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AUTHOR'S FOREWORD TO THE SECOND ENGLISH EDITION 

I was pleased to learn that the need has arisen for a second edition of 
my book, which will be based on the fourth Russian edition of 1954. 

It is for me a plesant opportunity to express my deep gratitude to 
Dr. ]. R. M. RADoK, on whose initiative the English edition of this book 
has been published, for his beautiful translation which considerably 
assisted in the spreading of the methods and results studied in this book 
beyond the boundaries of the USSR. 

I likewise wish to thank Professor I. S. SOKOLNIKOFF of Los Angeles, 
U.S.A. who even before the publication of the English edition of my book 
studied a number of these results in his widely known course of the 
theory of elasticity which also greatly helped foreign readers to come 
into contact with this work. 

Finally, I wish to express my heartfelt thanks to the publishing house 
of P. N OORDHOFF for the magnificent appearance of the book. 

Tbilisi, March 1 962. N. MUSKHELISHVILI 



FOREWORD TO THE FIRST ENGLISH EDITION. 

The appearance of an English translation of lVluskhelishvili's prize
winning monograph on the mathematical theory of elasticity is certain 
to be greeted ,vith enthusiasm by Western European scholars. Although 
a version of this monograph was first published in Russian some twenty 
years ago, the general methods of solution of t,vo-dimensional elastostatic 
problems developed by l\1uskhelishvili and his co-workers still remain 
relatively unknown outside Russia. 

Mr. J. R. M. RADOR and his Publishers, P. NOORDHOFF of Groningen, 
have performed an extremely valuable service by making available to 
Western scholars a translation of one of the most significant contributions 
to the theory of elasticity since the pUblication of Love's celebrated 
Treatise on the Mathematical Theory of Elasticity. 

Los Angeles, California, 1952. I. S. SOKOLNIKOFF 



TRANSLATOR'S PREFACE 
TO THE FIRST ENGLISH EDITION. 

In preparing this translation, I have taken the liberty of including 
footnotes in the main text or inserting them in small type at the appropriate 
places. I have also corrected minor misprints without special mention .. The 
Chapters and Sections of the original text have been called Parts and 
Chapters respectively, where the latter have been numbered consecutively. 
The subject index was not contained in the Russian original and the 
authors' index represents an extension of the original list of references. 
In this way the reader should be able to find quickly the pages on which 
anyone reference is discussed. The transliteration problem has been 
overcome by printing the names of Russian authors and journals also in 
Russian type. 

While preparing this translation in the first place for my own informa
tion, the knowledge that it would also become accessible to a large 
circle of readers has made the effort doubly worthwhile. I feel sure that 
the reader will share with me in my admiration for the simplicity and 
lucidity of presentation. 

I should like to thank Professor E. STERNBERG of Illinois Institute 
of Technology at Chicago for loaning me his copy of Muskhelishvili's 
book through the good offices of Professor F. S. SHAW of the Brooklyn 
Polytechnic Institute, New York, Professor W. S. HEMP of the College 
of Aeronautics, Cranfield, England, for reading nly translation in manu
script and Professor I. S. SOKOLNIKOFF of the University of California for 
reading the second proof and for fulfilling my wish by writing his fore\vord 
to the book. Finally, I must express my gratitude to the publishers for 
making the printing of this book possible and for their constant willingness 
to meet all special requests. 

Zurich, November 1952. J. R. M. RADoK 



EXTRACT FROM THE AUTHOR'S PREFACE TO THE 
FIRST RUSSIAN EDITION. 

This book reproduces, in a considerably revised and enlarged form, 
the contents of a course of lectures, delivered by me in Spring 1931 at 
the invitation of the Seismological Institute of the Academy of Sciences 
of the U.S.S.R. before the scientific workers of the Institute, and of 
lectures delivered in 1932 before post-graduate students of the Physico
Mathematical Institute of Mathematics and Mechanics at the University 
of Leningrad. The lectures were intended for persons acquainted with the 
principles of the theory of elasticity and were to be devoted to separate 
fundamental questions the choice of which was largely left to me; I 
naturally dwelt on subject matter in which I had been working myself. 

Thus, this book deals only with a few chapters of the theory of elasticity 
each of which receives fairly complete treatment. I shall not touch here 
on the subject matter of the book an idea of which may be gained from 
the list of contents, but I consider it necessary to make the following 
comments. 

Seeing that the problems considered in this book may prove of interest 
to a wider circle of people, in particular to those whose work requires 
application of the theory of elasticity, I have tried to make the exposition 
as far as possible intelligible for readers who are only familiar with the 
fundamentals of differential and integral calculus and the elementary 
theory of functions of a complex variable. Thus, for example, problems 
involving integral equations are relegated to separate sections which 
may be passed over without impairing the understanding of the re
mainder; Part I which deals with the foundations of the mathematical 
theory of elasticity (it contains even more than is required) is intended for 
readers not specializing in the theory of elasticity. In order to make the 
text more accessible, I refrained from employing tensor calculus which 
I used in my lectures at the Seismological Institute; an elementary 
introduction to tensors is given in Appendix 1. Appendices 2 and 3 are 
devoted to some aspects of elementary mathematics which are necessary 
for the understanding of the subject matter of the book and which, as a 
rule, are insufficiently elucidated in elementary courses on analysis. 

Leningrad, Spring 1 933. N. MUSKHELISHVILI 



PREFACE TO THE THIRD RUSSIAN EDITION. 

The second edition of this book, which was published in 1935 almost 
immediately after the first (which appeared in 1933), has been out of 
print for a long time, but, as I was engaged on other work, I have only 
now been able to start the preparation of a new edition. The warm re
ception given to my book and the high distinction with which it was 
favoured made it imperative to treat its reissue with special attention. 
To this was added the circumstance, highly gratifying to me, that soon 
after the appearance of the first editions many papers were published in 
which the methods expounded by me were applied to different concrete 
problems and also substantially amplified and generalized. It is natural 
that the new edition should at least reflect the main results of these 
papers as \vell as some results obtained by me. I have tried to accomplish 
this, but I am afraid that some papers may still have escaped my notice 
for which omission I tender my apologies to their authors. 

The general design of exposition in this edition has remained the 
same as before. Hovvever, the text of the book, with the exception of the 
first tV{O and last Parts *, has been thoroughly rewritten and considerably 
enlarged. Two new Parts have been added, namely the fourth and the 
sixth. The contents of the fourth Part are only to a negligible extent taken 
from the preceding edition; in Part VI, results are given which have been 
obtained by me and also by other authors since the publication of the 
preceding edition, ** if no account is taken of the fevv problems whose 
solution had been given in the previous edition, but by means of other 
methods. 

* However, Chapter 25 has been considerably enlarged and in this way the 
theory of extension and flexure of compound bars has attained an aspect of com
pleteness. 

** A large part of these results were introduced by me into my book "Singular 
Integral Equations" (Moscow-Leningrad 1946), but now I find that their natural 
place is in the present book. They will accordingly be omitted from the following 
edition of ftSingular Integral Equations". Here, the exposition of these results 
has been rearranged in order to make it independent of the above-mentioned book. 
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Although I do not think it possible or necessary to indicate all the 
changes and additions in the text of the earlier editions, I must draw the 
reader's attention to the new arrangement of Chapters 14 - 16 (Chapter 
17 is new). Compared with the previous editions, the results contained in 
these chapters are not new, but the method by which they have been 
obtained has been replaced by a different one which seems to me to be more 
germane to the matter under consideration. However, I should like 
to mention that the new method (which was influenced by the work of 
J. Plemelj on the theory of functions of a complex variable, published 
long before the first edition of my book, but unfortunately unknown to 
me at the time) leads to the same calculations as the former method. 
For this reason and also because of the, say, greater complexity of the 
new method, I am not certain that I acted rightly in introducing this 
change. Be that as it may, a comparison of the new and the old approach 
may prove usefuL 

In conclusion, I should like to add that as far as possible I have care
fully quoted the authors of any results which I have used, just as I have 
done with regard to some of my own results, at times even of minor im
portance and adduced merely as examples. I have followed this practice, 
not because I attach exaggerated importance to these results, but only 
to avoid puzzling the reader who might not be acquainted with the 
previous editions of my book and who might have encountered material 
taken from it without clear indication of its original source in some other 
publications (mostly non-Russian). 

To simplify reference, the quoted works have been listed at the end of 
the book in alphabetical order. In references, the author is named and the 
number of his publication, according to this list, is given in square brackets. 
The first edition was greatly assisted to its success by the preface of the 
late Academician Alexei Nikolaevich Krylov whose outstanding scientific 
and public merits are well known to all and for whom I shall always 
entertain feelings of profound gratitude and respect. Krylov's preface 
is reproduced below without any changes. I have not been able to fulfil 
in this edition the wish expressed by Krylov at the end of his preface 
concerning the development of numerical methods of solution. While 
realizing the importance of his request, I felt that I would be unable to 
meet it sufficiently well. Nevertheless, Krylov's wish has been fulfilled 
by other authors, referred to in the text of the book. 

Tiflis, November 1948. N. MUSKHELISHVILI 



PREFACE TO THE FOURTH RUSSIAN EDITION. 

This edition differs from tIle preceding one by numerous additions and 
changes in the text most of which are small, but at times rather essential. 
In this respect the author had in mind the reader concerned mainly with 
practical applications as well as the reader interested in the mathemati
cal aspects of the subject. 

I wish to use this opportunity to express my sincere gratitude to 
G. F. MANDJAVIDZE who read with great interest the proofs of the entire 
book, noted a number of slips and made several critical comments which 
led to improvements of the study. 

I also wish to thank A. IA. GORGIDZE who read the proofs of the first 
and seventh chapters and performed certain computations. 

Tbilisi, December 1953. N. MUKSHELISHVILI 



PREFACE OF ACADEMICIAN A. N. KRYLOV TO THE 

FIRST EDITION * 

Elasticity is a fundamental property of all substances occurring. in 
Nature. This property must be ascribed even to that imaginary ether 
whose very existence is now acknowledged, now disputed by Physics, and 
which at the same time is so widely used in practice. 

Thus, it may be said that the elasticity of bodies has been unwittingly 
used since prehistoric times for all kinds of buildings from the huts of 
savages to the Coliseum and majestic palaces and temples, for all tools 
and instruments of everyday life and for all kinds of weapons. As primeval 
man or a contemporary Papuan would use the elasticity of his material 
when making a bow for his flint or bone-headed arrOVI, so Vickers & 
Armstrong rely on the very same property for their 1 50-ton-16-inch guns 
for the battleships Nelson and Rodney or for the fortifications of Dover. 
The only difference is that the Papuan makes his bow by methods arrived 
at over countless generations as if by natural selection \vhereas Vickers & 
Armstrong design their guns by methods based on mathematical 
calculations developed by our own Academician Gadolin only 60 years 
ago. If therefore man's utilization of the property of elasticity has gone 
on from time immemorial, yet the first attempt at its scientific foun
dations only dates back 295 years and it was undertaken by Galilei who 
described it in his famous Discourses, published in 1638. 

Forty years later, the Englishman Hooke gave the solution to his 
anagram "ceiiinosssttuv": ut tensio sic vis, which contained the funda
mental law of the elasticity of materials. 

After another 60 years, the works of Daniel Bernoulli and Euler 
appeared in the Transactions of the St. Petersburg Academy of Sciences, 
which gave the equations still used in most practical calculations. 

Yet 80 years later, the French engineer N avier adopted quite a differ
ent approach to the study of the elasticity of matter by giving its general 
theory and setting up the equations of equilibrium and of motion. This 
theory was further developed by the famous mathematicians Cauchy 
and Poisson who applied it first to the study of the propagation of waves 

* The preface by Krylov has been reprinted without alterations from the first 
edition. Since Krylov analyses the contents of the book Part by Part, it 
should be noted that Part III of the first edition, considerably enlarged, constitutes 
Part V, while Part IV of the first edition corresponds to Part VII of the present 
edition. 
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in elastic media, i.e., of sound, since they did not admit at that time the 
undulatory theory of light; in his course of mechanics which Poisson 
gave at the Ecole Poly technique he developed the theory of Bernoulli and 
Euler. 

At the same time, at the Institute of Communication Engineers 
founded a few years earlier at St. Petersburg, there were two French 
engineers, Lame and Clapeyron, who as professors held the rank of 
lieutenant-colonel in the Russian Army. They turned towards developing 
Navier's theory for the purpose of applying it to building and con
struction; however, soon after his accession, Nicholas I dismissed them 
from the Russian service and sent them home. 

Here, in 1852, Lame also published the first treatise on the theory of 
elasticity under the title "Lec;ons sur la theorie mathematique de 
l' elasticite des corps solides" which has become a classic and has not 
lost its significance even today. 

Together with the development of railway construction, of steel 
railway bridges, of huge buildings, with the development of machine 
construction and shipbuilding, with the setting up of laboratories for the 
scientific investigation of the elastic properties of materials and for their 
testing on qualities stipulated by contract went the rapid development 
of the study of the elastic properties of materials and their proper utili
zation in building practice. 

This development followed two trends: on the one hand, the mathe
matical theory of elasticitity was worked out in the form in vvhich it had 
been created by Navier and first set out by Lame, on the other hand, a 
simplified theory was developed which was given the name of the Theory 
of Strength of Materials and which was based on met11ods, the foun
dations of which were laid by Bernoulli and Euler. 

It is remarkable that the formulae and conclusions of Lame had their 
first practical application on the initiative of Gadolin in the project of 
steel guns reinforced by rings which were first produced by Krupp. It 
was only then that the Obukhovsky plant was founded. Frequently, 
practice itself has required the examination of the conclusions of the 
simplified theory by the more severe and exact theory, so that it might 
approximate more closely to reality and to ensure that the simplifications 
did not lead too far away from the truth and tllat, on their account, the 
very point of the matter was not disregarded. 

In many cases, research has been stimulated by notable collapses of 
gigantic railway bridges, correctly constructed, one would have thought, 
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and calculated according to all the rules and norms, or by cracks and 
rents in the deck plates of ocean steamers or by cases of loss of fast liners 
which, after collision with small vessels, broke in two and sank. In the 
last case, facts about the fractures could be clearly judged by the different 
inclinations of the masts before they finally submerged. 

The theory of elasticity would often help and give an exact quantitative 
explanation of the causes of the accident, and once the causes were 
known it was not difficult to find the means to prevent the harmful 
consequences. 

About thirty years ago reinforced concrete began to be used for 
building purposes; this new application rapidly developed and has now 
attained vast importance. At that juncture, new problems arose and for 
the solution of many of them the simplified methods of Bernoulli and 
Euler were ineffective, so that the theory of elasticity found a number of 
new applications. 

Hence it is clear how important the study of this subject is at present 
with our tremendous building activity in its countless different forms, 
and therefore N. I. Muskhelishvili's book fills an essential need. 

In his preface, the author refers the reader, wishing to acquaint himself 
with the subject matter of the book, to its list of contents, but the dry 
list gives an insufficient idea not only of the method of exposition, but 
even of its very contents. I shall therefore try to give a brief introduction 
to the nature of the exposition, noting, above all, its originality, thanks 
to which a conciseness has been obtained which enabled the author to 
present in his small book such vast, and to a great extent, new material 
and at the same time to preserve full clarity of treatment. 

PROFESSOR MUSKHELISHVILI'S BOOK CONTAINS FOUR PARTS: 

Part I. Fun dam e n t a I e qua t ion s 0 f the m e c han i c s 

o f e I a s tic bod i e s. 

Here, in 75 pages, all the general principles of the theory of elasticity 
are set out, viz., a) Analysis of stress, b) Analysis of strain, c) Relation 
between stress and strain, d) The equilibrium equations of an elastic body 
and the two fundamental problems: 1) to determine the state of stress of 
a body when the forces acting on it are given, and 2) to determine the 
state of stress of a body when the displacements of points of the boundary 
of the body are given. 
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Part II P 1 a n e Pro b 1 e m. G e n era I for m u 1 a e and 

elementary applications 

These 100 pages deal \vith the plane problem and show the main 
methods for its solution. The solution is achieved by the help of the stress 
function and its complex representation; first, an account of the general 
theory of methods is given, and then the methods are practically de
veloped in a number of examples. Of these examples we shall note a) 
tension of a plate vveakened by a circular hole, b) effect of a concentrated 
force applied at a point of an unbounded plane, c) effect of a concentrated 
couple, d) examination of the state of stress in a ring under the action of 
given forces, e) flexure of a circular beam, t) general theory of thermal 
strains and stresses. 

Part III A P p 1 i eat ion 0 f con for m a I map pIn g and 

complex integration to the plane proble.m 

These 108 pages contain the theory and examples of conformal mapping 
and of its application to the transformation of equations of the plane 
problem and of its boundary conditions. After that, the general method 
of solution of the fundamental problems is developed and the solution of 
these problems is illustrated by the example of the continuous ellipse. 
Next, the author develops the theory of Cauchy integrals and gives the 
generalized formulae which he employs further on. 

Having derived the general solution of the fundamental problems for 
regions bounded by one contour and having reduced this solution to that 
of Fredholm equations, the author gives the solution of many examples 
for regions of different form; in particular, he examines the solution of 
the fundamental problems for the plane with elliptic perforations and 
with nuclei; after that, he gives the solution of both fundamental problems 
for the half-plane and for regions of a more general character .. 

All these solutions are obtained, not by fortuitous particular methods, 
but by the application of a common method based on properties of 
Cauchy integrals discovered by the author. 

When reading this chapter, I inadvertently remembered the Spring 
meeting of the Society of Shipbuilding Engineers in 1898. At this meeting, 
Professor Hele-Shaw showed, for the first time, the equipment by which he 
projected on a screen, with marvellous distinctness, the flow of a liquid 
and showed how the streamlines bypassed different kinds of obstacles. 
In the following year, I was again in London at the Spring meeting of the 
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Society. Among other papers, the Norwegian engineer Bruhn read a paper 
on the influence of perforations and apertures in the deck on the overall 
strength of vessels, and since, not long before, the huge steamer "City of 
Rome" broke up after a collision with a sailing ship a few miles off New 
York, and since this catastrophe was still fresh in everybody's mind, 
Bruhn's paper was received with special interest. To study this influence, 
he took an oblong sheet of rubber, ruled it with straight lines running 
parallel and perpendicular to its long side thus forming squares and made 
perforations in it of various forms; having stretched the sheet lengthwise, 
he traced the form of the curves into which the originally straight lines 
on the sheet had been transformed. From these lines he obtained a picture 
of the strain distribution, and consequently of the stress distribution. 
By use of similar models, Bruhn proposed to study the solutions of the 
plane problems which N. I. Muskhelishvili has solved so brilliantly 
analytically. 

Accidentally, one of Bruhn's perforations had the same shape as one of 
the obstacles in Hele-Shaw's experiments, demonstrated the year before. 
There was almost complete identity between Bruhn's curves and Hele
Shaw's streamlines. Since nobody drew attention to this fact, I obtained 
the Reports of the Society for the preceding year, requested leave to be 
heard and explained that the coincidence was by no means accidental, 
that Bruhn's method was the mechanical and Hele-Shaw's method the 
hydrodynamical solution of the same generalized problem of Dirichlet and 
that there was no need for Bruhn's complicated models and measurements 
nor for the tracing of the curves obtained; in fact, one had only to insert an 
obstacle of a corresponding form into Hele-Shaw's apparatus and to take a 
photograph by projecting them on ordinary sensitive paper, in order to 
obtain a map of the strain distribution. Such a juxtaposition of phenomena 
from quite different fields came altogether unexpectedly to the meeting 
and its old chairman, the highly experienced engineer Benjamin Martel, 
made special acknowledgement of my remarks in his final address. 

The flow of gases and liquids is now studied by many methods which 
are modifications of that of Rele-Shaw as well as of others, because 
of its considerable significance in aerodynamics. It might possibly be 
a worthwhile task to compare such an «aerodynamic spectrum" with the 
solutions given by N. I. Muskhelishvili, and hence to elaborate an experi
mental method for solving the plane problems of the theory of elasticity. 

Another method which has been so splendidly developed by Acade
mician N. N. Pavlovsky happens to come to my mind, namely the electri-
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cal solution of the hydrodynamic problem of determining equipotential 
and stream lines on a conducting plate with perforations of given shape. 

All this represents a realisation of conformal transformations, so 
elegantly developed in analytic form by Muskhelishvili, and shows the 
interrelationship by way of common differential equations between 
apparently quite disconnected branches of physics. 

In this context, one might usefully remember that the stress function 
itself was introduced into the theory of elasticity by the famous Astrono
mer Royal Sir James Biddel Airy who, I believe, was director of Green
wich Observatory for more than 50 years. At the beginning of the 1860's, 
he built for the Observatory a new large meridian line with a telescope 
having an 8-inch object lens. He had to count with the flexure of the 
telescope under the weight of the lens and ocular and of other devices, 
a fact which had caused errors up to 2 arc seconds at the Paris Observato
ry, errors which are inadmissible in such accurate observations with 
significant measurements in decimal seconds. 

Part. IV Tor s ion and f lex u reo f hom 0 g e n e 0 usa n d 

compound bars 

This Part provides an excellent account of Saint-Venant's problem 
and also studies compound bars, so important for reinforced concrete 
construction, by entirely new methods developed by the author. 

Even at a cursory reading of the book, the originality of the solutions 
is evident not only as far as the quite new problems proposed by the author 
are concerned, but also with regard to problems that have long ago been 
solved by other authors. Thus, in Part I, which by the nature of its contents 
deals with well established results, the author elucidates many questions 
more fully and distinctly than has been done before; for example, the 
new deduction of the compatibility conditions of Saint-Venant and 
Beltrami-Michell belongs to the author. In Part II, the author offers a 
new strict deduction of G. V. Kolosov's formulae and of a number of 
other formulae; the detailed study of the analytic character of the solu
tions of the plane problem for multiply connected and infinite regions 
enables us to discover fallacious conclusions committed by other investi
gators. 

Also of significance is the author's general investigation of the effect of 
concentrated forces and the presentation of their most general ex-
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pressions; this again helped to reveal mistakes in other papers. The 
establishment of the connection bet\veen thermal stresses and multi-valued 
displacements also belongs to Muskhelishvili. 

All examples in this Part have either been solved by the author for 
the first time Of, if solved before, more complicated methods had been 
applied for their solution. 

Part III belongs entirely to the author in the originality and in the 
generality of the problems solved in it as "veIl as in the originality of the 
methods applied. HOYN important this method is n1ay be seen from the 
fact that in § 68 (§ 82 of the 3rd edition) the author gives the general 
solution of the second fundamental problem for an infinite plate vvith an 
elliptic hole on two pages of large print. A particular case of this problem 
was solved by L. Foppl in the Zeitschrift fur angewandte Mathematik 
und Mechanik, his solution occupying five large pages of small print 
which, if set up in our academic type, would fill about twenty pages; in 
§ 69 (§ 82a of the 3rd edition), an example is solved in a few lines the 
simplest particular case of vvhich agrees \vith that of Foppl. 

In Part IV, as previously mentioned, all matter relating to non
homogeneous bodies, beginning with the v"ery statement of the problem, 
belongs to ?vluskhelishvili. 

From t11is short sketch may be seen tIle rich content as well as the 
variety and importance of the problems covered in this book and the 
originality and generality of the methods applied for their solution. 

There only remains to express the wish that in future editions, which 
without doubt will be required, the author illustrate the general de
ductions and formulae by numerical examples, by diagrams and by 
indications as to the number of ordinates or subdivisions required for 
approximate integration in order to ensure accuracy within, say, }%. He 
\vill thereby render a great serv'ice to engineers and make his excellent 
book more accessible to those people who "viII apply its deductions to the 
solution of the purely practical problems of the building industry. 

Academician A. KRYLOV 
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PART I 

FUNDAMENTAL EQUATIONS OF THE MECHANICS OF AN 
ELASTIC BODY 



In this introductory Part the basic concepts of the mathematical theory 
of elasticity will be recapitulated. A deduction of the complete system of 
equations of the mechanics of an elastic isotropic body will be given and 
some fundamental propositions about these equations proved. 

I t will be assumed that the reader has some knowledge of the physical 
foundations of the theory of elasticity and little consideration will be 
given to this side of the subject. A more detailed account of the physics 
and also of a number of general theoretical and practical problems, not 
treated in this book, may be found in the following text books on the 
theory of elasticity: 

A. E. H. Love [IJ (This book, first published in 1892-1893, is in many 
respects obsolete, but nevertheless is very useful for the abundance 
of material it offers.) 

P. F. Papkovicz [IJ 1939 
L. S. Leibenson [IJ 1947 
S. Timoshenko [1, 2J 1914, 1916 
R. Grammel [1 J 1928 
P. Burgatti [IJ 1931 
I. S. Sokolnikoff [IJ 1946 
Further, the following textbooks on theoretical mechanics should 

be mentioned: 
G. Kirchhoff [1] 1897 
A. G. Webster [IJ 1904 

These last two books contain a study of the basic theory of elasticity; 
the first of these, although its first edition appeared more than 70 years 
ago, is still of interest at the present time. 

A brief, but rather detailed outline of the historical development of 
the theory of elasticity is given at the beginning of the book by A. E. H. 
Love [IJ. A very detailed history of the theory up to 1893 with a careful 
analysis of the different papers and books was presented by I. Todhunter 
and K. Pearson [IJ. 

The first two chapters of this book deal with all types of bodies which 
rna y, ,vi th sufficient a pproxima tion, be called (( con tin uous" (i. e . fluids, 
elastic and plastic bodies, etc.). It is only at the beginning of the third 
chapter that assumptions are introduced which characterize the (ideal) 
elastic body as such. Throughout the first Part orthogonal rectilinear 
coordinates are used. 

3 



CHAPTER 1 

ANALYSIS OF STRESS 

§ 1. Body forces. In the mechanics of continuous bodies a distinction 
is made between two types of forces: 

1. Body forces, acting on the elements of volume (or mass) of the body; 
2. Stresses, acting on surface elements inside or on the boundary of 

the body. 
In order to explain this distinction in detail, imagine that a volume V 

of arbitrary shape, bounded by the surface 5, has been detached from the 
continuous body under consideration. It is seen that the sum of the ex
ternal forces acting on V may be conceived as consisting of body forces 
(e.g. gravity) and surface forces (e.g. pressure). 

The body forces will be considered first. They act on the volume 
elements of the body, or actually on the mass contained in these elements. 
Assume that the forces, acting on the infinitely small volume element 

~ ~ 

dV, have the form <I> dV where <I> is some finite vector; any point (x, y, z) 

of the element dV may be chosen as point of application of the vector <P. 

The vector <I> is called a body force, referred to unit volume. If p denotes 
the density at a given point of a body (i.e., the quantity of mass contained 

1 ~ 
in a unit volume), the vector - <I> will be the body force per unit mass. 

p ~ 

In the case of gravity forces the vector <I> is directed vertically down-
wards and is in magnitude equal to pg, where g is the acceleration due to 

~ 

gravity. Speaking generally, the vector <I> depends on the position of the 
volume element inside the body, or, in other words, on the coordinates 
x, y, z of a point within the infinitely small volume element. In dynamics 

~ 

the vector <I> depends also on the time. 

NOTE. The mathematical statement that a body force, acting on a 
-30-

volume element dV, may be represented by a vector <I> dV, applied to 

5 



6 L FUNDAMENTAL EQUATIONS §2 

some point of the element dV, must be understood in the sense that the 

resultant force vector 0/, acting on any finite volume V of the body, 
may be represented by a triple integral, i.e., by 

~ = ff!i>dV= !!!i> dxdy dz, (1.1) 

v v 

and similarly the resultant moments of these forces about the axes Ox, 
Oy, Oz of an orthogonal, rectilinear system by 

Mx = !!f(yZ - zY)dx dy dz, My = fjj(ZX - xZ) dx dy dz, 

v v 

Mz = !!f(XY - yX)dx dy dz, (1.2) 

v 

where X, Y, Z are the components of the vector <1>. 

Components of a vector will always be scalar quantities. Many authors, e.g 
Love [1J, denote by X, Y, Z the components of body forces, referred to unit mass. 

~ 

In that case the components of the vector <I> ,vill be pX, p Y, pZ, where p is the 
density. 

§ 2. Stress. Surface forces act on the elements of the surface 5 of a 
volume V, detached from a body (cf. § 1). It will be assumed that the force 

acting on the infinitely small surface element dS has the form F dS, 

where F is some finite vector. Any point of the element dS may be assumed 

as the point of application of the vector F. The precise mathematical 
statement of this fact must be understood in the same way as was in
dicated in the Note at the end of § 1 with regard to body forces. The 

force F dS will be called the traction exerted on the element dS, and the 

vector F the traction per unit area or the stress. F will often also be called 
the stress vector. 

The traction F dS represents the force acting between the parts of the 
continuous body adjacent to either side of the surface element dS. Thus 
~ 

F dS is the force with which the part outside V acts on the part within V; 
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the force with which the part within V acts on the part lying outside is by 
--?-

Newton's third law of motion equal to - F dS. 
In general, any area (i.e., surface element), conceived inside a body, is 

bounded by two parts of the body adjoining 
the area on either side. In order to distinguish 
between these two elements of the body draw 
the normal n to the area in question and give 
it a definite positive direction (Fig. 1). 

The traction, acting on an area, will always 
be understood to be the force which the part lying 
on the positive side at a surf ace element exerts 
on the part lying on the negative side. (The 
same is of course true for the stresses, i.e., the 
tractions per unit area.) 

n 

/-~tn , \ 

\ V'S' \ / , ,,-"'--

Fig. 1. 

For example, when considering the traction exerted by the sides of 
the surrounding body on the surface 5 of a part V imagined detached from 
the body, one has to use the normal to 5 which is outward with regard to V. 

-+ 

As in the case of body forces, the vector F depends on the position of the 
element 5 and (in dynamics) on the time. In addition, it depends on the 
orientation of the area in the body, i.e., on the direction ot the normal n. 

Therefore, when it is necessary to point out that the stress F refers to a 
~ 

plane with the normal n, this will be indicated by writing F n. The compo-
nents of this vector will be denoted by X n , Y n' Zn. 

§ 3. Components of stress. Dependence of stress on the ori
entation of the plane. In order to study the dependence of stress on 
the orientation of the plane to which it refers, select any orthogonal, 
rectilinear system of axes Oxyz. Let M be a given point contained in that 
plane. It will be shown that it is sufficient to know the stresses acting on 
three mutually perpendicular planes passing through M, in order to be 
able to calculate the stress acting on a plane orientated in any direction 
whatsoever (and passing through that point). 

For the above-mentioned three planes select those, which are per
pendicular to the coordinate axes Ox, Oy, Oz respectively, and as positive 
directions ot the normals to these planes take the positive directions of the 
corresponding axes. 

The following standard notation will be used throughout this book. 
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Denote by X x, Y XJ Z x the components of the stress vector acting on the 
plane normal to Ox; here the index x indicates that the plane under 
consideration is normal to Ox. X x is the 'normal stress component acting 
on this plane, while Y x, Z x are the tangential or shear stress components. 
Similarly denote the components of the stress vector acting on the plane 
normal to Oy by X 11' Y v' Z'!J and the stress components acting on the 
plane normal to Oz by X Z' Y z, Z z. 

It will be shown that the quantities 

Xx, Y x, ZXJ 

Xv, Y v' ZVJ (3.1 ) 

X z, Y z, Zz, 

characterize completely the state of stress in the neighbourhood of the 
point considered. Therefore they are called stress components (at a given 
point, at a given instant of time). 

These components are shown in Fig. 2. However, it must not be forgot
ten that they are, by definition, scalar quantities. For example, in Fig. 2. 
the actual quantity X x is not depicted, but rather the vector whose x-wise 
component equals Xx. 

z Zz 

Vz Z C X 

~ ~ yYy 

0 Y 0 Y 
)( X 

Fig. 2. Fig. 3. 

In order to find the relations between the quantities (3.1) and the 
-+-

components of the stress vector F n acting on the plane with the normal 
n, passing through the given point M, consider the following approach. 

Through the point M draw three planes, parallel to the coordinate 
planes, and in addition anotheL plane having the normal n and lying a 
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distance h from M. These four planes form a tetrahedron, three faces 
of which are parallel to the coordinate planes, while the fourth ABC is 
the face to be considered (Fig. 3). 

Here and in the sequel it will be assumed (unless stated othenvise) that 
the body forces and stresses change continuously with the position of the 
point to which they refer. Further, it will be assumed that they maintain 
equilibrium. This means, by a known principle of statics, that the sum 
of the external forces, acting on the considered tetrahedron, has a resultant 
vector equal to zero. Having in mind the transition to the limit h --?- 0 
the size of the tetrahedron will be assumed infinitely small. 

Consider the projection on the x axis of the resultant vector of all 
external forces acting on the tetrahedron. 

The arguments will be based upon the supposition that the segments 
--r -7 -7 

MA, ME, MC have the same directions as the axes Ox, Oy, Oz. The reader 
will easily convince himself that the results will hold true in all other 
cases. 

The projection of the body force equals (X + e:)dV, where dV is the 
volume of the tetrahedron. The value X refers to the point M and e: is 
an infinitely small quantity (on account of the continuity of X). 

Further, the projection of the tractions, acting on the face ABC, is 
(X n + e:')a where (J denotes the area of the triangle ABC and e:' is again 
infinitely small; X n , Y n , Zn, as will be remembered, are the components 
of the stress vector acting on the plane through M with normal n. 

Finally, the projection of the external forces acting on MEC, normal 
to Ox, is (- Xx + e1)0"1 where 0"1 is the area of MBC. Here - Xx has been 
taken instead of + Xx, since one is dealing with a force acting on an area 
from that side of the body which lies on the negative side of the surface 
element MBC (remembering that, by definition, Xx was to be positive 
when the normal has the same direction as the axis Ox). For the sides 
MeA and MAB o~e obtains similarly (- Xy + e:2)0"2 and (- X z + e3)0"3 
respectively. Here e:v e:2 and €3 denote again infinitesimal quantities. 

Thus, noting that 

dV = tha, 0'1 = (j cos (n, x), 0'2 == 0' cos (n, y), (13 == Ci cos (n, z), 

one has 

(X + e)-}hcr + (Xn + e')a + (- Xx + C1)a cos (n, x) + 
+ (- Xy + e2)cr cos (n, y) + (- X z + €3)a cos (n, z) = O. 

Dividing by (J and taking the limit h ~ 0 one obtains the following for-
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mulae the last two of which have been written by analogy with the first: 

Xn ==: Xx cos (n, x) + Xy cos (n, y) + Xz cos (n, z), 

Yn= Yxcos(n,x) + Yycos(n,y) + Yzcos(n,z), (3.2) 

Zn ==: Zx cos (n, x) + Zy cos (n, y) + Zz cos (n, z). 

The relations (3.2), as '\-vell as those to be deduced in § 4, were first found by 
A. L. Cauchy (1789-1857) in a memoir, presented to the Paris Academy in 1822; 
the results of this memoir were published in parts in the years 1823-1828. 

§ 4. Equations, relating components of stress. It is known from 
elementary theoretical mechanics that the resultant force and moment 
of all external forces, acting on any body in equilibrium, are equal to zero. 
In the case of absolutely rigid bodies (i.e., bodies which do not deform) 
this condition leads to a system of six equations completely specifying 
the state of equilibrium. In the case of a deformable body, however, the 
above condition, when applied to the body as a whole, does not, by any 
means, completely define the state of equilibrium. 

However, in this last case as well, equations may be derived from the 
above condition which (together with a law, expressing the relationship 
between the stresses and deformations, to be discussed later) will give 
all the necessary relations. For this purpose it is necessary to apply the 
above condition not only to the body as a whole, but to each part which 
may be imagined detached from it. 

In the sequel, unless stated otherwise, it will be assumed that the 
components of stress are not only continuous, but also have continuous 
partial derivatives of the first order in the entire region occupied by 
the body. 

Let V be an arbitrary part of the body under consideration (which, by as
sumption, is in equilibrium), bounded by a closed surface S. The condition 
of equilibrium will again be expressed by saying that the resultant vector 
of all external forces, acting on V, is zero. 

The projection of the resultant vector of the body forces on the Ox 
axis is equal to fjJXdV. 

v 
and the projection of the resultant vector of the tractions, exerted on the 
surface S, is equal to 
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Replacing in the last formula X n by the expression given by (3.2) and 
equating to zero the sum of the projections on the Ox axis of the body 
and surface forces, one obtains 

fff XdV + )J[Xx cos (n, x) + Xy cos (n, y) + X z cos (n, z)] dS = 0, 

v s 
where n denotes the outward normal. 

But by Green's Theorem 

{{[Xx cos (n, x) + Xy cos (n, y) + X z cos (n, z)] dS = 

"-s"- _!Jf!(8Xx oXy 8Xz) - ~+-+~ dV . ..- ox By oz 
v 

Introducing this expressIon into the preceding formula one obtains 
finally 

r~r(X + oXx + oXy + OXz) dV == O . 
. ' .; ) ox oy 8z 

v 

Remember now that this equation must hold true for any region V 
in the body. This can only be so, however, if the function under the in
tegral signs IS zero at each point of the body. Thus one obtains the 
equations 

8Xx 8Xy 8Xz - +-+-+X==O, ox oy 8z 

oYx oYy 8Yz Y -+-+-+ ==0, ox 8y 8z 

QZx 8Zy 8Zz - + "- + - + Z == 0. ox 8y OZ 

(4.1 ) 

These equations, to which reference will often be made, will be called 
equilibrium equations. 

The last step leading to (4.1) is based on the follo\ving reasoning. If F(x, Y I z) 
is a function continuous in a given region and 

fff F(x, y, z) dV = 0 

V 

for any part V, contained in that region, then F(x, y, z) ::= 0 in the entire region. 
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In fact, let, for example, F(x, )/, z) > 0 at some point (xo, )/0' zo). Then, on the basis 
of the continuity of P, one will have around the point (XOI )lo, zo) some region V, 
where F(x,)l, z) > €, € being a positive constant. Hence 

III F dV > £ V > 0 

v 
\vhich contradicts the original condition. 

Next, use will be made of the condition that the moment of the external 
forces about the origin of the coordinate system must be zero, or, what is 
the same thing, that the resultant moments about the coordinate axes 
must be zero. 

Writing that the resultant moment about the Ox axis of the body forces 
and stresses acting on the surface 5 containing the volume V is equal 
to zero, one obtains 

fff ~Z-zY)dV + fr~Zn-ZYn)dS= o. (a) 
v s 

But by (3.2) 

fj(YZn-ZYn)dS = jj{(yZ",-ZYx) cos (n, x) + 
s s 

+ (yZ y - Z Y 1/) cos (n, y) + (yZ z - Z y" z) cos (n, z)} dS ~ 

or transforming, using Green's Theorem, 

rr j(rn{ (OZx oZy OZz) \ 
)) (yZn-zYn)dS = ))lY Tx+Ty+Tz -
s v 

(
OYx oYy OYz ) } 

-z dX + dy +Tz +Zy-Yz dV .. 

Introducing this expression into (a) and using (4.1) one finally finds 

jjj(Zy - Yz)dV == O. 

v 

Since the region V is arbitrary, it follows by the same reasoning used to, 
obtain (4.1) that 

(4.2) 

The two last formulae may be obtained from the first by cyclic 
permutation of the symbols (or by applying the above reasoning to the 
axes Oy and Oz). 
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Thus it is seen that in the table of the stress components 

Xx Xv Xz 
Y x Y v Y z 

Zx Zy Zz 

13 

(A) 

the terms, symmetrical with respect to the principal diagonal (running 
from the upper left-hand to the lower right-hand corner), are equal in 
pairs; in other words, table (A) is syrnmetric. Thus only six of the nine 
terms of the table are distinct, i.e., 

Xx, Yv, Zz, Yz = Zy, Zx = X z.', Xv = Yx. 
Hence it may be said that the state of stress at a given point is charac
terized by six of the quantities (A). 

The formulae (4.2) may be presented in the form of a proposition. Let 
there be two planes, passing through one and the same point; then the 
projection of the stress, acting on the first plane, on the normal to the second 
plane is equal to the projection of the stress, acting on the second plane, on the 
normal to the first plane. Actually, the formulae (4.2) prove this proposition 
immediately only in the case when the planes are perpendicular to one 
another, (i.e., parallel to two coordinate planes). But it is easy to generalize 
this result to the case of two arbitrary planes and thus to obtain the 
proposition formulated above. 

In fact, let oc', ~', y' be the direction cosines of the normal n' to the first 
plane, and oc", ~", y" those of the normal nil to the second plane. Then 

the components of the stress vector F n', acting on the first plane, are by 
(3.2) 

X n, = Xxoc' + Xll~' + XzY', Y n, == Yxoc' + Yll~' + Yzy', 

Zn' = Zx(J..' + Zy~' + Zzy'. 
Using now the relations (4.2), the projection of this stress on the 

normal to the second plane will be given by 

(Fn')n" ::=: Xn,oc" + Yn'~" + Zn'Y" == Xxoc'oc" + YlI~'~" + ZzY'y" + 
+ Yz(~'y" + ~"y') + Zx{y'oc" + y"OC') + Xll{oc'~" + 0c"~'), (4.3) 

where ( )n" indicates projection on the direction nil. 
It will be seen that the above expression is quite symmetrical in the 

quantities oc', ~', y' and oc", ~II' y" and that hence the parts played by the 
two planes may be interchanged; but this proves the proposition. 

NOTE ON NOTATIONS. The notation X ru YlI etc., used here for the 
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stress components, was first introduced by F. Neumann (1841) and has 
been widely used, e.g. in books by G. Kirchhoff [lJ, A .. E. H. Love [IJ, 
S .. Timoshenko [1,2J and others. Besides this notation certain others 
have been used, but only the following will be mentioned: 

'Txx == Xx, 'Tyy == Yy, 't'zz == Zz, 'T yZ == 'T Zy == Yz == Zy, 
'Tzx == 1"xz == Zx == X z, 'TXy == 'Tvx == Xy == Yx, 

which is as widely used (with one or the other unimportant modification) in 
contemporary literature as the notation used here. It is very convenient 
from many points of view, especially as it agrees with the modern tensor 
notation. In many places one finds O'x, O'y, (jz written instead of 1"xx, 1"1111' 't"zz. 

§ 5. Transformation of coordinates. Invariant quadratic form. 
Stress tensor. Formula (4.3) allows the calculation of the projection in 
any direction of the stress vector, acting on a given plane. In particular, 
this formula may be used to deduce the transformation formulae for the 
transition from one rectangular system of axes Oxyz to another Ox'y'z'. 

Let the direction cosines of the axes of the "new" system Ox'y'z' with 
regard to the axes of the "old" system Oxyz be given by the following 
table: 

x y z 

x' ~1 

y' 

z' ~3 Y3 

In this table, for example, (Xv ~l' Yl denote the direction cosines of the 
axis Ox' with regard to the old axes, i.e., 

CX1 == cos (x', x), ~1 = cos (x', y), Y1 = cos (x', z). 

The stress components in the new system of axes will now be denoted 
by X~;, y~;. Z~" y;" Z~" X~; and the formulae will be found which 
express these "new" components in terms of the old Xx, Y y, ... , Xu. 
Formula (4.3) immediately gives the required expression. For example, 
for X~, one obtains -+ 

X~; == (Fx')x; 
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where F x' denotes the stress vector acting on the plane, normal to the 
new axis Ox'. Consequently one has to put in (4.3) 

'" (J..' ().." ().. , " f:J.. == f:J.. == 0:1' {J =:::: {J == {JV Y == Y == Y 1 

which leads to the first of the following formulae, the others being ob
tained in an analogous manner: 

, XZ 2 2 y-Xx' === xf:J..1 + YY~l + ZZYI + 2 z~lYl + 2ZxYlf:J..l + 2Xyf:J..l~V 
, X2 y2 2 Y Y y ' === xCt.z + Y~2 + ZZY2 + 2 z~2Y2 + 2ZXY2\/..2 + 2XY\/..2~2' 
, X 2 Y 2 2 Zz' == x\/..3 + 11~3 + ZZY3 + 2Yz~3YS + 2ZxYs\/..a + 2X1lf:J..3~3' 

y~, == X xCX2f:J..3 + YY~2~3 + ZZY2Ya + YZ(~2Ya + ~aY2) + 
+ ZX(Y2f:J..3 + Yaf:J.(2) + Xy(C1:2~3 + Ct.3~2)' (5.1) 

Z~, == Xxrlarll + YY~3~1 + ZzYaYl + YZ(~3YI + ~lYa) + 
+ Zx(Yaocl + YICXS) + Xy(f:J..a~l + f:J..l~3)' 

X~, == X X CX1CX 2 + YY~1~2 + ZZYIY2 + YZ(~lY2 + ~£Yl) + 
+ Z x (Ylcx'2 + Y2(Xl) + X y(OCl~2 + el2~1)· 

One important result follows from these formulae. Adding the first 
three and using the well-known relations 

eli + cx~ + \/..; === ~i + ~~ + ~~ == yi + y~ + y; == 1, 

~lYl + ~2Y2 + ~3Ys == Ylf:J..l + Y2CX 2 + Ysf:J..3 == Cll~l + Cl2~2 + a3~3 === 0, 

one finds 
x~, + y~, + Z;, = Xx + y 11 + Zz· 

This formula may be interpreted as follows. The expression 

o == Xx + y 11 + Zz 
is invariant with regard to transformation of (orthogonal, rectilinear) 
coordinates, or, in other words, the sum of the normal stress components, 
acting on three mutually perpendicular planes, does not depend on the 
orientation of these planes. 

Next (4.3) will be used to calculate the normal component of the stress 

F n, acting on a plane with normal n. Let N denote the unknown normal 
-+ 

component, i.e., N == (F n)n. For N > 0, the normal stress will be tensile, 
for N < 0, compressive. 

If (x, ~, yare the direction cosines of the normal n, then one obtains by 
(4.3) the simple and important result 

N == X~(J..2 + Yll~2 + Z zy2 + 2Yz~Y + 2ZxYiJ.. -l- 2XlliJ..~. (5.2) 
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Introduce the notation 

20(~, 1],~) == Xx~2 + Yy'Y)2 + Zz~2 + 2Yz'Y)~ + 2Zx~~ + 2Xll~'Y). (5.3) 

The function Q(~, 1), ~) is a homogeneous rational function of the second 
degree in ;, 'Y), ~, i.e., in other words, a quadratic form in the variables 

-+ 

~, 'Y), ~. It has a very simple geometric meaning. Thus, let P = (~, 1], ~) 
denote a vector, normal to the considered plane and acting in the same 
direction as the positive normal n. [In general, (~, 'Y), ~) will denote a vector 
with components ~, "I), ~, but it may also at times refer to the point with 
coordinates ~, "I), ~.J Then 

~ 
(1..=-

p' 
'Y) 

~ =-, p 
-+ 

~ 
1 ==-, 

P 

where P is the length of the vector p} and, by (5.2), 

N. p2 == 2n(~, 'Y), ~). (5.4) 
Now the following will be noted. The quantity N, by definition, has 

physical meaning and hence cannot depend on the particular choice of 
coordinate axes. In the same way the quantity p2 (i.e., the square of the 
length of the vector) does not depend on this choice. Consequently the 
quadratic form n(~, 'Y), ~) cannot depend on it, i.e., it must be invariant 
to transformation of (orthogonal, rectilinear) coordinates. In other 

words, if ~', 'Y)', ~' denote the components of the vector P relative to new 
axes and 0' (~', 1)', ~') is the quadratic form, involving ~', YJ',~' and 
X~" y~., ... , X~, in the same manner as Q(~, 1),~) involves ~,YJ,~, X x' 

y v' • • ., X v' then 
Q'(~', "I)', ~') == n(~, "I), ~), (5.5) 

1.e., 

X~.~'2 + y~,1)'2 + Z~.~'2 + 2Y~:tJ'~' + 2Z~,~'~' + 2X~,~'''I)' == 
=== Xx~2 + Yv"l)2 + Zz~2 + 2Yz~~ + 2Zx~~ + 2Xll~"I). (5.5') 

This equality must become an identity, if on the left-hand side one 
substitutes for X~" ... , X~. from (5.1) and on the right-hand side expresses 
~, 't), ~ in terms of the new coordinates, using the following formulae known 
from analytic geometry: 

~ == (1..1~' + (1..2"fJ' + (J..3~" 

'Y) == ~1~' + ~2"1)' + ~3~" (5.6) 

~ == Yl~' + 12"1)' + 13~'· 
That this is so .. is eaf;ily checked directly. For this it is sufficient to in-
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troduce on the right-hand side of (5.5') the expressions (5.6) and to 
compare the coefficients of ~'2, TJ'2, ~'2, "fJ'~', ~'~', ~'''fJ' on both sides. It is 
then seen that one finds for X~" y~, etc. the expressions (5.1). 

