
Data Mining with R
Introduction to R and RStudio

Hugh Murrell

Reference Books

These slides were created to accompany chapter two of the
text:

I SPUR: Scientific Programming and Simulation using R
Owen Jones, Robert Maillardet, and Andrew Robinson.

A version of this text can be found on the web.

Scientific Programming and Data Mining
I In this course we aim to teach scientific programming and

to introduce data mining.

I Scientific programming enables the application of
mathematical models to real-world problems.

I Data mining is the computational technique that enables
us to find patterns and learn classifiaction rules hidden in
data sets.

Scientific programming with R
I We chose the programming language R because of its

programming features.

I R is also rich in Statistical functions which are
indespensible for data mining.

I We do not only use R as a package, we will also show
how to turn algorithms into code.

I Our intended audience is those who want to make tools,
not just use them.

The R Programming Language
I This course uses the statistical computing system, R.

I R is based on the computer language S, developed by
John Chambers and others at Bell Laboratories in 1976.

I Robert Gentleman and Ross Ihaka developed an
implementation, and named it R and made it open source
in 1995.

I Hundreds of people around the world have contributed to
its development.

I The R Core Team is now responsible for development and
maintenance of R.

The R Package
I R is available at http://cran.r-project.org.

I This site is referred to as CRAN

I Most users download and install a binary version. This is
a version that has been translated (by compilers) into
machine language for execution on a given operating
system.

I R is designed to be very portable: it will run on Microsoft
Windows, Linux, Solaris, Mac OSX, and other operating
systems, but different binary versions are required for
each.

http://cran.r-project.org

RStudio IDE
I RStudio is a free and open source IDE (integrated

development environment) for R.

I You can run it on your desktop (Windows, Mac, or Linux)

I You can run it over the web using RStudio Server.

I RStudio is available at http://www.rstudio.com

http://www.rstudio.com

RStudio Screen Shot

Figure: RStudio Frames.

RStudio Pannels

top left
I edit and execute

code segments
I code folding
I projects and

packages

bottom left
I R Console
I command history

top right
I data sets
I workspace
I debugging

bottom right
I package tracking
I help browsing
I plotting

Using R as a Calulator

After starting RStudio you can interact with the R consol
(bottom left pane) and use R in calculator mode.

The > sign tells you that R is ready for you to type in a
command.

For example, you can do addition:

> 123+456

[1] 579

In these slides we adopt the convention that your input is
shown in midnightblue and R’s output is shown in darkred.
The [1] that prefixes the output indicates that this is item 1

in a vector of output.

R Scripts

In order to save your R work it is recomended that you load
your R script into the edit panel of RStudio (top left)

I You can make changes to your script and save your work

I you can execute code segments of your script.

I The results will appear in the R consol pannel or the
plotting pannel.

Arithmetic Operators

R uses the usual symbols for addition, subtraction,
multiplication, division, and exponentiation.

Parentheses can be used to specify the order of operations.

> 2 * (1 + 1/100)^100

[1] 5.409628

R also provides operators for modulus and integer division.

> 17%%5

[1] 2

> 17%/%5

[1] 3

Mathematical Functions

R has a number of built-in functions, for example sin(x),
cos(x), tan(x), (with argument in radians), exp(x), log(x), and
sqrt(x). The functions floor(x) and ceiling(x) round down and
up respectively, to the nearest integer. Some special constants
such as pi are also predefined.

> exp(1)

[1] 2.718282

> floor(exp(1))

[1] 2

> sin(pi/6)

[1] 0.5

R calculates to a high precision, but by default only displays 7
significant digits. You can change the display to x digits using
options(digits = x).

Variables

To assign a value to a variable we use the assignment
command <-.

Variables are created the first time you assign a value to them.

Variable names are case sensitive.

To display the value of variable x on the screen we just type x.

This is shorthand for print(x) which we will have to use
when writing scripts or printing results inside a loop.

> x <- log(exp(1))

> x

[1] 1

Variables continued...

When assigning a value to a variable, the expression on the
right-hand side is evaluated first, then that value is placed in
the variable on the left-hand side. It is thus possible (and quite
common) to have the same variable appearing on the right-
and left-hand sides.

> n <- 1

> n <- n + 1

> n

[1] 2

In common with most programming languages, R allows the
use of = for variable assignment, as well as <-. The latter is
preferred, because then there is no possibility of confusion with
mathematical equality.

Functions

Functions in R take one or more arguments and produce one
or more return values. To call or invoke a function in R you
write the name of the function followed by its argument values
enclosed in parentheses and separated by commas. We
illustrate with a function that produces arithmetic sequences:

> seq(from = 1, to = 9, by = 2)

[1] 1 3 5 7 9

To find out about default values and alternative usages of the
built-in functions, you can access the built-in help by typing
help(fname) or ?fname.

Functions continued...

