox is selected.

Figure 5.22: Alert creation

Working in the Service

262

5. Click the Save and close button to save the alert.

6. Create another alert on the same KPI visual named Monthly Customers Above
1100, with the appropriate Condition and Threshold set.

7. In the ribbon for the dashboard, choose Subscribe.

Figure 5.23: Dashboard ribbon

8. Click the Add new subscription button.

9. Edit the subscription settings.

Figure 5.24: Subscription creation

10. Click the Save and close button.

Chapter 5

263

11. Click Subscribe in the ribbon again.

12. This time, expand the subscription just created.

13. Click Run Now to test the subscription (see Figure 5.24).

14. Within minutes, you should receive an email from Microsoft Power BI, with a subject
line of the name of your subscription, and an email body similar to that shown in
Figure 5.25.

Figure 5.25: Subscription message body

15. In the Power BI service, click the gear icon in the upper-right corner and choose
Settings.

16. Click the Alerts tab and note that you will have alerts appear.

Figure 5.26: Alert management

Working in the Service

264

17. Click the Subscriptions tab and note that your subscription has also appeared.

Figure 5.27: Subscription management

How it works

Alerts can only be set on dashboard tiles that surface a single numeric metric, like Card
visuals, KPI visuals, and Gauge visuals. Alerts can be set on multiple different dashboard
tiles, and multiple alerts can be configured for the same dashboard tile, with each alert having
a separate condition and/or threshold—such as a maximum and minimum accepted value.
Power BI evaluates the alert rule when the dataset supporting the dashboard is refreshed.
If the alert is triggered, an icon and message will appear in the notification center in the
Power BI service (a bell icon in the upper-right corner) containing a link to the dashboard tile
configured for the alert. In addition, if the email option is selected, an email will also be sent
regarding the alert. Data alerts can also be set and viewed in the Power BI mobile apps—
Power BI mobile also provides access to notifications.

Subscriptions can be set on either dashboards or reports. When setting up a subscription
for a report, you must choose the Report page for the subscription. Subscriptions run at
the appointed time, generating a PNG image file that is attached to an email message.
Subscription frequency can be set to Hourly, Daily, Weekly, or Monthly. Hourly and Weekly
subscriptions allow the choosing of individual days of the week. A single subscription can
support multiple email addresses, allowing Power BI admins to configure subscriptions for
other users.

There's more

Alerts in the Power BI service are limited to the sending of emails only to the creator of that
alert. However, Power Automate can be used to notify others via email, or even trigger complex
workflows. To see how this works, carry out the following:

1. In the Power BI service, click the gear icon in the upper-right corner and choose
Settings.

2. Choose the Alerts tab and click Edit for the Monthly Customers Above 1100 alert.

3. In the Manage alerts pane at the bottom, click Use Microsoft Power Automate to
trigger additional actions.

Chapter 5

265

4. A new tab is opened for Power Automate for a template called Trigger a flow with a
Power BI data-driven alert.

5. Click the Try it now button.

6. If necessary, sign in to your work account.

Figure 5.28: Trigger a flow with a Power BI data-driven alert

7. Click the Continue button.

8. From the Alert Id dropdown, choose the specific Power BI data alert to trigger
the flow, and then click the New Step button.

9. Find the Mail action and select it.

10. Configure the email notification using Dynamic content and click the Save button.

Figure 5.29: Configure custom email notification for alert

11. Select Save to save, and Test to test the flow. Select the Manually option.

12. Verify that the flow appears when selecting the My flows tab in the left navigation
pane.

Working in the Service

266

Given the value of alerts to stakeholders and the low effort required in creating and managing
alerts and notifications in Power BI and Power Automate, dedicated alert dashboards can be
developed to reduce the amount of analysis and monitoring required.

See also

 f Set data alerts on the Power BI service dashboards: http://bit.ly/2R4OebL

 f Subscribe yourself to reports and dashboards: http://bit.ly/3fJphwU

 f Subscribe others to your reports and dashboards: http://bit.ly/3wynW2a

Deploying Content from Excel and SSRS
Dashboards in Power BI can consolidate much more than just Power BI report visuals.
Microsoft Excel objects—such as pivot tables, charts, and workbook ranges—and SSRS report
items can also be pinned as dashboard tiles. This integration with Power BI allows teams to
utilize existing reports and skills, and to leverage the unique capabilities of these tools as part
of overall BI solutions.

In this recipe, a pivot table and pivot chart from an Excel workbook are integrated into
an existing Power BI dashboard. Additionally, an SSRS report item is also pinned to this
dashboard. For more advanced integration examples, see Chapter 13, Integrating Power BI
with Other Applications.

Getting ready

To prepare for this recipe, follow these steps:

1. Complete the first recipe in this chapter, Building a Dashboard.

2. Install Analyze in Excel from the Power BI service. See Chapter 1, Configuring Power
BI Tools, for details on this process.

3. Configure the Report Server for Power BI by opening Reporting Server Configuration
Manager, clicking on the Power BI Integration tab, and selecting Register with
Power BI.

How to Deploy Excel and SSRS Content

To implement this recipe, use the following steps:

1. Open the report CH5_R1_CountryMonthlyReport in the service.

2. In the Report ribbon, select Export and then Analyze in Excel.

http://bit.ly/2R4OebL
http://bit.ly/3fJphwU
http://bit.ly/3wynW2a

Chapter 5

267

3. Open the CH5_R1_SalesAndFinanceDataset.xlsx file from your Downloads folder.

4. In the Protected View warning box, click Enable Editing.

5. In the Security Warning box, click Enable Content.

6. Select a cell in the PivotTable1 area.

7. In the PivotTable Fields pane, find the Internet Sales group with a
summation icon in front of it and place Internet Net Sales in the Values area.

8. Scroll down to find the Dates group with the table icon in front of it and drag and drop
the Year Month field into the Rows area.

Figure 5.30: Pivot table configuration

9. Select Insert Slicer from the ribbon of the Analyze tab.

10. In the Insert Slicers dialog, select Country from the Customers table and
then click OK.

11. Select a cell in the pivot table and then choose PivotChart from the ribbon of
the Analyze tab.

12. In the Insert Chart dialog, choose Column, then Clustered Column, and
click OK.

13. Select United States in the slicer.

Working in the Service

268

14. Save the Excel file to your OneDrive for Business directory as CH5_R4_Workbook and
close Excel.

15. In the Power BI service, open the workspace with the North American Sales
dashboard.

16. In the lower-left corner, choose Get data.

17. In the Get Data dialog, select the Get button in the Files section under
Create new content.

18. Choose OneDrive – Business.

19. Select the Excel file and then click the Connect button.

20. Under Connect, manage, and view Excel in Power BI, click the Connect
button.

21. The Excel file name now appears in the Workbooks area of the workspace.

22. Select CH5_R4_Workbook.

23. Select PivotChart.

24. In the upper-right corner, select the pin icon.

25. Pin the dashboard to the North American Sales dashboard.

Figure 5.31: Pin Excel PivotChart to dashboard

26. Navigate to the North American Sales dashboard to view the pinned PivotChart tile
at the bottom of the dashboard.

How it works

This recipe demonstrates how to publish the workbook from Excel to Power BI and then pin
items from the workbook report in the Power BI service. Using this method, once published,
the workbook cannot not be refreshed. This means that after pinning items directly from
the Excel workbook to the dashboard, the connection to the dataset hosted in the Power BI
service must be periodically refreshed, with the tile being removed and re-pinned.

Chapter 5

269

To avoid this manual and local refresh process, Excel report visuals can be built on top of an
Excel data model; this Excel workbook can be published to the Power BI service. Published
workbooks, containing data models, can be configured for a scheduled refresh in the Power BI
service, and their dependent reports will be updated to reflect these refreshes.

Recently, Microsoft added the ability for connected PivotTable refresh in Excel for the web.
This means that PivotTables connected to Power BI inside Excel for the web can now be
refreshed. A connected PivotTable can be created either via the service by choosing the
Analyze in Excel option for a report or in Excel by choosing the From Power BI option when
inserting a PivotTable.

There's more

It is also possible to pin SSRS report elements to Power BI dashboards. To see how this works,
do the following:

1. Create or identify the SSRS report to support the dashboard.

2. Publish this report to the SSRS report server, or open this report on the report server.

3. From the report server browser window, click the Power BI icon and sign in
with the appropriate Power BI account.

4. Click on the SSRS report item to pin:

Figure 5.32: Pin to Power BI from SSRS 2016

5. From the Pin to Power BI Dashboard dialog, choose the workspace and dashboard
to pin the item to.

The update frequency creates an SSRS subscription to keep the tile updated in Power BI.
You can also pin charts, gauge panels, maps, and images from SSRS reports to Power BI
dashboards, provided these items are within the report body (and not the page header or
footer). You cannot currently pin tables, matrices, or list report items from SSRS reports.

Working in the Service

270

SSRS and Excel are now much more deeply integrated in Power BI than the first edition of
this book. In the case of SSRS, almost all of the same granular, 'pixel perfect' report design
features are supported with paginated reports for Power BI premium customers. Likewise,
Excel reports built with external data connections to Power BI datasets can also be published
to Power BI and included in the same Power BI apps alongside paginated and Power BI
reports.

See also

 f Pin a tile to a Power BI dashboard from Excel: http://bit.ly/2PI6RC1

 f Power BI Report Server Integration (Configuration Manager): http://bit.ly/3sTGGqA

 f Pin paginated report items to Power BI dashboards: http://bit.ly/3rVQfE7

 f Connected PivotTable refresh in Excel for the web is now 100% available to Office
tenants: https://bit.ly/3yM3kmS

Streaming Datasets
Streaming datasets allow Power BI dashboards to display real-time data. Real-time data
sources are generally Internet of Things (IoT) devices, but can also include such things as
social media applications and stock prices.

This recipe demonstrates how to use real-time data in a Power BI dashboard.

Getting ready

To prepare for this recipe:

 f Complete the first recipe in this chapter, Building a Dashboard.

How to Stream Datasets

To implement this recipe, use the following steps:

1. Navigate to the workspace where North American Sales is located in the service.

2. Under the workspace name, select New, and then Streaming dataset.

http://bit.ly/2PI6RC1
http://bit.ly/3sTGGqA
http://bit.ly/3rVQfE7
https://bit.ly/3yM3kmS

Chapter 5

271

Figure 5.33: Create a new Streaming dataset

3. In the New streaming dataset pane, choose PUBNUB and click Next.

4. Name the dataset Streaming Sensor Data.

5. Use the following Sub-key: sub-c-5f1b7c8e-fbee-11e3-aa40-
02ee2ddab7fe.

6. Use the following Channel: pubnub-sensor-network.

7. Click the Next button.

8. The next page shows the schema of the dataset; click the Create button.

9. The Streaming Sensor Data dataset appears in the workspace.

10. Navigate to the North American Sales dashboard.

Working in the Service

272

11. In the dashboard ribbon, choose Edit and then Add a tile.

12. In the Add a tile pane, choose Custom Streaming Data from the REAL-TIME DATA
area.

13. Click the Next button.

14. Under YOUR DATASETS, choose Streaming Sensor Data, and click Next.

15. For Visualization type, choose Line chart.

16. For the Axis, use timestamp, and for Values use ambient_temperature.

17. Click the Next button.

18. Enter the Title name as Temperature for the tile and click the Apply button.

19. Scroll down in the dashboard to find the Temperature tile.

How it works

There are actually three types of streaming datasets in Power BI:

 f Push

 f Streaming

 f PubNub

Push datasets have an external program that pushes data into Power BI; the data is stored
within Power BI as a dataset. Push datasets store the information permanently in Power BI,
which can then be used to create reports. With push datasets, visuals are built via reports
and then pinned to dashboards. Push datasets are limited to 1 request per second, 16 MB
per request, and 1 million rows per hour.

Streaming datasets push data to Power BI, but do not store data within a Power BI dataset.
Therefore, streaming datasets cannot be used in reports—only dashboards. Streaming
datasets are limited to 5 requests per second and 15 KB per request but have no limits on
the number of rows processed per hour.

PubNub datasets also do not store data in Power BI, and therefore can only be used on
dashboards. There are no limits regarding the requests sent per second, or the amount of
data sent per request, because the Power BI web client uses the PubNub SDK to read existing
PubNub data streams, instead of the information being pushed to Power BI.

Push and streaming datasets can be created using the Power BI REST API, the API option in
the service when creating a new streaming dataset via Azure Stream Analytics.

Chapter 5

273

Figure 5.34: New streaming dataset options

When creating a streaming dataset using the API option in the service, the configuration
screen includes a toggle for Historic data analysis. This toggle is Off by default, and will
create a streaming dataset—toggling Historic data analysis to On creates a push dataset.
Once the PUSH/STREAMING dataset is created, the Push Datasets functions of the Power BI
REST API can be used to push data into the dataset.

The Azure Stream option in the Power BI service is not fully implemented at the time of
writing, but when implemented will provide an interface for integrating Azure Stream Analytics
data into Power BI. Currently, you must activate the Power BI integration from Azure Stream
Analytics. Power BI is an output option for Azure Stream Analytics data. Setting Power BI as
an output from Azure Stream Analytics creates a Power BI dataset that can take advantage of
both push and streaming. By default, this dataset stores 200,000 rows of data, and data is
expired via first-in-first-out (FIFO).

There's more

Another option when it comes to real-time or near-real-time data is to use Automatic page
refresh. Automatic page refresh is used on report pages to set a refresh interval for visuals
that is only active when the report is being viewed—the option is not available for Import data
sources. Automatic page refresh is configured in Power BI Desktop or the Power BI service in
the Format options for the page. The Refresh type can be configured to either a fixed interval
or based upon a change detection configuration. Change detection support varies by storage
mode, source, and whether you are using dedicated (Premium) or shared capacity. Shared
capacities do not support change detection for any storage mode or source. The minimum
refresh fixed interval also varies by storage mode, source, and type of capacity. For dedicated
capacity, the minimum refresh fixed interval is one second, except for Azure Analysis Services,
where it is 30 minutes. For shared capacity, the minimum refresh fixed interval is 30 minutes
for all storage modes and sources.

Working in the Service

274

See also

 f Real-time streaming in Power BI: https://bit.ly/39NhYRg

 f Power BI REST API Push Datasets: https://bit.ly/3dDVW4u

 f Azure Stream Analytics: https://azure.microsoft.com/en-us/services/stream-
analytics/

 f Automatic page refresh in Power BI Desktop: https://bit.ly/3utXO6q

Authoring Dataflows
Dataflows are reusable, scalable self-service ETL (extract-transform-load) artifacts created
exclusively in the Power BI cloud service. Dataflows utilize the same Power Query (M) language
for data access and transformation that has existed within Power BI Desktop but can be
shared across datasets and, with Power BI premium capacity, can support large, resource-
intensive workloads.

This recipe demonstrates how to create a dataflow within the Power BI service, and how that
dataflow can then be leveraged within Power BI Desktop.

Getting ready

To prepare for this recipe, follow these steps:

1. Download the CH5_R7_AuthoringDataflows.xlsx file from the following GitHub
repository: https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-
Second-Edition.

2. Save the CH5_R7_AuthoringDataflows.xlsx file to your OneDrive for Business
directory.

How to Author Dataflows

To implement this recipe, perform the following steps:

1. Open a workspace in the Power BI service.

2. Under the workspace name, select New and then Dataflow.

3. Choose Add new tables under the Define new tables area.

https://bit.ly/39NhYRg
https://bit.ly/3dDVW4u
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://bit.ly/3utXO6q
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 5

275

Figure 5.35: Define new tables

4. From the All categories tab, choose Excel under Data sources.

Figure 5.36: Data sources

5. For Connection settings, click the Browse OneDrive button, select the CH5_R7_
AuthoringDataflows.xlsx file, and click Open.

6. Click the Next button in the lower-right corner.

7. Select DimProduct, DimProductCategory, and DimProductSubcategory.

Figure 5.37: Choose data

Working in the Service

276

8. Click the Transform Data button in the lower-right corner.

9. You are now in the Power Query – Edit queries interface, which works in the same
way as the Power Query interface in Desktop.

Figure 5.38: Power Query in the Power BI service

10. Select the DimProductSubcategory query in the Queries pane.

11. Ensure that the ProductSubcategoryKey and ProductCategoryKey columns
are of the type Whole number (1234 icon), and if not then right-click the column
header, choose Change type, and then Whole number.

12. Right-click the EnglishProductSubcategoryName column header, choose
Rename, and rename the column to Product Subcatgory.

13. Select the DimProductCategory query in the Queries pane.

14. Ensure that the ProductCategoryKey column is of type Whole number
(1234 icon), and if not then right-click the column header and choose Change type,
then Whole number.

15. Rename the EnglishProductCategoryName column to Product Category.

16. Select the DimProduct query in the Queries pane.

17. Ensure that the ProductSubcategoryKey column is of type Whole number (1234
icon), and if not then right-click the column header, choose Change type, then Whole
number.

Chapter 5

277

18. Rename the EnglishProductName column to Product Name.

19. Click Merge queries in the ribbon of the Home tab.

Figure 5.39: Merge dialog

20. Select DimProductSubcategory as the Right table for merge, select the two
ProductSubcategoryKey columns, and click OK to accept the default Left outer Join
kind.

Working in the Service

278

21. Click the column expansion icon in the DimProductSubcategory column
header, deselect all of the columns, select the Product Subcategory and
ProductCategoryKey columns, and uncheck the Use original column name as prefix
checkbox; click OK.

Figure 5.40: Expand column

22. Click Merge queries in the ribbon of the Home tab.

23. Select DimProductCategory as the Right table for merge, select the two
ProductCategoryKey columns and click OK to accept the default Left outer Join kind.

24. Click the column expansion icon in the DimProductCategory column header,
deselect all of the columns, select the Product Category column, uncheck the Use
original column name as prefix checkbox, and click OK.

25. Select the ProductCategoryKey column and while holding down the Ctrl key,
select the ProductSubcategoryKey column.

26. Right-click the ProductSubcategoryKey column header and choose Remove
columns.

27. Right-click the DimProductCategory query in the Queries pane and deselect
Enable load.

28. Disable load on the DimProductSubcategory query as well.

29. In the lower-right corner, click the Save & Close button.

30. Name the dataflow Products and click the Save button.

Figure 5.41: Save your dataflow

Chapter 5

279

31. Click back on the workspace and note that the Products dataflow has appeared.

Figure 5.42: Products dataflow

32. Hover over the Products dataflow and click the Refresh now icon.

How it works

Dataflows allow Power Query queries to be built in the Power BI service. Furthermore, unlike
Power Query queries built in the Power BI Desktop, dataflows are reusable across multiple
datasets (models). Since dataflows and Power Query queries built in the Power BI Desktop
use the same underlying M code technology, it is actually possible to take queries built in the
Power BI Desktop and easily migrate them to dataflows using the Advanced Editor capability
to copy and paste the code between the desktop and a dataflow, or using the Import Model
feature when creating a dataflow.

Dataflows ingest data from sources into Common Data Model-compliant (Dataverse) folders
stored in Azure Data Lake Storage Gen2. Dataflows also allow you to expose data in your
own Azure Data Lake Gen2 storage to other Azure services. Once created, a dataflow must
be refreshed at least once to initialize the data within the Azure Data Lake Gen2 storage.
Dataflows support similar settings to datasets, in that you can configure scheduled refreshes
and utilize gateways when refreshing data.

Dedicated capacities, such as Premium, support additional dataflow functionality, such as the
following:

 f Enhanced compute engine, enabling dataflows to leverage DirectQuery

 f Refresh linked tables from other dataflows

 f Automated Machine Learning (AutoML) and Cognitive Services

There's more

Once created, dataflows can be used in Power BI Desktop as data sources. To see how this
works, do the following:

1. Open a new Power BI Desktop file.

2. Select Get data from the ribbon of the Home tab and choose Power BI dataflows.

3. Expand the workspace where the Products dataflow was created.

4. Expand the Products dataflow.

5. Choose the DimProduct table and then click the Load button.

Working in the Service

280

The DimProduct table has now been added to the dataset.

See also

 f Introduction to dataflows and self-service data prep: https://bit.ly/3uCjNZf

 f Creating a dataflow: https://bit.ly/2RiiGPV

 f Configure and consume a dataflow: https://bit.ly/2RhlVHm

 f Dataflows best practices: https://bit.ly/3cZIIQr

 f Dataflows limitations and considerations: https://bit.ly/3t2UChM

 f Premium features of dataflows: https://bit.ly/3fZXLLA

 f Build a Machine Learning model in Power BI: https://bit.ly/3d1XGp7

 f Use Machine Learning—Cognitive Services with dataflows: https://bit.ly/3fT3nYk

Conclusion
The Power BI service provides the capability to create and share additional BI objects, such
as dashboards, apps, streaming datasets, and dataflows; these components can be enriched
and enhanced with alerts, subscriptions, images, and web content. In this chapter, Power BI
dashboards were constructed to provide simple, at-a-glance monitoring of critical measures
and high-impact business activities. The unique features of dashboards, such as Q&A natural
language queries, data alerts, and the integration of other report types—such as Excel and
SSRS—was also included. Finally, the creation and use of streaming datasets and dataflows
was also covered.

https://bit.ly/3uCjNZf
https://bit.ly/2RiiGPV
https://bit.ly/2RhlVHm
https://bit.ly/3cZIIQr
https://bit.ly/3t2UChM
https://bit.ly/3fZXLLA
https://bit.ly/3d1XGp7
https://bit.ly/3fT3nYk

281

6
Getting Serious with

Date Intelligence
Date intelligence refers to a broad set of data modeling patterns and functions that
enable analysis across time periods. In this chapter and throughout this book, we use date
intelligence to refer to this broad set of data modeling patterns and to distinguish the concept
from DAX time intelligence functions. This is done for two reasons. First, to be more technically
precise, date intelligence deals with dates (days, months, years), not time (hours, minutes,
seconds). Second, DAX time intelligence functions are only useful if dealing with a standard
(Gregorian) calendar, but many businesses use a financial calendar that is different than
a standard calendar year. Date intelligence, the broad concept, is applicable to both the
standard (Gregorian) calendar as well as custom financial calendars.

Fundamental measures, such as reseller net sales, as created in Chapter 3, Building a Power
BI Data Model, are supplemented with date intelligence measures to calculate year-to-date,
prior period, and many other custom time period calculations. These measures are then
used in combination to support growth and variance measures and are often utilized as Key
Performance Indicators (KPIs) in Power BI dashboards, given their ability to convey additional
context and insight. When implemented properly, date intelligence dramatically expands the
analytical power of a data model and simplifies report and dashboard development.

This chapter contains recipes for preparing a data model to support robust date intelligence
and authoring custom date intelligence measures. We will cover the following recipes:

 f Building a Date Dimension Table

 f Prepping the Date Dimension via the Query Editor

 f Authoring Date Intelligence Measures

 f Developing Advanced Date Intelligence Measures

Getting Serious with Date Intelligence

282

 f Simplifying Date Intelligence with DAX and Calculated Tables

 f Leveraging Calculation Groups

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop

 f Tabular Editor

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing it are available here: http://bit.ly/2OVQfG7

 f Files for this chapter can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition

Building a Date Dimension Table
A date dimension is needed by almost all data models and particularly those that require date
intelligence calculations (e.g. Year-to-Date, Year-over-Year) and company-specific calendars.
Building a robust date table in the source system provides significant long-term value across
BI projects and tools. A complete date table accounts for all the required grains or hierarchy
levels of both the standard (Gregorian) calendar and any fiscal calendar specific to the
organization. Additionally, surrogate key columns aligned to each grain are included to drive
the sort order of report attributes and to enable date intelligence expressions.

This recipe includes a design phase to identify the required date dimension columns and a
process for adding a date intelligence surrogate key column to a dimension.

Getting ready

Full date tables are available from various sources:

 f The Kimball Group downloadable Excel file: http://bit.ly/2rOchxt

 f A T-SQL approach: http://bit.ly/2s6tuPT

 f A Power Query calendar: https://bit.ly/3uxcf9Z

 f A DAX 445 Custom Financial Calendar: https://bit.ly/39SOVeZ

A date table containing only the DateKey, Date, Calendar Year, and Calendar Month Number
columns for the years 2010 to 2030 can be downloaded from the GitHub repository for this
book. Download CH6_DateTable.xlsx from the following GitHub repository: https://github.
com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
http://bit.ly/2rOchxt
http://bit.ly/2s6tuPT
https://bit.ly/3uxcf9Z
https://bit.ly/39SOVeZ
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 6

283

Date tables should contain a single row for every calendar date (no gaps). Given the small size
(a 20-year span is approximately 7,600 rows inclusive of the last year), include all necessary
history and three or more future years.

How to Build a Dimension Table

To implement this recipe, carry out the following steps:

1. Identify and document the required columns of the date dimension and identify any
gaps with the existing table.

Like other dimension tables, teams can often incrementally improve their date
dimension table over time with additional logic. For example, if the great majority of
analysis revolves around a fiscal calendar and at a certain granularity, then these
columns can be targeted first. Mature date tables inclusive of standard and financial
calendars, sequential surrogate columns, and logical or dynamic columns—such as
Fiscal Period Status—are often quite wide, with over 40 columns. Required date
dimension columns include the following:

 � The Prior Year Date and Prior Period Date columns for both standard
and financial calendars

 � Natural hierarchy attributes for all levels, such as 2013, 2013-Q3, 2013-Sep,
2013-Wk39, and 9/25/2013

The natural hierarchy (one parent for each child value) allows users to easily navigate
Power BI report visuals via drill-down and next-level commands. Without natural
hierarchies, the context of the parent value is lost when drilling into the given parent.
For example, drilling into the year 2017 would display each month's name, but the
year associated with this month would only be visible in the tooltips by hovering over
the chart. With natural hierarchies, this context is not lost as a Calendar Yr-Mo
column might contain values such as 2017-Aug.

Power BI provides a method of working around unnatural hierarchies in report visuals
via the Expand all down one level in the hierarchy drilling feature. However, this
can lead to dense axis labels when multiple levels of a hierarchy are used. Given
date intelligence requirements as well as the needs of other visualizations, it is
recommended to build your date table to support natural hierarchies. When building
natural hierarchies, consider building the following support columns:

 � An integer column that corresponds to the chronological order of each string
column, such as Weekday. For example, a Weekday Number column, with
values of 1 through 7, will set the Sort By property of Weekday.

 � Multiple "X in Y" columns, such as Day in Year, Day in Month, Week in
Month, and Week in Year, stored as integers.

 � Indicator columns, such as Weekday Indicator, Holiday Indicator, and
Working Day Indicator. The values for these columns should be report-
friendly, such as Holiday and Non-Holiday.

Getting Serious with Date Intelligence

284

 � Starting and ending date columns for the different grains supported, such as
Week Ending Date and Period Ending Date.

2. Look to integrate other calendars, such as a periods or fiscal calendar, into the same
date table in the source database. Distinct views can be created to support role-
playing dimensions. See the There's more… section.

3. Identify common date manipulations taking place in the existing reports, or by
business users in Excel or Power BI, and consider adding a date dimension column to
eliminate or simplify this work.

4. Ensure that date columns (for example, Prior Year Date) and number columns
(such as Calendar Year) are stored as date and integer data types, respectively, as
this allows arithmetic and DAX functions, such as MAX and MIN, to operate without any
type conversion.

If the date dimension table is updated daily as part of a data warehouse Extract-
Transform-Load (ETL) process, columns identifying the current and prior periods such
as IsCurrentFiscalPeriod and IsPrior60Days are also common.

5. Consider adding two columns to the date table stored in the relational database, a
natural hierarchy string (2009-Jan), and an integer column, such as Calendar Year
Month Number (200901).

6. Create a table with three columns, Calendar Year, Calendar Month Number, and an
identity column with an increment value of 1, Calendar Yr Mo Index:
Create Table dbo.TempTblYearMo
([Calendar Year] int not null
, [Calendar Month Number] tinyint not null
, [Calendar Yr Mo Index] smallint identity(1,1) not null)

7. Execute an INSERT INTO SQL statement to load this table.

8. SELECT, GROUP, and ORDER BY the Calendar Year and Calendar Month Number
columns from the existing date table.

The ORDER BY clause of the SELECT statement should order by Calendar Year and
then by Calendar Month Number. The temporary table's index column (Calendar Yr
Mo Index) is now populated in sequential order by month across years, as per Figure
6.1.

Figure 6.1: TempTblYearMo table loaded from the INSERT INTO statement

Chapter 6

285

9. Execute an UPDATE statement that populates the Calendar Year Month Number
column with the identity value:
UPDATE DBO.DimFinDateTestTbl
SET [Calendar Year Month Number] = T.[Calendar Yr Mo Index]
FROM
DBO.DimFinDateTestTbl as D INNER JOIN dbo.TempTblYearMo as T
ON D.[Calendar Year] = T.[Calendar Year] AND D.[Calendar Month Number] =
T.[Calendar Month Number]

The following query in Figure 6.2 displays the sequentially increasing Calendar Year
Month Number column on the date table.

Figure 6.2: Date table with the Calendar Year Month Number column updated

10. Repeat this process for other natural hierarchy columns, such as Year-Qtr and Year-
Wk, and drop the temporary tables.

11. When loaded to the model, the surrogate columns should be hidden from Report
View and used as the Sort By column.

12. Implement hierarchies in the Fields list as per the Creating Hierarchies and Groups
recipe, shared in Chapter 3, Building a Power BI Data Model.

SQL window functions can be helpful in creating certain "X in Y" date dimension columns. For
example, the following DENSE_RANK function returns the calendar week number of the given
calendar month:

OVER(PARTITION BY D.[CALENDAR YEAR MONTH NUMBER] ORDER BY D.[Calendar Week
Number in Year])

For DirectQuery data models in which the SQL queries defining the tables of the model are
executed at runtime, it is best to move as much data transformation logic back to the source
system. Complex SQL queries, DAX calculated columns, and M query expression logic can
all lead to inefficient query plans, and so negatively impact the performance of DirectQuery
solutions.

Getting Serious with Date Intelligence

286

How it works…

Date intelligence measures reference the surrogate key columns to easily define specific time
period filter conditions, such as in Internet Net Sales (Trailing 3 Periods):

Internet Net Sales (Trailing 3 Periods) =
 CALCULATE(
 [Internet Net Sales],
 FILTER(
 ALL('Date'),
 'Date'[Calendar Year Month Number] >=
 MAX('Date'[Calendar Year Month Number])-2
 &&
 'Date'[Calendar Year Month Number] <=
 MAX('Date'[Calendar Year Month Number])
)
)

The Internet Net Sales (Trailing 3 Periods) can be used in visuals as shown in Figure
6.3.

Figure 6.3: Trailing 3 Periods measure includes Calendar Year Month Number values 99 through 101 for 2017-May

If the Calendar Year Month Number column was not sequential, it would not be possible to
refer to months across years without complex logic, such as the trailing three-month average
of 2017-Jan. Note that in this example, May 2017 is the current month and so was included,
but often only the completed (or previous) months are included in these calculations

The SQL view used by the data model should dynamically filter the required dates, such as the
trailing three years:

FROM DBO.DimFinDate as D
WHERE
D.[Date] BETWEEN DATEADD(YEAR,-3,CAST(CURRENT_TIMESTAMP AS date)) AND
CAST(CURRENT_TIMESTAMP as date)

In this example, only the current system date and three prior calendar years are loaded to the
data model.

Chapter 6

287

There's more…

An alternative to "secondary relationships" (inactive relationships) via the USERELATIONSHIP
function described in Chapter 3, Building a Power BI Data Model, is to have multiple date
dimension tables in the data model, each with a single, active relationship based on a
different date column of the fact table. For example, a model would have Order Date, Ship
Date, and Delivery Date dimension tables. This approach, called role-playing tables,
reduces the volume of custom measures that must be developed and maintained in the
model. If choosing this approach, create separate views against the source date dimension
table, corresponding to each role-playing table. Apply column aliases in each view associating
the attribute to the date (for example, Ship Date Year or Ship Date Month).

If the source fact table only contains a surrogate key, commonly in the YYYYMMDD format, the
source views utilized by the data model can include the following conversion logic:

CONVERT(date,(CAST(F.OrderDateKey AS nvarchar(8)))) as [Order Date-Convert]

The DATEFROMPARTS function in SQL Server can be used for many other date conversion or
logical needs.

As a general practice we recommend developing a single date dimension table in a corporate
data warehouse system such as Azure Synapse Analytics and leveraging this dimension
across multiple datasets. In many cases, a Power BI dataset targeting a particular business
process and team will require custom date filtering or grouping not supported by the existing
date dimension table in the data warehouse. In these scenarios, the additional logic can be
incorporated into a SQL view object specific to the dataset or, if the requirement is expected
to be common across many datasets, the new logic or columns could be built into the data
warehouse dimension table.

Preparing the Date Dimension via the Query
Editor

In some BI environments, it is not feasible to alter the source date table as per the previous
recipe or even modify the SQL view used to load the date dimension table. In these situations,
Power BI Desktop's Query Editor and M expressions can serve as an effective alternative to
deliver the same columns necessary to drive robust date intelligence analysis.

In this recipe, an example date dimension M query is shared that builds common date
attributes as well as dynamic logical columns. Additionally, a process for adding sequential
date intelligence columns via M expressions is also included.

Getting Serious with Date Intelligence

288

Getting ready

To prepare for this recipe:

 f Download CH6_DateTable.xlsx from the following GitHub repository: https://
github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

How to Prepare the Date Dimension

To implement this recipe, perform the following steps:

1. Create a new Power BI Desktop file.

2. Open the Power Query Editor by clicking Transform Data from the ribbon of the
Home tab.

3. Create a query that imports the Dates sheet from CH6_DateTable.xlsx, and call this
query BaseDateTable.

4. Create an M query that references the BaseDateTable query, retrieves the last three
years of dates, and computes 11 additional columns via M functions:
let
 Dates = BaseDateTable,
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 CurrentYear = Date.Year(DateTime.Date(DateTime.LocalNow())),
 CurrentMonth = Date.Month(DateTime.Date(DateTime.LocalNow())),
 FilteredDates =
 Table.SelectRows(
 Dates,
 each [Date] >=
 Date.AddYears(CurrentDate,-3) and [Date] <= CurrentDate
),
 DateCol = Table.SelectColumns(FilteredDates,"Date"),
 YearCol =
 Table.AddColumn(
 DateCol, "Year", each Date.Year([Date]), Int64.Type
),
 MonthNameCol =
 Table.AddColumn(
 YearCol, "Month Name", each Date.MonthName([Date]), type
text
),
 YearMonthCol =
 Table.AddColumn(
 MonthNameCol, "Year-Mo",
 each Text.From([Year]) & "-" & [Month Name], type text

https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 6

289

),
 MonthNumberCol =
 Table.AddColumn(
 YearMonthCol, "Month Number", each Date.Month([Date]),
Int64.Type
),
 WeekdayNameCol =
 Table.AddColumn(
 MonthNumberCol, "Weekday", each Date.DayOfWeekName([Date]),
 type text
),
 DayNumberOfWeekCol =
 Table.AddColumn(
 WeekdayNameCol, "Weekday Number",
 each Date.DayOfWeek([Date]), Int64.Type
),
 YearStatusCol =
 Table.AddColumn(DayNumberOfWeekCol, "Year Status", each
 if Date.IsInCurrentYear([Date]) = true then "Current Year"
 else if [Year] = CurrentYear - 1 then "Prior Year"
 else "Other Year", type text
),
 MonthStatusCol =
 Table.AddColumn(YearStatusCol, "Month Status", each
 if [Year Status] = "Current Year" and [Month Number] =
CurrentMonth
 then "Current Month" else
 if [Year] =
 Date.Year(
 Date.AddMonths(DateTime.Date(DateTime.
LocalNow()),-1)
)
 and [Month Number] =
 Date.Month(
 Date.AddMonths(DateTime.Date(DateTime.
LocalNow()),-1)
)
 then "Prior Month" else "Other Month", type text
),
 DayInMonthCol =
 Table.AddColumn(
 MonthStatusCol, "Day in Month", each Date.Day([Date]),
Int64.Type
),
 WeekOfYearCol =

Getting Serious with Date Intelligence

290

 Table.AddColumn(
 DayInMonthCol, "Week of Year", each Date.WeekOfYear([Date]),
 Int64.Type
),
 WeekOfMonthCol =
 Table.AddColumn(
 WeekOfYearCol, "Week of Month",
 each Date.WeekOfMonth([Date]), Int64.Type
)
in
 WeekOfMonthCol

5. Name this query DatesInterim.

6. Create a new query called Dates that adds a surrogate sequential column to be used
in date intelligence measures:
let
 Source = BaseDateTable,
 YearMonthCols =
 Table.Distinct(
 Table.SelectColumns(
 Source, {"Calendar Year","Calendar Month Number"}
)
),
 YearMonthColSort =
 Table.Sort(
 YearMonthCols,
 {
 {"Calendar Year", Order.Ascending},
 {"Calendar Month Number", Order.Ascending}
 }
),
 YearMonthColIndex =
 Table.AddIndexColumn(YearMonthColSort, "YearMonthIndex",1,1),
 JoinedDateTable =
 Table.NestedJoin(
 DatesInterim, {"Year", "Month Number"},
 YearMonthColIndex, {"Calendar Year","Calendar Month
Number"},
 "Year-Mo Index", JoinKind.Inner
),
 IndexColumnAdded =
 Table.ExpandTableColumn(
 JoinedDateTable,
 "Year-Mo Index",{"YearMonthIndex"},{"Year Month Number"}

Chapter 6

291

)
in
 IndexColumnAdded

7. Disable loading on BaseDateTable and DatesInterim by right-clicking the queries
and deselecting Enable load. Only the Dates query needs to be loaded into the data
model.

How it works…

For the DatesInterim query, the CurrentDate, CurrentMonth, and CurrentYear expressions
can be stored as separate queries. The DateTime.LocalNow function is used in dynamic
M date logic, similar to the CURRENT_TIMESTAMP function used in SQL statements. A filter is
applied via the Table.SelectRows function to only retrieve the last three years of dates, and
conditional logic is used to populate dynamic Year Status and Month Status columns (for
example, Current Year). The rest of the expressions use functions of the Date object class or
concatenate columns.

Despite a minimal date table available in the source system (all that is required is a column
containing dates), the M query generates a useful date dimension table for a model with many
of the most common and important columns.

For the final Dates query, two additional columns (Calendar Year and Calendar Month
Number) are used, although we could have performed a self-joining query with the Year and
Month Number columns in the DatesInterim query. For example, if we rename the Dates
query to DatesInterim2, we can create the final Dates table that adds a sequential index for
Year Week Number as well:

let
 Source = DatesInterim2,
 YearMonthWeekCols =
 Table.Distinct(
 Table.SelectColumns(
 Source, {"Year", "Month Number", "Week of Year"}
)
),
 YearMonthWeekColSort =
 Table.Sort(
 YearMonthWeekCols,
 {
 {"Year", Order.Ascending},
 {"Month Number", Order.Ascending},
 {"Week of Year", Order.Ascending}
 }

Getting Serious with Date Intelligence

292

),
 YearMonthWeekColIndex =
 Table.AddIndexColumn(YearMonthWeekColSort, "YearMonthWeekIndex",1,1),
 JoinedDateTable =
 Table.NestedJoin(
 DatesInterim2,{"Year", "Month Number", "Week of Year"},
 YearMonthWeekColIndex, {"Year", "Month Number", "Week of Year"},
 "Year-Mo-Wk Index", JoinKind.Inner
),
 IndexColumnAdded =
 Table.ExpandTableColumn(
 JoinedDateTable,
 "Year-Mo-Wk Index", {"YearMonthWeekIndex"},{"Year Month Week
Number"}
)
in
 IndexColumnAdded

The Table.AddIndexColumn function is applied to the sorted DatesInterim2 table to create
the sequential column, YearMonthWeekColIndex. The DatesInterim2 query is then joined to
the table containing this new column. Finally, the joined table is expanded using the Table.
ExpandTablecolumn function.

The Year-Mo column (that is, 2016-Dec) can now be sorted by the Year Month Number column
in the data model and DAX measures can reference the Year Month Number column to apply
date intelligence filter conditions, such as the trailing six months.

There's more…

The Table.AddIndexColumn function used in this recipe is not currently supported in
DirectQuery mode for SQL Server, and thus the full M query from the date dimension M query
section of this recipe cannot be used in DirectQuery data models.

Since the data access queries defining the dimension and fact tables in DirectQuery models
are executed at runtime, these queries should be as simple as possible. For example,
these queries should avoid joins, derived tables, subqueries, data type conversions, case
statements, and so on. Simple, performant, or optimized queries are especially important for
the queries used to access the largest tables of the model. To ensure sufficient performance
in Power BI with DirectQuery models, large source tables of DirectQuery models should be
optimized for read performance with features such as the columnstore index of SQL Server
and table partitions.

Chapter 6

293

See also

 f Power Query Date functions: https://bit.ly/3wSCMAz

 f Power Query Table functions: https://bit.ly/3wMxlmC

Authoring Date Intelligence Measures
With a complete date dimension table in place, date intelligence measures can be developed
to support common requirements, such as year-to-date, year-over-year, and rolling
history, as well as more complex, context-specific behaviors.

The date intelligence patterns described in this recipe are applicable to both standard and
non-standard financial calendars, as they leverage fundamental DAX functions and the
sequential date intelligence columns created earlier in this chapter.

This recipe includes examples of core year-to-date and prior year measures, as well as a
more advanced dynamic prior period measure that adjusts to all grains of the date dimension.

Getting ready

To prepare for this recipe, follow these steps:

1. Complete the Preparing the Date Dimension via the Query Editor recipe in this
chapter, or have a date table with the same columns as in that recipe.

2. Edit the initial part of the DatesInterim query to load all rows, and not just the first
three years. The code snippet below represents the initial part of the query with the
FilteredDates expression removed. The rest of the query is the same as the recipe.
Note that the DateCol expression now refers to the Dates expression instead of the
FilteredDates expression:
 Dates = BaseDateTable,
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 CurrentYear = Date.Year(DateTime.Date(DateTime.LocalNow())),
 CurrentMonth = Date.Month(DateTime.Date(DateTime.LocalNow())),
 DateCol = Table.SelectColumns(Dates,"Date"),

3. Add two additional columns to the end of the DatesInterim query for Prior Year Date
and Prior Month Date using the following code:
PriorYearDate =
 Table.AddColumn(
 WeekOfMonthCol, "Prior Year Date", each Date.
AddYears([Date],-1)
),
 PriorMonthDate =

https://bit.ly/3wSCMAz
https://bit.ly/3wMxlmC

Getting Serious with Date Intelligence

294

 Table.AddColumn(
 PriorYearDate, "Prior Month Date", each Date.
AddMonths([Date],-1)
)
in
 PriorMonthDate

4. Import the FactInternetSales table from the AdventureWorksDW2019 database.

5. Create a relationship between the Date column in the Dates table and the OrderDate
column in the FactInternetSales table.

6. Mark the Dates table as a date table using the Date column.

Plan for a standard measure naming convention to identify the date intelligence logic, such
as Sales (PYTD). Symbol characters, such as currency ($) or percentage (%), can also
help users browse the measures. Document the types of date intelligence measures to be
implemented and for which measures of the model. Create a date intelligence measure matrix
for documentation and to support communication with stakeholders.

Figure 6.4: Date intelligence measure matrix

Conduct reviews and/or quality assurance testing with business users to validate the logic
and walk through use cases when designing reports. Given the volume of new measures to
be developed, it is best to receive business approval for one or two measures prior to applying
the date intelligence logic to other measures.

How to Author Date Intelligence Measures

To implement this recipe, perform the following steps:

1. Create a simple Internet Sales measure:
Internet Sales = SUM('FactInternetSales'[SalesAmount])

2. Create Year-to-Date (YTD), Month-to-Date (MTD), and Week-to-Date (WTD)
measures:
Internet Sales (YTD) =
 CALCULATE([Internet Sales],

Chapter 6

295

 FILTER(ALL('Dates'),
 'Dates'[Year] = MAX('Dates'[Year]) &&
 'Dates'[Date] <= MAX('Dates'[Date])))

Internet Sales (MTD) =
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year Month Number] = MAX('Dates'[Year Month Number])
&&
 'Dates'[Date] <= MAX('Dates'[Date])))

Internet Sales (WTD) =
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year Week Number] = MAX('Dates'[Year Week Number])
&&
 'Dates'[Date] <= MAX('Dates'[Date])))

3. Create Prior Year (PY), Prior Year to Date (PYTD), and Prior Month to Date
(PMTD) measures:
Internet Sales (PY) =
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Date] >= MIN('Dates'[Prior Year Date]) &&
 'Dates'[Date] <= MAX('Dates'[Prior Year Date])))
Internet Sales (PYTD) =
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year] = MAX('Dates'[Year]) - 1 &&
 'Dates'[Date] <= MAX('Dates'[Prior Year Date])))

Internet Sales (PMTD) =
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year Month Number] = MAX('Dates'[Year Month Number])
- 1 &&
 'Dates'[Date] <= MAX('Dates'[Prior Month Date])))

4. Use the current year and prior year measures to create Year-over-Year (YOY)
measures:
Internet Sales (YOY YTD) = [Internet Sales (YTD)] - [Internet Sales
(PYTD)]
Internet Sales (YOY YTD %) = DIVIDE([Internet Sales (YOY YTD)],[Internet
Sales (PYTD)])

Getting Serious with Date Intelligence

296

5. Build logic into date intelligence measures to account for alternative subtotal filter
contexts, such as when a prior period measure is calculated in a yearly, quarterly, or
weekly subtotal context:
Internet Sales (Prior Period) =
 VAR Periods = DISTINCTCOUNT('Dates'[Year Month Number])
RETURN SWITCH(TRUE,
 HASONEVALUE('Dates'[Date]),
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),'Dates'[Date] = MAX('Dates'[Date])-1)),
 HASONEVALUE('Dates'[Year Week Number]),
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year Week Number] = MAX('Dates'[Year Week
Number])-1)),
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year Month Number] >=
 MIN('Dates'[Year Month Number]) - Periods &&
 'Dates'[Year Month Number] <=
 MAX('Dates'[Year Month Number]) - Periods)))

6. Create a Matrix visualization that uses the Year column from the Dates table for
columns and the Internet Sales (YTD) and Internet Sales (PYTD) as values

How it works…

When designing date intelligence measures, it is important to understand that the definition
of "current" and "prior" are defined by the context of the visualization in which the measures
operate. The FILTER function iterates each row (a date) to determine which rows are passed
to the CALCULATE function. The ALL function removes all existing date table filters, thereby
allowing filter conditions in the measure to access all rows of the date table.

For the "current" date period measures, each measure expression sets an "equal to" condition
on the column representing the intended granularity; this column respects the filter context of
the report query via MAX. If the source query to the date table is filtered to only retrieve dates
equal to or less than the current date, these measures will default to the current year, month
(or period), and week when added to reports.

Note that the Year Month Number and Year Week Number columns should be sequentially
increasing integers.

For the "prior" date period measures, applying both the MIN and MAX filter conditions against
the prior date columns selects the corresponding date ranges. Subtracting a value (1 in this
example) from the MAX of the column shifts the selected time period backward.

Chapter 6

297

Growth or variance measures that calculate the difference between the current time period
value of a measure and a prior time period such as Year-over-Year (YOY) growth can be
created with new measures that subtract the previous time period measure from the current
period measure. Additional growth or variance measures expressed in percentages can use
the DIVIDE function for computing this difference as a percentage of the previous time period
value.

Prior period date columns allow the prior time period measures to apply simple filter
expressions relative to the active date filter context down to the individual date granularity.
In the absence of these columns and for period- or month-level date tables, measure filter
conditions can be written as follows:

Prior Year (PY) = 'Dates'[Year Month Number] = MAX('Dates'[Year Month Number]) -
12)
Prior Month (PM) = 'Dates'[Year Month Number] = MAX('Dates'[Year Month Number])
- 1)

For the dynamic prior period measure, Internet Sales (Prior Period), the DAX variable
(Periods) computes the number of periods in the current filter context, such as 12 if a year is
the subtotal, 3 if it is a quarter, or 1 for an individual period. Test conditions with HASONEVALUE
check whether a single date or week is selected, and return the corresponding previous day or
week, respectively. The remaining date grains (Year, Quarter, Period) are accounted for by the
Periods variable; this value is subtracted from both the MIN and the MAX of the period number
of the given context. This example underscores the importance of sequential date intelligence
columns for accessing specific time frames across grains to apply custom filter conditions.

There's more…

DAX includes a full set of time intelligence functions, such as DATESYTD and
SAMEPERIODLASTYEAR, which, given a standard (Gregorian) calendar, can compute the
same values as the expressions in this recipe. Although these functions generally improve
readability relative to the examples in this recipe, the use (and knowledge) of core DAX
functions, such as FILTER, MAX, and MIN, is necessary when working with non-standard
calendars—such as fiscal calendars and more complex scenarios. Considering that the vast
majority of DAX time intelligence functions are simply syntax sugar for the FILTER function
and the simplifying assumptions regarding calendar dates, it is unwise to rely on DAX time
intelligence functions to be of any meaningful use in many real-world scenarios.

It is often surprising for many individuals new to business intelligence how differently
organizations measure and conceptualize time; this can be particularly true regarding weeks.
Here again, the DAX time intelligence functions are useless, as there are no included week
functions. When dealing with weeks, different organizations start weeks on different days
within a week. Thus, when assigning week numbers at either a yearly or monthly grain, it is
important to bear this in mind.

Getting Serious with Date Intelligence

298

Furthermore, organizations will also treat partial weeks differently as well. For example, in the
final Dates table, there is a single entry for Year Week Number of 54. This is because the year
2010 ends with a partial 53rd week. A single day of this week, Saturday, January 1st, 2011,
falls outside of 2010. Organizations will treat these partial weeks differently, either including
that single day as part of the week starting in 2010, as its own week, or as part of the first full
week of 2011.

See also

 f DAX FILTER function: https://bit.ly/2Q1S45q

 f DAX HASONEVALUE function: https://bit.ly/3wXSEBE

 f DAX time intelligence functions: https://bit.ly/3mKWtWp

 f To **bleep** with Time Intelligence: https://bit.ly/3gaUHN6

Developing Advanced Date Intelligence
Measures

Date intelligence measures are often at the center of the most visible Power BI reports
and dashboards, as well as more complex business analyses. Therefore, given the unique
requirements of each organization and BI project, it is important to understand how to go
beyond the standard patterns described in the previous recipe to efficiently embed custom
logic. Additionally, the ability to answer the business question "When did X occur (or not
occur)?" is a powerful supplement to data models that can be supported via DAX measure
logic.

In this recipe, an example is provided of a measure that identifies the dates in which sales
were not recorded for a specific region and product category. In addition, a custom prior year-
to-date measure is described with default (no filter) behavior and the exclusion of incomplete
periods from the current year.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Complete the Preparing the Date Dimension via the Query Editor recipe from this
chapter.

3. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",

https://bit.ly/2Q1S45q
https://bit.ly/3wXSEBE
https://bit.ly/3mKWtWp
https://bit.ly/3gaUHN6

Chapter 6

299

"AdventureWorksDW2019")
in
 Source

4. Isolate this query in a query group called Data Sources and disable loading.

5. Right-click the AdWorksDW and choose Reference.

6. Select the FactInternetSales table and name this query Internet Sales.

7. Repeat steps 5 and 6 for the DimSalesTerritory table and name this query Sales
Territories.

8. Create a Products query based upon the DimProduct, DimProductCategory, and
DimProductSubcategory tables using the following code.
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

9. Separate the fact query, Internet Sales, into a Facts query group.

10. Separate the dimension queries, Dates, Sales Territories, and Products, into a
Dimensions query group.

11. Create a Blank Query called Calculations in the Other Queries group.

12. Select Close & Apply in the ribbon of the Home tab to load the tables to the data
model.

13. Create a relationship using the Date column from the Dates table and the OrderDate
column of the Internet Sales table.

14. Create a relationship between the Internet Sales table and the Products and
Sales Territories tables using the ProductKey column and SalesTerritoryKey
column, respectively.

15. Set the Sort By column for the Year-Mo column in Dates to be the Year Month
Number column.

Getting Serious with Date Intelligence

300

How to Develop Advanced Date Intelligence Measures

To implement this recipe, carry out the following steps:

1. Create a measure that counts the rows (days) that do not have corresponding fact
table rows, given the following conditions:
Days Without Northwest Bike Sales =
 COUNTROWS(
 FILTER('Dates',
 ISEMPTY(CALCULATETABLE('Internet Sales',
 FILTER(CROSSJOIN(ALL('Sales
Territories'),ALL('Products')),
 'Sales Territories'[SalesTerritoryRegion] =
"Northwest" &&
 'Products'[Product Category] = "Bikes")))))

2. Create Power BI report visualization to analyze the measure. The result of doing this
is shown in Figure 6.5.

Figure 6.5: 22 days in 2013 in which the Northwest region did not generate any bike sales

How it works…

In this example, a new measure must count the days in which the Northwest sales region did
not have any online sales for the Bikes product category. Any existing filters on the Product
and Sales Territory tables are removed via CROSSJOIN of the ALL clauses. The Internet
Sales fact table is then filtered for the Northwest region and the Bikes category, and ISEMPTY
is applied for each date in the filter context. Only the dates with no rows are returned by
FILTER to be counted.

The use of CROSSJOIN is necessary to remove filters on columns from separate tables of
the model. A single ALL function can be used to remove one or more columns from the filter
context of a single table, such as ALL('Product'[Product Color],'Product'[Product
Class]).

Chapter 6

301

There's more…

Prior period date intelligence measures can become quite complex. For example, consider
the scenario where for a Prior Year-to-Date measure at the monthly grain, the business
requirements are to filter the prior year by only the completed periods of the current year (only
compare completed against completed). The goal is to calculate the Prior Year-to-Date value
(completed periods only) automatically without any date columns in the report, and return a
blank if the current period, which is incomplete, is selected in report visuals. To implement
this measure, perform the following steps:

1. In the Calculations table, create the following measures:
Today = DATE(2013,6,28)

Current Year = LOOKUPVALUE('Dates'[Year],'Dates'[Date],[Today])

Current Period = LOOKUPVALUE('Dates'[Year Month Number],'Dates'[Date],
[Today])

Last Complete Period = [Current Period] - 1

Last Complete Month = LOOKUPVALUE('Dates'[Month Number],'Dates'[Year
Month Number],[Last Complete Period])

Internet Sales = SUM('FactInternetSales'[SalesAmount])

2. Hide the Calculations column in the Calculations table from the Report View

3. Create a measure in the Calculations table with multiple pairs of conditions and
results to account for the filter contexts and requirements:
Sales (PYTD-Custom) =
SWITCH(TRUE(),
 NOT(ISCROSSFILTERED('Dates')),
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year] = [Current Year]-1 &&
 'Dates'[Month Number] <= [Last Complete Month])),
 HASONEVALUE('Dates'[Year Month Number]) &&
 MAX('Dates'[Year Month Number]) > [Last Complete
Period],BLANK(),
 HASONEVALUE('Dates'[Year Month Number]) &&
 MAX('Dates'[Year Month Number]) <= [Last Complete Period],
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),'Dates'[Year] = MAX('Dates'[Year])-1 &&
 'Dates'[Year Month Number] <= MAX('Dates'[Year Month
Number])-12)),

Getting Serious with Date Intelligence

302

 MAX('Dates'[Year]) = [Current Year],
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),'Dates'[Year] = [Current Year]-1 &&
 'Dates'[Month Number] <= [Last Complete Month])),
 CALCULATE([Internet Sales],
 FILTER(ALL('Dates'),
 'Dates'[Year] = MAX('Dates'[Year])-1 &&
 'Dates'[Year Month Number] <= MAX('Dates'[Year Month
Number])-12)))

Since we are dealing with historical information in the Adventure Works database, the Today
measure is set to a specific date. In a production scenario, the Today measure would be
something like Today = TODAY() or, if you are filtering your date table in your query to only be
through the current day, Today = MAX('Dates'[Date]). The rest of the measures are derived
from the Today measure and use simple LOOKUPVALUE expressions.

By passing TRUE as the expression parameter to SWITCH, the first <value> condition (such as
no filters applied) that evaluates to True will result in the corresponding result expression.

The first condition NOT(ISCROSSFILTERED) handles whether any date filter has been applied
from any date column. The second condition tests for individual periods that are not yet
complete, and returns a BLANK. The third condition accounts for individual periods prior to or
equal to the last complete period. The fourth condition is specific to the subtotal of the current
year (= [Current Year]); this rule excludes the incomplete period. All other filter contexts are
accounted for in the final expression—a standard Prior Year-to-Date calculation at the period
grain.

Figure 6.6: Custom PYTD measure computes the correct value without any filter
(card visual) and across date hierarchy levels

Note that a blank (no value) is returned for the current period (2013-Jun) as per the
requirements.

Remember that the data models created in Power BI can be consumed in self-service
scenarios, such as with Excel pivot tables, and business users will want or expect the new
measures to "just work" across filter conditions. However, in the rapid, agile delivery of Power
BI, only the most important or core filter contexts can be implemented in the first iterations.

See also

 f DAX LOOKUPVALUE function: https://bit.ly/3gdjZKl

https://bit.ly/3gdjZKl

Chapter 6

303

 f DAX CROSSJOIN function: https://bit.ly/2Ryr3qx

 f DAX HASONEVALUE function: https://bit.ly/3wXSEBE

Simplifying Date Intelligence with DAX and
Calculated Tables

In addition to the M query transformations described earlier in this chapter, DAX table
functions can also be used in Power BI Import mode models to enhance and simplify date
intelligence. DAX queries can access existing tables in the data model, and the tables
evaluated during refresh can be used in relationships and measure calculations like all other
tables. Similar to calculated columns, calculated tables should be rarely used—given the
transformation capabilities of M, SQL, and ETL tools—but can be valuable supplements to
models for small tables, such as role-playing date dimensions and bridge tables.

This recipe provides an example of using DAX calculated tables to support role-playing date
dimensions. Additionally, a single row table is created via DAX to simplify common date
intelligence measures.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactInternetSales table and name this query Internet Sales.

6. Repeat steps 5 and 6 for the DimDate table and name this query Order Dates.

7. Separate the fact query, Internet Sales, into a Facts query group.

8. Separate the dimension query, Order Dates, into a Dimensions query group.

9. Create a Blank Query called Calculations in the Other Queries group.

10. Choose Close & Apply in the ribbon of the Home tab to load the tables to the data
model.

https://bit.ly/2Ryr3qx
https://bit.ly/3wXSEBE

Getting Serious with Date Intelligence

304

11. Create a relationship using the FullDateAlternateKey column from the Order Dates
table and the OrderDate column of the Internet Sales table.

How to Simplify Date Intelligence

To implement this recipe, perform the following steps:

1. From Report View, click on New Table in the ribbon of the Modeling tab

2. In the formula bar, assign a name to the date dimension table, such as Shipment
Dates, and use the SELECTCOLUMNS function to retrieve date columns from the
existing date dimension table:
Shipment Dates =
 SELECTCOLUMNS('OrderDates',
 "Shipment Date", 'OrderDates'[FullDateAlternateKey],
 "Shipment Year", 'OrderDates'[CalendarYear],
 "Shipment Month", 'OrderDates'[EnglishMonthName],
 "Last Refreshed", NOW()
)

3. As per the example, apply column aliases (Shipment...) to avoid confusion with other
date tables in the model

4. Create a relationship between the Shipment Date column in the Shipment Dates
table and the ShipDate table in the Internet Sales table

5. Rename the FullDateAlternateKey column in the Order Dates table to Order Date

How it works…

The model now has two date dimension tables with active relationships to the fact table,
order date, and shipment date in this example. Generally, when role-playing date dimensions
are used, aliases are applied to all tables and columns, thus requiring the date table and its
columns to be renamed as Order Dates. However, if the new role-playing date tables will be
rarely used, then aliases may only be necessary for these new role-playing date tables.

There's more…

One option to further simplify date intelligence measures is to embed a calculated table in a
model that generates values frequently used as filter conditions:

1. Create a Today measure in the Calculations table:
Today = DATE(2013,6,28)

Chapter 6

305

2. Hide the Calculations column in Report View and note that the Calculations
table's icon changes from a table to a calculator. This measure table will remain
above other non-measure-only tables in the Fields list.

3. While in Report View, select New Table from the ribbon of the Modeling tab and
enter the following DAX query:
Date Parameters =
 VAR __Today = [Today]
 VAR __CurrentFiscalYear =
 LOOKUPVALUE('OrderDates'[FiscalYear], 'OrderDates'[Order
Date],__Today)
 VAR __CurrentFiscalQuarter =
 LOOKUPVALUE('OrderDates'[FiscalQuarter],
 'OrderDates'[Order Date],__Today)
RETURN
 ROW(
 "Last Refreshed", NOW(),
 "Today", __Today,
 "30 Days Prior", __Today - 30,
 "90 Days Prior",__Today - 90,
 "Current Fiscal Year", __CurrentFiscalYear,
 "Prior Fiscal Year", __CurrentFiscalYear-1,
 "Current Fiscal Quarter", __CurrentFiscalQuarter
)

4. Hide the parameters table from the Report view.

Figure 6.7: Sample of the single row table (Date Parameters) created via the DAX calculated table query

5. Create date intelligence measures that leverage the values stored in the calculated
table:

Internet Sales = SUM('Internet Sales'[SalesAmount])

Last 90 Days Sales =
 CALCULATE([Internet Sales],
 'OrderDates'[Order Date] >= DISTINCT('Date Parameters'[90 Days
Prior])
 &&
 'OrderDates'[Order Date] <= DISTINCT('Date Parameters'[Today]))

Since we are dealing with historical information in the Adventure Works database, the Today
measure is set to a specific date. In a production scenario, the Today measure would be
something like Today = TODAY() or, if you are filtering your date table in your query to only be
through the current day, Today = MAX('Dates'[Date]).

Getting Serious with Date Intelligence

306

An underscore or other leading character can be used in front of variable names to ensure
that a variable's name does not conflict with reserved words, and also to distinguish variables
and DAX added columns from actual columns and tables in the data model.

The DISTINCT function retrieves the single value from the table for comparison with the
corresponding date dimension column in the filter condition of CALCULATE. One may be
tempted to use the MAX or MIN functions here in place of DISTINCT, but this will generate an
error that the MAX or MIN function has been used in a True/False expression that is used as a
table filter expression.

See also

 f DAX SELECTCOLUMNS function: https://bit.ly/2OSw4JA

 f DAX LOOKUPVALUE function: https://bit.ly/3gdjZKl

 f DAX ROW function: https://bit.ly/3dobQ3R

Leveraging Calculation Groups
When working with date intelligence, it is common to have many quasi-redundant measures
that calculate various different metrics for YTD, MTD, PY, PYTD, PMTD, and other common
date intelligence intervals. For example, business users may be interested in a year-to-date,
year-over-year, and year-over-year percentage calculation for the gross sales, net sales, and
other measures. Normally, this would require nine DAX measures to calculate these measures
at each of those date intelligence intervals.

Calculation groups can greatly assist in reducing the number of measures required by allowing
a DAX expression to be reused for any measure. In the example given, this means that three
DAX expressions could serve the needs of the nine DAX expressions required without the use
of calculation groups.

This recipe demonstrates the use of calculation groups in the context of date intelligence in
order to eliminate redundant DAX expressions.