Thus, to deduce the formulae (5.1), one may use the above stated rule 
which is very convenient in practice. Namely, it is sufficient to write 
down (5.5'), to transform on the right-hand side (or on the left-hand side, 
if one wants to obtain the transformation formulae from the new to the 
old components of stress) the variables ~, "fJ, ~ into ~', 1]', ~' (or ~', "fJ', ~' 
into ~, "fJ, ~) and to compare the coefficients of the squares and products 
of ~', YJ', ~' (or ~, "fJ, ~). 

The property of invariance of the quadratic form Q(;, "fJ, ~) proves that 
the stress components Xx, ... , Xy are components of a (symmetric) 
tensor of second order which will be called the stress tensor. 

In the main part of this book the reader will not be assumed to be conversant 
with tensor calculus. For the understanding of certain remarks it will be suf
ficient to study Appendix 1 at the end of this book. The following will help to eluci
date the final paragraph of this section. 

Let there be given a quadratic form 

2n(~, 1), ~) = 't"xx~2 + 't"lI11"fJ2 + 't"zz~2 + 2t'lIz1)~ + 2't"zx~~ + 2't"x1l~'1J, 
where ~,11, ~ are the components of some (arbitrary) vector and the coefficients 
't"xx, ••• , 't"X1/ are quantities independent of ~, "I), ~, but depending on the direction 
of the axes of the orthogonal rectilinear coordinate system. If, for transition 
from one system of axes to another, the coefficients 't'xx' ••• , 't'Xy change in such 
a way that the quadratic form n remains invariant, one says that the set of 
quantities 't'xx' ••• , 't"Xll (involving two subscripts) represents a symmetric second 
order tensor. The quantities 't'xx etc. are called the components of the tensor. 

In the notation of § 5, 't"xx = Xx etc. (cf. Note at the end of § 4). With regard to 
the definition of non-symmetric tensors of second order see Appendix 1. 

§ 6. Stress surface. Principal stresses. Consideration of the 
quadratic form Q(~, "fJ, ~), introduced in § 5, admits of a very simple and 
clear geometric representation of the dependence of the stress vector 
on the orientation of the plane to which it refers. This representation is 
concerned with planes, passing through any definite point of a body. 

In order to save space let the origin of the coordinate system coincide 
with the point under consideration. Formula (5.4), viz., 

N. p2 = 2Q(;, 1], ~), 

allows calculation of the normal stress component acting on the plane 

the normal to which has the direction of the vector P = (~, "fJ, ~); the 
length P of this vector may be fixed quite arbitrarily. 
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In the sequel Q(~, "f],~) will be assumed to be not identically zero, 
because in that case there are no stresses at the given point. 

Use of an arbitrary length for P will be introduced by putting 
N · p2 = ± c2, where c is arbitrary, but constant and different from zero 
(note that c2 has the dimension of a force). The case has not been 
excluded, when for some orientation of the plane: N = o. When N =.= 0 
it will be assumed that P = 00. 

Thus ± c2 

N=-p2 ' (6.1 ) 

where the sign with c2 will be chosen such that ± c2 and N have the same 
sign (or, in other words, + c2 will be used when dealing with tensile, and 
- c2 when dealing with compressive normal stresses). 

-)0 ----?-

Let one end of the vector P = OH be at the origin 0 of the coordinate 
-+ 

system. Then the end H(~, ~, ~) of the vector P will lie on the surface 

2Q(~, '1), ~) = ± c2
, (6.2) 

I.e., 
(6.3) 

The sign on the right-hand side must be chosen in the manner stated above, 
depending on the sign of N. 

The surface (6.2) or (6.3) is obviously a quadric with the centre at the 
origin. It is called the stress surface (stress quadric of Cauchy) referring to 
a given point of the body. It will be seen later that two cases may occur: 
in the one, the sign on the right-hand side of (6.2) or (6.3) remains the 
same for all possible orientations of the planes; in the other, the sign will 
change depending on the orientation of the planes. Thus, in the second 
case, one will, in actual fact, be dealing not with one but with two second 
order surfaces 

2Q == + c2 and 2Q == - c2 

which obviously have a common axis (cf. below). (One may also fix the 
sign of c2 once for all and hence always deal with only one surface. But in 
that case one has to give consideration to imaginary surfaces.) 

Once the stress surface has been constructed, the normal stress acting 
on a given plane (passing through the origin of the coordinate system) may 
be found without difficulty; it is sufficient to find the intersection H 
of the normal n to the plane with the surface (6.3). [It will be seen later 
that such an intersection always exists, provided a definite choice has 
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been made for the sign on the right-hand side.] Then the normal stress 
is given by (6.1) with P == 1 OH I. 

Further, it is likewise easy to obtain the direction of the stress vector, 
acting on the plane. In fact, equation (3.2) may be written 

1 1 an 
x .. = p (Xx~ + X y1J + Xz~) = par' 

I an 1 oQ 
Y"=p 01J' z .. = Par:' (6.4) 

remembering that cos (n, x) = ; etc. 

These formulae show that the vector F n is parallel to the normal to 
the surface (6.2) at the point H(~, 1], ~). Thus, in order to find the direction 

of F n, it is sufficient to construct the tangent plane to the stress surface 
at the point H and to draw the perpen
dicular to this plane from the origin. The 

vector F n then lies along this perpendicular 
(Fig. 4). Further, since the projection N 

of F n on to the normal n to the plane un
der consideration is already known, the 

construction of F n offers no difficulty. 
-+ 

The vector F n will have the direction 
of the normal n to the considered plane 

H 

Fig. 4. 

only in the case when the radius vector OH is perpendicular to the 
tangent plane at H. In that case only a normal stress will act on the 
plane, and no shear stress. 

As is known, the radius vector OH will be perpendicular to the tangent 
plane at H only when OH, and hence the normal n to the plane, has the 
direction of one of the principal axes of the surface (6.3); in that case the 
plane will coincide with the principal plane, normal to this axis. 

In the general case there are known to be three such principal axes 
which are mutually perpendicular. Only when the stress surface is a 
surface of rotation will there be an infinity of such axes: one of these 
coinciding with the axis of rotation, while all the others are perpendicular 
to it. Finally, if the stress surface is a sphere, each diameter will be a 
principal axis. 
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A direction with the property that only a normal stress acts on the 
plane normal to it will be called a principal direction of stress or a principal 
axis of stress, while the corresponding normal stress will be referred to as a 
principal stress. 

As has just been seen, there are always three such directions (and in 
the general case only three) which are mutually perpendicular; in special 
cases there may be infinitely many, of which, however, one may always 
select three perpendicular to one another. 

If one selects the coordinate axes along the three principal axes of 
stress, i.e., along the axes of the surface (6.3), then its equation is known 
to have the form 

(6.5) 

(i.e., the products of the coordinates disappear), where Nl1 N 2, Na denote 
the values of the quantities X;m y~, Z z for the new coordinate axes. 

It is seen from this equation (as likewise on the basis of the definition 
of principal axes of stress) that relative to the new axes the components 
Y z, Zx, Xv become zero, i.e., no shearing stresses act on the planes coin
ciding with the coordinate planes. It should again be noted that all the 
time consideration is being given to planes passing through a given point 
(i.e., in the present case the origin of coordinates). In general, when passing 
from one point of the body to another, the principal directions will alter. 

By definition, the quantities N 1, N 2, Na are the principal stresses. The 
stress distribution around the point 0 depends on the signs of these quan
tities; for the time being they will be assumed to be different from zero. 

First the case will be considered when all the principal stresses are po
sitive 

Nl > 0, N2 > 0, N3 > o. 
In that case one has obviously to take the positive sign on the right-hand 
side of (6.5) which takes the form 

N 1c,2 + N2Tj2 + N3~2 = + c2• 

The corresponding surface is an ellipsoid. By (6.1) 

+ c2 

N=---I OH 12 ' 

(6.5a) 

whence it is seen that the normal stress components acting on any plane 
through 0 are tensile. 

Next consider the case when all principal stresses are negative 
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(Nl < 0, N2 < 0, Ns < 0). Then the negative sign has to be taken in (6.5) 
which becomes 

(6.5b) 

The stress surface is again an ellipsoid, but the normal stresses are now 
-c2 

given by N = I OH 12 ' indicating that, in contrast to the preceding 

case, the stresses on all planes are compressive. 
Finally consider the case when the principal stresses differ in sign, e.g. 

Nl > 0, N2 > 0, N3 < 0. 

Then (6.5) takes the form 

(6.5c) 
or 

( 6.5d) 

The surface (6.Sc) is a hyperboloid of one sheet and the surface (6.5d) a 
hyperboloid of two sheets. Both surfaces are sepa- ... _ ... _______ ..... 
rated by the common asymptotic cones (~z ..... ) 

Nl~2 + N2YJ2 -I Na ! ~2 = 0 (6.6) 
(see Fig. 5). If the normal to the plane lies outside 
the asymptotic cone, it intersects the surface (6.5c); 
hence the normal stress is given by 

+ c2 

N = I OH 12 Y 

and it will be tensile. If the normal is inside the cone, 
it intersects (6.Sd), so that the normal stress which 
is now compressive is given by 

c2 

N ' .. == ----. .../ I OH 12 ..... ---- .. -- -_ .. --_ ....... 

Finally, if the normal to the plane is directed along 
Fig. 5. 

one of the generators of the asymptotic cone, ! OH 1 = 00 and N == 0, 
i.e., the corresponding plane is only subject to shear. 

The case Nl < 0, N2 < 0, N3 > 0 differs from the preceding one only 
in that the regions of tension and compression are interchanged. All 
other cases differ from those considered above in the way that the parts, 
played by the coordinate axes, are interchanged. 

Previously the cases, when one or two of the quantities N v N 2' N 3 are 



22 I. FUNDAMENTAL EQUATIONS §7 

zero, have been excluded. (When Nl == N2 == N3 == 0, no stress whatsoever 
occurs.) In the case when one of these quantities is zero, the stress surface 
degenerates into a cylinder and the state of stress at that point is then 
called plane. This case will be studied in detail in § 8. When two of the 
quantities N1, N 2, N3 vanish, the stress surface evidently degenerates 
into two parallel planes. 

§ 7. Determination of principal stresses and axes. The problem 
of finding the principal stresses and the corresponding principal axes has 
been seen to be linked with the problem of determining a system of co
ordinates for which the quadratic n(~, 'Y),~) reduces to its "canonical" 
form 

Nl~2 + N2'YJ 2 + N3~2. 
This problem is equivalent to finding the principal planes of stress, i.e., 
to reducing the equation to the form 

(7.1 ) 

Its solution may be found in any textbook on Analytic Geometry or 
Higher Algebra. It is likewise given in Appendix 1 at the end of this 
book. It will be solved in § 8 for the case of plane stress. 

It will be remembered that the values of the coefficients N v N 2, Ns 
of (7.1), i.e., the values of the principal stresses, are given by the roots of 
the third order equation in N (cf. Appendix 1) 

== - NS + 0N2 + AN + B == 0, (7.2) 

where 

e == Xx + Yll + Zz, 

A == Y; + Z! + X;- Y1/ZZ-ZzXx-XxYy, (7.3) 

Xx Xu X z 
B == Y x Yy Yz == XxYuZz + 2YzZxX y-XxY;- YllZ;-ZzX;. 

Zx Zv Zz 

Since the roots N l' N 2' N 3 do not depend on the choice of the coordinate 
system, the coefficients of (7.2), i.e., 0, A, B, likewise cannot depend on it. 
In other words, these quantities are invariant with respect to trans-
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formation of orthogonal rectilinear systems of axes. The invariance of 
the expression 

o :::= -'Yx + Y v + Zz 

has already been proved above by independent reasoning. This result 
is likewise obvious on the basis of the fact that the sum of the roots of 
(7.2) must be equal to 0, from which follows 

(7.4) 

§ 8. Plane stress. The state of stress of a body is called plane, 
parallel to the plane II, if, taking for II the plane Oxy, one has for all 
points of the body 

Xl. :::= Y z == Zz :::= o. (8.1 ) 

Thus there will be only three non-zero components of stress 

If (8.1) does not hold true throughout the body, but only at some given 
point, one speaks of a plane state of stress at a given point. 

The formulae (3.2) indicate that the vector components of stres~ 

acting on any plane, passing through a gi,ren point, will in the present 
case be given by: 

Zn = 0, 
Xn == Xx cos (n, x) + Xv cos (n, y), 
Y n === Y x cos (n, x) + Y 11 cos (n, y). 

(8.2) 

It follows from Zn = 0 that for any orientation of the plane the stress 
acting on it will be parallel to the plane Oxy. 

In the present case the quadratic form 2Q(~, 'lJ,~) becomes 

2Q(~, 1]) = X x~2 + 2X y~1J + Y y1J2 

and the equation of the stress surface 

Xx~2 + 2Xv~1J + Yll1J2 == ± c2
• 

(8.3) 

(8.4) 

This is a cylindrical surface the intersection of which with the plane 
Oxy is the second order curve (8.4) with the origin as centre. 

Limiting consideration to planes, parallel to Oxy, it is sufficient for 
an investigation, similar to that in § 7, to deal only with the above curve 
instead of ~1"ith the entire surface. 
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Now the transformation formulae will be found for the transition from 
the stress components 

to the components 
X~" Y~" X~, 

referring to a new system of axes, obtained from the old system Oxy by 
rotation through an angle ex in its own plane. 

Y The angle (J.. will be measured from the old 
axis Ox to the new Ox' in the positive direc
tion of rotation in the plane Oxy (i.e., anti
clockwise; see Fig. 6.) 

These transformation formulae may be 
wo.-_--'--____ .... obtained from (5.1), but they will be deduced 

X here anew using the property of invariance 
Fig. 6. of the quadratic form O(~, 11) (cf. end of § 5). 

Using the known formulae for the transfor
mation of a vector (~, 11) into (~', I)'), i.e., 

~ = ~' cos (:t, - iJ' sin ct., 
(8.5) 

"'fJ = ~' sin ex + iJ' cos rx, 

and introducing them on the right-hand side of 
, '2 ' , , "2 X t=2 2 

XX'~ + 2Xy'~ ~ + YY'iJ ==: xS + 2Xy~iJ + YyiJ , (a) 
one obtains 

X~,~'2 + 2X~,~' r/ + Y~'"1J'2 = Xx(~' cos ex - r{ sin ex)2 + 
+ 2X 1/(;' cos ex - iJ' sin ex) (~' sin (:t, + ~' cos ex) + y y(~' sin ex + I)' cos oc)2, 

whence follows by comparison of the coefficients of ~'2, ~'2 and ~'l)' 

X~. ==: Xx cos2 ct. + Y 11 sin2 ex + 2Xy sin ex cos ct, 

Y~, = X x sin2 ex + Y 11 cos2 IX - 2X 11 sin ex cos ex, (8.6) 

X~, = (-Xx + Yy)sinexcosex + Xy{cos2 ex-sin2 a). 

After obvious transformations these formulae become 

I X x +Yll X X -YlI • 

Xx' == + cos 2ex + Xv SIn 2~, 
2 2 

I X X +Y1J X X -Y1I • 

Y y ' = - cos 20':: - Xy SIn 2C(, (8.7) 
2 2 

, Xx-Y y • 

Xy' = - SIn 2ex + Xy cos 2rx. 
2 
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A direct check shows that from (8.7) follows 

X~, + y~, = Xx + Y11' 

Y~,-X~, + 2iX~, = (Yll- X x + 2iXy)e2ia.. 

25 

(8.8) 

The first of these formulae has been known for a long time and it was 
proved above for the more general case [cf. (5.2)J. The second,very im
portant and convenient formula was stated by]. H. Michell [3J and it 
was found independently by G. V. Kolosov [lJ. 

Introducing in this formula e2i
r:t. == cos 20:. + i sin 2Cl and separating 

real and imaginary parts, one obtains expressions for Y;, - X~, and 
X~, in terms of the old stress components. Combining these with the first 
equation of (8.8) one obtains expressions for X~" Y~" X~, which, as is easily 
verified, agree with those given in (8.7). Finally, note yet another formula 
obtained by subtracting the equations (8.8) from each other: 

2(X~, - iX~,) = Xx + y 11 - (Y 11 - Xx + 2iXy)e2ia.. (8.8') 

Returning to (8.7) it will be shown that these formulae offer a very 
simple way of determining the principal axes of stress and the principal 
stresses. In fact, if Ox', Oy' be the unknown principal axes (the third 
principal axis obviously being the axis Oz), then X~, == 0, whence by 
the last equation of (8.7) 

2X lI 
tan 2Cl = Y . 

Xx- 11 

(8.9) 

Here a denotes the angle, measured in the sense stated earlier, which 
the principal axis Ox' makes with Ox. Formula (8.9) gives two values for 

7t 
oc; if one of these is denoted by eto, the second will be 0:.0 + 2- All other 

possible values differ from these two by multiples of 7t, and obviously ex. 

may take any of these values. Substituting this value in the first two 
formulae of (8.7) one obtains the principal stresses N 1, N 2, the first 
formula giving N] corresponding to the angle Cl, the second N 2 correspond-
• 7t 
lng to ex. + 2. 

Next, if one takes for the original coordinate axes the principal axes, 
then 
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and the formulae (8.7) become even simpler: 

I N1 + N2 N 1- N2 I N1 + N2 
Xx' = + -- cos 2!X, Y y ' == ---
222 

, N 1 -l\i2 • 
X , == - *---- SIn 2C<.. 

11 2 

(8.10) 

These formulae show that the maximum absolute value of the shear 
stress is given by 

, N1-N2 
! Xv' 1 max == 2 

i.e., it is equal to half the absolute value of the difference of the principal 
stresses. This value is attained on two mutually perpendicular planes, 
bisecting the angle between the principal directions Ox, Oy. 

Finally, the formulae will be written down which give X XI Y 11' X 11' if 
the principal stresses N l' N 2 and the angle !X between the principal axis 
corresponding to N 1 and the Ox axis are known. They are obtained from 
(8.10) by interchanging the parts played by the old and the new systems 
and by replacing the angle !X by -!X. In this way 

X 
Nl + N2 NI-N2 Nl + N2 NI-N2 

x === + cos 2oc, Y 11 == - cos 2~, 
2 2 2 2 

N1-N2 . 
Xy = SIn 2oc. 

2 
(8.11 ) 

The formulae (8. 11) are equivalent to the following which likewise 
result directly from (8.8.): 

Xx + Y11 == Nl + N 2 , Yy-XX + 2iXy == - (N1 -N2)e-2i
<x. (8.12) 

NOTE. It is easily seen that the transformation formulae for the 
stress components Xx, Yl1' Xu into X~;, Y~/' X~" for rotation of the 
system Oxy in its own plane, remain the same as those deduced above, in 
the case of a more general state of stress (and not a plane one), provided 
that the axis Oz is one oj the principal axes at the point considered. In 
fact, in that case 

there. The identity (5.5') then takes the form 

Xx~2 + 2Xy~1) + Yll1)2 + N3~2 = X~,~/2 + 2X~,~/1)' + y~,'l)/2 + N3~2, 
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because, by assumption, the Oz axis remains unchanged and hence 
C:' = ~; Na denotes the principal stress corresponding to Oz, i.e., 

Na = Zz = Z~,. 
1"'he earlier equation (a) follows from the preceding relation and the 
transformation formulae could have been deduced from it. 



CHAPTER 2 

ANALYSIS OF STRAIN 

§ 9. General remarks. The term deformation, when applied to a 
continuous body, will refer to changes in the position of the points of this 
body such that their relative distances are altered. 

Refer such a body to an orthogonal coordinate system Oxyz and 
denote by x, y, z the coordinates of a point of the body before deformation 
and by x*, y*, z* the coordinates of the same point afterwards. Let V be 
the region occupied by the body before deformation. Each point of the 
body, occupying before deformation the position (x, y, z) of the region V, 
will afterwards occupy a unique position (x*, y*, z*). This is the basic 
assumption of the present chapter. Thus the coordinates x*, y*, z* must 
be definite functions of the coordinates x, y, z of the same point before 
deformation of the body: 

x* = tl(X, y, z), y* = t2(X, y, z), z* = 13(x, y, z). (9.1) 

The functions /1' 12' /3 will be assumed to be continuous in the region V 
(Le., the deformation causes no cleavage of the body). The points (x*, 
y*, z*), corresponding to the points (x, y, z) of V, cover some region V* 
occupied by the body after deformation. Conversely, it will be assumed 
that the coordinates x, y, z are definite functions of x*, y*, z* [in other 
words, that the equations (9.1) can be solved uniquely for x, y, z] and 
that these functions are likewise continuous for x*. y*, z* in V*. 

From a geometrical point of view the formulae (9. 1) represent a certain 
transformation of V into V*. It will be noted that not each such trans
formation, i.e., not all relations of the form (9.1), represent a deformation 
of the body in the above sense. In fact, if one displaces the considered 
body as a rigid unit (such a displacement will be called rigid body motion), 
then the coordinates x*, y*, z* of the new positions of the points of the 
body will be definite functions of x, y, z; however, this is not a deformation, 
i.e., a displacement of the points of the body with respect to each other, 
For the sequel it will be very important, once the equations (9.1) are given. 
to separate the actual deformation from the rigid body motion; in other 

28 
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words, it will be important to find the quantities characterizing deformation 
as such. 

§ 10. Affine transformation. A transformation of the form (9.1) 
is called affine, if the coordinates x*, y*, z* are linear functions of the 
coordinates x, y, Z, i.e., if (9.1) has the form 

x* = (1 + a11)x + a l 2Y + a13z + a, 
y* = a21x + (1 + a22)y + a23z + b, (10.1) 
z* = a31x + a32Y + (1 + aaa)z + C, 

where all' a12 , ••• , a, b, c are constants (for reasons, which will become 
clear in the sequel, the diagonal terms have been denoted by 1 + all' 

1 + a22, 1 + a33 instead of by all1 a22 , a33). With reference to § 9 it must 
be assumed that these equations are soluble with regard to x, y, Z, i.e., that 

1 + all a 12 a l3 

D == a21 1 + a22 a23 (10.2) 
aS1 a32 1 + ass 

is different from zero. 
The affine transformation possesses many simple important properties 

of which only the following will be noted. First of all, it is obvious that 
the inverse transformation will be affine, since, solving (10.1) for x, y, z, 
one clearly obtains linear expressions in terms of x*, y*, z*, i.e., 

x == (1 + b11)X* + bl &,* + b1az* + a', 
Y === b21X* + (1 + b22)y* + b23Z* + b', (10.3) 
z = b31X* + b32y* + (1 + bss)z* + c', 

where blv b12, ••• , a', b', c' are constants. 
Further, it is easily shown that points, lying before the transformation 

in some plane II, will after the transformation lie in some plane IT*. 
In fact, let Ax + By + Cz + D = 0 be the equation of the plane II. 
Substituting for x, y, Z from (10.3) one sees that this equation is trans
formed into one which is again linear in x*, y*, z*, i.e., into an equation of 
the form A*x* + B*y* + C*z* + D* = 0 which is, of course, the 
equation of the plane II*. The points which were previously in the 
plane II will now lie in the plane n*. 

It may also be shown that the above, in combination with the property of con
tinuity of the transformation (i.e., that points at a finite distance correspond to 
points at a finite distance, and points infinitely close together correspond to points 
infinitely close together), characterizes the transformation, so that every transfor
mation with these properties will be affine. 
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It follows from the above property that points lying before the trans
formation on some straight line Ll will move to points likewise on a 
straight line Ll*. In fact, the straight line ~ may be considered as the 
intersection of some planes nv IT2• After the transformation, the points 
of the straight line ~, i.e., the points common to the planes ill and IT2, 

become points common to two planes ni and rr~ which are the trans
formed planes III and I1 2, and this proves the assertion. 

It follows from this that any straight segment is transformed into a 
-'jo-

straight segment, and any vector into a vector. I.Jet the vector P = (~, lJ, ~), 
as the result of the transformation, become a vector 

p* == (~*, '1)*, ~*). 

Further, let (xo, Yo, zo) and (x, y, z) be respectively the starting and end 

points of P, so that 

~ = x-xo, ~ == Y-Yo, ~ == z-zo· 

The vector p* will similarly have the components 

~* == x* - xci, '1)* == y* - Y6, ~* = z* - z~\ 
where, for example, by (10.1) 

x* == (1 + a 11)x + a l 2Y + a 13z + a, x6 == (1 + a11)xO + a l 2Yo + a 13z0 + a .. 

Subtracting these two equations one finds the first of the following 
formulae; the others can be obtained in an analogous manner: 

~* == (1 + all)~ + a 12'1) + a13~' 
'1)* = a21~ + (1 + a22)~ + a23~' (10.4) 
~* == a31~ + a32~ + a33~· 

The formulae (10.4) simply express (cf. Appendix 1.2) that the vector 
(~*, "1)*, ~*) is a linear vector function of the vector (~,"1), ~). Consequently the 
quantities 1 + all' a 12, ••• , a 33 , or more briefly aii + 8ii , are components of a 
certain tensor. But since (8ii ) is a tensor, then also (aij ) is a tensor obtained from the 
former by subtraction of the tensor (<>ii)' 

It follows directly from (10.4) that two equal vectors (i.e., vectors 
having identical components ~,'1),~) become after transformation two 
equal vectors, and that two parallel vectors become two parallel vectors, 
the ratio of their lengths remaining unchanged. (The ratio of the moduli of 
non-parallel vectors, generally speaking, is altered by the transformation. 
Cf. Appendix 1.2). It follows also from this first property that two iden
tical and identically orientated polygons (lying in different parts of space) 
are also transformed into identical and identically orientated polygons. 
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But since every geometric figure may be considered the limit of polygonal 
figures, it follows that the above property is valid for all figures. This 
means that all parts of a body, independent of their position, will deform 
in an identical manner. Therefore, the defornlation arising from an affine 
transformation is often called homogeneous. 

NOTE. It will always be assumed that the coordinates are not only 
rectilinear, but also orthogonaL However, all the above will also be true 
for an oblique coordinate system. 

It is almost obvious that the character, Le., the linearity of the relations 
(10.1) or (10.4) remains unchanged, if one rectilinear systems of co
ordinates is replaced by another. This follows directly from the linearity 
of the transformation formulae. 

§ 11. Infinitesimal affine transformation. A transformation of 
the form (10.1) will be called infinitesimal, if the aij, a, b, c are infinitesimal 
quantities, the squares and products of which may be neglected in 
comparison with these same quantities. It follows then from (10.1) that 
by this assumption the differences 

x* - x = a11x + a1V' + a13z + a, y* - y == a21x + a2V + a23z + b, 
z* - z = a31x + a3V + a33z + c 

between the coordinates of one and the same point before and after the 
transformation will be infinitesimal quantities. 

Consider the result of two consecutive infinitesimal transformations. 
Let the first of these be the affine infinitesimal transformation 

x* == (1 + a11)x + a1iV + a13z + a, 
y* == a21x + (1 + a22)y + a23z + b, 
z* === a31x + a32Y + (1 + a33)z + c, (11.I) 

and apply to x*, y*, z* another infinitesimal transformation 

x** == (1 + b11)X* + bl 2Y* + b13Z* + a', 
y** == b21X* + (1 + b22)y* + b23Z* + b', ( 11.2) 
z** == b31x* + b3V* + b33Z* + c'. 

These two infinitesimal transformations transform the point (x, y, z) 
into the point (x**, y**, z**). One obtains the relations between the 
coordinates of these points by substituting the expressions (11.1) in 
(11.2). Neglecting products of the quantities bij, aij, a, b, c one finds 
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without great difficulty 

x** == (1 + C11)X + cl 2Y + C13Z + a", 
y** == C21X + (1 + C22)Y + C23Z + b", ( 11.3) 
z** === calx + e32y + (1 + C33)Z + e", 

where 

Cij == aij + bij (i, j === 1,2,3), a" = a + ai, b" = b + b', e" == c + c' . (11.4) 

These formulae prove that the result of two affine transformations is 
again an affine transformation. This property, as the reader will easily 
verify for himself, is true for any affine transformation whatsoever 
(and not only for infinitesimal transformations). 

But the two following properties, deduced directly from (11.3) and (11 a4), 
are, generally speaking, only true tor infinitesimal transformations. They 
are as follows: the resulting transformation does not depend on the order 
in which the two transformations were applied; the coefficients Cii' 

a", b", e" are the sums of the corresponding coefficients of these trans
formations. 

It will be said that the resulting transformation was obtained by 
composition of two transformations. All the above may be directly 
generalized to the case, when an arbitrary number of transformations 
is to be composed. 

§ 12. Decomposition of infinitesimal transformations into pure 
deformation and rigid body motion. Since in the sequel interest will 
be concentrated on the problem of deformations, one may limit con
sideration to the transformation formulae (10.4) for the components of 
a vector. If these formulae are given, i.e., if the quantities all' ... , a33 are 
given, the formulae (10.1) for the transformation of the coordinates of 
a point will not actually be completely defined, i.e., the quantities a, b, c 
still remain undetermined. But then these quantities obviously do not 
influence the deformations, but only the rigid translatory displacement 
of the body. 

The formulae (10.4) may be written 

where 

o~ = al1~ + a 121) + aI3~' 
oYj = a21~ + a 22"'fJ + a23~' 
o~ = a31~ + a 321J + a33~' 

(12.1 ) 

(12.2) 
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denote the components of the vector difference p* - P == 3P, i.e., of the -increment of the vector P, caused by the transformation. 
Next consider what conditions must be satisfied by the quantities 

alV a12, a13, 

a2V a22J a23 , 

a sv a32J a 33 , 

( 12.3) 

which will be called the coefficients of the transformation under consider
ation (as stated in § 10 these coefficients represent the components of a 
second order tensor), in order that (12.1) does not involve deformation, 
i.e., that it expresses only rigid body motion. 

A necessary and sufficient condition for this is that the length P of 

any vector P, or what is the same thing, that the square of its modulus 

p2 == ~2 + 1)2 + ~2 
remains unaltered by the transformation. 

In the following, consideration will be restricted to infinitesimal 
transformations. Calculate the increase OP of the length P. The preceding 
formula together with (12.1) gives} neglecting higher order quantities, 

pap == ~()~ + 1J~1) + ~o~ == all~2 + a 221J 2 + a33~2 + 
( 12.4) 

In order that 3P == 0 for all possible values of ~,1J, ~, it is obviously 
necessary and sufficient that 

all == a22 == a 33 === 0, a 23 + a 32 == a 3! + a l3 = a 12 + a 2l == o. (12.5) 

This is the required condition that the transformation (12.1) represents 
rigid body motion. It may be written briefly as 

a ij = - a j i ( i, i == 1, 2, 3) ( 12.5') 

[which expresses the fact that the tensor (aij) is antisymmetric (cf. 
Appendix 1.2)]; in fact, for i =1= j one obtains the second group of the 
formulae (12.5), while for i == j one finds aii == - aii, i.e., aii == 0 which 
agrees with the first of the formulae (12.5). 

Thus (12.1) may in the present case be written 

()~ = q~ - T1JJ 01J == r~ - p~, o~ == P1)- q~, (12.6) 
where 
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These are the well-known kinematical formulae expressing rigid (in
finitesimal) body motion. The quantities p, q, r, are known to be the 
infinitesimal angles of rotation about the coordinate axes and will be 
called components ot rotation. [The set of the quantities (P, q, r) may be 
considered as a vector (cf. Appendix 1.3); in fact, it is the (infinitesimal) 
rotation vector commonly used in kinematics]. The terms which refer to 
the translatory displacement are missing from these formulae, because 
consideration is being given to the components of a vector which is not 
altered by the translatory displacements. 

In order to obtain the formulae of transformation for the coordinates 
of a point, occupying before displacement the position M(x, y, z), it is 
sufficient to apply the preceding formulae to the vector 

~ 

MoM = (x-xo,Y-Yo,z-zo), 

where Mo(xo, Yo, zo) is an arbitrary, but once and for all fixed point of 
the body. Substituting in (12.6) x - xo, Y - Yo, Z - Zo for ~,1), ~ one 
obtains the well known formulae of kinematics 

where 

8x = a + q(z - zo) - r(y - Yo), 
8y = b + r(x-xo) -P(z - zo), 
8z = c + P(y - Yo) - q(x - xo), 

a = ~xo, b = 0Yo, c = oZo; 

(12.8) 

in other words, the vector (a, b, c) describes the displacement of the 
point (xo, Yo' zo). If one uses the origin of the coordinate system for the 
point Mo, then (12.8) is somewhat simplified; in fact, it becomes 

~x == a + qz - ry, ~y == b + rx - bz, 8z = c + py - qx, (12.8') 

where the vector (a, b, c) refers to the displacement of the point which 
before the transformation coincided with the origin. 

Next consider (12.4). It indicates that the change in length of the 
-+ 

vector P is characterized by the quantities 

for which the following notation will now be introduced: 
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Actually, deformation is characterized by variations in the distances 
between points, i.e., by changes of length of vectors; it is determined by 
the six quantities exx, ey'Y' ezz , ellz , ezx, ex'Y which will be called components 
of strain. 

Since the au are the components of some second order tensor, the quantities 
e xx' ... , e X1/ are the components of a symmetric second order tensor, as rna y be seen 
from Appendix 1.3; a direct proof of this fact will be given below. 

Similarly, the quantities !(aii - au) are components of an anti-symmetric second 
order tensor which may be represented by means of the vector (P, q, r) (cf. Appendix 
1.) 

Further, in agreement with what has just been stated, introduce the 
notation 

p == !(a32 - a23), q == t(a13 - a31) , r == l(a21 - a12). (12.10) 

In the above notation, obviously, 

a32 == eyZ + p, al3 == ezx + q, a21 == eX 1/ + r, 
a23 == ellz - p, a3! == ezx - q, al2 == eXY - r, 

(12.11 ) 

which demonstrates the division of the tensor (a ii) into the sum of symme
tric and anti-symmetric parts. 
The formulae (12.1) may now be written 

o~ == exx~ + exlll) + exz~ + q~ - Yl), 

01} == ellx~ + eVyl) + ellz~ + r~ - p~, 
8~ == ezx~ + eZYr, + ezz~ + Pr, - q~. 

(12.12) 

These formulae show that the original affine transformation may be 
divided into two transformations: one of the form 

a~ == exx~ + exllYJ + exz~, 
oYJ == eyX~ + eyvl) + eyZ~' 
o~ = ezx~ + eZy'YJ + ezz~, 

( 12.13) 

and another of the form (12.6) representing rigid body motion. The 
transformation (12.13) which contains only components of deformation 
will be called actual or pure homogeneous deformation (see later). 

It is characteristic of the formulae (12.13) that the array of coefficients 

exx exv exz 
eyX eY 1/ e1/Z 
ezx eZll ezz 

2S symmetric. 
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Each of the components of strain has a very simple geometric meaning. 
The latter may be deduced directly from the formula (12.4) which in 
the new notation becomes 

POP == exx~2 + ellll~2 + ezz~2 + 2ellz1)~ + 2ezx~~ + 2exll~1]. (12.4') 

Consider some vector P(~, 0, 0) which before deformation is parallel 
to the Ox axis. For this vector 

PoP == exx~2, 
Of, taking into account that ~2 ::::= p2, 

~p 
( 12.14) 

Thus exx represents the relative increase of the vector (or segment), 
originally parallel to the axis Ox. The components eYlI and ezz have an 
analogous meaning. 

If all the components of deformation, except exx , are zero and if one 
considers pure deformation, i.e., if 

p == q == r == 0, 
then (12.13) gives 

o~ = exx~, (1) == c~ == 0. 

Hence, in this case, all vectors parallel to the axis Ox are stretched in one 

and the same manner (the proportional increase being ~~ = exx) ; however, 

vectors perpendicular to this axis do not change their direction nor 
their length. Thus this case represents a sin~ple and homogeneous extension 
in the direction Ox. Similar results will be obtained in cases when either 
ellll or ezz are the only non-zero components. 

In order to explain the meaning of ellz , one has to determine the 
~ 

change of the originally right angle between the two vectors P1(0, 111' 0) 
-+ 

and P2(0, 0, ~2) which before deformation were directed along Oy and Oz. 
Let the angle between these vectors after deformation be denoted by 

~ - €lIZ (i.e., €lIZ> ° if the angle decreases and eyZ < 0 if it increases). 
2 
By a known formula the cosine of the angle between two vectors 

(o~v 1)1 + 0111' a~1) and (a~2' (1)2' ~2 + a~2) 
is given by 

(
1t') a~1a~2 + (1)1 + 01)1)C'lj2 + ~~1(~2 + O~2) 

cos :2 - EI/Z = vo~~ + ("1]1 + 0"1]1)2 + o~i . vo~~ + O"1]~ + (~2 + O~2)2' 
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But when EyZ is small, 

cos ( ~ - <:1/z) = <:1IZ' 

neglecting infinitely small higher order terms. Omitting higher order 
terms on the right-hand side of the above equation one obtains 

1jl a"fl2 + ~28~1 a~l a1J2 
€lIZ ===: == ~ + - · 

1Jl~2 1J1 ~2 

But by (12.12), applying it to P1(O, 1)v 0) and P2(0, 0, ~2)' 

O~l == e z1I"/h + P1Jv 01J2 == eYZ~2 - P~2 ; 

introducing these values in the preceding formula one finds 

(12.15) 

Thus the quantity 2ellz represents the decrease of the angle between 
two vectors having originally the (positive) directions of the axes Oy 
and Oz. Similar interpretations may be found for 2ezx and 2e x1I -

Now consider pure deformation for which all components but eyZ are 
~ -). 

equal to zero. Let OB and OC be two vectors, Z 
starting for simplicity from the origin and di
rected along the axes Oy and Oz, and let OBCK 
be a rectangle constructed on these two vectors 
(Fig. 7). After deformation the rectangle be
comes the parallelogram OB'e' K' (where it is 
assumed that the origin is not displaced; if this 
assumption does not hold, one may bring the 0 B Y 
origin back to its old position by means of a _X 
translation). Fig. 7. 

By (12.13) the point B is transformed into 
the point B' on the straight line BK and the point C into C' on CK; 
further, 

BB' == ezy.OB, ce' == eyz.OC. 

Since, neglecting infinitely small higher order terms, 

BB' A A Ge' A A 
OB = tan BOB' == BOB', OC == tan COG' == COC', 

the preceding formulae give 
A A 

BOB' = COC' = ellz , 
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whence one obtains again 
A A 

€lIZ = BOB' + COC' = 2eyz o 

If, by means of rigid rotation about Ox, one causes the segment OB' 
to coincide with OB (the difference in their lengths obviously being a 

jZ 

• • C C K I< 

£YZ~~"§, 

o 
x 

Fig. 8. 

higher order quantity), the parallelogram 
OB'K'C' takes the position OBK"C" (Fig. 8) 

A 
and the angle COC" is again equal to the 
angle EyZ (where it has been assumed that 
C" lies on the straight line CK, since obvi
ously this ,viII be so, neglecting higher order 
terms). 

Thus the deformation represents a shearing 
of planes, parallel to the plane Oxy in the 
direction of the axis Oy, and the displace
ment of each layer is proportional to its 
distance from the plane Oxy. The quantity 

CC" measures the "absolute shear", and 

ee" 
OC = tan €yZ = €lIZ = 2eyz 

the "relative shear" or the angle of shear. The considered defornlation is 
called simple (homogeneous) shear. 

§ 13. The invariant quadratic form, connected with deformation. 
The strain surface, principal axes. Transformation of coordinates. 
The formula (12.4') may be written 

PoP == 2F(~, ~, ~), (13.1) 
where now 

2F(~, 1), ~) == exx~2 + ellllTJ 2 + ezz~2 + 2eyzTJ~ + 2ezx~~ + 2exv~1), (13.2) 

i.e., F is a quadratic fornl in the variables ~, Y), ~. Since the left-hand side 
of (13.1), i.e., PoP, has a definite meaning, independent of the choice of 
coordinate axes, it follows that the quadratic form F(~, 1), ~) is invariant 
with regard to transformation of coordinates. In other words, if ex,x" 

••• , eX'y' are the components of strain in a new coordinate system and 

~', 7)', ~' are the components of the vector P in the new system, then 

ex'x,~'2 + e'll''II'1)'2 + ... + 2exl'lI'~'1)' = exx~2 + ... + 2exu~TJ, (13.3) 
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which becomes an identity in ~', "'fJ', ~', if on the right-hand side ~,1), ~ 

are expressed in terms of ;', TJ', ~/. This proves that the array of the 
quantities 

exx eXY exz 

eyX eYlI e1lz 

ezx eZ1l ezz 

represents a symmetric second order tensor (cf. end of § 5). In particular, 
as in § S, it follows that the components of strain in the new coordinate 
system are related to the old ones by the same formulae (5.1) as the new 
components of stress were related to the old ones (one only has to replace 
in those formulae Xx by exx, Y z by eyZ etc.). 

Just as in § 6 the stress surface 

2.Q(~, 1), ~) = ± c2 

was introduced for the study of stresses, one may here consider an 
analogous surface. 

The formula (13.1) may be written 

oP 
p2 Ii == 2F(~, 1), ~) 

or 

p2e = 2F(~, YJ, ~), 

where e = ~: denotes the relative increase of the vector P = (;, 'Yj, ~). 
-+0 

As is known, this quantity does not depend on the length of the vector P, 
but only on its direction. Therefore one may for every direction choose 
the length P so that p2e = ± c2, where c is an arbitrary fixed positive 
constant which has the dimension of a length. -+ 

If one takes as the starting point of the vector P the origin of the co
ordinate system, then the end point H of this vector will lie on the surface 

2F(~, Y], ~) = ± c2, or exx;2 + ... + 2ex1l~'YJ = ± c2 (13.4) 

which is called the strain surface (Cauchy's strain quadric). Once this 
surface has been constructed, one can immediately find the relative 
increase in length e of any vector. For this purpose it is sufficient to 
draw, parallel to the vector, from the origin the semi-axis OH to its 
intersection H with the surface; in order that such a point of intersection 
will exist (Le., that it is real) it is necessary to choose the sign of c2 on the 



40 I. FUNDAMENTAL EQUATIONS § 13 

right-hand side in a definite manner. The relative change in length of the 
considered vector ~'ill be 

c2 

e = ± IOHI 2 ' 
(13.5) 

All the above is quite analogous to what has been said in § 6 with 
regard to the determination of the normal component of stress Nand 
therefore it is not necessary to repeat those details here. 

If the coordinate axes are chosen in such a way that they coincide with 
the principal axes of the surface (13.4), its equation takes the form 

( 13.4') 

where ev e2 , ea denote the values of ex:/:) e lly , e zz for the new system; na
turally the components e1./Z, ezx , eX1J will be zero in that system. Con
sequently the new system of axes has the property that the angles between 
the axes after deformation remain right angles. This means, as there are 
always three such mutually perpendicular axes, that the angles between 
them remain unchanged by deformation. Those three axes are called 
principal axes of strain. The quantities e1, e2, ea are referred to as principal 
strains. 

In the general case there exists only one such set of three axes. But 
if the surface (13.4) is a surface of revolution (i.e., when two of the quan
tities ei are equal), there will be an infinity of such sets. 

If one chooses the principal axes of strain as coordinate axes, the 
formulae (12.13), expressing pure defornlation, take the form 

8~ = el~' ~~ = e£~, ~~ = ea~. 

Consequently every pure deformation may be represented as the result 
of three simple extensions in three mutually perpendicular directions 
which are the directions of the principal axes of strain. 

Finally note that the principal strains ev e2, ea are the roots of a cubic 
equation in e (cf. § 7) 

exx-e ex'Y e xz 

e1/X ey'Y - e e yZ == -e3 + 6e2 + be + c == 0, (13.6) 
ezx e Z1/ ezz-e 

where, in particular, 
e == exx ~ elly ~ ezz• (13.7) 

Since the coefficients of (13.6) must be invariant (cf. § 7), it is clear 
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that e must be so. Obviouslye represents the sum of the roots of (13.6), 
I.e. , 

f) = exx + elly + ezz = e1 + e2 + es. (13.8) 

The quantity e has a very simple geometrical meaning. In fact, consider 
a right parallelepiped, constructed on segments OA, OB and OC of the 
principal axes and having the volume 

V = l1121s, 
where 

/1 == OA, 12 = OB, 13 == OC. 

After deformation the considered parallelepiped will still be a right 
parallelepiped with sides 

/1 (1 + e1), l2 (1 + e2), 13 (1 + es), 

and its volume will be 

V' = 11l213(1 + e1) (1 + e2) (1 + es) = V(1 + e1 + e2 + ea), 

neglecting higher order terms. Consequently 

V'-V 
V = e1 + e2 + ea· (13.9) 

This formula shows that e is the relative expansion of the volume V or the 
cubical dilatation. 

§ 14. General deformation. Consider now the most general de
formation of a continuous body. Let the point M, having initially the 
coordinates x, y, Z, move as a consequence of deformation to the po
sition 

M*(x*, y*, z*). 
Write 

X*==X+U, y*=y+v, z*=z+w; (14.1) 
--+ 

U, v, ware the components of the vector MM* which expresses the 
displacement of the point M as the result of deformation. This vector 
will be called displacement vector or simply displacement, and u, v, w 
displacement components. Since different points of a body, generally 
speaking, will be displaced in a different manner, u, v, w will be functions 
of the coordinates x, y, z of the original position of the point under 
cor,.sidera tion 

u = u(x, y, z), v = v(x, y, z), w = w(x, y, z). ( 14.2) 
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(Sometimes the displacement may also be a function of the time; in that 
case one considers the state of deformation at some definite instant of 
time.) 

In the sequel, unless stated otherwise, it will be assumed that the 
functions u, v, ware not only single-valued and continuous, but also that 
they have continuous derivatives up to and including the third order. 

Select at some point M(x, y, z) of the body an infinitely small neigh
bouring volume and investigate its changes as a result of deformation. 
For this it is sufficient to study the variations of infinitesimal vectors 
having (before deformation) the point M as their starting point. Let 

-~ ~ 

MN == P = (~, 1), ~) 

be such a vector. After deformation M will have moved to M*, and N to 
~ -'l>- -~ 

N*, so that the vector P becomes the vector p* = M* N*. Calculate the 
-+ -+ -+ -+ ~ 

vectorial increment ~p of the vector P*, i.e., ~p == p* - P. The coor-
dinates of M* are 

x + u(x, y, z), y + v(x, y, z), z + w(x, y, z), 

while those of N*, having before deformation the coordinates 

x +~, y + 1), z + <:, 
will be 

x + ~ + u(x + ~, Y + 1), Z + ~), Y + 1) + v(x + ~, Y + lJ, Z + ~), 
z + ~ + w(x + ~, y + ~, Z + ~). 

-'l>-

Therefore the components of the vector p* will be 

~ + u(x + ~, y + 1), Z + ~) - u(x, y, z), 

1) + v(x + ~, Y + l), z + ~) - v(x, y, z), 

~ + w(x + ~, y + 1), Z + ~) - w(x, y, z). 
-+ 

Finally, the components o~, Ol), o~ of the vector OP will be 

u(x + ~,y + "YJ, z + ~) - u(x, y, z), v(x + ~,y + l), Z + ~) - v(x, y, z), 

w(x + ~, Y + 1), Z + ~) - w(x, y, z). 