Every function has a default order for the arguments. If you
provide arguments in this order, then they do not need to be
named, but you can choose to give the arguments out of order
provided you name them:

> seq(1, 9, 2)

[1] 1 3 5 7 9

> seq(to = 9, from = 1)

[1] 1 2 3 4 5 6 7 8 9

> seq(by = -2, 9, 1)

[1] 9 7 5 3 1

Each argument value can be an expression:

> x <- 9

> seq(1, x, x/3)

[1] 1 4 7

Vectors

A vector is an indexed list of variables. A simple variable is
just a vector with length 1 (also called atomic). To create
vectors of length greater than 1 we use functions that produce
vector valued output. The three basic functions for
constructing vectors are:

I c(...) # combine

I seq(from,to,by) # sequence

I rep(x, times) # repeat

Lets try them out:

> x <- seq(1, 20, by = 2)

> y <- rep(3, 4)

> (z <- c(y, x))

[1] 3 3 3 3 1 3 5 7 9 11 13 15 17 19

Vectors continued...

To refer to element i of vector x, we use x[i]. If i is a vector of
positive integers, then x[i] is the corresponding subvector of x.

> (x <- 100:110)

[1] 100 101 102 103 104 105 106 107 108 109 110

> i <- c(1, 3, 2)

> x[i]

[1] 100 102 101

If the elements of i are negative, then the corresponding values
are omitted.

> j <- c(-1, -2, -3)

> x[j]

[1] 103 104 105 106 107 108 109 110

Vectors continued...

Algebraic operations on vectors act on each element
separately, that is elementwise.

> x <- c(1, 2, 3); y <- c(4, 5, 6)

> x*y

[1] 4 10 18

When you apply an algebraic expression to two vectors of
unequal length, R automatically repeats the shorter vector
until it has something the same length as the longer vector.

> c(1, 2, 3, 4) + c(1, 2)

[1] 2 4 4 6

This happens even when the shorter vector is of length 1:

> 2 + c(1, 2, 3)

[1] 3 4 5

Vectors continued...

A useful set of functions taking vector arguments are:

I sum(...), prod(...), max(...), min(...),

I sqrt(...), sort(x), mean(x), var(x).

Note that functions applied to a vector may be defined to act
elementwise or may act on the whole vector input to return a
result:

> sqrt(1:5) # 1:5 is short for seq(from=1,to=5,by=1)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

> mean(1:5)

[1] 3

Plotting vectors

To plot one vector against another, we use the function

I plot(x, y, type).

When using plot, x and y must be vectors of the same length.
The optional argument type is a graphical parameter used to
control the appearance of the plot:

”p” for points (the default);

”l” for lines;

”o” for points over lines;

Plotting vectors, an example...

As an example lets use R to compute the limit of a well known
function from first year:

lim
x→∞

(1 + 1/x)x = e

First we generate a sequence of x values and then we evaluate
the function at each point in the sequence

> x <- seq(10, 200, by = 10)

> y <- (1 + 1/x)^x

On the next slide we use plot to reveal the trend....

graphics output

> plot(x,y,type="o")

50 100 150 200

2.
60

2.
62

2.
64

2.
66

2.
68

2.
70

x

y

Figure: limx→∞(1 + 1/x)x = e.

Missing data

In real experiments it is often the case that observations may
be missing. Missing data can be propagated or ignored. R
represents missing observations through the data value NA.
They can be mixed in with all other kinds of data. We can
detect missing values using is.na.

> a <- c(11,NA,13) # assign some values

> is.na(a) # are some missing missing?

[1] FALSE TRUE FALSE

> mean(a) # NAs can propagate

[1] NA

> mean(a, na.rm = TRUE) # NAs can be removed

[1] 12

Expressions

In R, the term expression is used to denote a phrase of code
that can be executed. If the evaluation of an expression is
saved, using the <- operator, then the combination is called an
assignment. The following are examples of expressions and
assignments:

> seq(10, 20, by = 3) # generate a sequence

[1] 10 13 16 19

> x1 <- mean(c(1, 2, 3)) # compute and save the mean of a collection

> x1

[1] 2

Logical expressions

A logical expression is formed using the comparison operators
<, >, <=, >=, ==, and != ;
and the logical operators
& (and), | (or), and ! (not) .
The value of a logical expression is either TRUE or FALSE.
The integers 1 and 0 can also be used to represent TRUE and
FALSE, respectively.
Note if you want exclusive disjunction then use xor(A,B):

> c(0, 0, 1, 1) | c(0, 1, 0, 1) # logical or

[1] FALSE TRUE TRUE TRUE

> xor(c(0, 0, 1, 1), c(0, 1, 0, 1)) # exclusive or

[1] FALSE TRUE TRUE FALSE

Subvectors

One way of extracting a subvector is to provide an subset as a
vector of TRUE or FALSE values, the same length as x. The
result of the x[subset] command is that subvector of x for
which the corresponding elements of subset are TRUE.
For example, suppose we wished to find all those integers
between 1 and 20 that are divisible by 4.