Getting ready

To prepare for this recipe, follow these steps:

1. Open Power BI Desktop.

2. Create an Import mode data source query called AdWorksDW. This query should be
similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",

https://bit.ly/2OSw4JA
https://bit.ly/3gdjZKl
https://bit.ly/3dobQ3R

Chapter 6

307

"AdventureWorksDW2019")
in
 Source

3. Isolate this query in a query group called Data Sources and disable loading.

4. Right-click AdWorksDW and choose Reference.

5. Select the FactInternetSales table and name this query Internet Sales.

6. Repeat steps 4 and 5 for the DimDate table and name this query Order Dates.

7. Separate the fact query, Internet Sales, into a Facts query group.

8. Separate the dimension query, Order Dates, into a Dimensions query group.

9. Create a Blank Query called Calculations in the Other Queries group.

10. Select Close & Apply in the ribbon of the Home tab to load the tables to the data
model.

11. Create a relationship using the FullDateAlternateKey column from the Order Dates
table and the OrderDate column of the Internet Sales table.

12. Rename the FullDateAlternateKey column to Date.

13. Mark the Order Dates table as a date table using Date as the Date column.

14. In the Calculations table, create some simple measures:
Internet Sales = SUM('Internet Sales'[SalesAmount])

Orders = COUNTROWS('Internet Sales')

15. Hide the Calculations column in the Calculations table.

16. Set the Sort by column for the EnglishMonthName column to the MonthNumberOfYear
column.

How to Leverage Calculation Groups

To implement this recipe, carry out the following steps:

1. Select Tabular Editor from the ribbon of the External Tools tab

2. In Tabular Editor, select Model and then New Calculation Group

3. Name the new calculation group Date Intelligence Group

4. Expand Date Intelligence Group, right-click Calculation Items, and choose New
Calculation Item

Getting Serious with Date Intelligence

308

5. Create a Current calculation item with the formula SELECTEDMEASURE()

Figure 6.8: Creation of the Current calculation item

6. Repeat steps 4 and 5 to create the following calculation items:

For YTD:
CALCULATE(SELECTEDMEASURE(),
 FILTER(ALL('Order Dates'),
 'Order Dates'[CalendarYear] = MAX('Order Dates'[CalendarYear])
&&
 'Order Dates'[Date] <= MAX('Order Dates'[Date])))
For MTD:
CALCULATE(SELECTEDMEASURE(),
 FILTER(ALL('Order Dates'),
 'Order Dates'[CalendarYear] = MAX('Order Dates'[CalendarYear])
&&
 'Order Dates'[MonthNumberOfYear] = MAX('Order
Dates'[MonthNumberOfYear])
 && 'Order Dates'[Date] <= MAX('Order Dates'[Date])))
For QTD:
CALCULATE(SELECTEDMEASURE(),
 FILTER(ALL('Order Dates'),
 'Order Dates'[CalendarYear] = MAX('Order Dates'[CalendarYear])
&&
 'Order Dates'[CalendarQuarter] = MAX('Order
Dates'[CalendarQuarter]) &&
 'Order Dates'[Date] <= MAX('Order Dates'[Date])))
For PY:
VAR __MaxDate = MAX('Order Dates'[Date])
VAR __MinDate = MIN('Order Dates'[Date])
RETURN
 CALCULATE(SELECTEDMEASURE(),

Chapter 6

309

 FILTER(ALL('Order Dates'),
 'Order Dates'[Date] >=
 DATE(YEAR(__MinDate)-1,MONTH(__MinDate),DAY(__MinDate))
&&
 'Order Dates'[Date] <=
 DATE(YEAR(__MaxDate)-1,MONTH(__MaxDate),DAY(__
MaxDate))))
For PY YTD:
VAR __MaxDate = MAX('Order Dates'[Date])
RETURN
 CALCULATE(SELECTEDMEASURE(),
 FILTER(ALL('Order Dates'),
 'Order Dates'[CalendarYear] =
 MAX('Order Dates'[CalendarYear])-1 &&
 'Order Dates'[Date] <=
 DATE(
 YEAR(__MaxDate)-1,
 MONTH(__MaxDate),
 DAY(__MaxDate))))
For YOY:
SELECTEDMEASURE()
 - CALCULATE(SELECTEDMEASURE(),'Date Intelligence Group'[Name] =
"PY")
For YOY %:
DIVIDE(
 CALCULATE(SELECTEDMEASURE(),'Date Intelligence Group'[Name] ="YOY"),
 CALCULATE(SELECTEDMEASURE(),'Date Intelligence Group'[Name] ="PY"))

7. For the YOY % calculation item, set the Format String Expression to 0.00%;
-0.00%;0.00%

8. In Tabular Editor, select File and then Save

9. In Power BI Desktop, click Refresh now in the warning box regarding refreshing
calculation groups

Figure 6.9: Manually refreshing calculation groups

10. Create a Matrix visualization with the CalendarYear and EnglishMonthName columns
from the Order Dates table as Rows, the Internet Sales measure as Values, and
the Name column from the Date Intelligence Group as Columns

11. Add the Orders measure to the Matrix visualization as Values

Getting Serious with Date Intelligence

310

How it works…

Currently, Power BI Desktop does not provide a method for creating and editing calculation
groups, so this must be done in Visual Studio or Tabular Editor.

The SELECTEDMEASURE function takes the current measure in context and replaces the values
returned by the measure with the calculations from the calculation group. The format of
the value returned (Currency, Whole Number, Decimal) corresponds with the format of the
selected measure, unless overridden by a specified Format String Expression. For numeric
values, the Format String Expression should always include three format specifications
separated by semi-colons for positive, negative, and zero values.

The order of the calculation items returned will be alphabetical when the Ordinal property is
set to -1 for all calculation items. This order can be overridden by specifying Ordinal numbers
from 0 and higher. Lower Ordinal numbers display first.

There's more…

The same results can be achieved using DAX time intelligence functions with the caveat that
DAX time intelligence functions assume a standard (Gregorian) calendar, and thus should
be avoided when dealing with fiscal calendars and more complex scenarios. To see how this
works, do the following:

1. In Tabular Editor, select Model and then New Calculation Group

2. Name the new calculation group Time Intelligence Group

3. Create the following calculation items:

 � Current: SELECTEDMEASURE()

 � YTD: CALCULATE(SELECTEDMEASURE(), DATESYTD('Order Dates'[Date]))

 � MTD: CALCULATE(SELECTEDMEASURE(), DATESMTD('Order Dates'[Date]))

 � QTD: CALCULATE(SELECTEDMEASURE(), DATESQTD('Order Dates'[Date]))

 � PY: CALCULATE(SELECTEDMEASURE(), SAMEPERIODLASTYEAR('Order
Dates'[Date]))

 � PY YTD: CALCULATE(SELECTEDMEASURE(),SAMEPERIODLASTYEAR('Order
Dates'[Date]),'Time Intelligence Group'[Name]= "YTD")

 � YOY: SELECTEDMEASURE()-CALCULATE(SELECTEDMEASURE(),'Time
Intelligence Group'[Name] = "PY")

 � YOY %: DIVIDE(CALCULATE(SELECTEDMEASURE(),'Time Intelligence
Group'[Name] ="YOY"),CALCULATE(SELECTEDMEASURE(),'Time
Intelligence Group'[Name] ="PY"))

Chapter 6

311

4. Duplicate Page 1

5. Select the matrix visualization on Duplicate of Page 1 and replace the columns
with the Name column from the Time Intelligence Group

The numbers in both matrices are identical.

See also

 f Calculation groups in Analysis Services tabular models: https://bit.ly/3tlJRYd

 f DAX SELECTEDMEASURE function: https://bit.ly/3sv5XWN

Conclusion
This chapter provided recipes for preparing a data model to support robust date intelligence
and for authoring custom date intelligence measures. Date intelligence provides a broad
set of data modeling patterns and functions that enable analysis across time periods. The
measures created for date intelligence can be used in combination with one another to
support growth and variance measures and are often utilized as KPIs in Power BI dashboards.
When properly implemented, date intelligence dramatically expands the analytical power of a
data model and simplifies report and dashboard development.

https://bit.ly/3tlJRYd
https://bit.ly/3sv5XWN

313

7
Parameterizing Power

BI Solutions
With the foundation of a Power BI deployment in place, components of the data retrieval and
report design processes—as well as the user experience—can be parameterized to deliver
greater flexibility for both technology services and users. For example, query parameters can
isolate and restrict data sources to support changing source systems, templates can enable
parameterized report development against pre-defined metadata, and M and DAX functions
can deliver custom integration and analytical capabilities.

The recipes in this chapter cover both standard parameterization features and techniques in
Power BI, as well as more advanced custom implementations. Examples of parameterizing
data sources, queries, user-defined functions, and reports further express the power of the
M language and its integration with other Power BI Desktop features. Additional examples,
such as URL-based parameter filters, a dedicated forecasting or what-if? tool, and user
selection parameter tables, utilize both the transformation and analytical features of Power
BI to empower users with greater control over the analysis and visualization of Power BI data
models.

In this chapter, we will cover the following recipes:

 f Filtering reports dynamically

 f Leveraging query parameters

 f Working with templates

 f Converting static queries to dynamic functions

 f Capturing user selections with parameter tables

 f Forecasting with what-if analysis

Parameterizing Power BI Solutions

314

Technical requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
the instructions for installing it are available here: http://bit.ly/2OVQfG7

 f Files for this chapter can be downloaded from the following GitHub repository:
https://github.com/gdeckler/PowerBICookbook2ndEdition

Filtering reports dynamically
In addition to the report filter options in Power BI Desktop covered in Chapter 4, Authoring
Power BI Reports, filters can also be applied to published Power BI reports via the URL string.
Rather than multiple, dedicated reports and report pages with distinct filter conditions, URL
links with unique query strings can leverage a single published report in the Power BI service.
Additionally, URL links can be embedded within a dataset such that a published report can
expose links to other reports with a pre-defined filter condition.

In this recipe, two URL strings are created to demonstrate single and multiple filter parameter
syntax. The second example creates a URL string for each row of the Product dimension table
via an M query and exposes this dynamic link in a report visual.

Getting ready

To prepare for this recipe, follow these steps:

1. Download CH7_R1.pbix from the following GitHub repository: https://github.com/
PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

2. Open CH7_R1.pbix in Power BI Desktop.

3. Edit the AdWorksDW query and change the Source line to point to your SQL server with
the AdventureWorksDW2019 database installed.

4. Publish the report to the Power BI service.

How to filter reports dynamically

To implement this recipe, perform the following steps:

1. Open the report in the Power BI service.

http://bit.ly/2OVQfG7
https://github.com/gdeckler/PowerBICookbook2ndEdition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 7

315

2. Replace the query string in the URL with the following and press Enter:
?filter=Products/ProductCategory eq 'Bikes'

3. To apply multiple URL filter parameters, separate the column filters with an and
operator, as in the following example:
?filter=Products/ProductCategory eq 'Bikes' and Dates/CalendarYear eq
2013

4. Copy the report URL, without including the query string (the portion after and
including the ?).

5. Open CH7_R1.pbix in Power BI Desktop

6. Edit the Products query in Power Query Editor.

7. Add a column called Product URL to the Products table by using Custom Column in
the ribbon of the Add Column tab, with a format similar to the following:
"https://app.powerbi.com/groups/[...]/reports/[...]/
[...]?filter=Products/ProductName eq '" & [ProductName] & "'"

8. Close and apply the query changes to apply them to the model.

9. Change the Data category for the Product URL column in the Products table to Web
URL.

10. Add a second page to the report.

11. Create a Table visualization with the ProductName column from the Products table,
the Total Net Sales measure from the Calculations table, and the Product URL
column from the Products table.

12. With the Table visualization selected, use the Format pane, expand the Values
section, and toggle the URL icon to On.

13. Save and publish the report.

14. Open the report in the Power BI service, navigate to Page 2, and click on one of the
URL icons for a product.

How it works…

URL filters can be applied to any column in the data model that is of a text or numeric data
type. The column does not have to be visible in the Fields list or used in one of the Filtering
field wells in the Report view to be used in a URL filter.

Note that […] will be replaced with your unique IDs.

Parameterizing Power BI Solutions

316

The syntax is <Report URL>?filter=Table/Column eq 'value'. The table and field names
(without spaces) are case sensitive, and the 'value' must be enclosed in single quotes for
text values. Do not use single quotes for numeric values, however.

Table and column names used in URL filters must not contain spaces. In the event that you
want to have a friendly name for report users for columns, you can duplicate a friendly name
column, remove the spaces from the duplicate column name, and then hide the duplicate
column name from the report view. In this way, you can have a column for use in reports and
a duplicate column that can be used as URL filters. When using duplicate columns, given the
additional resources required of the new column(s), try to limit the columns to those with few
distinct values. Additionally, a single hidden column with no spaces can be created based on
the concatenation of multiple columns to simplify the URL strings.

There's more…

A report visual from a custom URL with a query string can be pinned to a dashboard, and the
dashboard tile will reflect the filter condition following refreshes. However, by default, selecting
the pinned dashboard tile will navigate to the unfiltered source report. The custom URL can
be associated with a dashboard tile to control the dashboard navigation, as demonstrated in
Figure 7.1:

Figure 7.1: Custom URL link for a Power BI dashboard tile

See also

 f Filter a report using query string parameters in the URL: https://bit.ly/3swEJPF

https://bit.ly/3swEJPF

Chapter 7

317

 f Guy in a Cube – Filter a report with a URL query string parameter: http://bit.
ly/2s5hXSW

Leveraging query parameters
Parameters are a primary component in building flexible, manageable query retrieval
processes, as well as enabling simple filter selections. Hardcoded values in queries can be
replaced with parameters, and a single parameter can be leveraged by multiple queries,
thereby reducing development time and maintenance. Parameters are required to configure
incremental data refresh policies on datasets and are commonly used to limit the volume
of data loaded to a local instance of Power BI Desktop relative to the published Power BI
dataset.

Parameters can also be useful during development in order to filter fact tables or large
dimension tables to only a subset of data. Very large Power BI files can become slow and
difficult to work with and thus the dataset author can add a filter via a parameter so that only
a subset of rows are loaded locally. The dataset author can then simply revise the parameter
such that all rows are loaded. This can be done just prior to publishing or after publishing via
APIs and scripts that revise the parameter values in the Power BI service.

In this recipe, a parameter is used to filter a fact table query for a specified number of
days relative to the current date. An additional, more advanced example is shared to apply
parameters to a fact table query on both a dimension column as well as a date range.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab.

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable the load on the AdWorksDW query and place it in a Data Sources query group.

http://bit.ly/2s5hXSW
http://bit.ly/2s5hXSW

Parameterizing Power BI Solutions

318

How to leverage query parameters

To implement this recipe, perform the following steps:

1. Create a blank query called CurrentDate and disable the loading of the query by
right-clicking the query and then deselecting Enable load:
let
 Source = #date(2014,1,28)
in
 Source

2. From the Home tab of Power Query Editor, click on the Manage Parameters
dropdown and select New Parameter:

Figure 7.2: New parameter created for filtering fact table queries

3. Give the query the name Days Prior to Current Date, a data type of Decimal
Number, and, for this example, enter a list of suggested values. Values outside this
suggested list can also be applied to the parameter when necessary.

4. Based on the List of values, enter a Default Value and Current Value.

Chapter 7

319

5. Create a new blank query called StartDate that computes a date value based on the
CurrentDate query and the new parameter, and then disable the load:
let
 Source = Date.AddDays(CurrentDate,- #"Days Prior to Current Date")
in
 Source

In this example, a date 365 days prior to the current date is returned based on the
default parameter value.

6. Create an Internet Sales query based on the following M code:
let
 Source = AdWorksDW,
 dbo_FactInternetSales =
 Source{[Schema="dbo",Item="FactInternetSales"]}[Data],
 ChangeType = Table.TransformColumnTypes(
 dbo_FactInternetSales,{{"OrderDate", type date}}),
 RowFilter = Table.SelectRows(
 ChangeType,
 each [OrderDate] >= StartDate and [OrderDate] <= CurrentDate)
in
 SalesTerritoryJoin

7. Click on Close & Apply from the Home tab of Query Editor.

8. Optionally, build a report or query against the refreshed fact table to validate the
filter.

9. From the Home tab of the Report view, click on the Transform data dropdown in the
ribbon and select Edit Parameters:

Figure 7.3: Editing parameters from the Report view

10. Either select a suggested value from the drop-down menu or enter a number in the
input box and click on OK.

Parameterizing Power BI Solutions

320

11. Click on Apply Changes from the warning dialog. StartDate and the fact table
queries impacted by the parameter change will both be refreshed.

How it works…

In a production scenario, the CurrentDate query would not be hardcoded to a date and would
be something similar to the following:

let
 Source = DateTime.Date(DateTime.LocalNow())
in
 Source

The StartDate query uses the parameter to calculate a date prior to the CurrentDate by
a number of days selected from the list of values. Parameters can be referenced within
queries, just like referencing other queries or steps in a query, in which the same rules also
apply. When parameters include spaces in their names, referencing the parameter must be
preceded by a hashtag, #, and double quotes, and suffixed by double quotes (#"Days Prior
to Current Date"). Parameters that do not include spaces in their names can be referenced
directly without the prefix or suffix.

The Internet Sales query uses the Table.SelectRows function in the RowFilter step to
filter the FactInternetSales table using the OrderDate column to be greater than or equal to
StartDate (a date value). It is important that the data type of the OrderDate column and the
data type of the StartDate query match one another. For example, Date data types cannot be
compared to DateTime data types.

Currently, parameters cannot be created or edited in the Power BI service. The parameter
values configured when published will be used for each refresh.

When considering your own scenarios, identify candidates for query parameters, such
as hardcoded date filters and dimension attributes with few distinct values (for example,
department groups). Identify scenarios in which certain business users or teams require edit
rights to a dataset (that is, source queries, model relationships, and measures), but only need
a small, highly filtered model for self-service development.

There's more…

Queries can be affected by multiple parameters. In addition, parameters can also use queries
for their Suggested Values. To see how to use multiple parameters in a query, as well as how
to use a query to provide Suggested Values for a parameter, do the following:

1. In Power Query Editor, create a query called SalesTerritoryGroupsList that returns
the distinct Sales Territory Groups from the DimSalesTerritory table and disable
loading of the query:

Chapter 7

321

let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimSalesTerritory"]}[Data],
 RemoveColumns = Table.SelectColumns(Navigation,{"SalesTerritoryGro
up"}),
 FilterNA = Table.SelectRows(RemoveColumns, each
([SalesTerritoryGroup] <> "NA")),
 RemoveDups = Table.Distinct(FilterNA),
 List = Table.ToList(RemoveDups)
in
 List

2. Click on New Parameter from the Manage Parameters dropdown in the ribbon of the
Home tab.

3. Create a parameter called Territory Group with a Text data type that uses the
SalesTerritoryGroupsList query for Suggested Values:

Figure 7.4: Territory Group parameter

4. Create a SalesTerritoryKeys query that selects the unique key values associated with
this dimension using the value set by the Territory Group parameter and disable the
load:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimSalesTerritory"]}[Data],
 ParamFilter = Table.SelectRows(Navigation, each
[SalesTerritoryGroup] = #"Territory Group"),
 KeyColumn = Table.Distinct(Table.SelectColumns(ParamFilter,{"SalesTe
rritoryKey"}))
in
 KeyColumn

Parameterizing Power BI Solutions

322

5. Within the Internet Sales table query, create an inner join expression step against
the new SalesTerritoryKeys query:
let
 Source = AdWorksDW,
 dbo_FactInternetSalesReason = Source{[Schema="dbo",Item="FactInterne
tSales"]}[Data],
 ChangeType = Table.TransformColumnTypes(dbo_FactInternetSalesReason,
{{"OrderDate", type date}}),
 RowFilter = Table.SelectRows(ChangeType, each [OrderDate] >=
StartDate and [OrderDate] <= CurrentDate),
 SalesTerritoryJoin = Table.Join(RowFilter,"SalesTerritoryKey",SalesT
erritoryKeys,"SalesTerritoryKey",JoinKind.Inner)
in
 SalesTerritoryJoin

The Internet Sales table is now filtered by both the Days Prior to Current Date
parameter and the Territory Group parameter. Instead of a static list of values,
Territory Group derives Suggested Values from another query in the model – the
SalesTerritoryGroupsList query. For queries to be used as Suggested Values in a
parameter, the query must return a List data type, and not a table. The Table.ToList
function is used within the SalesTerritoryGroupsList query to transform the single-column
table into a list.

The SalesTerritoryKeys query returns a single column table with the distinct
SalesTerritoryKey values that correspond to the value chosen for the Territory Group
parameter. This table is used in a Table.Join expression within the Internet Sales query
to filter the Internet Sales table to only include the sales territories chosen using the
Territory Group parameter.

See also

 f Using parameters: https://bit.ly/37rXLP6

 f Edit parameter settings in the Power BI service: https://bit.ly/3iuC1sn

Working with templates
Power BI templates can be created from Power BI Desktop files as a means of providing
users and other report authors with access to pre-defined metadata, such as M queries, DAX
measures, model relationships, and report visualizations. As the template files do not contain
actual data, they are very lightweight and, for import mode models, data is only retrieved
when the template is opened. Additionally, if query parameters have been configured, a user
interface is provided for entering parameter values, and these parameters can be integrated
with the source queries and other components of the dataset.

https://bit.ly/37rXLP6
https://bit.ly/3iuC1sn

Chapter 7

323

In this recipe, a parameter and supporting query are added to a Power BI Desktop file to
support the distribution of a Power BI template.

Getting ready

To prepare for this recipe, follow these steps:

1. Download CH7_R3_Start.pbix from the following GitHub repository: https://
github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition.

2. Edit the AdWorksDW query to point to your copy of the AdventureWorksDW2019
database.

How to work with templates

In this example, the goal is to provide a Power BI template that only retrieves data for a single
customer country. To implement this recipe, perform the following steps:

1. Open CH7_R3_Start.pbix in Power BI Desktop.

2. Choose Transform data from the ribbon of the Home tab to open Power Query Editor.

3. In the Queries pane, right-click an empty area and choose New Group to create a
new query group called Parameters.

4. Right-click Other Queries and create a List query called CustomerCountries to
retrieve the Country names from the Customers query:
let
 Source = Customers,
 SelectColumn = Table.SelectColumns(Source,{"Country"}),
 Distinct = Table.Distinct(SelectColumn),
 List = Table.ToList(Distinct)
in
 List

5. Disable the load for the CustomerCountries query.

6. Right-click the Parameters query group and choose New Parameter.

7. Create a parameter called Customer Country with Text as the type, Suggested
Values for the CustomerCountries query, and United States as the current value.

8. In the Other Queries group, create a query called CustomerKeys that references the
Customer Country parameter, and disable the load on this query:
let
 CountryParamFilter = Table.SelectRows(Customers, each [Country] =
#"Customer Country"),
 CustomerKeys = Table.SelectColumns(CountryParamFilter,

https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Parameterizing Power BI Solutions

324

{"CustomerKey"})
in
 CustomerKeys

9. Modify the Internet Sales fact table query to respect the parameter selection:
let
 Source = AdWorksDW,
 dbo_FactInternetSales = Source{[Schema="dbo",Item="FactInternetSal
es"]}[Data],
 ChangeType =
 Table.TransformColumnTypes(dbo_FactInternetSales,
 {
 {"OrderDate", type date},
 {"DueDate", type date},
 {"ShipDate", type date}
 }
),
 CustomerJoin =
 Table.Join(ChangeType,
 "CustomerKey",CustomerKeys,"CustomerKey",JoinKind.Inner
)
in
 CustomerJoin

10. Click Close & Apply from the ribbon of the Home tab and then save the PBIX file.

11. From the File menu of the Report view, select Export and then Power BI template.

12. Optionally, give the template a description describing the parameter logic.

13. Choose a folder path for the template (.pbit).

14. Open the template file; the parameters dialog is opened, as shown in Figure 7.5:

Figure 7.5: Parameter dialog when opening the Power BI template (.PBIT)

15. Choose Australia from the list and then select the Load button.

16. Save the file as a new Power BI Desktop (PBIX) file.

Chapter 7

325

How it works…

When opening a Power BI template, if there are any parameters defined, the parameters
dialog will open, allowing the user to specify the parameter values. In the recipe, the Customer
Country parameter is defined. This parameter uses Suggested Values, which come from the
CustomerCountries query; this is a List query in that it returns a List object instead of a
Table object. Only queries that return lists can be used as Suggested Values for parameters.

The CustomerKeys query uses the chosen Customer Country parameter value to return a
single-column table of CustomerKey values from the Customers query. Since the CustomerKey
column is the surrogate key used in the customer-to-sales relationship, it is not necessary
to apply any transformations to remove duplicates, as each value is already unique. The
CustomerKeys query is then used within the CustomerJoin expression in the Internet Sales
query to return only the sales for the specified CustomerKeys, which belong to the chosen
Customer Country.

Distributing templates can introduce version control and manageability issues. Therefore,
prior to designing parameters and creating templates, confirm whether the report authoring
capabilities of Power BI Desktop against a published dataset in Power BI are insufficient. If
insufficient, identify the modifications that users need to implement, such as additional data
sources or query transformations, and consider whether these changes can be implemented
in the existing dataset. Identify the scope and goals of the templates, such as the years
of data and specific dimensions required. Parameters will be designed based on these
requirements to retrieve the minimum amount of data needed.

There's more…

In some cases, such as, perhaps, an Independent Software Vendor (ISV), report templates
can be created that utilize a standard data schema, such as the vendor's database that
supports their third-party application. In these cases, the ISV can create a standard Power
BI report template, complete with visuals, and distribute this template to its customers. In
such circumstances, the database connection information can be parameterized, since each
customer has their own local copy of the database. To see how this can work, follow these
steps:

1. Open CH7_R3_Start.pbix in Power BI Desktop.

2. Choose Transform data from the ribbon of the Home tab to open Power Query Editor.

3. Right-click the Parameters query group and choose New Parameter.

4. In the Manage Parameters dialog, create a parameter called SQL Server Instance
with Text as the type and a Current Value of the SQL Server instance that hosts your
AdventureWorksDW2019 database (in other words, localhost\MSSQLSERVERDEV).

5. While still in the Manage Parameters dialog, select New and create a parameter
called SQL Database with Text as the type, and a Current Value of the database
name of the AdventureWorksDW2019 database.

Parameterizing Power BI Solutions

326

6. Click the OK button to exit the Manage Parameters dialog.

7. Edit the AdWorksDW query to use the new parameters:

let
 SQLInstance =
 if #"SQL Server Instance" = null
 then "localhost\MSSQLSERVERDEV" else #"SQL Server Instance",
 SQLDatabase =
 if #"SQL Database" = null
 then "AdventureWorksDW2019" else #"SQL Database",
 Source = Sql.Database(SQLInstance, SQLDatabase)
in
 Source

In this case, the modified AdWorksDW query demonstrates how to account for parameters that
may not be required. The query uses if statements to determine whether the parameter value
is null and, if so, uses a default value for the SQLInstance and SQLDatabase expressions.
If saved as a template, these parameters for the SQL Server Instance and SQL Database
would be presented to the user upon opening the PBIT file. This would allow the user to
connect to their own local copy of the database to retrieve the data used in the report. The
user can then save the file as a PBIX.

See also

 f Using templates in Power BI Desktop: https://bit.ly/3gpXtxX

Converting static queries to dynamic
functions

In addition to the standard library of functions available to M queries, user-defined functions
can be created to encapsulate the logic of queries for dynamic application against parameter
inputs. Like SQL-stored procedures, M functions can be created with or without input
parameters, which can be required or optional. Additionally, as functions are values in the M
language, just like table and list values, they can be invoked on demand and in multiple areas
within a given Power BI data model.

In this recipe, a function is created to support the integration of a list of employee IDs
maintained outside the data warehouse environment. The function accepts the employee ID
values as parameter inputs and retrieves related column values.

https://bit.ly/3gpXtxX

Chapter 7

327

Getting ready

To prepare for this recipe, follow these steps:

1. Download Employees.xlsx from the following GitHub repository: https://github.
com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition.

2. Open a Power BI Desktop file locally and access Power Query Editor by clicking on
Transform Data in the ribbon of the Home tab.

3. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

4. Disable the load on the AdWorksDW query and place it in a Data Sources query group.

5. Create an Employees query that references the AdWorksDW query and imports the
DimEmployee table:
let
 Source = AdWorksDW,
 dbo_DimEmployee = Source{[Schema="dbo",Item="DimEmployee"]}[Data],
 FullName =
 Table.CombineColumns(
 dbo_DimEmployee,
 {"FirstName", "LastName"},
 Combiner.CombineTextByDelimiter(" ", QuoteStyle.None),
 "EmployeeName"
)
in
 FullName

6. Place the Employees query into a query group called Dimensions and disable the load.

How to convert static queries

To implement this recipe, perform the following steps:

1. Create an M query called EmployeeKeysAdHoc in the Other Queries group that
retrieves the employee IDs from the Excel workbook:
let
 Source = Excel.Workbook(File.Contents("C:\Employees.xlsx"), null,
true),
 Employees_Sheet = Source{[Item="Employees",Kind="Sheet"]}[Data],

https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Parameterizing Power BI Solutions

328

 Headers = Table.PromoteHeaders(Employees_Sheet,
[PromoteAllScalars=true]),
 TypeConversion =
 Table.TransformColumnTypes(
 Headers,{{"EmployeeAlternateKey", type text}}
),
 RemoveNullsAndDups =
 Table.Distinct(
 Table.SelectRows(TypeConversion, each
[EmployeeAlternateKey]<>null)
)
in
 RemoveNullsAndDups

2. Disable the load on the EmployeeKeysAdHoc query.

3. Create a function that retrieves the required employee column values for a given
Employee ID input parameter from the Employees query by creating a Blank Query,
using the following code:
(EmployeeID as text) =>
 let
 EmployeeDimFilter =
 Table.SelectRows(
 Employees,
 each [EmployeeNationalIDAlternateKey] = EmployeeID and
 [EndDate] = null),
 EmployeeColumnSelection = Table.SelectColumns(
 EmployeeDimFilter,
 {"EmployeeName", "DepartmentName", "EmailAddress"})
in
 EmployeeColumnSelection

4. Name this function EmployeeDetailFunction and place it in a Functions query group.
A formula (fx) icon in the Query Editor will identify the value as a function.

5. Create a new blank query in the Other Queries group that references the
EmployeeKeysAdHoc query; name this new query EmployeeIDLookup.

6. Add an expression that invokes the EmployeeDetailFunction function in a
Table.AddColumn function, and then expand the column to expose the three
columns returned from the EmployeeDetailFunction function using the Table.
ExpandTableColumn function:
let
 Source = EmployeeKeysAdHoc,
 CallFunction =
 Table.AddColumn(
 Source,

Chapter 7

329

 "FunctionTbl", each EmployeeDetailFunction([EmployeeAlternat
eKey])
),
 Expand =
 Table.ExpandTableColumn(
 CallFunction,
 "FunctionTbl",
 {"EmployeeName", "DepartmentName", "EmailAddress"},
 {"EmployeeName", "DepartmentName", "EmailAddress"}
)
in
 Expand

7. Click on Close & Apply in the ribbon of the Home tab and save your work.

How it works…

In this example, a business team maintains a list of employee IDs in an Excel workbook
and wants the ability to access several columns from the employee dimension table in the
data model related to these IDs. In the EmployeeKeysAdHoc query, three M transformation
functions are applied to protect the integration process: a data type conversion to text, the
removal of any null values, and the removal of any duplicates. Data cleansing operations are
always recommended when importing from files and unstructured data sources.

In the EmployeeDetailFunction function, the EmployeeID parameter is first defined as a
required text-type input parameter. The parameter is then used in the EmployeeDimFilter
expression as part of a Table.SelectRows filtering function. Given that the Employees table
has type 2 slowly changing dimension logic applied, with multiple rows possible per employee,
it is necessary to filter for the current employee row according to the EmployeeDimFilter
variable expression ([End Date = null]). Setting this filter condition ensures that only the
current or "active" row (no end date) for the employee is returned.

Slowly changing dimension logic that inserts and/or updates rows for core dimensions as
the entities in these dimensions change is an essential feature of data warehouses. The
entities represented by such dimensions can be things like products or employees. Power
BI dataset designers must be aware of this logic as represented in dimension columns,
such as surrogate keys and alternate or business keys, and develop M and DAX expressions
accordingly.

With the filters applied, a simple Table.SelectColumns expression is used to retrieve
the three required columns. A Table value is returned for each row, and each table
contains columns for the given employee ID from the Excel workbook. As per the M
expression code, the EmployeeDetailFunction function accepts the values from the
EmployeeNationalIDAlternateKey column as its parameter inputs.

Parameterizing Power BI Solutions

330

Changes to the list of employee keys in the Excel workbook will be reflected in the Power BI
report with each refresh. Additional columns and logic can be added to the function and, as
the function is only metadata, it can be used in other data transformation scenarios—in this
model or in other models—with access to the Employees table.

The function in this recipe (Excel-based list), as well as functions applied against relational
database sources that support query folding, still requires local resources of the M engine.
This is demonstrated in Figure 7.6:

Figure 7.6: No query folding for an invoked M function

Given local resource usage and the iterative nature of functions, try to limit or avoid the use
of functions against many rows, as well as functions with complex, multi-step logic. In this
recipe, for example, the list of employees was very small and the function only selected a few
columns from a small dimension table. Since join functions (Table.Join, Table.NestedJoin)
and filter expressions are folded back to relational database sources, query authors should
design query processes to achieve the same results as functions, but without row-by-row
iterations and, hence, the local or gateway resource usage.

There's more…

The Excel file connection information can be parameterized. To see how this works, perform
the following steps:

1. In Power Query Editor, choose Manage Parameters and then New Parameter in the
ribbon of the Home tab.

2. Create a parameter called ExcelFolder as Text and set Current Value to the folder
path where the Employees.xlsx file is located, with no trailing backslash, \, in the
path.

Chapter 7

331

3. Create a second parameter called ExcelFile as Text and set Current Value to
Employees.xlsx.

4. Move the ExcelFolder and ExcelFile parameters to a Parameters query group.

5. Create a new Blank Query in the Other Queries group called ExcelFilePath and
disable the load:
let
 ExcelPath = ExcelFolder & "\" & ExcelFile
in
 ExcelPath

6. Edit the Source line of the EmployeeKeysAdHoc query to use the ExcelFilePath
query:

Source = Excel.Workbook(File.Contents(ExcelFilePath), null, true),

The path and filename of the Excel file are now controlled by the ExcelFolder and ExcelFile
parameters.

See also

 f Writing Custom Functions in Power Query M: https://bit.ly/3xnPuYc

Capturing user selections with parameter
tables

An alternative method for providing parameter functionality to users of Power BI reports is
via dedicated parameter tables. In this approach, the parameter values of a table are either
computed during the dataset refresh process or are loaded as a one-time manual operation.
DAX measures reference this parameter table and other tables and expressions of the model
to enrich the self-service analysis experience and support Power BI report development. This
approach is best suited for parameters that change infrequently since hard-coded parameter
tables within Power BI means that the dataset owner must make such changes. If parameters
need to change frequently, it may be better to have a database table or external file for the
parameter table that is easier to edit and change.

The example in this recipe involves providing simple visibility to four alternative scenarios to
the baseline annual sales plan—10 and 20 percent above and below the baseline plan. An
inline set of scenario values are embedded in the data model, and DAX measures are used
to capture filter context—such as business user selections—and compute the corresponding
scenario logic.

https://bit.ly/3xnPuYc

Parameterizing Power BI Solutions

332

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access Power Query Editor by clicking on
Transform Data in the ribbon of the Home tab.

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable the load on the AdWorksDW query and place it in a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference.

5. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

6. Create a CategoryPlan query with the following code:
let
 Source = Products,
 Sales =
 Table.ExpandTableColumn(
 Source, "FactInternetSales",
 {"SalesAmount", "OrderDate"}, {"SalesAmount", "OrderDate"}
),
 RemoveNulls = Table.SelectRows(Sales, each [SalesAmount] <> null),
 Year =

Chapter 7

333

 Table.AddColumn(
 RemoveNulls, "Calendar Year", each Date.Year([OrderDate])
),
 Month =
 Table.AddColumn(
 Year, "Calendar Month", each Date.MonthName([OrderDate])
),
 MonthNum =
 Table.AddColumn(
 Month, "Month Number", each Date.Month([OrderDate])
),
 Group =
 Table.Group(MonthNum, {"Calendar Year", "Calendar Month",
"Product Category", "Month Number"}, {{"SalesAmount", each List.
Sum([SalesAmount]), type nullable number}}),
 Index = Table.AddIndexColumn(Group, "Index", 1, 1, Int64.Type),
 Plan =
 Table.AddColumn(
 Index, "Plan Amt",
 each if Number.IsEven([Index])
 then 1/Number.RandomBetween(5,10) * [SalesAmount] +
[SalesAmount]
 else (-1 * 1/Number.RandomBetween(5,10) * [SalesAmount])
+ [SalesAmount]
),
 YearMonthSort =
 Table.AddColumn(
 Plan, "YearMonthSort", each [Calendar Year] * 100 + [Month
Number]
),
 YearMonth =
 Table.CombineColumns(
 Table.TransformColumnTypes(
 YearMonthSort, {{"Calendar Year", type text}}, "en-US"
),
 {"Calendar Year", "Calendar Month"},
 Combiner.CombineTextByDelimiter("-", QuoteStyle.None),"Year-
Month"),
 Currency = Table.TransformColumnTypes(YearMonth,{{"Plan Amt",
Currency.Type}})
in
 Currency

7. Move the CategoryPlan query to a query group called Facts, and the Products query
to a query group called Dimensions.

Parameterizing Power BI Solutions

334

8. Disable the load for the Products query.

9. Select Close & Apply from the ribbon of the Home tab.

10. Set the Sort By column for the Year-Month column in the CategoryPlan table to the
YearMonthSort column.

11. Save your work.

How to capture user selections

To implement this recipe, perform the following steps:

1. In Power BI Desktop, while in the Report view, click on New Table in the ribbon of the
Modeling tab.

2. Use the DAX DATATABLE function to create a calculated table with the scenario name,
scenario value, and a sort key:
Plan Scenarios =
 DATATABLE(
 "Plan Scenario", STRING,
 "Var to Plan", DOUBLE,
 "Scenario Sort", INTEGER,
 {
 {"Plan",1,3},{"10% Above Plan",1.1,2},
 {"20% Above Plan",1.2,1},
 {"10% Below Plan",.9,4},
 {"20% Below Plan",.8,5}
 }
)

3. Select the new table (Plan Scenarios) in the Data view, and set the Plan Scenario
column to sort by the Scenario Sort column using the Sort by column feature in the
Column tools tab of the ribbon.

4. Right-click on the Scenario Sort and Var to Plan columns and select Hide in Report
View.

Chapter 7

335

5. Return to the Report view and create a measure that retrieves the filter context of the
Plan Scenario column:
Sales Plan Scenario Filter Branch =
 SWITCH(TRUE(),
 NOT(ISFILTERED('Plan Scenarios'[Plan Scenario])),
 "No Selection",
 NOT(HASONEFILTER('Plan Scenarios'[Plan Scenario])),
 "Multiple Selections",
 "Single Selection"
)

6. Create a Plan Amount measure:
Plan Amount = SUM('SubCatPlan'[Plan Amt])

7. Create an Internet Sales Plan Scenario measure that dynamically calculates a
budget/plan amount based on the filter context (slicers, visuals):
Internet Sales Plan Scenario =
 VAR FilterContext = [Sales Plan Scenario Filter Branch]
RETURN
 SWITCH(TRUE(),
 FilterContext = "Single Selection",
 MIN('Plan Scenarios'[Var to Plan]) * [Plan Amount],
 FilterContext = "No Selection",
 [Plan Amount],
 FilterContext = "Multiple Selections",BLANK()
)

8. Apply a currency format to the Plan Amount and Internet Sales Plan Scenario
measures.

Parameterizing Power BI Solutions

336

9. Create visualizations to display the different plan scenarios; an example is shown in
Figure 7.7:

Figure 7.7: Visualizations of plan scenarios

How it works…

When using the DAX DATATABLE function in the Plan Scenarios table, the column names
and types are declared, and each row is enclosed in curly braces—List values in M queries.
Ideally, the new scenario table can be persisted within a data warehouse and the Power BI
solution can be resilient to changes in scenario names and values.

Chapter 7

337

As per other recipes, using DAX to create tables or columns should generally be thought of as
a secondary and temporary option, such as in proof-of-concept scenarios, or in narrow, static
use cases, such as a Power BI model owned and maintained by a business team.

The intermediate measure, Sales Plan Scenario Filter Branch, simplifies the parameter
selection measure by computing one of the three possible filter contexts: No Selection,
Single Selection, or Multiple Selections. This measure can be hidden from the report
view's Fields list.

The scenario measure, Internet Sales Plan Scenario, passes the intermediate measure
into the FilterContext variable and leverages the existing Plan Amount measure. If a single
scenario selection has been made, such as on a slicer visual, then only a single value will be
active in the Plan Scenarios table, and this will be retrieved via the MIN function. Generally,
defaulting to a standard or base value if no selections have been made, and returning a blank
if multiple selections are made, is appropriate for minimizing complexity and user confusion.

A standard slicer is the most straightforward method of exposing the parameter values in
reports, and the descending order of scenario values (based on the Sort By column) makes
the slicer intuitive for users. As per the matrix visual, the Plan Scenario column can also be
used within report visuals. Additionally, any dimension table with a relationship to the plan/
budget fact table, such as a Products table, can be used in report visualizations with the new
scenario measure as well. The slicer can be used to control chosen plan scenarios, or visual-
level filters can be applied to only display one or a few of the five scenario values.

Disconnected parameter tables are one of the more powerful and easily implemented
patterns in Power BI, with many published examples available, such as enabling the user to
filter reports for their own TOP criteria (in other words, Top 5, 10, 15, 20) through slicers. A
more dynamic and analytical approach involves computing parameter values via M queries
with each refresh, such as the standard deviation, median, and average of prices, and then
using these query results in DAX measures.

There's more…

Parameter tables can also be used to dynamically filter Power Query queries when using
DirectQuery sources. This means that users can dynamically filter the information coming
back from a DirectQuery query using report slicers. This functionality may still be in preview at
the time this book is published, but more information regarding this functionality is provided
in the See also section of this recipe.

See also

 f Dynamic M query parameters in Power BI Desktop (preview): https://bit.
ly/2QYrvhq

https://bit.ly/2QYrvhq
https://bit.ly/2QYrvhq

Parameterizing Power BI Solutions

338

Forecasting with what-if analysis
Power BI can be used to directly support the creation of forecasts, budgets, and other planned
values of future business measures and events. The relationships and logic of these datasets,
which are commonly implemented in Excel formulas and maintained by business teams, can
be efficiently replicated within a dedicated Power BI Desktop file. Isolating the what-if input
variables from the forecast creation, storage, and visualization in Power BI enables users to
more easily create, analyze, and collaborate on business forecasts.

In this recipe, a Power Desktop model is used to ingest forecast-variable inputs from Excel,
and process these variables with a dynamic transformation process to generate a forecast
table available for visualization. This design enables business teams to rapidly iterate on
forecasts, and ultimately supports an official or approved forecast or plan that could be
integrated with other data models.

Getting ready

To prepare for this recipe, follow these steps:

1. Download Forecast.xlsx from the following GitHub repository: https://github.
com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition.

2. Open a Power BI Desktop file locally and access Power Query Editor by clicking on
Transform Data in the ribbon of the Home tab.

3. Create a query named AdWorksDW, similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

4. Disable the load on the AdWorksDW query and place it in a Data Sources query group.

5. Right-click the AdWorksDW query and choose Reference.

6. Rename the query Internet Sales, choose the FactInternetSales table,
and change the OrderDate column to be of the Date data type:

let
 Source = AdWorksDW,
 dbo_FactInternetSales = Source{[Schema="dbo",Item="FactInternetSal
es"]}[Data],
 DateType = Table.TransformColumnTypes(
 dbo_FactInternetSales,{{"OrderDate", type date}})

https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 7

339

in
 DateType

7. Repeat steps 5 and 6, creating a Sales Territories query that points to the
DimSalesTerritory table, and a Dates query that points to the DimDates table.

8. Add YearMonth and YearMonthSort columns to the Dates table:
let
 Source = AdWorksDW,
 dbo_DimDate = Source{[Schema="dbo",Item="DimDate"]}[Data],
 YearMonth = Table.AddColumn(
 dbo_DimDate, "YearMonth",
 each Text.From([CalendarYear]) & "-" & Text.
Start([EnglishMonthName],3)
),
 YearMonthSort = Table.AddColumn(
 YearMonth, "YearMonthSort", each [CalendarYear]*100+[MonthNumber
OfYear])
in
 YearMonthSort

9. Select Close & Apply from the ribbon of the Home tab.

10. Switch to the Model view and create a relationship between the SalesTerritoryKey
columns in the Internet Sales and Sales Territories tables.

11. Create a relationship between the DateKey column in the Dates table and the
OrderDateKey column in the Internet Sales table.

12. Set Sort by column for the YearMonth column in the Dates table to the
YearMonthSort column.

How to forecast with what-if analysis

To implement this recipe, perform the following steps:

1. In Report View, choose Transform data from the ribbon of the Home tab.

2. Create a query in the Data Sources query group called ForecastFile that points to
the Forecast.xlsx file and disable the load:
let
 Source = Excel.Workbook(File.Contents("C:\Forecast.xlsx"), null,
true)
in
 Source

3. Right-click the ForecastFile query and choose Reference.

Parameterizing Power BI Solutions

340

4. Rename the query ForecastYear and use the following code:
() =>
 let
 Source = ForecastFile,
 FY = Source{[Item="ForecastYear",Kind="DefinedName"]}[Data],
 Rename = Table.RenameColumns(FY,{{"Column2", "ForecastYear"}}),
 SelectColumn = Table.SelectColumns(Rename,{"ForecastYear"}),
 Record = Table.Max(SelectColumn,{"ForecastYear"}),
 Year = Record.Field(Record,"ForecastYear")
 in
 Year

5. Move the ForecastYear function to a query group called Forecast.

6. In the Forecast query group, create a query called ForecastTotalGrowth
and disable the load:
let
 Source = ForecastFile,
 Forecast = Source{
 [Item="TotalSalesGrowthBaseForecast",Kind="DefinedName"]}[Data],
 Promote = Table.PromoteHeaders(Forecast, [PromoteAllScalars=true]),
 Unpivot = Table.UnpivotOtherColumns(
 Promote, {"Value"}, "Attribute", "Value.1"),
 RemoveColumn = Table.RemoveColumns(Unpivot,{"Value"}),
 Rename = Table.RenameColumns(
 RemoveColumn,{{"Attribute", "Month"}, {"Value.1", "Sales
Growth"}}),
 ChangeToPercent = Table.TransformColumnTypes(
 Rename,{{"Sales Growth", Percentage.Type}})
in
 ChangeToPercent

7. In the Forecast query group, create a query called ForecastAllocation and
disable the load:
let
 Source = ForecastFile,
 Allocation = Source{[Item="SalesGroupAllocation",Kind="DefinedNa
me"]}[Data],
 Promote = Table.PromoteHeaders(Allocation, [PromoteAllScalars=true]),
 Unpivot = Table.UnpivotOtherColumns(
 Promote, {"Group"}, "Attribute", "Value"),
 Rename = Table.RenameColumns(Unpivot,
 {
 {"Group", "Sales Territory"}, {"Attribute", "Month"},
 {"Value", "Allocation"}

Chapter 7

341

 }),
 ChangeToPercent = Table.TransformColumnTypes(
 Rename,{{"Allocation", Percentage.Type}})
in
 ChangeToPercent

8. In the Forecast query group, create a function called CurrentDate:
() as date =>
 let
 Current = Date.FromText("6/28/2013")
 in
 Current

9. In the Forecast query group, create a query called PriorYearMonthlySales
and disable the load:
let
 CurrentYear = Date.Year(CurrentDate()),
 CurrentMonth = Date.Month(CurrentDate()),
 WorkingMonth =
 if Date.DaysInMonth = Date.Day(CurrentDate())
 then CurrentMonth - 1 else CurrentMonth,
 PYJoin = Table.Join(
 #"Internet Sales","OrderDate",
 Dates,"FullDateAlternateKey",JoinKind.Inner),
 PYFilter = Table.SelectRows(PYJoin, each [CalendarYear] =
CurrentYear-1 and
 [MonthNumberOfYear] >= WorkingMonth),
 PYGroup = Table.Group(
 PYFilter,{"CalendarYear", "MonthNumberOfYear",
"EnglishMonthName"},
 {"Sales", each List.Sum([SalesAmount]), Currency.Type}),
 RemoveColumns = Table.RemoveColumns(PYGroup,{"MonthNumberOfYear"}),
 Month = Table.TransformColumns(
 RemoveColumns,
 {{"EnglishMonthName", each Text.Start(_, 3), type text}}),
 Rename = Table.RenameColumns(Month,{{"EnglishMonthName", "Month"}})
in
 Rename

10. In the Forecast query group, create a query called
CurrentYearMonthlySales and disable the load:
let
 CurrentYear = Date.Year(CurrentDate()),
 CurrentMonth = Date.Month(CurrentDate()),
 WorkingMonth =

Parameterizing Power BI Solutions

342

 if Date.DaysInMonth = Date.Day(CurrentDate())
 then CurrentMonth else CurrentMonth - 1,
 PYJoin = Table.Join(
 #"Internet Sales","OrderDate",
 Dates,"FullDateAlternateKey",JoinKind.Inner),
 PYFilter = Table.SelectRows(PYJoin, each [CalendarYear] =
CurrentYear and
 [MonthNumberOfYear] <= WorkingMonth),
 PYGroup = Table.Group(
 PYFilter,{"CalendarYear", "MonthNumberOfYear",
"EnglishMonthName"},
 {"Sales", each List.Sum([SalesAmount]), Currency.Type}),
 RemoveColumns = Table.RemoveColumns(PYGroup,{"MonthNumberOfYear"}),
 Month = Table.TransformColumns(
 RemoveColumns,
 {{"EnglishMonthName", each Text.Start(_, 3), type text}}),
 Rename = Table.RenameColumns(Month,{{"EnglishMonthName", "Month"}})
in
 Rename

11. In the Forecast query group, create a query called SalesForecastBase and
disable the load:
let
 History = Table.Combine({CurrentYearMonthlySales,PriorYearMonthlySal
es}),
 JoinForecast = Table.NestedJoin(
 History, "Month", ForecastTotalGrowth,"Month",
 "Fcst Column", JoinKind.Inner),
 ForecastColumns = Table.ExpandTableColumn(
 JoinForecast, "Fcst Column", {"Sales Growth"}, {"Sales
Growth"}),
 MonthlyForecast = Table.AddColumn(
 ForecastColumns,
 "Forecast Sales", each ([Sales Growth]+1) * [Sales], Currency.
Type),
 AddForecastYear = Table.AddColumn(
 MonthlyForecast,"Forecast Year",each ForecastYear()),
 RemoveColumns = Table.RemoveColumns(
 AddForecastYear,{"CalendarYear", "Sales", "Sales Growth"})
in
 RemoveColumns

Chapter 7

343

12. In the Forecast query group, create a query called Sales Forecast:
let
 Source = Table.NestedJoin(
 ForecastAllocation, "Month",
 SalesForecastBase, "Month", "AllocationTable", JoinKind.
LeftOuter),
 ExpandAllocation = Table.ExpandTableColumn(
 Source, "AllocationTable", {"Forecast Sales", "Forecast Year"},
 {"Forecast Sales Total", "Forecast Year"}),
 AddAllocationForecast = Table.AddColumn(
 ExpandAllocation, "Forecast Sales",
 each [Allocation] * [Forecast Sales Total], Currency.Type),
 RemoveColumns = Table.RemoveColumns(
 AddAllocationForecast,{"Allocation", "Forecast Sales Total"}),
 YearMonth = Table.CombineColumns(
 Table.TransformColumnTypes(RemoveColumns,
 {{"Forecast Year", type text}}, "en-US"),
 {"Forecast Year", "Month"},
 Combiner.CombineTextByDelimiter("-", QuoteStyle.
None),"YearMonth")
in
 YearMonth

13. In the Other Queries query group, create a query called
ForecastDateBridge:
let
 Dates = Table.Distinct(
 Table.SelectColumns(
 Table.SelectRows(Dates,
 each [FullDateAlternateKey] <= CurrentDate()),
 {"YearMonth"})),
 Forecast = Table.Distinct(
 Table.SelectColumns(#"Sales Forecast", {"YearMonth"})),
 YearMonths = Table.Combine({Dates, Forecast})
in
 YearMonths

14. In the Other Queries query group, create a query called
ForecastTerritoryBridge:
let
 Territories = Table.Distinct(
 Table.SelectColumns(#"Sales Territories","SalesTerritoryGroup"))
in
 Territories

Parameterizing Power BI Solutions

344

15. Click Close & Apply from the ribbon of the Home tab and save your work.

16. Create a relationship between the YearMonth columns of the Dates table and the
ForecastDateBridge table, and set Cross filter direction to Both.

17. Create a relationship between the YearMonth columns of the ForecastDateBridge
table and the Sales Forecast table.

18. Hide the ForecastDateBridge table from the Report view.

19. Create a relationship between the SalesTerritoryGroup columns of the Sales
Territory table and the ForecastTerritoryBridge table, and set Cross filter
direction to Both.

20. Create a relationship between the SalesTerritoryGroup column in the
ForecastTerritoryBridge table and the Sales Territory column in the Sales
Forecast table.

21. Hide the ForecastTerritoryBridge table from the Report view. The final data model
is displayed in Figure 7.8:

Figure 7.8: Final model for forecasting

22. Create a Today measure:
Today = DATE(2013,6,28)

23. Create a Total Sales Amount measure:
Total Sales Amount =
 SWITCH(TRUE(),
 ISBLANK(COUNTROWS('Sales Forecast')),

Chapter 7

345

 IF(
 MAX('Dates'[FullDateAlternateKey])<[Today],
 SUM('Internet Sales'[SalesAmount]),
 BLANK()
),
 SUM('Sales Forecast'[Forecast Sales])
)

24. Create a Line chart visualization using the YearMonth column from the Dates table as
Axis, and the Total Sales Amount measure as Values.

25. Add a Slicer visualization using the SalesTerritoryGroup column from the Sales
Territories table, as shown in Figure 7.9:

Figure 7.9: Historical and forecasted sales

Parameterizing Power BI Solutions

346

How it works…

The ForecastYear, ForecastTotalGrowth, and ForecastAllocation queries use the
named ranges in the Forecast.xlsx file to import the required forecast information. The
ForecastYear query is a function with no input parameters that returns the single numeric
value for the forecast year. The ForecastTotalGrowth and ForecastAllocation queries use
the Table.UnpivotOtherColumns function to unpivot the month columns in the data to return
12 rows and 36 rows, respectively. In the ForecastTotalGrowth query, each row represents
a month in the forecast year and the forecasted growth percentage year-on-year. In the
ForecastAllocation query, each row represents the expected allocation of the forecasted
growth by Sales Territory and Month.

The CurrentDate query specifies a date for the current date by using a function with no input
parameters. The function is specified to return a Date data type. In this recipe, the value for
CurrentDate is hardcoded to June 28, 2013. In a production scenario something like the
Date.LocalNow function would be used instead.

The PriorYearMonthlySales, CurrentYearMonthlySales, and SalesForecastBase queries
work together to create a base forecast for the report. Both the PriorYearMonthlySales and
CurrentYearMonthlySales queries retrieve aggregated values from the Internet Sales
query by Month. The Table.SelectRows filter function is used in the PriorYearMonthlySales
and CurrentYearMonthlySales queries to ensure that the combination of the two queries is
always equal to the full 12 months. For example, in June 2013, only January through May are
retrieved by the CurrentYearMonthlySales query, with the remaining months retrieved by the
PriorYearMonthlySales query.

The SalesForecastBase query combines the PriorYearMonthlySales and
CurrentYearMonthlySales queries using the Table.Combine function into the History
expression. The combined table is then joined to the ForecastTotalGrowth query to add the
forecasted Sales Growth column. The base forecast, the Forecast Sales column, is created
by multiplying the Sales column from Internet Sales by 1 + the Sales Growth percentage.
Finally, the Forecast Year column is added by calling the ForecastYear function from a
Table.AddColumn expression and unnecessary columns are removed.

The final Sales Forecast query joins the ForecastAllocation query to the
SalesForecastBase query in order to attribute the sales growth of the specified allocation
by Sales Territory. A Left.Outer join is used to ensure that all rows from the
ForecastAllocation query are present in the resulting table, with the AllocationTable
column holding the columns from the SalesForecastBase query. Once the columns from
the SalesForecastBase table are expanded, the Forecast Sales column can be created
by multiplying the Forecast Sales Total column by the Allocation column. Finally,
unnecessary columns are removed, and a YearMonth column is created to ensure that the
Sales Forecast table can be related to the Dates table in the model.

Chapter 7

347

The ForecastDateBridge and ForecastTerritoriesBridge tables each contain unique
values for YearMonth and SalesTerritoryGroup, respectively. These tables are used in the
model to bridge the different granularities between the Dates table, the Sales Territories
table, and the Sales Forecast table.

The Total Sales Amount measure determines whether the measure is executing in a current
or future YearMonth, and calculates the value by either summing the SalesAmount column
from the Internet Sales table for current YearMonth values, or by summing the Forecast
Sales column from the Sales Forecast table for future YearMonth values.

There's more…

The forecasting can be modified to include a what-if parameter that can be chosen by the user
to visualize beating the forecast by specified percentages. To demonstrate how this works,
perform the following steps:

1. In the Report view, choose New parameter from the ribbon of the Modeling tab.

2. Name the parameter Beat Forecast By, choose Decimal number for the data type,
set Minimum to 0.1, Maximum to 0.4, and Increment to 0.1:

Figure 7.10: What-if parameter

Parameterizing Power BI Solutions

348

3. Modify the Total Sales Amount measure as follows:
Total Sales Amount =
 VAR __BeatForecastValue = [Beat Forecast By Value]
 VAR __ForecastIncrease =
 IF(ISBLANK(__BeatForecastValue),1,1+__BeatForecastValue)
RETURN
 SWITCH(TRUE(),
 ISBLANK(COUNTROWS('Sales Forecast')),
 IF(
 MAX('Dates'[FullDateAlternateKey])<[Today],
 SUM('Internet Sales'[SalesAmount]),
 BLANK()
),
 SUM('Sales Forecast'[Forecast Sales]) * __ForecastIncrease
)

Users can now use the Beat Forecast By slicer to control what-if scenarios, regarding
exceeding the sales forecast by the specified percentages.

See also

 f Use what-if parameters to visualize variables: https://bit.ly/2QsmNZu

Conclusion
The recipes in this chapter covered both standard parameterization features and techniques
in Power BI as well as more advanced custom implementations. Examples of parameterizing
data sources, queries, user-defined functions, and reports demonstrated the power of the
M language and its integration with other Power BI Desktop features. Additional examples,
such as URL-based parameter filters, a dedicated forecasting or what-if? tool, and user
selection parameter tables, utilized both the transformation and analytical features of Power
BI to empower users with greater control over the analysis and visualization of Power BI data
models.

https://bit.ly/2QsmNZu

349

8
Implementing Dynamic

User-Based Visibility
in Power BI

Data security, wherein users or groups of users are prevented from viewing a portion of
a dataset, is often a top requirement in Power BI deployments. Security implementations
can range in complexity from mapping a few security groups to their associated row-level
security roles based on a single dimension value such as department or region to dynamic,
user-based security involving dedicated user permissions tables and dynamic DAX functions.
Given the variety of use cases and the importance of this feature to securely share a dataset
across stakeholders, it is important to understand the process and techniques available for
developing, testing, and operationalizing data security roles.

In addition to row-level security (RLS) roles, dynamic, user-based filter context techniques can
also be used to simplify and personalize the user experience. For example, the filter conditions
built into reports, as well as the interactive filter selections from end users, can be dynamically
updated and displayed in intuitive visuals to aid comprehension. In more advanced scenarios,
DAX measures themselves can be filtered based on information about the user interacting
with the content to deliver a personalized experience. This chapter contains detailed examples
of building and deploying dynamic, user-based security for both Import and DirectQuery
datasets, as well as examples of dynamic filter context functionality to enhance the user
experience.

In this chapter, we will cover the following recipes:

 f Capturing Current User Context

 f Defining RLS Roles and Filter Expressions

 f Designing Dynamic Security Models

Implementing Dynamic User-Based Visibility in Power BI

350

 f Building Dynamic Security for DirectQuery

 f Displaying the Current Filter Context

 f Avoiding Manual User Clicks

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop.

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
the instructions for installing it are available here: http://bit.ly/2OVQfG7.

 f Files for this chapter and can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition.

Capturing Current User Context
The foundation of dynamic user security and visibility in Power BI is the ability to extract the
user principal name (UPN) or login credential of the business user connected to content in
the Power BI service. The USERPRINCIPALNAME DAX function retrieves this text value and thus
enables filter expressions to be applied to the tables of a model in security roles. In addition to
RLS roles, which override and impact all DAX measures of a dataset, the UPN or "current user"
text value can be used by DAX measures to retrieve the UPN prefix and suffix, or filter other
measures.

In this recipe, DAX measures are added to a data model to dynamically retrieve the UPN as
well as the UPN's prefix and suffix. Additional detail on authentication in Power BI and the
USERNAME function, an alternative dynamic DAX function that also retrieves the UPN in the
Power BI service, is also covered.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a new file in Power BI Desktop and sign in

2. Click Transform data from the ribbon of the Home tab

3. In the Power Query Editor, create a new Blank query called Dynamic User Measures

4. Click Close & Apply from the ribbon of the Home tab

5. Switch to Data view and hide the Dynamic User Measures column in the Dynamic
User Measures table

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 8

351

How to Capture User Context

To implement this recipe, use the following steps:

1. In the Data view, create three DAX measures in the Dynamic User Measures table:
User Principal Name = USERPRINCIPALNAME()

UPN Prefix = LEFT([User Principal Name], SEARCH("@",[User Principal
Name]) - 1)

UPN Suffix =
 RIGHT(
 [User Principal Name],
 LEN([User Principal Name]) - LEN([UPN Prefix]) - 1)

2. Create a Table visualization and add the three measures to the table as Values

Figure 8.1: UPN measures

3. Publish the report to the Power BI service

4. Add a separate user to the workspace or share the report with another user

5. Request this user to log in to the workspace to view the report or log on with the
alternate user's credentials

Figure 8.2: The function returns the UPN of the different logged-in user

How it works ...

It is not technically necessary to create these measures in a data model in order to implement
dynamic security or visibility, but this approach simplifies development since measure
expressions can be reused and hidden from users.

Power BI uses Azure Active Directory (AAD) to authenticate users who log in to the Power
BI service, and the Power BI login credentials (such as BrettP@FrontlineAnalytics.
onmicrosoft.com) are used as the effective username whenever a user attempts to access
resources that require authentication. The USERPRINCIPALNAME DAX function returns the email
address used to log in to Power BI. For organizations that use work email addresses for Power
BI logins, this effective username maps to a UPN in the local active directory.