But by Taylor's Theorem 
OU ou ou 

u(x + ~, Y + ~, z + ~) - u(x, y, z)= ox ~ + ay'1J + oz ~ + E, 



CHAP. 2 ANALYSIS OF STRAIN 43 

where € is an infinitely small term of higher order than ;, 1), ~. Neglecting 
€ and proceeding analogously in the case of the other components, one 
finds 

dU dU OU 
8~ = --- ~ + - 'YJ + -~, ox oy CZ 

ov OV OV 
0"1) = ox ~ + ay"tJ + Tz~' ( 14.3) 

CJW ow ow 
o~ = ox ~ + oy "tJ + Tz ~ ; 

in these formulae the values of ~; etc. refer to the point (x, y z) and do 

not depend on ~, 11, ~, These formulae show that, apart from higher order 
terms involving the linear dimensions of the considered body element, 
the change of this element may be expressed by means of an affine 

f ·· h ff" . OU OU trans ormatIon wIth t e coe ICIents all = ox ,a12 = oy etc. 

Hitherto no limiting assumptions have been introduced with regard 
to the order of smallness of the displacement components u, v, w. It will 
now be assumed (and this condition will always apply) that the components 
of displacement u, v, wand also their derivatives with respect to x, y, z 
are infinitely small quantities the squares and products of which may 
be neglected in comparison with these quantities. Then (14.3) will be 
an infinitesimal transformation and everything said in the preceding 
sections will apply. 

It was seen that pure deformation of the element under consideration 
was expressed by the formulae (§ 12) 

~~ == exx~ + e X1JTJ + exz~, 
~1) == ellx~ + ev'll"Y'J + ellz~, 
8~ == ezx~ + ez1lYJ + ezz~, 

( 14.4) 

where exx, ••• , ex'V are the strain components, determined by the formulae 

au avow 

( 14.5) 

-l.(~~) -l.(~~) - .l(~ ~) evz - 2 oy + oz ' ez:z; - 2 OZ + ox ' e:z;v - 2 ox + oy · 

exx = ox' ell1l == oY' ezz == 3z ' 
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Generally speaking, the pure deformation should still be combined 
with the rigid displacement of the considered element with the in
finitesimal components of rotation 

p =:l( ow _~), q =.l( au _ aw), r = i(~- OU) (14.6) 
2 3y OZ 2 oz OX dX oy 

and the translatory displacement which is equal to the displacement of 
the point M(x, y, z), i.e., its components will be the values of u, v, w at 
M(x, y, z). 

The essential difference between tIle present deformation and the 
homogeneous deformation of § 10 arises from the fact that here the 
components of strain exx , ••• etc. depend on the location of the con
sidered body element, i.e., on the coordinates x, y, z. In particular, the 
directions of the principal axes of strain will now change from point 
to point. Similarly, of course, the components of rotation will depend 
on x, y, z. 

Finally, it will be noted that the quantity 
au avow 

6 = ezz + eyy + ezz = ox + oy + oz (14.7) 

is invariant with regard to transformation of orthogonal coordinates 
and represents the cubical dilatation. But since one is now dealing with 
non-homogeneous deformation, it is of course clear that one can only 
talk of the dilatation of a volume element in the neighbourhood of a 
given point. 

Most of the properties of deformation, studied above, were first deduced 
by Cauchy in his memoir of 1822 (cf. § 3). 

§ 15. Determination of displacements from components of 
strain. Saint-Venant's conditions of compatibility. In § 14 formulae 
have been deduced by which the components of deformation can be 
calculated from the displacement components, given as functions of 
x, y, z. Now the inverse problem will be considered: to determine the com
ponents of displacement u, v, w, if the strain components exx , ••• , ex'JJ are 
given as functions of x, y, z. Before solving this problem, several pre
liminary remarks will be made which will make it possible to predict 
certain results. 

The values of the strain components have been seen to determine 
the change in shape of an infinitesimal element of the body near a given 
point. Thus the strain components as functions of x, y, z determine 
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the change in shape of every infinitesimal element of the body. As a 
result it is obvious that the deformation of the body as a whole is ef
fectively determined, i.e., the values of the displacements u, v, w as 
functions of x, y, z. It is likewise clear that u, v, w may not be determined 
uniquely. In fact, if displacements, corresponding to given strain com
ponents, have been found, then, by adding an arbitrary (infinitesimal) 
displacement of the body as a rigid unit, one will obtain different values 
for the displacements which will still correspond to the same components 
of strain, because the rigid body motion has no effect on the deformation. 
In order to make the problem unique, one may, for example, assume 
in addition that the displacement of any arbitrary point Mo of the body 
and also the components of rotation at this point are given. 

The following may also be noted. By an earlier assumption, the 
components ~t, v, ware single-valued and have continuous derivatives 
up to and including the third order. Hence the given components of strain 
exx, ••• , exv must likewise be single-valued and have continuous deriva
tives of the second order; this condition will be assumed to be satisfied. 
However, it is easily seen beforehand that the quantities exx, • •• , exv 

must still satisfy definite relations, in order that the problem will have a 
solution. This follows already from the following rough considerations. 
Let an infinitesimal element, e.g. a cube (which is not adjacent to the 
boundary), be separated from the body. If one subjects every such cube 
to a deformation with given components and then tries again to join 
all the infinitesimal parallelepipeds obtained in this way so that their 
boundaries, which were adjoining before deformation, again touch, then, 
generally speaking, this will turn out to be impossible; in the attempt 
of joining the separate elements there may either appear gaps between 
several of them, or boundaries of elements which should match may be 
found to differ from each other in size, or finally some elements may be 
too large for the space available. All this shows that the components 
of strain must satisfy certain relations, in order to allow deformation with
out discontinuities. This will now be proved strictly by actually 
solving the original problem. 

Thus let it be required to find functions u, v, w satisfying the conditions 

ou ov ow 
ox == exx, oy = e1lll , oz = ezz , 

(15.1 ) 



46 I. FUNDAMENTAL EQUATIONS § 15 

where exx , ••• , eX 1} are given single-valued functions of x, y, z having 
continuous second order derivatives. 

One has six equations for the determination of three unknown functions. 
This again shows that the problem may not have a solution, if the given 
functions exx, ••• , ex'll are not subject to certain additional conditions; 
these conditions will be found while solving the above problem. 

Let V be the region originally occupied by the body; this is the domain 
of values of x, y, z for which the functions exx , ••• , eX'lJ are given and for 
which the functions u, v, w must be found. For the present, V will be 
assumed to be simply connected. It will be remembered that a region is 
called simply connected, if it has the following property: every closed 
contour, lying inside the region, may be shrunk into one point by means 
of continuous changes which do not take the contour outside the region. 
Such regions are, for example, represented by a sphere, a cube etc. (for 
more details see Appendix 2.) 

Let Mo{xo, Yo, zo) be any point of V, U o, Vo, Wo the values of the com
ponents of displacement there and Po' qo, ro the corresponding values of 
the components of rotation. Let M1(X1, Yl' Zl) be any other point of V. 
Consider the problem of determining the components of displacement 
at the latter point. 

Let MoM! denote any curve which joins M o and Ml and lies in V. If the 
. .. dU ou OU 

partIal derIvatIves -, - and - were known throughout V, one ax oy OZ 
could find the value U 1 of the function U at the point Ml from the formula 

r (OU au au) 
u =:::: 'tt + - dx + - dy + - dz , 

1 ° "ox ay oz 
MoMl 

where the integral must be taken over the curve MOM!. But 

ou au au 
ax == exx, oy:::= eXY - r, OZ = ezx + q, 

where q and r are determined by the formulae (14.6). 
Hence 

MOMl MOM! 

( 15.2) 

(15.3) 

The first integrand involves only gIven functions. Consider now the 
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second integraL One has 

}qdZ - rdy) = j{rd(Yl- y) - qd(Zl- z)}, 

MoMl MOM! 

whence, integrating by parts, 

j (q dz-r dy) == qO(Zl-ZO) -r O(YI-YO) -f {(yl-y)dr- (zl-z)dq}. (b) 

MoM! MoMl 

In order to evaluate the last integral, one requires the values of dr, dq or, 
what is the same thing, the values of the first order partial derivatives of 
the functions rand q. But it may be verified directly that 

or oexll oexx or oe llll oexll 'Or oe llz oezx 

ox = Tx--ay' oy = a;--ay' oz = a;--ay' 
oq oexx oezx oq oe llx oe llz oq oezx oezz 

ox = -az--Tx' oy = -az-- a;-' oz == 2z-a;-· 
Substituting these expressions in 

or 'Or or 
dr = - dx + ~ dy + - dz ox oy OZ' 

oq oq oq 
dq == -dx + -dy + ~dz, ox 'Oy OZ 

one obtains, using (a) and (b), the first of the three formulae below (the 
other two may be obtained from the first by cyclic interchange of symbols) 

u(xv Yl' Zl) = U o + qO(Zl - zo) - YO(YI - Yo) + 
+ j(U",dX + Uydy + Uzdz), 

MOM! 

V(xv Yl' Zl) = Vo + rO(Xl - Xo) - PO(Zl - zo) + 

+ j(V",dX + Vydy + Vzdz), (15.4) 

MoM! 

W(X1, Yl' Zl) = Wo + PO(YI - Yo) - qo(x1-XO) + 

+ j(W",dX + W!/dy + Wzdz), 

MOM! 



48 I. FUNDAMENTAL EQUATIONS § 15 

where, for convenience, 

( 
oexx oeXY ) ( 2exx oezx ) 

Ux === exx + (YI-Y) ay- ax + (Zl-Z) Tz-a~ , 

( 
oeXY oeyy ) ( oeXY 2e yz ) 

U y == ex'l} + (YI-Y) ay- ox + (Zl-Z) Tz-Tx' (15.5) 

( 
oezx oeyZ ) ( oezx oezz ) 

U z = exz + (YI-Y) Ty- ax + (Zl-Z) Tz-Tx · 

The formulae for V x' V '!I , V z and W x, W 11' W z are obtained from the above 
by cyclic interchange of symbols (by simultaneously transposing the 
symbols U, V, Wand x, y, z). 

The formulae (15.4) essentially agree with those found by V. Volterra 
[IJ, p. 406, using transformation formulae given by G. Kirchhoff [IJ, 
VarIes. XXVII, § 4. The deduction presented here is due to E. Cesaro 
(Rendiconti d. R., Academia di Napoli, 1906; it is also quoted in V. Vol
terra [IJ, where it is reproduced on pp. 416-417, as due to Cesaro) who 
gave Volterra's formulae a more symmetrical form. 

The formulae (15.4)' determine the displacement components u1 , Vl' WI 

at any point M1(X1, Yv Zl) of the body, if the displacement 
(uo, vo, wo) and the rotation (Po, qo, Yo) are given at some other point 
M o(xo, Yo, zo) which has been chosen once for all. The formulae for the 
displacements contain integrals taken over some curve connecting 
the points Mo and MI. But U, v, w must be functions of Xl' Yll ZI and 
should not depend on the path of integration MOM!. This means, in order 
that the problem may have a solution, it is necessary that the integrals 
in (15.4) are independent of the path of integration. 

It is easily seen that the necessary and sufficient conditions for the 
integral 

I (U.,dx + U 'll dy + Uzdz) 

MoM! 

to be independent of the path MoMI are (cf. Appendix .2.) 

For the two other integrals one obtains analogous conditions by cyclic 
rotation of symbols. These conditions must be satisfied at all points 
(x, Y, z) of V and for all values (Xl' Yv ZI) in that region. 
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Performing the differentiations, it will be seen that these conditions 
may be reduced to the following six: 

o2e:cx = ~ (_ oeu + oeu1 + oe:X:lI) 
oyoz ox ox oy cz' 
o2eY ?I == ~ (_ oe,:x: + oe:X:lI + Oe~) 
ozox oy oy oz ax' 

a2e.::.. === ~ (_ oe:x:y + oeyZ + oe,,,,). 
ozoy GZ oz ox oy 

For example, the condition 

gives, by (15.5), 

oUy 

oz 

( _ ) ( o2exlI _ 02eyy ) (_ ( 3
2
exlI _ 32ey.:.) _ 

Yl Y oyoz OXOZ + Zl z) OZ2 oxoz-

(15.6) 

=== (Yl - Y) (3
2
ezx _ 02eyz

) + (Zl _ z) (~2e,,,, _ 02ezz ) • 
oy2 oxoy ozoy oxoy 

Since these relations must hold true for all Yl' Zl in a given region, one 
must have 

32eyy o2ezx o2e yZ 02eyZ o2ezx 02ezz 

oxoz - oy2 - ox3y , ==~-----

OXOZ ozoy oxoy · 
These relations agree with the last two of the right-hand column of (15.6). 
The others may be obtained by the same procedure. It should be noted 
that the formulae in the second and third row of (15.6) may be deduced 
from those in the first row by cyclic interchange of symbols. 

The equations (15.6) are called conditions ot compatibility of Barre de 
Saint-Venant (1797-1886), since they were first discovered by him 
(in fact, he lectured about them to the Societe Philomathique in 1860 and 
published the relations in 1861). 

These conditions are the mathematical form of those relations which 
must be satisfied by the components of strain in order that deformation 
may take place without discontinuities (cf. the earlier part of this section), 
and for this reason they are also sometimes called conditions ot con
tinuity. 
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Provided these conditions are fulfilled, the formulae (15.4) give com
pletely defined expressions for u, v, w which do not depend on the choice 
of the path of integration, and it is easily verified directly that dis
placements found in this way actually satisfy the equations (15.1). 
Further, the constants 

remain quite arbitrary, as had been anticipated previously. As can be 
seen from (12.8), variations in these constants will only cause rigid 
displacement of the body as a whole. In particular, if 

throughout a region, one obtains, putting for simplicity Xo = Yo == Zo == 0 
and omitting the subscripts of Xv YIJ Zl' 

U = Uo + qoz-roY, v = Vo + rox-poz, w == Wo + Poy-qoX, 

i.e., only rigid body displacement. 
Hitherto it had been assumed that the region V was simply-connected. 

Consider now cases of multiply-connected regions, i.e., of regions inside 
which there exist closed contours which cannot be shrunk into one point 
without cutting them apart or taking them outside V. As an example 

for a multiply-connected region 
one may consider a torus, i.e., a 
body obtained by revolving a circle 
about an axis lying in its plane 
but not intersecting it (Fig. 9). 

A multiply-connected body 
becomes a simply-connected one, 
if one introduces suitable cuts 
(for more detail cf. Appendix 2.) ; 
for example, in the case of 

F " 9 the tore it is sufficient to cut 19. . 
i t at one of its meridional circles, 

shown in Fig. 9. Everything said above will apply to the region cut 
in this manner. In fact, provided the compatibility conditions are satisfied, 
the components u, v, w, determined by (15.4), will be single-valued 
functions of the coordinates of the point M 1(X1, Yl' Zl) ; in addition, it must, 
of course, be assumed that the path of integration MoMl does not leave 
the cut region, i.e., that it does not intersect the cut. Further, when con
necting the point Ml to any point of the cut, the quantities u, v, w will, 
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generally speaking, have different values depending on the side from 
which the point on the cut is approached. 

Let u+, v+, w+ and U-, V-, w- be the values of u, v, w, when a point on 
the cut is reached from one or the other side respectively. The condition 
of compatibility of deformation tor the body as a whole will only be satisfied, 
if in addition to (15.6) the following conditions are satisfied on all 
cuts, introduced in the body to make it simply-connected: 

u+ = U-, v+ = V-, w+ = w-. ( 15.7) 

When (15.7) is not satisfied, discontinuities will occur at the above
mentioned cuts and even parts of the body may penetrate each other 
in these places. 

It is clear from what has been said that, if (15.7) is not satisfied and if 
the functions u, v, ware still determined by use of (15.4) in uncut regions, 
i.e., if one admits intersection of the cuts by the path of integration, then 
u, v, w will be multi-valued functions of Xv Yv Zl' i.e., after travelling once 
around certain closed contours the functions u, v, w will not revert to 
their original values; it is easily seen that this may only happen in the 
case of contours which cannot be shrunk to a point by a continuous process 
(cf. Appendix 2). 

The first to comment on the above was J. H. Michell [IJ. A. Timpe [IJ 
indicated for the case of the plane problem of the theory of elasticity 
the possibility of a physical interpretation of multi-valued displacements. 
For the general case of three dimensional problems the question of the 
meaning of multi-valued displacements was studied in detail by V. Vol
terra in a number of publications; a sUlllmary of this work has been given 
by him in his paper [lJ, and a short study of Volterra's results is also 
contained in A. E. H. Love [lJ (appendices to chapters VIII and IX) 
and in P. Burgatti [1]. For the case of plane elasticity this problem 
will be studied in detail in Chapter 6. 



CHAPTER 3 

'THE FUNDAMENTAL LAW OF THE THEORY OF ELASTICITY. 

THE BASIC EQUATIONS. 

Everything said in the previous chapters may be applied to any con
tinuous body. In order to obtain equations characterizing a body which 
will be called elastic (or more correctly ideally elastic), it is still necessary 
to have a law expressing the connection between the stressed state of 
the body and the corresponding deformation. 

§ 16. The fundamental law of the theory of elasticity (ge
neralized Hooke's Law). The first, very incomplete formulation of 
the law relating stresses to strains was due to Robert Hooke (1635-1702). 
In 1660 H~oke discovered this law which has been named after him; 
he published it in the form of an anagram in 1676 and gave the solution 
of the latter in 1678. Expressing the essentials, which Hooke stated in his 
law, in contemporary language one may say: "The deformation of an 
elastic body is proportional to the forces acting on it". This formulation 
may only be given a definite interpretation in the case when the "force" 
acting on the body and the deformation connected with it can be char
acterized by one quantity each. 

For example, if one has a long thin cylindrical rod, stretched by 
longitudinal forces applied to its ends, one may assume that the force 
acting on the body is characterized by the given value F of the applied 
traction and the deformation by the extension f1l of the rod. In this case 
Hooke's Law gives ill === C .F, where C is a constant depending only on 
the original length I, the form of the cross-section and the material of the 
rod. Actually, it will be shown later that C == liES, where 5 is the area 
of the cross-section and E is a constant depending only on the material 
of the rod. Many similar examples could be quoted here. 

Experiments have verified that Hooke's Law agrees well with the 
behaviour of many solid bodies, provided the deformations are sufficiently 
small. For finite deformations the law of proportionality fails to give 
even approximately correct results. 

52 
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However, also in the case of small deformations, when the law of pro
portionality may be assumed to be valid, Hooke's Law as introduced 
above may not give the complete picture of what actually takes place 
in the deformed body. Indeed, it has been seen that the state of stress 
and strain is characterized by six quantities each, and that these quantities 
change from one point of the body to another, so that in actual fact one 
is dealing with an infinite number of quantities characterizing the state 
of the body as a whole. 

For exan1ple, in the case quoted above Hanly" the tensile forces F 
acting on the ends of the cylindrical rod have been considered. In actual 
fact, the "force" F expresses only the resultant effect of the external 
stresses applied near the ends of the rod. These stresses may be distributed 
in any manner whatsoever, for example they may be spread over the 
end-sections or over parts of the side surface in the neighbourhood of the 
ends; the distribution may be uniform or non-uniform, etc. 

It is clear that the distribution of stresses and strains inside the rod 
depends largely on the distribution of those external stresses. It is only 
in the case, when the dimensions of the cross-section of the rod are small 
compared with its length, that the manner in which the external forces 
are distributed near the ends has no great effect on the state of the 
rod (and then only in parts away from the ends). Under these circum
stances consideration may be limited to the resultant '(force" F (cf. 
also § 23). 

Thus it is obvious that, if one does not want to limit oneself to a 
crude and superficial investigation, one has to generalize Hooke's Law. 
The most natural generalization of a law of simple proportionality of 
two quantities ,vilI be a law of linear dependence between several quanti
ties. Hence consider a~ the generalization of the original law the following 
fundamental law of the theory of elasticity or generalized Hooke's Law: 

The components of stress at a given point of a body are linear and ho
mogeneous functions oj the components of strain at the same point (and vice 
versa). 

Of course the above statement refers to small deformations. (As regards 
the limits of applicability of Hooke's Law, cf., for example, R. Gram
mel [IJ). The generalized Hooke's Law in this form was first stated by 
A. L. Cauchy in his memoir of 1822. In subsequent work, published in 
1828, Cauchy deduced this law, basing it on molecular theory, under 
a simple supposition referring to the interaction of forces between molecules 
considered as material points. The same result was obtained by S. D. Pois-
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son (1781-1840) by an analogous method in a memoir delivered to the 
Paris Academy ,in 1828 and published in 1829. 

It is not proposed to present here the deduction due to Cauchy and 
Poisson, the more so because it has been found to be insufficient (cf. 
below), but the generalized Hooke's Law will be accepted as the foun
dation of the present theory, based on the fact that for small deformations 
this law agrees sufficiently well with reality for very many materials. 

Before going further the following remark should be made. Since 
generally stresses and strains are different in different parts of a body, 
it is only possible to discuss their components at a given point. 
However, the expression "at a given point" will be interpreted in a dif
ferent manner according to whether it is applied to components of 
strain or stress. For example, when stating that exx is a function of the 
coordinates x, y, z, this will always refer to the position (x, y, z) of the 
point before deformation. The same will be true with regard to the com
ponents of displacement u, v, w. On the other hand, when it is said that 
Xx is a function of x, y, Z, this will refer to the position (x, y, z) of the point 
in the final (i.e., stressed and hence deformed) state of the body. 

However, for the smalf deformations considered here this distinction is 
not essential, since, for example, the values of Xx at (Xl' Yl' Zl) and (x, Y, z), 
where (x, y, z) is the position of the point (xv Yl' Zl) before deformation, 
differ by an amount which is small compared with Xx. Thus the value 
of Xx at a given point (Xl' Yv Zl) of the deformed body may be replaced by 
its value at (x, Y, z). In the sequel the values of all functions considered 
will be taken at (geometric) points representing the original positions of 
the points of the deformed body. 

Accordingly, in the sequel, when speaking of a region V occupied by a 
body or ot its boundary 5 we will always have in mind the region occupied 
by the body before deformation and its boundary. 

Now consider the generalization of Hooke's Law. It may be written in 
the following manner. If Xx, Y lI , Zz, Y z, Zx, Xv are the components of 
stress at a given point of the body and ex :m ey'Y' ezz , eyZ ' ezx, exv the compo
nents of strain, then 

Xx == c11exx + c12e1l1l + c13ezz + 2c14eyz + 2c15ezx + 2c16eXY ' 

y x = c21exx + ca2e1l1l + c23ezz + 2c24eyz + 2c2Sezx + 2c26ex1I , 

Zz = c31exx + C32C1l1l + c33ezz + 2c34eyz + 2c35ezx + 2c36ex1I , 

Y z = c41exx + c42e1l1l + c43ezz + 2c44ellZ + 2c45ezx + 2c46exy , 

Z x = c51ex :c + c52eYlI + cS3ezz + 2c54eyz + 2c55ezx + 2c56ex1I ! 

X 11 == C61 exx + c62eV1I + c63ezz + 2c64eyz + 2c6Sezx + 2c66ex1l , 

(16.1 ) 
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where the factor 2 has been introduced for the sake of convenience 
(cf. below). 

Since on the basis of the adopted fundamental law the components 
of strain must likewise be definite linear functions of the components of 
stress, the preceding equations must be soluble wIth respect to exx , ••• , 

ex1l , i.e., the determinant of the coefficients Cij must be different from 
zero. 

The quantities Cij are constants characterizing the elastic properties 
of the body at a given point. They are called elastic constants. The term 
"constant" must be understood in the sense that these quantities do not 
depend on the values of the components of strain and the corresponding 
stresses at a given point. However, they may vary from point to point of 
the body. If that is so, the body will be said to be non-homogeneous (as 
regards its elastic properties). On the other hand, if the elastic constants 
are the same for all points of the body, it will be called homogeneous. 

The formulae (16.1) are seen to contain 36 elastic constants. But by 
considerations based on the law of conservation of energy and on a study 
of the potential energy of deformation, it may be shown that the following 
relations must hold between these constants: 

Cij == cji (i, f == 1,2, ... ,6), 

in other words, the array of coefficients Cii is symmetric. Thus in the 
most general case the number of elastic constants may be reduced to 21. 
Application of these considerations and deduction of the stated result 
was first given by G. Green in 1837 whose paper on the subject was 
published in 1839. A more complete foundation for this result, based upon 
the first and second law of thermodynamics, was presented by Lord 
Kelvin (W. Thomson) in 1855. (For more detail see A. E. H. Love [IJ). 

It will be seen in the next section that in the case of the isotropic 
body the number of elastic constants may be reduced to two. 

By the old theory of Cauchy, based on the consideration of molecular 
forces, the number of elastic constants in the most general case is equal 
to 15, and not 21 ; in the case of the isotropic body one has by this theory 
only one elastic constant (in the first of his memoirs, where Cauchy 
did not rely on molecular theory, he obtained two constants for the iso
tropic body). Poisson arrived at the same results. However, this was not 
confirmed by experiments. But it should not be thought that the mole
cular theory led to the wrong results and that it is impossible to obtain 
from it the correct number of constants. The point is only that Cauchy 
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and Poisson applied molecular theory in an oversimplified form. Using 
modern concepts of the structure of materials one can obtain the correct 
result, i.e., 21 constants. This has been done recently by M. Born [IJ 
(cf. also A. E. H. Love [IJ, Note B at the end of his book). 

It is not proposed to give here further details of these problems, since 
in the sequel only isotropic bodies will be considered. In that case definite 
formulae may be deduced by means of very simple considerations. 

§ 17. Isotropic bodies. As mentioned earlier a body will be called 
isotropic, if its properties are the same in all directions. In other words, 
if one cuts a volume element of a definite shape (say a cube) from an 
isotropic body, this element will not differ from any other element of the 
same form (cut from, the same part of the body) but orientated differently 
from the first. For example, wood is not isotropic, since a beam cut in the 
longitudinal direction (along the fibres) differs very much from a beam 
cut across the grain. Likewise all crystalline bodies are anisotropic. In 
nature there are no ideally isotropic bodies, but many materials, important 
in industry, may with sufficient approximation be assumed to be isotropic. 
Many such materials (e.g. metals) consist of small anisotropic parts 
(crystals) arbitrarily placed with respect to each other. It is this random 
distribution which is the reason that bodies of not too small dimensions 
made from these materials may be considered to be isotropic. 

A body will not only be called isotropic, but also homogeneous, if 
the properties of volume elements cut from different parts of it are the 
same. It should still be noted that a body which is isotropic and homo
geneous with regard to one property may be anisotropic or non-homo
geneous with regard to others. 

In the following only isotropic and homogeneous bodies will be considered, 
where it must be understood that this isotropy and homogeneity refers 
only to its elastic behaviour .. 

In mathematical language this fact may obviously be expressed in 
the following manner: the coefficients C1V ••• , C66 in (16. 1) do not depend 
on the orientation of the coordinate axes with respect to the body nor on the 
position of the point under consideration in the body. Owing to this property 
the above-mentioned formulae take a very simple form, as will now be 
shown. 

First of all it is easily proved that at every point of an isotropic body the 
principal axes of strain and stress coincide. In fact, let the principal axes 
of strain at a given point lie along the coordinate axes. Then 
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By the generalized Hooke's Law one has, in particular, 

Y z == Aexx + Bev1J + CeZZ1 

57 

(a) 
where A, B, C are constants. Introduce now a new coordinate system 
Ox'y'z', obtained from the old system by a simple rotation of 1800 about 
the axis Oz. The axis Oz' of the new system will coincide with Oz, while 
Ox', Oy' will be in the opposite directions to Ox, Oy. Since the coefficients 
A, B, C are not to depend on the choice of axes, one will have in the new 
system 

(b) 

But obviously 

Comparing (a) with (b) one sees that one must have 

and hence * 
A = B == C == o. 

But this means that Y z == O. In the same way it can be proved that 

Zx == Xv == o. 
However, this shows that the coordinate axes are principal axes of 

stress and the above statement is proved. Thus, in future, it will be un
necessary to distinguish between principal axes of strain and stress; 
they will simply be called principal axes. 

Let it still be assumed that the coordinate axes coincide with the prin
cipal axes. By the generalized Hooke's Law one may, in particular, write 

X x == aexx + bevy + cezz , 

where a, b, c are constants. Let Ox'y'z' be a new system of axes obtained 
from Oxyz by a rotation of 900 about the axis Ox. In the new system one 
must again have 

* We use here the following argument which we assume to be obvious (or 
proved by experiment): the strain components ex:!;' ••• , ex'Y at a given point may 
assume arbitrary (of course, sufficiently small) values for a suitable choice of 
external forces acting on the body element under consideration. 
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But obviously in the present case 

and hence 

Comparing this formula with the earlier one for X x one sees that b == c. 
Thus 

Xx == aexx + b(ev1J + e zz) == b(exx + ell 'Y + ezz ) + (a - b)exx• 

Finally introduce the notation 

b = A, a - b == 2fl, 

so that the preceding formula becomes 

Xx = A(exx + ev'V + ezz) + 2t.Lexx = ).6 + 2flexx, 

where 

Because of isotropy one can obtain from the above formula for Xx 

those for Yll' Zz simply by replacing the letter x by y or by z. Conse
quently, one finally finds 

NI == A6 + 2flev N2 == A6 + 2t.Le2' N3 = A6 + 2!-Lea. (c) 

In these formulae N 11 N 2' N 3 and el , e2, e3 denote the principal stresses and 
strains. The corresponding coordinate axes will now be denoted by 
Ox', Oy', Oz', where it should not be forgotten that they are principal axes. 

In order to find now the formulae relating the stress components 
X x' ••• , X'JJ to the strain components eXXI ••• I ex'JJ in any coordinate 
system Oxyz, it is sufficient to express the quantities Xx, ... , Xv by the 
known transformation formulae for the transition from one system 
of axes to another in terms of NIl N 2, Na. Using (c), this will give 
expressions for X x, ••• , X'II in terms of el , e2, e3• Expressing, finally, 
el , e2, ea in terms of exx , ••• , ex'JJ one finds the required formlllae. Actual 
execution of this process leads to unwieldy calculations which may be 
avoided in the following way. 

One can replace the set of formulae (c) by a single equation which is ob
tained by multiplying the equations (c) by ~'2, YJ'2, ~'2 respectively, where 

~ 

~', "I)', ~' are the components of some arbitrary vector P in the system 
OX'y'z', and by adding them: 

NI~'2 + N 2"1)'2 + N3~'2= 
= ).8(;'2 + 1']'2 + ~'2} + 2fl(el;'2 + e2YJ'2 + e3~'2). (d) 
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Now transform from the axes OX'y'z' to the axes Oxyz. It is known that 
the quadratic form 

Nl~'2 + N 2YJ'2 + N3~'2 
will then become the quadratic form (cf. § 5) 

Xx~2 + ... + 2Xll~YJ, 
and 

the form (cf. § 13) 

exx~2 + eyyYJ2 + ezz~2 + 2ellz"'IJ~ + 2ezx~~ + 2exy~"'IJ. 
Here ~, 1), ~ are the components of the vector P in the system Oxyz. But 
obviously 

~'2 + iJ'2 + ~'2 = ~2 + "'IJ2 + ~2, 
As regards the quantity 

e == e1 + e2 + e3, 

its value in terms of the components for the nev\" axes will be 

e == exx + eYlI + ezz 

(cf. end of § 14). Hence in the new coordinate system equation (d) becomes 

Xx~2 + Y y1)2 + Zz~2 + 2Yz"'IJ~ + 2Zx~~ + 2Xy;1j == 
== Ae(~2 + "'12 + ~2) + 2~(exx;2 + eyvY)2 + ezz~2 + 2eyz"'IJ~ + 2ezx~~ + 2exy~1J). 

But since this equation will be true for the components of any vector 
~ 

P, Le., for all values of ~, 1), ~, the coefficients of ~2, ••• , ~"'IJ on either side 
·of the equation must be equal, and hence 

X x == A8 + 2!-Lexx, Y 'V == Ae + 2!-Leyy, Z z == AO + 2~ezz, 
(17.1) 

y z == 2t-tellz, Z x == 2t...t-ezx, X 1J == 2!-LexlI' 

where e == exx + ey'JI + ezz (17.2) 

is the cubical dilatation. 
Formulae (17.1) give the unknown relations between the components 

of stress and strain in an isotropic body. The quantities A, t...t- are constants 
characterizing the elastic behaviour of a given body *. This notation was 

* The formulae (17.1) obviously remain also true in the case when the body 
under consideration, while isotropic, is non-homogeneous. Then the quantities "
and !J. will themselves be functions of the coordinates x, YJ Z of the point under 
consideration. Certain of the formulae and propositions derived below likewise 
remain in force for non-homogeneous bodies, as the reader will readily verify. 
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introduced by G. Lame [IJ (1795-1870) and for this reason they are called 
the constants oj La11te. They have to be determined for every material 
by experiment, but in actual fact other quantities, in terms of which 
these constants are easily expressed, are more suitable for direct measure
ments, and that is the procedure normally adopted. 

By a condition, stated during the formulation of the generalized Hooke's 
Law, the equations (17.1) must be soluble for exx, ••• , eXY ' Consider what 
-conditions must be satisfied by A and tL, so that the above demand is 
satisfied. For this purpose (17.1) will now be solved for the components 
()f strain. Adding the first three equations, one gets 

x~ + Y1J + Zz = (31.. + 2[.1.)6 = (3/\ + 2t.L) (exx + e1J1J + ezz). (17.3) 
This equation can be solved for exx + ey'Y + e zz only if 3", + 2tJ. # o. 
Further, solving the last three equations of (17.1) for ellz , ezx, ex'Y' one finds 
that one must have t.L # 0 .. It will be seen in § 19 that for all actual bodies 
A > 0, fL > O. Assume now that these conditions are satisfied. Sub
stituting the value for 8, obtained from (17.3), in (17.1) one finds the 
formulae 

"A+t.t A 
e ---~x - (Y +Z) 

xx - t.L(3A + 2tL) x 2tJ.(3A + 2t.L) 'Y z , 

(17.4) 

expressing the components of strain in terms of the stress components. 

§ 18. The basic equations for the statics of an elastic isotropic 
body. It is now possible to write down the complete system of equations 
for the statics of an elastic body. This system consists of the H equilibrium 
equations", relating the stress components (§ 4), and of the equations 
(17.1), relating stresses to strains. It will be shown in § 20 that the fol
lowing equations constitute a complete system: 

axx oXv axz X 
Tx+ay+&+ =0, 

oYx aYlI oYz y 
Tx+Ty+Tz+ = 0, 
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3Zx 3Zy 3Zz 
~- + -- + -...... - + Z == 0, ex oy oz 

(18.1 ) 

X x === AS + 2[.l.exx, Y 11 == AS + 2[.l.ey1I , Z z == Af) + 2[.Lezz , 

y z == 2{Le yz , Z x === 2{Lezx, X'Y:::::: 2t.Lexy, 
(18.2) 

au ov 
exx == ox' eyy == oy' 

where u, v, ware the components of displacement and 

au OV ow 
e = e",,,, + eyy + ezz = AX + oy + Tz" ( IB.4) 

These equations must still be supplemented by the formulae giving the 
components of the stress vector acting on a plane with normal n (§ 3) : 

Xn == Xx cos (n, x) + Xy cos (n, y) + X z cos (n, z), 

Y n === Yxcos (n,x) + Yycos (n,y) + Yzcos (n,z), (lB.S) 
Zn == Zx cos (n, x) + Zy cos (n, y) + Zz cos (n, z). 

Next, a general remark will be made with reference to the sets of 
equations (18. 1) and (18.2). These equations are linear and homogeneous 
in the displacement components u, v, W, the stress components Xx, ... ,Xy 
and the body forces X, Y, Z. Hence, if 

, , 'X I X I d " " "X'I X" ~t , V , w, x, •.. , y an u, v , w, x, ••• , y 

are two solutions of (18.1) and (18.2) corresponding to body forces X', 
V', Z' and X", Y", Z" respectively, then 

u == 'u' + u", 

Xx == X~ + X;, 

v == v' + v", w === w' + w", 
(18.6) 

... , x = X' + X" 
11 Y Y 

is a solution of the same system of equations for the body forces 

X = X' + X", y = Y' + Y", Z = Z' + Z". (IB.7) 

It will be said that the solution (18.6) has been obtained by super
imposition of the two given solutions. Formulae (18.5) show that the 
external stresses, applied to the surface of the body (for this purpose n 
refers to the outward normal) and corresponding to the last solution, 
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are given by the sums of the surface tractions corresponding to the given 
solutions. In particular, if utI, v", w", X;, ... , X; is any solution when 
there is no body force (X" == Y" == Z" == 0), then (18.6) will satisfy the 
same equations with the same body forces as the solution u', v', w', 
X~, ... , X;. 

§ 19. The simplest cases of elastic equilibrium. The basic 
elastic constants. Before going further, several very simple cases of 
elastic equilibrium will be considered for the purpose of studying the 
physical meaning of the constants characterizing the elastic properties 
of a body. 

First it will be noted that in the absence of body forces, i.e., if 

x == y == Z == 0, (19.1) 

the static equations of the elastic body may be satisfied, in particular, by 
assuming the strain components exx, ••• , eXY to be (arbitrary) constants, 
i.e., by assuming homogeneous deformation. In fact, by (18.2), the 
stress components will likewise be constants and hence the equations 
(18.1) will be identically satisfied (since by supposition X == Y = Z == 0). 
Further, the compatibility conditions of St. Venant (§ 15) will be satisfied, 
since one may always find displacements u, v, w corresponding to the 
given strain components. In this simple case the above may be proved 
directly by finding expressions for the displacements; namely, direct 
substitution shows that the displacements 

u == exxX + eXYY + exzz + qz - ry + a, 

v == eyxX + eyyy + eyZz + rx -pz + b, 

w == ezxX + ezlIY + ezzz + py - qx + c, 

( 19.2) 

satisfy for constant eXX1 ••• , eXY the relations (18.3). Here a, b, c, p, q, r 
are arbitrary constants; the corresponding terms express therefore 
rigid body displacement [these formulae could also have been written 
down immediately using (12. 12) J. By § IS the solution (19.2) is the only 
possible one for the given exx, .•. , eXY ' 

In exactly the same way it is obvious that the static equations may be 
satisfied by putting the stress components equal to arbitrarily chosen 
constants. In fact, (18.2) gives then defi.nite constant values for the strain 
components and one obtains again the preceding case. 

Now certain very simple particular cases will be considered. First put 
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Xx == T == canst, Y lI == Zz == Y z == Zx == Xu == O. (19.3) 

Then, by (18.2) or by (17.4), 

A+l-L T A T 
exx = [1.(31. + 2[1.) , en = ezz = - 2l-L(3A + 2l-L) , 

( 19.4) 

(19.5) 

It will now be assumed that the body under consideration is a prism 
or a cylinder with generators parallel to Ox and with ends perpendicular 
to this axis. Then it is obvious from (18.5) that on the side surfaces 
X n == Y n == Z n == 0, i.e., they are free from surface tractions. On the end 

facing in the positive direction of the axis Ox : Y n == Z n == 0, X n == T, 
and on the other end 

Yn==Zn=O, Xn=-Xx==-T. 

Consequently the external forces acting on the cylinder are uniformly 
distributed over the ends and produce tension, if T > 0, and com
pression, if T < 0. The quantity T denotes the tensile or compressive 
traction, exerted per unit area of the ends. Now the obvious assumption 
(which may be based upon experimental evidence) will be made that for 
these conditions and for T > 0 the cylinder extends in the longitudinal 
and contracts in the transverse direction, i.e., for T > 0 one must have: 
exx > 0, eYlI < 0, ezz < o. 

Then, by (19.4), 

A + tL 0 >, 
tL(3A + 2tL) 

(19.6) 

Therefore, in particular, (A + [.L) =I=- 0; further, it follows from these in
equalities (dividing one by the other) that 

A 
---->0. 
2(A + tJ.) 

Introduce the notation 

(.L(3A + 2[.1.) 
E= 

A + [.L , 

A 
(j - ~--

- 2(A + [.1.) • 
(19.7) 

On the basis of the above the quantities E and (j are positive for all ma
terials. The quantity E is called modulus ot elasticity or Young's modulus 
(Th. Young 1773-1829) and (j Poisson's ratio. The physical meaning of E 
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is obtained from the first of the formulae (19.4) which gives 

T == Eexxo (19.8) 

Thus E is the ratio of the applied stress to the strain caused by it in the 
longitudinal direction. The physical meaning of 0' follows also from 
(19.4) which show that 

== 0', ( 19.9) 

i.e., the ratios of the transverse strains to the longitudinal strain are a 
constant quantity which does not depend on the shape of the cross-section 
of the rod nor on the magnitude of applied traction. 

N ext consider another particular case. Let 

(19.10) 

Then, by (18.2), 

(19.11) 

i.e., the corresponding deformation is pure shear. If the body under 
consideration is in the undeformed state a right parallelepiped with sides 

z 

T 

o 
x 

Fig. 10. 

parallel to the coordinate planes, then 
it is easily seen from (19.10) that the 
sides perpendicular to the axis Ox are 
free from surface traction. The tractions 
applied to the other sides lead to the 
shearing forces shown for the case T > 0 
in Fig. la, where only a cross-section 
in a plane parallel to Oyz is drawn. The 
angle between the sides originally paral-

Y leI to Oxy and Oyz is shown to differ 
from a right one by €yz = 2ellz (cf. § 12). 
Hence, by (19.11), 

( 19.12) 

Thus ~ is the ratio of the shearing stress T and the corresponding angle 
of shear. For this reason (.L is called the shear moduiu,s. 

Finally consider the case 

Xx = Yy == Zz ==: -p = canst, Y z = Zx == Xu = O. (19.13) 
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In this case (18.5) shows that the stress acting on any plane with normal 
n is given by the formulae 

Xn = -p cos (n, x), Y n = -p cos (n, y), Zn == -p cos (n, z), 

expressing that the stress vector is parallel to the normal and that its 
magnitude is I P !. Hence only a normal stress acts on any plane; if one 
assumes p > 0, the stress will be compressive. The surface of any 
part of the body under consideration will only be subjected to uniform 
normal external pressure ("hydrostatic pressure"). 

Adding the first three formulae of (18.2) one finds 

p = - (A + ·ilL) 6. 

Since e is the cubical dilatation (and consequently - 6 is the cubical 

compression), the quantity k = A + ilL (19.14) 

is called the modttlus ot compression or bulk modulus. The obvious as
sumption will be made (which may be based on experimental evidence) 
that for p > 0 a decrease in volume actually takes place, and hence 
that k > 0 for all materials. 

In addition to A and [.L the following constants have been introduced 
in the above work: the modulus of elasticity E, Poisson's ratio (j, the modu
lus of compression k. The quantities).. and [.L may be expressed in terms of 
any two of these constants. For example) solving the equations (19.7) 
for A and [.L, one obtains 

Ecr E 
A = (1 + 0') (1 -20')' lL = 2(1 + 0')' (19.15) 

and substituting these expressions in (19.14) 

E 
k = 3(1 _ 20') · (19.16) 

The last formula shows that one must have for all materials 

a ~ 1. (19.17) 
The formulae (19.15) show that 

A > 0, [.L > 0 
which is now also obvious on physical grounds (cf. § 17). 

Note that by the old theory of Cauchy and Poisson for all bodies 
cr = 1, Of, what is the same thing, A == f,L. But this is not confirmed by 
experiment. However, for many materials, (J has approximately the same 
value of i (and not i). 
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If one introduces in (17.4) the constants E, c; instead of A, ~, the formulae 
take the simpler form 

1 
exx = if [Xx - c;(Yll + Zz)], 

1 
eY1I = if [Yll- c;{Zz + Xx)], ( 19.18) 

1 
ezz = E [Zz- c;(Xx + Y lI )] , 

NOTE. In the literature one often finds the quantity rn = ~ which 
c; 

is called Poisson's coefficient (e.g. R. Grammel [IJ). The shear modulus ~ 
is often denoted by G. Recently determined values of the above 
constants for different materials may likewise be found, for example, in 
Grammel's book. 

§ 20. The fundamental boundary value problems of static 
elasticity. Uniqueness of solution. Consider now the basic equations 
of the static elastic body (§ 18) which will be written in the form 

o~t 
X x == A6 + 2fL - , ox 

where 

oXx oXy 3Xz 
~+--+-+X==O ox oy OZ ' 

3Yx aY1I 3Yz y 
Tx+-aY+Tz+ =0, 

azx aZ lI oZz z 
aX-+ay+Tz+ = 0, 

a_OU ~ 'Ow 
- ox + oy + oz · 

(20.1 ) 
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The nine equations (20.1) and (20.2) contain just as many unknown 
functions u, v, w, X x' ••• , X 'Y. The system (20.1) and (20.2) has earlier 
been called the complete system of static equations of the elastic body. In 
order to prove this statement, it has to be shown that the system (20.1) 
and (20.2) completely determines the elastic equilibrium of the body, if 
the external forces to which it is subject and the "internal" body forces 
are known. 

It has been assumed here that the elastic equilibrium of a body is 
known, if the stress components or what is the same thing, thanks to the 
equations (20.2), if the strain components are known at every point of 
the body. It should not be concluded that body forces are exclusively 
external, since, for example, gravitational forces between parts of the 
elastic body are "internal" body forces. The external forces mentioned 
above comprise, firstly, external body forces and, secondly, external 
tractions applied to the boundaries of the body. 

In connection with all this there arises the fir s t fun dam e n t a I 
boundary value problem: 

I. Find the elastic equilibrium ot a body, if the external stresses acting on 
its boundaries are given. Here, as in all the following work, it will be as
sumed that the body forces are given once and for all. 

In practice, this last point arises in the following manner: body forces acting on 
a body element depend as a rule on the mass contained in it and on its position 
with respect to other masses (e.g. gravity forces, centrifugal forces due to rotation, 
etc.). Under deformation the position of the element as well as its density will 
change, so that the body forces (X, Y, Z), referred to unit volume, generally speak
ing will also vary. But in view of the smallness of the deformations and displacements 
these variations are insignificantly small and may be disregarded. 

With (20.1) and (20.2) in mind, this problem leads to the following 
one: Find functions u, v, w, X x, ••• , X 'Y' satisfying (20.1) and (20.2) in 
the region V originally occupied by the body (cf. § 16), and, in addition, 
satisfying on the surface (boundary) S of the body the follo\ving boundary 
conditions [cf. (18.5)J: 

X:e cos (n, x) + Xv cos (n, y) + X z cos (n, z) = i1' 
Y:c cos (n, x) + Yll cos (n, y) + Y z cos (n, z) = 12' 
Zx cos (n, x) + Z'Y cos (n, y) + Zz cos (n, z) = f3' 

(20.3) 

where n denotes the outward normal to 5 and 11' 12' 13 are functions, given 
on the boundary (and representing the components of the known stress 
vector acting on the surface of the body). 
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In addition to the first fundamental problem stated above the 
second fundamental boundary value problem is 
of considerable interest: 

II. Find the elastic equilibrium of a body, if the displacements of the points 
oj its boundary are given. Physically this corresponds to the case when, by 
means of suitable tractions applied to the points of the surface, these 
points are subjected to known displacements and the boundary is cor
respondingly deformed. In relation to the equations (20.1) and (20.2) 
this leads to the determination of solutions which satisfy on the surface 
of the body the following boundary conditions: 

(20.4) 

where gl' g2' ga are functions known on the boundary. 
Finally, in many investigations an important part is played by the 

mixed' fundamental boundary value problem 
which arises whenever displacements are known on one part, and external 
stresses on the remaining part of the boundary. 

In addition to the problems stated already a number of others may be 
formulated which are no less important in applications; some of these 
will be considered later, when dealing with the plane case. 

In the sequel, unless stated otherwise, it will be assumed that u, v, 
ware single-valued functions having continuous derivatives up to and 
including the third order inside the region occupied by the body. Under 
these conditions the strain and stress components will also be single
valued and continuous functions having continuous second order de
rivatives inside the same region. 

Further, we will assume that the displacement and stress components 
are continuous along the boundary of the region V occupied by the body. 
This assumption, although not stated explicitly, was implied above, for 
example, when writing down the formulae' (20.3) and (20.4). 

As regards the surface 5 of the body which represents its boundary 
we will assume that it satisfies the conditions which are usually imposed, 
in order to ensure the validity of the known formulae of integral calculus 
which will be used below. 

Having in mind the need to prove a "uniqueness theorem", i.e., to prove 
that the system of equations (20.1) and (20.2) has one and only one 
solution for each of the fundamental problems, one important lemma will 
first be deduced. 