> x <- 1:20

> x%%4 == 0

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

[13] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

> (y <- x[x%%4 == 0])

[1] 4 8 12 16 20

Matrices

A matrix is created from a vector using the function matrix,
which has the form:

matrix(data, nrow = 1, ncol = 1, byrow = FALSE)

Here data is a vector of length at most nrow*ncol, nrow and
ncol are the number of rows and columns respectively (with
default values of 1), and byrow can be either TRUE or FALSE
(defaults to FALSE) and indicates whether you would like to
fill the matrix up row-by-row or column-by-column.

If length(data) is less than nrow*ncol (for example, the length
is 1), then data is reused as many times as is needed. This
provides a compact way of making a matrix of zeros or ones.

Matrices continued...

We refer to the elements of a matrix using two indices.

> A <- matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE)

> A[1, 3] <- 0

> A

[,1] [,2] [,3]

[1,] 1 2 0

[2,] 4 5 6

> A[, 2:3]

[,1] [,2]

[1,] 2 0

[2,] 5 6

Matrices continued...

To create a diagonal matrix we use diag(x).
To join matrices with rows of the same length (stacking
vertically) use rbind(...).
To join matrices with columns of the same length (stacking
horizontally) use cbind(...).

The usual algebraic operations act elementwise on matrices.
To perform matrix multiplication we use the operator %*%.

We also have a number of functions for using with matrices,
nrow(x), ncol(x),
det(x) (the determinant),
t(x) (the transpose),
solve(A, B), which returns x such that A %*% x == B.
If A is invertible then solve(A) returns the matrix inverse of A.

Matrices examples...

> (A <- matrix(c(3, 5, 2, 3), nrow = 2, ncol = 2))

[,1] [,2]

[1,] 3 2

[2,] 5 3

> (B <- matrix(c(1, 1, 0, 1), nrow = 2, ncol = 2))

[,1] [,2]

[1,] 1 0

[2,] 1 1

> A %*% B

[,1] [,2]

[1,] 5 2

[2,] 8 3

Matrices examples...

> A*B

[,1] [,2]

[1,] 3 0

[2,] 5 3

> (A.inv <- solve(A))

[,1] [,2]

[1,] -3 2

[2,] 5 -3

> A %*% A.inv

[,1] [,2]

[1,] 1 -8.881784e-16

[2,] 0 1.000000e+00

what’s going on here?

> A

[,1] [,2]

[1,] 3 2

[2,] 5 3

> A %*% A^(-1)

[,1] [,2]

[1,] 1.400000 2.166667

[2,] 2.266667 3.500000

Coercion

If you wish to find out if an object is a matrix or vector, then
you use is.matrix(x) and is.vector(x).

Mathematically speaking, a vector is equivalent to a matrix
with one row or column, but they are treated as different types
of object in R.

To create a matrix A with one column from a vector x, we use
A <- as.matrix(x).

To create a vector from the columns of a matrix A we use
x <- as.vector(A);

This process of changing the object type is called coercion. In
many instances R will implicitly coerce the type of an object in
order to apply the operations or functions you ask it to.

Arrays

Occasionally it is convenient to arrange objects in arrays of
more than two dimensions. In R this is done with the
command:

array(data, dim)

where data is a vector containing the elements of the array
and dim is a vector whose length is the number of dimensions
and whose elements give the size of the array along each
dimensional axis.

To fill the array you need length(data) equal to prod(dim);
see the online help for details of how the elements of data are
indexed within the array.

Generate some data

> n <- 1000 # number of samples

> x <- rnorm(n, mean=2)

> y <- 1.5 + 0.4*x + rnorm(n)

> df <- data.frame(x=x, y=y)

> mean(x)

[1] 1.965138

> mean(y)

[1] 2.270543

>

Produce a Plot

> # take a bootstrap sample

> df <- df[sample(nrow(df), nrow(df), rep=TRUE),]

> xc <- with(df, xyTable(x, y))

> df2 <- cbind.data.frame(x=xc$x, y=xc$y,

+ n=xc$number)

> df.ell <- as.data.frame(with(df,

+ ellipse(cor(x, y),

+ scale=c(sd(x),sd(y)),

+ centre=c(mean(x),mean(y)))))

> p2 <- ggplot(data=df2, aes(x=x, y=y)) +

+ geom_point(aes(size=n), alpha=.6) +

+ stat_smooth(data=df, method="loess",

+ se=FALSE, color="green") +

+ stat_smooth(data=df, method="lm") +

+ geom_path(data=df.ell, colour="green",

+ size=1.2)

graphics output

0

2

4

0 2 4
x

y

n

1

2

3

4

5

Figure: Here goes the caption.

exercise

Generate data of the form:

y = 1 + 2x + errors

and then try to estimate the intercept and slope from the data
and see how well you do.

Your errors should be made to fan out as you go along the
line. Such heteroscedasticity is a common feature of many real
data sets.

exercise (submission instructions)

e-mail your solutions to me as a single R script by:

6:00 am, Monday the 22nd February.

Make sure that the first line of your R script is a comment
statement containing your name, student number and the
week number for the exercise. (in this case week 01).

Use: dm01-STUDENTNUMBER.R as the filename for the script.

Use: dm01-STUDENTNUMBER as the subject line of your email.

There will be no extensions. No submission implies no mark.