Implementing Dynamic User-Based Visibility in Power BI

352

In Power BI service-to-on-premises scenarios, such as with SSAS cubes on-premises, the
effective username (login credentials) from the Power BI service is mapped to a UPN in the
local active directory and resolved to the associated Windows domain account.

If security roles have not been configured on the dataset, the member of the workspace,
(JenLawrence for example) will see her UPN via either read or edit rights in the workspace. If
security roles have been configured for the dataset, the member will either require edit rights
in the workspace or can be added to one of the security roles defined for the dataset, and
granted read access to the workspace. Security roles are applied to read-only members of app
workspaces. Alternatively, the app workspace admin or workspace members with edit rights
can test the security of users who are mapped to a security role but are not members of the
workspace.

There's more ...

The USERNAME DAX function returns the user's domain login in the format domain\user locally,
but returns the user principal name (the user's login credential) in the Power BI service.
Therefore, security role filter expressions, user permissions tables, and any other dynamic
user functionality added to Power BI datasets should align with the UPN email address format
provided by USERPRINCIPALNAME.

In locally shared data models, DAX text functions can be used to extract the domain and
username from USERNAME, like with USERPRINCIPALNAME in this recipe's example:

User Name = USERNAME()

User Name Domain = LEFT([User Name], SEARCH("\", [User Name]) - 1)

User Name Login =
 RIGHT([User Name], LEN([User Name]) - LEN([User Name Domain]) - 1)

Figure 8.3: The USERNAME function used locally and outside of the Power BI service

The USERNAME function is commonly used in dynamic security implementations with SSAS
tabular models. USERPRINCIPALNAME was introduced to simplify user identity, as it returns
the UPN (email address format) locally and in the Power BI service. A rare exception to this is
when a PC is not joined to a domain. In this unlikely scenario, USERPRINCIPALNAME returns the
domain and username in (domain\user) format, just like USERNAME.

Chapter 8

353

There is also a USEROBJECTID DAX function that returns the current user's object ID from AAD
when used in the context of the Power BI service or Azure Analysis Services. When used with
SQL Server Analysis Services on-premises, the user's Security Identifier (SID) is returned.

See also

 f Power BI security documentation and whitepaper: http://bit.ly/22NHzRS

 f DAX USERPRINCIPALNAME function: https://bit.ly/3dMDhVc

 f DAX USERNAME function: https://bit.ly/2RRFuWT

 f DAX USEROBJECTID function: https://bit.ly/3aCEXPo

Defining RLS Roles and Filter Expressions
Data security should always be top of mind and BI teams and developers should strive to
ensure that users are never granted greater access or permission than is necessary to
perform a legitimate business function.

In the context of Power BI projects, the question "Who should be able to see what?" should be
well defined and documented before any reports are published or read access to the dataset
is granted. Additionally, there should be a well-defined process for creating and managing the
security groups used in security implementations.

The data security of Power BI models comprises security roles defined within the model,
with each role containing a unique set of one or more DAX filter expressions. Roles and
their associated filter expressions are created in Power BI Desktop, and users or groups are
mapped to security roles in the Power BI service. A single DAX filter expression can be applied
to each table of a model within a given security role, with users having the option of being
mapped to multiple security roles. The filter expressions applied to tables within a security
role also filter other tables in the model via relationships defined in the model, like the filters
applied to Power BI reports, and are applied to all queries submitted by the security role
member.

This recipe contains an end-to-end example of configuring, deploying, and validating RLS
roles, applicable to both Import and DirectQuery data models. Additional guidance on
a consolidated security role table that improves the manageability of changing security
requirements is also included.

http://bit.ly/22NHzRS
https://bit.ly/3dMDhVc
https://bit.ly/2RRFuWT
https://bit.ly/3aCEXPo

Implementing Dynamic User-Based Visibility in Power BI

354

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place it into a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Internet Sales and choose the FactInternetSales table

6. Repeat steps 4 and 5, creating a Resellers query that points to the DimResellers
table, a Reseller Sales query that points to the FactResellerSales query, a Sales
Territories query that points to the DimSalesTerritory table, and a Dates query that
points to the DimDate table

7. Create a Customers query using the following code:
let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 DimGeography = Table.ExpandRecordColumn(
 dbo_DimCustomer, "DimGeography",
 {"DimSalesTerritory"}, {"DimSalesTerritory"}),
 SalesTerritory = Table.ExpandRecordColumn(
 DimGeography, "DimSalesTerritory",
 {"SalesTerritoryGroup"}, {"SalesTerritoryGroup"})
in
 SalesTerritory

8. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",

Chapter 8

355

 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

9. Move the Internet Sales and Reseller Sales queries to a Facts query group and
the Sales Territories, Dates, Customers, Resellers, and Products queries to a
Dimensions query group

10. In the Other Queries group, create a Blank query called Calculations

11. Select Close & Apply from the ribbon of the Home tab

12. Switch to the Model view and create a relationship between the SalesTerritoryKey
columns in the Internet Sales and Sales Territories tables

13. Create a relationship between the SalesTerritoryKey columns in the Reseller Sales
and Sales Territories tables

14. Create a relationship between the ProductKey columns in the Reseller Sales and
Products tables

15. Create a relationship between the ProductKey columns in the Internet Sales and
Products tables

16. Create a relationship between the DateKey column in the Dates table and the
OrderDateKey column in the Internet Sales table

17. Create a relationship between the DateKey column in the Dates table and the
OrderDateKey column in the Reseller Sales table

18. Create a relationship between the CustomerKey columns in the Internet Sales and
Customers tables

19. Create a relationship between the ResellerKey columns in the Reseller Sales and
Resellers tables

20. Save your work

Define and document the security role requirements to be implemented, and the members or
groups of these roles. Use the bus matrix diagrams (Figure 3.1 and Figure 3.2) described in
Chapter 3, Building a Power BI Data Model, to help communicate what data is currently stored
in the model. Validate that role security is indeed required (not report or model filters), given
the risk or sensitivity of the data.

Implementing Dynamic User-Based Visibility in Power BI

356

Do not confuse security role filters with the various other forms of filters in Power BI, such as
report-, page-, and visual-level filters, as well as filter logic in DAX measures. RLS role filters
are applied to all queries of security role members, effectively producing a virtual subset
of the data model for the given role at query time. Given the performance implications of
compounding security role filters with report query filters, all user experience and analytical
filters should be implemented outside of the security role filters. Security filters should be
exclusively used for securing sensitive data.

Figure 8.4: Model for RLS roles and filter expressions

How to Define RLS Roles and Filter Expressions

To implement this recipe, use the following steps:

1. In the Report view, create the following measures in the Calculations table:
Customers Row Count = COUNTROWS('Customers')

Internet Sales Row Count = COUNTROWS('Internet Sales')

Products Row Count = COUNTROWS('Products')

Reseller Sales Row Count = COUNTROWS('Reseller Sales')

Chapter 8

357

Resellers Row Count = COUNTROWS('Resellers')

Sales Territories Row Count = COUNTROWS('Sales Territories')
Dates Row Count = COUNTROWS('Dates')

2. Create a simple Table visualization using the measures created in the previous step.
An example is shown in Figure 8.5.

Figure 8.5: Row count measures in a table visual of the Power BI data model

3. Hide the Calculations column in the Calculations table.

4. Click Manage roles in the ribbon of the Modeling tab.

5. Click the Create button and name the new role United States Online Bike Sales.

6. Create the following four table filter DAX expressions on the Customers, Products,
Resellers, and Sales Territories tables, respectively:
[SalesTerritoryGroup] = "North America"
[Product Category] = "Bikes"
FALSE()
[SalesTerritoryCountry] = "United States"

Figure 8.6: Role security definitions for United States Online Bike Sales

7. Click Create and name the new role Europe Reseller Mountain and Touring.

8. Create the following three table filter DAX expressions on the Customers, Resellers,
and Sales Territories tables, respectively:
FALSE()
[ProductLine] IN {"Mountain","Touring"}
[SalesTerritoryGroup] = "Europe"

9. Click the Save button.

Implementing Dynamic User-Based Visibility in Power BI

358

10. Click View as in the ribbon of the Modeling tab, choose the United States Online
Bike Sales role, click the OK button, and note that the row counts in the Table
visualization change, with the Reseller Sales Row Count and Reseller Row Count
measures being blank.

Figure 8.7: Viewing the row count measures as a member of the United States Online Bike Sales role

11. Click View as in the ribbon of the Modeling tab, choose the Europe Reseller
Mountain and Touring role and uncheck the United States Online Bike Sales role,
click the OK button, and note that the row counts in the Table visualization change
with the Internet Sales Row Count and Customers Row Count measures being
blank.

Figure 8.8: Viewing the row count measures as a member of the
Europe Reseller Mountain and Touring role

12. Save the file, click Publish in the ribbon of the Home tab, and deploy to the Power BI
service.

13. Log in to the Power BI service and navigate to the workspace of the published report.

14. Click the vertical ellipsis next to the dataset and select Security.

Figure 8.9: Opening the security settings for a published Power BI dataset in an app workspace

Chapter 8

359

15. Members for each role can be added by entering the email addresses of the users
and clicking the Add button.

Figure 8.10: Row-Level Security dialog

How it works

The filter expressions in RLS roles are always enforced and override any filtering logic in
connected reports or DAX measures. BI developers responsible for a model with RLS roles
defined should be able to communicate how the RLS logic impacts common reports and
measures to report authors and other stakeholders.

Filters applied in security roles traverse relationships just like filters in Power BI reports and
filters applied in DAX measures. For example, a security filter on a product dimension table
will flow from the Products table (the one side of a relationship) to the many side (Internet
Sales), but will stop there, and neither will they flow to other tables related to Internet Sales
unless bidirectional relationships have been enabled between Internet Sales and these other
dimension tables. Note that when viewing by either role or no roles, the Dates Row Count
measure remains the same, because there is no direct filter applied—nor are any of the DAX
filter expressions propagated to the Dates table through relationships.

The data model contains both internet sales and reseller sales, but each role should be
restricted to their specific business process (fact table). Additionally, the United States Online
Bike Sales role should be able to view North America customer details (Canada and United
States), but only sales for United States customers purchasing products in the bike category.
The Sales Territories filter ensures that members will only see sales data associated with
United States customers. The Customers table filter allows the security members the option
to view Canada and United States customers. The FALSE function is used to filter every row of
the Resellers table, which also filters the related Reseller Sales table.

The two reseller table measures return a blank value, given the FALSE security filter. The
Internet Sales table is filtered by the Products filter (Bikes) and the Sales Territories filter
(United States). The Internet Sales table is also filtered by the Customers filter, but the Sales
Territories filter is more restrictive.

Implementing Dynamic User-Based Visibility in Power BI

360

Even for experienced Power BI developers and for relatively simple requirements, it can be
helpful to apply a single security filter at a time and to observe the impact on row counts. A
standard testing report page with row counts, and possibly fact table measures, can help
expedite the process.

For the European Reseller Mountain and Touring role, the Resellers filter makes only rows
with a ProductLine of Mountain or Touring visible. The IN DAX operator is a more intuitive
and sustainable expression than the || symbol used as a logical OR operator in older
versions of the language. The Internet Sales and Customers tables are blank due to the
FALSE expression for the Customers table. Customers has a one-to-many, single-direction
relationship with Internet Sales. Therefore, filters on the Customers table impact Internet
Sales, but not other tables.

The Sales Territories table has three rows remaining (France, Germany, and United Kingdom)
due to the Europe filter. The Reseller Sales fact table is impacted by both the Sales Territories
filter and the Reseller ProductLine filter (Mountain or Touring). The filters from the Resellers
and Sales Territories tables flow to the Reseller Sales table, but stop there and do not impact
other tables.

In gathering security requirements, and again in a testing or quality assurance (QA) phase,
communicate which tables are not impacted by the security filters to stakeholders. Users may
falsely believe that a Products table security filter will also filter another dimension table, such
as a Stores dimension, since only certain products are sold in certain stores. However, if the
Stores table is queried directly and there is not a bidirectional relationship between Stores
and a Sales fact table, all the stores would be accessible. Only when a sales measure is used
in a visual would stores with blank values (given the Products filter) be discarded by default,
and even then, a user could access these stores via Show items with no data setting. To
secure these tables and avoid bidirectional cross-filtering for these relationships, additional
table-specific security filters may be needed.

There's more

Security role definitions are specific to a given Power BI model (dataset). The management
overhead and risk of maintaining common security roles and business definitions across
multiple Power BI models, in addition to excess resource usage, should motivate IT/BI teams
to consider consolidating these models to a single Power BI premium dataset or optionally
an Analysis Services model. The management overhead and risk of maintaining common
security roles and business definitions across multiple Power BI models can motivate IT/
BI teams to consolidate data models when feasible, and to consider a SQL Server Analysis
Services (SSAS) or Azure Analysis Services model as a more efficient and secure long-term
solution.

As more roles and role filter requirements are required of a data model, a central security
role table can be built into a data warehouse with the names of distinct roles associated with
the values of the columns to be secured. Queries against this table can be used by Import or
DirectQuery data models to implement these roles via relationships.

Chapter 8

361

See also

 f Row-level security (RLS) with Power BI: https://bit.ly/3nhx3zW

 f Row-level security (RLS) guidance in Power BI Desktop: https://bit.ly/3tUH3kY

Designing Dynamic Security Models
Dynamic security models in Power BI filter tables are based on the relationship of the logged-
in user to a column or columns stored in the data model. The USERPRINCIPALNAME DAX
function returns the user's UPN, as per the first recipe of this chapter, and a filter expression
of a security role accepts this value as a parameter. Like all filters in Power BI data models,
the filters applied in security roles also filter other tables via one-to-many and bidirectional
relationships. Security roles can also blend dynamic, user-based filters with standard security
filters to further restrict the visibility of members mapped to these roles.

This recipe implements dynamic security on an Employees dimension table. The result is that
logged-in users (employees) can only view their own data and the data of those who report to
them directly or indirectly via other managers.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query, and place it into a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Employees, choose the DimEmployee table, and move it to the
Other Queries query group

6. Select Close & Apply from the ribbon of the Home tab

7. Switch to the Data view and create the following calculated columns:
Employee Name = SWITCH(TRUE(),
 ISBLANK([MiddleName]),[FirstName] & " " & [LastName],
 [FirstName] & " " & LEFT([MiddleName],1) & ". " & [LastName])

https://bit.ly/3nhx3zW
https://bit.ly/3tUH3kY

Implementing Dynamic User-Based Visibility in Power BI

362

Manager Name = LOOKUPVALUE(
 Employees[Employee Name],[EmployeeKey],[ParentEmployeeKey])

ManagementPath = PATH(Employees[EmployeeKey],Employees[ParentEmployeeK
ey])

ManagementPathLength = PATHLENGTH([ManagementPath])

8. Set the EmployeeKey and ParentEmployeeKey columns default Summarization
setting to Don't summarize

9. Save your work

Establish the technical feasibility of dynamic security early in a Power BI deployment, such
as through the existence and quality of employee-manager hierarchy sources, and the role
security implications/options of Import versus DirectQuery models. As per the other recipes
in this chapter, simple tables and relationships can be used as an alternative to relatively
complex DAX expressions such as PATHCONTAINS. Additionally, for DirectQuery models,
consider the option to leverage the existing security model of the source database rather than
defining new RLS roles.

How to Build Dynamic Security Models

To implement this recipe, use the following steps:

1. In the Report view, create a simple Table visualization using the Employee
Name, Manager Name, EmployeeKey, ParentEmployeeKey, EmailAddress,
ManagementPath, and ManagementPathLength columns, as shown in Figure 8.11

Figure 8.11: Table visual of the Employees table columns

2. Create the following DAX measures:
Current User Principal Name = "ascott0@adventure-works.com"

Current User EmployeeKey = LOOKUPVALUE(Employees[EmployeeKey],
 Employees[EmailAddress],[Current User Principal Name])

Current User Name = LOOKUPVALUE(Employees[Employee Name],
 Employees[EmailAddress],[Current User Principal Name])

Current User Manager = LOOKUPVALUE(Employees[Manager Name],
 Employees[EmployeeKey],[Current User EmployeeKey])

Chapter 8

363

Current User Org Level = CALCULATE(MAX(Employees[ManagementPathLength]),
 FILTER(ALL(Employees),Employees[EmployeeKey] = [Current User
EmployeeKey]))

Employee Row Count = COUNTROWS('Employees')

3. Select Manage roles in the ribbon of the Modeling tab

4. Click Create and name the role Current User, with a table filter DAX expression on
the Employees table of the following:
PATHCONTAINS(Employees[ManagementPath],[Current User EmployeeKey])

Figure 8.12: Dynamic filter expression applied to Employees table for security role Current User

5. Click the Save button

6. Create a Multi-card visualization using the Current User Name, Current User
Manager, Current User Org Level, and Employee Row Count measures as Fields

7. Select View as in the ribbon of the Modeling tab and choose the Current User role

Figure 8.13: Viewing the report as A. Scott Wright

8. Edit the Current User Principal Name measure to be peter0@adventure-works.com

Figure 8.14: Viewing the report as Peter J. Krebs

Implementing Dynamic User-Based Visibility in Power BI

364

How it works

In a production environment, the Current User Principal Name measure would not be
hardcoded to an email address, but would rather take the form of the following formula:

Current User Principal Name = USERPRINCIPALNAME()

The DAX functions used in this recipe are specific to a parent-child hierarchy that exists in the
DimEmployee source table. The DimEmployee table contains an email address column that
would correspond to the value returned by the DAX USERPRINCIPALNAME function when logged
into the Power BI service. Additionally, this recipe is exclusive to Import mode datasets, as
parent-child DAX functions are not currently supported in DirectQuery mode models for either
calculated columns or security filter expressions.

The Employees table has 296 rows, but a logged-in user should only see her data and the
data of those that report to her directly or indirectly. For example, a vice president should
still have visibility to a manager even if the manager reports to a senior manager who reports
to the vice president. The senior manager, however, should not be able to view the vice
president's data or the data of a different senior manager. Visibility is limited to the current
user's data and the data of those employees who report to them directly or indirectly via other
managers.

The EmployeeKey value is the last item in the ManagementPath column via the PATH
function. The Current User EmployeeKey measure, which uses the Current User Principal
Name to retrieve the EmployeeKey value, is passed as the item parameter to the
PATHCONTAINS function in the RLS filter expression. The calculated column created in step
1, ManagementPath, provides the string of values for each Employees row to be evaluated
against.

There's more

RLS expressions can significantly degrade query performance, as these filters will be applied
in addition to other filters and expressions from Power BI reports when members of security
roles access this content. As a general rule, try to use relationships between tables with low
cardinality to implement dynamic security, as per the following recipe in this chapter. Utility
or information functions, such as LOOKUPVALUE, CONTAINS, and PATHCONTAINS, can meet
complex security rules in Import mode models but can be very expensive from a performance
standpoint when applied against larger-dimension tables—such as customer or product tables
containing more than one million rows.

See also

 f Row-level security (RLS) with Power BI: https://bit.ly/3nhx3zW

 f Row-level security (RLS) guidance in Power BI Desktop: https://bit.ly/3tUH3kY

https://bit.ly/3nhx3zW
https://bit.ly/3tUH3kY

Chapter 8

365

Building Dynamic Security for DirectQuery
Dynamic row-level security roles can be implemented in DirectQuery models via relationships,
and with specifically bidirectional cross-filtering between user security tables and the
dimension tables to be secured. DAX information functions, commonly used in the role
security expressions of Import mode models, such as CONTAINS and LOOKUPVALUE, are
not supported in DirectQuery mode models, thus requiring a relationship-based security
design. Although limited to this single approach, dynamic security can be quickly developed
for DirectQuery models and maintained easily, without the need for complex DAX security
expressions.

This recipe walks through the steps and settings necessary to support dynamic security in a
DirectQuery model.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a new query that accesses your copy of the AdventureWorksDW2019
database on your SQL Server, ensuring that the Data Connectivity mode is set to
DirectQuery

3. Choose the FactInternetSales table in the Navigation dialog

4. Rename the query Internet Sales

5. Right-click the Internet Sales query and choose Duplicate

6. Change the Navigation step to point to the DimSalesTerritory table

7. Rename the query Sales Territories

8. Right-click the Internet Sales query and choose Duplicate

9. Change the Navigation step to point to the DimEmployee table

10. Rename the query Employees

11. Edit the Employees query to be the following (replacing the Source line with the
instance of your SQL Server):
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),
 dbo_DimEmployee = Source{[Schema="dbo",Item="DimEmployee"]}[Data],
 ExpandSalesTerritory = Table.ExpandRecordColumn(
 dbo_DimEmployee, "DimSalesTerritory",
 {"SalesTerritoryCountry"}, {"SalesTerritoryCountry"}),

Implementing Dynamic User-Based Visibility in Power BI

366

 RemoveColumns = Table.SelectColumns(
 ExpandSalesTerritory,
 {"SalesTerritoryCountry", "EmployeeKey",
 "EmployeeNationalIDAlternateKey", "EmailAddress"})
in
 RemoveColumns

12. Right-click the Employees query and choose Duplicate

13. Rename the query Countries

14. Edit the Countries query to be the following (replacing the Source line with the
instance of your SQL Server):
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),
 dbo_DimEmployee = Source{[Schema="dbo",Item="DimEmployee"]}[Data],
 ExpandSalesTerritory = Table.ExpandRecordColumn(
 dbo_DimEmployee, "DimSalesTerritory",
 {"SalesTerritoryCountry"}, {"SalesTerritoryCountry"}),
 RemoveColumns = Table.SelectColumns(
 ExpandSalesTerritory,{"SalesTerritoryCountry"}),
 RemoveDups = Table.Distinct(RemoveColumns)
in
 RemoveDups

15. Click Close & Apply from the ribbon of the Home tab

16. Switch to Model view and create a relationship between the SalesTerritoryCountry
columns of the Sales Territories and Countries tables

17. Create a relationship between the SalesTerritoryKey columns of the Sales Territories
and Internet Sales tables

18. Create a relationship between the SalesTerritoryCountry columns of the Countries
and Employees tables

19. Save your work

How to Build Dynamic Security Models for
DirectQuery

To implement this recipe, perform the following:

1. In the Model view, open the properties for the Countries to Employees relationship,
and set the Cross filter direction to Both

2. Check the checkbox for both Assume referential integrity and Apply security filter in
both directions and then click OK

Chapter 8

367

Figure 8.15: Bidirectional relationship between the Countries and Employees tables

3. The model should now look the same as that shown in Figure 8.16

Figure 8.16: Dynamic user security relationships

4. Create the following measure, Current User Principal Name:
Current User Principal Name = "david8@adventure-works.com"

5. Click Manage roles in the ribbon of the Modeling tab

6. Click Create, and name the role Current User, with a table filter DAX expression on
the Employees table of the following code:
[EmailAddress] = [Current User Principal Name]

7. Figure 8.17 shows this DAX formula entered into Power BI Desktop's interface for
creating RLS roles

Figure 8.17: DAX table filter expression applied to the EmailAddress column of the Employees table

Implementing Dynamic User-Based Visibility in Power BI

368

8. Click the Save button

9. Create a Table visualization using the EmailAddress and SalesTerritoryCountry
columns from the Employees table

10. Create a Clustered column chart visualization using the SalesTerritoryCountry
column from the Countries table as the Axis, and the SalesAmount column (sum)
from the Internet Sales table as Values

11. Click View as in the ribbon of the Modeling tab, choose Current User, and click
the OK button to see that only the United States column is shown in the clustered
column chart

12. Edit the Current User Principal Name measure to be lynn0@adventure-works.com
and observe that only Australia is shown in the clustered column chart

How it works

In a production environment, the Current User Principal Name measure would not be
hardcoded to an email address, but would rather be of the following formula:

Current User Principal Name = USERPRINCIPALNAME()

When a user mapped to the dynamic security role connects to the DirectQuery dataset, their
UPN is computed via the USERPRINCIPALNAME function. This value filters the Employees
table to a single row, which then filters the Countries table via the bidirectional, one-to-many
relationship. The filtered countries, such as Australia and the United States, then filter the
Sales Territories dimension table. As a final step, the Internet Sales fact table is filtered by
the Sales Territories table, and thus all Internet Sales measures and aggregations reflect the
given SalesTerritoryCountry of the employee.

Note that the Countries table, which contains only the distinct country values, is necessary,
since the Sales Territories table contains many regions for the same country, and all
relationships must have a side that identifies each row of a table.

Ensure that Apply security filter in both directions is selected for the bidirectional (both)
cross-filter relationship between the Countries and Employees tables. In addition, the
Assume referential integrity setting causes the DirectQuery data model to send inner join
SQL queries to the source database and this—of course—significantly improves performance
with larger models.

There's more

The approach from this recipe can be implemented in the same way for an Import mode
model, and can also be used with a consolidated security role table. For example, instead of
an Employees table containing UPNs (email addresses), a Permissions table could be loaded
to the model containing the names of each RLS role and the columns to secure.

Chapter 8

369

For each role, a simple security filter could be applied that references the name of the role.
As in this recipe, Bridge tables containing the unique values of the secured columns could be
created, and security filters would flow across relationships from the Permissions table to the
Dimension and Fact tables via the Bridge table(s).

Figure 8.18: RLS permissions table

Given the performance advantage of relationship filtering (including bidirectional relationship
filtering), as well as the avoidance of relatively complex DAX, there could be value for
organizations to follow this approach to dynamic security for both Import and DirectQuery
models.

See also

 f Row-level security (RLS) with Power BI: https://bit.ly/3nhx3zW

 f Row-level security (RLS) guidance in Power BI Desktop: https://bit.ly/3tUH3kY

Displaying the Current Filter Context
DAX measures can be created to dynamically display the current filter context to report
users. These measures can detect filters, retrieve values, and apply conditional logic to the
filters applied to both slicer visuals and report- and page-level filters. With the filter context
as a visual aid, users consuming or interacting with Power BI reports can focus on the data
visualizations to obtain insights more quickly and with greater confidence. In addition,
such measures can be useful when designing RLS scenarios as a check that the correct
information is being filtered by the RLS rules.

In this recipe, DAX measures are created to detect and display the filter selections applied
to a specific column, either on the report canvas itself or as a report- or page-level filter. An
additional example displays the values of a column that are "remaining," given the filters
applied to the column directly and indirectly via other filters.

https://bit.ly/3nhx3zW
https://bit.ly/3tUH3kY

Implementing Dynamic User-Based Visibility in Power BI

370

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW, similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place it into a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Sales Territories, choose the DimSalesTerritory table, and move
to the Other Queries query group

6. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

7. Move the Sales Territories and Products queries to the Other Queries query
group

8. Select Close & Apply from the ribbon of the Home tab

9. Save your work

Chapter 8

371

How to do it

To implement this recipe, perform the following:

1. Create a DAX measure for Regions Selected:
Regions Selected =
 VAR Selected =
 FILTERS('Sales Territories'[SalesTerritoryRegion])
 VAR String = "Regions Selected: " &
 CONCATENATEX(
 Selected,[SalesTerritoryRegion],", ",[SalesTerritoryRegion])
 VAR StringLength = LEN(String)
 VAR NumOf = COUNTROWS(Selected)
RETURN
 SWITCH(TRUE(),
 NOT(ISFILTERED('Sales Territories'[SalesTerritoryRegion])),
 "No Regions Selected",
 StringLength < 45, String,
 NumOf & " Regions Selected")

2. Create a DAX measure for Categories Selected:
Categories Selected =
 VAR Selected =
 FILTERS('Products'[Product Category])
 VAR String = "Categories Selected: " &
 CONCATENATEX(
 Selected,[Product Category],", ",[Product Category])
 VAR StringLength = LEN(String)
 VAR NumOf = COUNTROWS(Selected)
RETURN
 SWITCH(TRUE(),
 NOT(ISFILTERED('Sales Territories'[SalesTerritoryRegion])),
 "No Categories Selected",
 StringLength < 45, String,
 NumOf & " Categories Selected")

3. Add a Card or Multi-row card visualization for each measure created

Implementing Dynamic User-Based Visibility in Power BI

372

4. Add slicer visualizations for the SalesTerritoryRegion column in the Sales Territories
table and the Product Category column in the Products table

Figure 8.19: Two Multi-row Card visuals displaying the filter context from two Slicer visuals

How it works

In both measures, four DAX variables and a SWITCH function are used to support three
separate conditions. When no filters are applied, the message No Regions Selected or No
Categories Selected is returned. When many regions/categories are selected, resulting in a
long text string (over 45 characters in this example), a short message is returned advising of
the number of regions/categories selected. Otherwise, an ordered, comma-separated list of
the selected region/category values is returned.

The FILTERS function returns a table of the values that are directly applied as filters to a
column. The third parameter to CONCATENATEX is optional, but drives the sort order of the
text values returned, and thus is recommended to aid the user when accessing the report by
placing the values returned in a logical sorting order versus unsorted. As per Figure 8.19, the
values are sorted alphabetically.

In this example, a separate measure was created for the Product Category column in the
Products table, and both columns are being filtered by slicer visuals. The two measures
displayed in the multi-row Card visuals will also reflect filters applied via report- and page-
level filters. For example, if there were no selections on the Product Category slicer, or if this
slicer was removed completely, the categories-selected measure would still detect and display
product category filters from page- and report-level filters.

You should plan ahead when creating multiple similar measures. Name variables in such a
way that DAX code can be reused between multiple measures, and ensure that the variables'
names still make sense within the context of each measure's code.

Chapter 8

373

There's more

1. Create a DAX measure that identifies the remaining SalesTerritoryRegion values,
given all other filters are applied:
Regions Remaining =
 VAR Remaining = DISTINCT('Sales Territories'[SalesTerritoryRegion])
 VAR String = "Regions Remaining: " &
 CONCATENATEX(
 Remaining,[SalesTerritoryRegion],", ",[SalesTerritoryRegion])
 VAR StringLength = LEN(String)
 VAR NumOf = COUNTROWS(Remaining)
RETURN
 SWITCH(TRUE(),
 NOT(ISCROSSFILTERED('Sales Territories')),
 "No Sales Territories Filters",
 StringLength < 55, String,
 NumOf & " Regions Remaining")

2. Create a DAX measure that identifies the remaining Product Subcategories
values, given all other filters are applied:

Subcategories Remaining =
 VAR Remaining = DISTINCT('Products'[Product Subcategory])
 VAR String = "Subcategories Remaining: " &
 CONCATENATEX(
 Remaining,[Product Subcategory],", ",[Product Subcategory])
 VAR StringLength = LEN(String)
 VAR NumOf = COUNTROWS(Remaining)
RETURN
 SWITCH(TRUE(),
 NOT(ISCROSSFILTERED('Sales Territories')),
 "No Products Filters",
 StringLength < 55, String,
 NumOf & " Subcategories Remaining")

The DISTINCT function replaces the FILTERS function used in the earlier example to return
the unique values still active despite filters on other columns. The ISCROSSFILTERED function
replaces the ISFILTERED function used in the earlier example to test if any column from the
Sales Territories dimension table is being used as a filter.

Implementing Dynamic User-Based Visibility in Power BI

374

Test the new measure by applying filters on columns that would reduce the available or
remaining values, as shown in Figure 8.20.

Figure 8.20: Regions Remaining and Subcategories Remaining measures

The SalesTerritoryRegion and Product Subcategory columns are impacted by filters applied
to the SalesTerritoryGroup and Product Category columns, respectively. Given the number
of characters in the text string of 15 product subcategories, only the number remaining is
displayed.

Note that these remaining expressions will return the same string values as the first example,
when filters are applied directly on the given column. For example, if the Northwest and
Northeast regions were selected on a sales territory region slicer, these would be the only two
regions remaining. The techniques applied in these two examples can be blended or enriched
further, such as by associating a numeric measure with each dimension value returned by the
delimited string.

See also

 f DAX FILTERS function: https://bit.ly/3aAVTFB

 f DAX CONCATENATEX function: https://bit.ly/3sVmvHQ

 f DAX ISCROSSFILTERED function: https://bit.ly/3vo13gr

Avoiding Manual User Clicks
A common scenario in BI projects is the need to customize a core set of reports and
dashboards to better align with the responsibilities and analytical needs of specific roles or
users within a larger team or organizational function. A given business user should, ideally,
have immediate and default visibility to relevant data without the need to interact with or
modify content, such as applying filter selections.

https://bit.ly/3aAVTFB
https://bit.ly/3sVmvHQ
https://bit.ly/3vo13gr

Chapter 8

375

Power BI's extensive self-service capabilities are sometimes a solution—or part of it—to this
need, and additional role-specific, IT-supported reports and dashboards are another realistic
option.

A third option, and the one that is the subject of this recipe, is to embed user-based dynamic
filtering logic into DAX measures. With this approach, a single or small group of reports and
dashboards can be leveraged across multiple levels of an organization, thus avoiding the need
for new report development.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW, similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place into a Data Sources query
group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Internet Sales and choose the FactInternetSales table

6. Repeat steps 4 and 5 for a query named Sales Territories that points to
the DimSalesTerritory table, and a query named Customers that points to the
DimCustomers table

7. Edit the Customers query to expand the DimGeography column:
let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 ExpandGeography = Table.ExpandRecordColumn(
 dbo_DimCustomer, "DimGeography",
 {"City", "StateProvinceName", "EnglishCountryRegionName",
"PostalCode"},
 {"City", "StateProvinceName", "EnglishCountryRegionName",
"PostalCode"})
in
 ExpandGeography

Implementing Dynamic User-Based Visibility in Power BI

376

8. Move the Internet Sales query to a query group called Facts, and the Sales
Territories and Customers queries to a query group called Dimensions

9. Create an Enter Data query named Sales User Roles in the Dimensions query group
with the following information:

EmailAddress SalesTerritoryKey UserRole

david8@adventure-works.com 2 Country

linda3@adventure-works.com 4 Region

pamela0@adventure-works.com 6 Group

10. In the Other Queries group, create a Blank query called Calculations

11. Select Close & Apply from the ribbon of the Home tab

12. Create a relationship between the SalesTerritoryKey columns of the Sales
Territories and Internet Sales tables

13. Create a relationship between the SalesTerritoryKey columns of the Sales
Territories and Sales User Roles tables

14. Create a relationship between the CustomerKey columns of the Internet
Sales and Customers tables

15. Set the Data category for the Postal Code column in the Customers table to
Postal Code

16. Save your work

The model should now look the same as that shown in Figure 8.21.

Figure 8.21: The model for this recipe

Chapter 8

377

How to Avoid Manual User Clicks

To implement this recipe, use the following steps:

1. Create the following DAX measures in the Calculations table:
User Principal Name = "david8@adventure-works.com"

User Sales Territory Key = LOOKUPVALUE('Sales User
Roles'[SalesTerritoryKey],
 'Sales User Roles'[EmailAddress],[User Principal Name])

User Sales Role =
 VAR RoleLookup = LOOKUPVALUE('Sales User Roles'[UserRole],
 'Sales User Roles'[EmailAddress],[User Principal Name])
RETURN IF(ISBLANK(RoleLookup),"Role Not Found",RoleLookup)

User Sales Group = IF([User Sales Role] = "Role Not Found",
 "Role Not Found", LOOKUPVALUE('Sales Territories'[SalesTerritoryGrou
p],
 'Sales Territories'[SalesTerritoryKey],[User Sales Territory
Key]))

User Sales Country = IF([User Sales Role] = "Role Not Found",
 "Role Not Found", LOOKUPVALUE('Sales Territories'[SalesTerritoryCoun
try],
 'Sales Territories'[SalesTerritoryKey],[User Sales Territory Key]))

User Sales Region = IF([User Sales Role] = "Role Not Found",
 "Role Not Found", LOOKUPVALUE('Sales Territories'[SalesTerritoryRegi
on],
 'Sales Territories'[SalesTerritoryKey],[User Sales Territory Key]))

2. Create two DAX measures in the Calculations table to detect the filter
context of the Sales Territories table, and to filter the Internet Sales table as
appropriate:
Sales Territory Detection = IF(ISCROSSFILTERED('Sales Territories'),
 "Filters Applied", "No Filters")

Internet Sales Amount = SWITCH(TRUE(),
 [Sales Territory Detection] = "Filters Applied" ||
 [User Sales Role] = "Role Not Found",SUM('Internet
Sales'[SalesAmount]),
 [User Sales Role] = "Group",

Implementing Dynamic User-Based Visibility in Power BI

378

 CALCULATE(SUM('Internet Sales'[SalesAmount]),
 FILTER(ALL('Sales Territories'),
 'Sales Territories'[SalesTerritoryGroup] = [User Sales
Group])),
 [User Sales Role] = "Country",
 CALCULATE(SUM('Internet Sales'[SalesAmount]),
 FILTER(ALL('Sales Territories'),
 'Sales Territories'[SalesTerritoryCountry] =
 [User Sales Country])),
 [User Sales Role] = "Region",
 CALCULATE(SUM('Internet Sales'[SalesAmount]),
 FILTER(ALL('Sales Territories'),
 'Sales Territories'[SalesTerritoryRegion] =
 [User Sales Region])))

3. Create a standard report with the new measure and the Sales Territory table to test
or demonstrate the logic

Figure 8.22: Default filter context for the user Pamela, a group role member for North America

4. Change the User Principal Name measure to test the three different roles

How it works

In a production environment, the User Principal Name measure would not be hardcoded to
an email address, but would rather be of the following formula:

User Principal Name = USERPRINCIPALNAME()

Chapter 8

379

In addition, a production implementation would store the Sales User Roles table in the SQL
data warehouse instead of using an Enter Data query.

The measures in this recipe build on one another, culminating in the Internet Sales Amount
measure. The purpose of these measures is to provide a specific default filter context to apply
to a measure (Internet Sales Amount). A country role member, for example, should see data
filtered by his or her country by default when opening the report. However, conditional logic
can also allow for user filter selections to be applied, allowing for additional visibility as an
option as well.

The Sales Territory Detection measure is fundamental to this approach. If no columns on the
Sales Territories table have been filtered, such as via slicers, then the sales measure should
default to a specific filter context based on the user. If filter selections have been made on
Sales Territories columns, then these selections should be used by the measure.

The Internet Sales Amount measure defaults to summing the SalesAmount column in the
Internet Sales table if the current user is not found in the Sales User Roles table. If a role is
identified for the user and no filters have been applied on the Sales Territories table, a filter
at the user's role level (Group, Country, or Region) and the specific dimension member is
applied.

There's more

The five DAX measures exposed in the top-left card visual of the sample reports are defined as
follows:

User Role Status = "My Sales Role: " & [User Sales Role]

Sales Group Status = "My Group: " & [User Sales Group]

Sales Country Status = "My Country: " & [User Sales Country]

Sales Region Status = "My Region: " & [User Sales Region]

Filter Status = VAR Prefix = "Sales Territory Filter Status: "
RETURN IF([Sales Territory Detection] = "No Filters",

 Prefix & "Role Based",Prefix & "User Defined")

See also

 f DAX LOOKUPVALUE function: https://bit.ly/3gdjZKl

https://bit.ly/3gdjZKl

Implementing Dynamic User-Based Visibility in Power BI

380

Conclusion
This chapter contains detailed examples of building and deploying dynamic, user-based
security for both import and DirectQuery datasets as well as examples of dynamic filter
context functionality to enhance the user experience. Data security where users or groups
of users are prevented from viewing a portion of a dataset is often a top requirement in
Power BI deployments and security implementations can range from simple to complex.
Given the variety of use cases and the importance of this feature to securely share a dataset
across stakeholders, it is important to understand the process and techniques available for
developing, testing, and operationalizing data security roles.

381

9
Applying Advanced

Analytics and
Custom Visuals

Power BI Desktop's standard report authoring tools provide a robust foundation for the
development of rich BI and analytical content. Custom visualizations developed by Microsoft
and third parties further supplement these capabilities with their own unique features and
can be integrated with standard visuals in Power BI reports and dashboards. Additionally,
geospatial analysis features such as the ArcGIS maps visual for Power BI, custom dimension
groupings, and animation and annotation options further aid in the extraction of meaning
from data and also support sharing these insights with others.

Power BI Desktop also includes advanced analytics features reflecting modern data science
tools and algorithms, including clustering, forecasting, and support for custom R and
Python scripts and visuals. For example, an analytics pane is available to enrich visuals with
additional metrics, such as a trend line, and the Quick Insights feature empowers report
authors to rapidly analyze specific questions and generate new visualizations.

This chapter contains a broad mix of recipes highlighting many of the latest and most popular
custom visualization and advanced analytics features of Power BI. This includes top custom
visuals such as bullet charts, the ArcGIS maps visual for Power BI, and data storytelling
via animation and annotation. Additionally, examples are provided on leveraging Power BI
datasets and the DAX, R, and Python languages to embed custom statistical analyses and
visualizations, respectively.

Applying Advanced Analytics and Custom Visuals

382

In this chapter, we will cover the following recipes:

 f Incorporating Advanced Analytics

 f Enriching Content with Custom Visuals and Quick Insights

 f Creating Geospatial Mapping with ArcGIS Maps

 f Democratizing Artificial Intelligence

 f Building Animation and Storytelling

 f Embedding Statistical Analyses

 f Grouping and Binning

 f Detecting and Analyzing Clusters

 f Forecasting and Anomaly Detection

 f Using R and Python Visuals

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing it are available here: http://bit.ly/2OVQfG7

 f Files for this chapter and can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition

Incorporating Advanced Analytics
The standard line, scatter, column, and bar chart visualization types available in Power
BI Desktop, which generally represent the majority of Power BI report content, given their
advantages in visual comprehension, can be further enhanced via a dedicated analytics pane.
Similar to visual-level filters, the Power BI analytics pane creates measures scoped to the
specific visual, such as trend lines, constant lines, percentile lines, min, max, and average.
This additional logic provides greater context to the visual and avoids the need to author
complex or visual-specific DAX measures.

"This pane is our home for all of our analytics features and you'll be able to use this
to augment your charts with any kind of additional analytics that you need."

- Amanda Cofsky Rivera, Power BI Program Manager

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 9

383

This recipe includes two examples of leveraging the analytics pane in Power BI Desktop to
raise the analytical value of chart visuals: one for a clustered column chart and another for a
line chart. The predictive forecasting feature built into the analytics pane is described in the
Forecasting and Anomaly Detection recipe later in this chapter.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a new file in Power BI Desktop

2. Click Transform data from the ribbon of the Home tab

3. In the Power Query Editor, create a new query called Internet Sales that imports
the FactInternetSales table in the AdventureWorksDW2019 database

4. Click Close & Apply from the ribbon of the Home tab

How to Incorporate Advanced Analytics

To implement this recipe, use the following steps:

1. In the Report view, create a clustered column chart visualization using the OrderDate
column of the Internet Sales table as the Axis and the average of the UnitPrice
column as Values

2. In the Axis field well of the Visualizations pane, select the dropdown under the
OrderDate column and switch from Date Hierarchy to OrderDate

Figure 9.1: The automatic Date Hierarchy when a date column is added to a visual

3. Use the Filters pane to only display values from 1/1/2013 to 4/1/2013

4. In the Visualizations pane, click on the Analytics pane (the magnifying glass icon)

5. Open the Trend Line card, click Add, and apply the Color black, a Dashed line Style,
and Transparency of 0%

Applying Advanced Analytics and Custom Visuals

384

6. Add Min, Max, and Median lines to the visual from the respective card in the
Analytics pane

7. Set the names of these lines, Min:, Max:, and Median:, respectively, along with the
Color black, Transparency of 0%, and line Style of Solid

8. For each Min, Max, and Median line, toggle Data label to On and set Text to Name
and value

9. Format the colors of the columns to contrast with the analytics lines

Figure 9.2: Clustered column chart with 4 dynamic lines from the analytics pane:
Trend, Min, Max, and Median

How it works...

In this example, since a date data type column was used as the axis, the trend line calls out
the decline in the average daily unit prices in the first quarter of 2013. Given the volume of
individual dates, the Min, Max, and Median lines give the user quick takeaways, such as the
median daily unit price for an entire quarter, and the option to further analyze sales activity on
February 11, when daily unit prices reached a low (Min) of $93 per unit.

The selections applied in the Analytics pane result in new expressions added to the DAX
query of the visual. The analytics calculations are translated into the equivalent DAX
expressions (i.e., MINX, AVERAGEX) and passed into the GROUPBY table function. Running a SQL
Server Profiler trace against a Power BI Desktop file and viewing the full DAX query associated
with a given visual (including all filters applied) is a great way to understand advanced DAX
functions and filter context. In Windows Task Manager, you can identify the Process ID (PID)
associated with Power BI Desktop's msmdsrv.exe process. Alternatively, you can use the
TASKLIST command from Command Prompt; run netstat -anop tcp, find the local port (in
the local address column) associated with this process, and pass this value to SQL Server
Profiler.

Chapter 9

385

Figure 9.3: A SQL Server profile trace of a Power BI file using the Analytics pane for Min, Max, and Average

There's more...

Line charts support even more analytics features than most other visuals, including
forecasting and X-axis constant lines. To see line chart analytics in action, do the following:

1. Create a measure called Margin % using the following formula:
Margin % =
 VAR __Price = SUM('Internet Sales'[SalesAmount])
 VAR __Cost = SUM('Internet Sales'[TotalProductCost])
RETURN DIVIDE(__Price - __Cost,__Price,0)

2. In the Report view, create a Line chart visualization using OrderDate (the column not
the hierarchy) as the Axis and Margin % as Values

3. Use the Filters pane to only display values from 1/1/2013 to 4/1/2013

4. In the Analytics pane, add a Y-Axis Constant line named Target: with a Value of 0.4

5. Add an X-Axis Constant Line called End of Quarter: for 3/31/2013

6. Add a Min line called Min: and a Max line called Max:, with a Color of black and a
Line style of Solid

7. Add a Percentile line called 75% Percentile and set Percentile to 75%

8. For all lines, toggle Data label to On and set Text to Name and value

9. Add a Forecast of 1 Month(s) with a Confidence interval of 75% and Seasonality of
60 points

Figure 9.4: Line chart with analytics lines and forecast

Applying Advanced Analytics and Custom Visuals

386

In this example, 40 percent is considered a key profitability threshold, and thus a constant
line helps to call out values below this level. Additionally, the percentile line set at 75 percent
helps to identify the top quartile of values. The lines from the Analytics pane (and their
formatting) provide more analytical value to users without requiring additional DAX measures
for the model or cluttering the visual.

See also
 f Power BI Analytics pane documentation: http://bit.ly/2s2fA0P

 f How to trace a Power BI Desktop file: http://bit.ly/2tYRLZg

Enriching Content with Custom Visuals and
Quick Insights

Custom visuals for Power BI can be reviewed and downloaded from AppSource to provide
additional features and options beyond those supported by the standard visuals of Power BI
Desktop. Over 300 custom visuals are currently available in AppSource with many of these
having been developed by Microsoft to address common needs, such as the bullet, histogram,
and Gantt charts. Other custom visuals available in AppSource have been developed by third
parties but validated for security by Microsoft, with these visuals having unique and powerful
capabilities, such as flow map network visualization and the interactive visuals developed
by ZoomCharts. In addition to custom visuals, Quick Insights can be used in the Power BI
service and in Power BI Desktop to apply advanced analytics algorithms against datasets to
extract insights, such as trends or relationships, and rapidly generate new visualizations for
use in reports and dashboards.

Custom visuals should only be used when they deliver a highly valuable or required
functionality that is not provided by standard visuals. This is because custom visuals are often
much less performant than standard visuals and are less reliable. Moreover, custom visuals
are more difficult to support as report authors are less familiar with the specific options
associated with custom visuals relative to standard visuals.

This recipe includes an example of accessing and utilizing the bullet chart custom visual in
Power BI Desktop and an example of the Quick Insights feature in the Power BI service.

Getting ready
To prepare for this recipe, follow these steps:

1. Open a new file in Power BI Desktop

2. Click Transform data from the ribbon of the Home tab

3. In the Power Query Editor, create a new query called Internet Sales that imports the
FactInternetSales table in the AdventureWorksDW2019 database:

http://bit.ly/2s2fA0P
http://bit.ly/2tYRLZg

Chapter 9

387

4. Click Close & Apply from the ribbon of the Home tab
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),
 Navigation = Source{[Schema="dbo",Item="FactInternetSales"]}[Data],
 ExpandedDimSalesTerritory = Table.ExpandRecordColumn(
 Navigation, "DimSalesTerritory",
 {"SalesTerritoryCountry"}, {"SalesTerritoryCountry"})
in
 ExpandedDimSalesTerritory

5. In the Visualizations pane, click the ellipsis (…) and choose Get more visuals

Figure 9.5: Import custom visuals from AppSource

6. Use Search to find the certified (blue star/checkmark icon) Bullet Chart visualization
and click the Add button

Figure 9.6: Adding a custom visual from Power BI Desktop

How to Enrich Content with Custom Visuals and Quick
Insights

To implement this recipe, use the following steps:

1. Create the following measures:
Sales 2011 = SUMX(FILTER('Internet Sales',YEAR([OrderDate])=2011),[Sales
Amount])

Sales 2012 = SUMX(FILTER('Internet Sales',YEAR([OrderDate])=2012),[Sales
Amount])

Sales 2012 Improve = [Sales 2011] * .7

Sales 2012 Sat = [Sales 2011] * .8

Applying Advanced Analytics and Custom Visuals

388

Sales 2012 Good = [Sales 2011] * .9

Sales 2012 VG = [Sales 2011]

2. Select the Bullet Chart icon in the Visualizations pane to add it to the report canvas

3. Configure the visual as follows:

 � Category: SalesTerritoryCountry column
 � Value: Sales 2012 measure
 � Needs Improvement: Sales 2012 Improve measure
 � Satisfactory: Sales 2012 Sat measure
 � Good: Sales 2012 Good measure
 � Very Good: Sales 2012 VG measure

Figure 9.7: Bullet chart custom visual with data-driven ranges and threshold values

4. Publish the report to the Power BI service
5. Open the report in the Power BI service
6. Pin the bullet chart visualization to a new dashboard
7. Open the new dashboard
8. In the upper right of the pinned tile, click the ellipsis (…) and choose View insights
9. The insights engine will produce insights visuals related to the data in the dashboard tile

How it works
In this example, six DAX measures, reflecting different values relative to the target measure
(Sales 2011), were used to drive the color thresholds and the minimum and maximum values
of the bullets. Measures representing 70%, 80%, 90%, and 100% of the Sales 2011 measure
were used to drive the color categories in the bullet chart.

Chapter 9

389

The bullet chart also supports manually entered target values and percentages of target
values in the formatting pane. However, the data-driven approach with DAX measures is
recommended, as this allows for the reuse of the calculations across other visuals, and
makes it easy to adjust multiple reports when the target and threshold value logic changes.

There's more

The Quick Insights feature and analytics engine in the Power BI service is now available in
Power BI Desktop. To see how this works, follow these steps:

1. Create a Margin % measure with the following code:
Margin % =
 VAR __Price = SUM('Internet Sales'[SalesAmount])
 VAR __Cost = SUM('Internet Sales'[TotalProductCost])
RETURN DIVIDE(__Price - __Cost,__Price,0)

2. Create a Line chart visualization with Order Date (hierarchy, not the column) as the
Axis and the Margin % measure as the Values

3. Right-click the data point in the chart for 2013 and choose Analyze and then Explain
the decrease

Figure 9.8: The Analyze feature in Power BI Desktop

Applying Advanced Analytics and Custom Visuals

390

The Analyze option appears when right-clicking a specific data point, enabling additional
visualizations to be generated specific to the selected item, such as a date on a line chart or
a dimension value on a bar chart. The generated visuals can then be added to the Power BI
Desktop file and edited just like all other visuals. The Analyze option is the embodiment of the
Quick Insights feature and analytics engine within Power BI Desktop.

Quick Insights can also be executed against an entire dataset in the Power BI service. To run
quick insights against a dataset, click the ellipsis for the given dataset and select Get quick
insights. The insights generated can be accessed from the same context menu via a View
Insights option. Each insight contains a Power BI visual, the title of the insight (algorithm)
applied, such as outliers and correlation, and a short description. Visuals from View Insights
can also be pinned to new and existing dashboards.

Quick Insights applies sophisticated algorithms against datasets, including category outliers,
correlation, change points in a time series, low variance, majority, seasonality in time series,
and overall trends in time series. The insights engine is limited to a set duration of time to
render its results.

Quick Insights visuals can be pinned to new and existing dashboards like other Power BI
report and dashboard tiles. Additionally, Quick Insights can be executed against a visual that
was previously generated by Quick Insights.

The results from Quick Insights can be improved by hiding or unhiding columns. Quick
Insights does not search hidden columns, so hiding (or removing) unnecessary columns can
focus the insights algorithms on only important columns. Likewise, any duplicate columns can
be removed or hidden such that the time available for Quick Insights to run is used efficiently.

See also

 f Power BI custom visuals: https://bit.ly/3xY9GAk

 f Certified Power BI visuals: https://bit.ly/2RETFPa

 f Generate data insights on your dataset automatically: https://bit.ly/33qJErt

 f Optimize your data for Power BI Quick Insights: https://bit.ly/3trWOPz

Creating Geospatial Mapping with ArcGIS
Maps

The ArcGIS mapping and spatial analytics software from ESRI, a market leader in geographic
information systems (GISes), is built into Power BI Desktop to generate greater insights from
the spatial component of data. Familiar report visualization field wells and the cross-filtering
capabilities of Power BI can be combined with ArcGIS geospatial features and datasets, such
as classification types, pins, and reference layers, to build custom, intelligent geographical
visualizations into Power BI solutions.

https://bit.ly/3xY9GAk
https://bit.ly/2RETFPa
https://bit.ly/33qJErt
https://bit.ly/3trWOPz

Chapter 9

391

In this recipe, a custom geographical column is created to include multiple geographical
attributes (i.e., Street Address, City, and State) to support accurate geocoding by the
ArcGIS service. The ArcGIS visualization in Power BI Desktop is then used to plot customer
addresses into a Cluster theme map visualization with supporting Pins and Infographics.

Getting ready

To prepare for this recipe, follow these steps:

1. In the Power BI service, click on Settings (the gear icon) in the top right and enable
ArcGIS maps on the General tab. This requires administrative access to the Power BI
service.

Figure 9.9: General settings dialog in Power BI service

2. Open a new file in Power BI Desktop.

3. Click Transform data from the ribbon of the Home tab.

4. In the Power Query Editor, create a new query called Customers using the following
code (editing the Source line):
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019"),
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 ExpandGeography = Table.ExpandRecordColumn(dbo_DimCustomer,
"DimGeography",
 {"City", "StateProvinceCode", "EnglishCountryRegionName",
"PostalCode",
 "DimSalesTerritory"},
 {"City", "StateProvinceCode", "EnglishCountryRegionName",
"PostalCode",
 "DimSalesTerritory"}),
 ExpandSalesTerritory = Table.ExpandRecordColumn(ExpandGeography,
 "DimSalesTerritory", {"SalesTerritoryRegion"},

Applying Advanced Analytics and Custom Visuals

392

{"SalesTerritoryRegion"}),
 DupCity = Table.DuplicateColumn(ExpandSalesTerritory, "City",
"City1"),
 DupZip = Table.DuplicateColumn(DupCity, "PostalCode", "Zip"),
 Address = Table.CombineColumns(DupZip,
 {"AddressLine1", "City1", "StateProvinceCode"},
 Combiner.CombineTextByDelimiter(", ", QuoteStyle.
None),"Address"),
 FullAddress = Table.CombineColumns(Address,{"Address", "Zip"},
 Combiner.CombineTextByDelimiter(" ", QuoteStyle.None),"Full
Address")
in
 FullAddress

5. Click Close & Apply from the ribbon of the Home tab.

6. In Power BI Desktop, select the City column in the Customers table and assign a
Data category of City.

7. Select the Full Address column in the Customers table and assign a Data category
of Address.

How to Create Geospatial Mapping with ArcGIS Maps

To implement this recipe, use the following steps:

1. Apply a page-level filter using the SalesTerritoryRegion column in the Customers
table, and select Southwest only

2. In the Visualizations pane, select the ArgGIS Maps for Power BI visualization and
then expand the visualization's size to the entire page

3. From the Customers table, add the Full Address column for Location, the
CustomerKey column for Size, and the YearlyIncome column for Color

4. In the Format pane, expand Location type and choose United States

Figure 9.10: Setting the ArcGIS Location type

5. In the upper left of the ArcGIS map visualization, select Expand map tools

Chapter 9

393

6. Click the Layer list icon and then the vertical ellipsis next to Full Address and choose
Symbology

Figure 9.11: Change the Symbology of the map layer

7. Scroll down and choose Clustering

8. In Map tools, click Analysis tools (the wrench icon) and then Reference layer

9. Click Add under 2020 USA Per Capita Income

10. Close the Reference layer dialog, click Analysis tools again, and this time choose
Infographics

11. Add infographics for Average household size and Median Disposable Income by Age

12. In Map tools, click on the Search icon (the magnifying glass), type sherman, and
choose Sherman Oaks, CA, USA to add a pin on the map

13. In Map tools, click Analysis tools (the wrench icon) and choose Drive time

14. Select the pin, enter 10 for the Distance for the radius, and select OK

Figure 9.12: Formatted cluster theme map with a pin, analytic layer, drive time radius, and two infographics

Applying Advanced Analytics and Custom Visuals

394

The visual is fully interactive; the clusters and the infographic numbers all update dynamically
as the zoom of the visual is changed and as different geographic areas are navigated to, such
as San Francisco, CA. A common alternative to the clustering theme is the heat map, and the
dark-gray canvas base map is an alternative base map that can help visualize bright colors.

How it works

Setting Location type provides a geographic hint that significantly improves the accuracy of
the plotted points returned by the ESRI service. Note that locations can also be represented
as boundaries, such as states or postal codes. Almost all the advanced report development
features provided by ArcGIS are exposed in the Power BI visualization.

If latitude and longitude columns are already available for the dimension to be mapped, then
these columns should be used in the ArcGIS visual instead of the Location field well. Providing
latitude and longitude source data significantly improves performance, as it eliminates the
need for ESRI to compute these values.

There's more

A powerful analytical capability of ArcGIS for Power BI is its ability to set the classification
algorithm. To see how this works, do the following:

1. Make a duplicate of Page 1 by right-clicking Page 1 and choosing Duplicate page

2. In Map tools, change the Symbology of Full Address to Color

3. Scroll down to the Classification type area and experiment with the various options

Chapter 9

395

Figure 9.13: ArcGIS classification options

Applying Advanced Analytics and Custom Visuals

396

See also

 f ArcGIS for Power BI documentation: https://bit.ly/3vtMckC

Democratizing Artificial Intelligence
Recent additions to Power BI's visualization library help democratize artificial intelligence by
making machine learning intuitive and easy to use by end users. The Key influencers and
Decomposition tree visualizations covered in this chapter, as well as other visuals like Smart
narrative and Q&A, leverage machine learning algorithms to analyze visualization data in real
time to bring artificial intelligence insights to the masses. Machine learning is the process
of analyzing data based purely on mathematical algorithms in order to identify patterns, key
metrics, clusters, anomalies, and key categorizations.

This recipe demonstrates how to configure and use the artificial intelligence capabilities of the
Key influencers and Decomposition tree visualizations.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place it into a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Internet Sales and choose the FactInternetSales table

6. Repeat steps 4 and 5, creating a Dates query that points to the DimDates table, and
a Sales Territories query that points to the DimSalesTerritory table

7. Create a Customers query using the following code:
let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 ExpandGeography = Table.ExpandRecordColumn(dbo_DimCustomer,
"DimGeography",

https://bit.ly/3vtMckC

Chapter 9

397

 {"City", "StateProvinceCode", "EnglishCountryRegionName",
"PostalCode",
 "DimSalesTerritory"},
 {"City", "StateProvinceCode", "EnglishCountryRegionName",
"PostalCode",
 "DimSalesTerritory"}),
 ExpandSalesTerritory = Table.ExpandRecordColumn(ExpandGeography,
 "DimSalesTerritory", {"SalesTerritoryRegion"},
{"SalesTerritoryRegion"}),
 DupCity = Table.DuplicateColumn(ExpandSalesTerritory, "City",
"City1"),
 DupZip = Table.DuplicateColumn(DupCity, "PostalCode", "Zip"),
 Address = Table.CombineColumns(DupZip,
 {"AddressLine1", "City1", "StateProvinceCode"},
 Combiner.CombineTextByDelimiter(", ", QuoteStyle.
None),"Address"),
 FullAddress = Table.CombineColumns(Address,{"Address", "Zip"},
 Combiner.CombineTextByDelimiter(" ", QuoteStyle.None),"Full
Address")
in
 FullAddress

8. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

9. Move the Internet Sales query to a Facts query group and the Sales Territories,
Dates, Customers, and Products queries to a Dimensions query group

10. Choose Close & Apply from the ribbon of the Home tab

Applying Advanced Analytics and Custom Visuals

398

11. Switch to the Model view and create a relationship between the SalesTerritoryKey
columns in the Internet Sales and Sales Territories tables

12. Create a relationship between the ProductKey columns in the Internet Sales and
Products tables

13. Create a relationship between the DateKey column in the Dates table and the
OrderDateKey column in the Internet Sales table

14. Create a relationship between the CustomerKey columns in the Internet Sales and
Customers tables

15. Save your work

How to Democratize Artificial Intelligence

To implement this recipe, use the following steps:

1. In the Report view, create a Key influencers visualization, placing the SalesAmount
column from the Internet Sales table in the Analyze field well, and the following
columns in the Explain by field well:

 � The SalesTerritoryCountry column from the Sales Territories table

 � The SalesTerritoryGroup column from the Sales Territories table

 � The SalesTerritoryRegion column from the Sales Territories table

 � The Product Category column from the Products table

 � The Product Subcategory column from the Products table

 � The City column from the Customers table

Figure 9.14: Key influencers visualization

2. Click on the different When items to view visuals related to the influencers

Chapter 9

399

3. Click on the Top segments tab to view the different segments identified

4. Click on a segment of interest to view additional information and visualizations

Figure 9.15: Segment detail in the Key influencers visualization

How it works

The Key influencers visual uses machine learning algorithms to analyze the data added to
the visual and extract insights based upon these algorithms. Different visuals and insights
are created depending on whether the metric has categorical or continuous key influencers.
Using an unsummarized numeric field in the Analyze field well allows Analysis in the Format
pane to be changed to either Categorical or Continuous. Using a measure or an aggregated
column forces a Continuous analysis. Measures can be used as either the metric to be
analyzed or as a key influencer (Explain by).

Counts can be activated in the Analysis section of the Format pane. Counts are useful for
determining whether key influencers have a large impact but only represent a small portion of
the total data. Enabling counts creates a ring around the key influencer circles that represents
the percentage of data rows in which the key influencer appears. A ring around the entire
circle means that 100% of the data contains the key influencer.

The Top segments tab analyzes the data in order to find clusters of similar data points. Again,
machine learning clustering algorithms are used in order to find and extract these segments
from the underlying data used in the visualization.

The Key influencers visualization has certain limitations, primarily related to the data sources
supported and where the visual can be displayed. For example, the Key influencers visual
does not support DirectQuery or live connections to Azure Analysis Services or SQL Server
Analysis Services. In addition, the Key influencers visualization is not supported when using
Publish to web or embedding in SharePoint Online.