Consider the double integral, extended over the surface of the body, 
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(20.S) 

s 

where X n' Y n, Z n are determined by (18.5) and by n must be under
stood the outward normal to S. Substituting from (18.5) into (20.S) one 
finds 

J =//CP cos (n, x) + Q cos (n, y) + R cos (n, z)]dS, 

s 

where for convenience 

p = Xxu + ¥xv + Zxw, Q == Xyu + YyV + Zyw, 

R == Xzu + Yzv + Zzw. 
By Green's formula 

((((OP aQ oR) 
J = JJJ oX + oy + oz dxdydz. 

v 

But in the present case 

'OP aQ 'OR (axx aXy OXz ) (3Yx oYll 3Yz ) -+-+-=u -+-+- +v -+~+- + ox oy oz ax oy oz ax oy oz 

( azx azv OZz) ou ov ow 
+ W a;- + ay + & + x", ox + Y 11 Oy + Z z Tz + 

(
'OW OV) (au OW) (OV OU) 

+ Y z oy + Tz + Z '" oz + ax + x 11 --ax- + oy , 

Of, by (20.1), 

'OP oQ oR -+- +-== - (Xu + Yv + Zw) + 2W, ox 'Oy oz 
where 

2W = X{J;e xx + YllellY + Zzezz + 2Yzellz + 2Zxezx + 2X'lIex'll' (20.6) 

Thus one finally obtains 

ff(X"U + Ynv + Znw)dS + fff(XU + Yv + Zw)dxdydz = 

s v = 2Iff W dxdydz. (20.7) 
v 
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The expression W in this formula represents, as will be proved in 
§ 24, the potential or strain energy per unit volume; but at the moment this 
is of no importance. 

Introducing on the right-hand side of (20.6) the expressions (18.2) for 
the stress components in terms of the strains one finds 

2W = A(exx + e1J1J + ezz)2 + 2[.L(e;x + e~y + e;z + 2e;z + 2e;x + 2e;y), (20.6') 

which proves that W is a positive quadratic form involving the components 
of strain, and, in addition, that it is definite, i.e., that it becomes zero, if and 
only if all the strain components are zero; this follows from the fact that A 
and ~ have already been shown to be positive quantities. 

Similarly, W may be expressed in terms of the stress components; 
obviously it will again be a positive definite form in these components. 

Let it now be assumed that one of the earlier stated problems has 
two solutions. Let u' , v', w', X~, ... , X~ be the components of dis
placement and stress corresponding to the first solution, and u", v", w", 
X;, ... , X; be the analogous quantities of the second solution. Form 
the ((difference" of these two solutions, i.e., put 

" , X X" X' u = u - u, ... , v = y - y' 

Obviously (cf. § 18) the functions u, v, w, X x' ••• , X v satisfy the same 
equations (20.1), (20.2) in which one has only to put 

X = Y = Z = 0; 

in other words, the ((difference" solution satisfies the basic equilibrium 
equations in the absence of body forces. Thus, by (20.7) for X= Y = Z = 0, 

ff(XnU + Y"v + Z"w)dS = 2 fIf Wdxdydz. (20.7') 

s v 
Now the following will be noted: In the case of Problem I the quantities 
X n , Y n, Zn, formed by subtracting the two solutions, will be zero on 5, 
since both solutions, by supposition, satisfy the conditions (20.3) for 
the same functions 11' 12' fa. Hence 

Xn = Xa; cos (nx) + Xv cos (n, y) + Xz cos (n, z) = 0, 

Y n = 0, Zn = o. 
In the case of Problem II one will in the same way find u = v = w = ° 
on S. FinalIy, in the case of the mixed problem, U, v, w will be zero on one 
part, and X n , Y ru Zn on the remaining part of the boundary. In all three 
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cases the expressIon XnU + Y nV + Znw is zero on S. Hence (20.7') 
becomes 

iff W dxdydz = O. 

v 

However, since W > 0, the above relation is only possible, if W = 0 
at all points of V. It has been seen earlier that this condition implies 
e:cx = eUY = ezz = euz = ezx = ex'U = 0 throughout the body. But exx = 
e;z - e~x etc., where e;x' ... , e;y and e~x' ... , e~lI are the components of 
strain, corresponding to the two solutions under consideration. This 
means that both solutions give identical strain components, and con
sequently also identical stress components. Hence both solutions are 
identical in the sense that they give an identical state of stress (and de
formation). This proves the uniqueness theorem. [The theorem and the 
proof given here is due to G. Kirchhoff (1858).J 

However, it should be noted that the displacements may not be com
pletely identicaL In fact, from the vanishing of exx , ••• , eX1J does not 
follow that u = v = w = 0, but only 

u = a + qz-ry, v = b + rx-pz, w = c + py-qx, (20.8) 

(where a, b, c, p, q, r are constants) expressing rigid body motion. Thus, 
when solving the first fundamental problem, one will always obtain the 
same stresses (and strains), but one may find for the displacements 
values, differing from each other by terms expressing rigid body motion. 
This could, of course, have been predicted, because such displacements 
do not affect the stresses and deformations. Such differences in the 
solutions are, however, unimportant. 

In the cases of the second and the mixed boundary value problems such 
differences cannot occur, since the displacements are given beforehand for 
the whole or part of the boundary. 

Finally note the following proposition which is a particular case of the 
uniqueness theorem proved above: If the body forces are zero and if, in 
addition, either a) the external stresses or b) the displacements of points 

The above-mentioned proofs of existence are given in a great number of original 
publications. Reference will be made here to only a few of these. For the secon"" 
fundamental problem: I. Fredholm [lJ, G. Lauricella [I, 2J, A. Korn [1, 2J, L. Lich
tenstein [lJ, D. I. Sherman [21J. For the first fundamental problem: A. Korn [3J, 
H. Weyl [lJ. Note that as a rule the first problem of this book is called in literature 
the second boundary value problem and vice versa. 
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of the boundary or c) the external stresses on one part and displacements 
on the remaining part of the boundary vanish, then the stresses throughout 
the body are zero (and hence there is also no deformation). 

The above proof of uniqueness of solution holds true for simply as 
well as for multiply connect~d bodies, because at no stage has the as
sumption of simple connectivity been introduced *. However, the hy
pothesis that the components of displacement are single-valued functions 
of the coordinates is essential for the proof. As has already been stated, 
in the case of multiply connected bodies one may admit also the existence 
of displacements which are not single-valued. For such a generalized 
study of the problem the above uniqueness proof loses its validity and 
the theorem is no longer true. For a physical interpretation of this case 
see Part II of this book. 

Note that only the following has been proved: if the fundamental 
boundary value problems of elasticity have a solution, then that solution 
is unique. But this, of course, it not a proof of the existence of such 
solutions. The proof of the existence of a solution is much more difficult 
than the uniqueness proof and it requires application of the most powerful 
methods of modern analysis. This explains the fact that the proofs of the 
existence of solutions of the fundamental problems have only been found 
comparatively recently. 

The scope and character of the present book do not allow a general 
treatment of these problems. Therefore it will only be stated here that 
the existence of solutions of the first and second fundamental boundary 
value problems has been proved recently with full mathematical rigour 
under sufficiently general conditions. The proof for the plane case will 
be given in Part V of this book. 

For the existence of a solution of the first fundamental problem ob
viously the following condition must be satisfied: the resultant vector 
and moment of the body forces and (known) external stresses applied 
to the boundary must be equal to zero. This condition follows from the 
fundamental principle of statics and may also be deduced from (20.1). 
In fact, the projection of the resultant vector of these forces, for example 
on the axis Ox, is 

fff X dxdydz +~O·X .. dS. 

v s 

* This proof is applicable without any changes in the case of non-homogeneous 
bodies, i.e., when A and !J. are functions of the coordinates .x, y, z (cf. footnote p. 59). 
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But, as has been shown in § 4, this expression is equal to 

rr( ( axx aX1/ axz ) J J J X + --ax + a-y + & dx dy dz; 
v 

this triple integral, however, is zero by (20.1). 
Further, the resultant moment, for example about the axis Ox, is given 

by Iff (yZ-zY)dxdydz + ff(YZn-ZYn)dS. 
v s 

This expression, as shown in § 4, is equal to 

fff(Z~ - Y z) dx dy dz, 
v 

where again use has been made of (20.1); but since Z 1/ = Y Z' the last 
triple integral vanishes. 

§ 21. Basic equations in terms of displacement components. 
The system of equations (20.1) and (20.2) involves simultaneously the 
components of stress and displacement. However, it is possible to obtain 
systems containing only one or the other type of components. It is simplest 
to deduce the system containing the components of displacement. For 
this purpose it is sufficient to substitute from (20.2) in (20.1) which 
gives, after some obvious simplifications, 

00 
(A + fL)-ox + fLau + X = 0, 

06 
(A + fL) ay + fLLlv + Y = 0, (21.1) 

of) 
(A + tJ-) Tz + tJ.Llw + Z = 0, 

where again 
El=ou+ov+ow 

ox oy oz 
and ~ denotes the Laplace operator, i.e., 

82u 02U a2u 
Llu = ox2 + oy2 + OZ2' 

Starting from the representation of the elastic body as a system of 
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material points, Navier (1785-1836) obtained in his memoir, presented 
to the Paris Academy in 1821 and published in 1827, the equations which 
must be satisfied by the displacements of the points of an elastic body in 
the dynamic as well as in the static cases. Navier's equations for the 
latter case agree essentially with the equations (21.1), if one puts in 
these A == ~. The discovery of these equations may be considered one of 
the most important stages in the development of the theory of elasticity, 
and therefore Navier is rightly ranked among the most important of its 
founders. 

The equations (21.1) are very convenient, because of their symmetry 
and because they contain only three unknowns. 

§ 22. Equations in terms of stresses. However, it is often more 
convenient to deal with equations containing only stresses. It should 
not be thought that for this purpose one may limit consideration to 
the equations 

oXx oX 1/ axz X 0 -+-+-+ ==, ox oy OZ 

oY x oY 1/ oY z Y _ 0 (22 ) 
~+ay+&+ -, .1 

oZx 3Z1} oZz Z 0 -+-+-+ =, ox oy OZ 

which have been called "equilibrium equations" 
In fact, if X x' ••• , X 1} satisfy these equations, this does not mean 

that these quantities express some actually possible state of stress; 
it is also necessary, in addition, that displacements (u, v, w) can be found 
which are related to these stresses by (20.2). For this, on the other hand, 
it is necessary and sufficient (with certain reservations in the case of 
multiply connected bodies; cf. the end of this section) that the strain 
components which will now be written [ef. {19.18)J 

(22.2) 

l+cr y 
E Z' 

l+cr 
E Zx, 

1+0-
E Xv, 
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where 
o = Xx + Yy + ZZ1 

satisfy the compatibility equations of St. Venant [cf. (15.6)J. 
Substituting from (22.2) in (15.6) one obtains from the formulae in the 

first row of (15.6) 

o2Yll 02Zz (1 {020 o20} 02Yz 
OZ2 + Oy2 - 1 + (J oy2 + OZ2 = 2 Oy OZ ' (22.3) 

(22.4) 

by cyclic interchange of symbols one obtains four similar relations 
corresponding to the remaining compatibility conditions. Equations 
(22.3) and (22.4) may be somewhat simplified using (22.1). Thus, dif
ferentiating the second equation of (22.1) with respect to y and the third 
with respect to z and adding them, one obtains 

o2Yz o2Yll 02Zz a {ox'JI OXz} (oY OZ) 
2 + +-+- --+- =- --+-. oy oz oy2 OZ2 ox oy oz oy OZ 

But, by the first of the equations (22.1), 

~(OXlI + ox.) __ ax _ o2xx. 
ax oy oz - ax ox2 ' 

substituting this last expression in the preceding formula gives 

o2Yz 02Xx a2Y1l 02Zz (oX oY oz) ax 
2 oy oz = ox2 - ay2 - OZ2 - ax + oy + Tz + 2 ox 

which, when introduced on the right hand-side of (22.3), leads to 

___ (1 _ (020 + (20) + 02(Yll + Zz) + 02(YlI + Z.) _ 02Xx =:: 

1 + (J oy2 OZ2 OZ2 oy2 ox2 

=:: _ (OX + oY + ~Z) + 2 OX. 
ox oy oz ox 

Finally, noting that Y 11 + Z z = 0 - X x, one obtains 

1 1 020 ( ax a Y 'OZ ) 'Ox 
--Ll0-~Xx- --=::- --+-+- +2-. (a) 
1 + (j 1 + (1 'Ox2 ox oy oz ax 



76 L FUNDAMENTAL EQUATIONS § 22 

Adding this equation to the two analogous equations, obtained from it 
by cyclic transposition of symbols, one finds a formula which is important 
in itself 

~e == _( ax + oY + oZ) 1 + (J • 

ox oy oz 1 - (J 

(22.5) 

Substitution of (22.S) ill (a) finally gives 

1 020 (J ( ax 0 Y oZ ) oX 
~XX+ -==- --+-+-- -2-. (22.6) 

1 + (j ox2 1 - (j ox oy oz ox 
This is one of the required formulae, the other two being obtainable by 
cyclic transposition of symbols. 

Now consider equation (22.4). Differentiating the second equation 
of (22.1) with respect to z and the third with respect to y and adding, 
one obtains 

32Yx o2Yy o2Yz 32Z x (}2Zy 02Zz (OZ ay) 
ox oz + oy oz + ~ + ox oy + oy2 + Oy oz = - oy + Tz · 

Adding this equation to (22.4) which may be written 

32Xx o2Yz 02Zx 02Xv (j 320 
-oy OZ + ox2 ox cy ox OZ 1 + G oy OZ = 0, 

one finds 1 320 (az OY) 
~yz+ =- --+- (22.7) 

1 + G oy oz oy oz· 
The other two equations of this type may be obtained by cyclic trans
position. 

Thus it is seen that the stress components must satisfy nine equations, 
i.e., (22.1), (22.6) and (22.7) with their analogous equations. The 
equations (22.6) and (22.7) were obtained by]. H. Michell [IJ (pp. 112-
113); for the case of zero body forces, these equations were found earlier 
by E. Beltrami (1892). Therefore the equations (22.6) and (22.7) 
with their four anaiogues will be called conditions of compatibility of 
Beltrami -Michell. 

It follows from the above that, if the six equations of the type (22.6) 
and (22.7) are satisfied, the strain components corresponding to the 
stress components, satisfying the equilibrium equations (22.1), will 
fulfill the compatibility conditions of St. Venant. Thus, the equations 
(22.1), (22.6) and (22.7) with their analogues are not only necessary, 
but also sufficient. 
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Some reservations must be made only in the case of a mUltiply con
nected body, when the displacements, corresponding to the stress com
ponents satisfying all the above conditions, may be found to be multi
valued. In that case one has to introduce either an additional condition 
of single-valuedness of the displacements or to admit the existence of 
multi-valued displacements which, as has been mentioned earlier, may 
be given a definite physical interpretation. 

§ 23. Remarks on the effective solution of the fundamental 
problems. St. Venant's Principle. Solution of the above-mentioned 
fundamental boundary value problems for the general case presents in 
practice great difficulties, if one has in mind effective calculations. The 
so-called general methods give (in the general cases) only theoretical 
solutions, i.e., in the end they only prove existence of the solution. 
(These general methods are given e.g. in the papers quoted in § 20). 

Solution of one or the other problem is often considerably simplified 
by appl~cation of St. Venant's Principle which may be formulated as 
follows: If one applies to a small part of the surface of the body a set of 
forces which are statically equivalent to zero, then this system of forces 
will not noticeably affect parts of the body lying away from the above 
region. Alternatively: If a set of forces, acting on a small part of the 
surface of a body, is replaced by a system of forces (acting on the same 
part) which is statically equivalent to the former, then such replacement 
does not cause a noticeable change in the elastic equilibrium of parts of 
the body which do not lie too near to the above-mentioned region. Both 
formulations of St. Venant's Principle are obviously equivalent. 

The Principle was first pronounced in St. Venant's memoir [lJ of 1855. It agrees 
very well with reality. However, its mathematical foundation (which must consist 
of an estimate of the influence of a system of forces which are statically equivalent 
to zero) is rather difficult, at least in the general case. By a system of forces, which 
is statically equivalent to zero, will be understood a system, equivalent to zero 
from the point of view of the statics of absolutely rigid bodies, i.e., a system, the 
resultant vector and moment of which are equal to zero. Systems are called statically 
equivalent, if they have the same resultant vectors and moments. 

Thus St. Venant's Principle offers the means of modifying (under the 
definite conditions stated above) the given stress distribution on the 
boundary, and thus of simplifying problems. The Principle will be widely 
used in the later parts of this book. 
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§ 24. Dynamic equations. The fundamental problems of the 
dynamics of an elastic body. Although this book deals only with 
problems of static equilibrium, nevertheless the dynamic equations of an 
elastic body will be deduced, the simplest fundamental problems for these 
equations stated and the uniqueness of their solutions proved. In 
passing, an expression will be obtained for the potential energy of a 
deformed body_ 

The deduction of the dynamic equations of an elastic body does not 
offer any difficulties. These equations may be obtained directly from the 
static equations by use of D' Alembert's Principle. In fact, it is sufficient 
for this purpose to write do~n the static equations and to add the inertia 
forces to the body forces. 

In the present case the components of displacement, strain and stress 
will be functions of x, jl, Z as well as of the time t. The components of 
acceleration of a point, occupying a position (x, y, z) in the undeformed 
state of the body, will be 

02U(X, y, Z, t) 32v(x, y, Z, t) 02W(X, y, Z, t) 

The components of the inertia force, applied to a volume element dV 
containing mass dm, will be 

32u 32v 32w 
---dm ---dm ---dm. 

3t2 ' 3t2 ' 3t2 

But since dm == p dV, where p is the density *, the components of the inertia 
force per· unit volume become 

Adding the inertia force to the body force and introducing these values 
into (18.1), one finds 

* As has already been stated in § 16, the region V is here that occupied by the 
body before deformation. Accordingly dV denotes the initial volume element of 
the body containing the mass dm and p is the density of this element before its 
deformation; this density may depend on the coordinates x, y, z of the point con
sidered, but not on the time t. 
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oYx 3Y lI 3Yz 32v 
-a;-+ay-+a;-+ y=p ot2 ' 

(24.1 ) 

oZx 3Z lI oZz 32w 
Tx+-oy +Tz+Z=p c,t2 " 

These equations now take the place of the "equilibrium equations" 
i.e., of the equations (18.1). The equations relating stresses to strains 
and expressing the generalized Hooke's Law remain unaltered, since the 
body forces do not figure in them. In the case of an isotropic body these 
equations are (18.2) and (18.3). The equations (18.5) remain likewise 
unchanged. 

In the present case it is convenient to use equations in terms of dis
placements which can be obtained in the same way as it was done in 
§ 21 and which in the case of an isotropic body have the form 

06 32u 
(A + r.t) ox + fl~u + X = P ai2' 

36 32v 
(A + [L) oy + [L~V + y = P ot2 ' (24.2) 

06 32w 
(A + [L) & + ~w + Z = p ai2" 

These equations differ from those obtained by Navier in 1821 (cf. § 21) 
in that N a vier's equations contained only one elastic constant, i.e., one gets 
his equations from (24.2) by putting A == tL. 

Analogous to the fundamental boundary value problems, which were 
formulated in § 20 for the static case, one may similarly state problems 
with regard to the dynamic equations. An essential difference is that the 
boundary conditions have to be augmented by "initial condi tions" 
i.e., given displacements and velocities of points of the body at some 
"initial" instant of time to' Mathematically these problems may be 
formulated as follows: 

First fundamental problem. Find junctionsu(x,y,z,t), 
v(x, y, Z, t), w(x, y, z, t) satisfying (24.2) and the following supplementary 
conditions: 

(24.3) 

on the surface S of the body at all times, starting from t = to, and 
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ow -. 
--=wo at (24.4) 

in the region V occupied by the body-at time t = to. 
In these formulae 11' 12' 13 are functions given on the surface S of the 

body and depending, in general, also on the time. Further, uo, vo, wo, 
uo, vo, Wo are known functions of x, y, z. The equations (24.3) are the bounda
ry, and (24.4) the initial conditions. 

The sec 0 n d fun dam e n t a I pro b I e m differs from the 
first only in that the boundary condition (24.3) is replaced by 

(24.5) 

on S ; gv g2' g3 are given functions on S depending, in general, also on the 
time. 

For tIle mix e d pro b I e m the condition (24.3) will refer to one 
part and (24.5) to the remaining part of the boundary S. 

Apart from these problems there are a number of other important 
problems which will, however, not be stated here. 

In the above cases it has been assumed that the body forces are known 
at all points of the body and at all instants of time (beginning with 
t = to). No consideration will be given here to the difficult question of 
the Inathematical proof of the existence of solutions of these problems, 
and it will only be proved that, il a solution ot the given problems exists, 
then it is unique. 

Before giving this proof, a formula will be deduced which is of con
siderable independent interest and which expresses the law of con
servation of energy, as applied to the case under consideration. 

Consider any definite motion of a given elastic body and choose as the 
initial instant to the moment when the body lies in a "natural" state of 
equilibrium, i.e., when body forces and stresses, and consequently also 
deformations, are absent. Let R(t) denote the work done by the external 
stresses and body forces between the starting time to and the instant t 
under consideration. This work will now be determined and for this 
purpose calculate the work dR done by these forces in the time interval 
t, t + dt, assuming dt infinitely small. 

A point, occupying before deformation the position (x, y, z), will at 
time t have the coordinates 

x + u(x, y, z, t), Y + v(x, y, z, t), Z + w(x, y, Z, t). 
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The displacement of this point in the time interval t, t + dt has obviously 
the following components: 

it dt, v dt, w dt, 

where 

. ou 
U = at etc. 

The work of the external stresses, acting on the surface element dS of 
the body, in the time interval dt is 

(Xnu + Y nV + Znw)dS dt, 

and the work of the body forces, applied to a body element dV, is 

(Xu + Yv + Zw)dV dt. 

Thus the work dR, done by all the above forces during the time interval 
dt, is given by 

~~ = ff(XnU + Ynv + Z .. w)dS + fff(XU + Yv + Zw)dV. (a) 

s v 

Replacing under the first of these integrals X n, Y n, Z n by their expressions 
(18.5), transforming the integral in the same way as the integral J was 
transformed in § 20, one finds using (24.1) 

~~ = fffp(UU + vv + ww)dV + 
v 

v 
But 

ffl p(uu + vv + ww)dV = flJ ip :t (u2 + v2 + w2)dV = ~:, 
v v 

where 

T = ! flJ p(u2 + u2 + w2)dV. (24.6) 

v 
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Obviously T is the kinetic energy of the elastic body, i.e., the sum of the 
kinetic energies of its different elements 

idm(u2 + v2 + W2) == ~_p(U2 + v2 + W2) dV. 

Next transform the second ternl on the right-hand side of (b). Assume 
now that the body under consideration is isotropic and introduce the 
function 

W = iA(exx + eyy + ezz)2 + ~(e;x + e;y + e;z + 2e;z + 2e;x + 2e!v); (24.7) 

it is immediately seen that 

aw oW oW 
Xx== --, Yy = --, Zz ==--, oexx oe ll 'Y 3ezz 

(24.8) 
oW oW oW 

2Yz = a-' 2Zx === --, 2X ==~ oezx Yo' ellz ex'Y 

and hence that the expression under the second integral of (b) is equal to 
oW 
-- and at 

Thus (b) takes the form 

dR = dT ~ (((WdV. 
dt dt + dt}jj I 

(24.9) 

Integrating both sides of this equation from to to t and taking into 
consideration that at the initial instant the body is in a natural state of 
rest (i.e., T = W == 0 at t == to), one finds for the work R done by the 
external stresses and body forces in the time interval (to, t) 

R = T + U, (24.10) 

where 

U =f!(WdV. (24.11 ) 

v 

Formula (24.7) shows that W depends solely on the state of deformation 
at a given moment at a given point; hence U depends on the state of 
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deformation of the considered body at a given instant t. The quantity 
U is the potential energy ot detormati011/ of the body, i.e., the work which 
must be done by the body forces and external stresses, in order to cause 
a given state of deformation. In fact, if under the influence of these 
forces the body changed from a lCnatural" state of rest to a new, deformed 
state of rest, then, by (24.10), R == U, because for a state of rest T = o. 

Formula (24.10) indicates that the work of the body forces and external 
stresses is transformed into kinetic energy and strain energy; it thus 
expresses the law of conservation of energy. 

The quantity W, defined by (24.7), is the strain energy p,er unit volume. 
In fact, it follows from (24.11) that the amount of potential energy, be
longing to the body element dV, is W dV. The expression W had already 
been introduced in § 20; it will be remembered that W is a positive de
finite quadratic form in terms of the strain components. This follows 
directly from (24.7) . 

Next consider the questioll of the uniqueness of the solutions of the 
fundamental problems. Let anyone of them have two solutions for 
identical boundary and initial conditions and identical body forces. 
Form the "difference" of these solutions (cf. § 20). The new solution 
(u, v, w) will satisfy the same equations as the two former solutions, 
but in the absence ot body forces; in addition, in the case of the first 
problem, one will have 

X n == Y n == Z n = 0 on 5, 

and in the case of the second problem, 

'U == v == w == 0 on S; 

(24.3') 

(24.5') 

in the case of the mixed problem, condition (24.3') will hold on one part 
of the surface and (24.S') on the remainder. In all cases one has 

Xn'lt + Ynv + Znw == 0 on S. 

In fact, in the case (24.3'): Xn = Y n == Zn == 0; in the case (24.5'): 
u = v = w == 0 (on S) at all instants of time, beginning with t == to, 
and hence 

au OV ow 
at == at == at == 0 on 5; 

similarly for the mixed problem. 
Further, one obviously has at the initial instant 
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u = v = w = it = V = W = 0, 
because both known solutions satisfy the same initial conditions. 

It follows from the above that the work R for the solution 'lt, v, w is zero, 
and hence by (24.10) that 

T + U = o. 
But obviously this is only possible, when T = 0, U == 0, and therefore 
at all instants of time, starting with t = to' one will have 

The first set of these equations shows that the displacements do not 
depend on the time, i.e., that one is dealing with a static problem. It follows 
from the second set of conditions that all the strains are zero, i.e., the 
solution u, v, w can only represent rigid body motion. Finally, it follows 
from the condition, that at the initial instant all displacements are zero, 
that there can be no body motion. Thus one has for all points of the body 
and at all times u = v == w = O. It is seen from this that the two solutions 
of the problem, mentioned earlier, must be identical and this proves the 
assertion. 

NOTE. It follows from (20.7) that the potential energy 

u= fff Wdxdydz 

v 

of the deformed body in equilibrium may be expressed by the formula 

U = If((XnU + ¥n v + Znw)dS + t fffxu + ¥v + Zw)dV, (24.12) 

s v 

and, in the absence 0/ body forces, by 

U = t ~a·(XnU + ¥n v + Znw)dS, 

s 

(24.13) 

where the d0'ltble integral is taken over the entire surface of the body. Note 
that, by (24.11) and (24.7), U > 0 for all states of non-zero-deformation. 

The formulae (24.12) and (24.13) are easily remembered; they show 
that the strain energy of a body is equal to half the work done by the 
external stresses and body forces of the final equilibrium state, acting 
through the displacements of the equilibrium state. 



PART II 

GENERAL FORMULAE OF THE PLANE THEORY 
OF ELASTICITY 



The considerable mathematical difficulties which arise during any 
attempt to solve the fundamental problems of the theory of elasticity 
necessitate the search for practical methods of solution in special classes 
of particular cases. One of the most important of such classes is concerned 
with the so called "plane theory of elasticity" or "the plane problems 
of the theory of elasticity" to which are devoted Parts II-VI of 
this book. 

The development of the theory will here be based on the complex 
representation of the general solution of the equations of the plane 
theory of elasticity which will be stated below. This complex represen
tation, originally introduced by G. V. Kolosov (cf. his papers [lJ, 
[2J and his book [6J), has been found very useful for the effective 
solution of the fundamental boundary value problems as well as for 
investigations of a general character, as is shown by a large number of 
important papers which have been published lately in Russia. Several 
of these will be studied or referred to in this or later Parts *. 

From time to time papers have appeared outside Russia in which complex repre
sentation of partly incomplete solutions has been used and results have been given 
which are either contained in the work of Russian authors or which follow directly 
from the results obtained by the latter. Among these are, for example, the papers by 
A. C. Stevenson [1J and H. Poritsky [2J about which some remarks will be made 
in § 32. 

It will only be mentioned now that some of the methods, fundamental 
to complex representation, may be successfully generalized to the case 

* I t should be noted here that among the man uscri pts and notes found after 
the death of S. A. Chaplygin was discovered his work on the theory of elasticity 
originating around 1900; it contains several results obtained subsequently by 
G. V. Kolosov as well as by other authors. Cf. Chaplygin [IJ, p. 420 (article of 
N. V. Zvolinskii and D. Iu. Panov). 



of anisotropic bodies, regarding which a brief statement will be made in 
§ 104. Important and interesting results in this direction have been 
obtained by S. G. Lekhnitzky [IJ, S. G. Mikhlin [IIJ, D. I. Sherman 
[9, 19J, G. N. Savin [3-6J and others. A systematic study of a number 
of these results may be found in l.,ekhnitzky's book which contains some 
of the results obtained by its author. 

Finally, it should be noted that the fundamental nature of the results 
of the plane theory of elasticity (Parts II-VI), stated below, must of 
course be seen not in the new deduction of Kolosov's and other formulae, 
but rather in the application of these formulae to the solution of the fun
damental boundary value problems by systematic utilization of the pro
perties of Cauchy type integrals and conformal transformation. 

In fact, Kolosov's formulae may be deduced in many ways some of which are 
extraordinarily simple. The method chosen here requires somewhat lengthier 
calculations than some of the others, because it is completely elementary; but it has 
been retained here, since it gives, as by-products, a number of formulae useful 
in the sequel; it also guarantees complete generality of the obtained solutions and 
does not assume beforehand that these solutions are analytic. Note also that 
before Kolosov several authors (e.g. L. N. G. Filon) have obtained some complex 
representations of solutions, but no one (or almost no one) has actually applied 
them. 



CHAPTER 4 

BASIC EQUATIONS OF THE PLANE THEORY 

OF ELASTICITY 

The equations of the plane theory of elasticity apply to two cases of 
equilibrium of elastic bodies which are of considerable interest in practice, 
namely: to the case of plane strain and to the case of the deformation 
ot a thin plate under forces applied to its boundary and acting in its plane * . 
These two cases will be discussed in detail in the following two sections. 

§ 25. Plane strain. A body will be said to be in the state of plane 
strain, parallel to the plane Oxy, if the displacement component w is zero and 
if the components u, v depend only on x and y, but not on z. In this case 

6=ou+oV 
ox oy 

and the formulae (20.2) give 

OU ov 
XIX = :A6 + 2fL ox' Y 1/ = :A6 + 2fL oy' 

Zz = :A6, X z == Yz = o. 
These formulae show that the stress components are likewise independent 
of z (since u, v and hence 6 do not depend on it). 

Further, the first two of the equations (20.1) take the form 

ax:c aXll ax 11 oYll y 
-+~+X=O, -+-+ ==0, ox oy ax oy 

and the third becomes Z = 0, indicating that for plane deformation, 

* The results associated with the equations of the plane theory of elasticity 
apply likewise to the problem of the equilibrium of elastic plates loaded by forces 
normal to their plane regarding which some remarks will be made in Part v. 

Quite recently I. N. Vekua [6J has shown that these same results may also be 
used for the effective solution of boundary value problems of the theory of elastic 
shells. 

89 
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parallel to the plane Oxy, the component of the body force in the direction 
perpendicular to the plane of deformation must vanish. The preceding 
equations also show that the components X, Y of the body force do not 
depend on z. 

Thus, in the end, the static equations of an elastic body in the case 
of plane strain, parallel to the plane Oxy, reduce to the following: 

axx + axy + X == 0, axy + 3Y lI + y - 0 (25.1) ax oy ox oy - , 

X,,=A6+2fL ::' Y y =A6+2fL ~~, Xy=fL(:: + ~;),(25.2) 
where all the quantities appearing in these equations are independent 
of z; the component Z z (likewise independent of z) is given by Z == Ae 
or, noting that by (25.2) 

1 
Xx + Yll == 2(A + t-L)f), e == (Xx + Yll)' 

2(A + t-L) 
by 

(25.3) 

where (S is Poisson's ratio. The formula (25.3), determining Zz, has been 
intentionally deduced, since solution of the system (25.1) and (25.2) 
represents the fundamental problem, and Z z is determined from (25.3) 

z 

x -z z 

Fig. 11. 

after its solution. There remains now to state 
those cases when plane deformation takes 
place. 

It will be assumed that one is dealing 
with cylindrical (prismatic) bodies, bounded 
by surfaces parallel to the axis Oz (sides) and 
by two plane faces normal to the generating 

Yn surface (ends) (Fig. 11). Further, assume 
that the external stresses, acting on the 
sides, are parallel to the plane Oxy and do 
not depend on z and that the same condition 

Y is satisfied by the body forces. The latter 
as well as the external stresses will be as
sumed known. 

Consider whether under these conditions 
plane deformation of the cylinder is possible. 
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For this it is necessary and sufficient that the equations (25.1) and (25.2) 
have solutions u, v, Xx, Y10 Xv, satisfying on the sides of the cylinder 
the boundary conditions 

Xx cos (n, x) + Xy cos (n, y) = X n, 
y x cos (n, x) + Y y cos (n, y) = Y n' 

(25.4) 

where X n' Y n are the known components of the external stress vector, 
acting on the side surface, and n is the outward normal; the condition 
(25.4) is obtained from (3.2) which gave the stress vector acting on the plane 
with normal n. (The third of these formulae is identically satisfied, since, 
by hypothesis, Zn = 0, Zx = Zy == 0 and cos (n, z) = 0 on the ends.) 
'One is thus led to a problem, completely analogous to the first funda
mental boundary value problem of the theory of elasticity in the general 
case (§ 20); but one is dealing here with a simpler case, because the un
known functions u, v, X x' Y Y' X 11 depend only on the two variables x 
and y and, instead of considering the entire region occupied by the body, 
Qne may restrict the investigation to one of its sections in a plane, parallel 
to Oxy. In other words, one is dealing with the two-dimensional analogue 
of the problem of § 20. 

Under certain general conditions, referring to the shape of the cross
section of the cylinder, it may be shown (cf. Part V) that the t'vo-di
mensional problem has always a solution which is unique, provided the 
resultant of the body forces and the stresses acting on the sides is static
ally equivalent to zero. 

Let 1;[" V, X x, Y 1/' X Y be the solution of the two-dimensional problem. 
Calculating Zz from (25.3) and assuming w = Zx == ZlI = 0, one obtains 
the solution satisfying all the conditions above. It is seen that the ends 
of the cylinder are not free from stresses, but that they are subject to 
normal stresses. In fact, the normal stress Zz acts on the upper and 
(- Zz) acts on the lower end, where, for simplicity, the end facing in the 
positive z direction has been called "upper". Application of these stresses 
is seen to be necessary for the maintenance of plane deformation. As 
has been stated, the given body forces and stresses, acting on the sides, 
determine the functions * u, V, Xx, Yy, X y, and hence also Zzo Thus the 
choice of the longitudinal stress is not arbitrary. 

At first sight, this fact seems to reduce the value of the study of plane 

* The functions u, v are determined exactly apart from terms expressing an 
arbitrary rigid body displacement parallel to the plane Oxy; however, these terms 
are not essential. 
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strain. But in practice this inconvenience is very easily removed in the 
case of a long cylinder (the height of which is large compared with the 
transverse dimensions). In fact, in order to remove the above stresses on 
the ends, it is sufficient to superimpose on the obtained solution the 
solution of the problem of the equilibrium of the cylinder under the con-
dition that there are no body forces, that the sides are free from external 
stresses and the ends are subject to tractions equal in magnitude and 
opposite in sign to those which are to be removed. 

Consider these latter tractions, exerted on one of the ends; since 
they are parallel to the axis Oz, their resultant is statically equivalent 
to a force parallel to the same axis, acting, say, at the centroid of the end, 
and a couple the plane of which is likewise parallel to Oz. The resultant 
of the stresses, acting on the other end, is statically equivalent to a force 
and couple, statically balancing the former. But the question of the 
elastic equilibrium of a (long) cylinder under the influence of tractions~ 
applied to the ends and statically equivalent to a tensile force and 
a bending couple, belongs to a number of very simple problems of the 
theory of elasticity and can be solved by elementary methods (cf. Part 
VII). Therefore one can always remove the tractions on the ends by ver:y 
simple means. 

Thus, from the solution of the problem of plane strain of a cylinder 
under tractions of the stated type, applied to the side surfaces, one obtains 
the solution of the problem of equilibrium of a cylinder under the influence 
of the same forces, but subject to the conditions that the ends are free 
from stresses; in this latter case, generally speaking, deformation will 
no longer be plane. 

§ 26. Deformation of a thin plate under forces acting in its 
plane. The equations of the plane theory of elasticity apply also to 
another case, yet more important in practice, namely to the case of thin 
plates for definite types of loading. 

By a plate will be understood a cylinder of very small height or thickness 
Z 2h. The middle surface of the plate (i.e., 

Fig. 12 

the plane parallel to the ends and half 
way between them) is taken as the plane 

y Oxy (Fig. 12). It will be assumed that the 
faces are free from external stresses 
and it will be postulated that the external 
stresses acting on the edges are parallel 
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to the faces and symmetrically distributed with respect to the middle 
surface. The same will be assumed to hold true for the body forces. From 
the practical point of view, it is sufficient, as far as the stresses acting on 
the edges are concerned, to assume that the resultant of the stresses acting 
on any element of the edge, included between the two faces, is statically 
equivalent to a force, applied at the centre of the element and lying 
in the middle surface; in fact, by St. Venant's Principle (~23), every such 
~esultant may be replaced by a statically equivalent resultant satis
fying the earlier conditions. 

For reasons of symmetry, it is obvious that the points of the middle 
,urface will remain in it * after deformation, that tIle displacement com
ponent w will be very small and that the variations of the components 
u and v over the thickness of the plate will be insignificant. Therefore 
it is clear that it is possible to obtain a completely satisfactory represen
tation of the elastic equilibrium of the plate by considering the mean 
values of the quantities u and v over the thickness of the plate; these 
mean values which will be denoted by u* and v* are defined by 

+h +h 

u*{x, y) = -1-fU(X, y, z)dz, v*(x, y) == -1-fV{X, y, z)dz. 
2h 2h 

-h -h 

By assumption, the functions Xz{x,y,z), Yz(x,y,z) and Zz{x,y,z) 
vanish on the ends, i.e., for z == ± h (since the ends are free from external 
stresses). Therefore it follows from 

that 

oZx azv azz 
-+-+-=0 

ox oy oz 

oZz 
--=0 

OZ 

for z = ± h. In fact, it follows from Zx(x, y, ± h) == 0 that 

oZx(x, y, ± h) 
-------=0 ax ' 
oZv(x, y, ± h) 
-------=0. oy 

and similarly that 

* We disregard here the rigid displacement which may be common to the 
entire body. 
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Thus the quantity Z z(x, y, z) is not only zero for z = ± It, but also its 
derivative with respect to z vanishes for these values. Therefore it is 
obvious that Zz will be a very small quantity throughout the thickness of 
the plate and one may assume, as a good approximation, that Z z = 0 
everywhere. 

Consider now the equations 

oXx axy oXz oYx oYlI oYz 
~+a-y+Tz+X=O, oX +a-y+T+ Y=O, 

and take the mean values of both these equations, i.e., integrate them with 
respect to z from - h to + h and divide by 2h. One has 

+h 

1 (oYz 1 j +h 
- -dz= - [YzJ-h = 0, 
2h.; OZ 2h 

-h 

and hence the preceding equations become 

ax* ax* oy* oY* 
__ x + ~Y_. + x* = 0 x + y + y* = o. (26.1) ox oy 'ax oy 

Further, it follows from 

( ou ov OW) ow 
).. ox + oy + az + 2!Laz = Zz = ° 

that 
OW A (OU OV) 
& == - ).. + 2!L ox + oy · 

Sb ··· f ow u stltutlng thIS value 0 -- in oz 

( ou ov OW) 02£ (OU ov OW) ov 
X:c = A -- + ~ + - + 2[.L -, Y 11 == A - + - + - + 2tJ..-, ox oy cz ax ox oy oz oy 
one obtains 

Taking the mean value of these two equations and of the equation 

(
OU OV) 

X y =!L Oy + ox ' 
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one finally finds 

where 

ou* 
X* == A*6* + 2n-

x r ox ' 
ov* 

y* == )..*8* + 2,1.--
y r oy , 

* (OU* OV*) X ==tL --+~ 
y oy ox' 

2A(l. 
A* == -----

A + 2fL 

Ecr 
1 - 0'2' 

ou* OV* 
6* ==-- +~. ox oy 

(26.2) 

(26.3) 

Comparison of (26.1) and (26.2) with (25.1) and (25.2) shows that 
the mean values of the displacement components u, v and the stress 
components Xx, Y y, Xv satisfy the same equations which govern the case 
of plane strain, the only difference being that one has to replace A by A * 
defined by (26.3). 

Following A. E. H. Love [IJ (§§ 94 and 146), the stressed state of a 
plate, for which Zz === 0 every\vhere and X z, Y z vanish on its faces, will be 
called "generalized plane stress". Such a state of stress was first con
sidered by L. N. G. Filon [IJ (cf. also: Filon [2J, E. G. Coker and Filon [IJ) 
who established the above equations for the mean values. These equations 
are, of course, applicable to plates of finite thickness. It has been seen 
that for thin plates and under the conditions, stated above, the state of 
stress may, with good approximation, be assumed to be 0!le of generalized 
plane stress. For further justification of the assumption that in the case of 
a thin plate: Z z == 0, reference may be made to J. H. Michell [1] who fur
nished additional evidence with regard to this point. 

Let ds be any line element in the plane Oxy. Consider a rectangular 
area of height 2h, perpendicular to Oxy, the trace of which in that plane 
is ds (Fig. 12). The components of the mean stress, acting on this area, 
in the directions Ox, Oy are 

where 
x~ ds, Y! ds, 

x: == X; cos (n, x) + X; cos (n, y), 

y! = Y; cos (n, x) + Y: cos (n, y), (26.4) 

and n is the positive normal. The projections of the forces acting on this 
element are equal to 2hX! ds, 2hY! ds. We may call the quanfities 
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X! ds, Y! ds the projections of the mean values of the forces per unit 
height (thickness) of the plate acting from the side of the normal n 
to the element ds. 

§ 27. Basic equations of the plane theory of elasticity. It has 
been seen that in the two cases, considered in § 2S and § 26, one is led to 
the study of the following system of equations: 

ax x axy ayx ayy - +~- + X==: 0, --+-~ + Y =0, (27.1) ax oy ox By 

Xx = A6 +2fL ~:, Yll = A6 + 2fL ~;, X lI =fL(~; + ;:), (27.2) 

where 

(27.3) 

In the case of generalized plane stress (§ 26) the components of dis
placement and stress have to be replaced by their mean values over the 

thickness of the plate and A by A*= 2AfL . 
A+ 2~ 

Since all quantities depend only on x and y, consideration may be 
limited to points of th·e plane Oxy which will be assumed to be the plane 
of one of the 110rmal sections of the cylinder under consideration, and 
in the case of § 26 the middle plane. Therefore, when talking, for example, 
of a region occupied by a body, one will have in mind a two-dimensional 
region, i.e., the intersection of the considered body with the plane Oxy; 
further, instead of talking about tractions acting on areas perpendicular 
to the plane Oxy, one will speak of tractions acting on line elements ds 
of the cross-sections. Thus, in the case of § 25, one will say that a force 
with components Xn ds, Y n ds is applied to the linear element ds, 
where n is the normal to ds; but the fact is that they are the com
ponents in the Ox, Oy directions of the force applied to a rectangular 
area, perpendicular to the plane Oxy, with base ds and unit height 
(its component in the z direction vanishes). In the case of § 26, X n ds, 
Y n ds will be understood to be the quantities which were denoted at 
the end of § 26 by X: ds, Y! ds. 

As in Part I it will be assumed that the components of displacement are 
single-valued continuous functions with continuous derivatives up to and 
including the third order throughout the region occupied by the body. 
Then, by (27.2), the stress components will be single-valued functions 
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with continuous second order derivatives. 
Just as in § 21, the system (27.1) and (27.2) may be replaced by one 

involving only displacements. For this purpose one has only to put w == 0 
in the equations of § 21, or simply to substitute from (27.2) in (27.1). In 
either way one finds 

08 08 
(A + [l) ox + [l~u + X = 0, (A + [l) oy + ~v + Y =0, (27.4) 

where 
02 32 

~--+ - ox2 oy2· 

Having founq some solution of this system, the corresponding stresses 
are obtained from (27.2) by differentiation. 

It is likewise not difficult to form the equations which involve only stresses. 
I t is now seen that these equations comprise the equations (27.1) and one 
supplementary equation which replaces in the present case the six 
conditions of compatibility of Beltrami-Michell. This additional equation 
expresses the condition which must be fulfilled so that one may find, 
corresponding to functions X x, Y 1/' X 11 satisfying (27. 1), functions 
u, v related to X x' Y 11' X 11 by (27.2). This condition may, of course, be 
obtained as a particular case of the general compatibility conditions, 
but it will be deduced here independently in two ways. 

The first method is based on St. Venant's conditions of compatibility, 
as was the deduction of the conditions of Beltrami-Michell in the general 
case. Thus in the case of plain strain, when exx, e1lll and eXlI are independent 
of z and e1/Z === ezx = ezz = 0, the conditions (15.6) obviously reduce to 

o2exx o2eyy o2eyX --+- ==2--. oy2 ox2 ax oy 

Substituting here the expressions 

exx = 2~ {Xx - 2(1. ~ [L) (Xx + Y y )}, 

eyy = 21[L {Yy- 2(1. ~ [l) (X", + Y lI)}. 

1 
eX1J == - X 11' 

2~ 

(27.5) 
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deduced from (27.2), one easily obtains 

32 X x 32 Y 'Y A ~ X Y ) a2x y 

dy2 + dX2 2(1- + (1.) ( ,,+ 11 - 2 dX dy = o. (27.6) 

This is the required condition. It may be considerably simplified by 
taking into consideration that Xx, Y y , Xv satisfy (27.1). In fact, dif
ferentiating the first equation of (27.1) with respect to x and the second 
with respect to y and adding, one finds 

02X1l a2x x o2y 11 ax oy 
-2 = + +--+-. ox oy ox2 oy2 ox oy 

32X 
Substituting this expression for - 2 ax a; in (27.6) one obtains, after 

some obvious simplifications, 

2('A + l-L) (OX OY) 
~(Xx + Yy) = - -::;-~ + -':l- • 

A + 2t.t ux vy 
(27.7) 

The second method of deduction of (27.7) is based directly on 
tIle equations (27.1) and (27.2) and it presents at the same time a 
method for calculating displacements from given stress components 
(or, what is the same thing, strain components). It is more elementary and 
more convenient in practice than the one given in § 15 for the general 
case. 

Since it is desired to find conditions which must be satisfied by the 
stress c0mponents X x, Y 1" X 11' so that there exist functions u, v, related 
to the former by (27.2), it will now be attempted to actually calculate 
u, v from (27.2), assuming that Xx, Y1l' Xu represent a given solution of 
(27.1). 

The first two equations of (27.2) may be written 

ou A 
2{-L ax = Xx - 2(A + (1.) (X" + Yy), 

(27.5') 

Let (a, b) be an arbitrary point of the body. For the present, consideration 
will be limited to points lying inside some rectangle with centre (a, b) 
which lies completely inside the body. Putting P = Xx + y 11' one finds 
from (27.5') 
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x 

2[1- u(x, y) = f{X", - 2(1-~ [1-)} dx + il(Y)' 
a 

11 
(27.8) 

2[1- v(x. y) = f{ Y 1/- 2(1-~ [1-)} dy + t2(X), 
b 

where tl(Y)' f2{X) are functions, at present unknown. The expressions 
(27.8) satisfy (27.5'), i.e., the first two relations of (27.2). 

In order to satisfy the third equation of (27.2), substitute in it from 
(27.8). Differentiating under the integral sign, one obtains 

x 11 

f{ OXx A 'OP} f{'OY
ll A 'OP} 3y- 2(1- + [1-) 2Y dx + Tx- 2(1- + [1-) ox dy -2Xll == 

a b 

== - t;(y) - t~{x). (27.9) 

This equation may only be satisfied, if the left-hand side can be conceived 
as the sum of two functions one of which depends only on x and the other 
only on y. For this to be so, it is necessary and sufficient that the second 

derivative 0
2 

of the left -hand side is identically zero *. Differ-ox oy 
entiating the left hand side one time with respect to x, another time 
with respect to y and equating the result to zero, one finds exactly 
(27.6), whence follows, in turn, (27.7). 

If (27.7) is fulfilled, then the left-hand side of (27.9) has the form 

F1(y) + F2(X) 

and (27.9) leads to the condition 

F 2(x) + t~{x) == -F1 {y) -t~(y) 

which is only possible if both sides are equal to one and the same constant 
to be denoted by 2f.L~. Then, by the last equation, 

02p 
* If F(x, y) = F 1(x) + F2(Y)' then = 0 and conversely. For the ful-

ox oy 
fillment of the last condition one is readily seen to have 

F(x, y) = F(x, b) + F(a, y) - F(a, b). 
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y 
~ 

fl(Y) = -J Fl(y)dy - 2t.L€Y + 2l-Ltt , 

b 

x 

a 

§ 27 

(27.10) 

where c/.., ~ are arbitrary constants. Substituting from (27.10) into (27.8) 
one finds expressions for u and v which are definite apart from terms of 
the form 

u,' = - ey + tt, v' = ex + ~) (27.11) 

where tX, ~, € are arbitrary constants. These terms express only rigid body 
displacement (in the plane Oxy) and they do not influence stresses and 
strains. The constants tt, ~, € attain definite values, if one assumes as 
given the values of the components of displacement u, v and of rotation 

r =!( ~:.- ~~) (27.12) 

at some point of the region under consideration, e.g. at (a, b). 
So far consideration has been limited to points (x, y) lying inside a 

rectangle with centre (a, b) which is entirely inside the region occupied 
by the body. In order to find values of u, v at other points of the region, 
one has to select some point (a', b') inside that rectangle and near its 
boundary and to construct a second rectangle with (a', b') as centre. 
This rectangle must again be chosen in such a way that it does not leave 
the region occupied by the body, although it will extend beyond the bound
aries of the first rectangle. In this way one may find the values of u, v 
at all points of the second rectangle by the method presented above. In 
order that the values of u, v, obtained in this manner, agree in those parts 
common to both rectangles, one has to select the arbitrary constants, 
entering into the formulae for the second rectangle, so that the values of 
U, v and r at (a', b') coincide with those calculated for this point from 
the formulae for the first rectangle. Hence it is seen that the formulae 
for the second rectangle will not involve any new arbitrary constants. 
By repeating this procedure sufficiently often one may calculate the 
displacements for any point of the body. (This method may be compared 
with the well known process of analytic continuation of functions of a 
complex va;riable.) 



CHAP. 4 EQUATIONS OF THE PLANE THEORY OF ELASTICITY 101 

However, there arises the following question. Let (Xl' Yl) be some 
point of the body different from the initial point (a, b). In order to calculate 
the values of u, v at (xv Yl)' one has, by the above method, to construct a 
set of rectangles, partly covering each other, the first of which is the 
rectangle with centre (a, b) and the last a rectangle containing (Xl' Yl). 
But there is an infinite number of such sets. The question is then whether 
the particular choice of one of these sets will influence the values of u, v 
at (xv Yl); in other words, whether u, v will be single-valued functions 
of (Xl' Yl)· 

This question is easily resolved by methods differing from those of 
the present section, using formulae expressing the displacement compo
nents u, v in terms of the stress components 'Xx , Y1l' Xy by means of 
curvilinear integrals taken along arbitrary curves linking the points 
(a, b) and (xv Yl). These formulae follow from (15.4) by putting there 
w :== eyZ ::::::: ezx :::= ezz == 0 and by replacing the components of strain 
exx , eylI , eXll by their expressions (27.5) in terms of the stress components 
X x, Y 11' X y. Proceeding in quite an analogous manner as in § 15, it is easily 
verified that u, v are necessarily single-valued functions, provided the 
region occupied by the body is simply connected. 

In the case of multiply connected regions the components u, v may 
be found to be multi-valued functions, in spite of the fact that (27.7) is 
satisfied. Therefore, in the case of multiply connected regions, (27.7) must 
be supplemented by a condition ot single-valuedness ot displacements, 
where, of course, it has been assumed that the stress components are 
always single-valued functions. Later on this question will be considered 
in greater detail. 

The necessity of the condition (27.7) may also be inferred in the following manner: 
Differentiating the first of the equations (27.4) with respect to x and the second with 
respect to y and adding, one obtains 

(A + 2~)Lle + (OX +~) = o. ax oy 

Further, noting that by the first two relations of (27.2) 

Xx + Yy 
6=---

2(A + tJ.) 

and substituting this value of 0 in the preceding equation, one obtains again (27.7). 

§ 28. Reduction to the case of absence of body forces. The solution 
of the equations of the plane theory of elasticity is considerably simplified 
in the case of absence of body forces, i.e., when X == Y == o. On the other 
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hand, the general case may always be reduced to the last: for this purpose 
it is sufficient tq find any particular solution of the system of equations 
(27.1) and (27.2). Let X~O), Y1°), X~O) , u(O), v(O) be such a particular solution. 
Putting 

Xx = X~l) + X~O) etc., u == 'U,(l) + u(O) etc., (28.1) 
• 

it is seen that the functions X11), ••• , V(l) satisfy the same equations as 
Xx, ... , v, but for X == Y =0. 

The determination of particular solutions X~O), ••• , v(O) will be limited 
here to two cases which cover most practical applications: the case 
of gravity and the case of centrifugal forces for rotation about an axis parallel 
to Oz. However, the determination of a particular solution for arbitrarily 
given body forces do~s not present any particular difficulties. 

In order to find the particular solutions, one may, from a point of view 
of convenience, either use the equations (27.1) and (27.7) which involve 
stresses or the equations (27.4) in terms of displacements. The first set 
of equations will here be used for the problem of gravity forces and the 
second for the case of inertia forces. 

Consider first the case- of gravity forces. Assuming that the axis Oy 
is directed vertically upwards, one has X = 0, Y == - gp, where g 
is the gravitational acceleration and p is the density which will be as
sumed constant. 

Therefore (27.1) and (27.7) take the form 

oXx ax'll 
~+ay=O, 

Clearly these equations will be satisfied by putting, for example, 

Xx == Xu == 0, Yll == pgy. (28.2) 

The displacements corresponding to this particular solution may be 
calculated in the manner stated earlier. In fact, by (27.8), 

f Apgy Apg 
2[.tu == - 2(1. + EL) dx = - 2(1. + EL) xy + My), 

2 v == Jf' A + 2EL d = A + 2EL 2 x 
EL 2(1. + EL) pgy y 4(1. + EL) pgy + f2( ). 
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Substituting these values in 

~ (~: + ~;) = Xy = 0, 

one obtains the equation 

Apg , , 
2(A + ~) x + t1(y) + t2(X) = 0 

which may be satisfied by putting, for example, 

t (y) - 0 t (x) - Apg x2 • 
1 -, 2 - 4(A + (.L) 

Thus, one has for the displacements 

(28.3) 

Next use (27.4) to solve the problem of inertia forces. If the body is 
rotating uniformly about an axis, perpendicular to the plane Oxy and 
passing through 0, the inertia (centrifugal) forces are given by 

X = pw2x, Y == pcu2y, 

where w is the angular velocity. Hence (27.4) takes the form 

ae 26 
(A + (.L) -;- + fL~u + pw2x == 0, (A + fl.) --;:- + fl.LlV + pcu2y = O. 

uX uy 

It is easily seen that these equations will be satisfied by expressions of the 
form 

u == ax3 + bxy2, v == ay3 + bx2y. 

In fact, substituting these values in the preceding equations, it is seen 
that both will be satisfied, if 

2(3a + b) (A + 2f.L) + pw2 == 0, 
or 

pw2 

3a + b == - 2(A + 2f.L) · (28.4) 

Thus one of the constants a, b may be chosen arbitrarily. For example, 
put 

pW2 
a=b==-----

8(A + 2fL) 
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in which case the displacement is purely radial, since then 

p~2 p~2 
u - - (X2 + y2)X V ~ (X2 + y2)y. (28.5) 

- 8(A + 2t-t) ,-- 8(A + 2(.1.) 

The corresponding stresses are given by 

X 2A + ~ 2( 2 + 2) f.L pW2X2 
x = - 4(A + 2t-t) pw x y - 2(A + 2t-t) , 

Y _ _ 2A + fl. t:)w2(X2 + y2) _ ll. pw2y2 (28.6) 
11 - 4(A + 2t-t) \" 2(A + 2!-L) , 



CHAPTER 5 

STRESS FUNCTION. COMPLEX REPRESENTATION OF THE 
GENERAL SOLUTION OF THE EQUATIONS OF THE PLANE 

THEORY OF ELASTICITY 

§ 29. Stress function. In the sequel (unless stated otherwise) 
attention will be concentrated on the equations of the plane theory of 
elasticity when no body forces are present. In that case the stresses may 
be expressed by means of one single auxiliary function which is called 
a stress function or Airy function and which plays an important part in 
the plane theory of elasticity. 

In fact, under the conditions considered, one has 

(29.1 ) 

The first of these equations represents the necessary and sufficient con
dition for the existence of some function B(x, y) such that 

3B 3B 
ox = - X 11' oy = X z· 

The second of the equations (29.1) is the necessary and sufficient condition 
for the existence of some function A (x, y) such that 

2A 2A 
ox = Y1l' oy = - Xv· 

Comparison of the two expressions for X1/ shows that one must have 

oA oB 
-=-, oy ox 

whence follows the existence of some function U(x, y) such that 

au au 
A = ox' B = oy· 

Substituting these values for A and B in the preceding equations, it is 

105 



106 II. PLANE THEORY OF ELASTICITY § 29 

seen that (in the absence of body forces) there always exists some function 
U(x, y) by the help of which the stresses may be expressed in the following 
manner: 

(29.2) 

This fact was first noticed by G. B. Airy (1862). The function U is called 
a stress function or A iry function. 

Since, by a hypothesis in § 27, the functions X x, Y 1/' X 1/ are single
valued and continuous together with their second order derivatives, 
the function U must have continuous derivatives up to and including the 
fourth order and these derivatives, from the second order onwards, must 
be single-valued functions throughout the region, occupied by the body. 

Conversely, it is obvious that, if U has these properties, the functions 
Xx, Yll' X ll , defined by (29.2), will satisfy (29.1). However, it is known 
that this does not yet mean that these functions correspond to some 
actual deformations. For this purpose also the condition (27.7) must be 
satisfied which in the absence of body forces becomes 

(29.3) 
or, noting that 

Xx + Yy = ~U, 
one obtains the equation 

04U 34U 34U 
~ + 2 + ~ == O. (29.4) 
3x4 ox2 3y2 3y4 

~D.U = 0 or 

Equation (29.4) is called biharmonic and its solutions biharmonic functions. 
]. C. Maxwell was the first person to notice that the stress function must 
satisfy (29.4). 

However, in the sequel, biharmonic functions will be understood 
to be only functions, which satisfy the biharmonic equation, the der
ivatives of which are continuous up to and including the fourth order and 
the derivatives of which, starting from the second order, are single-valued 
throughout the region under consideration. 

If the considered region is simply connected, single-valuedness of the 
second derivatives implies that of the function itself. In multiply con
nected regions, however, this is not necessarily so, as will be shown later. 

Thus it has been proved that the stress functions must be biharmonic. 
It is known that this condition, which is nothing else but the condition 
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(27.7), is also a sufficient condition that the corresponding stresses may be 
produced by some actual deformation, if for the time being no impor
tance is attached to the fact that the corresponding displacements may 
(in the case of multiply connected regions) turn out to be multi-valued. 

NOTE. In § 27 some restrictions have been imposed on the con
sidered displacements and stresses. In fact, it has been agreed to assume 
that the functions u, v are single-valued and have continuous derivatives 
up to and including the third order; the continuity and single-valuedness 
of the stress components and their derivatives up to the second order 
was a direct consequence of the relations 

Xx = A6 + 2fL ~:, Y ll = A6 + 2fL :;, Xli = fL (:: + ~;). (29:5) 

From the point of view of certain deductions of a general character 
it is convenient to relax these conditions slightly. Thus, everything to 
be said below will remain true, if from now on,vards the following con
ditions are assumed to apply in the region 5 occupied by the body: 

a) Conditions referring to stresses. The components Xx, Y 1/' Xv are 
single-valued continuous functions having continuous derivatives up 
to the second order and satisfying equations (29.1) and (29.3). A con
sequence of these conditions is that the function U is biharmonic (in the 
sense stated above). 

b) Conditions referring to displacements. The components 'tt, v are 
single-valued, continuous functions having first order derivatives con
nected with the stress components by (29.5). 

It will be seen below that the conditions a) ensure the existence of 
derivatives of any order of the function.5 X x, Y 11' X 11; furthermore, it 
will be seen that these functions are analytic (cf. § 32). 

Similarly, the conditions b) together with a) ensure the existence of 
derivatives of any order of the functions u, v (cf. § 32) (and even their 
being analytic). Note that in many cases it is sufficient to adopt the 
preceding conditions, omitting the condition of single-valuedness of the 
functions u, v. For example, in the case of simply connected regions this 
single-valuedness is a necessary consequence of the remaining con
ditions a) and b); this follows from the results of the next section. 

§ 30. Determination of displacements from the stress function. 
If a (biharmonic) stress function U be given, the corresponding stresses· 
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follow from the formulae of § 29, viz.: 

32U 32U 32U 
Xx = oy2' Y 1/ = ox2' X1/ = -- -oxoy ; (30.1) 

the displacements, corresponding to these stresses, may be found by the 
methods of § 27. However, different formulae will be given here which 
are more convenient than the former and which were first stated by 
A. E. H. Love [IJ who obtained them in a somewhat different manner. 

Let the region 5, occupied by the body, jar the time being (up till § 35) 
J;e assumed to be simply connected (cf. § 15 and Appendix 2 for a definition 
()f connectivity). The present problem is to find functions u, v from the 
-equations 

au 02U 3v 02U 
AS + 2tL ~x :::::: '::ly2' /\6 + 2l-L ~ = --2 ' 

u u uy ox 

( 
ov OU) (j2U 

fJ. ax- + oy = - oxoy · 
(30.2) 

The first two of these equations, solved for 

OU OV 
ox ' oy , 

gtve 

Introducing the notation 
~u == P, (30.3) 

1 · . h f· f h b . 02U b P 3
2
U d' rep aCIng In t e Irst ate a ave equatIons -2- y - --2- an In 

3U 02U oy ox 
the second -2 by P - -~-, one obtains ox uy2 

3u 32 [7 A + 2lJ. ov a2u A + 2lJ. 
2tL ax = - ex2 + 2('- + fJ.) P, 2fJ.ay = - iJy2 + 2('- + fJ.) P. (30.4) 

From (30.3) the function P is seen to be harmonic, because 

~p == ~flU == o. 
Let Q be the harmonic function, conjugate to P, l.e., the function 
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satisfying the Cauchy-Riemann conditions 

'OP 'OQ 'op 'OQ 
-==-, ----_. ox oy oy ox ' 

this function is determined for a given P apart from an arbitrary constant 
term (cf. Appendix 3). Then the expre~sion 

t(z) = P(x, y) + iQ(x, y) (30.5) 

will represent a function of the complex variable z = x + iy, holomorphic 
in the region 5 occupied by the body_ 

Furthermore, put 

cp(z) = p + iq = i jt(Z) dz. (30.6) 

Obviously 
I ap .2q . 

q> (z) = - + 1- - == i(P + 2Q), oX ox 
whence, noting that by the Cauchy-Riemann conditions 

op oq ap oq 
ox - oy' oy - - ox' 

one obtains 

!L == ~ == 1p ax oy 4' 

ap _ oq _ l.Q 
-------4 · oy ox (30.7) 

Thus 
op oq 

P=4- == 4~, ox oy 
and hence (30.4) may be written 

ou 32U 2(A + 2f.L) op ov 32U 2(A + 2fL) oq 
2flo-== ---+ -, 2tL-=---+ -. ax ax2 A + f.L ax oy oy2 A + flo oy 

Integrating, one obtains 
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Substituting these expressions in the third of the equations (30.2) and 
noting that 

one finds 

t~(Y) ~ I~(x) == 0, 

and hence (cf. § 27) that the functions 11(Y) and 12(x) have the form 

11 == 2(1.(- ey + ex), 12 == 2(1.{ex + ~)J 

where (/..,~, e are arbitrary constants (the factor 2f..t having been in
troduced for convenience). Omitting these terms, which only give rigid 
body displacement, one obtains formulae coinciding essentially with 
those of A. E. H. Love [lJ: 

au 2{A + 2fl) au 2(A + 2fL) 
2(1. u = --- + p, 2(L v = --- + -q. (30.8) 

ax A + fl oy A + fl. 

Since the function cp(Z) , defined by (30.6), is obviously holomorphic 
(cf. Appendix 3) in 5 (which, as will be remembered, was assumed simply 
connected), the functions u and v will be found to be single-valued 
throughout S. 

Thus it is seen that every biharmonic function, subject to the con
ditions of § 29, determines some deformation satisfying all the required 
conditions. 

In conclusion, it will be noted that in omitting on the right-hand 
sides of (30.8) terms expressing rigid body displacement no generality 
is lost, because, a_s is readily seen, the functions on the right-hand sides 
of (30.8) are determined by the given stress components exactly only 
apart from certain terms which correspond to a rigid motion of the 
body as a unit (cf. § 34). 

§ 31. Complex representation of biharmonic functions. It will 
now be shown that every biharmonic function U(x, y) of the two variables 
x, y may be represented in a very simple manner by the help of two 
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functions of the complex variable z :::= X + iy. This fact is of greatest 
importance for the theory of the biharmonic equation and, in particular .. 
for the plane theory of elasticity, since the properties of functions of a 
complex variable are generally ,veIl known. 

The function 
<p(z) == P + iq 

has already been introduced by (30.6). It is easily verified directly, 
using (30.7), that the function U - px - qy is harmonic, i.e., that 

!1(U-px-qy) == o. 
Hence 

u = px + qy + Pv 

where PI is some function harmonic in the region 5 under consideration. 
Now let X(z) denote the function of the complex variable z, the real 
part of which is Pl' (In order to find X{z), one has to calculate the harmonic 
function ql' conjugate to Pl.) If the region S is simply connected, the 
function X(z) will be holomorphic there. 

Obviously one may then write 

u == fft{:z<p(z) + X(z)}, 

where ffi denotes "the real part" and 
- . 
z == x-zy; 

(31.1 ) 

in general, if A is some complex number a + ib, then A ,vilI denote 
its conjugate complex value a - ib, so that, for example, 

cp(z) == p - iq. 

"Vith this notation, (31.1) may be written 

2U === z<p(z) + z<p(z) + X(z) + X(z). (31.2) 

This is the required expression. It was first given by E. Goursat [2J in a 
somewhat different form, his method of deduction being likewise dif
ferent. However, in the sequel, no use will be made of this expression 
for U, but of expressions for its partial derivatives, since these derivatives 
have direct physical meaning. 

The method of deduction used by Goursat is as follows. Let there be given the 
equation 

~AU == o. 
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Introduce instead of x and y the ne\v variables z = x + iy and z = x - iy; 
then the preceding equation takes the form 

(j4U 
--=0 
8z2 O:Z2 ' 

\\"hence it follows directly that 

\vhere CPl' CP2' Xl' X2 are Uarbitrary" functions. This formal approach may be ,veIl 
justified, if one assumes beforehand that U is analytic. If U is a real function, it is 
easily seen that one must put 

hence one obtains (31.2). 
The proof, produced in the main text, was first given by the Author [4J. 

It is easily found that 

au - - -
2~ = cp(z) +zcp'(z) + cp(z) + zq/(z) + X'(z) + X'(z), 

au - - -
2 oy = i[-cp{z) + zcp'{z) + cp(z)- zcp'(z) + X'(z) - X'(z)J. 

(31.3) 

It is immediately seen from (31.3) that, instead of considering the 
expressions for 

au au 
ax' oy' 

it will be more convenient to deal with the expression for 

au . au 
~+~-ox oy 

which is by far simpler. In fact, one has 

au au --
f(x, y) = ax + i Oy = cp(z) + zcp'(z) + tjJ(z), (31.4) 

where 

tjJ(z) = ~~ . (31.5) 
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Returning to (31.2) it is noticed that, conversely, every expression of 
the form (31.2) represents a biharmonic function, if <p(z), x{z) are holo
morphic functions of z. In fact, differentiating the first of the equations 
(31.3) with respect to x and the second with respect to y and adding, one 
finds 

~u == 2[ct'(z) + cp'(z)] == 4m[<p'(z)], (31.6) 

and hence it follows that t1U is a harmonic function. Consequently, 

~6.U == o. 
The formula (31.6) shows, in addition, that flU is completely determined 
by the real part of the function cp' (z). 

§ 32. Complex representation of displacements and stresses. 
Multiplying the second formula of (30.8) by i and adding it to the first, 

one obtains 

( au au) 2(A + 2!.L) 
2t-t(u + I£V) == - -- + i -":l- + <p(Z) , 

ax uY A + !.L 

whence one finds, by (31.4), the very important and convenient formula 

2!-L(tt + iv) == xcp(z) - zcp'(z) - y(z) (32.1 ) 

Vvhich essentially agrees with a formula, first stated by G. '1. Kolosov [1 ] 
who obtained it in a different vvay; in (32.1) 

x == A + 3[l === 3 - 40-. (32.2) 
A+t-t 

In the case of thin plates ("generalized plane stress", § 26) one has to 
replace x by x*, obtained from (32.2) by substituting A* for A. I'hus, in 
this case, 

A*+3tJ. 3-0-
x* == --- == --

:A*+fL 1+0'· 
(32.2') 

Obviously x > 1, x* > 1. . 
Next consider the representation of the stress components by means 

of the same functions cp and ~. For this purpose an expression \vill be 
found for the forces acting on an element of any shape lying in the plane 
Oxy. 

Consider some arc AB in the plane Oxy. Let its positive direction be 
from A to B and draw the normal n to the right of the arc \vhen looking 
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along it in the positive direction. In other 
words, postulate that the positive direction 
of the normal and the tangent are orientated 
with respect to each other as the axes Ox and 
Oy (Fig. 13). 

As always, the force (Xnds, Ynds), acting 
on an element ds of the arc AB, will be 
understood to be the force exerted on the 
side of the positive normal. One has 

02 U 02U 
Xn = Xx cos (n, x) + Xy cos (n, y) = oy2 cos (n, x) - oxoy cos (n, y), 

32U 32U 
Y n = Y x cos (n, x) + Y 11 cos (n, y) = - ox oy cos (n, x) + ox2 cos (n, y). 

But 
dy dx 

cos (n, x) = cos (t, y) = ds' cos (11", y) = - cos (t, x) = - ds ' 

where t is the positive direction of the tangent. Introducing these values 
into the preceding formulae, one finds 

X n = ~ (:). Y n = - ~ ( ~~), (32.3) 

or In complex form 

(32.4) 

or 

(X n + iY n)ds == - i d (~~ + i ~~). (32.S) 

SUbstituting from (31.4) in (32.5), one obtains 

(X n + iY n)ds := - i d{ cp(z) + Z({)' (z) + r.p(z)}. (32.6) 
, 

First let the element ds have the direction of the axis Oy. Then 

ds = dy, dz == idy, dz:::= -idy, Xn == Xx, Y n == Xu, 

and (32.6) gIves 

Xx + iXlI = cp'(z) + cp'(z) -zcp"(z) -~'(z). (32.7) 
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Next let ds have the direction of Ox. Then 

ds == dx, dz == dz == dx, .. :'}{ n == - X Y' Y n == - y'" y, 

and (32.6) glves, after multiplication by i, 

Y y - iX y == ((' (z) + cp' (z) + zcp" (z) + y' (z). 

lIS 

(32.8) 

The formulae (32.7) and (32.8) are the required expressions for the 
stress components. Adding and subtracting (32.7) and (32.8) and replacing 
in the latter case i by - i, one obtains the simpler formulae 

X x + y y = 2[ q/ (z) + cp' (z)J == 4alcp' (z) = 4gr<I>(z) == 2[<I>(z) + <:D(z)J, (32.9) 

Y y - Xx + 2iXy == 2[zcp"(z) + ~'(z)J == 2(z<D'(z) + '¥(z)], 
where <D(z) == cp' (z), o/(z):=-.= tP' (z). 

(32.10) 

(32.11) 

The very useful formulae (32.9) and (32.10) are like\vise due to G. V. Ko
losov [IJ who obtained them in a different manner without recourse to 
the stress function. 

The expressions, deduced here for the components of displacement 
and stress, show that these components, under the earlier stated con
ditions, are analytic j1.f,nctions of the variables x, y inside the considered 
region, because the functions cp(z), ~(z), <D(z), '¥(z) possess this property. 

A function of the real variables x, y is called analytic in a given region 5, if at 
each point (xo, Yo) inside 5 it may be developed into a (double) series of non
negative po\\rers of (x - %0)' (y - Yo), i.e., into a series of the form 

~ ap,q(x-xo)P (Y-Yo)q· 
p,q 

(This definition may be extended to any number of variables). 
As is known, each function of the complex variable z = x + iy, holomorphic 

in a given region, is analytic in the sense that it may be expanded into series of 
non-negative povvers of (z - zo) near any point Zo = %0 + iyo of that region. On 
the other hand, it is easily shown (cf. for example E. Goursat [IJ) that every analytic 
function of z == x + iy is an analytic function of % and y. 

Finally, a remark ,viII be made with regard to Non-Russian work along the lines 
of this section. In a recently published paper, A. C. Stevenson [IJ deduced formulae 
\yhich, in essence, agree with those of G. V. Kolosov and also \vith some of those 
obtained by the Author of this book, all of '\vhich have been published considerably 
earlier (not only privately, but also in journals well kno\vn outside Russia); 
however, no reference has been made there to this fact. 

In a still later publication, H. Poritsky [2J uses formulae ,vhich differ only in 
appearance from those deduced above; in a rather vague reference the author 
ascribes some of these formulae to the Author, quoting his paper [8J of 1933. How
ever, no mention is made of the Author's earlier ,vork and of that by G. V. Ko
losov, although this work ("\\Thich contained the formulae used and had been 
published much earlier) is referred to in the quoted paper. 
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[The following statements ~'ere obtained by the translator from the two authors .. 
referred to above. 

A. C. Stevenson \vrote that at the time when he worked on the paper, quoted 
by the Author (i.e., 1939-40), he was admittedly ignorant of prior \vork along these 
lines. However, in a paper of later origin, published rather earlier and not quoted 
in this book, he was equally clearly at pains to acknowledge the priority of Kolosov 
and Muskhelishvili by referring to a total of six papers by G. V. Kolosov, dating 
as far back as 1909, of four papers by N. I. Muskhelishvili the first of Vvhich appeared 
in 1919 and to the combined paper by both authors, published in 1915. 

H. Foritsky indicated that he deduced his formulae in 1931, although his paper 
was not published until 1945. By that time the Russian work had been given a fair 
amount of publicity in the U.S.A. and he quoted one of Muskhelishvili's papers 
merely for the purpose of acknowledging that he had been anticipated.] 

§ 33. The physical meaning of the function f. Expressions for 
the resultant force and moment. 1°. The function 

8U . 8U ,-
t(x, y) == - + ~ -- == cp(z) + zcp (z) + ~(z) ox 8y 

introduced in § 30 has a very simple mechanical interpretation which 
will be elucidated by finding the expression for the resultant vector of 
the forces applied to a given arc AB in the region 5 occupied by the 
body. In this context one is concerned with the forces acting on an 
element of the arc AB from the right, where the arc is to have the 
direction from A to B, in other words, with the forces acting from the 
side of the positive normal n, drawn as shown in Fig. 13. 

I .. et (X, Y) be the resultant force. It follows from (32.5) and (32.6) that 

X + iY === j(Xn + iYn)ds == -i [au + i aUJB == ox oy A 
AB ___ _ 

== _. i [ cp (z) + zq>' (z) + y; (z) J:: ' (33. 1 ) 

where [ J~ will always denote the increase undergone by the expression 
in the brackets as the point z passes along the arc from A to B. 

If in this formula the point A is assumed to be fixed at all times, 
the point B is permitted to move and its coordinate is denoted by 
z == x + iy, one finds 

t(x, y) === cp(z) + z<p'(z) + y;(z) == 

= i f (Xn + iY n)ds + const. = i(X + iY) + const., 

AB 
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where (X, Y) represents the resultant vector of the forces applied from 
the side of the positive normal to an arbitrary arc containing the fixed 
point A and the variable point B. 

I t follows from the above as well as from its mechanical meaning 
(cf. 3°) that this resultant vector does not depend on the shape of the 
arc joining A and B, except, of course, that it must not leave the region s. 

2°. Next, a formula will be obtained for the resultant moment about 
the origin of the coordinate system. One has 

M = !(XYn-YXn)dS 
AB 

which, by (32.3), becomes 

M ==-f{Xd~+Yd~}; ox oy 
AB 

integrating by parts, one finds 

M==_[X~U +y~UJB +!{~dX+~U dy}, ox 0Y.A ox By 
AB 

and finally 

[ au OUJB B 
M == - x-- + y - + [UJ . ox By.A .A 

(33.2) 

But 

x ~U + Y aU = ffi{z(~U -i~~)}, 
ox oy ox oy 

and, by (31.4), 

au au - -
--i- == cp(z) + zcp'(z) + ~(z). ax oy 

Further, 

U := ffi{icp(z) + x(z)], 

so that (33.2) becomes 

M == m[X(z) - z~(z) + zzcp'(z)J~. (33.3) 

These formulae were first given in the Author's paper [11J. 
3°. Hitherto it has been assumed that the region S is simply connected, 

and as a result the functions <p(z) , ~(z), Z(z) will be single-valued in S. 
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Thus, if A and B coincide, i.e., if the considered curve is a contour, the 
values of these functions will be the same at A and B, and l1ence one 
finds 

(33.4) 

as was to be expected. The formulae (33.4) express the fact that the 
sum of the external forces acting on a part of the body, contained inside 
any contour, is statically equivalent to zero. 

§ 34. Arbitrariness in the definition of the introduced functions. 
The important question will now be studied as to how far the functions 

<1>, 7, q>, ~ define the state of stress or the displacements of points of the 
body. 

First consider the problem of the uniqueness of these functions for a 
given state of stress. Expressed in greater detail the problem is as follows. 
Let Xx, y 11' X 11 be the components of stress for some given state of elastic 
equilibrium of a body. As has been shown in § 32, there exist functions 
<I>(z), '¥(z) of the complex variable z which are related to X x, Y Y' X 1/ by 
the formulae 

Xx + Yll = 49l<P(z), 

Yy-XX + 2iXy == 2[zCP'(z) + 'Y(z)J; 

(34.1 ) 

(34.2) 

the questions are then: how completely are the functions <I>(z) , 7(z), 
and also the functions 

cp(z) = f <p(z)dz, y;(z) = f 'Y(z)dz (34.3) 

determined by the components Xx, Yll' X1/ and does there remain some 
arbitrariness in their choice? What is the degree of this arbitrariness? 

There is no difficulty in answering these questions. Let <1>1' '¥ l' <Pl' ~1 be 
some other system of functions, related to the given components X{J!' 
Y 'Y' X 11 and to each other by the same equations (34.1) to (34.3), as were 
the functions <l>, 7, <p, ~, Le., 

Xx + Yy = 4~<I>1(Z), 

Y lI - Xx + 2iXlI = 2[z<l>;(z) + 'F1(z)], 

CPl(Z) = f <P1(z)dz, Y;l(Z) J 'Y1(z)dz. 

(34.1 ') 

(34.2') 

(34.3') 
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Consider how the functions <1>1' '¥V <PI' r.J;1 may differ from the functions 
<1>, '1', <P, ~. Comparing (34.1) with (34.1') it is seen that the functions 
tl>l(Z) and <Il(z) have identical real parts; hence these functions may only 
differ by an imaginary constant Ci (cf. Appendix 3), so that 

<D1(z) == <I>(z) + Ci, (34.4) 

where C is a real constant. 
I t follows from (34.4), (34.3) and (34.3') that 

<PI == <p(z) + Ciz + y, (34.5) 

where y = ~ + i~ is an arbitrary complex constant. Further, noting 
that by (34.4) : <1>; (z) :=: <Il' (z), comparison of (34.2) and (34.2') obviously 
gIves 

'Y1(z) == o/(z), 

and finally, by (34.3) and (34.3'), one finds 

tYl(Z) = ~(z) + y', 

(34.6) 

(34.7) 

where y' = (1..' + i~' is an arbitrary complex constant. Thus one arrives 
at the following result: 

For a given state of stress the function 'Y(z) is completely defined, the 
functions <Il(z) , cp(z), ~(z) are defined apart from the terms Ci, Ciz + y, 
yf respectively, \vhere C is a real and y, y' are arbitrary complex constants. 

Conversely, it is obvious that a state of stress is not altered, if one 
replaces. 

(() (z) 

~(z) 

by <p(z) + Ciz + y, 

~(z) + 1", 
(A) 

where C is a real and y, y' are arbitrary complex constants. By this 
substitution <l>(z) == ([)'(z) obviously becomes <D(z) + Ci and 'Y(z) remains 
unchanged. 

Next investigate the question as to how far the arbitrariness of these 
functions is removed, ij the components oj the displacements u, v are given. 

The components of displacement completely determine the stress 
components. Therefore it is clear that, \vhen the former are given, one 
may not make substitutions different from those of the type (A). Consider 
how these substitutions affect the components of displacement which 
were seen in § 32 to be determined by the formula 
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2p.(u + t"v) == xcp(z) - z9'(z) - y(z). 

Direct substitution sho\vs that 

2tJ.{u + iv) becomes 2(.t(l/1 + iv1), 

\vhere 

and hence, putting 'Y == C( + .£~, y' = a,.' -+- i~') 

(34.9) 
where 

{x + 1)C %c<-rx' (x + I)C x~ +~' 
ito==::- y+ vo==-----x+---. (34.10) 

2~ 2f.L 2~ 2tJ. 

It is thus seen that the additional terms have the form 

where 

Z= 
(x + 1)C 

2f.L 
c<o ==:: ---

2t.L 
\ 

x~ + ~' 
2!J. 

(34.11 ) 

(34.12) 

and that they express pure rigid body motion. This result had, of course, 
to be expected, since the displacements, corresponding to a given state 
of stress, are uniquely determined apart from a term describing rigid 
body displacement. 

Formula (34.8) shows that a substitution of the form (A) will affect 
the displacements, unless 

C 0 -, 0 =, xy -y == . (34.13) 

Thus, for given displacements, it is impossible to select the constants 
(', y, y' arbitrarily; if, for example, one of the constants y, y' has been 
chosen, the other is determined by (34.13). 

The arbitrary constants, entering into the above functions, may be 
given one or the other value which may be convenient. Assuming, for 
simplicity, that the origin lies within the region 5, occupied by the body, 
these constants "viII be chosen in the following manner (unless stated 
otherwise) . 

When the stresses are given, the three constants C, y, y' will be chosen 
in such a way that 
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rp(O) == 0, Srp'(O) == 0, ~(O) = 0, (34.14) 

where 3 denotes the imaginary part. 
The first of these conditions leads to a suitable choice of y, the second 

to that of C and the third to that of y'. These conditions obviously 
remove all arbitrariness as far as the functions cp and tJ; are concerned. 

When the displacements are given, a suitable choice of y or y' will be 
assured by the conditions 

cp(O) = 0 or ~(O) = 0 (34.15) 

either of which will completely determine both the functions rp and t.J;. 
Note still the follo\\ring fact. It is obvious that the expression 

oU oU --- + i - = cp(z) + zcp'(z) + ~(z) ox oy (34.16) 

completely determines the state of stress of the body, since it determines 

the quantities~, 2U, and hence the second derivatives of U which ex oy 
specify the components of stress. Consider now the question as to what 
conditions must be fulfilled by the constants C, y, y', so that the trans
formation (A) does not only leave the state of stress, but also the expres
sion (34.16) unchanged. 

It is easily verified that, applying (A), this expression becomes 

au .oU _ -+ 2-+ y + y'. ox oy 

H -f au . au b · h -, ° Th ence, 1 -- + 2 -- e gIven, one must ave y + y ==. us the ox oy 
constant C and one of the constants y and y' may be chosen arbitrarily_ 
One may, for example, put 

<p(O) == 0, 3{ cp' (O)} == 0 (34.17) 

and in this way completely determine the functions cp and tJ;. 

§ 35. General formulae for finite multiply connected regions. 
Consider now the case when the region 5, occupied by the body, is 

multiply connected. For simplicity assume that the region is bounded 
by several simple closed contours Lv L2, ••• , L m, Lm+l (i.e., by contours 



122 II. PLANE THEORy" OF ELASTICITY § 35 

which do not intersect 

,.-- -, L' 
I 'k 

I ' I \ 
I \ 
, 1 
, 1 , n J 

" L /8' '" k ;// oZ -_... 'L 
I 

themselves; for more detail see § 37); the last 
of these contours is to contain all 
the others, as is shown in Fig. 14 
(e.g. a plate with holes). Further, 
assume that these contours have no 
points in common. 

It will be remembered that, by 
supposition, the components of stress 
and displacement are to be single
valued functions. In spite of this fact 
the functions cp and tl; may, in this 
case, be found to be multi-valued. 
However, it will be noted, on the basis 
of the statements of the preceding Fig. 14. 
sections, that these functions will be 

holomorphic and hence single-valued in any simply connected part of 
the region S occupied by the body. Thus the functions cp and ~ are 
analytic in S (cf. § 30). 

The above circumstances will now be explained in detail. Let S' be some simply 
connected part of S. One may define the functions g>, t¥} corresponding to a given 
state of elastic equilibrium of S', by (arbitrarily) fixing the undetermined constants 
introduced in § 34. These functions have been shown there to be holomorphic in S'. 
But if one continues these functions analytically beyond S' (remaining, of course, 
in S), then} by describing a closed path and returning into S', one may not return to 
the former values of <p and ~. However, it is easily seen that the ne"," values of these 
functions can differ from the old ones only by terms of the form stated in § 34, 
because both values correspond to one and the same state of elastic equilibrium. 
This fact also follo\vs from (35. 10) and (35. 11) below. 

The type of multi-valuedness of the relevant functions will now be 
studied. First of all, the formula 

X x + y 11 = 4fft<l>(z) 

shows that the real part of <I>(z) is single-valued (since, by supposition, 
the left-hand side of the equation is so). But this does not yet mean 
that also its imaginary part is single-valued. In fact, for one circuit 
(e.g. anti-clockwise) around some contour L~, surrounding one of the 
contours L k , this imaginary part may undergo an increase Bki, where 
Bk is a real constant (cf. Appendix 3). Introduce, instead of the constants 
B k' other real constants A k' defined by 

Bk = 27tA k • 



CHAP. 5 COMPLEX REPRESENTATION 

N ext consider the function 
m 

<I>*(z) = <I>(z) - ~ Ak log (z - Zk), 
k=l 

123 

(35.1 ) 

where Zv Z2' ••• ,Zm denote fixed points, arbitrarily chosen inside the 
contours L 1, L 2, ••• , Lm (i.e., outside 5). Since log (z - Zk) undergoes 
an increase 27ti when z passes once around Lk (anti-clockwise), the ex
pression A k log (z - z ,,) increases by 27tiA k; the remaining terms under 
the summation sign in (35.1) will revert to their former values. Hence 
<I>*(z) returns to its original value for a circuit around any closed contour 
in S. 

Thus one has 
?n 

<I> (z) == ~ A k log (z - Z k) + <1>* (z), (35.2) 
k=l 

where <I>*(z) is holomorphic and hence single-valued in S. Further, one 
obtains for cp(z) 

z 

<p(z) = I <I> (z)dz + const. = 
Zo Z 

Zo 

z 

where Zo is an arbitrarily fixed point of S. But the integral! <I>*(z)dzrepre-

Zo 
sents itself a function of the complex variable z which for a circuit 
of one of the contours Lk may undergo an increase of the form 

27tic k' 

where Ck is a constant which, in general, will be complex (and the 
factor 21ti has been introduced for convenience). Hence, proceeding as 
before, one can write 

Z 

f'" tn J <I>*(z)dz = ';lC" log (z - Zlc) + a single-valued function. 

Zo 

Introducing this expression into the preceding forn1ula and combining 
terms of the form A,cZk log (z - Zlc) and ek log (z - Zk), one obtains 



124 II. PLANE THEORY OF ELASTICITY § 35 

1n 'm 

cp(z) === Z L Ak log (z - Zk) + 2: Yk log (z - Zk) + cp*(z), (35.3) 
k=l k=l 

where 1>*(z) is a function, hololl1orphic in 5, and Yk are constants (which, 
in general, are complex). 

Finally, it is seen from 

Yy - Xx + 2iXy == 2[z<D'(z) + 'Y(z)] 

that o/(z) is a holomorphic function. Whence it follows that the function 

~(z) = r 'l" (z)dz, 
.; 

as before, may be written 
1n 

~(z) ~ L; y~ log (z - z,J + ~*(z), (35.4) 
k=l 

where y{ are certain (generally complex) constants and ~*(z) is a ho10-
morphic function. 

In an analogous manner one has for the function 

x(z) = f y(z)dz 

the expression 
n~ 1n , 

X(z) === Z L y~ log (z - z,;) + ~ y~ log (z - Zk) + x*(z) , (35.5) 
k=l k=l 

where y~ are (generally complex) constants and X*(z) is a holomorphic 
function. 

Hitherto no consideration has been given to the condition 01 single
valuedness oj displacements. By (32.1) one has 

2t-t{u + iv) = xcp(z) - zcp'(z) - ~(z). 

Substituting in this formula the expressions found above for cp(z) and 
~(z), it is immediately seen that 

2t-t[u + iV]L'k == 27ti{(x + l)AJcZ + XYk + y~}, (35.6) 

where [ JL'k denotes the increase undergone by the expression in brackets 
for one anti-clockwise circuit of the contour L~. Hence it is necessary 
and sufficient for the single-valuedness of displacements that in the 
formulae (35.1) - (35.5) 
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A k === 0, XYk + y~ == 0, k == 1, 2, ... , m. (35.7) 

It will now be shown that the quantities Yk, y~ may be very simply 
expressed in terms of X k, Y k' where (X k' Y k) denotes the resultant 
vector of the external forces, exerted on the contour Lk (k == 1, 2, ... , m), 
applied to Lk from the side of the external normal n to 5 (Fig. 14). 

This resultant vector will now be actually computed. For this purpose 
use may be made of (33.1) which is obviously valid also for the multipl:y 
connected region 5 under consideration here, provided only the contour 
AB referred to in this formula lies entirely inside the region S. This 
formula may also be applied in the case when the contour AB belongs 
partly or completely to the boundary of the region, assuming that 
certain assumptions have been made with regard to the behaviour of 
the functions cp(z) , tY(z) near the boundaries (cf. for more detail § 42). 

At this stage no additional assumptions will be introduced; instead 
of considering the forces applied to L k , the forces acting on some closed 
contour L~ in 5 from a suitable side (namely from that side which faces 
the side of the contour L k ) will be studied, where L~ is to contain Lk 
and no other contour of the boundary of the region (Fig. 14). The 
resultant vector (X k' Y k) of those forces does not depend on the choice 
of the contour L~, provided this contour satisfies the above conditions. 
This is obvious on physical grounds and also follows from the formula 
(36.8) below. In the capacity of the contour L~ one may select any curve 
which lies arbitrarily close to the contour L k • 

Starting from this it may be assumed, without imposing any con
ditions on the behaviour of the functions <p(z), ~(z) near the contour L k , 

that by definition the resultant vector of the external forces applied to 
Lk is equal to the resultant vector of the forces applied to L~ from the 
appropriate side. 

An analogous definition may be established for the resultant moment. 
This formula shows that the resultant vector (X k' Y k) does not depend 

on the choice of L~ as long as this contour contains only Lk and no 
other contour of the boundary of s. 
By (33.1), applying it to the contour L~, one has now 

In this formula it has been assumed that the contour is traversed in the 
direction for which the normal n points to the right. But in +he present 
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case the normal n must be directed outwards with respect to the region S 
(Fig. 14), because one requires the resultant vector of the external forces. 
Consequently, in the preceding formula, the contour Lk must be traversed 
in the clockwise direction (assuming, of course, that the axes Ox, Oy are 
right-handed; see Fig. 14). Taking this fact into consideration, one easily 
obtains, using (35.3) and (35.4), 

X k + iYk == -21t(Yk-Y~)' 

Formulae (35.7) and (35.8) give then 

X k + iYk 

Yk === -27t (1 + x) , 
, X(Xk - iYk ) 

Yk == 
27t(l + x) 

(35.8) 

(35.9) 

Using (35.9) (and also the fact that Ak === 0), formulae (35.3) and 
(35.4) may finally be written 

cp(z)==- 1 ~(Xk+iYk)log(z-zk)+CP*(z), (35.10) 
27t( 1 + x) k=l 

X m 
~(z) == I; (Xk-iYk ) log (Z-Zk) + t.J;*(z). (35.11) 

21t( 1 + x) k=l 

§ 36. Case of infinite regions. From the point of view of application 
the consideration of infinite regions is likewise of major interest. For the 
present the investigation will be limited to the case when the region S 
consists of the entire plane Oxy from which finite parts, bounded by 
simple contours, have been removed (infinite plate with holes). The boun
dary of such a region consists of several simple contours Lv L2, ••• , L m , 

which is the limiting case of the region considered in the preceding sec
tion, when the contour Lm+l has entirely moved to infinity. 

The formulae of § 35 hold, of course, for any finite part of S. There 
only remains to study the behaviour of the functions tp and t.J; in the 
neighbourhood of the point at infinity in the plane Oxy. 

Draw about the origin as centre a circle LR with radius R sufficiently 
large so that all the contours Lk lie inside LR - For every point outside LR 
one obviously has 

I Z I > [Zk [, 
and hence 
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( Zk) Zk (Zk)2 log (z - Zk) === log z + log 1 - -; == log z - -; -l -; - ... = 

== log Z + a function, holomorphic outside L1l• 

Therefore, by (35.10) and (35.11), 

X +iY x (X-iY) 
<p(z)=- logz+cp**(z), ~(z) === logz+tJ;**(z), (36.1) 

27t( 1 +x) 27t( 1 +x) 

where 
m m 

X = ~ X k' Y = ~ Y k (36.2) 
"=1 k=l 

and cp**(z), ~**(z) are functions, holomorphic outside LR with the 
possible exclusion of the point at infinity. Obviously X and Yare the 
components of the resultant vector of all external forces acting on the 
boundary of 5, i.e., on the union of the contours L 1, L 2, ••• , Lm. 

A function will be called holomorphic at the point z = 00, if in the neighbourhood 
of that point (i.e., for sufficiently large I z I) it may be represented by a series of 
the form 

By the theorem of Laurent, the functions <p**(z) and ~**(z) may be re
presented outside LR by the series 

00 00 

cp**(z) == ~ anzn , tJ;**(z) = ~ a~zn (36.3) 
-00 -00 

which will converge uniformly for every finite region outside L R • The 
above theorem is known to hold for a function, holomorphic inside a ring 
bounded by two concentric circles Ll and L 2, where Ll may be shrunk 
into a single point and L2 may become infinitely large. 

This is all that may be said with regard to the functions q> and ~, unless 
additional conditions are introduced with respect to the distribution of 
stresses in the neighbourll0od of the point at infinity of the plane. 

Introduce now the following condition: the components of stress are 
bounded throughout the region S. Consider what must be the functions q> 

and tJ;, in order that this condition is satisfied. 
By (32.9) and (32.10) 
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)(x + Yy == 2[<p'(z) + <p'(z)], 

Yy-XX + 2iXy == 2[zq/'(z) + ~/(Z)]. 