Applying Advanced Analytics and Custom Visuals

400

There's more

Another recently added, advanced visualization is the Decomposition tree. To understand
how to configure and use the Decomposition tree visualization, follow these steps:

1. In the Report view, create a Key influencers visualization by placing the
SalesAmount column from the Internet Sales table in the Analyze field well, and the
following columns in the Explain by field well:

 � The SalesTerritoryCountry column from the Sales Territories table

 � The Product Category column from the Products table

 � The Product Subcategory column from the Products table

 � The City column from the Customers table

 � The CalendarYear column from the Dates table

2. Click the + icon at the end of the SalesAmount bar and choose High value

Figure 9.16: Decomposition tree expansion

3. Repeat this procedure until the tree is fully expanded, as shown in Figure 9.17

Figure 9.17: Fully expanded Decomposition tree visualization

Selecting High value or Low value when expanding the decomposition tree leverages artificial
intelligence machine learning algorithms to expand the tree, to return either the highest
or lowest values of the measure being analyzed, respectively. The Decomposition tree
visualization is a powerful and flexible tool for end users to explore and analyze their data,
as users can explore the Explain by categories in any order, or allow the machine learning
algorithms to guide their analysis.

Chapter 9

401

See also

 f Key influencers visualizations tutorial: https://bit.ly/3h414Cn

 f Decomposition tree: https://bit.ly/2PC9ZiR

Building Animation and Storytelling
Business teams and analysts are commonly responsible for sharing or "walking through"
business results, trends, and the findings from their analyses with other stakeholders, such
as senior management. To support the message delivery process most effectively, Power
BI provides built-in animation capabilities for the standard scatter chart and ArcGIS map
visualization types. Additionally, core and custom visuals, such as the pulse chart, further aid
the storytelling process by embedding user-defined annotations into the visual and providing
full playback control over the animation.

"We're bringing storytelling into Power BI. We're making Power BI into the PowerPoint
for data."

 – Amir Netz, Microsoft Technical Fellow

This recipe includes examples for preparing the standard Scatter chart visualization for
animation, leveraging the date animation feature of the ArcGIS Maps for Power BI visual.
Details on the Bookmarks pane, as well as the Smart narrative and other storytelling custom
visuals, are also included.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place this query into a Data Sources query
group

4. Right-click the AdWorksDW query and choose Reference

https://bit.ly/3h414Cn
https://bit.ly/2PC9ZiR

Applying Advanced Analytics and Custom Visuals

402

5. Rename the query Internet Sales and choose the FactInternetSales table

6. Repeat steps 4 and 5, creating a Dates query that points to the DimDates table, and
a Sales Territories query that points to the DimSalesTerritory table

7. Create a Customers query using the following code:
let
 Source = AdWorksDW,
 dbo_DimCustomer = Source{[Schema="dbo",Item="DimCustomer"]}[Data],
 ExpandGeography = Table.ExpandRecordColumn(dbo_DimCustomer,
"DimGeography",
 {"City", "StateProvinceCode", "EnglishCountryRegionName",
"PostalCode",
 "DimSalesTerritory"},
 {"City", "StateProvinceCode", "EnglishCountryRegionName",
"PostalCode",
 "DimSalesTerritory"}),
 ExpandSalesTerritory = Table.ExpandRecordColumn(ExpandGeography,
 "DimSalesTerritory", {"SalesTerritoryRegion"},
{"SalesTerritoryRegion"}),
 DupCity = Table.DuplicateColumn(ExpandSalesTerritory, "City",
"City1"),
 DupZip = Table.DuplicateColumn(DupCity, "PostalCode", "Zip"),
 Address = Table.CombineColumns(DupZip,
 {"AddressLine1", "City1", "StateProvinceCode"},
 Combiner.CombineTextByDelimiter(", ", QuoteStyle.
None),"Address"),
 FullAddress = Table.CombineColumns(Address,{"Address", "Zip"},
 Combiner.CombineTextByDelimiter(" ", QuoteStyle.None),"Full
Address")
in
 FullAddress

8. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",

Chapter 9

403

 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

9. Move the Internet Sales query to a Facts query group, and the Sales Territories,
Dates, Customers, and Products queries to a Dimensions query group

10. Select Close & Apply from the ribbon of the Home tab

11. In Power BI Desktop, select the City column in the Customers table and assign a
Data category of City

12. Select the Full Address column in the Customers table and assign a Data category
of Address

13. Switch to the Model view and create a relationship between the SalesTerritoryKey
columns in the Internet Sales and Sales Territories tables

14. Create a relationship between the ProductKey columns in the Internet Sales and
Products tables

15. Create a relationship between the DateKey column in the Dates table and the
OrderDateKey column in the Internet Sales table

16. Create a relationship between the CustomerKey columns in the Internet Sales and
Customers tables

17. Save your work

How to Build Animation and Storytelling

To implement this recipe, use the following steps:

1. In the Report view, apply a report- or page-level filter for the SalesTerritoryGroup
column in the SalesTerritories table to the value Europe

2. Create a Scatter chart visualization using the SalesTerritoryCountry column from the
SalesTerritories table for Details, the CustomerKey column (count) from the Internet
Sales table for the X Axis, and the SalesAmount (sum) for the Y Axis

3. In the Format pane, expand the Shapes card, set the Size to 100, and also toggle Fill
point, Category labels, and Color by category to On

4. Create two new columns in the Dates table using the following formulas:
YearMonth = [CalendarYear] & "-" & LEFT([EnglishMonthName],3)
YearMonthSort = [CalendarYear]*100 + [MonthNumberOfYear]

5. Set Sort by column for the YearMonth column to the YearMonthSort column

Applying Advanced Analytics and Custom Visuals

404

6. Drag the YearMonth column into the Play Axis field well of the scatter chart
visualization

7. Click on one or more of the circles to display their paths and test the animation
capabilities by clicking on the play button to the left of the time axis

Figure 9.18: Scatter chart animation and tracing

8. Add a new page and add an ArcGIS map visualization to the page

9. Apply a page-level filter using the SalesTerritoryRegion column in the Customers
table and select only Southwest

10. From the Customers table, add the Full Address column for Location, the
CustomerKey column for Size, and the YearlyIncome column for Color

11. In the Format pane, expand Location type and choose United States

12. In the upper left of the ArcGIS map visualization, select Expand map tools

13. Click the Layer list icon and then the vertical ellipsis next to Full Address and choose
Symbology

14. Scroll down and choose Heat map

Chapter 9

405

15. Add the FullDateAlternateKey column from the Dates table to the Time field well

Figure 9.19: ArcGIS map for the Power BI visual using the heat map theme and the timeline

16. Add a new page and use the Filters pane to add a page filter using the
CalendarYears column from the Dates table for the years 2011, 2012, and 2013

17. In the Visualizations pane, click the ellipsis (…) and choose Get more visuals

18. Search for, find, and add the Play Axis (Dynamic Slicer) visualization

19. Create a Clustered column chart visualization with the YearMonth column from the
Dates table as the Axis, and the SalesAmount column (sum) as the Values

20. Create a Clustered bar chart visualization with the SalesTerritoryCountry column
from the Sales Territories table as the Axis, and the SalesAmount column (sum) as
the Values

21. Add the Play Axis visualization and use the YearMonth column from the Dates table
as the Field

Applying Advanced Analytics and Custom Visuals

406

22. Click the play button on the Play Axis visualization

Figure 9.20: Play Axis custom visual filtering two charts and paused on June 2013

How it works

For the Scatter chart, an alternative method of displaying bubbles is by using a measure for
the Size field well, applying a measure/column for Size on a scatter chart, with the size of the
bubbles being used to visually emphasize a certain metric. However, similar to pie and donut
charts, it is difficult to visually determine differences in bubble sizes. Additionally, even a small
number of dimension items, such as product categories, can lead to a cluttered visualization
when presented as a bubble chart.

In the Scatter chart example, multiple items can be selected or unselected by holding down
the Ctrl key and clicking a bubble from a separate series. When selected, the scatter chart
highlights the path of the given item (or items) up to the currently selected or filtered point on
the Play Axis. Playing and pausing the Play Axis and selecting the dimension(s) of the scatter
chart makes it easy for presenters to address a significant outlier or a point in time at which a
relevant trend began.

Microsoft has also created the Enhanced Scatter custom visual, which supports a
background image URL, such as a business location or diagram, and images for the
individually plotted categories. However, this visual does not include a Play Axis or any
visual animation like the standard scatter chart used in this recipe. The Enhanced Scatter
visualization is available in AppSource.

For the ArcGIS visualization, the column used for the Time field well must be of the date or
the date/time data type, such as an individual calendar date or a week ending date. Text and
numeric data type columns, such as calendar year, are not supported. The timeline at the
bottom of the visual can be used to play through each individual date value, or a custom time
interval can be set by modifying the start and end points of the timeline.

Chapter 9

407

For instance, a date interval representing four weeks could be set at the beginning of the
timeline, and clicking the play icon would sequentially display each interval. The forward and
backward icons can be used to quickly navigate to different time periods or intervals.

Finally, the Play Axis visualization adds animation capabilities to visualizations that have no
native animation features. The Play Axis visualization works by taking advantage of the native
cross-filtering and cross-highlighting capabilities of Power BI. The Play Axis visualization is
best used in combination with column charts, bar charts, and other charts that allow for the
Highlight visual interaction.

There's more

Bookmarks enable the saving of specific report states, including filter context and the visibility
of specific items on the report canvas. This can be particularly useful with animated visuals
in order to skip to the most interesting parts of the animation. The Bookmarks pane can be
accessed in the ribbon of the View tab while in the Report view. Use the Add button to create
bookmarks. Use the View button to easily page through bookmarks like a slideshow.

Figure 9.21: Bookmarks pane in Power BI Desktop

The Selection pane, also available in the ribbon of the View tab, can be used with bookmarks
to set the visibility of visuals for a bookmark. Playing through bookmarks in Power BI
reports resembles Microsoft PowerPoint presentations (in presentation mode) that leverage
animation. Additionally, bookmarks can be linked with other objects in the report, such as
images, making it possible to create an intuitive navigation experience across report pages.

Microsoft is also adding narrative and storytelling visuals to Power BI. The Smart narrative
visual has been added to Power BI Desktop. To see how Smart narrative works, follow these
steps:

1. Create a new page and add a Clustered column chart visualization to the page using
the CalendarYear column from the Dates table as the Axis, and the SalesAmount
column from the Internet Sales table as the Values

2. Copy and paste this visual

Applying Advanced Analytics and Custom Visuals

408

3. With the copy of the visual selected, click the Smart narrative visual in the
Visualizations tab

Figure 9.22: The same data presented as both a clustered column chart and Smart narrative visual

The Smart narrative visualization analyzes the data and creates a natural language narrative
of the data presented in the visualization. Additional custom visuals focused on integrating
explanatory text or annotations with data from the data model include the Add Intelligent
Narratives for BI visual, the Enlighten Data Story visual, and Timeline Storyteller.

See also

 f Scatter, bubble, and dot plot charts in Power BI: https://bit.ly/3u38toZ

 f Use bookmarks in Power BI Desktop to share insights and build stories: https://
bit.ly/2QK3ACS

 f Smart narratives tutorial: https://bit.ly/3e57xuM

Embedding Statistical Analyses
Statistical analysis beyond basic aggregations is typically implemented outside of business
intelligence semantic models by data scientists and data science applications. When possible,
however, it is much more efficient to leverage existing data models, Power BI skills, and
the features used for other Power BI reports and dashboards—such as the Analytics pane
described earlier in this chapter.

In this recipe, the data points supporting a linear regression model are created from an
existing Power BI data model. This model is then analyzed and described via DAX measures,
with values such as slope, Y-intercept, and the Z-score for residuals. Finally, a rich report page
is constructed to visualize the strength and accuracy of the regression model and to detect
outliers.

https://bit.ly/3u38toZ
https://bit.ly/2QK3ACS
https://bit.ly/2QK3ACS
https://bit.ly/3e57xuM

Chapter 9

409

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place it into a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Internet Sales and choose the FactInternetSales table

6. Repeat steps 4 and 5, creating a Dates query that points to the DimDates table

7. Move the Internet Sales query to a Facts query group, and the Dates query to a
Dimensions query group

8. Choose Close & Apply from the ribbon of the Home tab

9. Switch to the Model view and create a relationship between the DateKey column in
the Dates table and the OrderDateKey column in the Internet Sales table

10. Create two new columns in the Dates table using the following formulas:
YearMonth = [CalendarYear] & "-" & LEFT([EnglishMonthName],3)
YearMonthSort = [CalendarYear]*100 + [MonthNumberOfYear]

11. Set the Sort by column for the YearMonth column to the YearMonthSort column

12. Save your work

How to Embed Statistical Analyses

To implement this recipe, use the following steps:

1. In the Report view, click New table from the ribbon of the Modeling tab and use the
following code:
MktSalesRegression =
 FILTER(
 SUMMARIZECOLUMNS(

Applying Advanced Analytics and Custom Visuals

410

 'Dates'[YearMonth],
 'Dates'[YearMonthSort],
 CALCULATETABLE('Dates',
 'Dates'[FullDateAlternateKey] >= DATE(2011,1,1) &&
 'Dates'[FullDateAlternateKey] <= DATE(2013,12,31)),
 "Marketing Amount",
 VAR __MonthNum = MAX('Dates'[MonthNumberOfYear])
 VAR __Value = SUM('Internet Sales'[SalesAmount])
 RETURN SWITCH(__MonthNum,
 1,__Value*.8,
 2,__Value*.8,
 3,__Value*.8,
 4,__Value*.8,
 5,__Value*.8,
 6,__Value*1,
 7,__Value*.8,
 8,__Value*.8,
 9,__Value*.6,
 10,__Value*.8,
 11,__Value*.8,
 12,__Value*.8),
 "Internet Sales", SUM('Internet Sales'[SalesAmount])
),
 NOT(ISBLANK([Internet Sales]) || ISBLANK([Marketing Amount]))
)

2. Create measures for the correlation coefficient, slope, y-intercept, and
coefficient of determination (R squared):
MktSalesCorrelNum = SUMX(MktSalesRegression,
 ((MktSalesRegression[Marketing Amount] -
 AVERAGE(MktSalesRegression[Marketing Amount])) *
 (MktSalesRegression[Internet Sales] -
 AVERAGE(MktSalesRegression[Internet Sales]))
))

MktSalesCorrelDenomX = SUMX(MktSalesRegression,
 (MktSalesRegression[Marketing Amount] -
 AVERAGE(MktSalesRegression[Marketing Amount]))^2)

MktSalesCorrelDenomY = SUMX(MktSalesRegression,
 (MktSalesRegression[Internet Sales] -
 AVERAGE(MktSalesRegression[Internet Sales]))^2)

Mkt-Sales Correl = DIVIDE([MktSalesCorrelNum],
 SQRT([MktSalesCorrelDenomX]*[MktSalesCorrelDenomY]))

Chapter 9

411

Mkt-Sales R Squared = [Mkt-Sales Correl]^2

MktSalesSlope = DIVIDE([MktSalesCorrelNum],[MktSalesCorrelDenomX])

MktSales Intercept = AVERAGE(MktSalesRegression[Internet Sales]) -
 ([MktSalesSlope]*AVERAGE(MktSalesRegression[Marketing Amount]))

3. Click New table from the ribbon of the Modeling tab and use the following
code:
Residuals =
 VAR Intercept = [MktSales Intercept]
 VAR Slope = [MktSalesSlope]
RETURN
 ADDCOLUMNS(MktSalesRegression,"Y Intercept",Intercept,"Slope",Slope,
 "Predicted Internet Sales", ([Marketing Amount]*Slope) + Intercept,
 "Residual",[Internet Sales] - (([Marketing Amount]*Slope) +
Intercept))

4. Create the following measures:
Residuals Amount = SUM(Residuals[Residual])

Residuals Average = CALCULATE(AVERAGE(Residuals[Residual]),ALL(Residua
ls))

Residuals Sample Std Dev = CALCULATE(STDEV.S(Residuals[Residual]),ALL(Re
siduals))

Residuals Z Score = DIVIDE([Residuals Amount] - [Residuals
Average],[Residuals Sample Std Dev])

Regression Line Message = "Regression Line: Y= " &
FORMAT([MktSalesSlope],"#,###") & "X" & "+" & FORMAT([MktSales
Intercept],"#,###")

Last Month Internet Sales =
 VAR __LastMonth = MAX('Residuals'[YearMonthSort])
RETURN
 LOOKUPVALUE('Residuals'[Internet Sales],[YearMonthSort],__LastMonth)

Last Month Predicted Internet Sales =
 VAR __LastMonth = MAX('Residuals'[YearMonthSort])
RETURN
 LOOKUPVALUE('Residuals'[Predicted Internet Sales],[YearMonthSort],__
LastMonth)

Applying Advanced Analytics and Custom Visuals

412

5. From the Report view, create card visuals to display the Last Month Internet Sales,
Last Month Predicted Internet Sales, Mkt-Sales Correl, Mkt-Sales R Squared, and
Regression Line Message measures

6. Create a scatter chart visualization using the Marketing Amount column (sum) from
the MktSalesRegression table as the X Axis, the Internet Sales column (sum) from
the MktSalesRegression table as the Y Axis, and the YearMonth column from the
MktSalesRegression table as Details

7. Add a Trend line from the Analytics pane

8. Create a second scatter chart visualization using the Predicted Internet Sales
column (sum) from the Residuals table as the X Axis, the Residuals Z Score column
(sum) from the Residuals table as the Y Axis, and the YearMonth column from the
Residuals table as Details

Figure 9.23: Regression report page

With this report design, the user can instantly perceive the strength of the relationship via the
Marketing Amount and Internet Sales by YearMonth scatter chart and the high values for
the correlation and R squared cards shown in Figure 9.23. The Predicted Internet Sales and
Residuals Z Score by YearMonth scatter chart helps to identify the months with relatively
large variations.

How it works

In this example, we have obviously engineered a monthly marketing spend metric to have a
high correlation with internet sales. Had we used the actual Sales and Marketing expenditure
numbers from the general ledger (FactFinance) fact table, we would have found no
correlation at all.

Chapter 9

413

Simple (single-variable) regression models are often insufficient to estimate Y values
accurately, but many of the concepts and techniques used in this recipe are applicable to
more complex, multiple linear regression models.

The main correlation calculations deal with data in the MktSalesRegression table. This table
creates rows with corresponding data between the two metrics we wish to correlate. The
SUMMARIZECOLUMNS function groups the table at the monthly grain, and the FILTER function
removes any rows (months) that do not have both internet sales and marketing values. It is
crucial to the calculations that the data does not contain gaps in any one time series. The
CALCULATETABLE function passes a filtered date table to SUMMARIZECOLUMNS in order to exclude
certain months. The Marketing Amount and Internet Sales columns are the two measures
we wish to find or not find a correlation between. Note that to attempt a correlation between
different measures, only the Marketing Amount and Internet Sales expressions need to be
changed—all other measures and DAX calculations can remain the same.

A new SQL view could be developed in the source system to meet the regression table
requirements and, as another alternative, M queries within the dataset could leverage the
existing general ledger, internet sales, and date queries. However, small DAX tables such as
this example (with 36 rows) are a good option for supporting custom or advanced analysis
and functionality.

The correlation coefficient is split into three separate intermediate measures
(MktSalesCorrelNum, MktSalesCorrelDenomX, and MktSalesCorrelDenomY) and these
measures are referenced in the Mkt-Sales Correl measure. With the correlation and its
components defined in the model, the slope (MktSalesSlope) measure can leverage the
same numerator measure, MktSalesCorrelNum, and the MktSalesCorrelDenomX measure
as well. Finally, we can compute the y-intercept for the regression, MktSales Intercept.

We now have all of the components for the equation of our line, y = mx + b, where m is
the slope and b is the y-intercept. This formula is what allows us to compute the Predicted
Internet Sales in our Residuals table. The Predicted Internet Sales column in the Residuals
table implements the equation of a line (y = mx + b) by referencing the Marketing Amount
column (x), the slope (MktSalesSlope), and the y-intercept (MktSales Intercept). Finally, the
Residual column is computed to subtract the predicted sales value from the observed (actual)
value in the Internet Sales column.

A Z-score is computed for each residual data point (a month) to determine if the variation
(or "miss") between the predicted and observed values is large relative to other data points.
To support the visualization, a measure returns a text string containing the equation of the
regression model's line. Additionally, two measures are created to display actual and predicted
internet sales for the last month in the analysis.

The two calculated tables in this recipe, MktSalesRegression and Residuals, do not have any
relationships to other tables in the model. Refreshing the source tables (queries) of the two
DAX tables also refreshes the calculated tables.

Applying Advanced Analytics and Custom Visuals

414

There's more

The created DAX measures in this recipe correspond to the CORREL, SLOPE, and INTERCEPT
functions in Microsoft Excel. The documentation for these Excel functions provides the
following formulas:

The formula for the CORREL function, for a sample (Pearson's Correlation Coefficient):

The standard formula for finding the slope of a line:

The standard formula for finding a y-intercept:

Correlation coefficients can range from -1 to 1. A positive correlation between two metrics
means that as one measure goes up or down, the other metric also goes up or down. There
are also inverse correlations represented by negative numbers, where the two metrics are
inversely correlated, meaning that when one metric goes up, the other metric goes down, and
vice versa. Values close to 1 or -1 indicate that the two metrics have a strong correlation and
directly affect one another. Values closer to 0 indicate that the two metrics are not related to
one another.

The R squared value, or the coefficient of determination, is simply the square of the
correlation coefficient. R squared values fall between 0 and 1 since the square of a negative
number is positive. An R squared value of 1 indicates that the movements of one metric are
100% explained by the movements in the comparison metric, while a value of 0 indicates
that there is no relation between the two metrics. R squared values between .85 and 1 are
considered "high," meaning that the two metrics are closely linked, while anything below .7 is
considered weak or of relatively little influence.

It is important to consider that time series data often exhibits seasonality, meaning that the
numbers are artificially higher or lower than they would otherwise be due to, for example,
quarterly influences. Think retail sales and holidays in the fourth calendar quarter like
Thanksgiving and Christmas. When data exhibits seasonality, it is critically important that the
metric's values are de-seasonalized before performing the correlation.

Another consideration is leading and lagging indicators. Leading indicators mean that the
values in one time series are related to another, but there is an offset of some number
of weeks or months. In other words, one metric may go up and correspond to the other
metric going up, but there is a period of time or delay before the second metric reflects the
movement of the first metric.

Chapter 9

415

Finding leading indicators can be extremely valuable in business, as they provide a predictive
metric upon which a business can make decisions and act based upon expected future
behavior. To find leading indicators, the values in the correlation analysis must be offset from
one another by the appropriate number of time periods. This generally leads to the correlation
calculations taking place at various time period offsets in order to determine if one indicator
leads or lags another.

See also

 f Slope and intercept equation descriptions: http://bit.ly/2tdzrgA

 f De-Seasonalized Correlation Coefficient: https://bit.ly/2SeTSsp

Grouping and Binning
Grouping and binning in Power BI creates group columns that can then be utilized like other
columns in the model to simplify report visualizations and self-service analysis, given their
reduced granularity. Additionally, groups can be managed and edited in Power BI Desktop,
providing a flexible option for dataset owners to respond quickly to changing requirements or
preferences.

This recipe provides examples for using grouping and binning functionality within Power BI
Desktop.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place it into a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Internet Sales and choose the FactInternetSales table

http://bit.ly/2tdzrgA
https://bit.ly/2SeTSsp

Applying Advanced Analytics and Custom Visuals

416

6. Repeat steps 4 and 5, creating a Dates query that points to the DimDates table, and
a Customers query that points to the DimCustomer table

7. Move the Internet Sales query to a Facts query group and the Dates and Customers
queries to a Dimensions query group

8. Select Close & Apply from the ribbon of the Home tab

9. Switch to the Model view and create a relationship between the DateKey column in
the Dates table and the OrderDateKey column in the Internet Sales table

10. Create a relationship between the CustomerKey columns in the Customers table and
the Internet Sales table

11. Save your work

How to Perform Grouping and Binning

To implement this recipe, carry out the following steps:

1. Right-click the DateFirstPurchased column in the Customers table and choose New
Group

2. Set the Name to Customer First Purchase Calendar Quarter, the Bin size to 3,
choose Months from the dropdown, and click OK

Figure 9.24: Groups dialog for the First Purchase Date column with a Bin size of 3 Months

3. Create a Matrix visual that analyzes the sales of these quarterly customer bins
using the newly created Customer First Purchase Calendar Quarter column in
the Customer table for Rows, the CalendarYear column from the Dates table for
Columns, and the SalesAmount column (sum) from the Internet Sales table as
Values

4. Optionally, add conditional formatting to the SalesAmount column in the Values
field well by clicking the down arrow to the right of the column name and selecting
Conditional formatting and then Data bars

Chapter 9

417

Figure 9.25: Customer First Purchase Calendar Quarter grouping used in Matrix Visual

How it works

By grouping the customers into quarterly bins, the new grouping column (Customer
First Purchase Calendar Quarter) has only 14 unique values and can be used in report
visualizations. In this analysis, it is clear that sales in 2017 are being driven by customers
that first purchased in the first and second quarters of 2013 (January 2013, April 2013).
Interestingly, customers that first purchased in 2011 were large buyers in 2015, but then
generally disappeared in 2016, and returned in 2017.

There's more

In this example, the goal is to group (bin) customers based on the number of days since their
last purchase. To see how this works, perform the following:

1. Create the following measure to define Today:
Today = DATE(2014,1,28)

2. Create the following columns in the Customers table:
Last Order Date = CALCuLATE(MAX('Internet Sales'[OrderDate]))

Days Since Last Purchase = ([Today] - [Last Order Date]) * 1

Applying Advanced Analytics and Custom Visuals

418

3. Create a numerical grouping based on the Days Since Last Purchase column to help
analyze this data

Figure 9.26: Grouping created based on the Days Since Last Purchase column

4. Create a Clustered bar chart to display the information graphically using the newly
created Days Since Last Purchase (bins) column in the Customers table as the Axis,
and the SalesAmount column from the Internet Sales table as Values

Figure 9.27: Clustered bar chart of internet sales by the 90 Days Since Last Purchase grouping

Chapter 9

419

The new grouping column (90 Days Since Last Purchase) helps determine that $15.7 M of
total historical internet sales is comprised of customers that have purchased within the past
180 days ($7.3 M for the 0 to 90 group and $8.4 M for the 90 to 180 group).

As groupings are effectively calculated columns within the data model and are not visible to
source systems, the logic of grouping columns should eventually be migrated to new columns
in a source data warehouse. Groups can be very helpful for proof-of-concept scenarios and
short-term solutions, but as per other recipes, data transformation processes should be
limited in Power BI Desktop to keep the dataset as manageable and scalable as possible. If
a data warehouse option is not available, M query transformations can be used, rather than
DAX calculated columns.

See also

 f Use grouping and binning in Power BI Desktop: https://bit.ly/3xHnMpG

Detecting and Analyzing Clusters
Clustering is a data mining and machine learning technique used to group (cluster) the items
of one dimension based on the values of one or more measures. Given the number of distinct
dimension items, such as products or customers, and the number of measures describing
those items, clustering is a powerful method of exploring data to discover relationships not
easily detected with standard reporting and analysis techniques. Power BI Desktop provides
built-in support for the creation of clusters and allows these clusters to be managed, revised,
and used in Power BI reports like other columns in the data model.

In this recipe, a customer cluster is created based on the sales amount, the count of orders,
and the count of days since the last purchase. DAX measures are created to support this
analysis, and a Scatter Chart visual is created to further analyze the clusters.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

https://bit.ly/3xHnMpG

Applying Advanced Analytics and Custom Visuals

420

3. Disable load on the AdWorksDW query and place it into a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Internet Sales and choose the FactInternetSales table

6. Repeat steps 4 and 5, creating a Dates query that points to the DimDates table,
a Customers query that points to the DimCustomer table, and a Sales Territories
query that points to the DimSalesTerritory table

7. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName"}, {"Product Category"}
)
in
 Category

8. Move the Internet Sales query to a Facts query group, and the Dates, Customers,
and Products queries to a Dimensions query group

9. In the Other Queries group, create a blank query called Calculations

10. Select Close & Apply from the ribbon of the Home tab

11. Switch to the Model view and create a relationship between the DateKey column in
the Dates table, and the OrderDateKey in the Internet Sales table

12. Create a relationship between the CustomerKey columns in the Customers table and
the Internet Sales table

13. Create a relationship between the ProductKey columns in the Products table and the
Internet Sales table

14. Create a relationship between the SalesTerritoryKey columns in the Sales Territories
table and the Internet Sales table

15. Save your work

Chapter 9

421

How to Detect and Analyze Clusters

To implement this recipe, use the following steps:

1. Create the following measures in the Calculations table:
Today = DATE(2014,1,28)

Internet Gross Sales = SUM('Internet Sales'[SalesAmount])

Internet Sales Discounts = SUM('Internet Sales'[DiscountAmount])

Internet Net Sales = [Internet Gross Sales] - [Internet Sales Discounts]

Internet Sales Orders = DISTINCTCOUNT('Internet Sales'[SalesOrderNumber])

Last Purchase Date = LASTNONBLANK('Dates'[FullDateAlternateKey],[Intern
et Net Sales])

Days Since Last Purchase = DATEDIFF([Last Purchase Date],[Today],DAY)

2. In the Report view, create a Table visualization using the CustomerAlternateKey
column from the Customers table and the Internet Net Sales, Internet Sales Orders,
and Days Since Last Purchase measures

3. Select the table visualization, click the ellipsis (…), and choose Automatically find
clusters

4. In the Clusters dialog, Name the cluster Customers (RFM), enter a Description of
Clusters for All CustomerAlternateKey, Internet Net Sales, Internet Sales Orders,
Days Since Last Purchase, and then click OK

Figure 9.28: Clusters dialog

5. Create three additional measures in the Calculations table to help describe the
clusters created:
Average Customer Sales =
AVERAGEX(DISTINCT(Customers[CustomerAlternateKey]),[Internet Net Sales])

Applying Advanced Analytics and Custom Visuals

422

Average Customer Orders =
AVERAGEX(DISTINCT(Customers[CustomerAlternateKey]),[Internet Sales
Orders])

Average Days Since Last Purchase =
AVERAGEX(DISTINCT(Customers[CustomerAlternateKey]),[Days Since Last
Purchase])

6. Create a simple Table visualization using the three measures created plus the
Customers (RFM) column and CustomerAlternateKey (count) from the Customers
table, as well as the Internet Net Sales measure

Figure 9.29: Average Customer Measures used with the Customers (RFM) clusters

7. On a new page, create a Scatter chart with the Average Days Since Last Purchase
measure as the X Axis, the Average Customer Sales measure as the Y Axis, and the
Customers (RFM) column from the Customers table as Legend

Figure 9.30: Clusters visualized in a scatter chart by Internet Net Sales and Days Since Last Purchase

Chapter 9

423

A potential use case or action based on these clusters is to focus marketing efforts on
converting the Cluster1 customers, who have purchased recently, to higher-value Cluster3
customers. Also, Cluster2 customers may have already committed to a new bike supplier or,
more optimistically, may have purchased a bike two to three years ago, and may not be aware
of what bike-related accessories and clothing are available.

How it works

Feature engineering is a common practice in data science, in which new columns are added
to a dataset to produce more accurate models. The new columns often contain built-in logic,
and features (columns) are added, removed, and modified iteratively based on the models
produced. Identify measures that add the most value to the algorithm by representing the
dimensions in different ways. The three measures used to support the clustering in this
example follow the RFM technique, identifying the recency, frequency, and monetary (value)
of the customer's purchase history. Adding measures (feature engineering) that cover each
component of RFM is useful for various marketing and customer attrition analyses.

Following the RFM technique, the Days Since Last Purchase measure identifies the recency,
Internet Sales Orders measures the frequency, and Internet Net Sales measures the
monetary value. The Last Purchase Date measure is an intermediary measure created to
support the Days Since Last Purchase measure. Days Since Last Purchase uses the Last
Purchase Date measure and a Today measure as parameter inputs to the DATEDIFF function.
In a production scenario, the Today measure would use the TODAY function instead of a hard-
coded DATE.

Three clusters were created in this example. These clusters are represented by a column
added to the Customers table of the data model with the name provided in the Clusters
dialog, Customers (RFM). The cluster column is identified in the Fields list with two
overlapping square shapes, and an Edit clusters option is available by either right-clicking the
column or selecting the ellipsis next to the column.

For the analysis measures, Average Customer Sales, Average Customer Orders, and
Average Days Since Last Purchase, the AVERAGEX function is used to iterate over the
unique customer keys provided by the DISTINCT function to compute the customer-specific
value (sales, orders, and days since purchase) and then return the average of the measures
from each cluster.

The Power BI clustering feature uses the K-Means algorithm to determine the optimal number
of clusters to create. Currently, a cluster is limited to 15 measures and one dimension; an
error message is returned if these limits are exceeded.

Applying Advanced Analytics and Custom Visuals

424

There's more

In addition to the standard Power BI clustering from this recipe, additional custom visuals for
clustering are available in the AppStore, including Clustering and Clustering with Outliers.
Both these custom visuals are built with the R statistical programming language.

Like the table visual from the example, clusters can also be automatically created from
a Scatter chart visual. These clusters are limited to two input measures (X and Y) but the
clusters are automatically added to the Details field. To see how this works, do the following:

1. On a new page, create a Scatter chart visualization using the Internet Net Sales
measure as the X Axis, the Internet Sales Orders measure as the Y Axis, and the
EnglishProductName column from the Products table as Details

2. Select the scatter chart visualization, click the ellipsis (…), and choose Automatically
find clusters

Figure 9.31: Clusters automatically added to the legend of a Scatter chart

See also

 f Apply clustering techniques: https://bit.ly/3gVwKK3

Forecasting and Anomaly Detection
Standard Power BI report and dashboard visualizations are great tools to support descriptive
and diagnostic analytics of historical or real-time data, but ultimately organizations need
predictive and prescriptive analytics to help guide decisions involving future outcomes. Power
BI Desktop provides a time series forecasting tool with built-in predictive modeling capabilities
that enables report authors to quickly create custom forecasts, evaluate the accuracy of
these forecasts, and build intuitive visualizations that blend actual or historical data with the
forecast.

https://bit.ly/3gVwKK3

Chapter 9

425

This recipe contains two complete forecasting examples. The first example builds a monthly
forecast for the next three months utilizing an automatic date hierarchy. The second example
builds a weekly forecast of the next eight weeks and evaluates the forecast's accuracy when
applied to recent data. Finally, an example of using anomaly detection is provided.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and ensure that the Auto Date/Time setting in
the Current File Data Load options is enabled (through File | Options and settings |
Options)

2. Access the Power Query Editor by clicking on Transform Data in the ribbon of the
Home tab

3. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

4. Disable load on the AdWorksDW query and place it into a Data Sources query group

5. Right-click the AdWorksDW query and choose Reference

6. Rename the query Internet Sales and choose the FactInternetSales table

7. Repeat steps 4 and 5, creating a Dates query that points to the DimDates table

8. Move the Internet Sales query to a Facts query group and the Dates query to a
Dimensions query group

9. In the Other Queries group, create a blank query called Calculations

10. Select Close & Apply from the ribbon of the Home tab

11. Switch to the Model view and create a relationship between the DateKey column in
the Dates table, and the OrderDateKey column in the Internet Sales table

12. Save your work

Applying Advanced Analytics and Custom Visuals

426

How to Perform Forecasting and Anomaly Detection

To implement this recipe, carry out the following steps:

1. Create the following measures in the Calculations table:
Today = DATE(2014,1,28)

Internet Gross Sales = SUM('Internet Sales'[SalesAmount])

Internet Sales Discounts = SUM('Internet Sales'[DiscountAmount])

Internet Net Sales = [Internet Gross Sales] - [Internet Sales Discounts]

2. In the Report view, create a Line chart visualization using FullDateAlternateKey from
the Dates table as the Axis, and the Internet Net Sales measure as the Values

3. With the visualization selected, click on the Expand all down one level in the
hierarchy button twice to navigate to the monthly grain

Figure 9.32: Expand all down used to display the line chart visual by month

4. With the line chart selected, open the Analytics pane, expand Forecast, and click
Add

5. Enter 3 for Forecast length, 1 for Ignore last, and 12 for Seasonality

Figure 9.33: Monthly forecast with three forecast points and excluding the most current month

Chapter 9

427

6. Create new columns in the Dates table with the following code:
Sequential =
 VAR __Date = 'Dates'[FullDateAlternateKey]
 VAR __Year = YEAR(__Date)
 VAR __Calendar = ADDCOLUMNS(ALL('Dates'),
 "__Year", YEAR('Dates'[FullDateAlternateKey]),
 "__WeekNum", WEEKNUM('Dates'[FullDateAlternateKey]))
 VAR __FirstYear = MINX(__Calendar,[__Year])
 VAR __WeekNum = MAXX(FILTER(__Calendar,
 [FullDateAlternateKey] = __Date), [__WeekNum])
 VAR __MaxWeeks = GROUPBY(__Calendar, [__Year],
 "__MaxWeek", MAXX(CURRENTGROUP(), [__WeekNum]))
 VAR __Start = SUMX(FILTER(__MaxWeeks, [__Year]<__Year), [__MaxWeek])
 VAR __Calendar1 = ADDCOLUMNS(__Calendar,
 "__MaxWeek",
 MAXX(FILTER(__Calendar, [__Year] =
 EARLIER([__Year])),[__WeekNum]))
 VAR __SubtractTable = GROUPBY(FILTER(__Calendar1,
 [__Year] < __Year && [__WeekNum] = [__MaxWeek]), [__Year],
 "__NumWeekDays", COUNTX(CURRENTGROUP(),[FullDateAlternateK
ey]))
 VAR __Subtract = COUNTROWS(FILTER(__SubtractTable, [__
NumWeekDays]<7))
 VAR __Sequential = IF(__Year=__FirstYear,
 __WeekNum,
 __Start + __WeekNum - __Subtract)
RETURN __Sequential

Week Ending Date =
 VAR __CurrentWeek = [Sequential]
RETURN
 MAXX(FILTER(ALL('Dates'),[Sequential] = __CurrentWeek),
 [FullDateAlternateKey])

IsCurrentWeek =
 VAR __CurrentWeek =
 LOOKUPVALUE('Dates'[Sequential],'Dates'[FullDateAlternateKey],[T
oday])
RETURN
 IF([Sequential] = __CurrentWeek,1,0)

Applying Advanced Analytics and Custom Visuals

428

7. In the Report view, create another Line chart visualization using Week Ending Date
(not the hierarchy) from the Dates table as the Axis, and the Internet Net Sales
measure as the Values

8. With the visualization selected, use the Filters pane and add the IsCurrentWeek
column to the filters for the visualization, and exclude values of 1

9. With the line chart selected, open the Analytics pane, expand Forecast, and click
Add

10. Enter 8 for Forecast length, 5 for Ignore last, and 52 for Seasonality

Figure 9.34: Weekly sales trend and three-week forecast, which excludes the prior 5 completed weeks

How it works

The Power BI Forecast tool uses the exponential smoothing time series predictive algorithm.
This method is widely used in multiple domains and helps to suppress outlier values while
efficiently capturing trends. The forecast tool is currently only available to the Line chart
visual, and only one measure (line) on this visual is allowed. The x-axis value needs to have a
date or date/time data type or be a uniformly increasing whole number and a minimum of six
date points are required.

The Forecast tool in Power BI includes an Ignore last feature, which allows the exclusion
of incomplete periods (months, weeks, and days) from the forecast. However, for common
additive measures, such as Sales Amount, not filtering out the current period often
significantly detracts from the usability of the visual, given the steep decline represented by
the current (incomplete) period. Dynamically updated date columns, such as IsCurrentWeek,
generally resolve this issue.

In the first line chart, by default, a forecast of the chosen measure is created for 10 points
(months) in the future with a 95 percent Confidence interval. The forecast automatically
determines the step (monthly grain) and also determines a seasonality factor to apply to the
forecast. In this example, no filters have been applied to the report, and thus the current
month, which is incomplete, is initially being used by the forecast. By setting Ignore last to 1
point we exclude the most current, incomplete month.

Chapter 9

429

The forecast now includes a forecasted value for the current (incomplete) month. Applying the
Seasonality variable at its known grain (12 per year) overrides the default seasonality factor.

When the seasonality (points per cycle) is known, it is recommended to apply this value
manually to improve accuracy. Hovering over a forecast data point exposes both the forecast
and the upper and lower boundary values, given the 95 percent confidence interval.

In the second example, the last completed Week Ending Date is 1/25/14. Therefore, given
5 points to ignore, this point and the four previous weeks are excluded from the forecasting
algorithm, such that the forecast can only use the weeks ending on 12/21/13 and earlier
to generate its projections. Three additional forecast points (8 (Forecast Length) — 5 (Ignore
Last)) are computed for the weeks ending on 2/1/14, 2/8/14, and 2/15/14.

There's more

In addition to the forecasting feature, the line chart visualization also now includes an
anomaly detection feature. To see how this works, do the following:

1. Ensure that the Anomaly detection feature is activated in the Preview features by
selecting File | Options and settings | Options, and then Preview features

2. Copy the Week Ending Date line chart to a new page

3. Remove Forecast in the Analytics pane

4. Expand Find anomalies and choose Add

Figure 9.35: Find anomalies

The default Sensitivity is 70 percent. Increasing the Sensitivity identifies more anomalies.

See also

 f Data Forecasting and Analytics with Power BI Desktop: https://bit.ly/3xFWakx

 f Anomaly detection tutorial: https://bit.ly/3t6NAIc

https://bit.ly/3xFWakx
https://bit.ly/3t6NAIc

Applying Advanced Analytics and Custom Visuals

430

Using R and Python Visuals
The R and Python programming languages, including their powerful and extensible features
in data processing, advanced analytics, and visualization, are deeply integrated with Power
BI. R and Python scripts can be used as a data source for a Power BI dataset, as a data
transformation and shaping process within M queries, and as their own visualization type
within Power BI reports and dashboards. Like standard Power BI visuals, R and Python script
visuals directly leverage the relationships defined in the data model and can be dynamically
filtered via other visuals, such as slicers.

In this recipe, two histogram visualizations are created in Power BI Desktop with R scripts:
one with R's standard distribution base graphics, and another with the popular ggplot2
visualization package. Additionally, a Python visual example is included.

Getting ready

To prepare for this recipe, follow these steps:

1. Download and install the R engine on the local machine using either of the following:

 � https://cran.r-project.org/bin/windows/base/

 � https://aka.ms/rclient/

2. Install the ggplot2 package for R via the following command: install.
packages("ggplot2").

3. Optionally, install an IDE for editing R scripts, such as RStudio (https://www.
rstudio.com/).

4. Open Power BI Desktop and confirm that the local R installation directory
path is reflected in the R script options in Power BI Desktop (File | Options and
settings | Options).

5. Similarly, install Python from http://www.python.org or Python bundled in Anaconda
(https://www.anaconda.com/) and verify the Python script options in Power BI
Desktop (File | Options and settings | Options).

https://cran.r-project.org/bin/windows/base/
https://aka.ms/rclient/
https://www.rstudio.com/
https://www.rstudio.com/
http://www.python.org
https://www.anaconda.com/

Chapter 9

431

Figure 9.36: R script options in Power BI Desktop

The Detected R IDEs and Detected Python IDEs dropdowns can be used to choose
between multiple installed IDEs. If R and Python script visuals have not been used in
Power BI Desktop, an Enable script visuals prompt will appear. Click Enable.

6. Install matplotlib for Python using the following command: python -m pip install
matplotlib.

7. Install pandas for Python using the following command: python -m pip install
pandas.

8. Access the Power Query Editor by clicking on Transform Data in the ribbon
of the Home tab.

9. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

Applying Advanced Analytics and Custom Visuals

432

10. Disable load on the AdWorksDW query and place it into a Data Sources query group.

11. Right-click the AdWorksDW query and choose Reference.

12. Rename the query Internet Sales and choose the FactInternetSales table.

13. Repeat steps 4 and 5, creating a Dates query that points to the DimDates table.

14. Create a Products query using the following code:
let
 Source = AdWorksDW,
 Navigation = Source{[Schema="dbo",Item="DimProduct"]}[Data],
 Subcategory =
 Table.ExpandRecordColumn(
 Navigation, "DimProductSubcategory",
 {"EnglishProductSubcategoryName", "DimProductCategory"},
 {"Product Subcategory", "DimProductCategory"}
),
 Category =
 Table.ExpandRecordColumn(
 Subcategory, "DimProductCategory",
 {"EnglishProductCategoryName", "ProductCategoryKey"},
 {"Product Category", "ProductCategoryKey"}
)
in
 Category

15. Move the Internet Sales query to a Facts query group and the Dates and
Products queries to a Dimensions query group.

16. In the Other Queries group, create a blank query called Calculations.

17. Select Close & Apply from the ribbon of the Home tab.

18. Switch to the Model view and create a relationship between the DateKey
column in the Dates table, and the OrderDateKey column in the Internet Sales table.

19. Create a relationship between the ProductKey columns in the Products
table and the Internet Sales table.

20. Save your work.

How to Use R and Python Visuals

To implement this recipe, use the following steps:

Chapter 9

433

1. Create the following measures in the Calculations table:
Internet Gross Sales = SUM('Internet Sales'[SalesAmount])

Internet Sales Discounts = SUM('Internet Sales'[DiscountAmount])

Internet Net Sales = [Internet Gross Sales] - [Internet Sales Discounts]

2. In the Report view, use the Filters pane to add a filter for the CalendarYear column
from the Dates table, and select 2013 only

3. Add an R script visual from the Visualizations pane, and add the ProductKey and
ListPrice columns from the Products table, the CalendarYear column from the Dates
table, and the Internet Net Sales measure to the Values field well

4. Enter the following R script into the R script editor and click the Run script
icon:
par(bg = "#E6E6E6")
hist(dataset$'ListPrice', breaks = seq(from=0, to = 2500, by = 500), col
= "#2C95FF",
main = "Current Year Online Sales List Price Distribution", cex.main =
1.75, cex.axis = 1.2, cex.lab = 1.4, ylab = "Count of Products", xlab
= "Product List Price Bins", las = 1, labels = TRUE, border = "black",
ylim=c(0,50))

Figure 9.37: R script visual rendered in Power BI via Base Graphics

5. Copy and paste the R script visual on the same page

Applying Advanced Analytics and Custom Visuals

434

6. Select the pasted R script visual and change the code to the following:
prices <- as.numeric(as.character(dataset$'ListPrice'))
breakpoints <- seq(from=0, to = 2500, by = 500)
library("ggplot2")
ggplot(dataset, aes(x = prices)) + geom_histogram(breaks = breakpoints,
fill = "#2C95FF", color = "black") + xlab("Product List Price Bins")
+ ylab("Count of Products") + ggtitle("Current Year Online Sales List
Price Distribution") + stat_bin(breaks = breakpoints, geom="text",
aes(label=..count..), vjust = -1) + coord_cartesian(ylim=c(0,50)) +
theme(text = element_text(size = 16)) + theme(plot.title = element_
text(hjust = .5))

7. The result of this code change is shown in Figure 9.38

Figure 9.38: R script visual rendered in Power BI via the ggplot2 package

How it works

If a supported external R IDE is installed and selected in the Detected R IDEs R scripting
options, as per the Getting ready section, you can click on Edit script in External R IDE (the
up arrow icon). This will launch the IDE application (such as RStudio) and export the data
frame from Power BI Desktop. Common features of R scripting IDEs, such as IntelliSense and
Variable History, are helpful (if not essential) for developing complex R script visuals.

The requirement for both visualizations in this recipe is to display the distribution of the
product list prices that have been sold online in the current calendar year. The first example
uses the standard hist() function with R's base graphics and the second example uses the
ggplot() function provided by the ggplot2 package for R.

Chapter 9

435

The light gray background color is set via the par() function, and arguments to the hist()
function define the x- and y-axes, the text strings for the titles, data labels, font sizes, and the
light blue color of the bars. The seq() function is used to configure the x-axis intervals (bins)
with a width or bin size of $500, and a maximum price of $2,500.

ggplot2's geom_histogram() requires a continuous variable, and thus the List Price column
is converted to a numeric data type in the prices variable. The vector expression (seq())
used for the x-axis (bins by 500 to 2,500) in the prior example is used as the parameter to
the breaks argument of geom_histogram() and stat_bin(). Likewise, the expression for the
y-axis in the prior example is reused, but passed as a parameter to the coord_cartesian()
function. The qplot() function, short for quick plot, is also available in the ggplot2 package,
and can result in the faster development of relatively complex visualizations with less code—
often in just one line.

The R script editor in Power BI Desktop automatically creates a data frame and removes
duplicate rows based on the columns loaded to the Values field well.

Figure 9.39: Power BI Desktop R script editor data frame and duplicate removal

In this example, in which the intent is to count individual products (including those with the
same list price), it is necessary to add a separate column in the data frame (the product
key column) that makes each row of the data frame unique. In other scenarios, the Table.
AddIndexColumn() M function could be used to create uniqueness.

Including the Internet Net Sales measure in the R script visuals data frame allows the visual
to be filtered by the Date dimension columns and other dimension tables on the report page.

By default, the products without any sales, given this filter context, will not be included in the
data frame, as per the requirements of this recipe. The show items with no data option for
the Product Key column in the Values field well can be used if the products without sales are
to be included in this visualization.

The R script data source connector is available in the Other category of the Get Data dialog.
A Run R Script command icon is available in the Transform window of the Query Editor. Many
custom visuals built with R are already available in AppSource, and as of July 2017, R custom
visuals can include interactive features, such as selection and zoom.

Applying Advanced Analytics and Custom Visuals

436

There's more

Python can also be used to create visuals. To see how this is done, perform the following:

1. Create a new page and use the Filters pane to add a filter for the CalendarYear
column from the Dates table, and select 2013 only

2. Create a Python visual and add the Product Category column from the Products
table, and the Internet Net Sales measure to the Values field well

3. Use the following code for the Python visual, and click the Run script icon:
import matplotlib.pyplot as plt
dataset.plot(kind='bar',x='Product Category',y='Internet Net Sales')
plt.show()

4. This code change results in the visual shown in Figure 9.40

Figure 9.40: Default Python histogram

See also

 f Install Microsoft R Client on Windows: https://bit.ly/3aYfDDl

 f Create Power BI visuals using R: https://bit.ly/3aWN4pP

https://bit.ly/3aYfDDl
https://bit.ly/3aWN4pP

Chapter 9

437

 f R Script Visual Showcase for Power BI: https://community.powerbi.com/t5/R-
Script-Showcase/bd-p/RVisuals

 f Run Python Scripts in Power BI Desktop: https://bit.ly/2QNtDcl

 f Create Power BI visuals using Python in Power BI Desktop: https://bit.ly/3aUfVve

Conclusion
This chapter contained a broad mix of recipes highlighting many of the latest and most
popular custom visualizations and advanced analytics features of Power BI. This included
custom visuals, the ArcGIS map visual, and data storytelling via animation and annotation.
Additionally, examples were provided of leveraging Power BI datasets, and the DAX, R, and
Python languages to embed custom statistical analyses and visualizations.

https://community.powerbi.com/t5/R-Script-Showcase/bd-p/RVisuals
https://community.powerbi.com/t5/R-Script-Showcase/bd-p/RVisuals
https://bit.ly/2QNtDcl
https://bit.ly/3aUfVve

439

10
Administering and

Monitoring Power BI
In addition to solutions targeting business processes and entities, such as sales and
customers, Power BI can also serve as a platform for system monitoring and administration.
Diverse system telemetry and diagnostic data sources such as logs from Azure services,
performance monitor counters, and events can be integrated into Power BI datasets to
deliver robust visibility to system health, activity, and performance. Although there are several
dedicated monitoring tools available, such as Operations Manager in Microsoft System Center,
building a custom solution with Power BI provides full flexibility and control over all layers of
the solution, while leveraging relevant Power BI features, including data-driven alerts, email
notifications and subscriptions, and Power BI mobile. Additionally, as more organizations
adopt and deploy Power BI, existing licenses and experience can significantly reduce the costs
of developing and maintaining these solutions.

This chapter's recipes highlight the most common and impactful administration data sources,
including Windows Performance Monitor, SQL Server Query Store, on-premises data gateways,
the MSDB system database, and Extended Events. Power BI solutions built on top of these
sources proactively assess usage trends and resource bottlenecks, and deliver the detailed
analysis necessary to identify root causes. Additionally, the metadata of existing Power BI and
SSAS data models exposed via dynamic management views (DMVs), such as measure and
relationship definitions and resource consumption, can be integrated to provide a simplified
reference or documentation asset for both BI and business teams. Erin Stellato, principal
consultant from SQL skills and Microsoft Data Platform MVP, has contributed to several
of these recipes, including references to the setup and utilization of relational database
monitoring and administrative data sources.

Administering and Monitoring Power BI

440

In this chapter, we will cover the following recipes:

 f Creating a centralized IT monitoring solution with Power BI

 f Constructing a monitoring, visualization, and analysis layer

 f Importing and visualizing dynamic management view (DMV) data

 f Increasing DBA productivity

 f Providing documentation

 f Analyzing SSAS tabular databases and gateways

 f Analyzing Extended Events

 f Visualizing log file data

 f Leveraging the Power BI PowerShell Module

Technical requirements
 f Power BI Desktop.

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing it are available here: http://bit.ly/2OVQfG7.

 f Files for this chapter can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition.

Creating a centralized IT monitoring
solution with Power BI

Power BI's rich data connectivity and transformation capabilities are very well suited for the
integration needs of system and database administrators. A collection of log files containing
performance monitor counter statistics can be retrieved from a file directory (or multiple
directories), consolidated, and further enhanced to support reporting. Additional sources,
such as snapshots of performance and configuration data stored in a dedicated administrator
database, can also be included in a scheduled data refresh process, and the inclusion of
existing BI dimension tables, such as date and time, further simplifies the overall monitoring
solution.

In this recipe, a set of Windows Performance Monitor counter files containing statistics on
CPU, memory, and more are integrated with administrative data stored in a SQL Server
database, including query wait statistics and instance configuration values.

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 10

441

Getting ready

To prepare for this recipe, follow these steps:

1. Identify the administrative stakeholders familiar with the current state of monitoring
and the top priorities of the solution, such as "How is performance today?" and/or
"Has a configuration changed?"

2. Sharpen the meaning of these questions to identify the required data sources,
including performance counters and system views

3. Create a dedicated database named Admin in SQL Server that will exclusively store
system and administrative data

4. Use Windows Performance Monitor to design and schedule a new data collector set
containing the following performance monitor counters:

 � \Memory\Available Mbytes

 � \PhysicalDisk(_Total)\Avg. Disk sec/Read

 � \PhysicalDisk(_Total)\Avg. Disk sec/Write

 � \Processor(_Total)\% Processor Time

 � \SQL Server:Buffer Manager\Page life expectancy

 � \SQL Server:SQL Statistics\Batch Requests/sec

Performance Monitor defaults to .blg log files, but Power BI can only consolidate files in
text, CSV, and Excel format, so set Log format to Comma separated. Windows Performance
Monitor is well documented and understood by most administrators. Best practices and
automation via PowerShell are outside the scope of this recipe.

How to create a centralized IT monitoring solution

To implement this recipe, perform the following steps:

1. Open a Power BI Desktop file locally and access Power Query Editor by clicking on
Transform Data in the ribbon of the Home tab.

2. Create query parameters called SQLServer, AdventureWorksDB, and AdminDB, and
set their values to your SQL Server instance, AdventureWorksDW2019 and Admin,
respectively.

3. Create a query named AdWorksDW:
let
 Source = Sql.Database(SQLServer, AdventureWorksDB)
in
 Source

Administering and Monitoring Power BI

442

4. Create a query named AdminDB:
let
 Source = Sql.Database(SQLServer, AdminDB)
in
 Source

5. Disable load on the AdWorksDW and Admin queries, and place both queries into a
Data Sources query group.

6. Create a Parameters query group.

7. In the Parameters query group, create a parameter called CounterHistoryDays and
assign a value of 7 or 30 to limit the number of days retrieved.

8. In the Parameters query group, create a parameter called
PerformanceCountersFolder and set the value equal to the location of the
performance counter log files.

9. Create a query called Performance Counters in the Other Queries query group to
retrieve the performance counter log files:
let
 CurrentDate = DateTime.Date(DateTime.LocalNow()),
 EarliestDate = Date.AddDays(CurrentDate,-CounterHistoryDays),
 SourceFolder = Folder.Files(PerformanceCountersFolder),
 ReportFiles = Table.SelectRows(SourceFolder, each [Extension] =
".csv" and
 DateTime.Date([Date modified]) >= EarliestDate)
in
 ReportFiles

10. Click on the double arrows pointed down on the Content column to combine the files
remaining into one query. In the Combine Files dialog, click OK.

11. In the Transform File from Performance Counters query group, edit the Transform
Sample File query:
let
 Source = Csv.Document(Parameter1,[Delimiter=",",
 Columns=8, Encoding=1252, QuoteStyle=QuoteStyle.None]),
 PromoteHeaders = Table.PromoteHeaders(Source,
[PromoteAllScalars=true]),
 ParsedDate = Table.AddColumn(PromoteHeaders, "Date",
 each Date.From(DateTimeZone.From(
 [#"(PDH-CSV 4.0) (Eastern Daylight Time)(240)"])), type
date),
 ParsedTime = Table.AddColumn(ParsedDate, "Time",
 each Time.From(DateTimeZone.From(
 [#"(PDH-CSV 4.0) (Eastern Daylight Time)(240)"])), type
time),
 RemoveColumns = Table.RemoveColumns(ParsedTime,

Chapter 10

443

 {"(PDH-CSV 4.0) (Eastern Daylight Time)(240)"}),
 RenameColumns = Table.RenameColumns(RemoveColumns,
 {{"Memory\Available MBytes", "AvailableMemoryMB"},
 {"Buffer Manager\Page life expectancy", "PageLifeExpectancy"},
 {"SQL Statistics\Batch Requests/sec", "BatchRequestsPerSec"},
 {"PhysicalDisk(_Total)\Avg. Disk sec/Read",
"AvgDiskSecPerRead"},
 {"PhysicalDisk(_Total)\Avg. Disk sec/Write",
"AvgDiskSecPerWrite"},
 {"Processor(_Total)\% Processor Time", "ProcessorTime%"}}),
 HourText = Table.AddColumn(RenameColumns, "TextHour", each
 if Time.Hour([Time]) < 10 then "0" & Text.From(Time.
Hour([Time])) else
 Text.From(Time.Hour([Time])), type text),
 MinText = Table.AddColumn(HourText, "TextMin", each
 if Time.Minute([Time]) < 10 then "0" &
 Text.From(Time.Minute([Time])) else
 Text.From(Time.Minute([Time])), type text),
 SecText = Table.AddColumn(MinText, "TextSec", each
 if Number.RoundDown(Time.Second([Time]),0) < 10 or
 Number.RoundUp(Time.Second([Time]),0) < 10 then "0" &
 Text.From(Number.RoundDown(Time.Second([Time]),0))
 else Text.From(Number.RoundDown(Time.Second([Time]),0)), type
text),
 SecondCol = Table.AddColumn(SecText,"SecondOfDay",
 each [TextHour] & [TextMin] & [TextSec], type text),
 RemoveOtherColumns = Table.SelectColumns(SecondCol,
 {"AvailableMemoryMB", "PageLifeExpectancy",
"BatchRequestsPerSec",
 "AvgDiskSecPerRead", "AvgDiskSecPerWrite", "ProcessorTime%",
 "Date", "Time", "SecondOfDay"})
in
 RemoveOtherColumns

12. On the Performance Counters query, remove the automatically added Changed Type
query step and replace this with your own manually set types:
 TypeChanges = Table.TransformColumnTypes(PreviousStep,
 {{"AvailableMemoryMB", Int64.Type}, {"PageLifeExpectancy",
Int64.Type},
 {"BatchRequestsPerSec", type number},
 {"AvgDiskSecPerRead", type number},
 {"AvgDiskSecPerWrite", type number}, {"ProcessorTime%", type
number},
 {"Date", type date}, {"Time", type time}, {"SecondOfDay", type
text}})

Administering and Monitoring Power BI

444

13. In the Other Queries group, create a blank query called Calculations.

14. Select Close & Apply from the ribbon of the Home tab.

15. Create a Dates table using the following DAX code:
Dates =
 VAR __Today = TODAY()
RETURN
 CALENDAR(DATE(YEAR(__Today)-1,1,1),DATE(YEAR(__Today)+1,12,31))

16. Create a Time table:
Time =
 VAR __hrs = SELECTCOLUMNS(GENERATESERIES(1,23,1),"Hour",[Value])
 VAR __mins = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Minutes",[Value])
 VAR __secs = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Seconds",[Value])
 VAR __hoursMinutes = GENERATEALL(__hrs, __mins)
 VAR __hoursMinutesSeconds = GENERATEALL(__hoursMinutes,__secs)
 VAR __final = ADDCOLUMNS(ADDCOLUMNS(__hoursMinutesSeconds,
 "Time", TIMEVALUE(FORMAT([Hour],"00") & ":" &
 FORMAT([Minutes],"00") & ":" & FORMAT([Seconds],"00"))),
 "SecondOfDay", FORMAT([Hour],"00") & FORMAT([Minutes],"00")
&
 FORMAT([Seconds],"00"))
RETURN __final

17. Change the Data type of the Date column in the Dates table to Date.

18. Change the Data type of the SecondOfDay column in the Time table to Text.

19. In the Model view, create a relationship between the Date columns in the Dates
table and the Performance Counters table.

20. Create a relationship between the SecondOfDay columns in the Time table and the
Performance Counters table.

21. Save your work.

How it works…

The scheduled data collector set will automatically generate a subdirectory for each new file
output. The Power BI M query references the root directory (or parent), and all supported file
formats in subdirectories of this query are available for retrieval. Depending on the volume
of counters, their time interval (that is, 15 seconds), and the schedule and duration of the
collector set, a significant volume of files can accumulate.

If the source DateTime column is already rounded to whole seconds, such as SQL Server
datetime2(0), then a Time column created via the DateTime.Time M function can be used for
the relationship to the Time dimension table.

Chapter 10

445

Casting SQL Server datetime data type columns to datetime2(0) in the SQL view used to
import to Power BI is recommended in order to avoid additional rounding logic implemented in
a Power BI query. In the case of Performance Monitor Counter log files, the DateTime column
is not rounded to the whole second, and therefore, rounding logic is applied within the M
query to create a six-character text column. The concatenated SecondOfDay column is used for
the relationship with the Time dimension table.

In this example, the Time dimension table has 86,400 rows, or 1 row for every second of a
day. The detail at this granularity can be helpful in troubleshooting and deeper analysis, but
a time dimension at the minute grain with only 1,440 rows may be sufficient. Whether in
seconds or minutes, a Time dimension table is especially recommended for filtering multiple
fact tables in the same report and for providing useful groupings, such as the 7 A.M. to 9 A.M.
timeframe.