§ 36 

Introduce into the first of these formulae the expression (36.1) for 
cp (z), replacing <p** (z) by (36.3): 

{
X + iY 1 X - iY 1 00 _ _ } 

Xx+ y y = 2 - - ~ ~ + 2: n(anzn- 1 +an zn-l) . 
2rc (1 + x) Z 27t (1 + x) z -00 

The only terms which may grow beyond all bounds with I z I arise from 
the serIes 

co co 

2: n(anzn - 1 + anzn - 1) == ~ nrn - 1 [ane(n-l)i& + ane-(n-l)i-S-], 

n=2 n=2 

where z :::= rei
&. Whence it follo\vs that for ..:'[ x + Y y to remaIn finite, 

as r ~ 00, one must have 

an == an == 0 (n > 2). 

Assuming this condition to be satisfied, it is easily seen in an analogous 
manner from (b) that it is neccesary and sufficient for the boundedness of 

Yy-XX + 2iXy 
that 

remains bounded, whence it follo\vs that 

a~ == 0 (n > 2). 

Conversely, it is obvious that X x, Y 11' X 11 \vill be bounded, if these 
conditions are satisfied. Hence one has finally 

\vhere 

X+iY 
cp(z) == - --log z + rz -t- ?o(Z) , 

2n(1 + x) 

x(.(Y - iY) 
~(z) == ---~-log z + r' z + I~O(Z), 

2n(1 + x) 

r ::;:::: B + iC, r' = B' -t- ie' 

(36.4) 

(36.5) 

(36.6) 
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are constants, generally complex, and <Po(z) , y;o(z) are functions, holo
morphic outside LR , including the point at infinity, i.e., for sufficiently 
large J z I they may be .expanded into series of the form 

(where, for convenience, av a2 etc. have been \vritten instead of a_v a_2 , etc.). 
011 the basis of § 34 the state of stress will not be altered by assuming 

ao :::::: a~ === 0, 
I.e., 

and, In addition, 
c == o. 

TIle real constants B, B', C', introduced into (36.4) and (36.5) by means 

of rand r', have a very simple physical interpretation. In fact, it follows 
directly from (a) and (b) that for z -+ 00 

Jim (Xx + Y 1/) == 4B, lim (Y 11 - Xx + 2iXy) == 2r' == 2(B' + iC'), (36.8) 

whence 

X(oo) = 2B - B' y(oo) = 2B + B' X(oo) == C' x ' y 'y. (36.9) 

This means that in the neighbourhood of the point at infinity the stresses 
are uniformly distributed (or rather that their distribution differs from a 
uniform one by infinitely small quantities). Let N 1, N2 be the values of 
the principal stresses at infinity and oc the angle made by the direction 
of Nl with the axis Ox. Comparing (36.8) with (8.12) one finds 

~r = B == i(Nl + N 2), 

r' ~ B' + ie' == - t(N1 - N 2)e-2icx
• 

(36.10) 

The constant C, which does not affect the stresses, may be related to 
the rotation of an infinitely remote part of the plane. The expression for 
the rotation is 

e=!(::-~) 
(cf. § 14, where it is denoted by r), whence, by (30.8), 

A + 2/-L (Oq ap ) 1 + x ( oq OP) 
€ = 2[.L(A + (.1) ~-"oy .= 4;;- ox -oy == 
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1 + It q/(z) - <p'(z) 

2fL 2i 
(36.11 ') 

since, remembering that 

op oq op .oq I 

- == - ~- and - + ~ - == <p (z), oy ox ox ox 
one has 

~-i ~q = c:p'(z) , oq =_1. [c:p'(z)-<p'(z)]. 
ax ux ox 2z 

It follows immediately from (36.11'), (36.4) alld (36.5) that 

e == l+x C 
00 2f1. ' 

and hence 

(36.12) 

It will be noted at the same time that the state of stress characterized 
by the linear functions 

<p(z) == (B + iC)z + const, tJ;(z) == (B' + iC')z + const 

is homogeneous: the stresses are uniformly distributed, i.e., the stress 
components (and hence the strain components) are constant quantities. 
In fact, the components of stress are expressed by (36.9), if the superscript 
00 is omitted. 

Next consider the behaviour of the displacements at infinity under the 
assumed conditions in the general case. For this purpose use will be made 
of (32.1) which by (36.4) and (36.5) becomes 

x(X + i1T) - -
2f1.(~t + iv) == - ( ) log (zZ) + (xr - r)z - r':z + ... , (36.13) 

21t' 1 + x 

where terms remaining bounded for large values of ! z I have been 
omitted. It is easily seen from (36.13) that, generally speaking, the dis
placements will not be bounded at infinity 'under the conditions introduced 
so far. In order that they may be bounded, one obviously has to impose 
the conditions 

x == y == 0, r = r' = o. (36.14) 

The first group of these conditions postulate that the resultant vector 
of all external forces acting on the boundary of the region is zero, while 
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the second group demand that the stresses at infinity vanish and, besides, 
that infinitely remote parts of the plane do not undergo any rotation. 

Note also that even in the case of rotation the stresses at infinity are 
zero and that in the absence of rotation (C = 0) the displacements 
increase like log(zz) == 2 log r, if the resultant vector (X, Y) is not zero. 

NOTE. In (36.4) and (36.5) the functions CPo(z), ~o(z) are holomorphic 
outside any circle, enclosing all contours Lv L 2, ••• , Lm. If there is 
only one such contour Ll (plane with one hole), it is easily seen that CPo(z), 
tJ;o(z) will be holomorphic througho2tt the region 5, provided only the origin 
of coordinates is taken outside 5 (i.e., inside the hole). In fact, in this case 
(35.10) and (35.11) coincide with (36.1), if one puts in the former 

Zl == 0 

and replaces cp*(z), ~*(z) by cp**(z), y**(z) respectively. But the functions 
cp*(z), ty*(z) are known to be holomorphic throughout 5 with the possible 
exclusion of the point at infinity, which proves the assertion. 

§ 37. Some properties following from the analytic character 
of the solution. On analytic continuation across a given contour. 

Some terms and propos1:tions. In proceeding to the fundamental question 
of the complex representation of the general solution of the equations of 
the plane theory of elasticity certain terms will be defined which will be 
used (and partly have already been used) and certain simple propositions 
will be recalled. 

1°. In the sequel, when speaking of lines (arcs, contours), one will have 
in mind (unless stated otherwise) simple, non-intersecting, open or closed 
continuous curves. Further, it will be assumed without often stating it 
specifically that the curve under consideration is smooth Of, more gener
ally, sectionally smooth. It will be recalled that a line is called smooth, 
if its tangent varies continuously; lines are called sectionally smooth, if 
they consist of a finite number of smooth arcs. It will not be necessary 
to give here more detailed definitions of these well-known concepts. 

2°. It will be assumed (unless stated otherwise) that the region occu
pied by the body represents a connected, finite or infinite part S of the 
plane bounded by one or several (simple, smooth or sectionally smooth) 
closed contours. The boundary of the region 5, if it is finite, thus consists 
of a finite number of closed contours Lv L2 , ••• , L m, Lm+l which have 
no points in common and one of which, say L m+1, encloses all the others; 
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none of the other contours enclose each other (plate with holes, Fig. 14). 
For m = 0, the boundary consists of a single, closed contour and the 

region 5 is simply connected; for m ~ 1, the region is multiply con
nected *, i.e., (m + I)-ply connected. 

In the case of an infinite region, the outer contour Lm+l is absent (or, 
as will often be said, it lies at infinity). In this case, the region 5 repre
sents the infinite plane with holes **. 

In general, in what follows (unless stated otherwise), a region will be 
understood to be a (finite or infinite) region of the type described above. 

The boundary L of the region 5 will not be included in S. If some 
property is not only true for points of the region 5, but also for points 
of the boundary L or for points of some part L' of the boundary, it will 
be said that such a property is valid for 5 + L or for 5 + L' respectively. 

A part of a boundary will always be understood to be a part consisting 
of one or several continuous arcs or contours. 

3°. Let F(x, y) be some function defined in the region 5 (but not on 
its boundary L) and continuous in S. 

It will be said that the function F(x, y) can be continued continuously 
onto the part L' of the boundary L (where L' may coincide with L), 
if one can give the function f(x, y) such values on L' that the resulting 
function is continuous in S + L'. Then it will often be simply said that 
the function F(x, y) is continuous in 5 + L' or continuous in the region 
5 up to L'; this will mean that the function F(x, y) has been given 
suitable values on L'. 

Let (xo, Yo) be some point of the boundary L and let F(x, y) tend to 
a definite limit as the point (x, y) approaches the point (xo, Yo) from 
inside 5, but otherwise in an arbitrary manner. Frequently this means 
that the point approaches the point (xo, Yo) along any line which remains 
inside S. It is not necessary to assume for this that the "path" is a 
continuous line; for example, it may consist of a number of individual 
points. It will then be said that F(x, y) has (or assumes) a definite 
boundary value at the point (xo, Yo) or that F(x, y) is continued continu
ously up to the point (xo, Yo). The limit just defined will always be referred 
to as boundary value. 

* A definition of simply and multiply connected regions has been given in 
§ 15; cf. also Appendix II. 

** The infinite region S bounded by one (simple) closed contour (infinite plane 
with a single hole) can be referred to equally well as a simply or doubly connected 
region depending on whether the point at infinity is included in the region S or not. 
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It is readily shown that, if a function F(x, y) can be continued con
tinuously at all points (xo, Yo) of' some part L' of the boundary L (where 
L' may be the same as L) and if F(xoJ Yo) denotes the boundary value of 
F(x, y) at the point (xo, Yo) ,then F(xo, Yo) will be a continuous function 
of the point (xo, Yo) on L'. 

From the definition of continuity follows then that, if F(x, y) is 
continued continuously at all points of the part L' of the boundary L, 
F(x, y) will be continuous in 5 + L', i.e., continuous in 5 up to L', 
provided one understands by F(x, y) for (x, y) on L' the corresponding 
boundary value. 

In future, when saying that F(xo, Yo) is the boundary value of the 
function F(x, y) or that F(x, y) assumes the boundary value F(xo, Yo), it 
will always be implied that F(xo, Yo) is the limit approached by F(x, y) 
as the point (x, y) tends to the point (xo, Yo) in an arbitrary manner, 
provided only that it is to remain all the time inside S. In other words, 
the term boundary value at a given point or on a given part of a boundary 
always means that the function under consideration is continued con
tinuously at the given point or on the given part of the boundary. 

4°. Let the boundaries of two regions 51 and 52 which do not cover 
each other have the common part L representing a simple, smooth (or 
sectionally smooth) arc or closed contour and let F 1 (z), F 2 (z) be functions 
of the complex variable z = x + iy, holomorphic * in 51 and S2 re
spectively and continuous up to L. (Fig. 15). Further, let F 1 (z) = F 2(Z) 
on L. Then the function F(z) ,defined by 

F( ) _ {F1 (Z) for z in 51 and on L 
z - F 1(z) for z in S2 and on L' 

* The term "holomorphicu is equivalent to the term "regular" used in V. I. 
Smirnov [1], Vol. III. A function holomorphic in a given region (which is simply 
or multiply connected) is always single-valued. In the sequel, an analytic function 
of the complex variable z in a given region 5 will always be understood to be a 
function which can be multi-valued, but each continuously varying branch of 
which is holomorphic (and hence single-valued) in any finite simply connected 
part of the reg.ion S. 

The word "analytic" denotes that each function (more correctly, each of its 
branches) can be expanded near any point a of the region 5 in a series of the form 

Ao + A 1(z-a) + A2(z-a)2 + ... 
Sometimes a function analytic in 5 will be understood to be a function analytic 

(in the above sense) in a region obtained from 5 by exclusion of certain individual 
pain ts; however, this will al ways be stated specifically. 
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will be holomorphic in the region 5, obtained by addition of the regions 
51 and S2 including L. The proof of this theorem can be found in most 
treatises on the theory of functions of a complex variable. 

In particular, this theorem leads to the following conclusion. Let the 
function F(z) be holomorphic in some regions 5 and let the function 
F(z) have on some part L' of the boundary of this region a boundary 
value which is equal to zero. Then F(z) == 0 in the entire region S. 

In fact, let there be added to the region 5 some part 5' of the plane 
adjoining L' from the other side and let F(z) === 0 in Sf. Then, on the 
basis of the above statements, F(z) will be holomorphic in the region 
5 + S' and, since it is zero in S', it will vanish everywhere, because an 
analytic function which vanishes in a part of a region vanishes every
where in the region" where part of a region means a subregion. 

If in this terminology and under the same conditions as above the 
boundary value of F(z) on L' has the constant value C which is not 
necessarily equal to zero, then F(z) == C in the entire region S. This 
result follows from the preceding proposition, if one applies it to the 
function F(z) - C. 

5°. The functions cp (z), t.J; (z), <I> (z), 'Y (z), occurring in the general solution, 
are analytic functions of z in the entire region, occupied by the body, 
even in the case when that region is multiply connected. This follows 
from the expressions for these functions, deduced in the preceding 
sections. The only difference from the case of a simply connected region 
is that the functions cp(z) and tJ;(z) may be found to be multi-valued, as 
a consequence of the presence of logarithmic terms. (If multi-valued dis
placements are admitted, the function cI>(z) may also turn out to be 
multi-valued). Since an analytic function of z == x + iy leads at the 
same time to analytic functions of the real variables x, y (cf. end of 
§ 32), the components of stress Xx, Yl1' Xv and"displacement u, v are, as 
in the case of simply connected regions, analytic functions of x, y through
out the region, occupied ?y the body. 

From this property of the solution there follows immediately a propo
sition which at first sight may appear somewhat unexpected. 

If some part of the body (i.e., a subregion which may even be arbitrarily small) 
is in a "natural" state, i.e., if no stresses occur there, then the whole body is in a 
natural state or, in other words, no stresses occur anywhere. 

In fact, if X x === y '11 === X'Y = 0 in some part of S, this will be so in the 
whole of S, because an analytic function cannot vanish in a part of a 
region without being zero in the whole region. 
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The proof will now be given of d. simple and important proposition 
concerning the analytic continuation of the solution across a given 
contour. Let there be two regions S+ and S- which do not cover each 
other, but the boundaries of which have a part in common consisting 
of a smooth line L (i.e., an arc or contour). Assume that the components 
of displacement and stress satisfy in each of the regions 5+ and 5-
the conditions of § 27. In that case they will be analytic functions in 
each of the separate regions 5+ and 5-. 

Consider the necessary and sufficient conditions for the components 
of stress and displacement to be analytic in the region 5, obtained by 
joining 5+ and S- (including L). If u, v, Xx, Y y , Xy are analytic in the 
whole of S, it is obvious that they will be continuous on L from 5+ as 
well as from 5- and that their boundary values on L from either side will 
be equal. Denoting the boundary values, obtained by going to the limit 
from 5+ and 5-, by superscripts (+) and (-) respectively, one finds the 
necessary conditions 

U+ = U-, v+ == v- X+ == x-'n n' y~ == Y; on L, (37.1 ) 

where (X;!", V:), (X;;" Y;;) are the stress vectors, applied to an element 
of L at the point t, when that elen1ent is assumed to belong to 5+ and 5-
respectively, i.e., 

X~ = X: cos (n, x) + X; cos (n, y), 

y;t :::= X; cos (n, x) + Y: cos (n, y), 
(37.2) 

and similarly for X;, V;;:, where n is the normal to L at the relevant 
point, directed to a definite side (which may be chosen arbitrarily). 

I t will be shown now that the conditions (37.1) are sufficient (assuming 
the existence of the boundary values of the components of displacement 
and stress from either side). These conditions simply express the fact that 
the displacements remain continuous for a passage across L and that the 
stresses acting on an element of this line from either side satisfy the law 
of action and reaction. It follows from the first two conditions of (37. 1 ) 
that 

2~(u + iv) == xep(z) - zep' (z) - r.f;(z) (37.3) 

is continuous on L from both sides and that the boundary values from 
either side are equaL Further, it follows from the two latter conditions 
of (37.1) that the same properties may be ascribed to 
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au au - -ax + i 8Y = rp(z) + zrp'(z) + ~(z) , (37.4) 

provided a proper choice has been made for the arbitrary constants 
which must be added to one of the functions qI, ~ in the regions S+ and S-. 
This is obvious since, by (33.1), one has for (37.4), in both S+ and S-, 
the formula z 

3U . au . ((X 'Y )d -~-+ 2-~-= 'l n+ 2 n S, 
uX uy oj 

(37.5) 

a 

where the integral is taken along an arbitrary line l, remaining all the 
time (with the exception of the point a) in S+ or S- and joining some 
fixed point a of L to a point z in 5+ or 5-; by bringing the point z into 
the neighbourhood of some point t of L, from 5+ or S-, the line 1 may be 
chosen so close to L (i.e., close in the sense of distance as well as of tangential 
direction) that the integral on the right-hand side of (37.5) is approximated 
as closely as one pleases by the integral 

t t 

i j(x:; + iY;i)ds = i j(X; + iY;)ds, 

a a 

taken over an arc of L, connecting a and t. 
Adding (37.3) and (37.4), it is immediately verified that the function 

cp(z) is also continuous on L from 5+ and S- and that its boundary values 
from either side are equal. Hence, by what has been said above under 4°, 
the function (()(z) will be analytic in S; but then cp' (z) will likewise be 
analytic. It is then obvious that ~(z) is continuous on L from both sides 
and that its boundary values are equal. Thus tJ;(z), like <p(z), will be 
analytic in S. This proves the proposition. 

The following result is easily deduced from the preceding ones: 
It on some part (however small) of the boundary of a body 

Xn = Y n = U == v == 0, (37.6) 

then the stresses are zero throughout the body. This result is due to E. Al
mansi [3J who proved it in a different way for the general three
dimensional case. 

Let S be the region occupied by the body and L' that part of the 
boundary where (37.6) is fulfilled. Select some region 5', adjacent to L' 
and outside S. By the above and by (37.6), the functions Xx, Yll' X,I' 
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U·, v may be continued analytically from S into Sf by simply putting 
these functions equal to zero in Sf. But then, by ¥lhat has been said 
earlier, one finds that Xx == y 11 == Xy = u == v == 0, because these 
functions, being analytic in the region obtained by adding Sand 5', 
vanish in the part 5'. 

NOTE. The results on the analytic continuation through a given 
contour, proved above, may be somewhat generalized. In fact, retaining 
the condition that the components of displacement must be continuous 
on L from S+ as well as from 5-, one can replace the corresponding con
dition for the stress components by a weaker requirement which is 
more natural from the physical point of view, namely that the ex
pression (37.4) must be continuous up to L. This condition is easily seen to 
lead to the following. Select some (smooth) arc 1+ (or 1-), entirely in S+ 
(or S-) and close to L, and suppose that this arc tends to some arc 1 of the 
line L; further, let (X, Y) be the resultant vector of the forces, applied 
to l+(or 1-) from the sides, facing S+(or S-). Then, as l+(or 1-) approaches 1, 
this resultant vector tends to (X+, Y+) [or (X-, Y-)] which, by sup
position, is the resultant vector of the forces, exerted from the sides 
S+(or S-) on the arc l of the boundary of the body. 

Provided the stated conditions are fulfilled, it is easily seen that (37.1) 
can be replaced by 

u+ == u-, v+ == V-, x+ + x- == 0, Y+ + y- == 0, (37.1') 

where (X+, Y+) and (X-, Y-) are the resultant vectors of the forces 
applied from the sides 5+ and S- respectively to an arbitrary arc l of the 
line L. 

In the same manner (37.6) may be replaced by 
X == Y = u = v == 0, (37.6') 

where (X, Y) is the resultant vector of the forces, exerted on an arbitrary 
arc of the boundary. 

§ 38. Transformation of rectilinear coordinates. Consider now 
how the various functions, corresponding to a given state of stress of a body, 
change under transformation from one system of rectangular rectilinear 
coordinates to another. 

First investigate the effect of the translation of the origin to a new 
point (xo, Yo). Let (x, y) and (Xl' Yl) be the coordinates of the same point 
in the old and new systems and let 

z == x + iy, Zl == Xl + iYl. 
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Obviously 

where 

Zo == Xo + iyo· 

Beginning with the formulae 

§ 38 

(38.1 ) 

Xx + Yll = 4m<l>(z), Y lI -Xx + 2iX lI == 2[z<I>'(z) + 'Y(z)], (38.2) 

denote by <P1(Zl) and 'YI(ZI) the functions playing in the new system the 
same parts as <I>(z) and 'I'(z) in the old one. Since the stress components 
are not altered by a translation, one has by the first equation of (38.2) 

9l<l>(z) == ffi<l>l (Zl) = ffi:<I>1 (z - zo), 
whence 

<I>(z) == <1>1 (z - Zo). (38.3) 

One might have added on the right-hand side any purely imaginary 
constant which would have no influence on the distribution of stress. 

The second formula of (38.2) gives 

z<l>'(z) + 'F(z) == Zl<l>~(Zl) + 'F1(Zl) == (z-zo)<I>~(z-zo) + 'F](z-zo) = 
== z<l>~(z-zo) + 'Yl(z-zo) -zo<l>~(z-zo), 

whence, by (38.3), 

'Y(z) == 'Yl(Z - zo)'- zo<l>~ (z - zo). (38.4) 

Integrating (38.3) and (38.4) with respect to z, one obtains 

<p(z) == CPl(Z - zo), rf(z) = ~l(Z - zo) - zoCP~ (z - zo), (38.5) 

where certain arbitrary constants which do not affect the stress distri
bution have been omitted. 

It is seen that the function ~(z) is not invariant for a translation of the 
origin, i.e., the values for the old coordinates are not obtained by simply 
replacing in tfJl(Zl) the variable Zl by z - ZOo In contrast, the function 
cp(z) is invariant. 

Next consider the effect of rotating the axes, leaving the origin fixed. 
If the axis OXl is turned with respect to Ox by an angle oc, then 

whence 

x == Xl cos (J.,-Yl SIn t:t.., 

y = Xl sin t:t.. + Yl cos t:t.., 

X + ~'y = (xl .+ iYl)eirx
, 
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l.e., 

Z Z eilX Zl = ze-ilX• == 1 , (38.6) 

In view of the invariance of X x + Y v' one has, on the basis of the 
first equality of (38.2), 

m<l>(z) == 9ltP1 (Zl) == ffitP (ze-iIX) , 

whence, omitting a purely imaginary constant term, 

<I>(z) == <1>1 (ze-iIX). 

Further, the expresslon corresponding to 

y 11 - Xx + 2iX1I , 

but referring to the new system, is by (8.8) equal to 

(Yll- X x + 2iXll)e2iIX. 

Thus, by a formula analogous to the second formula of (38.2), 

Zl<1>~ (Zl) + 'Yt (Zl) = [z<l>'(z) + 'Y(z)]e2iIX, 

whence 
z<l>' (z) + 'Y(z) == [zeiIX<I>~ (ze-iIX) + 'Y 1(ze-iIX)]e-2ilX. 

Further, noting that by (38.7) <1>' (z) == e-ilX<I>~ (ze- iCt), one finds 

'Y{z) == 'Y 1{ze-iIX)e-2iIX. 

(38.7) 

(38.8) 

Integrating (38.7) and (38.8) with respect to z and omitting arbitrary 
constants which do not influence the stress distribution, one obtains 

cp(z) == CfJl{ze-1"IX)eilX
, tJ;(z) == ~l(ze-i(X)e-ilX. (38.9) 

Finally, integration of the second of the preceding formulae gives 

X(z) = Xl (ze-iIX), (38.10) 

where again an arbitrary constant has been omitted. 
NOTE. If the arbitrary constants had not been omitted, one WOtlld 

have found, for example, instead of (38.9) and (38.10) 

cp(z) == <'Pl(ze-ilX)e1cx + Ciz + a + ib, ~(z) = ~l{ze-iO:)e-ilX + a' + ib', 

where C, a, b, a', b' are arbitrary real constants which do not affect the 
stress distribution. In the earlier formulae 

C == a == b == at === b' = O. 
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Thanks to that choice of con~tants, not only the stresses, corresponding 
to the new and the old functions, but also the displacements will be the 
same·. (Otherwise the latter would have differed by a rigid body displa
cement.) Further, by omitting an arbitrary constant in (38.10), it has 
been ensured that the stress functions U, formed by means of the new 
and the old functions, will be identical. This would not have been the case 
for a different choice of constants, since stress functions, corresponding 
to one and the same state of stress, can differ from each other by an 
arbitrary term of the form: Ax + By + C. 

§ 39. Polar coordinates. In many cases it is convenient to express 
stresses and displacements in polar coordinates. Let the origin 0 of the 
system Oxy be the pole, and Ox the 
polar axis. Then, if rand .& are the 
polar coordinates of some point M(x, y), 
one has, with an obvious choice of the 
angle, 

z = x + iy = rei
&. (39.1 ) 

Draw through the point M two axes; 
(r), being a prolongation of the radius 
vector [on the side of increasing rJ, (,&), 
perpendicular to the first [to the side 
of increasing .&; Fig. 17J. 

Let Vr , v& denote the projections of 

x 

Fig. 17. 

the displacement at M on to the axes (r) and (&). These quantities are 
called components of displacement In polar coordinates. By known 
formulae of analytic geometry 

U == Vr cos & - V.s- sin .&, v = Vr sin .& + v.a- cos .&, 

where (u, v) are the components of the same displacement in the cartesian 
coordinate system Oxy; thus 

u + iv = (vr + iV.a-)ei.s-, Vr + iv1) == (u + iv)e-i &, 

whence by (32.1) 2tL(vr + iv.a-) == e-i&[x<p(z) - zep' (z) - ~(z)J. 

(39.2) 

(39.3) 

This formula gives expressions for Vr and V.a- in polar coordinates, if one 
replaces on the right hand-side z by rei

& and separates real and imaginary 
parts. 
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The components of stress in polar coordinates are defined in quite the 
same way as in cartesian coordinates, with the distinction that the part 
of the axes Ox and Oy is now played by (r) and (&) at the point M where 
the stresses are to be studied. Denoting temporarily the axis (r) by Mx' 
and (&) by My', the above-mentioned components are 

X~" Y~" X~,. 
In the sequel, the following notation which is widely employed in literature 
will be used for these components: 

- - -, 
rr = X~" itit = Y~" r-& == Xv, . 

.......-. 
Thus rr denotes the projection on (r) of the stress acting on the plane 

..-... 
normal to (r); &-& is the projection on (&) of the stress acting on the plane 

.......-. 
normal to (&). Finally, r& is the projection on (&) of the stress acting Qn the 
plane normal to (r), or the projection on (r) of the stress acting on the 
plane normal to (&). 

By (8.8) 

- -rr + it& = 49{<P(z) = 2[<I>(z) + <I>(z)], 
(39.4) -..-... ..-... 

%& - rr + 2ir& = 2[z<l>'(z) + 'Y(z)]e2i
il-. 

These formulae enable one to calculate the components of stress in 
polar coordinates. 

By subtraction one obtains from (39.4) the useful formula 
-....-... --
rr - i rit = <I> (z) + <p (z) - e2i

il- [z<l>' (z) + 'Y (z) ] , (39.5) 

giving the stresses acting on an arc of the circle r == const. from the side 
opposite the centre. 

These formulae are analogous to those given by G. V. Kolosov in a 
somewhat different form. 

§ 40. The fundamental boundary value problems. Uniqueness 
of solution. The fundamental boundary value problems will be defined 
in complete analogy with those formulated in § 20 for the three-dimen
sional case. As before, absence of 90dy forces will be assumed. 

Fir s t fun dam e n t a I pro b 1 e m (Problem I): To find the 
state of elastic equilibrium for given external stresses applied to the boundary 
L oj. the region S. 
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Sec 0 n d fun d a n1 e n tal pro b 1 e m (Problem II): To find the 
state of elastic equilibrium tor given displacements 0/ points 0/ the boundary L. 

By S will be understood a region of the form discussed in § 35 and 
§ 36, by L the union of the contours Lv L 2, ••• , Lm, Lm+l (if the region 
is finite, cf. § 35), or of the contours Lv L 2, ••• , Lm (if the region is in
finite, cf. § 36). In the sequel, unless stated otherwise, it will be assumed 
that all considered contours are smooth lines (i.e., that they have con
tinuously varying tangents). If S is infinite, it will be assumed that the 
stresses in infinitely remote parts of the plane satisfy the conditions of 
§ 36, i.e., that they remain bounded. 

In addition, in the case of Problem I for infinite regions, it will be as
sumed that the values of the stresses at infinity are known; by § 36 
they will enter into the constants 

9(·r == B, r' = B' + iC'. (40.1 ) 

Further, since the constant C (remembering that r = B + iC) does not 
influence the stress distribution, let C = o. 

In the case of Problem II for infinite regions, it will be assumed that the 
quantities 

r = B + iC, r' == B' + ie' x Y , , (40.2) 

are given, i.e., that not only the values of the stresses at infinity, but also 
that of the rotation (§ 36) and, besides, the resultant vector (X, Y) of 
all external forces, applied to the boundary, are given. At first sight, the 
last condition seems to be unneccessary, but it can be shown that without 
it the problem remains indefinite, i.e., that it has an infinite number of 
solutions. 

Apart from the stated problems, the fun dam e n tal mix e d 
pro b 1 e m plays an important part, i.e., the problem for which dis
placements are given for one part and stresses for the remaining part of 
the boundary. In the case of the mixed problem for infinite regions, it 
will be assumed, as in Problem II, that, in addition, the values of X, 
Y, r, r' are given. In Part VI several problems of a different type will 
be considered. 

It will now be proved that, if the above problems have solutions, these 
will be unique. For finite regions, the proof is completely analogous to 
that presented earlier for the general case of three dimensions, while 
for infinite regions (such regions not having been considered for the 
three-dimensional case) certain additional considerations are required. 
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l i"or the proof it will be assumed that the components of the stresses and 
the displacements, corresponding to the solution under consideration, are 
continuous up to the boundary L (cf. below). 

First consider the case of finite regions (simply or mUltiply connected). 
Study the integral (cf. § 20) 

where 

J = j(XnU + Ynv)ds, 

L 

Xn == Xx cos (n, x) + Xli cos (n, y), 

Y n === Y x cos (n, x) + Yy cos (n, y) 
(40.3) 

denote the stress components, applied to the boundary L, and n is the 
outward normal to L. 

By Green's theorem 

J = j [(X",u + Y",v) cos (n, x) + (X lIu + Y lIv) cos (n, y)]ds = 

L fj"{ ('OXx 'OXy ) ('OY x oYll) === u -+- +v -+- + ox oy ox cy 
s 

But, by (29.1), 
oXx axy 'OYx oYll 
-+--=0 -+-= 0, ox oy 'ox 'Oy 

also 
OU OV ou 
'Ox == exx, ox + Oy = 2e"'11 

and 
x x == A6 + 2~exx, Y y == AS + 2fLellll , X 11 = 2 !-Lex1I ° 

Hence, the above expression becomes 

j (Xnu + Y nv)ds = jj{A62 + 2f.t(e;", + e~ + 2e~)}dx dy. (40.4) 

L S 

If u, v, X n' Y n, exx, ell1l , eXlI represent the (( difference" of two solutions 
of the first, the second or the mixed problem, the expression X nU + Y nV 

will be zero on the boundary L (cf. § 20). Hence, the double integral on 
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the right-hand side will be zero. But since the function under the integral 
is a positive definite quadratic form, this can only be so, if 

Hence also X x, Y Y' X 11' arising from the difference of the two solutions, 
must be zero, i.e., both solutions are identical in the sense that they lead 
to the same stresses and strains. However, the displacements may differ 
from each other by terms of the form 

Uo == - €y + oc, Vo == €X + ~, 
corresponding to rigid body displacement in the plane Oxy. In the cases 
of the second and the mixed problems, this difference does not occur, 
since the displacements of both solutions must be the same on the 
whole or part of the boundary. 

Next consider the case of infinite regions. As before, let it be assumed 
that any of the three fundamental problems possesses two solutions aIld 
that u, v, X n , Y n denote the "difference" of these solutions. For Problem 
I : Xn == Y n = 0 on the boundary, i.e., the resultant vector of all forces, 
exerted on the boundary, is zero. However, for the second and the 
mixed problems, this vector had been assumed given for both solutions, 
and hence it will also vanish for the difference of the two solutions. 
Thus in all the cases considered: X = Y = o. In addition, the quantities 
r, r', corresponding to the difference, will be zero, since they were 
to be the same for both solutions if it is assumed for Problem I that the 
imaginary part of r is zero which can always be done, since it does not 
affect the stresses. 

Now apply' (40.4) to the finite region, bounded by the contours L I , · .. J 

Lm and the circle LR with radius R and centre at 0, which contains 
all the contours LIJ ... , Lm. It will be proved that 

f (Xnu + Y nv)ds (40.5) 
LR 

tends to zero as R -+ (X). In fact, by (36.4), (36.5) and (36.7), where one 
has to put 

x == y = r = r' = 0 , 
one has for I z I > R 

, 
a l ' a1 ~(z) = ao + - + ... , tJ;(z) = ao + -- + ... , z z 
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, 
a l <1>(Z) = cp'(Z) = - 2 + 
z 

... , a 
IF(z) = tP'(z) = __ 1 + 

Z2 

The formula 

2tL(u + iv) = xcp(z) - zcp'(z) - ~(z) 

shows that under these conditions ~t, v remain bounded. Further, the re
lations 

Xx + Y 11 == 2[<P(z) + <Il(z)], Y y - Xx + 2iX lI == 2[z<l>'(z) + 'Y{z)] 

indicate that Xx, Y y, Xy tend to zero with order II/z21 (at the least) 
as I z ! -> 00. Hence, the expression X nU + Y nV will be of order 

I/R2 on the circle L R . On the other hand, the path of integration in (40.S) 
is of length 21tR and hence the integral (40.S) is of order l/R and tends to 
zero as R -;.. 00. 

Applying (40.4) first to the region, contained between Land LR , 

and then increasing R beyond all bounds, it is seen that the integral on 
the left-hand side will tend to the integral taken over the boundary L; 
hence, the integral on the right-hand side will likewise tend to a 
limit which, by conv~entional definition, "viII represent the integral 
taken over the infinite region S. Thus (40.4) applies to infinite regions 
S and, hence, the conclusions regarding uniqueness of solutions remain 
true also for these cases. 

NOTE. It has been assumed in the proofs above that the displacement and stress 
components are continuous up to the boundary. This assumption can be replaced 
by one which is considerably more general. Only a brief remark will here be made 
on this subject. 

The proof presented obviously remains in force, if it is assumed that the dis
placement and stress components corresponding to the differences of the solutions 
under consideration are continued continuously at all points of the boundary with 
the exception of a finite number of points ck near which they must behave in such 
a manner that the integrals fYk (Xnu + Y nv)ds taken over arcs Yk of infinitesimal 
circles belonging to S and having the points ck as centers tend to zero together 
with the radii of these circles. 

In § 42, the ~niqueness theorems for the first and second fundamental problems 
will be proved under assumptions which are somewhat different from those of 
this section. 

Regarding the question of the existence of solutions, the following re
marks will be made for the present. From a mathematical point of view, 
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the first fundamental problem is completely equivalent, at least 
for regions bounded by one contour (for the case of several contours 
cf. Note 1 at end of the next section), to the problem of equilibrium 
of a thin elastic plate, clamped at the edges, under the influence of 
loads normal to its plane. This latter problem can be reduced to the 
determination of a biharmonic function U for given values of its partial 
derivatives 

au au 
ox ' oy 

on the boundary of the region. 

This problem is discussed in any of the treatises, mentioned in ~he list given at 
the beginning of Part I~ As a rule, the problem leads to the determination of U for 

dU 
given boundary values of U and of the normal derivative dn . But obviously one 

may in this case immediately determine the boundary values of 

oU 8U 

a;-' 6Y' 
since 

oU dU dU 8U dU dU 
- = -- cos (t, x) + ~cos (n, x), -- = - cos (t, y) + --cos (n, y), 

8x ds dn oy ds dn 

where s denotes the coordinate along the boundary and t the direction of the 
tangent. Thus one arrives at the problem, stated in the text. 

The first fundamental problem will be reduced to just such a mathe
matical problem (cf. § 41). The problem of finding a biharmonic function 

. au au . 
for given values of the derIvatives ~~ and ~- on a contour WIll ox oy 
be called the fundamental biharmonic problem. This problem (or its equi
valent problem of the equilibrium of a plate, clamped along the edges) 
has been the subject of many investigations, especially since 1907 
when the Paris Academy of Science declared it the object of a prize. 
This prize was obtained by J. Hadamard [IJ, G. Lauricella [3J, A. Korn [4J 
and T. Boggio. The above authors completely solved the problem for 
the case of finite regions, bounded by a simple contour and satisfying several 
conditions of a general character. (In 1936 S. L. Sobolev [IJ, using 
variational methods, gave a proof of the existence of solution of a boun
dary problem which represented a considerable generalization of the 
fundamental biharmonic problem). 

Use of functions of a complex variable provided recently the means of 
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obtaining the solution of the first as well as of the second fundamental 
problem for regions, bounded by an arbitrary number of contours. It 
also solved the fundamental mixed problem and a number of other im
portant general problems. Certain of the above-mentioned general results 
will be studied below in Part V, while short statements will be given of others. 

It will just be noted here that in the case of finite regions the first 
fundamental problem has, of course, a solution only when the resultant 
vector and moment of the given external forces, applied to the boundary 
L of the region, are zero. 

But in the case of infinite regions a solution exists only when this 
condition is not satisfied, even if it is required that the stresses at in
finity vanish. This is explained by the fact that, if one considers part of 
the body enclosed between a given contour L and a circle, containing 
this contour, then, although the external stresses acting on the circle tend to 
zero as the radius increases beyond all bounds, taken over the whole 
boundary they may give a finite resultant vector and moment, because 
they are distributed over a circle the length of the circumference of 
which increases beyond all bounds4 The resultant vector and moment of 
the external forces, applied to the union of the given contour L and the 
circle, is always zero. 

Regarding the above-mentioned general solutions of the fundamental 
problems it may be noted that, just because of their generality, these 
solutions are often unsatisfactory from the point of view of application. 
Therefore one is obliged to study special methods of solution offering 
the possibility of practical analysis of more or less wide classes of regions, 
important in applications. Parts III - VI of this book are largely devoted 
to such methods. 

§ 41. Reduction of the fundamental problems to problems of 
complex function theory. 10. Since the state of stress and the dis
placements can be expressed by means of the two complex functions 
<p(z) and tJ;(z) , the problems formulated in the last section lead to the 
determination of these functions under certain conditions which they 
must satisfy on the boundary of the region occupied by the body. 

As' in the preceding section, we will assume that the displacement and 
stress components are continuous up to the boundary L of the region S. 

The points of the boundary L will usually be denoted by t, so that 
t = x + iy, where x and yare the coordinates of the boundary point 
under consideration. 
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However, often when this will not be convenient, the boundary points 
will be denoted also by z just as all other points of the plane. 

Let f(t) be son1e (real or complex) function of the point t of the bound
ary L. Since the position of the point t on each of the contours composing 
L is completely determined by the arc s measured in a definite direction 
along the given contour from some fixed point, t(t) represents on each 
of these contours a function of the real variable s; therefore it will 
often be convenient to write I(s) instead of I(t) without introducing a 
new symbol for I. Further, integrals of the form 

f t(s)ds 
tot 

taken along some arc tot of a contour will likewise be denoted by 
t 

f t(t) ds 
to 

and interpreted as before. 
2°. For greater clarity, a beginning will be made with the case of a 

region 5 which is finite and bounded by a single simple closed contour L. 
In the case of Problem II, the boundary condition can be expressed 

in the following manner: 

(41.1) 

where gl === gl(S) and g2 == g2(S) are the given displacements of the points 
of the contour L. They are functions of the point t of the contour S or 
of the corresponding arc 5 which are known and by the strength of the 
above conditions are continuous. The positive direction on L can be 
chosen in an arbitrary manner. 

In this context, the statement (41.1) must, of course, be understood 
within certain conditions. In fact, the left-hand side of this equality 
represents the boundary value of the expression 

cp(z) - z<p'(z) - t¥(z) 

as Z, while remaining inside S, tends to the point t of the contour L; 
this boundary value exists, since this expression is equal to 2f.L(u + iv) 
and U and v are, by definition, continuous up to the contour. 

In the case of Problem I, the boundary condition can be expressed by 
two different methods which should be used according to their convenience. 
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Only one of these will be stated now, while the other \VIII be given at 
the end of this section. Let Xn(t), Y n{t), or in the new notation Xn{s), 
Y n(s), be the given values of the components of the external loading at 
the point t, measured in the positive direction from some fixed point to. 
As positive direction of L take that which leaves the region 5 on the left. 

On the basis of (33.1) one has 

~(t) + t~'(t) + y;(t) ::= 11 + 12 + canst., (4 I .2) 
where 

11 11 it2 == II{t) + i/2(t) == II{s) + i/2(s) == 
t s 

= i J (Xn + iYn)ds = i f (Xn + iYn)ds. (41.3) 

to 0 

The expression on the left-hand side of (41.2) must be understood as 
the boundary value of 

~(z) + zep'{z) + ~(z) 
as z ~ t on L. This boundary value is easily S8en to exist under the 
assumed conditions regarding the continuity of the stress components 
up to L. It should still be noted that (41.2) was written using (33.1) 
which was deduced under the assumption that the arc AB in § 33 lies 
completely inside S. However, it is readily seen that in the present case 
the last formula is also applicable when the arc AB belongs to L; this 
follows from the same condition of continuity of the stress components 
up to the boundary. 

Thus the boundary condition for Problem I is expressed by (41.2) in 
the sense stated above. The functions 11{t) and 12{t) are then the given 
real functions along L, defined by (41.3). 

N ow the following will be noted. It has been seen in the preceding 
5ection that knowledge of X n(s), Y n{s) completely determines the state 
of stress of the body. But the functions cp(z), y;{z) will then not be com
pletely determined; in fact, it has been found in § 34 that the substitutions 

cp{z) + Ciz + y for cp(z) , 

~(z) + y' for ~(z), 
(A) 

where C is a real and y = rx + i~, y' = oc' + i~' are complex constants, 
do not alter the state of stress and, conversely, that any transformation, 
which does not affect the stresses, must be of the form (A). Then (§ 34) 
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au au aU au _ - + i -~- is then replaced by -~- + i -';l- + y + y'. (B) ax uy vX uy 

It thus follows that by a suitable choice of 'Y and 'Y' the constant in (41.5) 
can be given any arbitrary value. 

In the case of Problem II, the boundary values completely determine 
the displacements at all points of the body (§ 40). Therefore, by the results 
of § 34 (assuming the origin to lie within the region 5), only one of the 

cp(O) == 0 or ~ (0) == 0; 3cp' (0) == O. ( 41.5) 

In the case of Problem I, when the boundary conditions completely 
determine the state of stress of the body (the displacements being de
termined apart from rigid body translation), both quantities cp(O), tl;(O) 
may be fixed arbitrarily, in addition to the imaginary part of cp'(O). But, 
if the constant on the right-hand side of (41.2) is fixed in a definite manner, 
only one of the two quantities cp(O), tJ;(O) can be decided upon arbitrarily. 
Therefore, in the case of Problem I, one may assume 

<p(O) == 0, 3cp'(O) == o. (41.7) 

Regarding the last point, the following remark may be made. If l' and tJ; are any 
functions solvingl>roblem I, application of the transformation (A) gives functions 
solving the same problem. In order that (41.5) may be fulfilled for a definite value 
of the constant on the right-hand side, the quantity y + ::;' will be fixed, as can be 
seen from (B). For example, if y be given, the constant y' "",ill be completely 
determined. 

The supplementary conditions (41.4), (41.5) completely fix the functions 
<p(z), ~(z), if in the case of Problem I the constant on the right hand side 
of (41.2) is fixed. 

The following may still be said with regard to Problem I. This problem 
is known to have a solution only if the resultant vector and moment of 
the external forces acting on the boundary of 5 vanish (assuming the 
region to be finite). 

The condition that the resultant vector is to vanish leads to 

f (Xn + iYn)ds = O. (41.6) 

L 

On the basis of (41 .3), this condition is equivalent to the condition that 
the function 11 + 12 given on L is to be continuous. In fact, if (41.6) is 
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fulfilled, the function 11 + f2 of the point t of L reverts obviously to its 
original value as t executes a complete circuit, and vice versa. 

N ext, the condition that the resultant moment is to vanish will be 
considered. Taking the moment about the origin, one finds 

f (xY n - yXn)ds = o. 
L 

(41.7) 

On the basis of (41.3), one has Xnds = df2' Ynds = - dl l , and hence, 
after an integration by parts, 

If the resultant vector of the external forces vanishes, the functions 
Iv 12 are continuous on L, whence follows 

[xiI + yl2JL = o. 
Consequently, the vanishing 01 the resultant moment 01 the external forces 
when the resultant vector of the external forces is zero is expressed by the 
formula 

f (/ldx + f2 dy) = o. (41.8) 

L 

3°. The case of an infinite region 5 bounded by a simple closed contour L 
(infinite plane with a hole) will be considered next. In this case the 
boundary conditions for Problems II and I assume the form (41.1) and 
(41.2) respectively. Also, now the function 11 + i/2 in (41.2) is given by 
(41.3), where it must be noted that this time on L the positive direction 
is clockwise. 

However, there is an essential difference between this case and tl10se 
studied earlier. In fact, for a finite simply connected region, the functions 
cp(z) and t.V(z) are holomorphic (and consequently single-valued) in the 
entire region, while in the present case this is, in general, no longer true. 
On the basis of the formulae of § 36, assuming for definiteness that the 
origin of coordinates lies inside L (i.e., outside 5), one has 
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X+iY 
<p(z) == - log z + rz + <Po(z) , 

27t(1 + x) 

x(X - iY) 
(z) === log z + r' z + ~o(z), 

27t(l + x) 

(41.9) 

where CPo, ~o are holomorphic in S, including the point at infinity. 
It will be recalled that X and Y denote the components of the re

sultant vector of the external forces applied to Land r, r' are constants 
(which are, in ge.neral, complex) determined by the stress distribution 
as well by the rotation at infinity. 

The constants X and Y must be assumed known: For Problem II, 
their values are given in § 40, for Problem I they must be calculated 
from the external loading by the formula 

x + iY = f (Xn + iYn)ds. (41.10) 

L 

Further, by § 40, one can assume as given, for Problem II, the constants 
r, r' and, for Problem I, the constants ffi{f}, r'; the imaginary part of r 
does not affect the stress distribution. 

Using (41.9), the problem under consideration may be reduced to the 
determination of the functions Cf'o(z), ~o(z), holomorphic (and hence single
valued) in S. In fact, the boundary condition of Problem II, on the basis 
of (41.1) and (41.9), assumes the form 

(41.11) 
where 

o . 0 x{X + iY) -
2[J.(gl + zg2) == 2l-L(gl + ig2) + log (tt) -

27t(1 + x) 

X + iY t - -,_ - -=- - (xf - r)t + r t. 
27t(1 + x) t 

( 41.12) 

The right-hand side of (41.11) is single-valued and continuous on L, 
since these properties are possessed by all terms on the right-hand side 
of (41.12) and, in particular, by log tl = 2 Jog j t I. 

For Problem I, one has analogously 
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cp(t) + tcp'(t) + tJ;(t) == I~ + i/~ + canst. on L, (41.13) 
where 

x + iY _ 
I~ + ilg == 11 + i/2 + (log t - x log t) + 

21t(1 + x) 

X - iY t - -_ + ~ - (r + r')t - r't. (41.14) 
21t( 1 + x) t 

These formulae show that the right hand side of (14.13) is a single
valued and continuous function of t on L. In fact, the formula (41.3) 
shows that, as t describes a complete circuit of L in the positive direction, 
the expression 11 + it2 acquires al1 increase given by 

i f (X n + iY n)ds = i(X + iY) ; 
L 

however, exactly the same increase with opposite sign is acquired for 
such a circuit by 

x + iY _ 
---- (log t - x log t), 

27t( 1 + x) 

and hence I~ + i/~ reverts to its original value. 
In addition, it is seen that the right hand side of (41.14) effectively 

does not contain the imaginary part of the constant (because r + r == 
== 2ffi{r}, as was to be expected, since it does not affect the stress 
distribution. 

For Problem II, one can assume arbitrarily 

<Po(oo) == ° or t¥o(co) == 0, (41.15) 

because it is known from § 34 that one may add to one of the functions 
cp(z), ~(z) an arbitrary constant without changing the displacements. 

For Problem I, for an arbitrarily fixed constant on the right-hand 
side of (41.13), one may assume (in the case of a finite region) 

<Po(OO) == ° or tYo{co) == 0, s{r} = 0. (41.16) 

The supplementary conditions (41.15), (41.16) fix completely the 
unknown functions <Po{z), tYo(z), if for Problem I the constant on the 
right hand side of (41.13) is fixed. 

4°. Next, the general case will be considered when the boundary 
consists of several contours Lit L 2, ••• , L m, Lm+l (finite region) or 



154 II.. PLANE THEORY OF ELASTICITY § 41 

L1, L 2, • • ., Lm (infinite region) and a beginning will be made with the 
case of the finite region. 

As in the preceding case, the unknown functions cp(z) , ~(z) are, in 
general, multi-valued. In fact, by (35.10) and (35.11)' 

cp(z) = - 1 £ (Xk + iY k) log (z - Zk) + Cflo(Z) , 
27t(1 + x) k=l 

X m 

~(z) = ( L (Xk - iY k) log (z - Zk) + ~o(z), 
27t 1 + x.) k=l 

(41.17) 

where C?o(z) , ~o(z) are functions, holomorphic (and hence single-valued) 
in the region 5 and the Zk are arbitrarily fixed points lying inside the 
contours Lk (k === 1,2, ... , m). The resultant vector of the external 
forces applied i.o the contour Lk has been denoted by (X 'c' Y k)' 

For Problem I, the quantities X k' Y k are known beforehand, since 
they may be evaluated directly from the given loading. 

For Problem II, these quantities are not known beforehand and 
must be determined together with CPo(z), ~o(z). The boundary condition 
of this pr.Jblem is given by (41.1), where one must understand by L 
the contour Ll + L2 + · .. + Lm + L m+1 • 

In th8 present case, the boundary condition for Problem I can ob-
viously be written in the form 

cp(t) + tcp'(t) + ~(t) == 11 + i/2 + Ck on L k, 

k = 1, 2, ... , m + 1, 

where the C k are certain constants and 

t 

11 + i/2 = i f (Xn + iYn)ds on L k ; 

tk 

(41.18) 

(41.19) 

in the last formula, tk denotes an arbitrarily fixed point of Lk and the 
positive direction of Lk is assumed to be that" for which S lies to the left. 

The constants C k are not known beforehand, but one of them, say 
-- --

C m+l' can be fixed arbitrarily, since the expression cp(z) + zcp'(z) + ~(z) 
is determined for given stresses exactly apart from an arbitrary constant 
term (cf. 2°). The remaining constan t5 C l' C 2' ••• , C m are unknown and 
subject to determination together with the functions CPo(z), ~o(z). 

The boundary condition (41.18) can be replaced by the following, 
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obtained by transferring to the right hand side the terms corresponding 
to the logarithmic terms of (41.17) 

~o(t) + t~o(t) + ~o(t) = f~ + ifg + C k on L k , 

k == 1, 2, ... , m - 1, 
(41.20) 

where t~ + if~ is a function, given on the contours L1 , L 2 , • • • , L m+1 , 

which is single-valued and continuous on each of the contours. For an 
explicit expression for this function, see § 98. It should be noted that 
the continuity and single-valuedness of f~ + ifg on the external contour 
L m+1, is a consequence of the condition (assumed fulfilled) that the 
resultant vector of all external forces applied to the boundary L is 
equal to zero; this statement is to be verified by the reader. 

The unknown functions CFo(Z) , ~o(z) may be fixed completely with the 
aid of supplementary conditions which are analogous to those in 2°. 
In fact, assuming that the origin of coordinates li.es in the region 5, 
one may assume for Problem II 

C?o(O) == 0 or tl;o(O) = 0, 

and for Problem I, with C m+l fixed, 

C?o(O) == 0 or tl;o(O) == 0, 3{ cpo(O)} == o. 

{41.21} 

(41.22) 

The case of infinite regions can be studied in an analogous manner 
as in the preceding two sections and therefore it will not be done here. 

5°. The boundary conditions of the fundamental mixed problem can 
be readily written in an analogous form; in fact, one will have conditions 
of the form (41.1), wherever the displacements are given, and conditions 
of the form (41.2), wherever stresses are specified. 

6°. Finally, the boundary condition for Problem I will be stated in a dif
ferent form. Let there be given the normal and the tangential components 
Nand T of the external stresses acting on the boundary L. The com
ponents Nand T will be the projections of the stresses on the outward 
normal n and on the tangent, pointing to the left of n. Then 

2(N - iT) = Xx + y 11 - (Y 11 - Xx + 2iXlI)e2ia on L, 

where oc is the angle between the normal n and the axis Ox, measured from 
the latter. In order to obtain this formula, one only has to think of the 
normal n as axis O/x' and of the tangent as axis O'y'. Then 
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and the above formula agrees with (8.8'). Introducing into this forn1ula 
the expressions (32.9) and (32. 10), one finds 

<l>(z) + <l>{z) -e2iC):{z<D'{z) + o/{z)} = N-iT on L. (41.23) 
. 

The boundary condition, written in this form which is mainly used by 
G. V. Kolosov [1, 2J, is often more convenient than the form stated 
above, since the functions <I>{z) and '¥(z) are single-valued also in the 
case of multiply connected regions. However, in certain cases, the forms 
of the boundary conditions stated earlier have a great advantage. One 
of their principal advantages is that in such representation the boundary 
condition of the first fundamental problem is very similar to that of 
the second fundamental problem as a consequence of which the methods 
of solution for both problems are very much alike. 

In addition, in the case of finite simply connected regions, the boundary 
condition (41.2) in the same form also applies to the problem of a plate 
with clamped edges (fundamental biharmonic problem). In the case of 
multiply connected regions, there exists a certain difference between 
these problems about which more will be said in the next section. 

§ 41a. Supplementary remarks. 
1°. In the case of a multiply connected region S, the following 

difference exists between the fundamental biharmonic problem and the 
first fundamental problem of the plan~ theory of elasticity: for the 
fundamental biharmonic problem, the expression 

au au -+ i- == 11 +it2 dX oy 
is given completely on each of the contours L k , for the first fundamental 
problem it is given apart from constants C k on Lk (these constants being 
unknown beforehand) and only one of the Ck may be fixed arbitrarily. 

Further, there is a difference in the conditions imposed on the un
known function U(x, y): for the fundamental biharmonic problem, it is 
usually required that the derivatives 

au au 
a;-' oy 

be single-valued in S, or even that U{x, y) be single-valued there 
(e. g. when dealing with the equilibrium of plates clamped at the edges); 
for the first fundamental problem, it is required from U{x, y) that the 
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components of stress and displacement, corresponding to it, be single
valued. In the case of simply connected regions, both conditions lead to 
single-valuedness of U(x, y). 

In the case of multiply connected regions, the two problems under 
consideration also differ by the conditions which are usually imposed 
on the behaviour of their solutions near the point at infinity. 

2°. In spite of the fact that solution of the boundary value problems 
in the general case offers very great practical difficulties, it is very 
easy in certain particular cases to guess the solution from the form of 
the boundary condition. For example, assume that the boundary of 
the body* is subject to uniformly distributed normal tension P (for 
P < 0 one would have compression). Let n be the outward normaL 

'Then 

Xn+'1Yn == P[cos(n,x)+'1cos(n,y)]==-P'l - +'1- == -P'l~-, 
. . . [ dx . dy ] . dt 

ds ds ds 

whence, on the basis of (41.19), one has on each contour Lk constituting 
the boundary 11 + i/2 == Pt + const. Therefore the boundary condition 
(41.18) assumes the form 

(()(t) + t~' (t) + y;(t) == Pt + C k on L k , k == 1, 2, ..• , m + 1, 

and it is seen directly that this condition can be satisfied by writing 

({)(z) = lPz, ~(z) = 0, C1 == C2 == ••• == C m+1 == 0; 

on the basis of the uniqueness theorem all other solutions may differ 
from this solution only by a rigid body motion. 

The corresponding stress components are now determined by the 
formulae of § 32: Xx == Y 1/ = P, X1/ = O. 

Another curious case will still be noted when the boundary problem 
can be solved directly almost without any calculations. Consider first 
Problem I for the same body as above and assume that the function 
/1 - i/2 of the point t on L, obtained by going on both sides of (41.19) 
to the conjugate values, coincides, apart from constant terms, on every
one of the contours Lk with the boundary values of some function 
F (z), holomorphic in S. Then the Qoundary condition (41. 18), written in 
conjugate form, becomes 

<p(t) + lq/{t) + ~(t) = F(t) + Ck on L k , 

* In general multiply connected. 
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and one obtains obviously the solution of the problem by writing 

cp{z) == 0, ~(z) == F{z), C1 == C2 = ... == C tn+l == O. 

It follows from the uniqueness theorem that the problem has no other 
solutions, except for those differing by rigid body displacements. Quite 
an analogous reasoning may be applied to Problem II, and the gener
alization to multiply connected regions does not present any difficulty. 

Consider, as the simplest example, an arbitrary (simply or multiply 
connected) body and suppose "that F(z) == Qz, where Q is a real constant. 
This corresponds to the case when 

. . dt . [ dx . dy ] 
X n - 2 Y n == Q2 ds == Q2 ds + t ds ' 

I.e. , 

Xn=-Qcos(n,x), Yn=Qcos(n,y). 

Thus, uniformly distributed stresses, equal to Q, are applied to the boun
dary of the body; however, these stresses are not directed along the 
outward normal, but in the direction of the reflection of the normal in 
the axis Oy. In the present case, one has 

cp{z) == 0, ~(z) == Qz. 

For the components of stress one finds from the formulae of § 32 

Xx == -Q, Yll == Q, Xy == O. 

If, for example, the considered region is a rectangle with sides parallel to 
the coordinate axes, the above is the solution of the problem for the case, 
when uniformly distributed tensile forces act on the sides, parallel to the 
axis Ox, and similar compressive forces act on the sides parallel to Oy. 

§ 42. Concept of the regular solution. Uniqueness of a regular 
solution. 

1°. In § 40, it has been assumed for the formulation of the funda
mental boundary value problems and for the proof of the uniqueness of 
the solutions that the displacement components u, v and the stress 
components Xx, Y.y, Xy are continuous up to the boundary L of the 
region S. The same assumptions were made in § 41. 
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The condition of continuity up to the boundary imposed on the com
ponents of the displacements is equivalent to the condition of continuity 
up to the boundary of the expression 

2t-t(u + iv) == x.<p(z) - z<p'{z) - ~(z). (42.1 ) 

From the condition of continuity up to the boundary for the com
ponents of the stresses follows the continuity up to the boundary of 
the expression 

au 8U - -- + i - = cp(z) + z<p'(z) + ~(z), ox oy (42.2) 

but not the converse; in fact, the expression (42.2) may obviously be 
continuous up to the boundary without this property also belonging to 
the stress components. The formulation of the boundary problems in the 
form in which this was done in § 41, 6° required only continuity of the 
expressions (41. 1) and (41.2) up to the boundary without enforcing the 
continuity of the stress components. 

Therefore it will be quite natural to replace the requirement of con
tinuity of the stress components by the less restrictive condition of the 
continuity up to the boundary of the expression (42.2), in other words, 
by the requirement that the expression (42.2) is to be continued con
tinuously at all points of the boundary L (§ 29). Such a formulation of 
the problem is also more natural from the point of view of mechanics. 

However, for the application of the methods of effective solution of 
boundary problems to be used later, it will be expedient for a significant 
simplification of the reasoning to impose on the unknown functions the 
following more restrictive condition: the functions cp{z), cp' (z) and ~(z) 

are continued continuously at all points of the boundary L of the region S. 
A solution which has this property will be called regular. 
If a solution is regular only in the stated sense, the expressions (42.1) 

and (42.2) are obviously continued continuously on L. Generally speaking, 
the converse is not true: from the fact that (42.1) and (42.2) are con
tinued continuously on L follows obviously the same property for the 

-- --
function cp(z) and the sum zcp'(z) + ~(z) or, what is the same thing, 
the sum zcp' (z) + tJ;(z) , but not for the functions <p' (z), ~(z) separately. 
It should be noted here that the usual condition of regularity of a 
solution is rnuch less restrictive than the condition of continuity up to 
the boundary imposed on the stress components; however, it is not a 
consequence of the last, since it does not follow from the regularity of 
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the solution that the stresses are continuous up to the boundary. 
I n the sequel (unless stated otherwise) it will be assumed that the solutions 

under consideration are regular. 
2°. In § 40, the theorems regarding the uniqueness of the solutions 

of the fundamental problems have been proved under the assumption 
that the components of the displacements and the stresses are continuous 
up to the boundary. It is easy to prove the uniqueness theorems for the 
first and second fundamental problems under the assumption that the 
solutions under consideration are regular. 

The proof to be given here was first presented in the Author's paper [11]. S.G. 
Mikhlin [6J gave a proof of the uniqueness theorems for the basic biharmonic 
problem for somewhat moge general conditions. The uniqueness theorem for the 
mixed problem was proved for analogous conditions by G. F. Mandjavidze [2J. 

It will be assumed for the proof that the region 5 under consideration 
is finite, since the extension of the proof to infinite regions presents no 
difficulties. 

A beginning will be made with the first fundamental problem. Let 
~(z) and ~(z) denote the differences of the functions corresponding to 
two assumed solutions. These functions will be holomorphic in the 
entire region 5, since the logarithmic terms in the formulae (41.17) 
will cancel. The boundary conditions for these functions may be written 
in the form 

au 8U --
~ + i - == <p(t) + t<p'(t) + ~(t) == Ck on L k , ox oy 

k == 1, 2, ... , m + 1, 
(42.3) 

where, as always, t == x + iy is a point of the boundary and the C k are 
certain (initially unknown) constants. The quantities 

8U oU 
Tx' ay' cp (t) , <p' (t), ~(t) 

denote here the corresponding boundary values. 
Consider now the integral 

taken in the positive direction over the entire boundary of the region, 
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where the sym.bols P, Q denote the real and imaginary parts of the 
function 4<p'(z) , so that 4cp'(Z) == P + iQ; it will be recalled that P = 6.U 
(cf. §30, 1°). However, by (42.3), 

8U 

where ~k' ~k are certain (real) constants. Therefore 

m+l f m+l f J = /:'I!1.k (Q dx + P dy) - k:/k (P dx - Q dy). 
Lk Lk 

Now 
Z Z Z 

cp(z) = f (P + iQ)dz + const. = J (P dx - Q dy) + i J (Q dx + P dy) + 
Zo Zo Zo 

+ canst., 

where the integrals are taken along any path in 5 joining the arbitrarily 
fixed point Zo and the variable point z. Since the function <p(z) is holo
morphic (and, hence, single-valued) in 5, it is now easily seen that 

f (P dx - Q dy) = J (Q dx + P dy) = 0, k = I, 2, · · · , m + 1, 

and hence ] == O. 
On the other hand, transforming the line integral in (42.4) into a 

double integral using the Green formula, one obtains 

J = J J (~U)2 dx dy. (42.S) 

s 
Consequently, since J = 0, one finds P == ~U = 0, and hence that 
<p'{z) == Ci, where C is a real constant. Thus <p(z) = Ciz + y, where y 
is a, constant. It follows then from (42.2) that 

oU . oU 
- - z - = ~(z) + :Yo ox oy 

Thus, the function ~(z), holomorphic in 5, assumes on the contours Lk 
constant values which, on the basis of § 36, 4° is only possible if 
t{J(z) = canst. throughout S. Hence <p(z) == Ciz + y, ~(z) == y/, where 
y' is some constant. This proves that the difference of two assumed 
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solutions leads only to a rigid displacement of the entire body, as was 
to be shown~ 

The uniqueness of the regular solution of Problem II is proved in an 
analogous manner with the aid of a study of the integral 

J* = f {(Qu - Pv)dx + (Pu + qv)dy}, (42.6) 

L 

which is obtained by writing on the right hand side of (42.4) U, v instead of 

8U 8U 
~' ay' 

of course, one is talking here again of the difference of two possible 
solutions. 

Transferring this integral into a double integral and using (30.8), it is 
readily shown that 

2fL(A + fL)J* = f f [fLP2 + (A + 2fL)Q2] dx dy. (42.7) 

s 

However, by definition, U == v === ° on L. Consequently, on the basis 
of (42.6), J* == 0 and, by (42.7), P == Q == 0 in 5, whence follows that 
cp(z) == canst. = y. The formula (42. I) then shows that 2lJ.(u - iv) === 

== - ~(z) + xy. However, since u = v == 0 on L, the boundary value 
of the function - ~(z) + xy is equal to zero onoL. Thus, - t.l;{z) + xy == 0 
throughout 5, and hence u == v == ° in 5. 

Thus the uniqueness theorem can obviously be extended to more 
general cases similar to those mentioned in § 40, 3°. 

In a recently published paper R. Tiffen [lJ gives certain (almost obvious) 
generalizations of the uniqueness theorem presented here using the same method, 
but a somewhat different notation, in that he uses the representation of A. C. 
Stevenson [IJ. 

§ 43. On concentrated forces applied to the boundary. In the 
preceding sections, the solutions of the equations of the plane theory of 
elasticity have been obtained under different conditions which ensured, 
in particular, the continuity of the expression 

8U 8U --
f(x, y) == -~- + i - == ~(z) + z<p'(z) + ~(z) (43.1) 

uX oy 
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up to the boundary L of a region. It must not be imagined that the 
requirement of the continuity of the expression (43. I) up to the boundary 
belongs to the set of conditions which bear a purely mathematical 
character, usually imposed in order to simplify the reasoning. This 
condition has an essentially mechanical significance and can be ex
pressed as follows: the resultant vector of the forces applied from a 
definite side to a given, arbitrarily placed arc tends to zero together 
with the length of this arc. Next, consideration will be given to one of 
the simplest cases when this condition is violated. 

Let AB be some arc belonging to the boundary L of a region and 
let (43. I) be continued continuously at all points of the arc AB except 
only at one point C. It is known from § 35, 3° that under those con
ditions the expression (43. I) will be continuous on the arc AB except, 
may be, at the point C. It will be assumed for the sake of simplicity 
that the point C is a point of first order discontinuity of the boundary 
value of the expression (43.1) and that the function U(x, y) is continued 
continuously at all points of AB including C. This condition for U (x, y) 

au 8U 
will certainly be fulfilled if (43.1), and hence also --, -- remain 

8x 8.1' 
bounded in 5 near C. The last condition is completely natural from the 
point of view of mechanics: it implies that the resultant vector of the 
forces applied to an arc of finite length remains bounded, even when 
the arc is near the boundary of the region. 

Let 

[~+i!E.J == [~J +i[~J ox oy c ox 0 oy 0 

denote the jump in au + i au for a passage through C, if z describes ox oy 
AB in the positive direction (i.e., leaving S on the left). 

Consider an infinitesimal part C'DC" of the body and the resultant 
vector of the external forces, acting on the arc G'DC" (Fig. 18) of the 
boundary of this part. By (33.1), this resultant vector (X, Y) may be 
written 

[
au OUJOH 

X+iY=-i -+i- . ox oy c' 

Letting C' and e" approach C, one obtains in the limit 
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X .y . [ au . au] +2 =-2 ~-+2- , 
OX oy c 

i.e., X = [~~Jc' y = - [~~ Jc' 
(43.2) 

The resultant moment (with respect to the origin) of the same forces is 
easily calculated by (33.2), its limit being 

M=-x[~J -Y[~J =xY-yX, ox c oy c 

where x, yare the coordinates of C. Hence, the forces applied to the 

y 
B 

o 
Fig. 18. 

infinitesimal arc C'DC" are equivalent to one 
single force (X, Y) aRplied at C, its compo
nents being given by (43.2). 

Thus, the point of discontinuity C of the 
. au . au 

expressIon -:;-- + 2 --on the contour (poss-
uX oy 

essing the properties stated above) should 
be considered as the point of application of 

X the concentrated force (X, Y), defined by 
(43.1 ). 

§ 44. Dependence of the state of stress on the elastic constants. 
An important property of the solution of the first fundamental problem 

will now be discussed. First consider the case of finite simply connected 
regions. The unknown functions cp, t.f; are then holomorphic in the region S. 
Further, since the boundary con~ition (41.2) does not depend on the 
elastic constants )... and [l, the functions cp and t}, giving the solution of 
the first fundamental problem, will also solve this problem (for the 
same given external stresses) for a body of the same shape, but made of 
some other (homogeneous and isotropic) materiaL 

Thus, for given external stresses, the state of stress of a simply connected 
(finite) body depends only on its shape, but not an its material. The dis
placements and strains will, of course, depend on the material, since 
the constants )... and [l enter into the formulae, giving the displacements 
in terms of the functions <p and t.f;. 
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In the case of the exact problem of plane strain this proposition, of course, only 
holds with respect to the components Xx, Yll' X ll' because Zz depends on A and [.L 

(or more correctly, on relations involving these quantities). But in the case of thin 
plates, i.e., for Ugeneralized plane stress" (§ 26), the proposition holds fully, because 
then Zz = O. 

The theorem on the independence of the state of stress on the elastic constants 
(always with reference to the components Xx, Y1#" X ll ) is with little justification 
called the theorem of M. Levy, for example by G. V. Kolosov [3, 4]. The truth is 
that M. Levy [1J emphasizes the fact that the equations, to be satisfied by Xx, 
Y

lI
, X

lI
, do not involve the elastic constants. But it does not follow from this fact 

in the general case that the stressed state does not depend on the elastic constants 
(cf. later). 

Next consider the case of multiply connected bodies. Also in this case 
the constants A and f.L do not figure in the boundary conditions. But 
they do appear (through x) in (35.10) and (35.11), viz., 

1 m 
<p(z) == - - ~ (Xk + iYk) log (Z-Zk) + cp*(z), 

21t( 1 + x) k=l 
(44.1 ) 

X m 
tj;(z) = ) ~ (Xk-iYk) log (Z-Zk) + ~*(z). 

27t( 1 + X k=l 

Assume that the first fundamental problem has been solved for a given 
material, i.e., that the corresponding functions ({I, ~ have been found. 
Consider \vhether the same functions may give the solution of the same 
problem for the same boundary stresses and for a body of the same shape, 
but of different material with the constants A', [.L' instead of A and tL. 
Denote by x' the corresponding value of x. The functions <ii, q; will, of 
course, satisfy the given boundary conditions also for the second body, 
because the elastic constants do not figure in these conditions. However, 
the displacements, corresponding to these functions, may turn out 
to be multi-valued. In fact, for single-valuedness of the displacements, 
one has by (35.7), in which one has now to replace x by x', 

where, by (35.9), 

and hence 

X k + iY ,c 
Yk = - 27t(1 + x) , 

-I 

Yl~ =: 

X(Xk + iY k ) 

21t(1 + x) 

( _ ') X k + iY k _ 0 
X X - • 

21t{ 1 + x) 
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But this will only be possible for x' =1= It, if X k == Y k == O. Thus, the 
same functions cp and ~ will give the solution for bodies of different 
materials (with different constants x) if, and only if, the resultant vectors 
of the external forces applied to each of the contours L k separately are zero; 
then, and only then, the state of stress does not depend on the elastic 
constants. Otherwise it depends on the value of x, i.e., on the value of 

A!tL· 
This result is due to J. H. Michell [lJ. It is of considerable interest 

for experiments involving models made of various materials which are 
convenient for the purpose. It is seen that under the given conditions 
the material does not affect the results. G. V. Kolosov [3, 4J gave formulae 
elucidating the influence of the elastic constants also in the case, when 
body forces are present the components of which are analytic functions 
of the coordinates. However, the results of Kolosov require additional 
study in the case of multiply connected regions 

A more detailed statement of a practical nature with regard to the 
influence of the choice of material constants of multiply connected bodies 
can be found in the paper by L. N. G. Filon [3J and also in the book by 
E. G. Coker and L. N. G. Filon [lJ. It should be noted that the deduction 
of all the results, obtained by Filon, can be considerably simplified, if 
one starts from the above formulae. 



CHAPTER 6 

MULTI-VALUED DISPLACEMENTS. THERMAL STRESSES 

§ 45. Multi-valued displacements. Dislocations. The condition 
of single-valuedness of the displacements, which hitherto has always been 
assumed to be fulfilled, seems at first sight to be quite inevitable from a 
physical point of view. However, it will be seen that a very simple physical 
interpretation can be given to multi-valued displacements. 

As before, it will be assumed that the components of stress, and hence 
the components of strain, are single-valued functions in the region, oc
cupied by the body; more exactly, it will be assumed that all the conditions 
stated at the end of § 29 are fulfilled with the exception of the cond£tion 01 
single-valuedness ot the displacements. 

It will be remembered that in the case of simply connected regions single
valuedness of the displacement components remains the necessary con
sequence of the other conditions (cf. §§ 2?, 30). Therefore only multiply 
connected regions need be considered. As in § 35, suppose that the region 
5, occupied by the body, is bounded by several simple contours L 1, 

L 2, ••• , L m, Lm+l the last of which contains the others. 
It will also be remembered that the deduction of the formulae (35.1)

(35.6) was not based on the condition of single-valuedness of the displace
ments; this condition was only introduced starting with (35.7). Therefore, 
in particular, (35.3) and (35.4) remain valid under the conditions to be 
considered now. 

In order to study the character of multi-valuedness of the components 
of displacement, convert the region 5 into a simply connected one by 
means of m cuts a1bv a2b2, ••• , ambm, connecting L 1, L 2, ••• , Lm with the 
outer contour Lm+l and not intersecting each other (Fig. 19). (These 
cuts may be produced in any manner whatsoever, e.g. by joining some 
point of Ll with some point of L 2, some point of L2 with some point of L3 
etc. and by reaching in this manner some point of L m +1 ; but for the sake 
of simplicity the above .stated system of cuts has been adopted.) 

In the region cut in the above manner the functions qI, ~, and hence 
also the displacements, will be single-valued. At each cut a distinction 

167 
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Fig. 19 

must be made between the two 
sides which will be denoted by 
+ and -; these signs will be 
allotted in such a way that, in 
order to go from some point 
(x, y) on the side (-) of the 
cut akbk (and remaining in the 
cut region) to the corresponding 
point of the side (+) of the · 
same cut (Le., to the point with 
the same coordinates), one has 
to encircle the contour Lk in 

~n anti-clockwise direction. By (35.6), one has for such a circuit 

where Ak is the real, Yk === rJ..k + i~k and Y~ = rJ.~ + i~~ are the complex 
constants, appearing in (35.3) and (35.4); here u+, v+ and U-, v- are the 
values of the components of displacement, corresponding to the points 
on the sides (+) and (-) which coincide in the geometrical point (x, y). 
The formula (45.1) may be rewritten 

~t+ - 1,1,- = - €kY + (X~, v+ - v- = e]cX + ~~, (45.2) 

\vhere 

o 7t(X<Xk + (X~) (5 ) 
~k === • 4 .3 

l.L 

There is no difficulty in giving a physical interpretation of these 
multi-valued displacements. (It will be remembered that only very small 
deformations of the body are being considered; hence also the quantities 
Zk, (X~, ~~ will be very smalL) In fact, in order to explain those displace
ments, it is sufficient to suppose that along each cut akbk the two sides of 
the body have been connected by removing from it, before deformation, 
a (very narrow) strip the sides a~b~ and a~b~ (Fig. 19) of which are con
gruent and placed in such a way that a~b~ results from a~b~ by a rigid dis
placement, consisting of a rotation by an angle €k about the origin and 
a translation with components (X~, ~~. It has been implied here that for 
a reunion the same points are to be combined which would correspond 
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to each other, but for the above rigid displacement. The notation has been 
chosen in such a way that the lines a~b~ and a~b~ will, after deformation, 
become the sides (-) and (+) of the cut akbk. 

The relations (45.2) have been obtained, in order to elucidate ho\v the above 
operation of reunion could be accomplished; for example, let akb~ remain fixed 
and let the side a~bk move as a rigid unit until it meets aZb~. Then u- = v- = 0, 
u+ = -skY + a~, v+ = €J!< + ~~ and hence (45.2) is fulfilled. If after this process 
the body is left to its own devices and becomes, in addition, subject to some or
dinary deformation, the relations (45.2) will not be disturbed, because adjoining 
points of the contacting sides will move like one point and no additional differences 
between (u+, v+) and (u-, v-) vdll arise. Clearly the shape of the line akbk in the final 
state will, in general, differ from that of a~b~ and a~b~. 

For simplicity, the above discussion only refers to the removal 
of strips with sides a~b~ and a~b~. But for some values of €k' rJ..%, ~% it may 
happen that (before deformation) the sides a~b~ and a~b~ will overlap, 
so that virtually strips have to be added rather than removed. Similarly, 
it may also happen that a~b~~ and a~b~ only partly overlap, in which case 
material may have to be added in one place and removed in another. 
However, in the sequel, for the sake of brevity, only "removal" of strips 
will be mentioned. Likewise it is clear that, when joining the sides a:Cb~ 
and a~b~, their end points may not completely coincide with each other so 
that after reunion they may form (small) steps on the boundaries of the 
region; but these will not be considered here. 

The above interpretation of multi-valued displacements was first stated 
by A. Timpe [lJ for the particular case of a circular ring. (This case will be 
treated as an example in § 60.) Somewhat later, V. Volterra obtained more 
general results referring to multiply connected bodies of arbitrary shape. 

Cf. V. Volterra [1J which contains a summary of his results, and also 
his books [2J and [3]. The case of plane deformation has also been considered 
in a paper by L. N. G. Filon [3J which presents interesting results referring 
to the problem of the study of a state of stress by means of experiments 
with models of different materials; cf. also. E. G. Coker and N. G. Filon [1J. 

Volterra uses for deformations of the body of the type described above 
the term "distorsion". A. E. H. Love [1] proposed instead the term "dis
location" which will be used here. 

Note the following important property of dislocations, stated by 
V. Volterra. If the cuts akbk are to shift and change their shape, but 
in such a way that the points ak and bk remain on the contours Lk and Lm+l 

respectively and that the cuts never intersect each other, the quantities 
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Sk, cx~, ~~, determined by (45.3), obviously remain unchanged. In other 
words, these quantities do not alter from one system of cuts to another, 
as long as the latter are topologically equivalent. 

It has been seen that, under the requirement of single-valuedness of 
the displacements, the stresses inside a body are completely determined 
by the external loads. This requirement is equivalent to the conditions 

ek==C(~=~~=O (k== 1, ... ,m). 

It is easily shown that the stresses will likewise be fully determined by 
given external loads and arbitrarily prescribed (small) quantities Sk, 

C(~, ~~; in fact, the "difference" between two solutions (if there exist two 
of them) obviously gives a solution for which there are no external 
stresses and for which 

i.e., for which the displacements are single-valued. But under these 
conditions the stresses are known to be zero everywhere 4 The quantities 
Sk, cx~, ~~, of which there are 3 m, will be called characteristics of dis
locations (they are the "caracteristiques de la distorsion" of V. Volterra). 

NOTE 1. There arises the question: Why is there no possibility of 
dislocations in a simply connected body? For example, a sector may be 
cut from a circular disc in order to bring into contact and join free edges; 
thus, of course, stresses will arise in the disc and apparently the same case 
will occur as for multiply connected bodies. But the difference here is 
that in this case the stresses will not satisfy the conditions of continuity, 
stated in § 29, because it has been seen that for a simply connected body 
the displacements cannot be multi-valued, provided the conditions of 
continuity are fulfilled. 

2. A similar answer must be given to the question as to why one had 
to restrict consideration to dislocations, caused by removal (or addition) 
of strips with congruent sides and joined in a definite manner. 

§ 46. Thermal stresses. There is a remarkable relation between the 
dislocations considered above and the stresses caused in a body by a 
non-uniform temperature distribution; this will now be explained. But 
first it is necessary to become acquainted with the law expressing the 
effect of non-uniform temperatures in an elastic body_ The equations of 
the theory of elasticity, hitherto used, refer to the case when the temper
ature is the same throughout the body. On the basis of a law, enunciated 
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by J. M. C. Duhamel and F. Neumann (cf. A. E. H. Love [1J, Chap. III), 
the following relations hold in the case of non-uniform heating between 
the components of strain and stress: 

ou ov 
Xx = -vT + AO + 2(J. ox' Y v = -vT + 1..6 + 2[J. Oy' 

ow 
Zz = -vT + Ae + 2[.L-, oz (46.1 ) 

( OW OV) (OU ow) (OV au) 
y z = [J. 3y + oz ' z x = [J. oz + 3~' X 11 = [J. ox + oy ; 

here T denotes the temperature at a given point, taking as ltzero" of the 
temperature scale the temperature of the body in its "natural" state; 
v is some positive constant depending on a property of the material of 
the body. (This law is only strictly applicable for not too large temper
ature variations, because the coefficients A, (J., v change with the 
temperature and these changes cannot otherwise be disregarded.) 
The equations (46.1) replace, for the present, the generalized Hooke's 
law and they only differ from those, expressing the latter, by the terms 
- vT on the right-hand sides of the first three formulae. 

The components of stress must, of course, satisfy the same equations 
(18.1), since in their deduction no assumption regarding the temperature 
distribution had to be made. 

Consider now the case of plane strain of a cylindrical body, studied in 
§ 2S (w = 0, U, v independent of z), and assume that T does not depend 
on the coordinate z. Likewise let there be no body forces present. Then 

Y z == Xz == 0, 

3Xx oXy oY:c oYll -+ ==0, ~+-=O, ax oy ax oy (46.2) 

ou ov 
X x = - 'J T + A6 + 2~ ox' y 11 == ~ v T + 1..6 + 2[J. oy' 

(
3V OU) ou OV 

X 11 = [J. ox + oy , e = ax + oy' 

(46.3) 

and 

Z" = A6 -'JT, (46.4) 
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or, noting that by (46.3) 
a _ Xx + Yll vT 

X M + Y'll = - 2'VT + 2(A + n)6, v - + , 
w r 2(A + [J-) A + f.L 

zz=- "':fl. T+ 2(A~fl.) (X",+Y,,). ( 46.4') 

Let it now be assumed that one is dealing with a steady state of heat flow, 
so that the temperature T depends only on x, y and not on the time. Then 
it is known that 

~T = 0, (46.5) 

i.e., T is a harmonic function of x and y. Denote by F(z) the function of 
the complex variable z = x + iy (there being no danger of a confusion 
with the coordinate z), having as a real part T(x, y), and put 

u*(x, y) + iv*(x, y) = f F(z) dz. (46.6) 

Obviously, 

ou* ov* 
-- =--= T, ox oy 

ou* ov* 
Ty=-~. (46.7) 

Further, let 
vu* vv* 

u = u' + 2(1. + fl.)' v = v' + 2(1. + fl.) , (46.8) 

where u', v' are two new functions. Substituting from (46.8) into (46.3) 
and using (46.7), it is easily verified that 

ou' , ov' ( OV' au' ) 
X", = ",6' + 2fl. ax' YlI = ",6' + 2fl.-oy ' X" = fl. ox + Ty , (46.9) 

where 
au' av' 

6' = ox + oy' 

Thus it is seen that the functions X x' Y 1" X 11' u', v' satisfy the well known 
equations at the plane theory ot elasticity, as it the body were uniformly 
heated (in fact, as if T = 0), where u', v' play now the parts of the dis
placements. (This property was stated in the Author's paper [IJ and in a 
somewhat changed form in his paper [2J; a short study of the results 
has likewise been given in a section of his paper [3J. A long time after
wards, H. Poritsky [IJ published similar results). 
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Thus, the problem of the study of stresses in a given cylindrical body, 
caused by a steady flow of heat, in the case of plane strain is reduced to the 
ordinary problem (i.e., f~r T == 0) for a body ot the same shape with the 
same external stresses acting on its sides. This latter problem (concerned 
with X x' Y 'V' X Y' u', v') will be called the auxiliary problem. The fact 
that the stresses X x, Y Y' X'JI are the same in the original and in the auxiliary 
problems is very remarkable. 

First, consider the case of a simply connected body. Suppose that no 
exterl1al forces are acting on its side surfaces. Then the auxiliary problem 
is known to have only the following solution (omitting rigid body dis
placements) : 

Xx == Yll = Xy = 0, u' == v' == 0. 

Thus, in a simply connected cylinder, steady heat flow (which depends only 
on x and y) does not cause stresses Xx, Y y, Xv' The displacements will be 
given by the formulae, obtained from (46.8), 

vu* vv* 
u== v=---

2(A + l-L) , 2(A + I-L) , 
(46.10) 

where u*, v* are determined by (46.6), using the temperature T(x, y). 
It must not be imagined that there are no stresses whatsoever present. 
In fact, the component Zz will, in general, be different from zero and be 
siven by (46.4') (where one has now to put X ~ == y 11 == 0): 

VI-L 
Zz=- T(x,y). 

A+l-L 
(46. I 1) 

It is seen that this direct stress Zz must be applied to the faces of the 
~ylinder as a necessary condition for the maintenance of plane strain. 

If it is desired to find the solution when the faces are free from stress, 
one may, in the case of a long cylinder, resort to the following method 
(cf. § 25). The stresses applied, say, to the "upper" face, which are given 
by (46.11), are statically equivalent to a force, directed parallel to the 
generators of the cylinder, and a couple, the moment of which is parallel 
to the face; in an application, one may, for example, place the force at 
the centroid of the face. Similarly, the stresses acting on the "lower" 
end may be replaced by a force and couple, opposite to the former. Next, 
superimpose on the solution obtained above that of the problem of a 
cylinder, subject to tension and bending by forces and couples opposite 
to those above. (It will be shown in Part VII that the solution of this 
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problem for any (long) cylinder may be obtained by quite elementary 
means.) This will give an (approximate) solution of the problem. Actually, 
the stresses applied to the faces will now be statically equivalent to 
zero. Thus, by Saint-Venant's Principle (§ 23), they maybe assumed to be, 
in general, non-existent (provided the dimensions of the faces are small 
compared with the length of the cylinder). Only near the ends, the solution 
will differ appreciably from the exact one. It may still be added that, as 
will be seen in Part VII, the components X x' Y 11' X'Y will be zero for the 
above-mentioned problem of tension and flexure of a cylinder. Thus, 
one will have in the final solution, as before, X x = 1'''"11 = X 11 = 0 and 
only Zz =f. o. 

When the dimensions of the ends are not small compared with the 
height of the cylinder, one has to look for a more exact solution which 
does not only take account of the resultant forces and moments, applied 
to the ends, but also of the actual stress distribution there. 

N ow the case of multiply connected regions of the type studied in the 
preceding section will be considered. In this case the function F(z) 
the real part of which is the (single-valued) function T(x, y) may be multi
valued. In fact, reasoning in the same way as for the function <I>(z) in 
§ 35, it is seen that 

m 
F(z) = ~ Bk log (z - Zk) + a holomorphic function, (46.12) 

k=l 

where Bk (k = 1, ... , m) are real constants and Zk are arbitrary fixed 
points inside the contours Lk • Further [cf. the deduction of (35.3)J 

u* + iv* = f F(z)dz = zk~lBk log (z - Zk) +k~l((J..i; + i~i;) log (Z-Zk) + 
+ a holomorphic function, (46.13) 

where aZ, ~Z are certain real constants. (The constants B k, at, ~: will be 
known, if the temperature T(x, y) is given at each point.) For an (anti
clockwise) circuit of a contour, surro~nding Lb this expression undergoes 
an increase (cf. the notation of § 45) 

u*+ - u*- + i(v*+ - v*-) = 21ti(zBk + ct.; + i~~). (46.14) 

Let it be assumed that the body under consideration is not subject to 
dislocations, i.e., that the displacements of the original problem (u, v) are 
single-valued. Then, by (46.8), 

v 
0= (u'+-'lt'-) + i(v'+-v'-) + {(u*+-u*-) + i(v*+-v*-)} 

2(A + fJ.) , 
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and hence, using (46.14), 

(u'+-u'_) +i(v'+-v'-) =- 7ttv (BkZ +aZ +i~k). (46.15) 
A+~ 

This formula proves that the displacements u', v' of the" auxiliary pro
blem" are the same as if the body (which is at uniform temperature) were 
subject to dislocations with the characteristics [cf. (45.2)J 

(46.16) 
o 7tV * 

IX.k = J.. + !l. (3k' 

Thus, the auxiliary problem is reduced to the determination of the 
elastic equilibrium for a uniform temperature (T == 0) and for given 
characteristics of dislocations. 

If there are no external stresses acting on the side surface, the stresses 
Xx, Y lI , Xy (in the auxiliary as well as in the original problem) are the 
same, as if the body were subject to given dislocations in the absence of external 
loading and for uniform temperature. 

If the sides of the cylinder are loaded in an arbitrary manner, the 
solution of the ordinary problem of the plane theory of elasticity for 
given external stresses applied to the boundary must be superimposed. 
As regards stresses applied to the ends, all that has been said with regard 
to the case of simply connected regions remains in force with the only 
exception that the stress Z z will not be given by (46.11), but by the general 
formula (46.4'), because now Xx + Yll will, generally speaking, be dif
ferent from zero. 



CHAPTER 7 

TRANSFORMATION OF THE BASIC FORMULAE FOR 

CONFORMAL MAPPING 

§ 47. Conformal transformation. In this section the simplest 
properties of conformal transformations will be recalled, without proofs 

being given. An elementary study of the theory of conformal transfor
mation may be found in V. I. Smirnov [lJ, Vol. III, and in S. A. Ian
chevskii [1 J. More detailed studies of the theoretical problems are given 
in the books by I. I. Privalov [lJ and A. I. Markushevich [lJ. The 
recently published book of M. A. Lavrent'ev and B. B. Shabat [lJ should 
also be recommended. 

Let z and ~ be two complex variables such that z = cu(~), (47.1) 
where (i)(~) is a single-valued analytic function in some region ~ in the 
~ plane. The equation (47.1) relates every point ~ of ~ to some definite 
point z in the z plane. These latter points will cover in the z plane some 
region S. Conversely, let it be assumed that each point z of S, by (47.1), 
corresponds to some definite point of ~. It will then be said that (47.1) 
determines an invertible single-valued conformal transformation or con
formal mapping of the region 5 into the region ~ (or conversely). (In the 
sequel, when speaking of conformal transformations, they will always 
be assumed to be reversible and single-valued.) 

The transformation is called conformal, because of the following 
property which is characteristic for relations of the form (47.1), where 
(i)(~) is a holomorphic function: If in ~ two linear elements be taken which 
extend from some point ~ and form between them an angle ct., the cor
responding elements in 5 will form the same angle ct. and the sense of the 
angle will be maintained. 

Unless stated otherwise, regions, considered in the sequel, will always 
be assumed to be bounded by one or several simple contours, as was 
stated in § 37. The regions ~ and 5 may be finite or infinite (and, in 
particular, one of them may be finite, while the other is infinite). If, for 
exaulple, the region ~ is finite and 5 is infinite, the function (U(~) must 
become infinite at some point of L (as otherwise there would not be some 

176 
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point of 2; corresponding to the point at infinity in 5). It is easily 
proved that <0(') must have a simple pole at that point, i.e., assuming 
for simplicity that z === 00 corresponds to ~ === 0, then 

w(~) = ~ + a holomorphic function, (47.2) 

where c is a constant and no other singularities can occur in ~; otherwise 
the transformation would not be reversible and single-valued. If ~ and S 
are both infinite and the points at infinity correspond to each other, the 
function cu(~) must for the same reason have the form 

(i)(~) == R~ + a holomorphic function, (47.2') 

where R is a constant. It will be remembered that a function, holo
morphic in an infinite region, is understood to be one which is holomor
phic in any finite part of this region and which for sufficiently large I c: I 
may be represented by a series of the form 

Further, it may be shown that the derivative w'(~) cannot become zero 
in ~; otherwise the transformation would not be reversible and single
valued. 

N ext there arises the following question: If two arbitrary regions 
~ and S be given, is it always possible to find a function (tJ(~) such 
that (47.1) gives a transformation of S into 2: (and vice versa)? 
This problem has been solved in recent times with extremely wide 
generality. Here only some general remarks will be made. First of all, 
it is obviously impossible to obtain a (reversible and single-valued) 
transformation of a simply connected region into a multiply connected 
one. 

Consider now the case when the two regions are simply connected and 
bounded by simple contours. Then a relation of the form (47.1), mapping 
the one region on to the other, can always be found and the function will 
be continuous up to the contours. In addition, the function cu(~) may 
always be chosen so that an arbitrarily given point ~o of ~ corresponds to 
an arbitrarily given point Zo of 5 and that the directions of arbitrarily 
chosen linear elements, passing through ~o and Zo, correspond. These 
supplementary conditions will fully determine the function (tJ(~). 

For simplicity, suppose that ~ is the unit circle with its centre at the 
origin. Denote the circumference of the circle by y, so that one has on y 
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I ~ I = 1. Since the transformation is to be continuous up to the contours, 
the function w(~) will be continuous on y from the left (taking the anti
clockwise direction as positive); let its boundary values be denoted by 
w(O'), where (j = ei~ is a point of y. 

In the sequel, the behaviour of the derivative w'(~) near and on y 
will be of interest; in particular, the question has to be considered whether 
(r.)f(~) vanishes at any point of the contour. This problem is resolved by 
the following proposition. For the sake of simplicity it has here been 
formulated for less general conditions than in the paper by V. I. Smir
nov [2J; the same remark applies to the subsequent proposition regarding 
the second derivative. 

If the coordinates of the points of the contour of 5 have continuous 
derivatives up to the second order along the arc (i.e., if the curvature of the 
contour changes continuously), the function (U'(~) is continuous up to 
y and, denoting its boundary values by (U'(cr), 

in addition, 

<0'(0") = d<o(O") . 
de; 

(47.3) 

cu'(O') "* 0 everywhere on y (47.4) 

(it being already known that w'(~) =F 0 inside y). Further, if the coordi
nates of the points of the contour of 5 have also continuous derivatives up 
to the third order, the second derivative w"(~) will be continuous on y 
from the left and its' boundary value w"(O') is given by 

<0"(0") = d<o'(O"). 
da 

(47.3') 

In the sequel, unless stated otherwise, it will be assumed that one is dealing 
with contoHrs satisfying these ·conditions. 

Note also that, once the region S has been mapped on to the unit circle, 
it can always be transformed into the infinite plane with a circular hole. 
For this purpose it is sufficient to make the substitution 

1 
~=~; 

in fact, when ~ covers the region I ~ I < 1, ~l covers the infinite region 
with a circular hole I ~1 I > 1, and hence, considering z as a function of 
~1' one obtains the required transformation. In the sequel, finite simply 
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connected regions will almost always be mapped on to the circle I ~ I < 1, 
and infinite simply connected regions on to the region ! ~ ! > 1. In both 
cases one could limit oneself to transformations into the circle ! ~ j < 1, 
but the stated convention is somewhat more convenient in practical 
a pplica tions. 

Next, a few remarks will be made with respect to multiply connected 
regions. Obviously only regions of equal connectivity may be mapped 
on to each other. For example, a doubly connected region S (Le., a region, 
bounded by two contours, because regions of more general shape will not 
be considered here) may always be mapped on to a circular ring. But, in 
contrast to the case of simply connected regions, this ring may not be 
chosen quite arbitrarily. The ratio of the radii of the inner and outer 
circles will depend on the shape of S. 

Two simple theorems will now be stated which are very useful in 
practice: 

I. Let 2; be a finite or infinite (connected) region in the ~ plane, bounded 
by a simple contour y (no other assumptions being required with respect 
to the contour), and let w(~) be a function, holomorphic in L (including 
the point at infinity, if the region is infinite) and contin~{,ous up to the 
contour . Further, let the points, defined by z == w (~), describe in the z plane 
(moving always in one and the same direction) some simple contour L, 
when ~ describes y (where it is assumed that different points of y correspond 
to different points of L). Then z == w(~) gives the conformal transformation 
of the region 5, contained inside L, on the region ~ (and vice versa) (cf. 
W. F. Osgood [IJ p. 377 where a completely elementary proof is given, 
assuming the contours y and L to consist of a finite number of smooth 
arcs) . 