There's more…

Additional performance data can be added to the model; SQL performance metrics, including
wait statistics and the instance configuration data store. Tables can be created in the Admin
database, such as WaitStats and ConfigData, with columns that correspond to the sys.
dm_os_wait_stats and sys.configurations system views, respectively. Essentially, these
tables contain snapshots of performance or configuration data, just as performance counters
represent point-in-time values at the intervals chosen. Maintaining these data collection
processes enables tools such as Power BI to generate insights and drive appropriate
responses. Refer to the following sources for further information:

 f The setup of the wait statistics data store and the capture of wait statistics are
described by Erin Stellato in the following blog post: https://sqlperformance.
com/2015/10/sql-performance/proactive-sql-server-health-checks-5

 f The setup of the instance configuration data store and the capture of these values
are also described by Erin Stellato in this blog post: https://sqlperformance.
com/2015/02/system-configuration/proactive-sql-server-health-checks-3

SQL views should be created in the admin database for both Wait Stats and the Config
Data tables. Each view should apply report-friendly column aliases and WHERE clauses to
only import the timeframes required. The value and value_in_use columns in the sys.
configurations view and table to be created in the Admin database are stored in a sql_
variant data type. The view used to import this data to Power BI casts these columns as an
Integer data type and casts the datetime CaptureDate column to datetime2(0), to round this
column to seconds.

Import the two views for WaitStats and ConfigData into the Power BI model and build the
appropriate relationships as required. Additional inputs, such as SQL Server Agent and
backup log files, can also be integrated to aid administrators in assessing the causes and
impacts of changes in available resources, workloads, and system configurations.

https://sqlperformance.com/2015/10/sql-performance/proactive-sql-server-health-checks-5
https://sqlperformance.com/2015/10/sql-performance/proactive-sql-server-health-checks-5
https://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3
https://sqlperformance.com/2015/02/system-configuration/proactive-sql-server-health-checks-3

Administering and Monitoring Power BI

446

See also

 f Combine binaries in Power BI Desktop: http://bit.ly/2oL2nM4

Constructing a monitoring, visualization,
and analysis layer

Monitoring and administration tools, such as Performance Monitor, SQL Server Activity
Monitor, Query Store, and Extended Events, include their own graphical interfaces for viewing
and analyzing their own specific datasets. However, these features are limited relative to the
data exploration and visualization capabilities provided by dedicated BI tools, such as Power
BI. Additionally, as per the first recipe of this chapter, system and database administrators
require an integrated view over distinct data sources with a common and flexible visual
surface. The ability to define logic on top of monitoring source data, along with the "anywhere"
availability of Power BI content and its data alert and advanced analytics features, further
enhances the value of integrated monitoring datasets.

In this recipe, the monitoring dataset created in the first recipe of this chapter is leveraged
to develop reporting content that addresses top stakeholder priorities, such as "How is the
performance today?" and "Has any configuration value changed?" A report visualization
specific to SQL Server Query Store is included in the There's more... section.

Getting ready

To prepare for this recipe, follow these steps:

1. Obtain guidance from stakeholders and subject matter experts (SMEs) on
performance baselines and threshold values. For example, should the metric
"available memory" be compared to the last 7, 30, or more days? Are there good
(green), satisfactory (yellow), and problem (red) values associated with wait statistics
measures or CPU time?

2. Complete the first recipe in this chapter, Creating a centralized IT monitoring solution
with Power BI.

http://bit.ly/2oL2nM4

Chapter 10

447

How to construct a monitoring visualization and
analysis layer

To implement this recipe, perform the following steps:

1. In the Calculations table, create simple DAX measures (AVERAGE, MIN, and MAX) for
the performance counters, and date intelligence measures to support a comparison
of performance monitoring counters against prior time periods or baselines:
Available Memory MB (Today) = CALCULATE([Available Memory (MB)],
 FILTER(ALL('Dates'),'Dates'[Date] = [Today]))

Batch Requests per Sec (Yesterday) = CALCULATE([Batch Requests Per Sec],
 FILTER(ALL('Dates'),'Dates'[Date] = [Yesterday]))

Min Available Memory MB (Today) = CALCULATE([Min Available Memory (MB)],
 FILTER(ALL('Dates'),'Dates'[Date] = [Today]),ALL('Time'))

2. Create an Hour Time column in the Time table to enable slicer selection:
Hour Time = TIMEVALUE(FORMAT('Time'[Hour],"00") & ":00")

3. Create a report page based on the performance monitor counters that addresses
top visibility needs, such as "How is performance today?" and "How close are we to
resource thresholds?".

Figure 10.1: Performance Monitoring Report page leveraging Windows Performance Monitor counters

Administering and Monitoring Power BI

448

How it works…

The two gauge visuals and the KPI visuals are used to display the highest priority counters
relative to predefined thresholds or baselines. For example, Disk Seconds Per Read is
highlighted in green, given the lower value than the goal of .003; Disk Seconds Per Write is
highlighted in red due to the higher value than the goal of .004. All four visuals respect the
hour filter control (a custom Chiclet slicer) from the lower left, and a Minute of Day Time data
type column from the Time dimension table is used for the KPI visual's Trend axis.

A Today's High and Low Values group of Card visuals ignores the Time filter selection (for
example, 9:00 P.M. from the slicer), but applies the current date filter. CPU (% processor),
batch requests per second, and available memory are plotted against the prior day values in
the line charts in this example. Seven- and 30-day average measures are commonly used for
the performance baseline.

There's more…

Report visualizations can also be created for the wait statistics and configuration values, if
implemented from the previous recipe. To see how this works, perform the following steps:

1. Create DAX measures to identify database instance configuration changes:
Config Value = IF(AND(HASONEVALUE('Configuration
Values'[ConfigurationID]),
 HASONEVALUE('Dates'[Date])),
 MAX('Configuration Values'[Configuration Value]),BLANK())

Config Value (Today) = CALCULATE([Config Value],
 FILTER(ALL('Dates'),'Dates'[Date] = [Today]))

Config Value (Yesterday) = CALCULATE([Config Value],
FILTER(ALL('Dates'),
 'Dates'[Date] = [Yesterday]))

Config Change (Today) = IF([Config Value (Today)] <> [Config Value
(Yesterday)],
"Config Change", "No Change")

Config Changes = IF([Config Value] = [Prior Day Config],0,1)

Chapter 10

449

Figure 10.2: Instance Configuration Report page: Current day and trailing 30-day history of changes

2. The Current Day Configuration Changes table visual uses a visual-level filter on
the Config Change (Today) measure such that only changed configurations (for the
current day) are displayed. The Prior 30 Days Configuration Changes table visual
uses two visual-level filters. One filter is applied to the Date column from the Dates
dimension table and uses the relative date filtering feature to retrieve the past 30
days but excludes the current day; the other filter condition is applied against the
Config Changes measure for values of 1.

3. Create similar DAX measures for the Wait Statistics table, such as the current-day
average wait in seconds.

4. On a new page, compare the average of the current day's wait statistics capture data
against a prior date:

Figure 10.3: Wait Statistics report sample: KPIs, Waterfall, and Scatter Chart visuals

Administering and Monitoring Power BI

450

"Wait statistics are probably the single best way to start troubleshooting a SQL Server
performance issue. SQL Server knows why execution is being stalled (in other words,
why threads are having to wait), so using this information to identify bottlenecks
and avenues for further investigation can dramatically reduce the time it takes to
diagnose the cause of workload degradation."

—Paul Randal, CEO of SQLskills, Microsoft Data Platform MVP

In this limited sample of a wait statistics report, relative date filtering is applied at the page
level to only include the past 30 days; thus, the 30-day trend is displayed in the background of
the two KPI visuals. Relative date filters are also applied at the visual level to the waterfall and
scatter charts to include only the last 2 days and the current day, respectively. The breakdown
field well of the Waterfall chart is used to automatically identify the largest drivers of the
change in wait seconds (wait types) from the prior day to the current day.

A high-level wait statistics report can be used as a quick starting point of analysis to identify
bottlenecks in a system. Additionally, with mature and predictable baseline data in place, the
report can be used to troubleshoot performance degradation issues. For example, a sudden
spike in PAGEIOLATCH_EX waits may indicate a missing index issue, related database schema,
or code change.

See also

 f SQL Server Wait Types library: https://www.sqlskills.com/help/waits/.

Importing and visualizing dynamic
management view (DMV) data

Analysis Services data models and Power BI instances include many dynamic management
views (DMVs), which can be used to retrieve both schema metadata and resource usage
associated with the various database objects. Query performance for imported data models
is directly impacted by the amount of memory consumed. Therefore, having visibility to
memory consumption and factors impacting memory consumption, such as compression and
cardinality, is essential in performance tuning efforts. Power BI integration and visualization
tools can enhance the value of the system information provided by DMVs to provide owners of
Power BI and SSAS datasets with an intuitive, sustainable reporting layer in support of these
assets.

In this recipe, M queries are created to retrieve and transform DMV information from a Power
BI dataset. Essential relationships, measures, and report visuals are then built to support
memory usage analysis.

https://www.sqlskills.com/help/waits/

Chapter 10

451

Getting ready

To prepare for this recipe, follow these steps:

1. Open the Power BI Desktop file containing the dataset to be analyzed. This file must
remain open during data retrieval.

2. Open DAX Studio from External Tools.

3. Retrieve the server name and port associated with the running Power BI Desktop
file from the bottom right of the DAX Studio status bar; an example would be
localhost:56514.

4. In DAX Studio, in the upper-left corner under Metadata, right-click the database ID
and choose Copy Database ID.

5. Open a new Power BI Desktop file and click on Transform data in the ribbon of the
Home tab to open the Power Query Editor window.

6. Create two parameters, Server and Database, and apply the values retrieved from
DAX Studio as the current values:

Figure 10.4: Query Parameters with values for the local Power BI model

How to import and visualize DMV data

To implement this recipe, perform the following steps:

1. Create a Segments query:
let Source = AnalysisServices.Database
(Server, Database,[Query="Select * From $SYSTEM.DISCOVER_STORAGE_TABLE_
COLUMN_SEGMENTS"]),
 Segments = Table.AddColumn(Source, "Structure Type", each
 if Text.Range([TABLE_ID],1,1) <> "$" then "Data"
 else if Text.Start([TABLE_ID],2) = "H$" then "Column Hierarchy"
 else if Text.Start([TABLE_ID],2) = "U$" then "User Hierarchy"
 else if Text.Start([TABLE_ID],2) = "R$" then "Relationship"
 else "unknown", type text),
 RenameTable = Table.RenameColumns(Segments,{{"DIMENSION_NAME",
"Table"}}),
 KeyColumn = Table.AddColumn(RenameTable, "ColumnKey", each [Table] &
"-" & [COLUMN_ID], type text)
in KeyColumn

Administering and Monitoring Power BI

452

2. Create a Columns query:
let Source = AnalysisServices.Database
(Server, Database,[Query="Select * From $SYSTEM.DISCOVER_STORAGE_TABLE_
COLUMNS"]),
 BasicData = Table.SelectRows(Source, each ([COLUMN_TYPE] = "BASIC_
DATA")),
 RenameTable = Table.RenameColumns(BasicData,{{"DIMENSION_NAME",
"Table"},{"ATTRIBUTE_NAME","Column"}}),
 KeyColumn = Table.AddColumn(RenameTable, "ColumnKey", each [Table] &
"-" & [COLUMN_ID], type text),
 DateRetrieved = Table.AddColumn(KeyColumn, "Date Retrieved", each
DateTime.Date(DateTime.LocalNow()), type date)
in DateRetrieved

3. Create a blank query called Calculations

4. Click Close & Apply in the ribbon of the Home tab

5. In Model view, create a relationship between the ColumnKey columns in the
Segments and Columns tables

6. Create the following DAX measures:
BytesPerMB = 1048576

Segment Size (MB) = DIVIDE(SUM(Segments[USED_SIZE]),[BytesPerMB])

Dictionary Size (MB) = DIVIDE(SUM('Columns'[DICTIONARY_
SIZE]),[BytesPerMB])

Data Size (MB) =
 CALCULATE([Segment Size (MB)],Segments[Structure Type] = "Data")

Column Hierarchies Size (MB) =
 CALCULATE([Segment Size (MB)],Segments[Structure Type] = "Column
Hierarchy")

User Hierarchy Size (MB) =
 CALCULATE([Segment Size (MB)],Segments[Structure Type] = "User
Hierarchy")

Relationship Size (MB) =
 CALCULATE([Segment Size (MB)],Segments[Structure Type] =
"Relationship")

Total Column Size (MB) = [Data Size (MB)] + [Dictionary Size (MB)]

Total Size (MB) = [Column Hierarchies Size (MB)] + [Relationship Size

Chapter 10

453

(MB)] +
 [User Hierarchy Size (MB)] + [Dictionary Size (MB)] + [Data Size
(MB)]

Last Refresh Message = VAR RefreshDate = MAX('Columns'[Date Retrieved])
 RETURN "Last Refreshed: " & RefreshDate

7. Create a Power BI report page based on the retrieved and modeled DMV data, as
seen in Figure 10.5:

Figure 10.5: Summary Memory report of the Power BI dataset

How it works…

For the Segments query, the Server and Database parameters, along with a SQL statement
against the DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS DMV, are used to extract and access
memory usage data from the running Power BI Desktop file (which contains an analysis
services instance). The conditional column, Structure Type, is added to identify the memory
structure represented by each row, and a concatenated column, ColumnKey, is created to
support a relationship with the Columns table.

For the Columns query, the DISCOVER_STORAGE_TABLE_COLUMNS DMV is filtered based on the
Column_Type column and a concatenated column, ColumnKey, is created for the relationship
with the Segments table. Additionally, a dynamic Date Retrieved column is added to support
the reporting layer.

The memory columns for both source DMVs are in terms of bytes. Megabytes (MB) are
more intuitive and presentable given that they have fewer digits; thus, the BytesPerMB
measure (which is hardcoded to 1,048,576) is used to DIVIDE the SUM of the USER_SIZE and
DICTIONARY_SIZE columns. The Structure Type column created in the Segments query is
used to support different components of overall memory usage, and two total measures are
created for summary-level reports.

Administering and Monitoring Power BI

454

Card visuals are used to display overall memory usage; two table visuals with top N visual-
level filters provide additional details. In this example, the Reseller Sales XL table is by far the
largest table in the model, and specifically, the CarrierTrackingNumber, SalesOrderNumber,
and CustomerPONumber columns of this table are consuming the most memory. Clicking on
a table name in the Top 5 Tables visual cross-filters the Top 5 Columns visual.

More DMVs and logic can be added to build a more robust template report for use across
Power BI projects. Note that the Server and Database parameters will need to be updated
when a PBIX file being analyzed has been closed and reopened.

There's more…

In addition to the compressed data memory structures for each column, dictionary and
column hierarchy structures (H$) are also created internally for imported data models to
support queries. The dictionary structure, retrieved via the columns DMV, stores the unique
values of a column, and so it is larger for high-cardinality columns. Two additional memory
structures include user-defined hierarchies (U$) and table relationships (R$).

In this recipe, the memory allocated to column hierarchy structures (H$) is excluded from the
Total Column Size measure but included in the Total Size measure. This is intended to focus
analysis on the larger components of memory that can be directly impacted by revisions to the
data model. Likewise, the memory used for relationships and user-defined hierarchies is small
relative to the data and dictionary size of the model's columns.

Basic performance tuning of imported data models largely focuses on minimizing high-
cardinality columns and relationships to reduce the memory scanned. More advanced tuning,
generally reserved for SSAS models, involves the partitioning of tables, segment sizes, and
optimizing the sort order used by the engine during compression. Only the sort order is
available to Power BI datasets.

The Vertipaq Analyzer utilizes DMVs to collect information on datasets and is now integrated
into DAX Studio under the Advanced menu as well as in Tabular Editor 3. Using the Vertipaq
Analyzer is a quicker and easier way to analyze the memory size, cardinality, and other
aspects of your data model versus writing your own queries against the DMVs.

See also

 f Kasper de Jonge has published a blog on building an SSAS memory report with Power
BI: http://bit.ly/2tDumgk.

 f SQL BI's Vertipaq Analyzer Excel file: http://bit.ly/2sTTuSO.

 f Dynamic Management Views (DMVs) in Analysis Services: https://bit.
ly/33etDoc.

http://bit.ly/2tDumgk
http://bit.ly/2sTTuSO
https://bit.ly/33etDoc
https://bit.ly/33etDoc

Chapter 10

455

 f Vertipaq Analyzer script for Tabular Editor 2: https://bit.ly/2YA97zv

Increasing DBA productivity
SQL Server Query Store is a monitoring feature available to all editions of SQL Server 2016
and later—it significantly simplifies and expedites query tuning and troubleshooting. The Query
Store database provides aggregated metrics regarding query executions, query plans, and
wait statistics to enable visibility to performance trends and usage patterns.

"Query Store is a fantastic flight data recorder for your execution plans. It will
help you troubleshoot parameter sniffing issues, connection settings issues, plan
regressions, bad stats, and much more."

—Brent Ozar, Author and Microsoft-Certified Master in SQL Server

Query Store includes a graphical interface of charts and user controls, and its schema lends
itself to custom T-SQL queries such as 10 longest-running queries in the past hour. While
these are great features and sufficient for certain scenarios, administrators often have to
make trade-offs between the flexibility of T-SQL and the graphical controls provided by Query
Store. In this recipe, simple T-SQL statements are passed from Power BI to SQL Server Query
Store in order to identify and analyze recent performance issues, as well as the performance
of a specific stored procedure.

Getting ready

To prepare for this recipe, follow these steps:

1. Enable Query Store in the latest version of SQL Server Management Studio (SSMS),
either via the Database Properties dialog in the Object Explorer interface (right-click
on the database and choose Properties) or via the following T-SQL statement:
ALTER DATABASE AdventureWorksDW2019 SET QUERY_STORE = ON;

2. Configure Query Store settings, such as Statistics Collection Intervals, Retention,
and Max Size (MB) according to your requirements.

In this example, the performance of individual queries will be aggregated or summarized
into 5-minute time frames. Smaller collection time intervals provide greater details, but
also require more storage and collection resources. For maximum detail with no grouping
of queries, an Extended Events session can be scheduled. Refer to the Analyzing Extended
Events recipe later in this chapter for more details.

https://bit.ly/2YA97zv

Administering and Monitoring Power BI

456

How to increase DBA productivity

To implement this recipe, perform the following steps:

1. Build and test the T-SQL statements to retrieve the required Query Store statistics:
SELECT
[rs].[avg_duration], [rs].[avg_logical_io_reads], [qst].[query_text_id],
[qsq].[query_id],
[qst].[query_sql_text], CASE WHEN [qsq].[object_id] = 0
 THEN N'Ad-hoc' ELSE OBJECT_NAME([qsq].[object_id])
 END AS [ObjectName],
[qsp].[plan_id], GETUTCDATE() AS CurrentUTCTime,
[rs].[last_execution_time],
 CAST((DATEADD(MINUTE,
 -(DATEDIFF(MINUTE, GETDATE(), GETUTCDATE())),
 [rs].[last_execution_time])) AS datetime2(0))
 AS LocalLastExecutionTime
FROM
 [sys].[query_store_query] [qsq]
 JOIN [sys].[query_store_query_text] [qst] ON
 [qsq].[query_text_id] = [qst].[query_text_id]
 JOIN [sys].[query_store_plan] [qsp] ON
 [qsq].[query_id] = [qsp].[query_id]
 JOIN [sys].[query_store_runtime_stats] [rs] ON
 [qsp].[plan_id] = [rs].[plan_id]
WHERE [rs].[last_execution_time] > DATEADD(hour, -8, GETUTCDATE())

2. Create an additional T-SQL statement containing similar performance-related
columns, filtered to a specific stored procedure that also retrieves the collection
interval times:
SELECT * FROM
[sys].[query_store_query] [qsq]
JOIN [sys].[query_store_query_text] [qst] ON
 [qsq].[query_text_id] = [qst].[query_text_id]
JOIN [sys].[query_store_plan] [qsp] ON
 [qsq].[query_id] = [qsp].[query_id]
JOIN [sys].[query_store_runtime_stats] [rs] ON
 [qsp].[plan_id] = [rs].[plan_id]
JOIN [sys].[query_store_runtime_stats_interval] [rsi] ON
 [rs].[runtime_stats_interval_id] = [rsi].[runtime_stats_interval_
id]
WHERE [qsq].[object_id] = OBJECT_ID(N'Sales.usp_GetFullProductInfo')

Chapter 10

457

3. Create a view and a parameterized stored procedure in SQL Server for the two Query
Store queries, without the WHERE clause filter—this condition will be driven by the
Power BI parameter.

4. Design the SQL Server stored procedures to include a WHERE clause with a parameter
that will be passed from Power BI, such as the following:
CREATE PROCEDURE [Website].[QueryStoreProc]
@QSProcedure nvarchar(55)
AS
WHERE [qsq].[object_id] = OBJECT_ID(@QSProcedure)

5. Open a Power BI Desktop file locally and add server and database parameters for the
Query Store database.

6. Create a new query, AdWorksDW, with the Sql.Database function that references
these two parameters.

7. Create a parameter, HoursInPast, with a data type of decimal number and a
QueryStoreProcedure text parameter.

8. Create a new M query, Query Store DurationIO, that retrieves the I/O and duration
statistics for all queries and uses the HoursInPast parameter:
let
 Source = AdWorksDW,
 SQLView = Source{[Schema="Website", Item="QueryStoreDurationIO"]}
[Data],
 ParamFilter = Table.SelectRows(SQLView, each
 [LocalLastExecutionTime] >=
 (DateTime.LocalNow() - #duration(0,HoursInPast,0,0))),
 ExecutionDate = Table.AddColumn(ParamFilter,
 "Last Execution Date",
 each DateTime.Date([LocalLastExecutionTime]), type date),
 ExecutionTime = Table.AddColumn(ExecutionDate,
 "Time", each DateTime.Time([LocalLastExecutionTime]), type time)
in ExecutionTime

9. Create a new M query, Query Store Procedure:
let
 Source = AdWorksDW,
 Procedure = Value.NativeQuery(Source,
 "EXECUTE Website.QueryStoreProc @QSProcedure = "
 & "'" & QueryStoreProcedure & "'"),
 InsertedDate = Table.AddColumn(Procedure, "Date",
 each DateTime.Date([end_time]), type date),
 InsertedTime = Table.AddColumn(InsertedDate, "Time",
 each DateTime.Time([end_time]), type time)
in InsertedTime

Administering and Monitoring Power BI

458

10. Create a blank query called Calculations.

11. Click Close & Apply from the ribbon of the Home tab.

12. Create a Dates table using the following DAX code:
Dates =
 VAR __Today = TODAY()
RETURN
 CALENDAR(DATE(YEAR(__Today)-1,1,1),DATE(YEAR(__Today)+1,12,31))

13. Create a Time table:
Time =
 VAR __hrs = SELECTCOLUMNS(GENERATESERIES(1,23,1),"Hour",[Value])
 VAR __mins = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Minutes",[Value])
 VAR __secs = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Seconds",[Value])
 VAR __hoursMinutes = GENERATEALL(__hrs, __mins)
 VAR __hoursMinutesSeconds = GENERATEALL(__hoursMinutes,__secs)
 VAR __final = ADDCOLUMNS(ADDCOLUMNS(__hoursMinutesSeconds,
 "Time", TIMEVALUE(FORMAT([Hour],"00") & ":" &
 FORMAT([Minutes],"00") & ":" & FORMAT([Seconds],"00"))),
 "SecondOfDay", FORMAT([Hour],"00") & FORMAT([Minutes],"00")
&
 FORMAT([Seconds],"00"))
RETURN __final

14. Change the Data type of the Date column in the Dates table to Date.

15. Change the Data type of the SecondOfDay column in the Time table to Text.

16. In the Model view, create relationships between the Query Store DurationIO and
Query Store Procedure tables with the Dates and Time tables.

17. Add DAX measures to the Calculations table:
Average CPU Time (QS Proc) = AVERAGE('Query Store Procedure'[avg_cpu_
time])

Average Duration (QS Proc) = AVERAGE('Query Store Procedure'[avg_
duration])

Average Logical IO Reads (QS Proc) =
 AVERAGE('Query Store Procedure'[avg_logical_io_reads])

18. Create dedicated report pages for the two Query Store tables leveraging the
measures and relationships:

Chapter 10

459

Figure 10.6: Query Store Sample report page – Stored Procedure

The Query Store Stored Procedure report page breaks out measures of performance by
Context Settings ID and individual Query ID. A combination chart displays the trend of
CPU and duration performance across the intervals; the SQL statement associated with the
procedure is displayed via a table visual. Additionally, a custom Chiclet slicer is used to give
the user simple filtering control for the hourly time frames.

How it works…

SQL Server Query Store collects compile and runtime information related to the queries
and query plans of a database. This persisted data is made available for analysis via three
separate data stores:

 f A plan store containing query execution plan information

 f A runtime stats store of execution statistics

 f A wait stats store of query wait statistics

These three data stores can be queried in SQL Server 2016 or later via the following system
views: sys.query_store_plan, sys.query_store_runtime_stats, and sys.query_store_
wait_stats.

The first T-SQL query retrieves the average duration and logical I/O reads of the Query Store
intervals collected over the previous 8 hours, as well as the SQL statement itself and the
Query ID. A parameter can be set for the number of hours to retrieve in Power BI, and thus
the SQL view created for retrieving this data does not require a WHERE clause. Power BI will
dynamically build a T-SQL statement with a WHERE clause filter containing the parameter via
Query Folding.

Administering and Monitoring Power BI

460

Note that the LocalLastExecutionTime column is cast to a datetime2(0) data type to provide
a date value, rounded to the nearest second.

The second T-SQL query demonstrates how to return Query Store statistics for a stored
procedure, since the Query Store user interface does not support the analyzing of any activity
specific to a stored procedure. Administrators often require visibility to both the specific
timeframes and the overall performance to pinpoint when a performance issue occurred, and
its significance relative to a baseline.

For the Query Store DurationIO query, the LocalLastExecutionTime column is filtered by the
DateTime value that is based on the current local DateTime, and the value in the HoursInPast
parameter. You may click on View Native Query to confirm that the query was folded to
the server. A Date and Time column are added via the DateTime.Date and DateTime.Time
M functions. These added columns will be used in relationships with the Date and Time
dimension tables, respectively.

The SQL Server stored procedure Website.QueryStoreProc is executed via the Value.
NativeQuery function and the Power BI parameter QueryStoreProcedure is passed into the
concatenated text string. Date and Time columns are also added to support relationships with
the Date and Time dimension tables. Like the Query Store DurationIO query, the end_time in
the stored procedure is of the datetime2(0) data type, such that Time columns created via
DateTime.Time will be rounded off to the nearest second.

There's more…

Individual SQL query statements can also be retrieved from Query Store and Extended
Events. The top N visual-level filter can be applied to a table visual based on an Avg Duration
measure, as seen in Figure 10.7:

Figure 10.7: A Table Visual filtered for the top 10 SQL Query values based on the Duration measure

Chapter 10

461

See also

 f Monitoring performance by using the Query Store: http://bit.ly/2s9Cx5r

Providing documentation
As data models grow and change to support new business processes and logic, access
to current documentation becomes imperative. Visibility to basic metadata, such as the
relationships of the model, columns of the tables, and the filtering logic built into measures,
can significantly aid business teams in utilizing Power BI datasets. Additionally, business
intelligence and IT professionals who may be new to a specific model or unfamiliar with a
component of the model can benefit greatly from direct access to technical metadata, such as
data source parameters, SQL and M queries, and the configured security roles.

In this recipe, several dynamic management views (DMVs) related to the schema of a Power
BI dataset are accessed and integrated into a Power BI report. A template is then created with
parameters, enabling standard documentation reports across multiple Power BI datasets.

Getting ready

To prepare for this recipe, follow these steps:

1. Open the Power BI Desktop file containing the dataset to be analyzed. This file must
remain open during data retrieval.

2. Open DAX Studio from External Tools.

3. Retrieve the server name and port associated with the running Power BI Desktop file
from the bottom right of the DAX Studio status bar, such as localhost:56514.

4. In DAX Studio, near the upper-left corner under Metadata, right-click the database ID
and choose Copy Database ID.

5. Open a new Power BI Desktop file and click on Transform data in the ribbon of the
Home tab to open the Power Query Editor window.

6. Create two parameters, Server and Database, and apply the values retrieved from
DAX Studio as the current values.

http://bit.ly/2s9Cx5r

Administering and Monitoring Power BI

462

How to provide documentation

To implement this recipe, perform the following steps:

1. Create a new blank M query called TablesDMV that retrieves the TMSCHEMA_TABLES
DMV via the Server and Database parameters:

Figure 10.8: Table metadata of the running Power BI Desktop file

2. Duplicate the TablesDMV query to retrieve the following five schema DMVs as well:
 � SYSTEM.TMSCHEMA_COLUMNS

 � SYSTEM.TMSCHEMA_MEASURES

 � SYSTEM.TMSCHEMA_ROLES

 � SYSTEM.TMSCHEMA_TABLE_PERMISSIONS

 � SYSTEM.TMSCHEMA_RELATIONSHIPS:

3. Name the queries according to their source, and organize these and their parameters
into their own folders:

Figure 10.9: Parameters and DMV queries used to support model documentation

4. Create a third query group named Documentation and a new blank query named
Columns:
let
 Tables = TablesDMV, Columns = ColumnsDMV,
 Join = Table.NestedJoin(Columns,{"TableID"},Tables,{"ID"},

Chapter 10

463

 "TableColumns",JoinKind.LeftOuter),
 TableExpand = Table.ExpandTableColumn(Join,"TableColumns",
 {"Name"},{"Table"}),
 DataType = Table.AddColumn(TableExpand, "Data Type", each
 if [ExplicitDataType] = 2 then "Text" else
 if [ExplicitDataType] = 6 then "Whole Number" else
 if [ExplicitDataType] = 8 then "Decimal Number" else
 if [ExplicitDataType] = 9 then "Date" else
 if [ExplicitDataType] = 10 then "Fixed Decimal Number" else
"Other",
 type text),
 ColumnType = Table.AddColumn(DataType, "Column Type", each
 if [Type] = 1 then "Standard" else
 if [Type] = 2 then "Calculated" else "Other", type text),
 Filter = Table.SelectRows(ColumnType, each
 not Text.StartsWith([ExplicitName], "RowNumber")
 and not Text.StartsWith([Table],"LocalDate")
 and not Text.StartsWith([Table], "DateTableTemplate")),
 Rename = Table.RenameColumns(Filter,
 {{"ExplicitName","Column"}, {"DataCategory", "Data Category"},
 {"IsHidden", "Is Hidden"}, {"FormatString", "Column Format"}})
in Rename

5. Create a new blank query named Relationships and identify the tables and columns
for each relationship:
let
 Relationships = RelationshipsDMV,
 Tables = TablesDMV, Columns = ColumnsDMV,
 FromTableJoin = Table.NestedJoin(Relationships,
 {"FromTableID"}, Tables, {"ID"},"FromTableCols",JoinKind.Inner),
 FromTable = Table.ExpandTableColumn(FromTableJoin,
 "FromTableCols",{"Name"},{"From Table"}),
 ToTableJoin = Table.NestedJoin(FromTable,
 {"ToTableID"},Tables,{"ID"},"ToTableCols",JoinKind.Inner),
 ToTable = Table.ExpandTableColumn(ToTableJoin,"ToTableCols",
 {"Name"},{"To Table"}),
 FilterDateTbls = Table.SelectRows(ToTable,
 each not Text.StartsWith([To Table],"LocalDateTable")),
 FromColumnJoin = Table.NestedJoin(FilterDateTbls,
 {"FromColumnID"},Columns,{"ID"},"FromColumnCols",JoinKind.
Inner),
 FromColumn = Table.ExpandTableColumn(FromColumnJoin,"FromColumnCo
ls",
 {"ExplicitName"},{"From Column"}),

Administering and Monitoring Power BI

464

 ToColumnJoin = Table.NestedJoin(FromColumn,
 {"ToColumnID"},Columns,{"ID"},"ToColumnCols",JoinKind.Inner),
 ToColumn = Table.ExpandTableColumn(ToColumnJoin,"ToColumnCols",
 {"ExplicitName"},{"To Column"}),
 CrossFiltering = Table.AddColumn(ToColumn, "Cross Filtering",
 each if [CrossFilteringBehavior] = 1 then "Single Direction"
 else "Bidirectional", type text),
 Rename = Table.RenameColumns(CrossFiltering,{{"ID","Relationship
ID"}})
in Rename

6. Create a simple query called Metrics based on the MeasuresDMV query that adds
the table name via a join to the TablesDMV query

7. Add a query called Security Roles that joins the RolesDMV query with the
TablePermissionsDMV query and the TablesDMV query, such that the name of the
security role, the filter condition, and the table of the filter condition are included in
the query

8. Click Close & Apply from the ribbon of the Home tab

9. In Report view, create the following four report pages:

 � Columns

 � Relationships

 � Measures

 � Security

10. Use table visuals to expose the most important columns from each integrated M
query on each page:

Figure 10.10: Relationships metadata report page

Chapter 10

465

The alternating rows Matrix style is useful for simple table lists such as metadata
documentation. For larger, more complex models, slicer visuals give users the ability to quickly
answer their own questions about the model such as "Which tables are related to internet
sales?" or "Which measures are hidden from the Fields list?":

Figure 10.11: Measures metadata report page

Table and matrix visuals support word wrap for both headers and individual values. For
table visuals exposing the DAX Expression column and other long columns such as SQL
statements, enable Word wrap in the Values card of the formatting pane.

1. With the report pages complete, save the Power BI Desktop file and publish the
report to the Power BI service.

2. In Desktop, click on File, and then on Export, to save a Power BI template file (.pbit).

3. Test the template by retrieving the port and catalog name for a separate dataset and
opening the template:

Figure 10.12: Opening the template (.pbit) file to generate documentation on a separate Power BI dataset

With the target dataset open, the queries will prompt for authorization, but will then load the
report pages.

Administering and Monitoring Power BI

466

How it works…

When used as a dataset rather than a report with a live connection, an open Power BI
Desktop file includes an instance of SQL Server Analysis Services (SSAS). Therefore, all data
model objects (including DMVs) contained within a Power BI Desktop file can be accessed as
an SSAS data source. For example, SQL Server Profiler, SQL Server Management Studio, and
Microsoft Excel can all reference the same port and catalog name to establish a connection
to the data source. Additionally, the same approach in this recipe is applicable to Power BI
Desktop models in DirectQuery mode:

Figure 10.13: Windows Task Manager: SQL Server Analysis Services processes associated with open PBIX datasets

The Columns query joins the Columns and Tables DMV queries and creates two new columns
to identify data types and any calculated columns. Additionally, filters are applied to remove
metadata associated with the internal date tables that Power BI creates for date columns, and
a few columns are renamed to support the documentation reports.

The Relationships DMV contains the Table and Column ID keys for each side of every
relationship defined in the model. Therefore, four separate join expressions are used
to retrieve the From Table and From Column as well as the To Table and To Column.
Additionally, a column is added to identify any bidirectional cross-filtering relationships, and
filters are applied to remove internal date tables.

There's more…

For SSAS tabular documentation, additional DMVs such as TMSCHEMA_KPIS and TMSCHEMA_
PERSPECTIVES may be utilized, along with more details on the display folders of columns and
measures, the descriptions entered by model authors for various objects, and partitions. It's
possible that metadata currently specific to SSAS, such as perspectives and KPIs, will also be
utilized by Power BI datasets in the future.

Chapter 10

467

See also

 f Four Different Ways to Find Your Power BI Local Port Number: https://bit.
ly/3uiVO1d

 f Dynamic Management Views (DMVs) in Analysis Services: https://bit.ly/33etDoc

Analyzing SSAS tabular databases and
gateways

A Microsoft on-premises data gateway enables specific cloud services, including Power BI,
Azure Analysis Services, Power Apps, and Power Automate, to securely connect to on-premises
data sources. In the context of Power BI, these connections support both the scheduled
refresh of imported datasets stored in Power BI, as well as DirectQuery and Live Connection
datasets, in which only report queries and their results are exchanged between Power BI and
the on-premises source. As the availability and performance of the gateway are critical for any
Power BI and other supported cloud service deployment requiring on-premises data, regular
monitoring of both the gateway service and its host server(s) is recommended.

In this recipe, performance monitor counters specific to the on-premises data gateway and
SQL Server Analysis Services are integrated into a single Power BI dataset. This source data
is dynamically retrieved and enhanced via M queries, and sample report visualizations are
created to support monitoring and analysis.

Getting ready

To prepare for this recipe, follow these steps:

1. For the initial deployment or planning phases, review the available documentation,
tips, and best practices on both SSAS tabular and the on-premises data gateway,
including the recommended hardware and network configuration.

SSAS tabular servers should have 2.5x the RAM of their compressed in-memory
databases, and outbound port 443 should be opened to run the on-premises
data gateway in the default HTTPS mode (ports 9350-9353 if TCP mode). Despite
sufficient hardware, the design and complexity of data models, M queries, and DAX
measures can significantly impact resource usage and performance. See Chapter 11,
Enhancing and Optimizing Existing Power BI Solutions, for more details.

2. Identify a secure network location directory to store the performance counter file. This
path could use a common network drive and the parent folder of other monitoring log
files.

https://bit.ly/3uiVO1d
https://bit.ly/3uiVO1d
https://bit.ly/33etDoc

Administering and Monitoring Power BI

468

3. Use Windows Performance Monitor to design and schedule a new data collector set
that contains the following performance monitor counters:

 � \MSOLAP:Memory\Memory Limit Hard KB

 � \MSOLAP:Memory\Memory Limit High KB

 � \MSOLAP:Memory\Memory Limit Low KB

 � \MSOLAP:Memory\Memory Limit Vertipaq KB

 � \MSOLAP:Memory\Memory Usage KB

Performance Monitor defaults to .blg log files, but Power BI can only consolidate files in
text, CSV, and Excel format, so set Log format to Comma separated. Windows Performance
Monitor is well documented and understood by most administrators. Best practices and
automation via PowerShell are outside the scope of this recipe.

How to analyze SSAS tabular models and gateways

To implement this recipe, perform the following steps:

1. Open a new Power BI Desktop file to be used for both the SSAS tabular and on-
premises data gateway counters.

2. Create data source parameters for the Server, Database, and the number of days of
history (CounterHistoryDays) to retrieve.

3. Define a query, AdWorksDW, that exposes the database objects (tables and views).

4. Create a new query called SSAS Memory that selects the parent folder location of
the SSAS tabular performance counters, and follow the same steps of importing
performance monitor counter files described in the Creating a centralized IT
monitoring solution with Power BI recipe earlier in this chapter.

5. Click Close & Apply from the ribbon of the Home tab.

6. Create a Dates table using the following DAX code:
Dates =
 VAR __Today = TODAY()
RETURN
 CALENDAR(DATE(YEAR(__Today)-1,1,1),DATE(YEAR(__Today)+1,12,31))

7. Create a Time table:
Time =
 VAR __hrs = SELECTCOLUMNS(GENERATESERIES(1,23,1),"Hour",[Value])

Chapter 10

469

 VAR __mins = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Minutes",[Value])
 VAR __secs = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Seconds",[Value])
 VAR __hoursMinutes = GENERATEALL(__hrs, __mins)
 VAR __hoursMinutesSeconds = GENERATEALL(__hoursMinutes,__secs)
 VAR __final = ADDCOLUMNS(ADDCOLUMNS(__hoursMinutesSeconds,
 "Time", TIMEVALUE(FORMAT([Hour],"00") & ":" &
 FORMAT([Minutes],"00") & ":" & FORMAT([Seconds],"00"))),
 "SecondOfDay", FORMAT([Hour],"00") & FORMAT([Minutes],"00")
&
 FORMAT([Seconds],"00"))
RETURN __final

8. Change the Data type of the Date column in the Dates table to Date.

9. Change the Data type of the SecondOfDay column in the Time table to Text.

10. In the Model view, create a relationship between the Date columns in the Dates
table and the SSAS Memory table.

11. Create a relationship between the SecondOfDay columns in the Time table
and the SSAS Memory table.

12. Create DAX measures to support reporting and analysis, such as the
following:
KB to GB Conversion = 1048576

Avg Memory Limit Hard (GB) =
 DIVIDE(AVERAGE('SSAS Memory'[Memory Limit Hard KB]),[KB to GB
Conversion])

Avg Memory Usage GB (Today) =
 CALCULATE([Avg Memory Usage (GB)],
 FILTER(ALL('Date'),'Date'[Date] = [Current Date]))

Max Memory Usage GB (Today) =
 CALCULATE([Max Memory Usage (GB)],
 FILTER(ALL('Date'),'Date'[Date] = [Current Date]))

Max Memory GB (Today, All Time) =
 CALCULATE([Max Memory Usage GB (Today)],ALL('Time'))

Administering and Monitoring Power BI

470

13. Create an SSAS tabular memory report leveraging the consolidated counter files,
model relationships, and measures:

Figure 10.14: SQL Server Analysis Services server properties – memory properties

How it works…

SSAS Tabular requires memory during processing operations to load new data, in addition to
the memory used for existing data. Additionally, temporary memory structures are sometimes
created to resolve certain queries. These three components comprise the 2.5x RAM
recommendation (2x for current and new data and .5x for temporary structures).

As the memory required by the SSAS instance exceeds certain memory limits or thresholds,
given the amount of RAM available to the server and the memory properties defined in
analysis server properties, SSAS takes various actions, ranging from clearing out low-
priority memory caches (LowMemoryLimit) to aggressively terminating user sessions
(HardMemoryLimit). A reference to SSAS memory property documentation is included in the
See also section.

The DAX measures convert the memory counter values from KB to GB and make it easy to
compare the current day versus the prior day in different filter contexts. For example, the
Avg Memory Usage GB (Today) measure is filtered to the current date but will respect user
or report filter selections on the Time dimension table. The Max Memory GB (Today, All
Time) measure, however, will ignore both Dates and Time filter selections to always show the
highest memory usage value for the current day.

Significant spikes in memory usage may indicate sub-optimal DAX measures or inefficient

Chapter 10

471

report queries that require large, temporary memory structures. BI teams would want to
ensure that memory usage does exceed the memory limits identified by the counters, to avoid
performance degradation. Increases in the SSAS memory limit property settings, or simply
more overall RAM for the SSAS server, are two options to avoid memory shortages.

There's more…

Scheduled refreshes of imported datasets to Power BI can require significant resources at
the time of refresh, based on the size of the dataset and whether its M queries can be folded
to the data source as SQL statements. For example, if an M function that doesn't have an
equivalent expression in the source Oracle database is used, the M engine in the gateway will
be used to execute the logic, such as filter, sort, and aggregate.

DirectQuery and SSAS live connections are less resource-heavy, however, as only queries and
query result data are transferred across the gateway. Despite this, it is important to consider
the fact that these connections generate a high frequency of queries based on the number of
concurrent users, their usage or interaction with the published reports, the type and volume
of visualizations, and whether row-level security (RLS) roles have been configured.

Performance reports can also be created for Power BI gateways. To understand how this is
done, perform the following steps:

1. Create and schedule a new performance monitor data collector set containing the
on-premises data gateway counters:

Figure 10.15: On-premises data gateway performance counters

Administering and Monitoring Power BI

472

2. In the same Power BI Desktop file containing the SSAS counters, create an additional
query to the parent folder of the gateway counter files and apply the same M query
transformations to filter the files imported, adjust data types, rename columns,
and add Date and Time columns to support relationships to the Dates and Time
dimension tables

3. Build basic aggregation measures against the different gateway counter columns

4. Build additional DAX measures that apply or remove filter contexts from the Dates
and Time tables, following the same expression patterns as the SSAS Memory DAX
measures

5. Design a dedicated gateway report page for the gateway performance counters:

Figure 10.16: Gateway performance report

In this example, the organization is using an SSAS 2014 Tabular Server as a primary data
source for Power BI report and dashboard content. Therefore, measures based on the ADOMD
gateway counters are used to expose the volume of this workload (bottom chart). The # of all
queries executed / sec performance counter is used by the top chart, as well as the average
and maximum card visuals above the line chart. Though less common, the organization also
uses this gateway to support certain import refreshes of Power BI datasets (Mashup counters)
and DirectQuery datasets (ADO.NET counters).

Chapter 10

473

Card, gauge, and standard KPI visuals pinned as tiles to dashboards can drive data alerts and
email notifications. In the context of this recipe, memory usage in excess of the Vertipaq and
other memory limits could warrant a data alert. Likewise, a high number of query failures, or
an unexpected query type activity reported by the gateway counters, could also drive a data
alert. For example, if a particular gateway is intended to be dedicated to Import (Mashup)
workloads, the counters shouldn't report query activity for ADO.NET (DirectQuery) or OLEDB
connections.

It should be noted that the on-premises data gateway supports logging via the Diagnostics
tab of the management application. Detailed logging can be enabled by toggling the
Additional logging option on although this should only be used when troubleshooting and
not left on permanently as this considerably increases the number and size of log files. The
gateway logs can be exported on the same Diagnostics tab.

See also

 f Guidance for Deploying a Data Gateway for Power BI: http://bit.ly/2t8hk9i

 f SQL Server Analysis Services Memory Properties: http://bit.ly/2vuY1I2

 f Monitor and optimize on-premises data gateway performance: https://bit.
ly/3nffIJQ

Analyzing Extended Events
Extended Events is a highly configurable and lightweight performance monitoring system
available to both the SQL Server relational database engine and Analysis Services. A vast
library of events is available to specific sessions, which can be saved, scheduled, and then
analyzed to support performance tuning, troubleshooting, and general monitoring. However,
similar to other monitoring tools (such as Windows Performance Monitor and SQL Server
Query Store), the Extended Events graphical interface lacks the rich analytical capabilities and
flexibility of reporting tools such as Power BI.

In this recipe, the output of an Extended Events session containing query execution statistics
is retrieved in a dedicated Power BI event analysis report file. The 1.4 million rows of event
data from this file are enhanced during the import process, and report visualizations are
developed to call out the most meaningful trends and measures, as well as support further
self-service analysis.

Getting ready

To prepare for this recipe, follow these steps:

1. Identify the events associated with the top monitoring and troubleshooting use cases

http://bit.ly/2t8hk9i
http://bit.ly/2vuY1I2
https://bit.ly/3nffIJQ
https://bit.ly/3nffIJQ

Administering and Monitoring Power BI

474

2. Create separate extended event sessions tailored to these use cases with filters to
exclude irrelevant or redundant data

Figure 10.17: An Extended Events session with two events and a filter

3. Determine the data storage target for the session(s), such as an event file, and the
location of this file

4. Optionally, configure settings such as Event retention mode and Max memory size
and/or optionally configure a SQL Agent job to start and stop the event session

How to analyze Extended Events

To implement this recipe, perform the following steps:

1. Obtain access to the Extended Events target XEL target file and open it from SQL
Server Management Studio (SSMS), or open it directly from Windows Explorer in a
distinct instance of SSMS.

2. With the XEL file open in SSMS, click on the Extended Events tab on the toolbar and
select Export to at the bottom.

3. Choose the CSV File option, enter a filename describing the session, and select a
network path common to Extended Events and, potentially, other performance and
administrative log files:

Figure 10.18: An Extended Events session target XEL file and its export as a CSV file

4. Open a Power BI Desktop file that already contains Dates and Time tables, or create
these tables using the same process as described in the Creating a centralized IT
monitoring solution with Power BI recipe earlier in this chapter

5. Click Transform data from the ribbon of the Home tab to open Power Query Editor

6. Create a parameter for the directory folder path of the event session files and a
parameter for the session filename

Chapter 10

475

7. Open a blank query that concatenates the two parameters into a full file path. Name
this query XEventsSession:

Figure 10.19: Query Editor view with the Data Sources parameter and XEventsSession query

8. Create a query that uses the text/CSV data connector, and replace the file path with
the XEventsSession query

9. Promote the top row as the column headers and convert the data types via the
Table.TransformColumnTypes function

10. Add a Date column based on the Timestamp column of the source file:
let
 Source = Csv.Document(File.Contents(XEventsSession),
 [Delimiter=",", Columns=31, Encoding=65001,QuoteStyle=QuoteSty
le.None]),
 PromotedHeaders = Table.PromoteHeaders(Source,
[PromoteAllScalars=true]),
 ChangeTypes = Table.TransformColumnTypes(PromotedHeaders,
 {{"timestamp", type datetime}, {"duration", Int64.Type}}),
 DateColumn = Table.AddColumn(RenameColumns, "Timestamp Date",
 each DateTime.Date([timestamp]), type date)
in
 DateColumn

11. Add a Time column and a SecondOfDay column to support a relationship with the
Time dimension table

See the Creating a centralized IT monitoring solution with Power BI recipe earlier in
this chapter for the SecondOfDay column logic and syntax. Like the Performance
Monitor Counter data in that example, the timestamp from the Extended Events
session is not at the seconds grain, and so adding a time column via the DateTime.
Time M function is not sufficient to support a model relationship with the Time
dimension table

12. Name this query Execution Stats; disable the load of the XEventsSession query

Administering and Monitoring Power BI

476

13. Create a blank query called Calculations

14. Click Close & Apply from the ribbon of the Home tab

15. Create many-to-one, single-direction relationships from Execution Stats to the Dates
and Time tables

16. Develop and format simple DAX measures to support common aggregations
of Extended Events fact columns, such as the average, minimum, and maximum of
query duration, CPU time, and logical reads and writes:
Average CPU Time = AVERAGE('Execution Stats'[cpu_time])

Max Duration = MAX('Execution Stats'[duration])

Minimum Logical Reads = MIN('Execution Stats'[logical_reads])

17. Create a report to visualize the data, like the one shown in Figure 10.20:

Figure 10.20: Extended Events Execution Stats Report page

In this example, 3 line charts highlight spikes in logical reads, CPU time, and query duration
that occurred during the 30-minute Extended Events session. The scatter chart plots
individual query_hash values by duration and CPU time and uses the Tooltip to expose the
individual SQL statement represented. A table visual with word wrapping is used to display
the SQL statement associated with the user's selection as well. Refer to the How it works…
section for more details on the sample report visual.

Chapter 10

477

How it works…

By design, Extended Events sessions cannot be written to tables within SQL Server. Additional
options for capturing and analyzing event session data are available, such as the histogram
and pair matching targets. Data can also be viewed live via Watch Live Data; the CSV and
table export options expose this data to tools such as Power BI.

Note that if the events file was exported to a table in SQL Server, the Power BI dataset could
be configured for DirectQuery mode. Avoiding the import to Power BI via DirectQuery could
be a useful or even a necessary design choice if large and/or multiple event session files are
needed in the same Power BI dataset. The dedicated Admin database described in the first
recipe of this chapter could store the Extended Events data, and essential Dates and Time
tables could be imported into this same server and database, thereby permitting DirectQuery
mode.

There's more…

SQL Server Profiler is supported in SQL Server 2016, but is now a deprecated feature for the
relational database engine; Extended Events is its long-term replacement. Profiler is not a
deprecated feature for Analysis Services, although a graphical interface to Extended Events
is a new feature in SSAS 2016, and several new SSAS trace events are exclusively available
via Extended Events. Regardless of the database engine (relational or analytical), Extended
Events is more efficient and flexible than SQL Server Profiler, thus allowing for more nuanced
event data collection with less impact on production workloads. Events associated with new
SQL Server features are exclusive to Extended Events.

Additional standard event sessions, such as blocking and deadlocking sessions, could be
integrated into the Power BI dataset, similar to the consolidated dataset and visualization
layer described earlier in this chapter. As the solution matures, custom groupings of events
and/or bins of numerical columns could be embedded in the dataset to simplify analysis
further.

In Azure, Azure Log Analytics can be used to monitor activities of virtual machines and other
resources running in Azure. Kusto queries can be written to extract log events from this data.
These Kusto queries can then be exported to Power Query (M) using the Export menu. These
Power Query (M) queries can then be pasted into a blank query in Power BI to extract the
same data and include in a model.

See also

 f Quickstart: Extended Events in SQL Server: https://bit.ly/2Ss8pRN

 f XEvents overview—SQL Server: https://bit.ly/2QJmfPj

 f Log Analytics tutorial - Azure Monitor: https://bit.ly/3hn3NGn

https://bit.ly/2Ss8pRN
https://bit.ly/2QJmfPj
https://bit.ly/3hn3NGn

Administering and Monitoring Power BI

478

Visualizing log file data
Log files containing SQL Server Agent job history and the Power BI usage activities stored
in the Office 365 audit log and Power BI activity log can also be integrated into the Power
BI monitoring solution described earlier in this chapter. For example, SQL Agent job data
can reveal important trends, such as the performance of a nightly job used to load a data
warehouse and the duration and reliability of individual steps within these jobs. Likewise,
detailed reporting and, optionally, alerts based on user activities in the Power BI service, such
as deleting a dashboard, enable BI and IT administrators to better manage and govern Power
BI deployments.

In this recipe, transformations are applied to the structure of the Power BI audit log to convert
the audit data stored in JSON format and adjust for local time reporting. Additionally, an
advanced T-SQL query is used to access the job history data in SQL Server Agent system
tables, and to prepare this data for visualization in Power BI. While this recipe covers the
Office 365 audit log, similar information can be obtained using the Power BI activity log. Refer
to the See also section of this recipe for more information on the Power BI activity log.

Getting ready

To prepare for this recipe, follow these steps:

1. In the Power BI Admin portal, select Tenant Settings and enable audit logging:

Figure 10.21: Power BI audit logging enabled

2. Make sure that you are an Office 365 Global Administrator, or otherwise have
permissions enabled to access the Office 365 audit logs

3. Run a PowerShell session as Administrator

4. Set your execution policy:
Set-ExecutionPolicy RemoteSigned

5. Run the following command to install the Exchange Online Management
module:
Install-Module ExchangeOnlineManagement

Chapter 10

479

6. Connect to Microsoft Exchange Online (where <UPN> is your Office 365 email
address):
Connect-ExchangeOnline -UserPrincipalName <UPN>

7. Make sure that you are able to run PowerShell remotely (where <UPN> is your Office
365 email address):
Set-User -Identity <UPN> -RemotePowerShellEnabled $true

8. Verify audit log access:
Search-UnifiedAuditLog -StartDate 5/1/2021 -EndDate 5/4/2021 -RecordType
PowerBI -ResultSize 1000 | Format-Table | More

9. Export the audit log to a CSV file:
Search-UnifiedAuditLog -StartDate $startDt -EndDate $endDt -RecordType
PowerBI | Export-Csv $csvFile

10. Create a view in the Admin SQL Server database (described in the Creating a
centralized IT monitoring solution with Power BI recipe earlier in this chapter) that
queries the dbo.sysjobhistory and dbo.sysjobs tables in the msdb database:
CREATE VIEW vFact_AgentJobHistory AS SELECT
 [h].[server] as [Server], [j].[name] AS [Job Name],
CASE [j].[enabled] WHEN 0 THEN 'Disabled' WHEN 1 THEN 'Enabled' END AS
[Job Status]
, [j].[date_created] as [Date Created], [j].[date_modified] as [Date
Modified]
, [j].[description] as [Job Description], [h].[step_id] AS [Step ID],
[h].[step_name] AS [Step Name]
, CAST(STR([h].[run_date],8, 0) AS date) AS [Run Date]
, CAST(STUFF(STUFF(RIGHT('000000' + CAST ([h].[run_time] AS VARCHAR(6)
) ,6),5,0,':'),3,0,':') as time(0)) AS [Run Time]
, (([run_duration]/10000*3600 + ([run_duration]/100)%100*60 + [run_
duration]%100 + 31) / 60)
 AS [Run Duration Minutes]
, CASE [h].[run_status] WHEN 0 THEN 'Failed' WHEN 1 THEN 'Succeeded'
WHEN 2 THEN 'Retry'
WHEN 3 THEN 'Cancelled' WHEN 4 THEN 'In Progress' END AS [Execution
Status],
[h].[message] AS [Message Generated]
FROM [msdb].[dbo].[sysjobhistory] [h] INNER JOIN [msdb].[dbo].[sysjobs]
[j] ON [h].[job_id] = [j].[job_id]

How to visualize log file data

To implement this recipe, perform the following steps:

1. In Power BI Desktop, create parameters for the file path and filename; local time zone
offsets to UTC

Administering and Monitoring Power BI

480

2. Create a blank query called PBIAuditLog that returns the full file path based on the
parameters; disable the load:

Figure 10.22: PBIAuditLog file path query and other parameters in Query Editor

3. Create a new query called O365PBIAuditLog:
let
 Source = Csv.Document(File.Contents(PBIAuditLog),
 [Delimiter=",", Columns=13, Encoding=65001,
QuoteStyle=QuoteStyle.Csv]),
 RemoveTopRows = Table.Skip(Source,1),
 PromoteHeaders = Table.PromoteHeaders(RemoveTopRows,
[PromoteAllScalars=true]),
 ApplyDateType = Table.TransformColumnTypes(PromoteHeaders,
 {{"CreationDate", type datetime}}),
 AddCreationDateColumn = Table.AddColumn(ApplyDateType,
 "CreationDateOnly", each DateTime.Date([CreationDate]), type
date),
 AddLocalTime = Table.AddColumn(AddCreationDateColumn,"LocalCreationD
ate",
 each [CreationDate] + #duration(0,USEasternDSTOffset,0,0)),
 AddLocalCreationDateColumn = Table.AddColumn(AddLocalTime,
 "LocalCreationDateOnly", each DateTime.Date([LocalCreationDate]),
type date),
 ParseJSON = Table.TransformColumns(AddLocalCreationDateColumn,
 {{"AuditData", Json.Document}})
in
 ParseJSON

4. Add steps to expand the Audit column and set the appropriate data types for the
expanded columns

5. Create or reuse Server and Database parameters to create a query called
SQLAgentHistory that retrieves the agent data:

Figure 10.23: SQL Server Agent History view exposed in the "AdminProd" query

Chapter 10

481

6. Click Close & Apply from the ribbon of the Home tab

7. Create a Dates table using the following DAX code:
Dates =
 VAR __Today = TODAY()
RETURN
 CALENDAR(DATE(YEAR(__Today)-1,1,1),DATE(YEAR(__Today)+1,12,31))

8. Create a Time table:
Time =
 VAR __hrs = SELECTCOLUMNS(GENERATESERIES(1,23,1),"Hour",[Value])
 VAR __mins = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Minutes",[Value])
 VAR __secs = SELECTCOLUMNS(GENERATESERIES(0,59,1),"Seconds",[Value])
 VAR __hoursMinutes = GENERATEALL(__hrs, __mins)
 VAR __hoursMinutesSeconds = GENERATEALL(__hoursMinutes,__secs)
 VAR __final = ADDCOLUMNS(ADDCOLUMNS(__hoursMinutesSeconds,
 "Time", TIMEVALUE(FORMAT([Hour],"00") & ":" &
 FORMAT([Minutes],"00") & ":" & FORMAT([Seconds],"00"))),
 "SecondOfDay", FORMAT([Hour],"00") & FORMAT([Minutes],"00")
&
 FORMAT([Seconds],"00"))
RETURN __final

9. Change the Data type of the Date column in the Dates table to Date

10. Change the Data type of the SecondOfDay column in the Time table to Text

11. In the Model view, create relationships between the Dates and Time tables and the
O365PBIAuditLog and SQLAgentHistory tables

12. Create DAX measures and report visuals to break out agent jobs by their steps and
duration over time

13. Create report pages to visualize the data:

Figure 10.24: SQL Server Agent History visuals—Average Duration by Run Date and Job and Step

Administering and Monitoring Power BI

482

How it works…

The Search-UnifiedAuditLog cmdlet for PowerShell is used to access Power BI data from the
Office 365 audit log. Variables for the full CSV file path and start and end date can be defined,
evaluated, and passed as parameters to the Search-UnifiedAuditLog cmdlet. Refer to the
See also section of this recipe for additional information.

Over 20 SQL Server Agent system tables are available in the dbo schema of the msdb
database. In the view created in the Getting ready section of this recipe, the run_date and
run_time columns are stored as integers by SQL Server and are thus converted to date and
time data types, respectively. The run_duration column is stored as an integer in the HHMMSS
format and is converted to minutes. The run_status column is replaced with an Execution
Status column to display a user-friendly value, such as succeeded, and likewise a Job Status
column is created from the enabled source column to display disabled versus enabled values.

For the SQL Agent report in this recipe, a stacked bar chart is used to display the individual
steps comprising each job; hovering over the bars displays details specific to the job step.
User selections on the bar chart filter the line chart, enabling easy access to the recent
performance of any job step. Analyzing SQL Agent job history in Power BI is vastly easier
and more flexible than the Job Activity Monitor and Log File Viewer interfaces in SQL Server
Management Studio.

There's more…

The Power BI service provides free usage reporting for dashboards and published reports.
These usage reports can be easily extended to analyze activity for all reports and dashboards
contained in an app workspace using the following steps:

1. Open the app workspace in the Power BI service and select the vertical ellipses for a
report or dashboard; choose View usage metrics report (usage metrics can also be
accessed with the report or dashboard open via the toolbar ellipses (…) and selecting
Open usage metrics):

Figure 10.25: Usage metrics report

Chapter 10

483

2. With the usage metrics report open, click on File | Save as to add a new report to the
app workspace:

Figure 10.26: Save as to create a dataset of usage metrics for the workspace

3. Open the new report and simply remove the report-level filter such that all reports
and dashboards are included:

Figure 10.27: Usage metrics report

Note that individual users are included in the dataset and default report, making it easy to
identify who is or isn't accessing content.

See also

 f SQL Server Agent Table documentation: http://bit.ly/2v7kWdc

 f Monitor usage metrics in the new workspace experience: https://bit.ly/2SrjylV

 f Track user activities in Power BI: https://bit.ly/3raDXZD

http://bit.ly/2v7kWdc
https://bit.ly/2SrjylV
https://bit.ly/3raDXZD

Administering and Monitoring Power BI

484

Leveraging the Power BI PowerShell Module
Power BI administrators can automate common tasks by developing PowerShell scripts
which leverage commands included in the Microsoft Power BI Management PowerShell
module such as Get-PowerBIWorkspace and Add-PowerBIWorkspaceUser. In addition, custom
administrative solutions can be developed using the Power BI REST APIs and .NET client
library. Using the Power BI REST API, administrators can automate the creation of workspaces
and dashboards, publish workspace content, share workspace content, remove access to
workspaces, delete workspaces, and much more.

This recipe demonstrates how to connect to Power BI via PowerShell and perform simple
administrative functions.

Getting ready

To prepare for this recipe, follow these steps:

1. Enable Power BI APIs in Tenant settings of the Power BI service:

Figure 10.28: Power BI APIs tenant settings in the Power BI service

2. Make sure that you are a Power BI Administrator or otherwise have permissions for
Power BI

3. Run a PowerShell session as Administrator

4. Set your execution policy:
Set-ExecutionPolicy RemoteSigned

5. Run the following command to install the Exchange Online Management
module:
Install-Module MicrosoftPowerBIMgmt -Force

Chapter 10

485

6. Connect to Power BI:
Login-PowerBI

7. Verify access:

Get-PowerBIWorkspace | Format-Table

How to leverage the Power BI PowerShell Module

To implement this recipe, perform the following steps:

1. In PowerShell, get a list of all new workspaces, including personal workspaces, and
export this as a CSV file:
Get-PowerBIWorkspace -Scope Organization -All | Export-Csv c:\temp\
workspaces.csv

2. Get a list of all workspaces, including classic workspaces, but excluding personal
workspaces, and export this to a CSV file:
Get-PowerBIWorkspace -All | Export-Csv c:\temp\workspaces2.csv

3. Get a list of all workspace users for all new workspaces:
Get-PowerBIWorkspace -Scope Organization -Include All -All |
ForEach-Object {
$Workspace = $_.name
$WorkspaceId = $_.Id
foreach ($User in $_.Users) {
[PSCustomObject]@{
Workspace = $Workspace
Id = $WorkspaceId
Role = $User.accessright
User = $user.Identifier}}} | Export-Csv "c:\temp\workspaceusers.csv"
-NoTypeInformation

4. Create a query called Workspaces2 and disable the load:
let
 Source = Csv.Document(File.Contents("C:\temp\workspaces2.csv"),
 [Delimiter=",", Columns=15, Encoding=1252,
QuoteStyle=QuoteStyle.None]),
 RemoveRows = Table.Skip(Source,1),
 Headers = Table.PromoteHeaders(RemoveRows, [PromoteAllScalars=true]),
 ChangeTypes = Table.TransformColumnTypes(Headers,{{"Id", type text},
 {"Name", type text}, {"IsReadOnly", type logical},
 {"IsOnDedicatedCapacity", type logical}, {"CapacityId", type
text},
 {"Description", type text}, {"Type", type text}, {"State", type
text},

Administering and Monitoring Power BI

486

 {"IsOrphaned", type logical}, {"Users", type text},
 {"Reports", type text}, {"Dashboards", type text},
 {"Datasets", type text}, {"Dataflows", type text},
 {"Workbooks", type text}})
in ChangeTypes

5. Create a query called Workspaces:
let
 Source = Csv.Document(File.Contents("C:\temp\workspaces.csv"),
 [Delimiter=",", Columns=15, Encoding=1252,
QuoteStyle=QuoteStyle.None]),
 RemoveRows = Table.Skip(Source,1),
 Headers = Table.PromoteHeaders(RemoveRows, [PromoteAllScalars=true]),
 ChangeTypes = Table.TransformColumnTypes(Headers,{{"Id", type text},
 {"Name", type text}, {"IsReadOnly", type logical},
 {"IsOnDedicatedCapacity", type logical}, {"CapacityId", type
text},
 {"Description", type text}, {"Type", type text}, {"State", type
text},
 {"IsOrphaned", type logical}, {"Users", type text},
 {"Reports", type text}, {"Dashboards", type text},
 {"Datasets", type text}, {"Dataflows", type text},
 {"Workbooks", type text}}),
 AppendQuery = Table.Combine({ChangeTypes, Workspaces2}),
 RemoveDups = Table.Distinct(AppendQuery, {"Id"})
in
 RemoveDups

6. Create a query called WorkspaceUsers:
let
 Source = Csv.Document(File.Contents("c:\temp\workspaceusers.csv"),
 [Delimiter=",", Columns=4, Encoding=1252, QuoteStyle=QuoteStyle.
None]),
 Headers = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
 ChangeType = Table.TransformColumnTypes(Headers,
 {{"Workspace", type text}, {"Id", type text},
 {"Role", type text}, {"User", type text}})
in ChangeType

7. Optionally, create export files for Reports, Dashboards, Datasets, Dataflows,
and Workbooks within each workspace, similar to the following:
Get-PowerBIWorkspace -Scope Organization -Include All -All |
ForEach-Object {
$Workspace = $_.name
$WorkspaceId = $_.Id

Chapter 10

487

foreach ($Report in $_.Reports) {
[PSCustomObject]@{
Workspace = $Workspace
Id = $WorkspaceId
ReportID = $Report.Id
Report = $Report.Name}}} | Export-Csv "c:\temp\wsreports.csv"
-NoTypeInformation

8. Click Close & Apply from the ribbon of the Home tab.

9. Create a relationship between the ID columns in the Workspaces and
WorkspaceUsers tables.

10. Optionally, create additional relationships between the ID columns in the
Workspaces table and other tables for Reports, Dashboards, Datasets, Dataflows,
and Workbooks.

11. Create a measure to concatenate the users:
Users = CONCATENATEX('WorkspaceUsers',[User],", ")

12. Create a matrix visualization using the Name column from the Workspaces table as
Rows, the Role column from the WorkspaceUsers table as Column, and the Users
measure as Values.

How it works…

Classic Power BI workspaces have less functionality than newer ones. With Classic
workspaces, the list of user permissions cannot be retrieved through the Power BI API
because access is granted through Office 365 groups. In addition, PSCustomObject is not
included in cmdlet calls that support classic workspaces. As a Power BI Admin, you can
upgrade workspaces by accessing the Power BI Admin portal and selecting Workspaces.
In the Workspaces listed, select one or more workspaces, and then click Upgrade from the
toolbar.

With the matrix visualization created in this recipe, it is easy to find classic workspaces by
clicking on the dropdown for the Name column in the Rows field and selecting Show items
with no data. Non-orphaned workspaces with no users listed, such as Admin, Contributor,
Member, or Viewer, are almost certainly classic workspaces that should be upgraded.

There's more…

There are many PowerShell cmdlets available for Power BI, including the following:

1. Get a list of all deleted workspaces:
Get-PowerBIWorkspace -Scope Organization -Deleted -All

Administering and Monitoring Power BI

488

2. Restore a workspace:
Restore-PowerBIWorkspace -Id "<Workspace GUID>" -RestoredName
"<Workspace Name>" -AdminEmailAddress "<Admin UPN>"

3. Find orphaned workspaces:
Get-PowerBIWorkspace -Scope Organization -Orphaned -All

4. To resolve an orphaned workspace issue:
Add-PowerBIWorkspaceUser -Scope Organization -Id <Workspace ID>
-UserPrincipalName '<User UPN>' -AccessRight Admin

5. Get Power BI Activity Log events:

$events = Get-PowerBIActivityEvent -StartDateTime '2021-07-14T00:00:00'
-EndDateTime '2021-07-14T23:59:59' -ActivityType 'ViewDashboard' |
ConvertFrom-Json
$events.Count
$events[0]

Not all Power BI REST API calls have corresponding PowerShell cmdlets. However, this does
not mean that these REST API calls cannot still be used from PowerShell. The Power BI
cmdlets for PowerShell include the general Invoke-PowerBIRestMethod method. This method
allows the calling of any Power BI REST API call, such as in this example, which creates a
JSON file with all workspaces, including associated users, reports, dashboards, datasets, and
workbooks:

Invoke-PowerBIRestMethod -Url 'https://api.powerbi.com/v1.0/myorg/admin/
Groups?$top=5000&$expand=users,reports,dashboards,datasets,workbooks' -Method
Get > c:\temp\workspaces.json
This method uses the same credentials as set by the Login-PowerBI, Login-
PowerBIServiceAccount, or Connect-PowerBIServiceAccount calls. To use the authenticated
session outside of PowerShell, use the following command:

Get-PowerBIAccessToken -AsString

See also

 f PowerShell cmdlets, REST APIs, and .NET client libraries for administrators: https://
bit.ly/3vDJ5qc

 f Power BI REST APIs: https://bit.ly/3eR7OR6

 f Power BI Cmdlets reference: https://bit.ly/3h1ShR2

 f Track user activities in Power BI: https://bit.ly/3raDXZD

https://bit.ly/3vDJ5qc
https://bit.ly/3vDJ5qc
https://bit.ly/3eR7OR6
https://bit.ly/3h1ShR2
https://bit.ly/3raDXZD

Chapter 10

489

Conclusion
This chapter's recipes highlighted the most common and impactful administration data
sources, including Windows Performance Monitor, SQL Server Query Store, the on-premises
data gateway, the MSDB system database, and Extended Events. Power BI solutions built
on top of these sources proactively assess usage trends and resource bottlenecks, while
delivering the detailed analysis necessary to identify root causes. Additionally, this chapter
covered the metadata of existing Power BI and SSAS data models exposed via dynamic
management views (DMVs), such as measure and relationship definitions and resource
consumption.

491

11
Enhancing and

Optimizing Existing
Power BI Solutions

Power BI projects often begin by focusing on specific functional requirements, such as a
set of dashboards and reports for a given business area and team. With relatively narrow
requirements and small datasets, sufficient performance and reliability is often achievable
without design and code enhancements to the data retrieval, model, and reporting layers.
Additionally, Power BI Premium capacity and in certain cases Analysis Services resources
provide viable options to enhance the scalability of a dataset.

For larger Power BI projects—particularly when the options of Power BI Premium and Analysis
Services are not available—it becomes important to identify opportunities to improve report
query performance and to more efficiently use system resources to store and refresh the
dataset.

Additionally, the data import process can often be made more resilient and less resource
intensive. Furthermore, the application of standard coding syntax, variables, and comments
in both Power Query (M) and DAX expressions further improves the sustainability of Power BI
datasets.

This chapter's recipes contain top data modeling, DAX measure, and M query patterns to
enhance the performance, scalability, and reliability of Power BI datasets. This includes
performance tuning examples of both data models and measures, error handling and query
folding examples of M queries, and supporting details on the DAX and M query engines.

Enhancing and Optimizing Existing Power BI Solutions

492

In this chapter, we will cover the following recipes:

 f Enhancing Data Model Scalability and Usability

 f Improving DAX Measure Performance

 f Pushing Query Processing Back to Source Systems

 f Strengthening Data Import and Integration Processes

 f Isolating and Documenting DAX Expressions

 f Improving Data Load Speeds with Incremental Refresh

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing are available here: http://bit.ly/2OVQfG7

 f Files for this chapter and can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition

Enhancing Data Model Scalability and
Usability

The performance of all Power BI reports is impacted by the design of the data model. The DAX
queries executed upon accessing a report and when dynamically updating report visuals in
interactive, self-service user sessions all rely on the relationships defined in the model and
optimizations applied to the model's tables. For in-memory models, the cardinality of the
columns imported and the compression of these columns contribute to the size of the dataset
and query duration. For DirectQuery data models, the referential integrity of the source tables
and the optimization of the relational source largely drive query performance.

This recipe includes three optimization processes, all focused on a Reseller Sales fact table
with 11.7 million rows. The first example leverages the DMVs and Power BI memory report
created in Chapter 10, Administering and Monitoring Power BI, to identify and address the
most expensive columns. The second example splits a dimension table into two smaller
tables, and the final example applies a custom sort order to the imported fact table to
optimize the compression of a column commonly used by reports.

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 11

493

Getting ready

To prepare for this recipe, follow these steps:

1. Obtain a sharp definition of the goal of the optimization or the problem being
resolved. For example, is the intent to reduce the size of the overall dataset such
that more data can be loaded while remaining under 1 GB? Alternatively, is the goal
to make the dataset easier to manage and less error prone during refresh, or is it to
improve the query performance experienced with Power BI reports?

2. Document the current state or baseline, such as query duration, to evaluate the
effectiveness of the modifications.

Performance optimization is a broad area in Power BI, as many components are involved,
including the data sources, data access queries, data models, and DAX measure calculations.
Performance is also significantly impacted by the design of reports and dashboards with
more dense, unfiltered, and complex report pages and visuals consuming more resources.
Additionally, despite efficiency in all of these areas, sufficient hardware must be provisioned
to support the given processing and analytical query workloads, such as the server(s) for the
on-premises data gateway and Power BI Premium capacity.

The good news is that it is usually not difficult to align a particular issue, such as an
excessively large dataset or a slow query, with at least one of its main contributing factors,
and there are often simple modifications that can deliver noticeable improvements.
Additionally, there are many tools available to analyze and monitor the different components
of Power BI as described in Chapter 10, Administering and Monitoring Power BI and there are
free features in the Power BI service, such as Usage Metrics Reports and View related, that
can be of further assistance in isolating issues.

This recipe relies on previous recipes, specifically:

 f Importing and Visualizing Dynamics Management View (DMV) Data in Chapter 10,
Administering and Monitoring Power BI

 f Selecting and Renaming Columns in Chapter 2, Accessing and Retrieving Data

How to do it...

To implement this recipe, do the following:

1. Retrieve and analyze the memory consumed by the columns of the largest fact table
or tables. The DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS DMV used in the previous
chapter's Importing and visualizing dynamic management view (DMV) data recipe
provides this detail.

2. As per the Selecting and Renaming Columns recipe of Chapter 2, Accessing and
Retrieving Data, identify expensive columns that may not be needed in the dataset or
that can be rounded to lower precision, split as separate columns, or expressed via
simple measures.

Enhancing and Optimizing Existing Power BI Solutions

494

For import mode models, an expensive column is one with many unique values
(high cardinality), such as the Order Number columns used as examples in Chapter
2, Accessing and Retrieving Data. Likewise, a DateTime column with multiple time
values per date will consume more memory than two separate Date and Time
columns. Preferably, only the Date column or only the Date and Time columns should
be imported, rather than the DateTime column.

Also, per the Selecting and Renaming Columns recipe, DAX measures that execute
simple arithmetic against low-cardinality columns, such as Unit Price and Quantity,
can eliminate the need to import more expensive derived columns such as Sales
Amount and Sales Amount with Taxes. Furthermore, though counter-intuitive, the
SUMX measure with arithmetic across multiple columns often outperforms the simple
SUM measure.

3. Identify columns that are stored as decimal number data types with a high scale
(number of digits to the right of the decimal point). If this level of precision is not
required, consider rounding off these columns in the SQL view or via the M import
query to reduce the cardinality (unique values) and thus improve compression. If
a (19,4) column will provide sufficient size and precision, apply the fixed decimal
number type in the model.

4. Replace any DAX calculated columns on large fact tables since imported columns
achieve much better compression than calculated columns. Calculated columns
on fact tables can often be addressed with DAX measures without sacrificing
performance but if DAX measures are not an option, move the column's logic to the
SQL view or M query of the fact table, or within the data source itself. If the M query is
revised, ensure that the logic is folded to the source system.

5. Remove or replace DAX calculated columns on any large dimension tables as well by
moving this logic to the data retrieval process or leveraging the source system.

Look for calculated columns with a RELATED or LOOKUPVALUE function, which, like
an Excel VLOOKUP function, simply retrieves column values from a table on the one
side of a many-to-one relationship with a fact table. Business users often utilize the
RELATED and LOOKUPVALUE functions to flatten or de-normalize a fact table as they
would in standard Excel worksheets, but this duplication is rarely necessary in Power
BI, and calculated columns are not compressed like standard imported columns.
Additionally, look to migrate the logic of calculated column expressions, such as
calculated dates, differences in dates, and derived numerical columns, into DAX
measures.

6. In this example, the current state of the dataset is 334 MB of compressed disk space
(the size of the PBIX file converted from KB) and 674 MB of total memory per the
memory report introduced in Chapter 10, Administering and Monitoring Power BI.

Chapter 11

495

Following the steps outlined, several quick wins are identified on the Reseller Sales fact table
(11.7M rows), including the following:

 f Only the last four characters of the CarrierTrackingNumber are needed for analysis.

 f The Order Date, Ship Date, and Due Date columns in YYYYMMDD format can be
removed, as they are redundant with the date data types for these columns, and only
the date data types are used for relationships.

 f Four calculated columns can be removed (Days between Due Date, Order Days,
Reseller, and Product Name) as a DATEDIFF DAX measure, and existing dimension
columns can be used instead.

 f The Sales Amount, Extended Amount, and Total Product Cost columns can be
removed, as simple DAX measures can compute their values.

Figure 11.1: Power BI Dataset Memory Report refreshed with a revised SQL view for Reseller Sales

After making the revisions, the dataset is now 429 MB in memory and the Power BI
Desktop file (PBIX) is 221 MB on disk, representing 33%+ savings in memory and
disk space.

Large-dimension tables (approximately 1 million+ rows), with their high-cardinality
relationships to fact tables, are a major performance bottleneck with Power BI and
SSAS Tabular import models. Consider the following dimension table with attributes
describing both resellers and promotions:

Figure 11.2: Reseller promotion dimension table

Enhancing and Optimizing Existing Power BI Solutions

496

7. The consolidated table contains 10,520 rows and the relationship column on the
Reseller Sales table is 19.4 MB in size.

Figure 11.3: Reseller promo key, approximately 20 MB in size

8. We can split (normalize) this table into smaller Reseller (701 rows) and Promotion
(16 rows) dimension tables and drop the consolidated Reseller Promotion dimension
table and the expensive ResellerPromoKey column on the fact table.

Figure 11.4: Reseller and Promotion Tables Replace Consolidated Reseller Promotion

Smaller relationships improve the performance of queries accessing the Promotion and
Reseller columns. Additionally, the size of the dataset will be reduced by removing the
ResellerPromoKey relationship column.

In this particular example, the row counts are small enough that little impact is observed,
but consider splitting large dimension tables over 200,000 rows into smaller tables (lower
granularity) as query workloads increase. For example, a 1 million-row customer table could
possibly be split into two tables for the data model based only on common query patterns
such as customer regions or geographies.

How it works...

Remember that DAX queries executed against import mode models access and scan the
memory associated with individual columns. Therefore, several very expensive columns with
millions of unique values could be present on a fact table but may not negatively impact the
performance of a query that does not reference these columns. Removing these expensive
columns or replacing them with less expensive columns reduces the overall size of the
dataset but you should not expect query performance to improve.

When data is loaded into a Power BI Desktop model (import mode), the VertiPaq storage
engine applies compression algorithms to each column to reduce the memory and thus
improve performance.

Chapter 11

497

VertiPaq first stores all unique values of a column (either via value encoding or hash
encoding), and then, more importantly, applies run-length encoding (RLE) to store a repeated
value only once for a set of contiguous rows in which it appears. Therefore, columns with few
unique values, such as month names, are highly compressed, while primary key and GUID
columns are not compressed at all.

The data models in Power BI Desktop (and Power Pivot for Excel) are stored in column
segments of 1 million rows. For example, a 20 million-row sales fact table will contain
approximately 20 distinct segments. If the data required of report queries is spread across
all 20 segments, then more resources (and a longer duration) are required to access each
segment and consolidate these results to resolve the query. However, if the segments are
ordered by date or perhaps by a given dimension (for example, StoreID) and a report query
contains a filter that uses this order, such as fiscal year or store region, then only a subset of
the segments is queried.

As a simple example, assume a 20 million-row fact table is ordered by date when importing to
Power BI and each calendar year represents 1 million rows. A report query that is filtered on
only 2 years will therefore need to access only two of the 20 column segments as the other
18 segments contain dates outside the scope of the query.

Vertipaq Analyzer is now integrated into DAX Studio under the Advanced menu as well as in
Tabular Editor 3. Vertipaq Analyzer is an easy way to quickly identify the columns consuming
the most memory. This and the Best Practice Analyzer in Tabular Editor are two of the most
common and easy-to-use tools to analyze the health of a Power BI dataset.

There's more...

While analyzing the data model and making optimizations is important, optimizations can
also be made within the Power Query Editor. For example, avoid loading tables that are only
used for data retrieval/transformation logic, such as staging queries, to a data model. Even
if hidden from the Fields list, these tables consume processing and storage resources like
all other tables of the model and add unnecessary complexity. Right-click on these queries
in the Power Query Editor and disable Enable load to remove the table from the data model.
Keep in mind that data models with many M queries, whether loaded or not, can overwhelm
the available threads/resources of the source system during a refresh as all queries are
submitted simultaneously.

Also, identify tables that rarely change and consider disabling the default Include in report
refresh property (by right-clicking the query in the Power Query Editor). The table can still be
loaded to the data model and thus be available for relationships and DAX measures, but its
source query will no longer be executed with each refresh. Typical candidates for this include
an annual budget or plan table that is only updated once a year, a Currency table, and
possibly a geographic or demographic table.

Enhancing and Optimizing Existing Power BI Solutions

498

Finally, Power BI applies sophisticated algorithms during the import process to determine
the sort order that maximizes compression. However, the chosen sort order might not align
with the top performance priorities of the model. For example, it may be more important to
improve query performance for reports accessing a certain column, such as StoreID or Date
(via relationships to dimension tables), rather than minimizing the size of the overall dataset.
Ordering the imported data by these priority columns maximizes their compression while
potentially reducing the compression applied to other columns. To demonstrate this, consider
the following:

1. Identify the column (or columns) to order by and note the current memory. In this
example, the OrderDate column is 16.7 MB.

Figure 11.5: OrderDate column of 16.5 MB in Data Size (without sort)

2. Add an expression to the fact table M query that uses the Table.Sort function to
order by the OrderDate column.
let
 Source = AdWorksDW,
 ResellerSales = Source{[Schema="BI",Item = "vFactResellerSalesXL"]}
[Data],
 OrderDateSort = Table.Sort(ResellerSales,{{"OrderDate", Order.
Descending}})
in
 OrderDateSort

3. Right-click on the last step in the Power Query Editor and click on View Native Query
to ensure the sorting was folded to the source.

4. If View Native Query is grayed out, consider moving the sort step to the first
transformation step in the preceding code. Upon refreshing the Reseller Sales fact
table, the data size of OrderDate is reduced by 36% to 10.6 MB.

Figure 11.6: Improved compression for the OrderDate column due to the sort order of the Import query

Chapter 11

499

5. Determine whether any other columns, particularly relationship columns such as
ProductKey, increased in size.

6. Optionally (though it is recommended), evaluate top or common DAX queries for
performance changes.

Specifying an Order By clause in the import to Power BI exposes the given column to
maximum RLE compression given the cardinality of the column. In many scenarios, optimizing
the compression on the active relationship date column via sorting offers the best overall
performance advantage. However, depending on the structure and distribution of reports and
users, ordering by a different fact table column such as ProductKey or StoreID could be the
best choice. DAX Studio makes it relatively easy to test the performance of queries against
many different model designs.

Passing the Order By operation back to the source (via query folding) is generally good for the
refresh process and certainly good for the on-premises data gateway. However, with large fact
tables (10 million+ rows) this can require large amounts of source system resources.

See also

 f Best practice rules to improve your model's performance: https://bit.ly/3xPgDn4

 f Best practice rules for Tabular Editor: https://bit.ly/3l5325w

 f Vertipaq Analyzer script for Tabular Editor 2: https://bit.ly/2YA97zv

Improving DAX Measure Performance
Just as specific columns and relationships can be optimized for performance per the prior
recipe, frequently used DAX measures can also be targeted for performance improvements.
Existing DAX measures may contain inefficient data access methods that generate additional,
unnecessary queries or that largely execute in a single CPU thread. Revising measures to
better leverage the multi-threaded storage engine and to avoid or reduce unnecessary queries
and iterations can deliver significant performance improvements without invasive, structural
modifications to the model.

In this recipe, DAX queries executed by Power BI visuals are captured and analyzed using the
Performance Analyzer feature of Power BI Desktop. The first example highlights a common
misuse of the FILTER function for basic measures. In the second example, two alternative
approaches to implementing an OR filter condition across separate tables are described
relative to a common but less efficient approach. Additional details of the DAX query engine,
using DAX variables to improve performance, and DAX as a query language, are also covered.

https://bit.ly/3xPgDn4
https://bit.ly/3l5325w
https://bit.ly/2YA97zv

Enhancing and Optimizing Existing Power BI Solutions

500

Getting ready

To prepare for this recipe, follow these steps:

1. Open the Power BI Desktop file containing the data model and measures to be
analyzed

2. Select DAX Studio from the ribbon of the External Tools tab

3. If necessary, build a sample report page that aligns with a poorly performing report or
a common report layout

4. In Power BI Desktop, select Performance analyzer from the ribbon of the View tab

How to do it...

To implement this recipe, use the following steps:

1. In the Performance analyzer pane, select Start recording.

2. Make a selection on one of the Power BI Desktop report visuals and observe the
DAX queries in Performance analyzer. In this case, the measure under study is the
Gross_Sales_Warehouse measure defined as follows:
Gross_Sales_Warehouse = CALCULATE([Reseller Gross Sales], FILTER('Resell
er','Reseller'[Business Type] = "Warehouse"))

3. Expand the visual in Performance analyzer containing the desired measure and
choose Copy query:

DEFINE
 VAR __DS0FilterTable = FILTER(KEEPFILTERS(VALUES('Date'[Calendar
Year])),
 OR('Date'[Calendar Year] = 2016, 'Date'[Calendar Year] = 2017))
 VAR __DS0FilterTable2 = FILTER(KEEPFILTERS(VALUES('Product'[Product
Category])),
 'Product'[Product Category] = "Bikes")
 VAR __DS0FilterTable3 = FILTER(KEEPFILTERS(VALUES('Promotion'[Promotion
Type])),
 OR(OR(OR('Promotion'[Promotion Type] = "Excess Inventory",
 'Promotion'[Promotion Type] = "New Product"),'Promotion'[Promotion
Type] = "No Discount"),
 'Promotion'[Promotion Type] = "Volume Discount"))
 EVALUATE
 TOPN(1001,SUMMARIZECOLUMNS('Reseller'[Reseller],__DS0FilterTable,__
DS0FilterTable2,__DS0FilterTable3,
 "Gross_Sales_Warehouse", 'Reseller Sales'[Gross Sales
Warehouse]),
 [Gross_Sales_Warehouse],0,'Reseller'[Reseller],1)

Chapter 11

501

In this case, the FILTER function does not operate on the results of an ALL function like with
date intelligence patterns. The TOPN function accepts the table from SUMMARIZECOLUMNS, which
groups by individual Reseller companies and their associated gross sales warehouse values:

1. In DAX Studio, enable Server Timings and Query Plan on the top toolbar

2. With the DAX Studio trace running, click on Run or the F5 key and note the
performance in the Server Timings window

3. Click on Clear Cache and execute the query again to obtain a baseline average for
the duration, SE queries (storage engine), and SE %

4. In Power BI Desktop, create a new measure that avoids the FILTER function:

Gross Sales Warehouse Rev = CALCULATE([Reseller Gross Sales],
'Reseller'[Business Type] = "Warehouse")

Within the DAX query engine, the Gross Sales Warehouse Rev measure is expressed as the
following:

CALCULATE([Reseller Gross Sales],FILTER(ALL('Reseller'[Business
Type]),'Reseller'[Business Type] = "Warehouse"))

Some BI organizations may adopt standards that require the longer, more explicit version and
avoid "syntax sugar."

Return to DAX Studio and replace the existing references to the current measure with the
name of the measure:

EVALUATE
 TOPN(1001,SUMMARIZECOLUMNS('Reseller'[Reseller],__DS0FilterTable,__
DS0FilterTable2,__DS0FilterTable3,
 "Gross Sales Warehouse Rev", [Gross Sales Warehouse Rev]),[Gross Sales
Warehouse Rev],0,
'Reseller'[Reseller],1)

With the cache cleared, execute the query with the revised measure. Create a revised average
based on 4-5 separate query executions:

Figure 11.7: Server timings of the baseline query with original measure versus revised measure in DAX Studio

Enhancing and Optimizing Existing Power BI Solutions

502

The baseline query executed 35% faster (69 ms to 45 ms) with the revised measure and only
needed 1 SE query.

How it works...

The reason the first measure is slower is that with the FILTER on Reseller, the filter selections
on slicer visuals of the report (Date, Product, and Promotion) have to be respected before the
filter on warehouse is executed. For example, the Reseller dimension table will be filtered to
only include resellers with bike category sales in 2016-2017 and of certain promotions before
the Warehouse filter is applied. This requires additional scans of the fact table and is thus
less efficient.

DAX queries from Power BI report visuals are resolved by the DAX formula engine and the
DAX storage engine. The storage engine is the in-memory columnar compressed database for
import mode models (also known as VertiPaq) and is the relational database for DirectQuery
models. In either mode, the formula engine is responsible for generating query plans and can
execute all DAX functions, including complex expression logic, though it is limited to a single
thread and no cache.

The formula engine sends requests to the storage engine and if the storage engine does
not have the requested data in an existing data cache, the storage engine utilizes multiple
threads to access segments of data (1 thread per segment, 1 million rows per segment) from
the data model. The storage engine executes a simple join, grouping, filter, and aggregations,
including distinct count, to make requested data caches available to the formula engine.
Given this architecture, a fundamental DAX and Power BI model design practice is to maximize
the allocation of queries to the storage engine and minimize the size of data caches operated
on by the formula engine.

Given the performance advantage of reducing storage, engine requests also consider the
use of variables. While the primary benefit of DAX variables is improved readability, variables
can also reduce the number of queries associated with a measure (and hence its execution
duration) since variables are evaluated only once and can be reused multiple times in an
expression. Look for DAX measures with multiple branches of IF or SWITCH conditions that
reference the same calculation or measure multiple times. For these measures, consider
declaring a variable that simply references the existing measure (VAR MyVariable = [Sales
Amount]) and then reference this variable in each logical condition, rather than the measure.

While the DAX queries generated by Power BI cannot be edited, DAX queries can be
completely authored from scratch for other tools such as the datasets in SQL Server
Reporting Services (SSRS) reports. Many of the newer DAX functions, such as TREATAS
and SUMMARIZECOLUMNS, are particularly helpful with queries and generally the same
performance considerations apply to both measures and queries. Studying Power BI-
generated DAX queries is a great way to learn how to write efficient DAX queries and DAX in
general.

Chapter 11

503

There's more...

Another example of where a DAX measure can be optimized is in this example where a
measure must be filtered by an OR condition on two columns from separate tables. A FILTER
function cannot be avoided in this scenario like in the prior example, since multiple columns
must be referenced in the same expression (the OR condition). The current measure is defined
as follows:

Reseller Gross Sales (Filter OR) =
CALCULATE([Reseller Gross Sales], FILTER('Reseller Sales',
RELATED('Product'[Product Subcategory]) = "Mountain Bikes" ||
RELATED('Reseller'[Reseller Country]) IN {"United States", "Australia"}))

A FILTER is applied on the fact table and separate RELATED functions are used to implement
the required OR logic. To see how this measure can be optimized, consider the following:

1. Just like in the previous example, capture a sample DAX query generated in Power BI
Desktop from the Performance analyzer pane

2. Test and analyze the query in DAX Studio to establish a baseline for the current
measure

3. Now create two separate alternative measures—one with SUMMARIZE and another with
CROSSJOIN:
Reseller Gross Sales (Summarize OR) =
CALCULATE([Reseller Gross Sales], FILTER(
SUMMARIZE('Reseller Sales','Product'[Product Subcategory],'Reseller'[Res
eller Country]), 'Product'[Product Subcategory] = "Mountain Bikes" ||
'Reseller'[Reseller Country] IN {"United States", "Australia"}))

Reseller Gross Sales (Crossjoin OR) =
CALCULATE([Reseller Gross Sales], FILTER(
CROSSJOIN(ALL('Product'[Product Subcategory]),ALL(Reseller[Resell
er Country])), 'Product'[Product Subcategory] = "Mountain Bikes" ||
'Reseller'[Reseller Country] IN {"United States", "Australia"}))

4. In Power BI Desktop, confirm that the new measures produce the same results as the
current measure

5. In DAX Studio, replace the references to the (filter OR) measure with references to the
new measures

Enhancing and Optimizing Existing Power BI Solutions

504

6. Repeat the process of executing multiple queries with the cache cleared and
documenting the performance to establish baselines for all three versions of the
measure

Figure 11.8: Server timings of the baseline query (filter OR) measure
versus the two new measures in DAX Studio

Both new measures were 16.7X faster than the current state (2,844 to 170 ms) and were
over 90% executed in the storage engine (SE). In this scenario, the CROSSJOIN approach
was slightly faster than SUMMARIZE but this comparison would vary based on the cardinality
of the columns involved. The larger point from this example is the danger associated
with implementing logic that's not supported by the storage engine within the expression
parameter of iterating functions like FILTER and SUMX. This is especially true when the table
parameter to these functions has many rows such as the 11.7 million-row Reseller Sales fact
table used in this recipe.

Note that the ALL function can be used to produce the table parameter if both columns are
from the same table, such as ALL('Product'[Product Category],'Product'[Product
Color]). ALL cannot directly access columns from separate tables.

At a high level, always think about the size of the table being filtered and look for simple filter
conditions and single columns that can be used to reduce the size of this table. For example,
replace the table parameter of functions like SUMX and FILTER with a CALCULATETABLE
function that implements simple, efficient filter conditions. More complex expressions
that cannot be handled by the storage engine can then operate against this smaller table.
Similarly, consider (and test) nesting filter conditions such that the most selective, efficient
filter condition is applied first (the inner FILTER, the outer CALCULATE):

CALCULATE(
 CALCULATE(<param1>, <param2>
) //outer calculate

FILTER(
 FILTER(<param1>,<param2>), // inner FILTER
 <param2>
)

Chapter 11

505

See also

 f Use Performance analyzer to examine report element performance in Power BI
Desktop: https://bit.ly/3eWXdEb

Pushing Query Processing Back to Source
Systems

During the scheduled refresh of datasets retrieving from on-premises sources, any query
transformations not executed by the source system will require local resources of the M
(Mashup) engine of the on-premises data gateway server. With larger datasets, and potentially
with other scheduled refreshes occurring on the same gateway server at the same time, it
becomes important to design M queries that take full advantage of source system resources
via query folding. Although transformations against some sources such as files will always
require local resources, in many scenarios M queries can be modified to help the engine
generate an equivalent SQL statement and thus minimize local resource consumption.

In this recipe, a process and list of items is provided to identify queries not currently folding
and the potential causes. Additionally, a query based on an existing SQL statement is
redesigned with M expressions to allow query folding.

Getting ready

To prepare for this recipe, follow these steps:

1. Identify the dataset to evaluate for query folding

2. Use gateway server memory performance counter data to establish a baseline of the
resources currently used to perform refreshes as these counters should be impacted
by any changes

Also, establish a baseline for query performance using the new Diagnostic tools within Power
Query Editor's Tools tab.

The dataset to be optimized will generally be a large PBIX file (100 MB+) published to the
Power BI service with a scheduled refresh configured to use an on-premises data gateway and
that queries a relational database (SQL, Oracle) as the primary source. If the large PBIX file
is retrieving from a file or a collection of files within a folder, revisions are certainly possible,
such as filtering out files based on their modified date relative to the current date, however,
query folding is not an option for file sources.

https://bit.ly/3eWXdEb

Enhancing and Optimizing Existing Power BI Solutions

506

How to do it...

The following steps outline the general query folding analysis process:

1. Open the Power BI Desktop file used as the published dataset with scheduled
refreshes of on-premises data.

2. Click on Edit Queries from the ribbon of the Home tab to open the Power Query
Editor.

3. Starting with the largest queries (the fact tables), right-click on the final step exposed
in the Query Settings window.

Figure 11.9: View Native Query disabled for final query step

If the View Native Query option is disabled, then the local M engine is performing at
least this final step. If View Native Query is not disabled, you can optionally view the
SQL statement as per prior recipes.

4. Check the previous steps to determine which steps, if any, were folded, and thus
the step that caused the query to use local resources. Once a step (M variable
expression) in a query uses local resources all subsequent steps in the query will also
use local resources.

5. Identify the cause of the local operation, such as a specific M function not supported
by the source system.

Chapter 11

507

6. Consider revising the source database object, the M expressions, and data source
privacy levels to enable query folding.

As an example of performing this process, consider the following case, where a business
analyst has used a SQL statement and the Query Editor to construct a customer query:

Figure 11.10: Customer query based on native SQL statement and M transformations

In this scenario, the SQL statement is against the base customer table in the data warehouse
(not the view) and the subsequent transformations applied against the query results all use
local gateway server resources during each refresh process since the first step executes a
native SQL query. The existing SQL view (vDim_Customer) contains the Customer Name
column, eliminating the need for the merge operation, though the Marital Status column is
not transformed into the longer Married or Single string as per the analyst's transformations.
The query can be modified to perform better by taking advantage of query folding as follows:

1. Create a new M query that uses parameters for the server and database and that
uses the customer SQL view:
let Source = AdWorksProd,
Customer = AdWorksProd{[Schema = "BI", Item = "vDim_Customer"]}[Data],
SelectColumns = Table.SelectColumns(Customer,{"Customer Key", "Customer
Name", "Date of Birth",
"Marital Status", "Annual Income"}),
MarriageStatus = Table.AddColumn(SelectColumns, "M Status", each if
[Marital Status] = "M" then "Married" else "Single", type text),
RemovedColumns = Table.RemoveColumns(MarriageStatus,{"Marital Status"}),
RenamedColumns = Table.RenameColumns(RemovedColumns,{{"M Status",
"Marital Status"},
{"Annual Income", "Yearly Income"}})
in RenamedColumns

The existing SQL view, vDim_Customer, is leveraged and the Marital Status
conditional logic is built within a Table.AddColumn expression. The few remaining
steps simply select, remove, and rename columns and are all transformations that
can be folded back to SQL Server.

Enhancing and Optimizing Existing Power BI Solutions

508

2. Right-click on the final step of the new, revised query and ensure that View Native
Query is enabled.

Figure 11.11: Native query (folded) based on the revised M query for Customers

The new query returns the same results but is now folded back to SQL Server rather than
using local resources. The if...then...else M expression was folded into a CASE expression
for SQL Server to execute.

How it works...

Query folding is impacted by the transformations supported by the source system, internal
proprietary M engine logic, privacy levels assigned to data sources, the use of native database
queries (SQL statements), and the use of custom M functions and logic. For example, even if
query folding is appropriate from a performance standpoint such as using a server in a join
operation with a local file, folding will not occur if the local file is configured as a private data
source.

As per the query folding redesign example in this recipe, if the first step or Source step of the
query is a native SQL statement, consider revising the M query steps to help the M engine
form a SQL query (fold the M query). Any M transformation applied on top of a native SQL
database query (via Value.NativeQuery) will not be folded to the source system. If native SQL
queries are used, such as the stored procedure calls, the recommendation is to embed all
query steps and transformations in the native SQL query itself. If this is not possible, embed
the most resource-intensive operations in the stored procedure and pass filtering parameters
from Power BI to the stored procedure to reduce the workload on the local M engine.

Chapter 11

509

If there are required transformations or logic that are not supported by the source system for
query folding, the recommendation is to move these steps to the very end of the query. For
example, allow SQL Server to execute the filter, the derived columns, and other simple steps
via query folding, and only then apply the complex steps locally on top of the SQL query result
set.

Several common M functions are not supported by most relational database sources,
such as Table.Distinct, which removes duplicate rows from tables, and Table.
RemoveRowsWithErrors, which removes rows with errors from tables. If data sources are
merged in the query, check their privacy settings (Data source settings | Edit Permissions...)
to ensure that privacy is configured to allow folding, such as from an organizational source to
a different organizational source.

In general, the following operations are not supported by query folding:

 f Changing column data types

 f Adding index columns

 f Merging or appending queries from different sources

 f Adding custom columns using Power Query functions that have no equivalent
function in the data source

There's more...

For large models with many queries and large tables, consider disabling the default parallel
loading of tables in File | Options | Options and settings | CURRENT FILE as many queries
executed simultaneously may overwhelm source system resources and cause the refresh
process to fail.

Figure 11.12: Parallel loading of tables – CURRENT FILE setting

Just because a query is folded into a SQL statement, it does not mean there are no possible
performance issues. For example, the query might be selecting more columns than needed by
the data model or might be executing outer join queries when the database schema supports
inner joins. Visibility of these queries can inform changes to the BI architecture and M queries.

Owners of the relational database system or data warehouse can take note of Power BI's
folded SQL queries via tools like Extended Events. For example, database administrators or
BI team members could revise existing SQL views, table indexes, and more based upon the
information gathered. Likewise, the Power BI query author could be informed of better or
preferred methods of accessing the same data such as joining on different columns.

Enhancing and Optimizing Existing Power BI Solutions

510

See also

 f Power Query query folding: https://bit.ly/3jB5wrx

 f Optimize Power Query when expanding table columns: https://bit.ly/3trdKFA

Strengthening Data Import and Integration
Processes

Many Power BI datasets must be created without the benefit of a data warehouse or even a
relational database source system. These datasets, which often transform and merge less
structured and governed data sources such as text and Excel files, generally require more
complex M queries to prepare the data for analysis. The combination of greater M query
complexity and periodic structural changes and data quality issues in these sources can
lead to refresh failures and challenges in supporting the dataset. Additionally, as M queries
are sometimes initially created exclusively via the Query Editor interface, the actual M code
generated may contain unexpected logic that can lead to incorrect results and unnecessary
dependencies on source data.

This recipe includes practical examples of increasing the reliability and manageability of data
import processes including data source consolidation, error handling and comments, and
accounting for missing or changed source columns.

Getting ready

To prepare for this recipe, follow these steps:

1. Identify the dataset to evaluate for data refresh reliability, such as a dataset that
imports information from a comma-separated values (CSV) File

2. Open the PBIX for the dataset in Power BI Desktop

The objective of this example is to retrieve four columns from a text file containing 30 columns
describing customers.

How to do it...

To implement this recipe, use the following steps:

1. Connect to the file with the text/CSV connector and replace the hardcoded path with
a query created from parameters:
let Source = Csv.Document(File.Contents(CustomerTextFile),[Delimiter="
", Columns=30, Encoding=1252, QuoteStyle=QuoteStyle.None]),
PromotedHeaders = Table.PromoteHeaders(Source, [PromoteAllScalars=true])
in PromotedHeaders

https://bit.ly/3jB5wrx
https://bit.ly/3trdKFA

Chapter 11

511

2. Delete the default Columns parameter of the Csv.Document function (Columns=30)

3. Use a Table.SelectColumns function to select the four columns needed and specify
the optional MissingField.UseNull parameter

4. Finally, set the data types for each of the four columns:

let Source = Csv.Document(File.Contents(CustomerTextFile),
 [Delimiter=" ", Encoding=1252, QuoteStyle=QuoteStyle.None]),
PromoteHeaders = Table.PromoteHeaders(Source, [PromoteAllScalars=true]),
SelectColumns = Table.SelectColumns(PromoteHeaders,
 {"CustomerKey", "CustomerAlternateKey", "EmailAddress",
"BirthDate"}, MissingField.UseNull),
TypeChanges = Table.TransformColumnTypes(SelectColumns,
 {{"CustomerKey", Int64.Type}, {"CustomerAlternateKey", type
text}, {"BirthDate", type date}})
in TypeChanges

How it works...

With these changes, the query has access to all columns of the source file (not just 30) but
only creates dependencies on the four columns needed. Most importantly, the MissingField.
UseNull option protects the query from failing if one of the four columns is renamed or
removed from the source file. With the MissingField.UseNull option, if one of the four
columns selected is removed or renamed, a null value is substituted thus avoiding query
failure.

Figure 11.13: Four columns selected from the text file despite the BirthDate column removed from the source

A MissingField.Ignore option is also available to retrieve only the columns found in Table.
SelectColumns.

Be sure to avoid the automatic data type changes applied by default to unstructured
sources. If enabled, this will effectively create a hardcoded dependency to each of the
columns in the source. Likewise, for all other transformations, try to limit or avoid explicitly
referencing column names and always favor selecting required columns rather than removing
unnecessary columns. The columns explicitly selected are less likely to be changed or
removed in the future and removing columns creates a risk that new columns added to the
source will be loaded to the data model.

Enhancing and Optimizing Existing Power BI Solutions

512

There's more…

In addition to improvements in reliability, one can also use Query Diagnostics, available in
the Tools ribbon of the Power Query Editor, to analyze query performance. There are also
methods for improving the overall maintainability of Power Query code. Two such methods are
comments and data source management.

As with all coding languages, comments can be used to improve the overall maintainability of
M code, as in the example below:

/* This query joins the Product query to the Product Subcategory query.
 The product subcategory column 'EnglishProductSubcategoryName' is renamed
'Product Subcategory' */
let ProductToProductSubCatJoin =
try
// Nested outer join based on Subcategory Surrogate Key
Table.NestedJoin(Product,{"ProductSubcategoryKey"},#"Product Subcategory",{"
ProductSubcategoryKey"},"ProductSubCatColumns",JoinKind.LeftOuter) otherwise
Product,
AddProductSubCatColumn =
try
// Will return nulls if EnglishProductSubcategoryName is renamed or missing in
Product Subcategory query
Table.ExpandTableColumn(ProductToProductSubCatJoin, "ProductSubCatColumns",{"Eng
lishProductSubcategoryName"}, {"Product Subcategory"}) otherwise Product
in AddProductSubCatColumn

Comments are used in both multi-line and single-line formats to help explain the logic. Multi-
line comments begin with /* and end with */ while single-line comments are preceded by
the // characters. Variable names (that is, AddProductSubCatColumn) are in proper casing
with no spaces so as to avoid unnecessary double quotes and to further describe the process.

Another method of increasing the maintainability of Power Query code is through proper data
source management. Consider a PBIX file that includes 10 queries access three different
data sources are hardcoded into each query. In this example, 10 queries use three separate
sources (SQL Server, an Excel file, and an MS Access database file). Any change to the data
source paths or connection information would require changing up to 10 different queries. To
see how this can be resolved, consider the following:

1. Open the Power BI Desktop file and identify the data sources being accessed by all
queries

2. The Data source settings dialog from the Transform data dropdown in the ribbon of
the Home tab in Report view will expose current file sources

3. For greater detail, open the Power Query Editor and click on Query Dependencies
from the ribbon of the View tab

Chapter 11

513

Figure 11.14: Query Dependencies view of 10 queries

4. Create the following folder groups in the queries window: Parameters, Data Source
Queries, Dimensions, and Facts

5. Create six text parameters to abstract the file name, file path, server, and database
names from the three sources

6. Develop three data source queries from individual blank queries that reference these
parameters:
= Sql.Database(#"SQL Server AdWorks Server", #"SQL Server AdWorks DB")
= #"MS Access AdWorks Path" & "\" & #"MS Access AdWorks DB" & ".accdb"
= #"MS Excel Ad Works Path" & "\" & #"MS Excel Ad Works File" & ".xlsx"

7. Assign names to these queries such as MS Access Ad Works Connection and
disable their load to the data model

8. Finally, modify each of the 10 queries to reference one of the three data source
queries such as the following:

let Source = Access.Database(File.Contents(#"MS Access Ad Works
Connection"), [CreateNavigationProperties=true]),
Customer = Source{[Schema="",Item="DimCustomer"]}[Data]
in Customer

Figure 11.15: Consolidated and parameterized data sources organized in the Power Query Editor

Enhancing and Optimizing Existing Power BI Solutions

514

The folder groups, parameters, and data source queries make it easier to understand and
manage the retrieval process.

See also

 f 10 Common Mistakes in Power Query and How to Avoid Pitfalls by Gil Raviv: http://
bit.ly/2uW6c33

 f Query Diagnostics: https://bit.ly/2YBEmKv

Isolating and Documenting DAX
Expressions

Isolating expressions into independent and interchangeable DAX measures or as variables
within measures is recommended to simplify development and ownership of the dataset.
Independent measures can be hidden from the Fields list yet contain core business
definitions and efficient filtering logic to drive the results and performance of many other
measures in the model. Although scoped to each measure, DAX variables provide a self-
documenting coding style and, unlike scalar-valued measures, also support table values thus
allowing for even greater modularity.

In this recipe, DAX variables, measures, and comments are used in different examples that
demonstrate best practices around the creation and use of DAX expressions.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place it in a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Reseller Sales and choose the FactResellerSales table

6. Repeat steps 4 and 5 to create a Resellers table that chooses the DimReseller table
and a Dates query that chooses the DimDate table.

http://bit.ly/2uW6c33
http://bit.ly/2uW6c33
https://bit.ly/2YBEmKv

Chapter 11

515

7. Move the Reseller Sales query to a Facts query group and the Resellers and Dates
queries to a Dimensions query group

8. In the Other Queries query group, create a blank query called Calculations

9. Choose Close & Apply from the ribbon of the Home tab

10. Save your work

How to do it...

To implement this recipe, use the following steps:

1. Create the following base measures in the Calculations table:
Reseller Gross Sales = SUM('Reseller Sales'[SalesAmount])

Reseller Discount Amount = SUM('Reseller Sales'[DiscountAmount])

2. Create a Reseller Margin % measure in the Calculations table:
Reseller Margin % =
/*
Net Sales = Gross sales net of discounts that have shipped
Product Cost = Product standard cost of all ordered products
(including not shipped). A Date of 12/31/2099 used for
unshipped sales order lines since 1/1/2015
*/
 VAR ShippedSales = CALCULATETABLE('Reseller Sales',
 'Reseller Sales'[ShipDate] <> DATEVALUE("12/31/2099"))
 VAR NetSalesShipped = CALCULATE([Reseller Gross Sales] -
 [Reseller Discount Amount],ShippedSales)
 VAR ProductCost = SUMX('Reseller Sales',
 'Reseller Sales'[OrderQuantity] *
 'Reseller Sales'[ProductStandardCost])
RETURN
 DIVIDE(NetSalesShipped - ProductCost,NetSalesShipped)

3. Create a Reseller Gross Sales (Custom) measure in the Calculations table:

Reseller Gross Sales (Custom) =
 VAR CurrentDate = MAX('Dates'[FullDateAlternateKey])
 VAR ResellerTypes = CALCULATETABLE('Resellers',
 Resellers[BusinessType] = "Warehouse")
 VAR DateHistory = --Trailing 10 Days
 FILTER(ALL('Dates'),'Dates'[FullDateAlternateKey] <= CurrentDate &&
 'Dates'[FullDateAlternateKey] >= CurrentDate - 10)
RETURN
 CALCULATE([Reseller Gross Sales],ResellerTypes,DateHistory)

Enhancing and Optimizing Existing Power BI Solutions

516

How it works...

The Reseller Margin % measure includes three lines of comments to describe the business
definitions of the measure's components. Comments can also be added per line via the -- and
// characters and Power BI applies green color coding to this text. Embedding comments is
recommended for both complex measures with multiple components and simple measures,
which form the foundation of many other measures.

The ShippedSales variable filters the Reseller Sales fact table to exclude the unshipped sales
order lines and this table is used as a filter parameter in the NetSalesShipped variable. The
existing Reseller Gross Sales and Reseller Discount Amount measures are referenced, but
the ProductCost variable is explicitly defined against the Reseller Sales fact table (shipped
or not). Though significantly longer than alternative DAX expressions for the same calculation,
the use of variables and comments eliminates (or reduces) the need to review other measures
to understand the logic and source columns.

For the Reseller Gross Sales (Custom) measure, variables are declared for each of the tables
to be filtered and a comment (Trailing 10 Days) is inserted to help explain the DateHistory
variable. The variables are invoked as filter parameters to CALCULATE, and so the Reseller
Gross Sales measure reflects this modified filter context. The same functional result can
be achieved by defining all the filtering logic within CALCULATE, but this would make the
expression less readable and thus more difficult to support.

There's more...

DAX Formatter can be used within DAX Studio to align parentheses with their associated
functions. Long, complex DAX measures can be copied from Power BI Desktop into DAX Studio
to be formatted. To use DAX Studio to format queries, open DAX Studio, copy and paste the
query from Power BI Desktop into the main window, and then click on Format Query in DAX
Studio. Copy and paste the query from DAX Studio and replace the expression in Power BI
Desktop with the formatted expression.

Chapter 11

517

Figure 11.16: DAX Formatter in DAX Studio used to format a year-to-date measure

DAX authoring in Power BI Desktop also supports parentheses highlighting, but DAX Formatter
isolates functions to individual lines and indents inner function parameters. Without the
function isolation and indentation provided by DAX Formatter, complex expressions are often
wide and difficult to interpret or troubleshoot.

See also

 f Improve Power BI Performance by Optimizing DAX: https://bit.ly/3uqUs4x

https://bit.ly/3uqUs4x

Enhancing and Optimizing Existing Power BI Solutions

518

Improving Data Load Speeds with
Incremental Refresh

Incremental refresh is a feature originally released for Power BI Premium capacities but has
become a feature for Pro licenses as well. Prior to incremental refresh, Power BI only had a
single mode of operation when refreshing datasets, full load. In other words, the existing data
in the dataset was removed and entirely replaced each time the dataset refreshed. The full
load refresh process could take a long time when dealing with large fact tables with millions of
rows. Incremental refresh solves this problem by only refreshing new and changed data within
the dataset. Since incremental refresh is relatively new, older datasets are likely still using the
full load process and thus might benefit from being retrofitted with incremental refresh.

This recipe demonstrates how to set up and configure incremental refresh in Power BI.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a Power BI Desktop file locally and access the Power Query Editor by clicking
on Transform Data in the ribbon of the Home tab

2. Create a query named AdWorksDW similar to the following:
let
 Source = Sql.Database("localhost\MSSQLSERVERDEV",
"AdventureWorksDW2019")
in
 Source

3. Disable load on the AdWorksDW query and place it in a Data Sources query group

4. Right-click the AdWorksDW query and choose Reference

5. Rename the query Reseller Sales and choose the FactResellerSales table

6. Move the Reseller Sales query to a Facts query

7. In the Other Queries query group, create a blank query called Calculations

8. Choose Close & Apply from the ribbon of the Home tab

9. Save your work

Chapter 11

519

How to do it…

To implement this recipe, use the following steps:

1. In Power BI Desktop, click the Data view and sort the OrderDate column in the
Reseller Sales table in descending order by right-clicking the column in the main
table window (not the Fields list) and choosing Sort descending

2. Note the last date, 11/29/2013 12:00:00 AM

3. Sort the OrderDate column in ascending order and note the first date, 12/29/2010
12:00:00 AM

4. In Report view, click Transform data in the ribbon of the Home tab

5. In the Power Query Editor, click Manage parameters in the ribbon of the Home tab

6. Click New, provide a Name of RangeStart, a Type of Date/Time, and a Current
Value of 12/28/2010 12:00:00 AM (one day less than the minimum value)

7. Click New to create another parameter with a Name of RangeEnd, a Type of Date/
Time, and a Current Value of 11/28/2013 12:00:00 AM (one day less than the
maximum value)

8. Move RangeStart and RangeEnd to a Parameters query group

9. Select the Resellers Sales query

10. In the OrderDate column header, select the drop-down button and choose Date/
Time Filters and then Custom Filter…

11. Fill in the Filter Rows dialog as follows:

Figure 11.17: Configuring filters for incremental refresh

Enhancing and Optimizing Existing Power BI Solutions

520

12. Click Close & Apply

13. In Data view, sort the OrderDate column in descending order and note that rows for
11/29/2013 12:00:00 AM are not present

14. While still in Data view, right-click the Reseller Sales table and select Incremental
refresh

15. In the Incremental refresh dialog, toggle Incremental refresh to On for the Reseller
Sales table and set Store rows… to 30 Years and Refresh rows… to 3 Days, as
shown in the following image:

Figure 11.18: Incremental refresh dialog settings

16. Click the Apply all button

17. Create a simple Card visualization for the report that displays the Latest OrderDate

18. Publish the report to the Power BI service

19. Open the workspace where the report was published in the Power BI service

20. Open the Settings for the dataset

21. If necessary, add the data source to any gateway cluster

22. Open the workspace where the report was published in the Power BI service

23. Click the Refresh now icon for the dataset

24. Open the Settings for the dataset and investigate the Refresh history

25. Wait for the dataset to refresh and then open the report to verify that the Latest
OrderDate is now 11/29/2013 12:00:00 AM

Chapter 11

521

How it works…

Incremental refresh uses the reserved parameter names RangeStart and RangeEnd in
executing incremental refresh. While initially set during the configuration of incremental
refresh, these parameters are thereafter updated by the Power BI service to determine which
rows within the dataset to refresh incrementally.

When configuring the filter rows for incremental refresh, it is important that the two conditions
for RangeStart and RangeEnd do not both include an equal to (=) clause as this may result in
duplicate data. Only configure one of the conditions to include an equal to (=) clause in order
to avoid such circumstances.

Upon first refreshing the data in the service, Power BI refreshes the entire dataset per the
Store rows where column is in the last setting in the Incremental refresh dialog. In other
words, during the first refresh of a dataset configured for incremental refresh, the refresh
process functions like a full reload of all of the data. All rows within the store period are
included in the dataset unless other filters apply. Subsequent refreshes only refresh the new
data per the Refresh rows where column is in the last setting.

It is important to remember that once incremental refresh is configured, the Power BI file
can no longer be exported from the service. Thus, it is imperative that the original Power BI
desktop file be preserved in the event that changes need to be made.

There's more…

There are two optional incremental refresh settings in the Incremental refresh dialog. These
optional settings are the following:

 f Detect data changes

 f Only refresh complete days

The Detect data changes setting can be used to further optimize the data refreshed by
incremental refresh. A column of type Date/Time must be used for this setting and this
column should not be the same column used for the RangeStart and RangeEnd parameters.
The Power BI service evaluates the maximum value of this column when refreshing and if
the value has not changed since the previous refresh then no data is refreshed within the
dataset.

The Only refresh complete days setting is used to prevent partial days from being included
in data refreshes. For example, in the event that the refresh operation detects that a day
is incomplete, such as a scheduled refresh at 4 AM, then that day's data is not included in
the refresh operation. This can be useful for organizations that only want complete daily
information in their datasets for reporting purposes.

Enhancing and Optimizing Existing Power BI Solutions

522

See also

 f Incremental refresh in Power BI: https://bit.ly/3f3DSkM

 f Incremental refresh for datasets in Power BI: https://bit.ly/3w10oSv

Conclusion
This chapter's recipes contained top data modeling, DAX measure, and M query patterns
to enhance the performance, scalability, and reliability of Power BI datasets. This included
performance tuning examples of both data models and measures, error handling, and query
folding examples of M queries in addition to supporting details on the DAX and M query
engines. The next chapter is all about deploying and distributing Power BI content using the
Power BI service, Teams, and mobile devices.

https://bit.ly/3f3DSkM
https://bit.ly/3w10oSv

523

12
Deploying and

Distributing Power BI
Content

Thus far, much of this book has focused on the individual BI professional working with Power
BI to create data models, reports, dashboards, and other BI and system assets. However,
BI is all about providing insights and information to the business. Thus, for any BI project to
be successful, the data and insights created must be shared and distributed throughout the
organization.

This chapter contains detailed examples and considerations for deploying and distributing
Power BI content via the Power BI service and Power BI mobile application. This includes the
creation and configuration of app workspaces and apps, procuring and assigning Power BI
premium capacities, configuring data sources and refresh schedules, and deriving greater
value from the Power BI mobile application. Additionally, topics such as staging deployments
across development and production environments, as well as multi-node premium capacity
deployments, are covered.

In this chapter, we will cover the following recipes:

 f Preparing for Content Creation and Collaboration

 f Managing Content between Environments

 f Sharing Content with Colleagues

 f Configuring Workspaces

 f Configuring On-Premises Gateway Data Connections

 f Publishing Apps

Deploying and Distributing Power BI Content

524

 f Publishing Reports to the Public Internet

 f Enabling the Mobile Experience

 f Distributing Content with Teams

At the end of this chapter, you will be well informed about how to deploy and distribute your
Power BI content.

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop.

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing it are available here: http://bit.ly/2OVQfG7.

 f Files for this chapter and can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition

Preparing for Content Creation and
Collaboration

Power BI collaboration environments can take many forms, ranging from a small group of
Power BI Pro users creating and sharing content with each other in a single app workspace
to large-scale corporate BI scenarios characterized by many read-only users accessing Power
BI premium capacity resources via Power BI apps. Given the cost advantages of the capacity-
based pricing model Power BI Premium provides, as well as the enhanced performance
and scalability features it delivers, it is important to properly provision and manage these
resources.

This recipe provides two processes fundamental to the overall purpose of this chapter:
deploying and distributing Power BI content. The first process highlights several critical
questions and issues in planning and managing a Power BI deployment. The second process
details the provisioning of Power BI Premium dedicated capacity resources and the allocation
of those resources to specific deployment workloads via app workspaces.

Getting ready

There are five main licensing mechanisms for Power BI

 f Power BI Free

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 12

525

 f Power BI Pro

 f Dedicated capacity (Embedded, Premium)

 f Premium Per User

 f On-premises (Power BI Report Server)

Power BI Free provides extremely limited sharing and distribution features (Publish to web)
while Power BI Pro and Premium Per User require every user that creates or consumes
Power BI content to be licensed. Dedicated capacities such as Embedded and Premium
allow free users to consume content published to embedded or premium dedicated capacity
workspaces. On-premises implementations are licensed via Power BI Report Server, a
superset of SQL Server Reporting Services (SSRS).

It is essential to carefully review the licensing and features associated with each deployment
option. For example, many of the features in the Power BI service such as dashboards
and Q&A (natural language queries) are not available in on-premises Power BI Report
Server. Likewise, certain Power BI Premium SKUs are exclusive to embedding Power BI into
applications. For a more complete treatment of Power BI licensing options, see the See also
section of this recipe.

How to do it...

To implement this recipe, do the following:

1. Determine how Power BI content (datasets, reports, and dashboards) will be deployed
and consumed by users.

 � Will content be deployed to the Power BI service and accessed via apps and
Power BI mobile apps?

 � Will content be deployed to the Power BI service but embedded into business
applications?

 � Will content be deployed to the Power BI report server on-premises and
accessed via the reporting services web portal as well as the Power BI
mobile app?

For hybrid deployments, such as using both the Power BI service and embedding,
or using the Power BI service and Power BI Report Server, estimate the resources
required for each of these workloads and evaluate both a consolidated licensing
model and separate, dedicated licenses. For example, if 16 virtual cores are
provisioned with a Power BI premium P2 SKU, 16 separate cores are also available
for licensing Power BI Report Server on-premises. Such consolidated licensing may
be more advantageous than licensing Power BI Report Server separately and paying
for additional Power BI Pro licenses.

Deploying and Distributing Power BI Content

526

2. Identify or estimate the Power BI Pro and Power BI Free users based on their roles
and needs in the organization.

 � Will the user create and publish content (Power BI Pro)?

 � Will the user only consume content and optionally create content for their
personal use (Power BI Free)?

Connecting to published datasets via Analyze in Excel and Power BI service Live
Connections are Power BI Pro features and are thus not available to Power BI Free
users even if the dataset is assigned to a Power BI Premium capacity. However,
a Power BI Free user can still view and subscribe to reports and dashboards in
Premium capacities, and can also export content to CSVs and PowerPoint.

3. For larger deployments with many read-only users, estimate the Power BI Premium
resources required.

 � Use the Power BI Dedicated Capacity Load Assessment Tool referenced in
the See also section as a starting point.

 � Plan how deployment workloads will be allocated across premium capacity
nodes.

 � Will a given workload (or perhaps a business function) have its own capacity,
or will a single, larger capacity support multiple or all workloads or teams?

If Power BI datasets in import mode will serve as the primary data storage option
supporting reports and dashboards, consider their memory usage relative to the
memory available per Power BI Premium SKU. For example, 25 GB of RAM is
currently available in a P1 capacity node, and this may be insufficient for larger
dataset (model) sizes stored in the service with a scheduled refresh. Like SSAS
tabular models, 2.5X of memory should be provisioned to support both processing
and refreshing, queries, and temporary memory structures created during queries.

4. Evaluate and plan data modeling tools (datasets).

 � Will Power BI Desktop be used for both data modeling and report
development or will Analysis Services be used for data modeling and Power
BI Desktop only used for reporting?

 � What will the storage mode of these new semantic models be (Import,
DirectQuery, Composite) and what are the implications for required
memory? For example, aggregations are exclusively available with Power BI
Premium and thus significantly less memory would need to be provisioned if
aggregations are used correctly.

 � Are changes to a relational data source or infrastructure necessary to
support performance?

In some scenarios, the relational data source must be revised or enhanced to
support sufficient DirectQuery performance. These enhancements vary based on the
source but may include indexes (such as Columnstore indexes in SQL Server), greater
compute and memory resources, denormalization, and referential integrity.

Chapter 12

527

If SSAS is being used on-premises as the source for Power BI (via the on-premises
data gateway), it may be beneficial to utilize Azure ExpressRoute to create a private
connection to the Azure data center of the Power BI tenant.

5. Plan for scaling and migrating Power BI projects as adoption and needs change and
identify key points of the project lifecycle and the capabilities needed to migrate and
scale as needs change.

Examples of this include adding separate Power BI Premium capacity nodes (scale
out), larger capacity nodes (scale up), migrating a Power BI Desktop dataset to SSAS
or Azure Analysis Services, staging deployments across Dev, Test, and Production
Power BI workspaces and apps, moving workspaces into and out of premium
capacities, and transferring ownership of content across teams, such as from a
business team to a corporate BI team.

6. Assign roles and responsibilities to Power BI team members.

 � Dataset authors, including source connectivity, retrieval queries, data
modeling, and measuring development

 � Report authors, including dashboards, mobile-optimized reports and
dashboards, and apps

 � Administrators, including the on-premise data gateway, premium capacities,
and tenant settings

7. Target skills and knowledge specific to these team roles.

 � Dataset authors should learn the fundamentals of DAX, M, and data
modeling for Power BI and SSAS.

 � Report authors should know or learn about visualization standards,
interactivity and filtering, and custom visuals.

 � Administrators should study monitoring tools and data available for on-
premises gateway monitoring, workspaces, premium capacities, the Office
365 audit log, and the Power BI activity log.

Report authors, who are often business analysts outside of IT or BI organizations,
should regularly review new and recent report features released in the Power BI
monthly updates.

8. Build collaboration processes across teams.

 � Dataset authors should collaborate with the owners and subject matter
experts of data sources. For example, any changes to data source schemas
or resources should be communicated.

 � Report authors should have access to dataset documentation and
collaborate with dataset authors. For example, metrics or dimensions not
available for new reports should be communicated. Any standards such as a
corporate Power BI report theme or fonts should be documented.

Deploying and Distributing Power BI Content

528

 � Administrators should collaborate with the Office 365 global admin, data
governance, and security teams. For example, administrators should confirm
that Power BI tenant settings align with organizational policies. Additionally,
administrators can request or procure security groups to manage Power BI.

 � Plan for common support scenarios, new project requests, and requests for
enhancements. For example, create a process for automatically assigning
Power BI licenses and security group memberships. Additionally, plan for
questions or issues from consumers of Power BI content.

Successful Power BI deployments of any significant scale require planning, team and
cross-team collaboration, business processes, active management, and targeted skills and
resources. The steps in this recipe only identify several of the fundamental topics—the actual
process is always specific to an organization and its deployment goals, policies, and available
skills and resources.

There's more...

Power BI Premium was introduced to support large-scale deployments of Power BI for
enterprises. Power BI Premium is, at its core, a pool of dedicated hardware resources for
a given organization to configure and utilize according to their own use cases and policies.
Although other legacy Microsoft BI technologies such as Analysis Services and Reporting
Services will continue to be supported, all new features and capabilities, such as composite
models and aggregations, are exclusively available to Power BI Premium customers.
Additionally, Power BI Premium capacity enables new scenarios including embedding content
in applications and using a combination of both the Power BI public cloud service and an
on-premises deployment of the Power BI Report Server. Perhaps most importantly for large
deployments, Power BI Premium avoids the need to purchase licenses for each user since
read-only users can access Power BI Premium content without a pro license. Additionally, as a
managed cloud service, resources can be aligned with the changing needs of an organization
via simple scale-up and scale-out options.

"In many cases Power BI Premium was built to address the challenges of deploying
Power BI at scale where you have larger data models that have grown over time and
when you have more users that are accessing the content."

- Adam Wilson, Power BI group program manager

In this example, workspaces specific to functional areas in an organization are associated with
two separate Power BI Premium capacity nodes.

An additional workspace and the My Workspace associated with all accounts (Power BI Free
and Pro) are included in a shared capacity--the multi-tenancy environment of the Power BI
Service. The process for provisioning and configuring such an environment is as follows:

Chapter 12

529

1. A Microsoft 365 global admin or billing admin purchases the required Pro and Free
licenses in the Microsoft 365 admin center.

2. These licenses are assigned to users according to the roles determined in the
planning stage earlier.

Figure 12.1: Microsoft 365 admin center – Purchase services

3. Purchase a Power BI Premium P2 capacity node by scrolling down, clicking the
Details button under the Power BI Premium P2 heading, and then clicking the Buy
button.

Figure 12.2: Purchasing a Power BI Premium P2 capacity

Deploying and Distributing Power BI Content

530

4. Purchase a Power BI Premium P3 capacity.

5. Confirm that the new Power BI Premium subscriptions appear in the Your products
window along with any purchased Power BI Pro and Power BI Free licenses.

6. The Microsoft 365 global admin or Power BI Service Administrator opens the Power
BI admin portal. In the Power BI service, click on the gear icon at the top right and
select Admin Portal.

7. Select Capacity settings from the admin portal and then click on Set up new
capacity.

8. Give the capacity a descriptive name and assign the capacity admin role to a user or
users.

Global admins and Power BI Service Admins are capacity admins by default, but the
capacity admin role can be assigned to users that are not Power BI Service Admins.
Capacity admin role privileges are specific to the given capacity.

9. Grant workspace assignment permissions to specific Power BI Pro users or groups for
the capacity.

Figure 12.3: User permissions in Capacity settings

10. Set up the other capacity purchased, assign its capacity admins, and grant its
workspace assignment permissions.

11. Power BI Pro users with workspace assignment permissions can create premium
workspaces in the Power BI service.

In the Power BI admin portal, capacity admins can assign or remove workspaces from
premium capacity, as well as whitelisting users such that all of a given user's workspaces are
assigned to premium capacity.

Chapter 12

531

Figure 12.4: Power BI Premium capacity assigned to workspaces

In this example, three workspaces (sales, marketing, and finance) are assigned to a Power
BI Premium Capacity named Enterprise BI (P3). Additionally, this capacity also supports the
embedded reporting needs of a custom application. The larger P3 (32 cores, 100 GB RAM)
capacity was chosen given the higher volume of query traffic for these workspaces, as well as
the need for larger dataset sizes.

Supply chain and operations workspaces were assigned to a P2 capacity. In this case, though
less of a workload than the P3 capacity, these groups still need to share content with many
free users. Finally, a workspace for a small group of IT users (IT Admin) with Power BI Pro
licenses is maintained in Shared Capacity. This workspace did not require Power BI Premium,
given minimal needs for distribution to free users and given smaller datasets with relatively
infrequent refresh schedules.

Scaling out Power BI Premium involves distributing provisioned capacity (v-cores) across
multiple capacities. For example, the 32 v-cores purchased as part of a P3 capacity node
could optionally be split into three separate capacities: two P1 capacities of 8 v-cores each
and one P2 capacity of 16 v-cores (8 + 8 + 16 = 32). This ability to distribute v-cores across
distinct premium capacities is referred to as v-core pooling.

In-place scaling of Premium capacities involves purchasing an additional capacity node in
the Microsoft 365 admin center as per the recipe, then adjusting the capacity size of a given
premium capacity to reflect the additional cores:

Figure 12.5: Available v-cores for a capacity in the Power BI admin portal

Deploying and Distributing Power BI Content

532

For example, if a P1 capacity is determined to be insufficient for the desired performance or
scalability, an additional P1 capacity can be purchased. At this point, with two P1 capacities
purchased at 8 v-cores each, a P2 capacity size (16 v-cores) can be set for the original
capacity in the Power BI admin portal. This makes it quick and easy to incrementally scale up
as requirements change.

See also

 f Power BI Licensing in Pictures: https://bit.ly/2R4xYYN

 f What is Microsoft Power BI Premium?: https://bit.ly/3eyrpq8

 f Planning a Power BI enterprise deployment whitepaper: http://bit.ly/2wBGPRJ

 f Capacity and SKUs in Power BI embedded analytics: https://bit.ly/2REM437

 f Capacity planning: https://bit.ly/3tG66aR

Managing Content between Environments
Corporate BI and IT teams familiar with project lifecycles, source control systems, and
managing development, testing, and production environments should look to apply these
processes to Power BI deployments as well. Power BI Desktop does not natively interface
with standard source control systems such as Azure DevOps. However, Power BI files can be
stored in SharePoint Online Team site and OneDrive for Business to provide visibility to version
history, synchronization between local device and the cloud service, restore capabilities, and
more. In the Power BI service, separate development, test, and production workspaces and
their corresponding apps can be created to support a staged deployment. Utilizing these tools
and features enables Power BI teams to efficiently manage their workflows and to deliver
consistent, quality content to users.

This recipe contains a recipe for deploying content using Power BI Deployment Pipelines,
which is a Premium feature. Alternative methods for those without Premium are included in
the There's more section.

Getting ready

To prepare for this recipe, follow these steps:

1. In the Power BI Service, create a new Premium workspace.

2. Open a report in Power BI Desktop that includes query parameters and Publish the
report to the Premium workspace created in Step 1. The query parameters should be
set to Text.

Again, this recipe requires a Power BI Premium capacity.

https://bit.ly/2R4xYYN
https://bit.ly/3eyrpq8
http://bit.ly/2wBGPRJ
https://bit.ly/2REM437
https://bit.ly/3tG66aR

Chapter 12

533

How to do it...

Creating and using Power BI Deployment Pipelines is relatively easy. To create and use a
pipeline follow these steps:

1. In the Power BI Service, choose Deployment pipelines from the left navigation pane.

2. Choose Create a pipeline.

3. Provide a Pipeline name and click the Create button.

4. Click the Assign a workspace button.

5. Choose the Premium workspace created in Step 1, assign the deployment stage for
the workspace of Development and click the Assign button.

Figure 12.6: Assign a workspace to a deployment pipeline

6. Under the Development stage, click the Deploy to test button. This creates a new
workspace and deploys the content in Development to this workspace.

Figure 12.7: Power BI deployment pipeline

Deploying and Distributing Power BI Content

534

7. Once the content is deployed to Test, click the lightning bolt icon in the Test stage
header.

8. Click on the dataset under the Datasets heading.

9. Expand Parameter rules and click the Add rule button.

10. Under the For this parameter heading, choose a parameter.

11. Under the Apply this value, edit the parameter and click the Save button.

Figure 12.8: Power BI deployment pipeline parameter rule

Now, every time the dataset is deployed to the Test stage, the parameter will point to the test
SQL Server instead of the development SQL Server. For more information about Power BI
pipelines and how to use them in Power BI deployment scenarios, see the See also section of
this recipe.

How it works...

Power BI deployment pipelines allow the easy movement of content between Development,
Test, and Production deployment stages. These deployment stages are tied to individual
workspaces that are created automatically by the pipeline. As content is changed within the
different stages, that content can be deployed to previous stages or subsequent stages. In
addition, rules can be defined within Test and Production stages that change data sources or
parameters to point to the appropriate source systems.

The Development stage is designed to be the working area for report development. The Test
stage is where developed content can be shared with business users for user acceptance
testing. Finally, the Production stage is where the final product is presented to the business.

There's more...

If you do not have Power BI Premium, the Power BI REST API's can be used to deploy content
between workspaces. In addition, the ALM Toolkit allows you to compare two compare and
merge Analysis Services tabular models using the open-source BISM Normalizer toolset.
BISM stands for Business Intelligence Semantic Model and is a defined Microsoft model for
reporting, analytics, scorecards, and dashboards.

Chapter 12

535

BISM includes three layers, the Data model layer (tabular and multi-dimensional), Business
logic and queries layer (DAX and MDX), and the Data access layer (ROLAP, MOLAP, Vertipaq,
and DirectQuery). The ALM Toolkit uses the BISM foundation to generate a comparison of
Analysis Services models and can then merge the changes in one model with another model.
For more information about the ALM Toolkit and how to use it in deployment scenarios, see
the See also section of this recipe.

Finally, Maik van der Gaag developed a free set of tasks for Azure DevOps Pipelines called
Power BI Actions. This set of tasks allows common deployment actions to be automated
via Azure DevOps Pipelines, allowing the creation of a continuous integration, continuous
development (CICD) process for Power BI deployments. For more information about the CICD
with Azure DevOps and how to use it in Power BI deployment scenarios, see the See also
section of this recipe.

See also

 f Power BI REST API reference for Report operations: http://bit.ly/2v8ifKg

 f ALM Toolkit documentation: https://bit.ly/3f95ODQ

 f AzureDevOps: CICD for PowerBI Reports: https://bit.ly/3hfrHnM

 f Introduction to deployment pipelines: : https://bit.ly/3uxzMrT

Sharing Content with Colleagues
Power BI apps are the recommended content distribution method for large corporate BI
deployments, but for small teams and informal collaboration scenarios, sharing dashboards
and reports provides a simple alternative. By sharing a dashboard, the recipient obtains read
access to the dashboard, the reports supporting the dashboards tiles, and immediate visibility
of any changes in the dashboard. Additionally, dashboards and reports can be shared with
Power BI Pro users external to an organization via security groups and distribution lists, and
Power BI Pro users can leverage Analyze in Excel as well as the Power BI mobile apps to
access the shared data. Moreover, Power BI Free users can consume dashboards and reports
shared with them from Power BI Premium capacity.

In this recipe, a Power BI dashboard is shared with a colleague as well as a contact in an
external organization. Guidance on configuring and managing shared dashboards and
additional considerations is included throughout the recipe and the How it works... and
There's more... sections.

https://docs.microsoft.com/en-gb/rest/api/power-bi/?redirectedfrom=MSDN
https://bit.ly/3f95ODQ
https://bit.ly/3hfrHnM
https://bit.ly/3uxzMrT

Deploying and Distributing Power BI Content

536

Getting ready

Confirm that both the owner of the dashboard and the recipient(s) or consumers have
Power BI Pro licenses. If the recipient(s) does not have a Power BI Pro license, check if the
dashboard is contained in a workspace that has been assigned to premium capacity. Either
Pro licenses or Premium capacity are required to share the dashboard. A Power BI Pro user
cannot share a dashboard hosted in Power BI shared capacity with a Power BI free user.

Enable the external sharing feature in the Power BI Admin Portal, either for the organization
or specific security groups. The owner of a shared dashboard can allow recipients to reshare
a dashboard but any dashboards shared with external users cannot be shared. Additionally,
user access to the dashboard and the ability to reshare can be removed by the dashboard
owner. Unlike the Publish to web feature described later in this chapter, external sharing can
be limited to specific security groups or excluded from specific security groups.

In this example, Jennifer from the BI team is responsible for sharing a dashboard with Brett
from the Canada sales team and another person, Jack, from outside the organization. Brett
will need the ability to share the dashboard with a few members of his team.

How to do it...

To implement this recipe, do the following:

1. Create a dedicated workspace in the Power BI service.

2. Set the privacy level of the workspace to allow members to edit content and add team
members to the workspace.

3. Create a security role in Power BI Desktop for the Canada sales team.

4. Publish the Power BI Desktop file to the workspace and add members or security
groups to the Canada sales team role.

By using security roles, an existing Power BI Sales dataset containing sales for
other countries can be used for the dashboard. Brett will be allowed to share
the dashboard, but RLS will prevent him and those mapped to the security role
via security groups from viewing sales data for other countries. See Chapter 8,
Implementing Dynamic User-Based Visibility in Power BI, for details on configuring
RLS.

5. Create new Power BI Desktop report files with live connections to the published
dataset in the workspace.

6. Build essential visualizations in each file and publish these reports.

7. In the Power BI service, create a new dashboard, Canada Sales Dashboard, and pin
visuals from reports, and adjust the layout.

Chapter 12

537

8. Click on Share from the Canada Sales Dashboard in the workspace of the Power BI
service.

Figure 12.9: Sharing the Canada Sales dashboard

9. Add Brett, the external user, and optionally a message on the Share dashboard form.

Figure 12.10: Share dashboard form in the Power BI service

Power BI will detect and attempt to auto-complete as email addresses are entered in
the Grant access to input box. Additionally, though sharing dashboards is sometimes
referred to as peer-to-peer sharing, a list of email addresses can be pasted in, and
all common group entities are supported, including distribution lists, security groups,
and Office 365 groups. Per the image, a warning will appear if a user external to the
organization is entered.

10. In this example, leave the Allow recipients to share this dashboard option enabled
below the message. Click on Grant Access.

If left enabled on the share form, recipients will receive an email notification as well as a
notification in Power BI.

Figure 12.11: Notification center in the Power BI service of the dashboard recipient

Deploying and Distributing Power BI Content

538

For the recipient, the dashboard appears in the Shared with me tab. If enabled by the
dashboard owner (and if the user is internal to the organization), the option to reshare the
dashboard with others is enabled. The user will be able to favorite the dashboard, access it
from the Power BI mobile app, and interact with the content, such as filtering selections, but
cannot edit the report or dashboard.

How it works...

Content should always be distributed from workspaces and not My Workspace. Even in
relatively informal scenarios such as sharing a dashboard with one user, sharing a dashboard
from My Workspace creates a dependency on the single user (Jennifer in this case) to
maintain the content. Sharing the content from a workspace with multiple members of
the BI team addresses the risk of Jennifer not being available to maintain the content and
benefits from Microsoft's ongoing investments in administration and governance features for
workspaces.

Members of the workspace with edit rights can disable reshares of the dashboard and stop
sharing altogether. To edit rights, open the dashboard, click on Share, click the ellipsis (…),
and then Manage permissions to identify and optionally revise the current access.

Figure 12.12: Share dashboard, Manage permissions

In the Manage permissions pane, click Advanced at the bottom and then click on the Direct
access tab. Here you can add users, edit permissions and remove access as shown in Figure
12.13.

Figure 12.13: Sharing and access options

Chapter 12

539

There's more...

Sharing reports in the Power BI service operates identically as sharing dashboards in terms
of the user interface. The only difference is that the process starts on a report page in the
service rather than a dashboard.

Datasets can also be shared by providing read access to the dataset specifically. This is done
by clicking the three vertical dots next to a dataset either in the left-hand navigation pane or
when viewing the Datasets + dataflows pane of a workspace.

See also

 f Share Power BI reports and dashboards with coworkers and others: https://bit.
ly/3f99llw

 f Ways to collaborate and share in Power BI: https://bit.ly/3tylUMv

Configuring Workspaces
Workspaces (formerly App workspaces) are shared areas in the Power BI service for
Power BI Pro users to develop content. The datasets, reports, and dashboards contained
within workspaces can be published as a Power BI app for distribution to groups of users.
Additionally, workspaces can be assigned to Power BI Premium capacities of dedicated
hardware to enable all users, regardless of license, to consume the published app and to
provide consistent performance and greater scalability. Furthermore, workspaces retain a
one-to-one mapping to published apps, enabling members and administrators of workspaces
to stage and test iterations prior to publishing updates to apps.

Understanding the history of workspaces is beneficial when reading various historical
documentation on the subject. When Power BI was first released, the service included the
concept of workspaces. However, these workspaces were tied to Office 365 groups and
had various limitations. Microsoft released an update to group workspaces and named
these new workspaces. Traditional workspaces were labeled Classic workspaces. Today, all
new workspaces are workspaces and are now known simply as workspaces since Classic
workspaces have been all but phased out. While this may all seem a bit Istanbul, not
Constantinople, just understand that when reading blog posts and other information that
refers to workspaces, that this simply means the modern workspace experience in the Power
BI service.

In this recipe, a workspace is created and configured. Within the recipe and in the supporting
sections, all primary considerations are identified, including the scope or contents of
workspaces and the assignment of workspaces to premium capacity.

https://bit.ly/3f99llw
https://bit.ly/3f99llw
https://bit.ly/3tylUMv

Deploying and Distributing Power BI Content

540

Getting ready

To prepare for this recipe, follow these steps:

1. Confirm that Power BI Pro licenses are available to administrators and members of
the workspace.

2. Ensure that the workspace aligns with the policy or standard of the organization for
Power BI content distribution.

3. If premium capacity has been provisioned but not bulk assigned to all workspaces
of an organization, determine if the new workspace will be hosted in a premium
capacity.

4. If Premium capacity has been provisioned and authorized for the new workspace,
evaluate the current utilization of premium capacity, and determine if the expected
workload of datasets and user queries from the new app deployment will require a
larger or separate capacity. In addition, confirm that the workspace administrator has
workspace assignment permission, or assign this permission in the Power BI admin
portal per the first step in How to do it....

5. Retrieve your Power BI tenant's UTC offset by clicking the question mark (?) icon in
the upper-right corner of the Power BI service and choose About Power BI. The UTC
offset is shown in Figure 12.14, in this case -0400:

Figure 14: UTC offset of Power BI tenant

6. Retrieve the Premium capacity ID from the Capacity settings of the admin portal in
the Power BI service.

7. While in Capacity settings, click the gear icon under Actions for the desired capacity
and note the CAPACITY ID.

8. From a workspace in the Power BI service, select Get data from the lower-left corner
of the screen.

9. In the Services section, click the Get button.

10. Search for Premium and choose the Premium Gen2 Capacity Utilization Metrics
app.

Chapter 12

541

11. On the AppSource page for the template app, click the Get it Now button as shown in
Figure 12.15:

Figure 12.15: Premium Gen2 Capacity Utilization Metrics App in AppSource

12. Fill in the contact information, accept the terms and conditions, and click the
Continue button.

13. Click the radio button for Install to a new workspace, provide a workspace name,
and then click the Install button to install the app.

This completes the steps to prepare for this recipe.

How to do it...

To implement this recipe, do the following:

1. Open the new workspace and choose Apps from the navigation pane in the Power BI
service.

2. Click on the Gen2 Utilization Metrics app.

3. At the top of the screen, click on Connect your data as shown in Figure 12.16 below:

Figure 12.16: Gen2 Utilization Metrics prompt to Connect your data

Deploying and Distributing Power BI Content

542

4. Enter the CapacityId and other information requested by the app and click the Next
button.

Figure 12.17: Connect to Gen2 Utilization Metrics

5. On the next screen, choose Sign in and connect and sign in to the Power BI service.

6. View the recent performance of the capacity via the usage measurements for CPU,
memory, and queries.

7. Assuming that the capacity metrics are in order, exit the app by clicking the Go back
link in the lower-left corner of the app.

8. Click on the arrow next to Workspaces and then click on Create a workspace.

Figure 12.18: Create a workspace in the Power BI service

Workspaces assigned to premium capacity are identified with a diamond icon in the
Power BI service.

Chapter 12

543

9. Provide a workspace name, expand the Advanced section, choose a License mode of
Premium per capacity and select a capacity.

Figure 12.19: Creating a Premium workspace

10. Click the Save button to create the workspace.

11. In the workspace, click the Access link in the header to add workspace members.

Workspace members can now publish datasets and reports and create dashboards to
distribute via an app. Technically it is possible to add members to a view-only group and
assign developers to the role of workspace admin such that they can edit content. This
method of collaboration is not recommended, as the view-only members will have immediate
visibility of all changes, as with sharing dashboards. Published apps from workspaces provide
for staging deployments and are the recommended solution for distributing content to read-
only members.

Deploying and Distributing Power BI Content

544

How it works...

Per the Preparing for Content Creation and Collaboration recipe earlier in this chapter,
workspaces have a one-to-one mapping to apps and can have a wide scope (for example,
sales), a narrow scope such as a specific dashboard, or a balance between these two
extremes, such as European sales. If broad workspaces are used, then it may not be
necessary to create a new workspace for a particular project or dashboard as new content
can be added to an existing workspace. However, as an increasing volume of reports and
dashboards are added to workspaces, it may be beneficial to consider new, more focused
workspaces and revisions to the policy.

Apps are simply the published versions of workspaces.

Figure 12.20: Workspaces: one-to-one relationship with published apps

Users consume and interact with apps. Content is created and managed in workspaces.
Consumers of apps only have visibility of published versions of apps, not the workspace
content. Per the Preparing for Content Creation and Collaboration and Managing Content
between Environments recipes in this chapter, not all content from a workspace has to be
included in the published app.

There's more...

Office 365 Global Admins and Power BI Admins are Capacity Admins of Power BI Premium
capacities by default. These admins can assign users as Capacity Admins per capacity during
the initial setup of the capacity and later via Admin permissions within the Capacity settings
of a capacity in the Power BI admin portal. Capacity Admins have administrative control over
the given capacity but must also be granted assignment permissions in the Contributor
permissions setting to assign workspaces to premium capacities if the capacity admin will
also be responsible for associating a workspace to premium capacity.

Chapter 12

545

See also

 f Manage Power BI Premium: http://bit.ly/2vq8WHe

 f Monitor Power BI Premium capacities: https://bit.ly/3xZqp6f

Configuring On-Premises Gateway Data
Connections

The promise of leveraging the Power BI service and mobile application to provide access
to a rich set of integrated dashboards and reports across all devices requires thoughtful
configuration of both the data sources and the datasets which use those sources. For many
organizations, the primary business intelligence data sources are hosted on-premises, and
thus, unless Power BI reports are exclusively deployed to on-premises Power BI Report Server,
the on-premises data gateway is needed to securely facilitate the transfer of queries and
data between the Power BI service and on-premises systems. Additionally, the datasets which
typically support many reports and dashboards must be configured to utilize an on-premises
data gateway for either a scheduled refresh to import data into Power BI or to support
DirectQuery and Live Connection queries generated from Power BI.

This recipe contains two examples of configuring data sources and scheduled refreshes for
published datasets. The first example configures two on-premises data sources (SQL Server
and Excel) for an import mode Power BI dataset and schedules a daily refresh. The second
example configures a separate on-premise SQL Server database for a DirectQuery Power BI
dataset and sets a 15-minute dashboard tile refresh schedule.

Getting ready

To prepare for this recipe, follow these steps:

1. Download, install, and configure the on-premises data gateway as per Creating an
On-Premises Data Gateway in Chapter 1, Configuring Power BI Tools.

2. Become an administrator of the on-premises data gateway.

Figure 12.21: Administrators of an on-premises data gateway

http://bit.ly/2vq8WHe
https://bit.ly/3xZqp6f

Deploying and Distributing Power BI Content

546

It is strongly recommended to have at least two administrators for each gateway installed to
provide redundancy and backup of administrative functions.

How to do it...

In this example, an import mode dataset has been created with Power BI Desktop to retrieve
from two on-premises data sources, a SQL Server database and an Excel file. To implement
this recipe, do the following:

1. Identify the server name and database name used in the Power BI Desktop file.

2. Identify the full path of the Excel file.

3. In the Power BI service, click on the gear icon in the top-right corner and select
Manage Gateways.

4. From the Manage Gateways interface, click on ADD DATA SOURCE and choose SQL
Server.

5. Provide an intuitive source name that won't conflict with other sources and enter the
server and database names.

Figure 12.22: Adding a SQL Server database as a source for an on-premises data gateway

The server and database names for the gateway must exactly match the names used
in the Power BI dataset.

If configuring an SSAS data source (data source type = analysis services) for a
gateway, ensure that the credentials used are also an SSAS server administrator
for the given SSAS instance. The server administrator credential is used in
establishing the connection but each time a user interacts with the SSAS data
source from Power BI, their UPN (user principal name) is passed to the server via the

Chapter 12

547

EffectiveUserName connection property. This allows RLS roles defined in the SSAS
database to be applied to Power BI users.

6. Under Advanced Settings, check that the source uses the appropriate privacy level,
such as organizational or private.

7. Click on Add and then, via the Users tab, add users authorized to use this gateway
for this data source.

Figure 12.23: Successful setup of a data source for the on-premises data gateway

8. Add an additional data source for the Excel file using the file data source type.

9. Like the SQL Server data source, authorize users for this gateway and this data
source via the Users page.

10. Publish the import mode Power BI Desktop file (dataset) to a workspace in the Power
BI service.

11. Access the workspace and from the Datasets + dataflows list, click on the Schedule
refresh icon for the dataset.

Figure 12.24: Actions available to a published dataset in the Power BI service

12. Expand the Gateway connection section.

The gateway will appear as an option for data refresh if the following three criteria are
met:

 � The user is listed on the Users page of the data source(s) within the gateway

 � The server and database names configured in the Power BI Service for the
gateway match the names used in the Power BI Desktop file

 � Each data source used by the dataset is configured as a data source for the
gateway

Deploying and Distributing Power BI Content

548

13. In the Data sources included in this dataset section, use the Maps to dropdown to
select the configured gateway data source connection.

Figure 12.25: Associating the data source with the Power BI gateway data connection

14. Click the Apply button to connect the data source to the gateway.

15. Now expand the Scheduled refresh section.

16. Click the Add another time link to add a scheduled time for the refresh to occur.

17. Once you've finished adding refresh times, click the Apply button.

Figure 12.26: Scheduled refresh of the dataset

Your dataset is now scheduled to refresh.

Chapter 12

549

How it works...

For shared capacities, there is no guarantee that scheduled refreshes will occur at the exact
time they are scheduled, such as 5:00 AM in this example. The actual refresh may take place
as long as 20-30 minutes after the time scheduled in the Power BI service.

Data caches used by dashboard tiles are updated after refresh operations for import mode
datasets (or manually). The Power BI service also caches data for report visuals and updates
these caches as datasets are refreshed. Dashboard tiles can be refreshed manually in the
Power BI service via the Refresh visuals menu item (top-right, circular arrow icon). Likewise,
reports can be manually refreshed from the Power BI service, but this is only relevant for
DirectQuery and SSAS live connections; this does not initiate a refresh for an import mode
dataset.

Import mode datasets can be refreshed via the schedule in the Power BI service or via the
REST API. Power BI data refresh APIs allow BI teams to trigger refresh operations in the Power
BI service programmatically.

For example, a step can be added to an existing nightly (or more frequent) data warehouse or
ETL process that initiates the refresh of a Power BI dataset that uses this data source. This
allows dashboards and reports in the Power BI service to reflect the latest successful refresh
of the data source(s) as soon as possible. In other words, the gap or lag between the source
system refresh and the Power BI dataset scheduled refresh can be reduced to the amount of
time needed to refresh the dataset in the Power BI service.

To trigger a refresh for a dataset in the Power BI service, simply make the following HTTP
request:

POST https://api.powerbi.com/v1.0/myorg/groups/{group_id}/datasets/{dataset_id}/
refreshes
See the documentation on Power BI REST API authentication and the Power BI REST API
reference in the See also section of this recipe.

There's more...

In this example, a Power BI Desktop file (dataset) in DirectQuery mode based on a separate
on-premise SQL Server database must be deployed to the Power BI service. The intent is for
the dashboards based on this dataset to be as current as possible. To implement this recipe,
do the following:

1. Like the import mode dataset, add the SQL Server database as a data source to the
gateway.

2. Assign user(s) to this data source and gateway.

Deploying and Distributing Power BI Content

550

3. Publish the DirectQuery Power BI Desktop file (dataset) to an App Workspace in the
Power BI service.

Figure 12.27: Publishing a DirectQuery dataset from Power BI Desktop

Power BI automatically configures the dataset to use a gateway by matching the data
sources configured in the PBIX file and the sources configured in the Power BI service
for the gateway. The user must also be listed for the gateway.

4. Access the workspace in the Power BI service and from the datasets list, click on
Settings via the ellipsis (...).

5. Modify the scheduled cache refresh frequency from 1 hour to 15 minutes.

Figure 12.28: DirectQuery dataset settings

By default, the dashboard tiles are refreshed each hour for DirectQuery and Live Connection
datasets. In this process, queries are sent by the Power BI service through the gateway to
the dataset sources. In this scenario, the organization is comfortable with the more frequent
queries, but in other scenarios simply a daily or even a weekly dashboard refresh would be
sufficient to avoid adding workload to the data source.

Chapter 12

551

See also

 f Power BI REST API Datasets – Refresh Dataset: https://bit.ly/3xWvE6J

 f Add or remove a gateway data source: https://bit.ly/3f7GvSG

 f How to configure a Power BI report scheduled refresh: https://bit.ly/3evfZU7

Publishing Apps
Apps in Power BI are collections of related dashboards and reports from a single workspace
focused on a given subject area. Apps are the recommended distribution method for larger
solutions involving several distinct reporting artifacts and targeting groups of end users who
only need read access.

In this recipe, we demonstrate how to create and publish an app in the Power BI service.

Getting ready

To prepare for this recipe, complete the first recipe Building a Dashboard in Chapter 5,
Working in the Service.

How to do it…

To implement this recipe, use the following steps:

1. In the Power BI service, select a workspace, such as the workspace containing the
North American Sales dashboard created in Chapter 5, Working in the Service,
Building a Dashboard.

2. Toggle datasets to No and all other items to Yes in the Include in app column.

Figure 12.29: Workspace contents

https://bit.ly/3xWvE6J
https://bit.ly/3f7GvSG
https://bit.ly/3evfZU7

Deploying and Distributing Power BI Content

552

3. Click the Create app button.

4. On the Setup tab, edit the App name and enter a Description. You can upload a
custom App logo and set the App theme color and Contact Information as well.

Figure 12.30: App Setup tab

5. Click the Navigation tab.

6. Use the New dropdown and choose Section.

7. Select the New section and change the Name to North America.

8. Create three additional sections for Global Sales Reports, Customers, and
Supporting Materials.

9. Move report element links into sections by clicking on the item in the Navigation
pane and selecting a section from the Section dropdown.

Figure 12.31: App Navigation tab

Chapter 12

553

10. Select the Permissions tab.

11. Add specific individuals or groups to have access to the app and set the permissions.
It is recommended that you uncheck the settings under the Allow everyone who
has app access to heading and instead control permissions at the dataset level.
In addition, it is generally recommended to check the checkbox for Install this app
automatically under the Installation heading.

Figure 12.32: App Permissions tab

12. Click the Publish app button in the lower-right corner.

13. A popup with the name of the app will appear. Click the Publish button.

14. In the Successfully published dialog, click the Go to app button.

Figure 12.33: App successfully published

Deploying and Distributing Power BI Content

554

15. The app will look similar to the following:

Figure 12.34: Published app

16. In the top-left corner, click Go back.

17. In the left navigation pane, select Apps.

18. The app should be listed.

Figure 12.35: Apps

You have now built your first app!

How it works…

Apps are a content type in the Power BI service that allows multiple dashboards, reports,
and workbooks to be shared and accessed in a single place. Apps are limited to a single app
per workspace and while apps can contain links to content outside of the workspace, those
links will not function as part of the app but rather simply transport the user to the external
dashboard, report, or web address.

Chapter 12

555

Even with these limitations, apps are advantageous when it comes to sharing multiple content
items at the same time when the designer does not want to give business users permissions
to the entire workspace. Business users benefit by having a single link for all of the content
included in the app.

There's more…

Once an app is published, it can be modified. This is done from the workspace by clicking the
Update app button in the upper-right corner where the Publish app button was located. The
tabs for configuring the app are the same as when publishing, except the Permissions tab
now includes a Links area:

Figure 12.36: Links area on the app's Permissions tab

The settings for the app on all three tabs can be edited and then, once complete, simply click
the Update app button in the lower-right corner where the Publish app button was located
originally.

Deploying and Distributing Power BI Content

556

Apps can also be unpublished. This is also done from the workspace by using the ellipsis (…)
and then selecting Unpublish App.

Figure 12.37: Unpublish App

As you can see, apps provide a flexible method of distributing content to users.

See also

 f What is a Power BI app?: https://bit.ly/3fMYsI5

 f Publish an app in Power BI: https://bit.ly/39NWl2S

Publishing Reports to the Public Internet
The Publish to web feature in the Power BI service allows Power BI reports to be shared with
the general public by embedding the report within websites, blog posts, and sharing URL
links. If the publish to web tenant setting is enabled and if a user has edit rights to a report,
an embed code can be generated containing both the HTML code for embedding the report
and a URL to the report. All pages of the report, including any supported custom visuals and
standard interactive functionalities such as filtering and cross highlighting, are available to
consumers of the report. Additionally, the report is automatically updated to reflect refreshes
of its source dataset and embed codes can be managed and optionally deleted if necessary,
to eliminate access to the report via the embed code and URL.

This recipe walks through the fundamental steps and considerations in utilizing the publish to
web feature.

Getting ready

To prepare for this recipe, follow these steps:

1. In the Power BI service, click on the gear icon in the upper-right corner and select
Admin portal.

https://bit.ly/3fMYsI5
https://bit.ly/39NWl2S

Chapter 12

557

2. In the Admin portal, click Tenant settings.

3. Under Export and sharing settings, find and expand Publish to web.

4. Enable Publish to web if disabled.

Figure 12.38: Publish to web setting within the tenant settings of the Power BI admin portal

The publish to web feature can be either enabled or disabled for all users in the organization,
enabled for specific security groups, or disabled for specific security groups. Given the real
security risk posed by Publish to web, it is highly recommended to keep this setting disabled
unless the business requires this capability, and even then to limit the feature to specific
security groups.

Deploying and Distributing Power BI Content

558

How to do it...

To implement this recipe, use the following steps:

1. Create a workspace in the Power BI service to host Publish to web reports.

2. Assign a descriptive name to the workspace that associates it to publish to web
content or publicly available data.

3. Allow members to edit content and only add the individual users that require
edit rights to the content.

4. Create a new Power BI Desktop file that will serve as the dataset for the
publish to web report.

5. Develop essential data connections, queries, model relationships, and
measures to support the report.

6. Save the file and publish it to the app workspace created earlier.

7. Open a new Power BI Desktop file that will serve as the publish to web
report.

8. Click on Get Data and connect to the published dataset via the Power BI
datasets connector.

9. Develop the report including all visuals, layout, and formatting options,
including page size (16:9 or 4:3).

10. Name the file, save, and click on Publish. The report will be published to the
workspace of the source dataset.

11. Access the workspace in the Power BI service.

12. Add any new on-premises data sources to the on-premises data gateway in
the manage gateways portal.

13. Open the settings for the dataset, assign a gateway (if applicable), and
configure a scheduled refresh.

14. Open the report, click on File, Embed report, and then Publish to web (public).

Chapter 12

559

Figure 12.39: The Publish to web option for a report in the Power BI service

15. Click on Create embed code and then Publish.

16. A Success! dialog is displayed allowing you to copy the embed codes for the report.

Figure 12.40: Successful Publish to web

You are now ready to share the Publish to web URL or use the HTML code in your own
website.

Deploying and Distributing Power BI Content

560

How it works...

A separate workspace is not technically necessary for publish to web, but this isolation is
recommended for manageability and limiting the risk of publishing confidential or proprietary
information. Similarly, Premium capacity is not required but could be appropriate for larger
datasets or when more frequent data refreshes and consistent performance are important.

The HTML code provided can be edited manually to improve the fit of the report on the
destination for embedding. Adding 56 pixels to the height dimension can adjust the size of the
bottom bar. Setting the page size in Power BI Desktop, the view mode in the Power BI service
(the View icon in the report header at the upper right), and manually adjusting the iFrame
height and width values may be necessary for a perfect fit.

Per Figure 12.39, Power BI reports can also be embedded in SharePoint Online. Clicking on
SharePoint Online provides a URL that can be used with a Power BI web part in SharePoint
online. Users accessing the SharePoint online page must also have access to the report in the
Power BI service.

Power BI caches the report definition and the results of the queries required to view the report
as users view the report. Given the cache, it can take approximately one hour before changes
to the report definition or the impact of dataset refreshes are reflected in the version of the
report viewed by users.

There's more...

All Publish to web and other embed codes can be managed by members of the workspace
where the embed code was created. In addition, all embed codes from all workspaces can
be managed by administrators in a central location. To see how this is accomplished, do the
following:

1. In the Power BI service, open the workspace where the Publish to web embed code
was created.

2. Click the gear icon in the upper-right corner and select Manage embed codes.

3. All embed codes created for the workspace are displayed and these codes can be
retrieved or deleted using the ellipsis (…).

Figure 12.41: Manage embed codes interface for a workspace

Chapter 12

561

4. Now click on the gear icon again and choose Admin portal.

5. In the admin portal, select Embed Codes.

6. All embed codes for all workspaces are displayed and the three vertical dots allow the
reports to be viewed or the embed code deleted.

Figure 12.42: Manage embed codes in the admin portal

A Status of Not Supported indicates that one of the few unsupported features has been used
by the report, such as RLS, SSAS tabular on premises, R visuals, or ArcGIS Maps for Power BI.

See also

 f Publish to web from Power BI: https://bit.ly/3bezKxq

Enabling the Mobile Experience
Power BI mobile apps have been designed to align closely with the user experience and
feature set available in the Power BI service. This provides a simple, familiar navigation
experience for users and allows BI and IT teams to leverage existing Power BI assets and
knowledge to enhance the mobile experience in their organization.

This recipe contains two processes to take advantage of Power BI's mobile capabilities. The
first process helps identify "quick win" opportunities that require limited BI/IT investment to
better utilize basic Power BI mobile features. The second process identifies somewhat less
common yet powerful and emerging use cases for Power BI mobile applications.

https://bit.ly/3bezKxq

Deploying and Distributing Power BI Content

562

Getting ready

To prepare for this recipe, follow these steps:

1. Identify the most highly used dashboards and reports by opening the Power BI admin
portal (gear icon: Admin portal) and select the Usage metrics menu item.

2. Decide which dashboards and reports to target for mobile enhancements.

Figure 12.43: Usage metrics in the Power BI admin portal

The most consumed dashboards and packages visuals provide a summary of consumption or
usage by count of users. For much more granular analysis of usage, the Microsoft 365 audit
log for Power BI events can be imported and analyzed per Chapter 10, Administering and
Monitoring Power BI. Additionally, usage metrics reports specific to individual dashboards and
reports are now available in the Power BI service in the ellipsis (…) menu. Though scoped to a
specific item, these reports also indicate the split between web and mobile usage.

Chapter 12

563

How to do it...

To implement this recipe, use the following steps:

1. Optimize a Power BI dashboard for mobile consumption by opening the dashboard
and switching to Mobile view.

Figure 12.44: Switching to Mobile view for a dashboard in the Power BI service

2. Unpin image, text, and less mobile-friendly or relevant tiles from the Mobile view.

3. Resize and organize KPIs and essential visuals at the top of the Mobile view.

Figure 12.45: Customizing the Mobile view of a dashboard in the Power BI service

4. Open the PBIX file for a report.

5. Choose Mobile layout in the ribbon of the View tab of the most important
report pages and design the custom mobile layout of the page. See Chapter 4,
Authoring Power BI Reports, for details on this process.

6. Publish the updated Power BI report to a workspace in the Power BI service
and re-pin any dashboard tiles.

7. Test the mobile-optimized dashboards and reports from mobile devices.

8. Publish updates from Power BI workspaces to Power BI apps containing these mobile
enhancements.

Deploying and Distributing Power BI Content

564

9. Check that Favorites are being used for dashboards and for apps by mobile users.

10. Demonstrate the process of configuring a data alert with a notification on a
dashboard tile in the Power BI mobile app.

Figure 12.46: Notifications of data alerts appear outside the mobile app

11. Demonstrate the annotate and share feature and related scenarios to mobile users.

Figure 12.47: Annotation added to a Power BI report in Power BI mobile and shared via email

In this example, a report accessed in Power BI Mobile is lightly annotated, and a
short message is shared with a colleague, requesting further analysis. A link to the
report annotated is built into the shared email enabling the recipient to immediately
act on the message and optionally share an annotated response that addresses the
request.

Chapter 12

565

12. Use the Windows 10 Power BI app in meetings and presentations.

Figure 12.48: Windows 10 Power BI app

The Windows 10 Power BI app supports touch-enabled devices, annotations, and
easy navigation controls.

13. Optimize datasets for Q&A. See the recipe Preparing for Q&A in Chapter 5,
Working in the Service, for more details.

14. Test common questions and provide users with examples and keywords to
better use the feature.

Building and optimizing mobile experiences can greatly aid in the adoption of Power BI.

How it works...

Only the owner of the dashboard will have the option to customize the Mobile view in the
Power BI service. As per Chapter 4, Authoring Power BI Reports, the mobile layout for report
pages is implemented within Power BI Desktop files. Therefore, any Power BI Pro user with
access to the workspace of the report in the Power BI service and the source PBIX file(s) could
optimize these reports for mobile consumption.

By enabling the Responsive Visuals property for Cartesian visuals such as the column, bar,
and line charts, these visuals will be optimized to display their most important elements as
their size is reduced. This effectively makes it realistic to use these more dense visuals in the
mobile layout for reports and mobile view for dashboards. However, it still may make sense to
prioritize KPI, card, and gauge visuals in mobile layouts, given the limited space.

Deploying and Distributing Power BI Content

566

Data alerts configured by users are only visible to those users, and there are no limits on the
volume of alerts that can be configured. For example, a user may want to set two alerts for the
same dashboard tile to advise of both a high and a low value. Currently, data alert and favorite
activity is not stored in the Office 365 audit logs, so it's necessary to engage mobile users on
these features to understand adoption levels.

There's more...

The Power BI team at Microsoft has provided many options for working with Power BI on
mobile devices such as tablets, phones, and even watches. Examples of these options include
integration with Apple Watch, the ability to connect and view on-premises Reporting Services
reports from phones, and continuous updates to the features and functionality of the Power BI
mobile application for iOS and Android devices.

Power BI dashboards can be synchronized with the Apple Watch via the Power BI for iOS
application.

Figure 12.49: Index Screen (left) and the In-Focus Tile (right) of the Power BI mobile app on the Apple Watch

Simply open a dashboard in Power BI for iOS, click on the ellipsis (...) and then click on Sync
with watch. Only card and KPI tiles are supported, but Apple Watch faces can be configured
to display one of the Power BI tiles.

SSRS reports can be accessed and viewed from the Power BI mobile apps by tapping your
profile image icon in the upper-left corner of the app and then Connect to server.

Chapter 12

567

Figure 12.50: Navigation menu in Power BI Mobile with connection to a report server

As you can see, Power BI has wide support for a variety of different mobile devices.

See also

 f Microsoft Power BI on the Apple App Store: https://apple.co/2R6kaNs

 f Power BI mobile apps documentation: https://bit.ly/33wKWB3

 f View on-premises report server reports and KPIs in Power BI Mobile: http://bit.
ly/2noIloX

https://apple.co/2R6kaNs
https://bit.ly/33wKWB3
http://bit.ly/2noIloX
http://bit.ly/2noIloX

Deploying and Distributing Power BI Content

568

Distributing Content with Teams
Microsoft Teams is a unified platform for collaboration and communication, combining video
meetings, phone calls, file storage, persistent workplace chat, and application integration into
a unified interface. Teams is a part of the Microsoft 365 office productivity suite, integrating
natively with Word, PowerPoint, Excel, and SharePoint Online. In addition, feature extensions
provide support for integrating with third-party applications.

Microsoft Teams has seen explosive growth in recent years, particularly during the pandemic
in 2020. In fact, between March and June 2020, Microsoft Teams had nearly 900% growth.
For over half a million organizations, Microsoft Teams has become an essential tool used daily
to drive communication and collaboration. It is no surprise then that Microsoft has recently
released integration between Power BI and Teams that enables Teams to act as a distribution
channel for dashboards, reports, and other content.

This recipe demonstrates how to utilize Teams to distribute and collaborate on Power BI
content.

Getting ready

To prepare for this recipe, follow these steps:

1. Ensure that you have published a report, dashboard, or app to the Power BI service.

2. Open Microsoft Teams and join or create a team.

You are now prepared to complete this recipe.

How to do it…

To implement this recipe, use the following steps:

1. Within Teams, select Teams in the navigation pane and then select a channel within
a team.

2. In the team's header area (tabs), select the plus icon (+) to Add a tab.

Figure 12.51: Add a tab in Microsoft Teams

Chapter 12

569

3. Within the Add a tab dialog, search for power bi and select the Power BI app.

Figure 12.52: Add a Power BI tab in Microsoft Teams

4. In the Power BI dialog, select a dashboard or report from Workspaces, Apps, or
Shared with me.

Figure 12.53: Adding Power BI content to Teams

5. Click the Save button.

6. The report or dashboard name is added as a tab for the team.

Deploying and Distributing Power BI Content

570

7. If Post to the channel about this tab is checked, a post appears in the Posts tab of
the General channel.

Congratulations on publishing your first Power BI report to Teams!

How it works…

Adding a Power BI tab in Teams does not generate an embed code like Publish to web or
embedding in SharePoint online but rather uses Teams' feature extension capabilities to
integrate with Power BI. Additionally, the creation of a Power BI tab in Teams does not grant
permissions to the dashboard or report distributed via Teams. Members of the given Team
must be granted permissions to the Power BI content via the Power BI service.

There's more…

Adding Power BI tabs to teams within Microsoft Teams is not the only way that Power BI is
integrated with Microsoft Teams. Two additional integrations exist, Chat in Teams and pinning
the Power BI Windows 10 app to the Teams navigation pane. To see how these additional
integrations work, follow these steps:

1. Log in to the Power BI service and open a dashboard, report, or app.

2. In the header bar, click Chat in Teams.

Figure 12.54: Chat in Teams

3. Search for a Team or a Channel to share a link to the Power BI content.

Figure 12.55: Share to Microsoft Teams

Chapter 12

571

4. Click the Share button.

5. A post containing a link to the Power BI content is posted to the Posts tab of the
selected team and channel.

Figure 12.56: Power BI report link shared to Teams Posts tab

6. In Teams, select the ellipsis (…) from the navigation pane and search for power bi.

Figure 12.57: Adding the Power BI app in Teams

7. Select the Power BI app and then click the Add button.

Deploying and Distributing Power BI Content

572

8. The Power BI app is now pinned to the Teams navigation bar.

Figure 12.58: The Power BI app in Teams

As you can see, there are many integration points between Power BI and Teams.

See Also

 f Collaborate in Microsoft Teams with Power BI: https://bit.ly/2QYrXgl

 f Add the Power BI app to Microsoft Teams: https://bit.ly/2RD8ly8

Conclusion
This chapter contained detailed examples and considerations for deploying and distributing
Power BI content via the Power BI service and Power BI mobile applications. This included
the creation and configuration of app workspaces and apps, procuring and assigning Power
BI Premium capacities, configuring data sources and refresh schedules, and deriving greater
value from Power BI mobile applications. Additionally, processes and sample architectures
were shared, describing staged deployments across development and production
environments and multi-node premium capacity deployments.

In the next chapter, we will explore integrating Power BI with other applications, including SQL
Server Reporting Services, Excel, PowerPoint, Azure Analysis Services, Dataverse, Dynamics
365, and more!

https://bit.ly/2QYrXgl
https://bit.ly/2RD8ly8

573

13
Integrating Power BI

with Other Applications
Power BI tools and services including Power BI Desktop, the Power BI web service, and Power
BI mobile applications form a modern, robust business intelligence and analytics platform
by themselves. Power BI Premium further extends the scalability and deployment options of
Power BI solutions, enabling organizations to deliver Power BI content to large groups of users
via apps in the Power BI service, embedded within custom applications, the on-premises
Power BI Report Server, or some combination of these distribution options.

However, many organizations either already have extensive self-service and corporate BI
assets and skills in other tools, such as Excel, Analysis Services (Azure Analysis Services (AAS)
or SQL Server Analysis Services (SSAS)), and SQL Server Reporting Services (SSRS), or are
interested in utilizing the unique features of these tools as part of their Power BI solutions.
As one example, an organization may choose to keep many existing Excel reports in Excel
rather than convert them to Power BI reports given the unique features of Excel such as cube
formulas. Similarly, some organizations may continue to use an existing AAS resource for
semantic models rather than migrate these models to Power BI Premium for some time due
to significant reporting dependencies on these models. Moreover, given the many additional
features and benefits of Power BI datasets, organizations with legacy Excel-based Data
Models (formerly Power Pivot) may choose to migrate these assets to Power BI.

The recipes in this chapter highlight powerful integration points between Power BI, SSRS,
Analysis Services, Excel, PowerPoint, Power Apps, and Power Automate. In this chapter, we will
cover the following recipes:

 f Integrating SSRS and Excel

 f Migrating from Power Pivot for Excel to Power BI

Integrating Power BI with Other Applications

574

 f Accessing and Analyzing Power BI Datasets in Excel

 f Building Power BI Reports into PowerPoint Presentations

 f Connecting to Azure Analysis Services

 f Integrating with Power Automate and Power Apps

 f Leveraging Dataverse and Dynamics 365

 f Connecting Dynamics 365 Finance and Operations and the Power Platform

At the end of this chapter you will have a firm understanding of how Power BI works and
integrates with other Microsoft technologies.

Technical Requirements
The following are required to complete the recipes in this chapter:

 f Power BI Desktop

 f Excel

 f Visual Studio

 f SQL Server with the AdventureWorksDW2019 database installed. This database and
instructions for installing it are available here: http://bit.ly/2OVQfG7

 f Files for this chapter can be downloaded from the following GitHub repository:
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-
Edition

Integrating SSRS and Excel
Power BI Desktop is the primary report authoring tool for content published to the Power BI
service as well as for Power BI report visuals embedded in custom applications. However, for
many organizations a significant portion of existing or legacy reporting workloads built with
SSRS and Excel must be maintained. In many cases, existing SSRS and Excel reports can be
converted to modern Power BI reports and dashboards but Power BI is not intended as a full
replacement for all the features and use cases for these other tools. In addition to supporting
paginated reports (aka SSRS reports) via Power BI Premium and data refresh of Excel reports
built against Power BI datasets, the Power BI service offers further methods of integrating
content from Excel and SSRS into Power BI. Additionally, given the common database engine
and DAX language of Power BI, Power Pivot for Excel, and Analysis Services, BI teams can take
full control of reports rendered in SSRS and Excel by authoring custom DAX queries.

This recipe contains two examples of authoring and publishing content from SSRS and Excel
to Power BI.

http://bit.ly/2OVQfG7
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition
https://github.com/PacktPublishing/Microsoft-Power-BI-Cookbook-Second-Edition

Chapter 13

575

Getting ready

To prepare for this recipe, follow these steps:

1. If necessary, download, install, and configure Microsoft SSRS: https://bit.
ly/3yfdTjk.

2. Ensure that SSRS is configured for Power BI integration:

Figure 13.1: Report Server Configuration Manager—Power BI Integration

3. The Power BI Integration menu item is at the bottom of the list and includes the
Power BI tenant name (ID). You must have configured the web service URL and web
portal URL to configure this setting.

4. Ensure that you have Visual Studio installed and verify that in Visual Studio you have
SQL Server Data Tools installed, the Workload for Data storage and processing,
and the Extension for Microsoft Reporting Services Projects. Install the appropriate
items as necessary in Visual Studio. To understand how to install Visual Studio, use
this link: https://bit.ly/389eozC.

You are now ready to complete the steps for this recipe.

https://bit.ly/3yfdTjk
https://bit.ly/3yfdTjk
https://bit.ly/389eozC

Integrating Power BI with Other Applications

576

How to do it...

To implement this recipe, do the following:

1. Create or identify a workspace in the Power BI service to host the report content.

2. Create or identify the dashboards in this workspace that will display the report
content.

3. Create a new Report Server Project in Visual Studio or open an existing one.

4. Configure the AdventureWorksDW2019 database on your SQL Server as a Shared
Data Source for the project:

Figure 13.2: Report Server Project —shared data source Configuration for an SQL database

5. Right-click on the Reports folder and choose Add New Report.

6. Right-click Data Sources and choose Add Data Source….

7. Choose the Shared data source option, select the Shared Data Source created in
Step 4, and press the Next> button.

8. Build your own query or use the following query:
SELECT
 vProducts.ProductKey AS [vProducts ProductKey]
 ,vProducts.EnglishProductSubcategoryName
 ,vProducts.EnglishProductName
 ,vProducts.DaysToManufacture
 ,vProducts.Color
 ,FactInternetSales.ProductKey AS [FactInternetSales ProductKey]
 ,FactInternetSales.OrderQuantity
 ,FactInternetSales.UnitPrice
 ,FactInternetSales.DiscountAmount
 ,FactInternetSales.SalesAmount
 ,FactInternetSales.TaxAmt
 ,FactInternetSales.Freight

Chapter 13

577

 ,vProducts.EnglishProductCategoryName
 ,FactInternetSales.OrderDate
FROM
 vProducts
 INNER JOIN FactInternetSales
 ON vProducts.ProductKey = FactInternetSales.ProductKey

9. Click the OK button to exit Query Designer and then click the Next> button.

10. Choose Tabular and click the Next> button.

11. Click the Finish>> button.

12. Click the Finish button.

13. Remove the table created in the central design panel (design surface).

14. Use the dataset to create SSRS report visuals for pinning. Charts, gauge panels,
maps, and images can be pinned from SSRS to Power BI dashboards.

15. Deploy the SSRS report to a report folder in the SSRS portal and confirm that it
renders properly:

Figure 13.3: Pin SSRS report visual to Power BI Dashboard

16. Click on the Power BI icon and then click on the chart in the report you wish to pin.

17. Choose the Workspace, the Dashboard, and the Frequency of updates:

Figure 13.4: Pin to Power BI from SSRS

Integrating Power BI with Other Applications

578

18. Click the Pin button.

19. In the SSRS portal, click on the gear icon and select My subscriptions to confirm the
Power BI Dashboard subscription:

Figure 13.5: My subscriptions in SSRS

20. In the Power BI service, adjust the size, position, and optionally the title and subtitle
of the dashboard tile.

21. Click on the dashboard tile to test that the URL opens the report in the SSRS portal.
Set the link to open in a separate tab.

This recipe is now complete.

How it works…

Microsoft has been clear that Power BI and SSRS are designed for unique BI workloads
and scenarios and organizations can choose the tool that is best suited for their given
projects, as well as using multiple report authoring tools within the same solution and overall
BI deployment. Power BI is designed for a modern, interactive, and rich data exploration
experience.

SSRS, now included with Power BI Report Server, continues to deliver robust enterprise
reporting capabilities with updated paginated report objects suited for operational reporting
and distribution features such as subscriptions.

In certain reporting scenarios, a paginated or "classic" report with a fully configured page
and report layout defined in a Visual Studio SSRS project is appropriate. Additionally, for
organizations that can only deploy BI on-premises or if certain BI content such as highly
sensitive reports must remain on-premises, Power BI Report Server provides a single on-
premises solution and portal to include both traditional SSRS reports and optionally Power BI
reports as well. Finally, Power BI Premium includes the capability to deploy SSRS paginated
reports to the Power BI service.

Operational reporting workloads in which relatively simple, tabular report documents need
to be distributed or made available across groups or teams in a specific file format such as
PDF or Excel align well with SSRS. Paginated SSRS reports can provide a basic level of user
interaction and data visualization via report parameters and charts, but this is not its strength
or core use case. Note that SSRS also has a mobile report type and mobile report authoring
tool in Microsoft SQL Server Mobile Report Publisher. Power BI supports individual user
email subscriptions to reports, but SSRS supports data-driven report subscriptions that apply
parameters to a report based on subscriber information, such as Eastern Region or Sales
Managers.

Chapter 13

579

Future improvements to Power BI's report and dashboard subscription capabilities along with
greater control over tabular and matrix visuals and Power BI Premium-dedicated hardware
may position Power BI to assume a greater share of reporting workloads traditionally handled
by SSRS.

There's more...

In addition to building integrations with SSRS, Microsoft has also integrated another popular
BI tool, Excel, with Power BI. To demonstrate Excel's integration with Power BI, do the
following:

1. Confirm that the Excel reporting content uses the Excel Data Model as its data
source. Only workbooks with data models can be configured for a scheduled refresh
in the Power BI service. For details on how to build an Excel report using the Excel
Data Model, use this link: https://bit.ly/3j9AYOB.

2. Identify the data source used by the Excel Data Model and add this source to the on-
premises data gateway if necessary.

3. Develop and test DAX queries in DAX Studio to be used as the datasets and tables in
Excel.

4. Open the Excel workbook containing the Data Model.

5. From the Data tab, click on Existing Connections and select one of the queries used
to load the data model. Choose one of the smaller dimension table queries, such as
Currency:

Figure 13.6: Existing Connections—M Queries used to load the Data Model

https://bit.ly/3j9AYOB

Integrating Power BI with Other Applications

580

6. Click on Open in the Existing Connections menu and then select Table from the
Import Data dialog:

Figure 13.7: Import Data: The Table option

7. An Excel table reflecting the chosen query will be loaded to a worksheet.

8. Right-click on any cell inside the imported table, and from the Table options, select
Edit DAX…:

Figure 13.8: Excel table options—Edit DAX…

9. From the Edit DAX window, change the Command Type dropdown from Table to DAX
and paste in a DAX query in the Expression area:

Figure 13.9: DAX query to retrieve the top 15 products based on current year to date sales

Chapter 13

581

10. Press the OK button.

11. Choose File and then Publish from the Excel ribbon.

12. In the Publish dialog, choose the workspace and then click the Upload button:

Figure 13.10: Uploading the Excel Data Model to the Power BI workspace

13. Open the Power BI service and navigate to the workspace containing the published
Excel workbook.

14. From the Workbooks menu of the workspace, select the three vertical dots and then
choose Schedule refresh.

15. Associate the data source with a data gateway, click on Apply, and then schedule a
data refresh:

Figure 13.11: Gateway configuration for the workbook

16. Select the workbook to open the report. Select the entire table and then click on Pin.

Integrating Power BI with Other Applications

582

17. On the Pin to Dashboard dialog, choose the dashboard and click on the Pin button:

Figure 13.12: Excel table in the published workbook selected—Pin to Dashboard is in the top right

Very rarely would a plain table of data be used in a dashboard. In most cases, formatted Excel
charts and pivot charts would be pinned to the dashboard. The purpose of these examples is
not the visualization choices but rather the data retrieval methods with DAX queries. Note that
custom DAX queries can be reused across Power BI datasets, Excel Data Models, and SSAS
Tabular databases provided these three tools align to a common schema.

While Power BI Desktop supports many of the most commonly used Excel features in addition
to many other advantages, the free-form flexibility of spreadsheet formulas for complex "what-
if" scenario modeling across many variables and granular (cell-specific) formatting controls
makes Excel the proper tool in certain small-scale self-service BI scenarios. Examples of this
include budgeting or planning scenario tools and break-even or price sensitivity analyses. In
addition, legacy data processes driven by Excel VBA macros are likely other good candidates
to remain in Excel. Power BI Desktop supports parameter inputs and combined with DAX
and M functions it can be customized to deliver these report types. However, parameters are
not supported in the Power BI service and Power BI Desktop lacks the inherent flexibility of
spreadsheet formulas and custom cell-level formatting and conditional logic.

See also

 f SQL Server Reporting Services Integration with Power BI: https://bit.ly/3y6LN9J

 f Publish to Power BI from Microsoft Excel: https://bit.ly/3bnDaOl

Migrating from Power Pivot for Excel Data
to Power BI

As Power BI has become more mature as a product and as business users become more
comfortable with the platform, it is often beneficial to migrate data models (formerly Power
Pivot) and M queries from Excel to Power BI. From a data management and governance
standpoint, it is preferable to consolidate data models to either Power BI and/or Analysis
Services models and to limit Excel's role to ad hoc analysis such as pivot tables connected to
datasets in the Power BI service via Analyze in Excel.

https://bit.ly/3y6LN9J
https://bit.ly/3bnDaOl

Chapter 13

583

In this brief recipe a data model and its source M queries contained in an Excel workbook
are migrated to a Power BI dataset via the Import Excel Workbook to Power BI Desktop
migration feature. Additional details on the workbook content imported and other options and
considerations for Excel-to-Power BI migrations are included in the How it works... and There's
more... sections.

Getting ready

Analyze the Excel workbook to identify the components that can be imported to Power BI
Desktop. For example, a table or range of data in an Excel worksheet will not be imported
but tables in the Excel data model will be imported. Similarly, Power View report sheets in
Excel and their visuals will be migrated but standard Excel charts, pivot tables, and worksheet
formulas and formatting will not be migrated.

In some scenarios it may be necessary to revise the Excel workbook to establish a data source
connection and query that will be migrated. Additionally, it may be necessary to re-create
Excel-specific report visualizations such as pivot tables and charts with Power BI Desktop
report authoring visuals. Excel workbooks that contain a high level of customization such
as VBA macros and complex Excel formula logic may require significant modifications to the
Excel workbook or to the Power BI Desktop model or some combination of both to support a
migration.

How to do it...

To implement this recipe, do the following:

1. Save or download the latest Excel workbook

2. Open a new Power BI Desktop (PBIX) file

3. From Report View, click File | Import | Power Query, Power Pivot, Power View

Figure 13.13: Import queries and models created in Excel to Power BI

4. Select the Excel file and click the Open button

Integrating Power BI with Other Applications

584

5. A warning message appears advising that not all contents of the workbook are
included in the import:

Figure 13.14: Import warning when importing an Excel file to Power BI

6. Click the Start button

7. A migration completion message will appear that breaks out the different items
completed:

Figure 13.15: Import Excel Model to Power BI Desktop Migration completed

8. Click the Close button

9. Save the Power BI Desktop file and use the Model view to confirm all relationships
were imported successfully

10. Click Refresh from the ribbon of the Home tab to test that all M queries were
imported successfully

11. With essential testing complete, click Publish from the ribbon of the Home tab and
choose a workspace for the new dataset

Chapter 13

585

Your new Power BI dataset is now available in the Power BI service. You can even create new
live connection reports against this dataset if desired.

How it works...

The migration may take a few minutes depending on the size of the data model imported.
Power BI Desktop imports M queries, data model tables, DAX measures and KPIs, and any
power view for Excel sheets.

Workbooks with significant dependencies on items that do not import, such as Excel formulas,
standard Excel tables (not model tables), worksheet range data, standard Excel charts, and
conditional formatting, may need to remain supported in some capacity. For example, a
minimum amount of data could be imported to Excel's data model to continue to drive Excel-
based reports and this workbook could be uploaded to the Power BI service and refreshed.

Power BI table and matrix visuals include the most important features of Excel pivot tables
such as rich conditional formatting options, displaying multiple measures on rows, drill up/
down hierarchies on rows and columns, controls for subtotals visibility, a stepped or staggered
layout, percentage of row/column/totals, and more. These enhancements, along with the
powerful cross highlighting capabilities exclusive to Power BI reports, make it feasible and
advantageous to migrate most Excel pivot table-based reports to Power BI.

For example, if the Power Pivot for Excel workbook contained several worksheets of pivot
tables, pivot charts, and standard Excel charts, new Power BI reports containing the same
metrics and attributes can be developed as alternatives. With both the data model and the
reports completely migrated to Power BI, the Excel workbook can be removed from the Power
BI service or any other refresh and distribution process.

There's more...

If certain Excel-specific content is needed despite the migration, the Power Pivot for Excel data
model can be uploaded to the same workspace and a refresh schedule can be configured
on this workbook in the Power BI service. This can be accomplished by choosing File and
then Publish from the Excel ribbon. Once the file is published to a workspace in the Power
BI service, the Power Pivot dataset appears in the workspace's Datasets while the Excel
workbook appears in the workspace's Workbooks.

Integrating Power BI with Other Applications

586

Workbooks can also be added to the Power BI service by using the Get Data link in the lower-
left corner of the service and then choosing Files:

Figure 13.16: Publish Excel workbook with Data Model to Power BI—upload

The Export option in Excel is equivalent to the import migration process to Power BI Desktop
from this recipe except that the new dataset is already published to a workspace in the Power
BI service. This approach to migration is not recommended, however, as you lose the ability to
download the PBIX file of the created dataset from the Power BI service. Importing to Power BI
Desktop first, per this recipe, maintains this option.

See also

 f Import Excel workbooks into Power BI Desktop: https://bit.ly/3eI4gBG

Accessing and Analyzing Power BI Datasets
in Excel

With a centralized and potentially certified Power BI dataset hosted in the Power BI service,
Excel users with both Free and Pro licenses can take full advantage of Excel's familiar
interface as well as advanced features and use cases such as cube formulas and custom DAX
queries.

https://bit.ly/3eI4gBG

Chapter 13

587

Although these Excel reports, like SSRS paginated reports, are only a supplement to the
Power BI reports and dashboards in the Power BI service, they are often useful for scorecard
layouts with custom formatting and many measures and columns.

In this scenario, an experienced Excel user with deep business knowledge can leverage
the performance, scale, and automatic refresh of the published Power BI dataset to
create custom, fully formatted Excel reports. Additionally, the Excel report author has the
flexibility to apply report-scoped logic on top of the dataset using familiar techniques and
these customizations can inform BI teams or dataset owners of existing gaps or needed
enhancements.

This recipe contains two examples of accessing and analyzing Power BI datasets in Excel. The
first example uses cube formulas and Excel slicers to produce an interactive template report.
The second example passes a custom DAX query to the Power BI dataset to support an Excel
map. Additional details on cube functions in Excel and new Excel visuals are included in the
supporting sections.

Getting ready

To prepare for this recipe, follow these steps:

1. Ensure that the user has a Power BI Pro license.

2. Confirm that the Power BI Pro user has access to the workspace containing the Power
BI report and dataset.

3. Choose a report to use for the analysis. For example, if you have completed the
recipes in Chapter 5, Working in the Service CH5_R1_CountryMonthlyReport is a
good choice. You can download the PBIX for this report from GitHub and publish it to
the Power BI service.

You are now ready to complete this recipe.

How to do it...

To implement this recipe, do the following:

1. Open the chosen report in the Power BI service

2. In the header/ribbon for the report, choose Export and then Analyze in Excel

3. Open the Excel file downloaded from the Power BI service

Integrating Power BI with Other Applications

588

4. Click on the pivot table and add measures and columns from the dataset:

Figure 13.17: Excel Pivot Table with two Slicers based on the Power BI dataset

5. Select a cell within the pivot table

6. Select the OLAP Tools dropdown from the PivotTable Analyze tab and click on
Convert to Formulas:

Figure 13.18: Convert to Formulas Option in the PivotTable Analyze Tab of Excel

Chapter 13

589

How it works...

The pivot table is converted to Excel formulas such as the following:

=CUBEVALUE("pbiazure://api.powerbi.com <id> Model",$A3,C$2, Slicer_Sales_
Territory_Hierarchy)

In this example, the workbook cell C3 references the Total Net Sales measure in cell A3
and the 2011-Jan dimension value in cell C2. Note that the two Excel slicer visuals remain
connected to each CUBEVALUE formula cell and thus can be used for filtering the report. The
calendar months (e.g. 2011-Jan) are converted to CUBEMEMBER functions with a hard-coded
reference to a specific value. These formulas must be maintained and/or updated by the
Excel report author:

=CUBEMEMBER("pbiazure://api.powerbi.com <id> Model","[Dates].[Year
Month].&[2011-Jan]")

The Excel report author(s) can quickly learn to customize the cube formulas such as applying
different filters and to support changes to the report, including new metrics (rows) and
attribute values (columns).

The CUBEVALUE and CUBEMEMBER functions are the most common cube functions but several
others can be used as well, such as CUBESETCOUNT. The Formulas interface in Excel provides
information on the arguments for each function. In more advanced scenarios, Named Ranges
can be assigned to cube formulas and optionally other formulas in the report, and then
passed into cube formulas as parameters:

=CUBEMEMBER(strConn,"[PeriodStart].[Period Start].["&SPUser&"]")

In this example, strConn is a Named Range in Excel containing the name of the data
connection to the Power BI dataset. PeriodStart is a column in a disconnected and hidden
PeriodStart table in the data model and SPUser is a named range reflecting a business
user's selection on a classic combo box form control in Excel. A separate CUBEVALUE function
can reference this CUBEMEMBER function such that user selections in simple Excel controls can
be passed via cube functions to the source dataset and reflected in the report.

There's more...

Once Analyze in Excel has created the connection between the Power BI dataset and Excel,
this connection can be used to create additional report elements. To see how this is done, do
the following:

1. In the same Excel workbook opened locally, create a New sheet.

2. Select Existing Connections from the ribbon of the Data tab.

Integrating Power BI with Other Applications

590

3. In the Existing Connections dialog, select the Power BI connection and select the
Open button.

4. In the Import Data dialog, choose PivotTable Report and then select the OK button.

5. Create a simple pivot table report with one measure and one attribute such as
Internet Net Sales by Product Category.

Figure 13.19: Excel pivot table based on the Power BI service dataset

6. Double-click on one of the measure cells such as $339,773 to execute a "drill-
through" query. All columns of the underlying Internet Sales fact table will be
retrieved filtered by the Clothing category.

Figure 13.20: Excel table result from drill through

7. Select a cell in the Excel table and right-click and choose Table and then Edit
Query....

Figure 13.21: Excel Table Options

Chapter 13

591

8. In the Command Text area, enter (or paste) a custom DAX query and click on OK.

Figure 13.22: DAX Query pasted from DAX Studio into the
Command Text area of the Edit OLE DB Query dialog

9. If the query is valid, the Excel table will update to return the columns specified in the
query.

10. Visuals, such as a map visual, can use this table (DAX query) as their data source.

Figure 13.23: Excel table results from the DAX query (left) and Excel maps visual (right)

Integrating Power BI with Other Applications

592

The number of rows to retrieve can be adjusted in the OLAP Drill Through property in
Connection Properties. A custom data label format is applied to the visual to express the
values in thousands with one decimal place. Note that the default pivot table could not be
used as the source for this visual or several other new Excel visuals.

See also

 f Analyze in Excel: https://bit.ly/3bIMSeM

 f CUBEVALUE function: https://bit.ly/3DfftUA

 f CUBEMEMBER function: https://bit.ly/3AXr1Kq

Building Power BI Reports into PowerPoint
Presentations

Microsoft PowerPoint remains a standard slide presentation application and the integration of
data analyses and visualizations from external tools is very commonly an essential component
of effective presentation decks. In response to the volume of customer requests, the Power
BI service supports the ability to export Power BI reports as PowerPoint files. Each page of the
Power BI report is converted into an independent PowerPoint slide and the Power BI service
creates a title page based on the report and relevant metadata, such as the last refreshed
date. There are certain current limitations, such as the static nature of the exported file and
the visuals supported, but the feature is available to all Power BI users to streamline the
creation of presentation slides. However, even deeper integration is planned for the future,
including the ability to embed dynamic Power BI reports into PowerPoint.

This recipe contains a preparation process to better leverage the Export to PowerPoint
feature and to avoid current limitations. Additionally, a sample process is described of a user
exporting a Power BI report from a published app and accessing the content in PowerPoint.

Getting ready

To prepare for this recipe, follow these steps:

1. Log in to the Power BI service.

2. Click the gear icon in the upper-right corner and choose Admin portal.

3. Click on Tenant settings.

https://bit.ly/3bIMSeM
https://bit.ly/3DfftUA
https://bit.ly/3AXr1Kq

Chapter 13

593

4. Under Export and sharing, enable the Export reports as PowerPoint presentations
or PDF documents feature in the Power BI admin portal:

Figure 13.24: Tenant settings in the Power BI admin portal

As per the preceding screenshot, the Power BI admin or Office 365 global admin can
also limit the feature to specific security groups.

5. Identify the Power BI report that will serve as the source of the PowerPoint to be
created and its dataset.

6. If the report contains many pages, count the number of report pages. Currently
reports with over 15 pages cannot be exported.

7. Determine whether any report visuals are not supported, including R visuals and
custom visuals that have not been certified.

8. Check whether any background images are used in the report visuals or if any
custom page sizes have been set. It is best to avoid both background images and
custom page sizes.

9. Based on previous steps and initial tests of the export, either apply revisions to the
existing report or create a separate report (using the current report as a starting
point) that will be dedicated to PowerPoint.

You are now ready to complete the steps for this recipe.

How to do it...

To implement this recipe, do the following:

1. Open the report in the Power BI service.

Integrating Power BI with Other Applications

594

2. From the report header, choose Export and then PowerPoint.

Figure 13.25: Export to PowerPoint

3. An Export dialog provides options, click the Export button.

Figure 13.26: Export options for PowerPoint

4. A message will indicate that the export is in progress and may take a few minutes.

5. Open the PowerPoint file and make additional adjustments as needed in PowerPoint.

Figure 13.27: An exported Power BI report in Slide Sorter view of Microsoft PowerPoint

As you can see, exporting to PowerPoint is quite easy!

Chapter 13

595

How it works...

Depending on the browser and its download settings, either the file is downloaded to a
specific path or the browser displays a message for saving or opening the PowerPoint file. A
title page is generated automatically by the export process, containing the name of the report
and a link to the report in the Power BI service. The title page also includes a last data refresh
and a downloaded at date and time value. Each report page is converted into a slide that
contains a high-quality, rendered image of the report page. Any Alt Text specified for visuals is
included in the Notes for each page.

Similar to other planning and precautions with highly visible content such as executive
dashboards, it is important to obtain knowledge and confidence in the data sources, refresh
process, data quality, and ownership. For example, if the source dataset retrieves from
multiple sources including ad hoc Excel files and has a history of refresh failures then the
report might not be a good candidate for a PowerPoint presentation. A report based on an
IT-managed Analysis Services model that has already been validated and has a clear owner
would be a better choice.

Background images will be cropped with a chart's bounding area and thus it is recommended
to remove or avoid background images. Additionally, the exported report pages always result
in standard 16:9 PowerPoint slide sizes and thus custom or non-standard page sizes should
also be avoided. Shapes such as rectangles and lines to provide custom groupings, borders,
and background colors for visuals may also need to be removed for proper PowerPoint
rendering. Finally, non-certified visuals, R visuals, and Python visuals should be avoided in
reports where exporting to PowerPoint is used.

There's more...

The Power BI service supports exporting reports to PowerPoint or PDF as well as to an image
file through the Power BI REST API. In addition, paginated reports can be exported to the
following additional formats:

 f MHTML

 f Microsoft Word

 f XML

A third-party add-in is available for integrating Power BI tiles from the Power BI service into
Microsoft Office documents called Power BI Tiles and is available in AppSource: https://bit.
ly/3w2sUmq. The offering from DevScope includes an automated Office-to-Power BI refresh
process and supports Word, Outlook, and PowerPoint.

https://bit.ly/3w2sUmq
https://bit.ly/3w2sUmq

Integrating Power BI with Other Applications

596

See also

 f Export entire reports to PowerPoint: https://bit.ly/3tIaPZl

 f Power BI tiles: http://www.powerbitiles.com/

Connecting to Azure Analysis Services
Power BI Premium is now a superset of Analysis Services and powerful new features such
as composite models and aggregations are exclusive to Power BI Premium. Nonetheless,
it wasn't long ago in which Azure Analysis Services (AAS) was Microsoft's flagship semantic
modeling tool and thus many organizations' production BI workloads currently leverage AAS
models as the source for Power BI and other report types.

Given the additional features and product roadmap of Power BI Premium, deep compatibility
between AAS and Power Premium, as well as a straight forward migration path, many AAS
(and SSAS) models will eventually be re-deployed to Power BI Premium. Nonetheless, Azure
Analysis Services will remain a fully supported and common cloud service that BI developers
should be familiar with.

"I think it is fair to say that we're the only vendor that can claim a strong presence in
self-service business intelligence with Power BI and corporate business intelligence,
which is typically owned and managed by IT, with Analysis Services."

- Christian Wade, Senior Program Manager

In this recipe, an Azure Analysis Services server is created and a Power BI Desktop file is
imported to this server. The migrated model is then opened in SQL Server Data Tools for
Visual Studio as an Analysis Services project.

Getting ready

To prepare for this recipe, follow these steps:

1. Obtain an MS Azure subscription.

2. Identify the location of your Power BI service tenant by clicking on the question mark
in the top-right menu and selecting About Power BI.

https://bit.ly/3tIaPZl
http://www.powerbitiles.com/

Chapter 13

597

Figure 13.28: Power BI service tenant location

Note that a tenant can be thought of like an apartment in an apartment building. The
Power BI service in Microsoft Azure is akin to the building, providing the foundation,
plumbing, and other common facilities. However, each resident within the Power BI
service has their own private living area (tenant).

3. Log in to the Microsoft Azure portal, https://portal.azure.com.

4. Choose Create a resource.

5. Search for Analysis Services and select Create.

6. Create an Azure Analysis Services server by filling in the required fields:

Figure 13.29: Create an Azure Analysis Services Server

https://portal.azure.com

Integrating Power BI with Other Applications

598

For minimal latency, the location selected should match the location of your Power
BI tenant from Getting ready. A standard or developer tier Azure Analysis Services
instance is required for the import from Power BI Desktop.

7. Click on Create and wait for the server to be visible in the Azure portal (usually less
than one minute).

8. Navigate to the Analysis Services resource and open the instance.

9. Under Models, select Manage.

10. Select New Model, choose Sample data, and click the Add button.

A new model called adventureworks will be added to your Analysis Services instance.

How to do it...

To implement this recipe, do the following:

1. With the Analysis Services resource open, click Overview and obtain the Server
name.

Figure 13.30: Azure Analysis Services resource in the Azure portal

2. If multiple models are on the server, confirm the model name and optionally the
perspective to connect to. All models on the AAS server are also listed in the Azure portal.

3. Open a new Power BI Desktop file, click on Get Data, and choose Analysis Services.

4. Enter or paste the server name and the database (the name of the model) and press
the OK button:

Figure 13.31: Azure Analysis Services data source configuration in Power BI Desktop

Chapter 13

599

5. Authenticate using a Microsoft account.

6. Create a Power BI report and publish it to a workspace in the Power BI
service.

As you can see, connecting to an Analysis Services database is quite simple and
straightforward.

How it works...

Connect live is the default option and this should represent the vast majority if not all
connections as data has already been imported to (or connected from, in the case of SSAS
DirectQuery models) the Azure Analysis Services database. Importing data to Power BI
Desktop would require its own refresh process, but in certain rare scenarios, a DAX query can
retrieve from the AAS database and then optionally merge or integrate this data with other
data sources in Power BI Desktop.

Just like Power BI Desktop reports with live connections to datasets in the Power BI service,
the report author can also create DAX measures specific to the given report with live
connections to Analysis Services. This feature enables report authors familiar with DAX to
address the unique metric requirements of a report. If the same report-level measures are
being remade across multiple reports, the BI/IT team responsible for the Analysis Services
model can consider implementing this logic into the model.

Azure Analysis Services instances are priced per hour according to QPUs (Query Processing
Units) and memory. One virtual core is approximately equal to 20 QPUs. For example, an S4
instance with 400 QPUs has roughly 20 virtual cores and 100 GB of RAM:

Figure 13.32: Azure Analysis Services instance pricing

Integrating Power BI with Other Applications

600

Azure Analysis Services servers can be paused, and no charges are incurred while servers are
paused. Additionally, the pricing tier of a server can be moved up or down a service tier such
as from S1 to S3 or vice versa. A server can also be upgraded from lower service tiers such as
from development to standard, but servers cannot be downgraded from higher service tiers.

There's more...

Given that Power BI and Analysis Services Tabular share the same database engine and
because Azure Analysis Services eliminates the query latency and infrastructure costs of
communication between the Power BI service and on-premises servers via the on-premises
data gateway, organizations may consider migrating their Power BI and SSAS models to Azure
Analysis Services. As one example, the data source for a model such as Teradata can remain
on-premises but the scheduled or triggered model refresh process of model tables and table
partitions would update the Azure-hosted model through the on-premises data gateway. In
addition to the other cost and flexibility advantages of the Azure Analysis Services Platform-
as-a-Service (PaaS) offering, Power BI Premium capacities can enable all business users to
access the Power BI reports and dashboards built on top of Azure Analysis Services models.
Once migrated to Azure Analysis Services, the tabular model can be accessed as the source
for a Power BI report.

See also

 f Azure Analysis Services: https://azure.microsoft.com/en-us/services/
analysis-services/

 f Client libraries for connection to Azure Analysis Services: http://bit.ly/2vzLAvO

Integrating with Power Automate and
Power Apps

Power BI's tools and services are built to derive meaning and insights from data as well as
making those insights accessible to others. While these are both essential functions, Power
BI itself is not intended to take action or execute a business decision on the data it analyzes
and visualizes. Additionally, information workers regularly interface with many applications or
services and thus, to remain productive, there is a need to automate workflows and embed
logic between Power BI and these applications in order to streamline business processes.
Power Apps and Power Automate, both Microsoft 365 applications and part of the Business
Application Platform along with Power BI, serve to address these needs by enabling business
users to create custom business applications and workflow processes.

https://azure.microsoft.com/en-us/services/analysis-services/
https://azure.microsoft.com/en-us/services/analysis-services/
http://bit.ly/2vzLAvO

Chapter 13

601

In this recipe a Power Automate workflow is created to support a streaming dataset in the
Power BI service. Specifically, the Power Automate workflow is configured to read from an on-
premises SQL Server table every two minutes and push this data into Power BI to provide near
real-time visibility and support for data-driven alerts and notifications.

Getting ready

To prepare for this recipe, follow these steps:

1. Open SQL Server Management Studio (SSMS), connect to the local SQL database
containing the AdventureWorksdW2019 database, and familiarize yourself with the
Columns of the dbo.FactSurveyResponse table:

Figure 13.33: dbo.FactSurveyResponse columns in the AdventureWorksDW2019 database

2. Ensure that you have a data gateway running that is compatible with Power Automate.
See Chapter 1, Configuring Power BI Tools for installation instructions.

In this recipe, an on-premises data gateway is used to support a Power BI streaming
dataset from an on-premises SQL Server database table via Power Automate. Per previous
chapters the same gateway that supports Power BI refresh processes and live connections
or DirectQuery models can also be used for Power Apps and Power Automate. Depending on
the workloads generated by these different activities and applications, and based on gateway
resource monitoring, it may be necessary to isolate Power Apps and Power Automate to a
dedicated on-premises gateway or, in the future, add a server to a high-availability gateway
cluster.

How to do it...

To implement this recipe, do the following:

1. Open a workspace in the Power BI service and click on the New button in the top
menu bar.

Integrating Power BI with Other Applications

602

Figure 13.34: New options for a workspace in the Power BI service

2. Select Streaming dataset, click the API icon, and click the Next button.

3. Configure the streaming dataset to align with the columns and data types of the
FactSurveyResponse table.

Figure 13.35: Streaming dataset configuration

Chapter 13

603

4. Enter a Dataset name, enable the Historic data analysis setting, and click the
Create button.

5. Copy the Push URL value and click the Done button.

6. Log in to Power Automate in Microsoft 365: https://flow.microsoft.com.

7. In the left navigation pane, click Create.

8. In the Start from blank area, click Scheduled cloud flow.

9. Provide a Flow name, set the workflow to Repeat every 5 Minute, and then click the
Create button.

Figure 13.36: Creating a Power Automate workflow

10. On the design screen, click New step.

11. Search for SQL Server and in Actions choose Get rows (V2).

Figure 13.37: Get rows SQL Server action in Power Automate

https://flow.microsoft.com

Integrating Power BI with Other Applications

604

12. Enter in the connection information for the SQL Server and then click the Create
button. For the gateway to appear, the connection information must match a data
source configured on the gateway.

Figure 13.38: SQL Server connection information in Power Automate

13. Configure the Get rows (V2) step:

Figure 13.39: Configuration of the SQL Server Get rows (V2) step in Power Automate

14. Click the New step button.

15. Search for Power BI and choose Add rows to a dataset (Preview).

16. Configure the Add rows to a dataset (Preview) step for the Workspace and Dataset
created previously.

Chapter 13

605

17. Choose RealTimeData as the Table and configure the columns for the dataset.

Figure 13.40: Configuration of the Add rows to a dataset step in Power Automate

18. Click the Save button when complete.

19. Click on My flows and Run the workflow.

20. Monitor the flow by clicking on the Flow Runs Page link and waiting for the flow to
complete.

21. Open a new Power BI Desktop file.

22. Click Get data and choose Power BI datasets.

23. Select the Customer Survey Responses dataset and click the Create button.

24. Create a simple visual that counts the rows in the dataset.

In a production scenario, this recipe would need to be modified such that each run of the
Power Automate flow does not duplicate the rows already present in the Power BI dataset.

How it works...

When historical data analysis is enabled for a streaming dataset in the Power BI service,
the dataset created is both a streaming dataset and a push dataset. As a push dataset, a
database and table for the dataset are created in the Power BI service allowing Power BI
report visuals and functionality to be created from this table. Without historical data analysis
enabled (the default), the dataset is only a streaming dataset. Power BI temporarily caches
the data but there is no underlying database, and thus the only method for visualizing this
data is via a real-time streaming dashboard tile.

Integrating Power BI with Other Applications

606

Power Automate flows are conceptually similar to the control flow interface for SQL Server
Integration Services (SSIS) packages. Complex logic can be added to Power Automate
workflows via branching conditions, scopes, and looping constructs. Power Automate is
designed for self-service scenarios and business power users. Power Automate utilizes Azure
Logic Apps, a cloud-based integration service that is more oriented toward developers and
enterprise integration scenarios.

The run history of the flow, including successful and unsuccessful executions, is available by
clicking on the flow name in the My Flows area of the Power Automate website. Additionally,
the My Flows page specific to the given flow allows for adding owners, viewing connections,
editing the flow, and turning the flow off.

There's more...

In addition to Power Automate, Power Apps also has integrations with Power BI. To see how
this integration works, perform the following steps:

1. Log in to Power Apps in Microsoft 365: https://powerapps.microsoft.com

2. Expand Data in the left navigation pane

3. Select Tables

4. Select the Data dropdown and choose Get data and then Get data again

Figure 13.41: Getting data

5. Choose Power Platform dataflows

6. For Connection, choose Create new connection and authenticate

7. Click the Next button

https://powerapps.microsoft.com

Chapter 13

607

8. Choose a table from a dataflow and click Next

Figure 13.42: Choosing a dataflow table

9. Click the Next button

10. Choose Load to new table and click the Next button

Figure 13.43: Load as a new table

11. Select whether to refresh manually or automatically and click the Publish button

12. Back on the Tables screen, in the left navigation pane, click Create

13. Choose Canvas app from blank

Figure 13.44: Three ways to create a Power app

Integrating Power BI with Other Applications

608

14. Provide an App name and then click the Create button

Figure 13.45: Create app from blank

15. Select the Insert menu option

16. Click on the Charts dropdown and choose Power BI tile

Figure 13.46: Insert Power BI tile

Chapter 13

609

17. Choose a Workspace, Dashboard, and Tile from the Power BI service

Figure 13.47: Choosing a dashboard tile

18. From the Home menu, select New screen and choose List

Figure 13.48: Creating a new List screen

Integrating Power BI with Other Applications

610

19. Select a list item and edit the Data source to choose the table created previously (in
this case, DimProduct)

20. For Fields, choose Edit and change Title2 to be Product Name

21. Save the app

See also

 f Integrate Power BI data alerts with Power Automate: https://bit.ly/3tHLv5R

 f Announcing the new Power Automate visual for Power BI: https://bit.ly/3vY9C1J

 f Export and email a report with Power Automate: https://bit.ly/3fc8eBT

 f Power Apps and Power BI, together at last: https://bit.ly/2QbQHkC

 f Power Apps visual for Power BI: https://bit.ly/3yg5a0n

Leveraging Dataverse and Dynamics 365
The Microsoft Power Platform includes Dataverse, what was formerly called the Common
Data Service (CDS). Dataverse stores business data securely in the cloud and allows you
to manage the data used by business applications. Dataverse stores data in tables and
includes base tables for common scenarios but also allows the creation of new, custom
tables. Dynamics 365 applications such as Dynamics 365 Sales, Dynamics 365 Talent, and
Dynamics 365 Customer Service store data natively in Dataverse and in addition, Power Apps
can be used to build applications against this core data without the need for integration.
Finally, Dynamics 365 Business Central and Dynamics 365 Finance and Operations also have
native integrations with Dataverse.

This recipe demonstrates how to use Power BI with Dataverse and Dynamics 365.

Getting ready

To prepare for this recipe, follow these steps:

1. If you have not already done so, configure a connection to your
AdventureWorksDW2019 database in your data gateway. See Chapter 12, Deploying
and Distributing Power BI Content for details.

2. Open a web browser, go to https://admin.powerplatform.microsoft.com, and log
on with your Microsoft 365 account. This is the Power Platform admin center.

3. In the left-hand navigation pane, click on Environments.

https://bit.ly/3tHLv5R
https://bit.ly/3vY9C1J
https://bit.ly/3fc8eBT
https://bit.ly/2QbQHkC
https://bit.ly/3yg5a0n
https://admin.powerplatform.microsoft.com

Chapter 13

611

4. In the ribbon area, click + New. This opens a New environment pane on the right-
hand side of the page.

Figure 13.49: Power Platform admin center

5. In the New environment pane, enter a Name for the environment, choose a Type
(either Production, Sandbox, or Trial), and choose a Region. Additionally, toggle
Create a database for this environment to Yes and click the Next button at the
bottom of the pane.

6. Choose a Language and Currency. Provide a URL if desired.

7. Toggle Enable Dynamics 365 apps to Yes.

8. Click the dropdown for Automatically deploy these apps and check all the
boxes.

9. Click the Save button at the bottom of the pane.

10. Click the environment and note the Environment URL.

You are now ready to complete this recipe.

How to do it…

To implement this recipe, use the following steps:

1. Navigate to https://powerapps.com and switch to the new environment created in
Getting ready. The current environment is located in the upper-right corner.

2. In the left-hand navigation, expand Data and click Dataflows.

3. Click on the Create a dataflow button and choose Start from blank.

4. Provide a Name for your dataflow like Customers and click the Create
button.

5. Choose SQL Server database.

6. Enter the connection information for your on-premises AdventureWorksDW2019
database.

https://powerapps.com

Integrating Power BI with Other Applications

612

7. Choose your gateway from the dropdown for On-premises data gateway.

8. Enter your authentication information and click the Next button.

9. Select the DimCustomer table and click the Transform data button.

10. Expand the DimGeography column for the following columns and uncheck
Use original column name as prefix:

 � City

 � StateProvinceName

 � EnglishCountryRegionName

 � PostalCode

11. Click the Next button.

12. Select Load to existing table and choose Contact as the Table display
name.

13. Create the following mappings:

 � City = Address1_City

 � EnglishCountryRegionName = Address1_Country

 � AddressLine1 = Address1_Line1

 � AddressLine2 = Address1_Line2

 � PostalCode = Address1_PostalCode

 � StateProvinceName = Address1_StateOrProvince

 � Phone = Address1_Telephone1

 � YearlyIncome = AnnualIncome

 � BirthDate = BirthDate

 � FirstName = FirstName

 � Title = JobTitle

 � LastName = LastName

 � TotalChildren = NumberOfChildren

 � Phone = Telephone1

14. With all other columns set to (none), click the Next button.

15. Leave the default for Refresh manually and click the Create button.

16. A refresh will start automatically, allow the refresh to complete.

17. Create a new Power BI Desktop file

18. Choose Get data and then Dataverse.

19. Enter the Environment URL from Step 10 of Getting started.

Chapter 13

613

20. Sign in and click the Connect button.

21. Choose Contact in the Navigator and click the Load button.

22. Create a simple report visual to display the contacts loaded into the Dataverse
environment:

Figure 13.50: Customers in the Dataverse environment

Figure 13.50 shows customer locations loaded into the Dataverse.

How it works…

Power Apps dataflows use the same Power Query technology used by Power BI. These
dataflows can ingest data from many different sources, including on-premises sources via the
data gateway and cloud-based sources as well. Once data is imported into Dataverse, this
data can be accessed by Power BI either via Import or DirectQuery.

It is important to point out that Power Apps and Power Automate can also natively access data
stored in a Dataverse environment.

There's more…

In addition to the Dataverse, Power BI has native integration with Dynamics 365 applications,
allowing Power BI dashboards to be displayed within Dynamics 365 applications. To
demonstrate this functionality, do the following:

1. Open the Power Platform admin center, https://admin.powerplatform.microsoft.
com

2. In the left-hand navigation pane, click on Environments

3. Click on the environment created in this recipe

https://admin.powerplatform.microsoft.com
https://admin.powerplatform.microsoft.com

Integrating Power BI with Other Applications

614

4. Click on the link for the Environment URL to open the environment

5. Select the gear icon in the upper-right corner and choose Advanced Settings

6. From the Settings dropdown in the upper left, select Administration:

Figure 13.51: Dynamics 365 settings

7. Select System Settings

8. Click the Reporting tab and set Allow Power BI visualization embedding to Yes

9. Click the OK button

10. Open the Sales Hub app for the environment and click on Dashboards

11. Select New and then Power BI Dashboard

12. Sign in to Power BI if necessary

13. Select a Workspace and a Dashboard and click the Save button

14. Select New and then Dynamics 365 Dashboard

15. Choose a layout and then click the Create button

16. Click the Add a Power BI tile to the dashboard icon:

Figure 13.52: Add a Power BI tile to the dashboard icon in Dynamics 365

17. Choose a Workspace, a Dashboard, and a Tile and then click the OK button

18. Provide a Name for the dashboard and click Save and then click Close

Chapter 13

615

Power BI dashboards and tiles continue to exhibit their link behavior to the underlying report.
Clicking on a report tile opens the underlying report and this report is interactive, meaning
that clicking on visuals will cross filter other visuals in the report exactly the same as if viewing
the report in the Power BI service.

See also

 f Administer Power Platform: https://bit.ly/3bqaKTQ

 f Create and use dataflows in Power Apps: https://bit.ly/3eP6tLL

Connecting Dynamics 365 Finance and
Operations and the Power Platform

Power BI is part of Microsoft's Power Platform family of products. The Power Platform includes
Power BI, Power Apps, Power Automate, and Power Virtual Agents. However, the Power
Platform is also part of a larger family of products, Microsoft Business Applications. Microsoft
Business Applications are applications built around Dynamics 365 for Sales, Dynamics 365
Business Central, and Dynamics 365 Finance and Operations. Microsoft actually breaks down
Business Applications into the following:

 f Microsoft Power Platform

 f Customer Service

 f Field Service

 f Finance

 f Marketing

 f Operations

 f Commerce

 f Human Resources

 f Sales

However, note that Customer Service, Field Service, Marketing, Commerce, Human
Resources, and Sales are all built around the Microsoft customer relationship management
(CRM) system, which used to be called Microsoft CRM. The extensible Microsoft CRM system,
sometimes called XRM, is actually the heart of Dataverse. The Finance and Operations
applications refer to the enterprise resource planning (ERP) applications, either Dynamics
365 Finance and Operations or Dynamics 365 Business Central. Note that Dynamics 365
Finance and Operations is built from Dynamics AX (Axapta) and Dynamics 365 Business
Central is built from Dynamics NAV (Navision). Dynamics GP (Great Plains) did not make the
transition to the cloud.

https://bit.ly/3bqaKTQ
https://bit.ly/3eP6tLL

Integrating Power BI with Other Applications

616

The Power Platform admin center provides a central location that is built for integrating the
various products in the Microsoft Business Applications portfolio. This also includes powerful
data integration features that allow administrators to integrate data from many different
environments into Dataverse environments. Similar to dataflows, these data integration
projects facilitate central control of data management policies and the flow of business
information.

This recipe demonstrates how to use the Power Platform admin center to create a data
integration project that synchronizes Dynamics 365 Finance and Operations data with a
Dataverse environment and then builds a Power BI report from that data.

Getting ready

To prepare for this recipe, follow these steps:

1. Open a web browser, go to https://admin.powerplatform.microsoft.com, and log
on with your Microsoft 365 account. This is the Power Platform admin center.

2. In the left-hand navigation pane, click on Environments.

3. In the ribbon area, click + New. This opens a New environment pane on the
right-hand side of the page.

4. In the New environment pane, enter a Name for the environment, choose a
Type (either Production, Sandbox, or Trial), and choose a Region. Additionally, toggle
Create a database for this environment to Yes and click the Next button at the
bottom of the pane.

5. Choose a Language and Currency. Provide a URL if desired.

6. Toggle Enable Dynamics 365 apps to Yes.

7. Click the dropdown for Automatically deploy these apps and check all the
boxes.

8. Click the Save button at the bottom of the pane.

9. Click the environment and note the Environment URL.

10. Click the Environment URL to open the environment.

11. Click the gear icon in the upper-right corner and select Advanced Settings.

12. Click Settings and then Security.

13. Select Teams.

14. Check the box next to the default team and select MANAGE ROLES.

15. Check the box for System Administrator and click the OK button.

https://admin.powerplatform.microsoft.com

Chapter 13

617

How to do it…

To implement this recipe, use the following steps:

1. Navigate to https://powerapps.com and switch to the new environment created in
Getting ready. The current environment is located in the upper-right corner.

2. Expand Data and choose Connections.

3. Click New connection.

4. Search for Dynamics and add a Fin & Ops Apps (Dynamics 365)
connection.

5. Repeat Steps 3 and 4 to add a Dataverse connection and a Dynamics 365
(deprecated) connection.

6. Under the Data heading, now choose Tables.

7. Switch to the All view and search for warehouse.

8. Click the Warehouse table.

9. Click Add column.

10. Add a City text column.

11. Click Save Table in the lower-right corner.

12. Navigate to the Power Platform admin center.

13. Click on Data integration.

14. Click New connection set.

15. Provide a descriptive value for Connection set name.

16. For the First app connection, choose your Finance and Operations apps
connection created previously and select the correct environment.

17. For the Second app connection, choose Dynamics 365 for Sales and select
the environment created in this recipe. Note that at the time of writing, Dynamics
365 for Sales is the correct connection type. The legacy Common Data Service
connection type does not work and the new Dataverse connection type does not
appear in the list of available applications. In the future, the Dataverse connection
type will likely be the correct choice.

18. Select the correct organization, such as USMF for Finance and Operations
apps, and the environment name for the Dynamics 365 for Sales organization.

19. Click the Save button.

20. Click New project.

21. Provide a Project name such as Warehouse Sync.

22. Click Choose an existing connection set and select the connection set created
previously.

https://powerapps.com

Integrating Power BI with Other Applications

618

23. Click Choose template, select the Warehouses (Fin and Ops to Field Service)
template, and click the OK button.

24. Select the organization pair under Organizations and click the Create
button.

25. Click the Warehouse Sync project.

26. Click Refresh tables.

27. Under the Map column, click the > icon.

28. Delete any mappings with a Destination of None.

29. Click Add mapping.

30. Add a mapping from PRIMARYADDRESSCITY to the City column created previously.

Figure 13.53: Warehouse sync sources and destinations

31. Click Save.

32. Click the project name in the breadcrumb.

33. Click Run project.

Chapter 13

619

34. Click the Execution history tab and wait for the synchronization to complete. There
should be 31 Upserts.

35. Create a new Power BI Desktop file.

36. Choose Get data and then Dataverse.

37. Enter the Environment URL from Step 9 of Getting started.

38. Sign in and click the Connect button.

39. Choose msdyn_warehouse in the Navigator and click the Load button.

40. Create a simple report visual to display the warehouses loaded into the
Dataverse environment.

41. Save and publish the report to the Power BI service.

42. Open the report in the Power BI service and pin the report visual to a dashboard:

Figure 13.54: Warehouses in the Dataverse environment

Figure 13.54 shows the location of warehouses from Dynamics 365 Finance and
Operations loaded into Dataverse.

Integrating Power BI with Other Applications

620

How it works…

While provisioning the environment, you are given the option to either create a database or
not. You might choose to not create a database if the environment is to be used solely for
Power Apps and Power Automate development with source data coming from somewhere
other than the Dataverse environment. By creating the Dataverse environment with a
database and checking the box to Deploy Dynamics 365 apps to Yes, additional tables are
added to the environment to support the chosen applications.

It is important that you set the role for the default team to System Administrator or System
Customizer. By default, the team created as part of the provisioning process has no
rights within the system while the user that created the environment is given the System
Administrator role, among others. However, the synchronization performed by the connection
sets, projects, and tasks currently uses the team permissions, not the user permissions, when
writing to the Dataverse environment.

Creating a data integration project consists of three tasks, creating connections, creating a
connection set, and finally creating a project that contains the tasks to perform. A connection
simply holds the authentication credentials for a data source, similar to defining a data source
connection in Power BI (data source settings). A connection set simply defines a source
and destination system. Unlike Power BI where the destination is always the Power BI data
model, data integration projects can synchronize data between any two source systems.
Finally, a project defines the tasks to be performed during data integration. The tasks hold the
mappings between columns in the source and destination systems.

The data integration projects created in the Power Platform admin center leverage the
same Power Query technology as Power BI and dataflows. This can be seen by selecting
the task in the data integration project created in this recipe and then selecting Advanced
query and filtering. The familiar Power Query editor interface is shown, including access to
the Advanced Editor for the direct insertion of M code. This Advanced query and filtering
interface can be used to further refine the source data query, such as the removal of
unnecessary columns, to improve the overall efficiency of the data source query or perform
required transformations.

See also

 f Administer Power Platform: https://bit.ly/3bqaKTQ

 f Integrate data into Microsoft Dataverse: https://bit.ly/3bpQykV

https://bit.ly/3bqaKTQ
https://bit.ly/3bpQykV

Chapter 13

621

Conclusion
This chapter highlighted powerful integration points between Power BI, SSRS, Analysis
Services, Excel, PowerPoint, Power Apps, Power Automate, Dataverse, and Dynamics 365.
This included connecting Power BI to Analysis Services, leveraging DAX as a query language
to support custom reports in Excel, pinning reporting service visuals to Power BI dashboards,
and utilizing cube formulas to build templates or scorecard report layouts. Additionally, an
example was provided of designing an automated workflow with Power Automate to push data
from a relational database to a streaming dataset in the Power BI service, thus delivering
real-time visibility to source data changes via common Power BI visualization and data alert
capabilities.

623

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
 f Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

 f Learn better with Skill Plans built especially for you

 f Get a free eBook or video every month

 f Fully searchable for easy access to vital information

 f Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.Packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com

625

Other Book
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Microsoft Power BI Quick Start Guide. – Second Edition

Devin Knight

Mitchell Pearson

Bradley Schacht

Erin Ostrowsky

ISBN: 978-1-80056-157-1

 f Connect to data sources using import and DirectQuery options

 f Use Query Editor for data transformation and data cleansing processes, including
writing M and R scripts and dataflows to do the same in the cloud

https://www.packtpub.com/product/microsoft-power-bi-quick-start-guide-second-edition/9781800561571

626

Other Books You May Enjoy

 f Design optimized data models by designing relationships and DAX calculations

 f Design effective reports with built-in and custom visuals

 f Adopt Power BI Desktop and Service to implement row-level security

 f Administer a Power BI cloud tenant for your organization

 f Use built-in AI capabilities to enhance Power BI data transformation techniques

 f Deploy your Power BI desktop files into the Power BI Report Server

627

Other Books You May Enjoy

Share Your Thoughts
Now you've finished Microsoft Power BI Cookbook, Second Edition, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave
a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

https://packt.link/r/1801813043
https://packt.link/r/1801813043
http://authors.packtpub.com
http://authors.packtpub.com

629

Index
A
Add Conditional Column dialog 80
additional tools

configuring 22-25
installing 22-25

advanced analytics
features 385, 386
incorporating 382-384

advanced date intelligence measures
developing 298-300

Advanced Editor
launching 33, 34

Advanced filtering 190
Advanced Filter Rows Dialog

in Query Editor 65
AdventureWorksDW2019 database 30, 31
aggregation tables

leveraging 172-175
alerts and subscriptions

adding 260-265
ALL function 296
ALM Toolkit 25

installing 25
reference link 27

analysis layer
constructing 446-450

Analysis Services 12, 111
Analysis Services features 45
Analyze

installing, in Excel from
Power BI Service 17-20

Analyze in Excel
references 22

annotations

building 401-407
anomaly detection

performing 424-429
apps

publishing 551-556
ArcGIS, for Power BI documentation

reference link 396
ArcGIS maps

geospatial mapping, creating with 390-394
artificial intelligence

capabilities 396
democratizing 396-400

Assume Referential Integrity 110
authentication, with data source

reference link 45
Automated Machine Learning (AutoML) 279
automatic data type detection 90
Azure Active Directory (AAD) 351
Azure Analysis Services

connecting to 596-600
Azure Data Catalog 146

B
best practices rules, Tabular Editor

reference link 499
best practices rules, to improve model perfor-

mance
reference link 499

binaries, combining in Power BI Desktop
reference link 446

binning 166
Bookmarks

enabling 407, 408
Budget Filter Test measure 152

630

C
calculated tables

date intelligence, simplifying 303, 304
CALCULATE function 296
calculation groups

leveraging 306-310
calculation groups, Analysis Services tabular

models
reference link 311

card visualizations
reference link 196
integrating 191-194

centralized IT monitoring solution
creating, with Power BI 440-445

clustering, applying techniques
reference link 424

clusters
detecting and analyzing 419-424

Color Blind Friendly theme
download link 185

column data types
selecting 87-90

Column distribution 97
Column From Examples feature 78
Column From Examples interface 79
column level security

alternative approaches 170, 171
designing 167-170

Column quality 97
columns 66

eliminating 69
hiding 134-138
renaming 67, 68
selecting 68

Combine Binaries feature 87
comments 512
Common Data Service (CDS) 610
composite model projects 45
conditional table formatting, in Power BI

Desktop
reference link 218

Condition Column feature 79
connect live 599
content

distributing, with teams 568-572
managing, between environments 532-535

sharing, with colleagues 535-538
content collaboration

preparing 524-528
content creation

preparing 524-528
copy and paste report visualization

reference link 196
cross-filtering interactions 204
cross-report drill through 222
current filter context

displaying 369-372
current user context

capturing 350, 351
custom columns

creating 74-78
CustomerKeys query 325
customer relationship management (CRM)

615
Custom Functions, writing in Power Query M

reference link 331
custom visuals

content, enriching with 386-388

D
dashboard

building 246-254
dashboard, for Power BI designers

reference link 254
data

cleansing 70-72
importing 50-55
transforming 70-72

Data Analysis Expressions (DAX) 22
authoring 517
model, enriching 140-150

dataflows
authoring 274-279
references 280
using 279

data import
strengthening 510, 511

data load speeds
improving, with incremental refresh 518-521

data model
designing 106-111
implementing 112-117

631

scalability, enhancing 492-497
usability, enhancing 492-497

data, optimizing for Power BI quick insights
reference link 390

data profiling tools
reference link 97

data quality 95
Data Quality Services 146
data reduction techniques, Import modeling

reference link 58
dataset modes, Power BI service

reference link 58
datasets

streaming 270-273
dataset storage mode

selecting 109
data source credentials

managing 44
data source management 512, 513
data source queries

isolating, from data load queries 40-42
data sources 39

managing 39-43
Dataverse

using 610-615
data warehouse bus matrix

creating 108
date dimension 282

preparing, via Query Editor 287-292
date dimension table

building 283-286
date intelligence 281

simplifying, with calculated tables 303, 304
simplifying, with DAX 303, 304

date intelligence measures
authoring 293-297
simplifying 304, 305

date range filters 189
DateTime.LocalNow function 291
DAX 445 Custom Financial Calendar

reference link 282
DAX CONCATENATEX function

reference link 374
DAX CROSSJOIN function

reference link 303
DAX expressions

documenting 514-516

isolating 514-516
DAX FILTER function

reference link 298, 374
DAX Formatter 516
DAX HASONEVALUE function

reference link 298, 303
DAX ISCROSSFILTERED function

reference link 374
DAX LOOKUPVALUE function

reference link 302, 306, 379
DAX measure

example 503, 504
DAX measure performance

improving 499-502
DAX measures

creating 414
DAX ROW function

reference link 306
DAX SELECTCOLUMNS function

reference link 306
DAX SELECTEDMEASURE function

reference link 311
DAX Studio 516

tutorials, reference link 27
DAX time intelligence functions 297

reference link 298
DAX USERNAME function

reference link 353
DAX USEROBJECTID function

reference link 353
DAX USERPRINCIPALNAME function

reference link 353
DBA productivity

increasing 455-460
Decomposition tree 400

reference link 401
Detect data changes setting 521
Development environment 40
Diagnose Step feature 103, 104
dimensional design process 107, 108
DirectQuery 109

dynamic security, building for 365-368
limitations 110
using 45-48

DirectQuery mode 172
documentation

providing 461-466

632

drill through, in Power BI reports
references 223

dynamic functions
static queries, converting to 326-331

dynamic management view (DMV) data
importing 450-454
visualizing 450-454

dynamic management views (DMVs) 461
Dynamic M query parameters, in Power BI

Desktop
reference link 337

Dynamics 365
using 610-615

Dynamics 365 Finance and Operations
connecting 615-620

dynamic security
building, for DirectQuery 365-368

dynamic security models
designing 361-364

E
enterprise resource planning (ERP) 615
environment 36
evaluation 36
Excel

content, deploying from 266-269
integrating 574-582
Power BI dataset, accessing 587-591
Power BI dataset, analyzing 587-591

Excel Data
Power Pivot, migrating to Power BI 582-586

expression 35
Extended Events

analyzing 473-477

F
filter expressions

defining 353-360
FILTER function 296
Filter Rows dialog

accessing 64
filters

implementing, at different scopes 187-189
filter test measure 151

forecasting
feature 429
performing 424-429
with what-if analysis 338-348

formatting 131
formula bar 33
function 36

G
gateway clusters 16
Gauge visualization 195
geographic information systems (GIS) 390
geospatial mapping

creating, with ArcGIS maps 390-394
graphical visualizations

utilizing 206-210
grouping 166
grouping and binning

using 415-419
using, reference link 419

groups
creating 160-166

H
hierarchies

creating 160-166
horizontal slicers 201

I
Image URL 131
implementation bus matrix

creating 109
Import mode 50, 56
incremental refresh 518

data load speeds, improving 518-521
references 522
settings 521

Independent Software Vendor (ISV) 325
infrastructure-as-a-service (IaaS) 12
integration processes

strengthening 510, 511
Internet Sales Budget table 151
Internet Sales fact table 151

633

K
Key influencers visual 399
key performance indicators (KPIs) 245

visuals, reference link 196
KPI-style visualization 195

L
lazy evaluation 35
let expression 36
ley influencers visualizations tutorial

reference link 401
Line chart visual 428
locales 91
log file data

visualizing 478-483

M
manual user clicks

avoiding 374-379
many-to-many model

with single-direction cross-filtering relation-
ships 124, 125

Master Data Services (MDS) 109, 146
matrix visualizations, in Power BI

reference link 217
matrix visuals

creating 212-216
megabytes (MB) 453
M engine 35
metadata 126
M functions

analyzing 30-35
viewing 30-35

Microsoft Business Applications Summit
(MBAS) 11

Microsoft Installer (MSI) version, Power BI
Desktop

download link 4
Microsoft Power BI blog

reference link 10
Microsoft R Client, installing on Windows

reference link 436
M language 29, 30
M language, elements

environment 36

evaluation 36
expression 35
function 36
let expression 36
operators 36
type 36
value 35
variable 36

M library
visualizing 92-94

M (Mashup) engine 505
mobile experience

enabling 561-567
mobile layout, in Power BI Desktop 233, 234
mobile layouts

designing 230-232
model

enriching, with DAX 140-150
model metadata

configuring 126-133
monitoring layer

constructing 446-450
monthly Power BI Desktop update video and

blog post
reference link 9

multiple queries
applying 58-64

Multi-row Card visualization 195

N
Native Query 37, 38

O
Only refresh complete days setting 521
on-premises data gateway

analyzing 467-473
creating 12-16

on-premises gateway data connections
configuring 545-550

Open Database Connectivity (ODBC) 12
operators 36
optimizations

within Power Query Editor 497-499
organizational data source 44
Organization Dimension Query

modifying 56-58

634

P
page-level filters 187, 189
pages 138
paginated reports

creating 234-240
references 243

parameter tables
user selections, capturing with 331-337

partial query folding 38
performance optimization 493
perspectives 138, 139
Platform-as-a-Service (PaaS) 600
Power Apps

integrating with 600-610
Power Automate

integrating with 600-610
Power BI

centralized IT monitoring solution, creating
with 440-445

Power Pivot, migrating for
Excel Data 582-586

references 11
Power BI Analytics pane

reference link 386
Power BI Community 11
Power BI custom visuals

reference link 390
Power BI dashboard

designing, reference link 254
Power BI dataset 21, 111

accessing, in Excel 586-591
analyzing, in Excel 586-591

Power BI Desktop 2
configuring 2-9
installing 2-9

Power BI Desktop DirectQuery documentation
reference link 50

Power BI Desktop file (PBIX) 324, 495
tracing, reference link 386

Power BI documentation
reference link 10

Power BI Ideas
reference link 11

Power BI mobile apps
reference link 234

Power BI models, retrieval processes
ETL questions 36

Power BI Performance improvement, by DAX
optimization

reference link 517
Power BI Premium 528-532
Power BI Q&A

limitations, reference link 260
reference link 260

Power BI Report Builder
capability 240
download link 234, 238
elements 242
functionality 240

Power BI reports
building, into PowerPoint

presentations 592-595
design practices 185
filters, references 191
references 187
theme 186

Power BI Report Server (PBIRS) 234
Power BI REST API

leveraging 484-488
Power BI security documentation and white-

paper
reference link 353

Power BI Service
Analyze, installing in Excel from 17-20

Power BI User Groups (PUGs) 11
Power BI visualizations, formatting

reference link 196
Power BI visuals, creating with R

reference link 436
Power Pivot

migrating, for Excel Data to Power BI 582-586
Power Platform

connecting 615-620
PowerPoint presentations

Power BI reports, building into 592-595
Power Query calendar

reference link 282
Power Query code

maintainability, improving 512-514
Power Query Date functions

reference link 293

635

Power Query function
reference link 95

Power Query M engine 98
Power Query M Function reference

reference link 39
Power Query M language specification

reference link 39
Power Query optimization, on table column

expansion
reference link 510

Power Query Table functions
reference link 293

prior period date intelligence measures 301,
302

Privacy Level settings
None 44
Organizational 44
Private 44
Public 45

privacy levels, Power BI Desktop
reference link 45

Private data source 44
Process ID (PID) 384
product subcategories remaining

measuring 373, 374
Public data source 45
public internet

reports, publishing to 556-561
Python visuals

using 430-436

Q
Q&A

preparing 254-259
setting up, tips 258

Q&A dashboard 228, 229
quality assurance (QA) 360
queries

combining 81-84
diagnosing 98-103
managing 39-43
merging 81-84

Query Dependencies view 42, 43, 86
Query Designer 240
Query Diagnostics 512

reference link 514

Query Editor
date dimension, preparing 287-292

Query Folding 37
considerations 39
reference link 510

query folding analysis process 506-509
query logic 39
query parameters

leveraging 317-322
references 322

query processing
pushing, to source systems 505-509

Query Processing Units (QPUs) 599
quick insights

content, enriching with 386-388
feature 389, 390

R
Radial Gauge charts, in Power BI

reference link 196
referential integrity assumption

activating 49
regions remaining

measuring 373, 374
relationships

creating 118-123
relative Date slicers 201
Report Definition Language (RDL) 239
report-level filters 187-189
reports

building 178-184
enhancing 218-221
filtering, dynamically 314-316
formatting, for publication 223-228
publishing, to public internet 556-561

reports, filtering with query string parameters
reference link 316

report tooltip pages, in Power BI
references 223

RLS roles
defining 353-360

role-playing tables 287
row-level security (RLS) 137, 359, 471, 582

636

row-level security (RLS) guidance,
in Power BI Desktop

reference link 361
row-level security (RLS), with Power BI

reference link 361
RS version, Power BI Desktop

download link 5
run-length encoding (RLE) 497
R visuals

using 430-436

S
scatter chart 406
Server Integration Services (SSIS) 606
slicers

using 196-201
slicers, Power BI

references 202
slicers, types

horizontal slicers 201
relative Date slicers 202

Slowly Changing Dimension (SCD)
reference link 85

Sort by Column 126
source data

profiling 95, 96
source systems

query processing, pushing to 505-509
SQL Database 325
SQL query statements

retrieving, from Query Store and Extended
Events 460

SQL Server Analysis
Services (SSAS) 111, 360

SQL Server Data Tools (SSDT) 26
SQL Server Management

Studio (SSMS) 455, 474, 601
SQL Server Reporting

Services (SSRS) 39, 245
content, deploying from 266-269
integrating 574-582

SSAS tabular databases
analyzing 467-473

staging query 50
static queries

converting, to dynamic functions 326-331

statistical analyses
embedding 408-413

storage engine (SE) 504
storytelling

building 401-407

T
Table.AddColumn function 68
Table.AddIndexColumn function 292
Table.Combine function 84
Table.Distinct function 84
Table.ExpandTableColumn function 85
Table.NestedJoin function 84
Table.RemoveColumns function 69
Table.ReorderColumns function 69
tables

hiding 134-138
parallel loading 509

Table.SelectColumns function 68, 85
table visuals

creating 212-215
Tabular Editor

installing 26, 27
Tabular Editor documentation

reference link 27
teams

content, distributing with 568-572
templates

working with 322-325
templates, using in Power BI Desktop

reference link 326
Top N filtering 190
Top N visual-level filter condition 187
T-SQL approach

reference link 282
type 36

U
User Acceptance Testing (UAT) environment

40
user-defined native SQL query

providing 39
USERNAME function

used, locally and outside of Power BI service
352

user principal name (UPN) 350

637

user selections
capturing, with parameter tables 331-337

V
value 35
variables 34, 36
VertiPaq 497
Vertipaq Analyzer 497
Vertipaq Analyzer script, Tabular Editor 2

reference link 499
virtual table relationships

creating 159, 160
supporting 153-159

visual interactions
controlling 202-204
references 205

visualization layer
constructing 446-450

visualizations, in Power BI reports
reference link 230

visualization types, in Power BI
reference link 212

visual-level filters 189

W
waterfall chart visual 210, 211
Web URL 131
Web URL conditional formatting 216, 217
what-if analysis

forecasting with 338-348
what-if parameters, using to visualizing vari-

ables
reference link 348

workspaces
configuring 539-544

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Configuring Power BI Tools
	Technical Requirements
	Installing and Configuring Power BI Desktop
	Creating an On-Premises Data Gateway
	Installing Analyze in Excel from the Power BI Service
	Installing and Configuring Additional Tools
	Conclusion

	Chapter 2: Accessing and Retrieving Data
	Technical Requirements
	Viewing and Analyzing M Functions
	Managing Queries and Data Sources
	Using DirectQuery
	Importing Data
	Applying Multiple Filters
	Selecting and Renaming Columns
	Transforming and Cleansing Data
	Creating Custom Columns
	Combining and Merging Queries
	Selecting Column Data Types
	Visualizing the M library
	Profiling Source Data
	Diagnosing Queries
	Conclusion

	Chapter 3: Building a Power BI Data Model
	Technical Requirements
	Designing a Data Model
	Implementing a Data Model
	Creating Relationships
	Configuring Model Metadata
	Hiding Columns and Tables
	Enriching a Model with DAX
	Supporting Virtual Table Relationships
	Creating Hierarchies and Groups
	Designing Column Level Security
	Leveraging Aggregation Tables
	Conclusion

	Chapter 4: Authoring Power BI Reports
	Technical Requirements
	Building Rich and Intuitive Reports
	Filtering at Different Scopes
	Integrating Card visualizations
	Using Slicers
	Controlling Visual Interactions
	Utilizing Graphical Visualizations
	Creating Table and Matrix visuals
	Enhancing Reports
	Formatting Reports for Publication
	Designing Mobile Layouts
	Creating Paginated Reports
	Conclusion

	Chapter 5: Working in the Service
	Technical Requirements
	Building a Dashboard
	Preparing for Q&A
	Adding Alerts and Subscriptions
	Deploying Content from Excel and SSRS
	Streaming Datasets
	Authoring Dataflows
	Conclusion

	Chapter 6: Getting Serious with Date Intelligence
	Technical Requirements
	Building a Date Dimension Table
	Preparing the Date Dimension via the Query Editor
	Authoring Date Intelligence Measures
	Developing Advanced Date Intelligence Measures
	Simplifying Date Intelligence with DAX and Calculated Tables
	Leveraging Calculation Groups
	Conclusion

	Chapter 7: Parameterizing Power BI Solutions
	Technical requirements
	Filtering reports dynamically
	Leveraging query parameters
	Working with templates
	Converting static queries to dynamic functions
	Capturing user selections with parameter tables
	Forecasting with what-if analysis
	Conclusion

	Chapter 8: Implementing Dynamic User-Based Visibility in Power BI
	Technical Requirements
	Capturing Current User Context
	Defining RLS Roles and Filter Expressions
	Designing Dynamic Security Models
	Building Dynamic Security for DirectQuery
	Displaying the Current Filter Context
	Avoiding Manual User Clicks
	Conclusion

	Chapter 9: Applying Advanced Analytics and Custom Visuals
	Technical Requirements
	Incorporating Advanced Analytics
	Enriching Content with Custom Visuals and Quick Insights
	Creating Geospatial Mapping with ArcGIS Maps
	Democratizing Artificial Intelligence
	Building Animation and Storytelling
	Embedding Statistical Analyses
	Grouping and Binning
	Detecting and Analyzing Clusters
	Forecasting and Anomaly Detection
	Using R and Python Visuals
	Conclusion

	Chapter 10: Administering and Monitoring Power BI
	Technical requirements
	Creating a centralized IT monitoring solution with Power BI
	Constructing a monitoring, visualization, and analysis layer
	Importing and visualizing dynamic management view (DMV) data
	Increasing DBA productivity
	Providing documentation
	Analyzing SSAS tabular databases and gateways
	Analyzing Extended Events
	Visualizing log file data
	Leveraging the Power BI PowerShell Module
	Conclusion

	Chapter 11: Enhancing and Optimizing Existing Power BI Solutions
	Technical Requirements
	Enhancing Data Model Scalability and Usability
	Improving DAX Measure Performance
	Pushing Query Processing Back to Source Systems
	Strengthening Data Import and Integration Processes
	Isolating and Documenting DAX Expressions
	Improving Data Load Speeds with Incremental Refresh
	Conclusion

	Chapter 12: Deploying and Distributing Power BI Content
	Technical Requirements
	Preparing for Content Creation and Collaboration
	Managing Content between Environments
	Sharing Content with Colleagues
	Configuring Workspaces
	Configuring On-Premises Gateway Data Connections
	Publishing Apps
	Publishing Reports to the Public Internet
	Enabling the Mobile Experience
	Distributing Content with Teams
	Conclusion

	Chapter 13: Integrating Power BI with Other Applications
	Technical Requirements
	Integrating SSRS and Excel
	Migrating from Power Pivot for Excel Data to Power BI
	Accessing and Analyzing Power BI Datasets in Excel
	Building Power BI Reports into PowerPoint Presentations
	Connecting to Azure Analysis Services
	Integrating with Power Automate and Power Apps
	Leveraging Dataverse and Dynamics 365
	Connecting Dynamics 365 Finance and Operations and the Power Platform
	Conclusion
	Why subscribe?

	Other Book You May Enjoy
	Index