This theorem may be generalized to the case of multiply connected 
regions in the following manner: (The proof of the generalized theorem 
differs little from that given for the preceding one by Osgood). 

II. Let ~ be a finite or infinite (connected) region, bounded by several 
simple contours Yl' Y2' ... , Yk (having no points in common)_ Let w(~) be 
a function, holomorphic in ~ and continuous up to the boundary, and let the 
point z, defined by z == (t)(~), describe in the z plane the simple contours 
L 1, L 2, ••• , L k (not having common points), bounding some (connected) 
region S, when ~ describes the contours Yl' ... , Yk- For this purpose it has 
been assumed that, when ~ describes the boundary of ~ in the positive direction 
(i.e., leaving ~ all the time on the left), the corresponding point z describes the 
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boundary ot 5 likewise in the positive direction. Under these conditions 
Z = (J)(~) represents the conformal trans/ormation of 5 on to ~ (and vice 
versa). 

These theorems are easily generalized in different directions (e.g., for 
the case, when the boundaries contain arcs), but this will not be done here. 

NOTE. It is easily seen that, if ::2: and S are conformally transformed 
into one another by a relation of the form (47.1), the point z will move in 
the positive direction along the boundary of S, when ~ describes the 
boundary of ~ in the positive direction. This condition has not been in
troduced into the formulation of Theorem I, since it is not required in the 
proof; the conditions, included there, are already sufficient to prove the 
theorem. Thus, the direction in which S is described will without fail 
be as stated above. But for the formulation of Theorem II this condition 
is necessary; otherwise the theorem may be found to be untrue. 

The statement, referring to the directions in which the contours are described, may 
be proved in the following manner. Let v be the normal to the boundary of :2:, 
directed inward, and 't' the tangent in the positive direction of the boundary;then 
'J will be pointing to the left of 't'. The same relation will exist between the corres
ponding directions of nand t at points of the boundary of S, in view of the fact that 
conformal transformation does not only preserve the magnitudes of angles, but also 
their sense. Here it has been assumed that the transformation is conformal up to 
the boundary, but the above stated property is also easily proved for the general 
case. 

§ 48. Simple examples of conformal mapping. 
10. B iIi n ear fun c t ion. Consider the case, when z is a bilinear 

function of ~ 

z== 
a~ + b 
c~ + d' 

(48.1 ) 

where a, b, c, d are constants (in general, complex) and ad - be =F 0 
(the latter condition having been introduced to exclude the case, when 
the right-hand side of (48.1) does not depend on ~). Solving (48.1) for~, one 
obtains the, likewise bilinear, inverse transformation 

-dz+ b 
~= . cz-a 

(48.1) 

Thus every point of the ~ plane corresponds to a definite point of the 
z plane and vice versa. The point at infinity has not been excluded. In 
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d a 
fact, the point ~ == - - corresponds to the point z == 00, and z == -

c c 
to ~ = 00. Hence (48.1) gives an invertible, single-valued relation between 
the unbounded planes of z and ~. (It may be shown that the function 
(48.1) is the only one having the stated property.) 

The bilinear transformation has the remarkable property that it preserves 
circles, i.e., that it relates any circle in the ~ plane to a circle in the z plane 
and vice versa. For this purpose straight lines are to be considered par
ticular cases of circles. This is most simply proved in the following way. 
The equation of any circle in the z plane is known to be of the form 

A(x2 + y2) + Ex + Cy + D == 0, (a) 

where A, B, C, D are real constants (the case A == ° corresponding to 

. h l' ) S· z +z z-z 2 .~ - h' . stralg t Illes. Ince x == 2 ,Y == 2i' x + y'" = ZZ, t IS equatIon 

may be written 
Azz + Mz + Mz + D = 0, (b) 

where A and D are real and M, M are conjugate complex constants. 
It is easily verified that, conversely, an equation of the preceding type 
may always be reduced to the form (a). In order to obtain now the 
equations of the lines corresponding in the ~ plane to the circles in the z 
plane, it is sufficient to substitute in (b) from (48.1). After some simpli
fications, one finds 

Ao~~ + Mo~ + Mo~ + Do == 0, 

\vhere A o, Do are real, Mo, Mo are conjugate complex constants. Hence 
one has again obtained the equation of circles, as was to be proved. 

One of the simplest particular cases of (48.1) is 

R2 R2 
Z ="T' ~ = ---;- , (48.2) 

where R is a· real constant; let it be assumed that R > 0. In order to give 
a clear description of this transformation, the concept of the reflection 
of a point in a circle will be recalled. Let r be the circle with radius Rand 
with the origin as centre. Let z be some point in its plane. Construct 
another point z', related to z in the following manner: 

zz' = R2. (48.3) 

If z = rei&-, then obviously z' = r'ei &-, where r = I z I and r' = I z' I are 
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the distances of z and z' from 0 which are connected by the relation 

rr' = R2. ( 48.3') 

Thus, the points z and z' are located on the same ray through 0 and their 
distances from that point are related by (48.3'). The point z', related to 

the point z in the above manner, is 
called the reflection of z in r. Clearly 
z is in the same sense the reflection 
of z'. The transformation (48.3), re
lating z and z', is also called an in
version. The points z and z' are also 
called coniugate points with respect 
to the circle r. When one of the 

--I------""!::-t'---t----+---~X~ points is given, the other is easily 
constructed by the use of a compass 
and ruler: If, for example, z be given 
outside r, it is sufficient for the 
construction of z' to draw the tangent 

Fig. 20. from z to r and from there the per
pendicular to the ray Oz (Fig. 20). 

Obviously, for an inversion, the points of r correspond to themselves 
and the point z = 00 corresponds to z' == 0; points outside r go over into 
points inside, and vice versa. 

Now consider the transformation (48.2). Imagine that the ~ plane is 
placed on top of the z plane in such a way that the origins and axes 
of their coordinate systems coincide. The point ~, corresponding to the 
point z = rei~, will then be given by 

~ = r'e-i~ = z'. 
Hence the point ~ may be found in the following manner: Reflect the 
point z in the circle r and reflect its image, thus obtained, in the real 
axis; the latter image will be the point ~ (Fig. 20). 

Next, another bilinear transformation of the form 

~ 
Z==--

l-a~' 
~ == z 

1 + az 
(48.4) 

will be studied, where a is a real positive constant. The points ~ = 0 
and ~ = lla correspond to the points z = 0 and z == 00; the point ~ = 00 

corresponds to the point z = - l/a. Thus straight lines, passing through 
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~ = 0 in the ~ plane, will correspond to circles, passing through the points 

O(z = 0) and O'(z = - l/a) 

y 

Fig. 21a. 

in the z plane (Fig.s 21a, 21b). Further, concentric circles with the centre 
at ~ = 0 will correspond to circles 
in the z plane which are orthogonal 
to the circles, passing through the 
points z = 0 and z === - l/a (as a 
consequence of the fact that the 
transformation is conformal) ; the 
centres of these circles obviously 
lie on the axis Ox. 

Draw about the origin of the 
~ plane the circle y with radius 
p. The points 

~ = +? and ~:::.~ - ? 

will correspond in the z plane to 
the points 

b' = p 
l-ap' 

Fig. 21b. 

b" = - ? < 0 
1 + ap 

(48.5) 
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on the Ox axis. Thus the abscissa c of the centre of the circle L, correspond
ing in the z plane to the circle y, and its radius are given by 

2 
C = .l(b' + b") == ap 

2 1 _ a2p2' 
r == !(b' - b") == p ; (48.6) 

1 - a2p2 

let it be assumed that r < 0, if the point b' lies to the left of the point b". 
If p < Ija, then b' > 0 and r > o. When P -+ Ija, rand c increase beyond 
all bounds and L becomes in the limit the straight line perpendicular to 
the axis Ox and passing through the point K with abscissa - 1/2a. If 
p > 1 j a, the corresponding circle in the z plane lies on the other side of 
this straight line. 

Consider now two circles Ll and L2 in the z plane, corresponding to 
two circles Yl and Y2 with radii PI and P2 in the ~ plane, and let PI < P2 < 
< Ija. Then, obviously, the transformation (48.4) gives the conformal 
mapping of the region, contained between the two eccentric circles L1 
and L 2, on the ring, bounded by Y1 and 12. Provided the elements, deter
mining the first region, be given, Le., the radii 

rv Y2 (r2 > r1) 

of the circles L 1, L2 and the distance l between their centres (l < r 2 - r 1), 

then it is easy to determine the quantity a, appearing in (48.4), and the 
radii PI' P2 of the circles 1'1' Y2. In fact, these quantities are given by the 
formulae 

P1 P2 
Y1 = 2 0)' r 2 == 2 Q' 

1 - a Pi I - a P2 

from which one obtains 

VI + 4ria2
- 1 

2r1a2 

ap2 2 

vI + 4r~a2 - 1. 

2r2a
2 

(48.8) 

The quantities a, PI' P2 are easily constructed by the use of a compass and ruler. 
It is obvious that the points z ==: 0 and z = - Ija are simultaneously conjugate 
,vith respect to the two circles Ll and L 2, and this property allows the immediate 
construction of the above points. 

By the same method, the infinite region, consisting of the points 
outside two given circles Ll and L3 (Fig. 21a), may be mapped on the ring 



CHAP. 7 TRANSFORMATION OF THE BASIC FORMULAE 185 

bounded by the two concentric circles ")'1 and ")'a with radii PI and Pa. 
In this case P3 > 1/ a. 

2° . Pas c a I's 1 i m a <; 0 n 

Let 

Putting 
. ,... i& 

Z === X + zy, s = pe , 

one finds 

whence 

(48.9) 

x = R(p cos.& + mp2 cos 2&), y = R(p sin & + mp2 sin 2&). (48.10) 

When the point t: describes the unit circle ")', the point (x, y) describes in 
the z plane the curve L the parametric representation of which is 

x == R(cos.& + m cos 2&), y = R(sin.& + m sin 2-&). (48.11) 

This curve is called Pascal's limayon and it is a particular case of the 
epitrochoids studied later on. If, as has been assumed, 

o < m < i, 

this curve does not intersect itself and, while .& varies from 0 to 21t, the 
point z traces it out in one and the same direction. Thus, by what has been 
stated at the end of the preceding section, (48.9) gives the conformal 
transformation of the region inside Pascal's lima<;on on to the unit circle. 

For m = 0, the lima<;on of Pascal becomes a circle and, for m = i, 
a cardioid. In the latter case, the curve has a cusp at the point, corres
ponding to <: == - 1, since W'(~) == 0 there. (The fact that (U'(~) becomes 
zero on ")' does not contradict the statements of § 47, since in the case of 
the cardioid the boundary has a cusp.) 

Circles with radii p < 1 in the ~ plane also correspond to lima<;ons of Pascal 
the parametric representation of which is obtained by putting in (48.10) 

P = const. 

The radii of the circles y in the t: plane are transformed into curves in 
the z plane, their parametric representation being found by putting 

.& = const. 
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in (48.10) (p will now be the parameter, 0 < P < 1); these curves are 
easily verified to be parabolas. In fig. 22a are shown 

Fig. 22a. Fig. 22b. 

the curves, corresponding to the circles p == canst. and the rays {} = canst. 
of Fig. 22b. These curves are, of course, orthogonal. 

3°. Epitrochoids. 

Let 
1 

z = (U(~) == R(~ + m~n), R > 0, 0 < m < -, 
n 

(48.12) 

where n is an integer larger than unity. Putting, as before, Z == x + iy 
and ~ === pei &, one finds 

x = R(p cos.& + mpn cos n'&), y == R(p sin.& + mpn sin n.&). (48.13) 

The circle I ~ I == p == 1 corresponds in the z plane to the curve L with the 
parametric representation 

x == R(cos'& + m cos n&), y == R(sin.& + m sin n.&). (48.14) 

These curves are epitrochoids. In fact, if a circle of radius r1 rolls (in the z 
plane) on the outside of a circle with radius r2, then a point M, lying 
at a fixed distance l from the centre of the moving circle and travelling 
with it, describes the curve 

x == (rl + r 2) cos.& + l cos n&, y = r1 + r 2 sin.& + l sin n&, (48.14') 
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where .a- denotes the polar angle of the point of' contact of the circles and 
n === (r1 + r2)/r1. Putting 

R n-l 
r 2 === R , l=mR , 

n 

one finds that the curve (48.14') agrees with the curve (48.14). Since, by 
assumption, m < l/n, one has 
1 < fl. Hence, the point M lies 
inside the rolling circle and the 
curve does not intersect itself. 
In the limiting case m === lin 
the point M lies on the 
circumference of the rolling 
circle and the curve becomes 
an epicycloid having n - 1 
cusps. Fig: 23 shows the case 
n === 11m = 4. On the basis of 
the theorem, stated in § 47, it 
is concluded that (48.12) maps 
the region inside the curve L 
on the region I ~ I < 1. The 
circles fJ == const. of the ~ plane 
correspond in the z plane to 

,0= , 

Fig. 23. 

epitrochoids the parametric representation of which is given by (48.13). 

4°. H Y pot roc hoi d s. 
Let 

z = w(~) = R (<: + ~ ), 1 
R> 0, 0 < m < -, 

n 
(48.15) 

where n is a positive integer. In this case the curve L corresponding to 
I ~ I === 1 is easily seen to be an hypotrochoid which does not intersect 
itself. It is described by the point M of a circle of radius f1' rolling on the 
inside of a circle with radius r 2; if l is the distance of M from the centre of 
the moving circle, then 

R 
r 1 ===-, 

n 

n+l 
r2 = R ,l == mR. 

n 

It is easily seen that (48.~5) maps the outside of L in the z plane on to 
the region I ~ I > 1. Circles I ~ I = p = canst. > 1 in the ~ plane also 
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correspond to hypotrochoids. in the z plane. If n == 1, the contour L will 
be an ellipse; this case will be considered in detail later on. For m == lin, 
the curve L becomes an hypocycloid with n + 1 cusps. 

When n == 11m = 2 or n == 11m == 3, the corresponding contours 
have three or four cusps respectively, and they resemble in shape a triangle 
or square. Circles with radii p > 1 in the ~ plane correspond in the z 
plane to hypotrochoids which likewise for p near 1 resemble triangles or 
squares with rounded corners. In Figs. 24 and 25 the cases n = 11m == 2 
and n == 11m = 3 are illustrated. 

1 
n=-=2 

m 

Fig. 24. 

1 
n==-=3 

m 

Fig. 25. 

If in (48.15) ~ is replaced by 1 /~, one obtains the transformation of the 
region outside the hypotrochoids on the unit circle; in this case 

z = 6)(~) = R ( + + m~ .. ) . 

so. E 11 i P tic r 1 n g s. 
Let 

z = w(~) = R (~+ 7), R > 0, m?:. 0, 

i.e., in the above notation, 

x = R (p + ;) cos.&, y = R (p - : ) sin .&. 

(48.15') 

(48.16) 

(48.17) 

Circles with radii PI correspond to ellipses in the z plane, their parametric 
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representation being 

x = R (PI + :) cos &, y = R (PI - :) sin &. 

If pi > m, then the semi-axes of the ellipses will be 

al=R(Pl+ :), bl=R(Pl-:) (48.18) 

and the point z describes an ellipse in the z plane in an anti-clockwise 
direction, as the point ~ moves around the circle with radius PI in the ~ 
plane, likewise in an anti-clockwise direction. 

Thus, if one selects in the ~ plane two circles Y1' Y2 with radii PI' P2' 
and if P2 > Pl > \I'm, then, by the theorem of § 47, (48.17) maps the region 
between the ellipses Ll and L21 corresponding 
to these circles, on the ring between them. 
The ellipses will be confocal, since by (48.18) 
the distance c of the foci of the ellipse Ll 
from the origin is given by c2 == ai - bi == 
= 4mR2, i.e., it is independent of PI" Circles ...................... 
with radii P (P1 < P < P2) will become ellipses, 
lying between Ll and L2 and confocal with the 
latter. The rays .& == const. in the ~ plane will 
correspond to confocal hyperbolas, having the 
same foci as the ellipses. These ellipses and F' 26 19. . 
hyperbolas are, of course, orthogonal. 

If one lets P2 tend to infinity, one obtains in the z plane the infinite 
region consisting of the points outside the ellipse L 1 ; this region is trans
formed into the ~ plane with the circular opening Y1. In this case, the 
circle P1 == 1 will always be used, and hence one will have m < 1. For 
m = 1, the ellipse becomes a straight slit. For m = 0, one obtains a circle. 

If one replaces in (48.16) ~ by 1 /~, i.e., if one puts 

Z = 6>(<:) = R (i- + m<:), R > 0, ° < m < 1, (48.16') 

one obtains the transformation of the plane with an elliptic hole into 
the unit circle ! ~! < 1. 

6. As has just been stated, the function 

Zl = Xl + iYl = 6>1(<:) = R (i- + m<:), R > 0, ° < m < 1 (48.19) 
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transforms the infinite Zl plane with an elliptic hole into the circle 
I ~ I < 1. The equation of the boundary of the opening will be 

x2 y2 
R2(1 + m)2 + R2(1 _ m)2 = 1. (48.20) 

Let 
1 

Z=-, 
Zl 

(48.21) 

then, by (48.19), 

(48.22) 

which maps the finite region bounded by the lemniscate of Booth on the 

Fig. 27. 

unit circle. When m is almost equal to unity, this 
region differs little from that produced by two 
contacting circles of equal radius. Fig. 27 shows 
the curve corresponding to m = 0.8. 

If one replaces the transformation (48.21) by 

1 
Z-C=--, 

Zl-C 

where the point c is outside the ellipse (48.20), 
then one is easily seen to obtain the transfor
mation of some region, which for m = 1 becomes 
the infinite plane cut along the arc of a circle, 
into the circle I ~! < 1. (In fact, for m == 1, the 
ellipse becomes a straight slit, and hence it is 
transformed into the arc of a circle, because 
the bilinear transformation, of which the above 
is a special case, maps straight lines into circles). 

§ 49. Curvilinear coordinates, connected with conformal trans
formations into circular regions. In the sequel, use will be made of 
conformal mapping of a given region 5 in the Z plane on the region ~ of 
the ~ plane, where the latter will either be a circle, a circular ring or the 
infinite plane with a circular hole; the origin ~ = 0 will always be chosen 
as centre. In all these cases it is natural to introduce polar coordinates 
? and .& in the ~ plane by putting ~ == pei~. Circles p == canst. and radii 
3- = const. of the ~ plane will correspond to certain curves in the z plane 
which will be denoted by p == const. and ,& == const. 
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If S is a finite region bounded by one contour L and ~ the unit 
circle with centre at ~ === 0, it can always be assumed that the points 
Z == ° and ~ == 0 correspond to each other. Then the curves p == canst in 
the z plane will be simple contours, surrounding z == 0, while the curves 
f} === const. will pass through this point and end at the contour L which 
will correspond to p == 1. 

If S is an infinite region bounded by a simple contour L and I; the in
finite plane with a circular hole, and if the points ~ == (X) and z == 00 

correspond to each other (and it is known that this can al\vays be arranged), 
the curves p == canst. will be contours surrounding L and the curves 
.& == canst. will start on L and go to infinity. Similar circumstances will 
prevail when the infinite region 5 is mapped on the circle I ~ I < 1. 
Likewise it is easy to understand the distribution of the curves p == const. 
and .& == canst. in the case of a region 5, bounded by two contours and 
mapped on the circular ring ~. 

The quantities p and .& may be considered as curvilinear coordinates of 
the point (x, y) of the z plane. They are related to x, y by the equation 

x + iy == (t}(~) == (t}(pei &); (49.1) 

the lines p == canst. and .& == canst. will be the coordinate lines which, 
as a consequence of the conformal property of the transformation, will 
be orthogonaL 

Let there be given some point of y ( 'If) 
the z plane and draw through it the 
relevant lines 

p = canst. and .& == canst. 

Let (p) denote the tangent to the 
line .& = canst, drawn to the side 
of increasing p. Let (&) be the tangent 
to the line p == const, drawn to the 0 X 
side of increasing &. These tangents 
will be called the axes of the curvi- Fig. 28. 

linear coordinates at the point (p, &). 
The system of axes (p), (&) in the stated order is oriented as the system 
of axes Ox, Oy, i.e., moving in the positive direction of the axis (p), the 
axis (&) is directed to the left. This follows already from the fact that 
a conformal transformation preserves the orientation of directions. 

-i)oo 

Let A be some vector in the z plane, starting from the point z = <u(pei &) 
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(Fig. 28). The projections of this vector on the axes Ox, Oy will be denoted 
by A~, A lI , and on the axes (p), (&) by A p' A~. Obviously 

(49.2) 

where ex is the angle between the axes (p) and Ox, measured from the latter 
anti-clockwise. If the point z be given a displacement dz in the tangential 
direction (p), the corresponding point ~ will undergo a displacement d~ 
in the radial direction. Hence 

dz = eirJ. I dz I, d~ = ei~ I d~ [, 
whence 

dz (r)' (~) d~ _ ei & CJ.)' (~) _ I (U , (~) 

I dz I - I (U' (~) I· I d~ I - I (U' (~) ! - p I (U' (~) I ' 
_ (49.3) 

• '0. (i)' (~) ~ (i)' (~) 
e-1.Ct = e-1.'fT 

I co' (~) I = P I ())' (~) 1 . 

Hence, by (49.2), 

A 'A ~ ())'(~) (A 'A ) 
p + ~ .& = P I 6)'(~) I x + t 'Y. 

(49.4) 

§ 50. Transformation of the formulae of the plane theory of 
elasticity. In the sequel, expressions will be required for the quantities 

au aU. f h·· h A'" f .) h d' I ox' Oy (I.e., or t e denvatIves of t e lry unctIon, t e lSP acements 

and the stresses in terms of the new variable ~, defined by 

z = <o(~). (50.1 ) 

Denote by 

the functions which were earlier written as 

cp(z), 9(Z), <I>(z),. 'Y(z) 

and introduce the new notation 

cP (~) = CPl (z) = CPl (<o(~)), 9 (~) = ~1 (z) = ~l (<0 (~)), (50.2) 

<I>(~) = <I> (z) = drpl = rp' (~) 'Y(Q = 'Y (z) = 1);' (~). (50.3) 
1 dz w'(~) , 1 w'(~) 
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With this notation, the formulae (31.4) and (32.1) become 

:U + i :~ = (jl(~) + ~ (jl'(~) + tj;(~), (50.4) 
vX uy cu' (~) 

and 

2l-.l(ti + £v) == xqJ(~) - ~ (jl'(~) - ~(~), (50.5) 
(0' (~) 

respectively. The components vp ' va- of the displacements in terms of 
the curvilinear coordinates are, by (49.4), 

v + £v == ~ (O/(~) (u + iv) , 
p & P I (0' (~) I 

(50.6) 

and hence 

~ -{ (O(~) - -} 2(1.! (O'(~) !. (vp + -iv&) == - (O'(~) x.qJ(~) - __ cp'(~).- ~(~) . (50.7) 
p (0' (~) 

Next, the components of stress will be found in the curvilinear coordi----nate systems. Denote these components by pp, &&, pit so that, if the system 
O'x'y' is placed in such a way that the axes O'x' and O'y' coincide with 
(p) and (&) respectively, one has 

- , ---.. I - , 

pp==Xx" &&=Yy " pit=Xy ' 

(cf. § 39). Then, by (8.8), 

--.... - - - -pp + && == Xx + Y v , && - pp + 2i p& == (Yy-XX + 2iXv)e2iiJ.. (50.8) 

By (32.9), (32.10) and (49.3), the last giving 

2iiJ. ~2 ( c.o ' (~) ) 2 ~2 ( (0 , (~) ) 2 ~2 CJ.) , (~) 
e ==- ==- =--_.-

p2 I (U'(~) 12 p2 (tj'(~)w'(~) p2 (tj'(~) , 

one easily finds 
..--... -
pp + && == 4m<l>(~) == 2[<l>(~) + <P(~)J , (50.9) 

-- _ 2~2_ 
&& - pp + 2i p& = ----==.- { W (~) cI>' (~) + c.u I (~) '¥ (~)} . 
. p2W'(~) 

(50.10) 

Subtracting (50.10) from (50.9), one obtains 

............ ..--... _ ~2_ 

pp -i p& = <P(~) + <P(~) - -=:.:::::- {w(~)<I>'(~) + (O'(~)'Y(~)}, (50.11) 
p2W'(~) 
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giving the stresses acting on the contour p = canst. from the side where 
p increases. The formulae (50.7), (50.9) - (50.11) are analogous to those 
given by G. V. Kolosov [1, 2J. 

Finally, a formula will be deduced which relates to the case when an in
finite region S is mapped on an infinite region L, so that the points ~ == 00, 

z = co correspond to each other. Then for large I z I, by (36.4) and (36.5), 

X+iY 
CPl(Z) == - ( ) log z + rz + q>~(z) , 

2n: 1 + x 

Ijil(Z) = x(X - i~) log z + r'z + Iji~(z), 
27t(1 + x 

(50.12) 

where qJ~(z), ~~(z) are functions holomorphic at z::=:- 00. Further, for 
sufficiently large I ~ I and I z I [cf. (47.2')J, 

C1 C2 
Z = Cl) (~) = R~ + Co + T + ~ + ... (50.13) 

Hence, by (50.12), 

X+iY 
~(~) === - 27t(I + x) log~ + Rr~+ ([)o(~), (50.14) 

x(X-iY) 
Iji(~) = 27t(I +x) log ~ + Rr'~ + ljio(~), (50.15) 

where qJo(~), ~o(~) are functions, holomorphic for ~ == 00. 

§ 51. Boundary conditions in the image regions. First consider 
the case when the (finite or infinite) region S is bounded by one simple 
contour L. Map this region on the unit circle or on the infinite region out
side this circle (there being really no difference, but, generally speaking, 
it will be more convenient in practical problems to map finite and infinite 
regions on similar types of regions). 

The boundary condition of the first fundamental problem, i.e., when the 
external stresses acting on the boundary are given, may be expressed 
in two ways. Firstly, by starting from (41.5), which becomes in the new 
notation 

~~ + i °o~ = ([)l(Z) + Z([)~(z) + h(z) = 11 + i/2 + const. on L. 

Introducing ~ by the relation z = (t)(~) and denoting by (j = ei~ points 
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of the circle y, corresponding to the contour L, this condition takes the 
form [cf. (50.4)J 

W(O") - -
cp(cr) + __ cp'(cr) + tf;(0') = 11 + i/2 + canst. on y. (51.1) 

U>'(O") 

The expression 11 + if2 on the right-hand side of this formula must, 
of course, be understood now as a given function of the point (j = eif) 

of the circle Y Of, what is the same thing, as a function of the arc & 
of this circle. The function 11 + i/2 is determined on y in the following 
manner. 

By (41.3), the expression 
t 

11 + i/2 = i J (Xn + iYn)ds (51.2) 

to 

is a given function of the point t on L. However, since one has between 
the points t and (J on Land y respectively the single-valued invertible 
relationship t == w(O'), the quantity 11 + if2 is a definite function of the 
point cr; thus, this function may be assumed to be known. 

The boundary condition of the first fundament~l problem can also be 
expressed in terms of the functions <I> and '¥, if one makes use of (SO. 11 ) 
which gives (for p = 1) 

__ 0'2 _ - -

<1>(0") + <1>(0") - -- {w(O') <I>'(cr) + W'(O')"o/(O")} == pp- i p& on y, (S 1.3) 
w'(O') 

,,--.... --.. 
where pp and -&& must be understood as known functions of the point (J 

Of, what is the same thing, of the arc -& of the contour y. 
The boundary condition of the second fundamental pfoblem may be 

written, using (50.5), 

w(cr) - -
xcp(cr) - --====- cp'(cr) - ~(cr) = 2(J.(gl + ig2) on y, (51.4) 

u)' (0") 

where gv g2 are the boundary values of the displacement components 
u and v (referred to the old coordinate axes Ox, Oy), which are given 
functions of 0' or of the arc -& of the circle y. 

An analogous procedure may be used in the case of a dO~tbly connected 
region, bounded by two simple contours Ll and L 2, after mapping it on 
a circular ring (cf. § 41). 



PART III 

SOLUTION OF SEVERAL PROBLEMS OF THE PLANE THEOR'l 

OF ELASTICITY BY MEANS OF POWER SERIES 

Several simple boundary value problems of the plane theory of elasticity 
will be solved by use of power series. This method of solution is directly 
applicable to regions bounded by one or two concentric circles. However, 
conformal transformation permits extension of the method to regions 
of more general shape. 



CHAPTER 8 

ON FOURIER SERIES 

§ 52. On Fourier series in complex form. In the subsequent 
sections use will be made of the expansion of given functions in Fourier 
series and it will be more convenient to represent them in complex form; 
some remarks will now be made about this. 

Let f(&) be a real function, given in an interval 0 < -& < 27t. Under 
well-known, very general conditions, such a function may be represented 
in the form of a Fourier series 

where 

o 

00 

f(&) = lcxo + ~ (CXk cos k& + ~k sin k&), 
k=l 

o 

(52.1 ) 

In order that the function j(fJ-) may be developed in a Fourier series, it is suf
ficient, for example, that it satisfy in the interval (0,27t) under consideration the 
so-called Dirichlet condition which consists of the following: The function 
is continuous in the interval, with the possible exclusion of a finite number 
of first order discontinuities, and has a finite number of maxima and minima. 
A discontinuity of first order is such that, if &0 be the point of discontinuity and 
if the argument & tends to .&0 from the left or from the right, the function f(f}) 
tends to (different) finite limits (Ulimit from the left" or Hlimit from the right") 
which are usually denoted by f(!i}o - 0) and f(!i}o + 0). The Dirichlet condition 
further assumes that, when .a. approaches the ends ° and 2rc of the interval, the 
function t(fJ-) tends to definite limits which are denoted by t( + 0) and t(2rc - 0). 

If the Dirichlet condition is satisfied, the Fourier series (52.1) converges at all 
points of the interval (0,2rc). However, at points of discontinuity, it does not give 
the value t(fto), but 

t(~o - 0) + f(fJ-o + 0) 
2 

at the ends ° and 27t of the interval the series gives 

j (+ 0) + j (27t - 0) 

2 

199 
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If t(~) does not only satisfy the Dirichlet condition, but is also continuous 
throughout the interval 0 ::;: .& < 21t', and if further 1(0) = 1(2rc), the Fourier series 
gives the values of t(.&) in the whole interval, including the ends; in this case the 
series converges uniformly. 

Finally note that functions, satisfying the Dirichlet condition, are particular 
cases of so-called Hfunctions with bounded variation". All that has been said here 
and later on will remain true, if the Dirichlet condition is replaced by the less strict 
requirement that the functions are of bounded variation. 

Substituting in (52.1) the known expreSSions 

eik& + e-ik& 
cos kS. == , 

2 

eik& _ e-ik& 

sin k& == -----
2i 

one finds the expansion 

(X 00 {ex - ifJ. ex + if.J. k } f(&) = ~ + ~ k t'k eik& + k 2 t' e-ik& 

2 k=l 2 

which, with 

gIves 
co 

f(&) = ao + ~ (akeik& + a_ke-ik&). 
k=l 

This formula may, obviously, be written 

+00 
f(&) = 'Z ak eik&, 

-0::) 

(52.1') 

(52.2') 

(52.3) 

(52.4) 

where summation extends over all integers from - 00 to + 00. 

In order to deduce expressions for the coefficients ak, note that 

. 

2n 

{
ein.& dS- = {O , ~f n is an integer, 

2rc, If n = O . 
o 

n ::j= 0, 
(52.5) 

Multiplying both sides of (52.4) by e-in&, where n is any integer or zero, 
and integrating with respect to S- from 0 to 2rc, one obtains 

2n 2n f e-in& f(&)M} k!!k f ei(k-n)& M}. 

o 0 
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But, by (52.5), the only non-zero term on the right-hand side is obtained 
for k = n and it is equal to 27ta n • Hence 

(52.6) 

o 

The result (52.6) holds also true when the function t(&) is an ordinary 
Fourier series. In order to verify this, it is sufficient to note that (52.6) 
may be obtained indirectly by replacing in (52.2') a k and ~k by their 
expressions (52.2). 

Consider now an expression of the form 11(&) + i/2(&), where /1 and 
12 are real functions which may be represented in the interval (0,27t) 
by ordinary Fourier series, and hence by series of the form (52.4). Adding 
these series, after multiplying the second one by i, one obviously obtains 
a series expansion of the form 

+00 
/1(%) + i/2(it) = ~ akeik

&, (52.7) 
where -00 

21t 

an = _1 /(/1 + i/2)e-in& d&, (n = 0, ± 1, ± 2, ... ). (52.8) 
27t 

o 

The only difference from the preceding cases is that there the quantities 
an, a_n are conjugate complex numbers, as follows from (52.2') or 
(52.6), whereas here an and a_n will not, generally speaking, be conjugate. 

NOTE. Separating real and imaginary parts, one may, conversely, 
find from (52.7) the common Fourier series for the functions 11(&) 
and 12(&)' In fact, putting ak = (l..k + i~k (where ak, ~k are real), one finds 

+00 
11 + i/2 == 2: (ak + i~k) (cos k& + i sin k&) == 

-00 

+00 +00 
== ~ (ak cos kit - ~k sin k&) + i ~ (~k cos k& + (l..k sin k&) = 

-00 -00 

00 

== (1..0 + 2: {(<Xk + eLk) cos k& - (~k - ~-k) sin k&} + 
k=l 

00 

+ i~o + i ~ {(~k + ~-k) cos k& + (ak - (X_k) sin k&}. 
1:=1 
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Hence 

where 
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00 

11(&) == iAo + ~ (Ak cos k& + Bk sin k&), 
k=l 

00 

12(&) == lA~ + ~ (A~ cos k& + B~ sin k&), 
k=l 

lAo == ~o' Ak == tXk + OC_k' Bk == - ~k + ~-k' 

§53 

tA~ == ~o, A~ == ~k + ~-k' B~ = tXk - tX_k (k == 1, 2, 3, ... ). 

Incidentally, it follows from the foregoing that the expansion of the form 
(52.7) is unique, because this is known to be true for ordinary Fourier 
serles. 

§ 53. On the convergence of Fourier series. If a function. 1(3-) 
is continuous and has in the interval 0 -< .& < 21t continuous derivatives 
of order up to and including 'J - 1, and if, further, the derivative of order 
v satisfies the Dirichlet condition in that interval, the coefficients tXk, ~k 

of the Fourier series (52.1) satisfy inequalities of the form 

C C 
I C( k I < k v + 1 ' I ~ k I < k v + 1 (k == 1, 2, · · .), (53. 1 ) 

where C is a positive constant. 

The above statement that a function is continuous in 0 ~ .& ~ 21t will be 
understood to mean that the function is not only continuous in this interval, but 
also that its values at the end 0/ the interval are equal to each other. The inequalities 
(53.1) will also be true, if one assumes that the vth derivative is of bounded 
variation. 

It follows from (53.1) that the coefficients of the complex Fourier series 
(52.7) satisfy inequalities of the form 

C 
lakl<lklV+l (k=±1,±2, ... ), (53.2) 

provided 11(&) and 12(&) satisfy the conditions stated above for j(!J-). 
If v = 1, i.e., in the case, when the function has a first derivative 

satisfying the Dirichlet condition, one will have 

C C 
I elk ! <~, 1 ~k I < ~' 

from which it follows that the Fourier series for j(!J-) will be uniformly 



CHAP. 8 ON FOURIER SERIES 203 

and absolutely convergent. (Uniform convergence actually ensures 
continuity of j(&) and bounded variation, or, in particular, fulfilment 
of the Dirichlet condition.) In fact, one has 

k. 2C I a,ccos & + ~kslnk& I < I (J..k I + I~k I <~; 

thus the terms of the series (52.1) are less in absolute value than the 
terms of the convergent series 

00 2C 00 1 
~- = 2C:l: -, 

k=l k2 k=l k2 

with positive terms, which do not depend on &. 



CHAPTER 9 

SOLUTION FOR REGIONS, BOUNDED BY? A CIRCLE 

§ 54. Solution of the first fundamental problem for the circle. 
Solutions of this problem have been given by many authors. A 

simpler, but less elementary solution is given in § 80. 
Let the origin of coordinates be at the centre of the circle with radius 

R. Let X n, Y n be the known components of the external stresses, acting 
on the circumference L of this circle. They will be assumed to be con
tinuous and single-valued on L and varying with the polar angle .&, 
measured like the arc coordinate s from the positive Ox axis. 

By (41.3), 
s ~ 

11 + i/2 = tJ(Xn + iYn)ds = iR/(Xn + iYn)d.&. (54.1) 

o o 

It is known that for the existence of a regular solution the functions 
/1 and 12 must be continuous and single-valued on L (§ 41, 2°), i.e., one 
must have 

j(Xn + iY n)d& = 0 (54.2) 

o 

(which means that the resultant vector must vanish). Further, the 
condition of zero resultant moment (§ 41) 

j(fldX + t2 dy) = 0 

L 

11ere takes the form 

j(- 11 sin 3- + 12 cos .&)d& = o. 
o 

The conditions (54.2) and (54.3) will be assumed satisfied. 

204 

(54.3) 
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The boundary condition (41.2) may be written (putting canst. == 0) 

cp(z) + zcp'(z) + ~(z) == 11 + i/2 on L, (54.4) 

where the symbol z is used for points inside the region as well as on L. 
The expression il + i/2 may be represented by the series 

+00 
11 + i/2 == ~ Anein& (54.5) 

-00 

the coefficients of which may be calculated by the method of § S2; 
hence these coefficients will be assumed known. 

It is known that the functions cp(z), ~(z) must be holomorphic inside L 
and that, by § 41, one may assume cp(O) == o. Thus cp(z) and ~(z) may be 
developed for I z I < R in power series of the form 

00 

cp(z) == ~ akzk, 
k=l 

00 

tf(z) == ~ a~zk, (54.6) 
k=O 

where in the first series the constant term is absent, because of the con
dition cp(O) = o. Further, one has 

00 

cp'(z) == 2: kakzk-1, 

k=l 

00 

~(z) === 1: a~zk. (54.6') 
k=O 

Assuming these series to converge, not only in the interior, but also 
on L, and substituting them in (54.4), one finds 

00 00 00 

~ aJcZk + z ~ kakzk-l + ~ a~zk == 11 + it2 on L. 
k=l k=l k=O 

But on L: z == Rei&, z == Re-i~. Noting also that 

00 00 00 

z.~ kakz k - 1 == ~ kakRke-(k-2)i~ = alRei~ + ~ (k + 2)ak+2Rk+2e-ki~, 
k=l k=l k=l 

one finds from the preceding formula, using (54.5), 

~ 00 ~ +00 

L akRk eik& + ii1Rei
fi) + ~ (k + 2)iik+2 Rk+2 e-ik& + ~ ii~Rk e-ik~ = L A keik&. 

k=l k=O k=O-oo 

Comparing coefficients of ei~, one obtains 

_ Al 
aiR + aiR = Av i.e., a1 + a1 = If · 

Similarly, one has for ein& (n > 1) 

anRn = An (n > 1). 

(54.7) 

(54.7') 



206 III. SOLUTION BY SERIES § 54 

Finally, e-1:n-& (n > 0) gIves 

(n + 2)an+2Rn+2 + Rna~ == A_n (n > 0). (54.8)· 

The equality (54.7) is only possible, if Al is real, since a
l 
+ a

l 
== 2cx:v 

where (Xl is the real part of a l • Hence, in order that the problem may be 
possible, one must have 

Al == a real quantity. (54.9) 

The meaning of this condition will be explained below. If it is satisfied, 
the real part (Xl of the coefficient a l is given by 

(54.10) 

As was to be expected, the imaginary part of a1 relnains indeterminate, 
because it is the imaginary part of q/(O) which may be fixed arbitrarily 
(§ 41), for example, by putting it equal to zero. 

Further, the coefficients an (n > 1) are given by (54.7') as 

An 
an =- (n> 1), Rn (54.11 ) 

and, finally, one obtains for a~ (n > 0) from (54.8) [replacing all quantities 
by their conjugate complex values] 

, A n A_n An+2 
an == - - (n + 2)an+2R2 == -- - (n + 2) R (n > 0). (54.12) Rn Rn n 

Thus all coefficients of (54.6) have been determined and the problem 
could be considered solved, once it has been proved that the series 
for <p(z) and t.J;(z) actually satisfy the conditions of the problem. This 
question will now be studied, but first the condition (54.9) will be 
explained. One has (§ 52) 

2rc 

21tAI = I (11 + i/2)e--i&d& = 
o 2rr 

= f (/1 COS & + 12 sin %)d% + i / (/2 cos % - 11 sin -&)d&, 

o 0 

i.e., (54.9) leads to (54.3) which expressed that the resultant moment of 
the external forces vanishes. 
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As regards the question posed above with respect to the series for 
cp(z) and ~(z), consideration will be limited to the simple case, when not 
only the functions X nand Y n are continuous, but when also their first 
order derivatives satisfy the Dirichlet condition. (Actually, it is not 
difficult to prove the correctness of the solution for more general con
ditions, but this will not be done here.) It is easily shown that under 
the above conditions the series 

00 00 00 

cp (z) == ~ a kZ k , cp f (z) == ~ ka kZ k-l , ~ (z) == L: a ~z k 

k=l k=l k=l 

are absolutely and uniformly convergent on the circle L, and hence 
also inside L. Thus qJ, ~, cp' will be continuous up to the boundary and 
the solution is regular. 

To prove the convergence of these series on L, consider the series, 
formed by the moduli of the terms of the former when I z I == R, 

~ ! ak IRk, ~ k I ak IRk-I, ~ 1 a~ IRk. (a) 

Since X n, Y n have first order derivatives, satisfying the Dirichlet con
dition, the functions 11 and 12 have derivatives of second order, having 
the same property. Hence, by what has been said in § 53, 

C C 
I Ak 1< ks' I A_k I < ks (k == 1,2, ... ), 

where C is some constant and, by (54.11) and (54.12), 
C C' C'f 

I ak I Rk < ks' k I ak I Rk-l < k2 ' I a~ I Rk < k2' 

where C', C" are some other constants. From this follows immediately 
the convergence of the series (a), and consequently the uniform and 
absolute convergence of the series for cp, cp' and t.l;. 

NOTE. The problem has been solved using the boundary conditions 
in the form (41.2). One could also have used the conditions in the form 
(41.23). This alternative proof will be left to the reader (cf. § 56, where 
an analogous problem is solved by this method). 

§ 55. Solution of the second fundam~ntal problem for the 
circle *). This solution is quite analogous to the preceding one. In fact, 
the condition (41.1) gives 

xcp(z) - z cp' (z) - ~(z) == 2[.L(gl + ig2) on L. 
*) Another solution is given in § 81. 

(55.1) 
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Developing the given expression 2l-L{gl + ig2) into a complex Fourier 
series 

+00 

2tL{gl + ig2) == ~ A keik& (55.2) 
-00 

and substituting the series (54.6) in (55. 1 ), one finds, as before, 
00 00 00 +00 

X L akRkeik&- iilRei& - L {k + 2)iik+2Rk+2e-ik&- ~ a~Rke-ik& = ~ Akeik&, 

k=l k=O k=O-oo 

and hence 
(55.3) 

xanRn = An (n > 1), - (n + 2)iin+2Rn+2 - a~Rn = A_n (n> 0). (55.4) 

All coefficients are determined by these formulae, i.e., in contrast to 
the case of the last section, a l is also completely determined by (55.3), 
as was to be expected, since in the present problem it is impossible to 
fix arbitrarily the imaginary part of cp'(O). In fact, equation (55.3) and 
its conjug3:te equation give 

and hence 

(remembering that always x > 1). 
As in § 54, it is easily proved that these series actually satisfy the 

conditions of the problem, if, for example, gl and g2 have second order 
derivatives satisfying the Dirichlet condition. 

§ 56. Solution of the first fundamental problem for the infinite 
plane with a circular hole *). This problem may be solved by a method 
quite similar to that of § 54. However, as demonstration, use will be made of 
the boundary condition in the form (41.9). Let the origin of coordinates 
be at the centre of the hole of radius R. One has then, in the notation of 
§ 39, --.. --.. 

rr-i r& === N - iT on the circle L, (56.1 ) 

where Nand T (cf. § 41) are the components of the external stresses 

*) This problem will be solved by another method in § 82 for the more general 
case of an elliptic hole. Cf. also § 87a. 
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acting on the circumference of L in the direction of the normal n, outward 
with respect to the body (i.e., directed towards the origin), and of the 
tangent t, directed to the left of the normal n. 

The correctness of (56.1) is easily verified, i.e., the truth of the relations 
-..... --.. 
rr = N, r.& = T. - --.. 

The definitions of rr and r& are given in § 39. It should not be overlooked that the 
--.. --.. 

axes (r) and (&) of § 39 are now in the opposite directions of nand t, while rr and r.& 

refer to stresses, acting on the sides of elements opposite to the direction of n. 

The condition (41.23) may be obtained directly from (39.5) which . 
gIves 

<I>(z) + <I>(z) - e2i~ [z<l>'(z) + 'Y(z)] = N - iT on L. (56.2) 

[In (41.9) one should have e2ia. instead of e2i& , where t:f.. = -& ± 7t is the angle 
between the normal n and the axis Ox. But e2i& == e2ia., since e±2'l'd = 1.J 

Consider now the formulae (36.4), (36.5) and (36.7) and note that in 
the present case the expansions (36.7) hold true in the entire region S, 
i.e., outside the circle L (cf. Note at end of § 36.) Differentiating the above
mentioned formulae, one finds for <1>(z) == cp' (z) and '¥(z) = tV' (z) ex
pansions of the form 

00 00 

<I>(z) == ~ akz-k, 'Y(z) == ~ a~z-k, (56.3) 
k=O k=O 

where the notation for the coefficients is different from that of § 36. 
In particular, the coefficients ao, a~, av a~ in (56.3) have the values 

ao == r = B, a~ == r' == B' + ie', (56.4) 

(remembering that it had been agreed in § 40 to assume C = 0), 

X + iY , x(X - iY) 
a1 = - - , a 1 = · 

2n (1 + x) 27t (1 + x) 
(56.5) 

The formulae (56.5) are not necessary for the solution of the problem. 
One has, of course, only to use the condition of single-valuedness of 
the displacements which in the present case may be expressed as 

(56.6) 

[cf. (35.7), where the quantities Y~ and Yk refer to the contour L k ; but 
here L == Lv Yk = ai' Y~ = a~.J Substituting (56.3) in (56.2) and assuming 
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the series to converge on the circle L, one finds (cfa § 54) 
- I I 

~ 1 + k ake-ik~ + ~ ~ eik& _ a~e2i& _ al_ eifi} _ ~ a k+2_ e-ik& == 
o Rk 0 Rk R 0 Rk+2 

== N - iT on L. (56.7) 

Expand the function N - iT, given on L, in a complex Fourier series 

+00 
N 'T "" A ik& -2 =~ ke (56.8) 

-00 

and compare coefficients of e'ik&, after introducing (56.8) into (56.7). 
Then one obtains from the constant term and from those involving ei

& 

and e2i& respectively 
I 

a2 
2ao- R2 = Ao, (56.9) 

For ein& (n > 3), one finds 

an == A (n > 3), Rn n (56.10) 

while e-in& (n > 1) gives 
, 

1 + n an +2 
Rn an - Rn+2 == A_n (n > 1). (56.11 ) 

From (56.10) one finds 

(n > 3). (56.12) 

Further, it is known that 

r ' r' ao == , ao = , (56.4) 

where r, r' are known quantities, specifying the stress distribution at 
infinity. Hence, by the last of the formulae (56.9), 

(56.13) 

In order to find expressions for a1 and a~, it is necessary to refer to the 
condition (56.6) for single-valuedness of the displacements which in 
combination with the second relation of (56.9) gives 

(56.14) 
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The first formula of (56.9) leads to 

a~ == 2rR2 - AoR2 

and, finally, (56.11) determines all coefficients a~ for n > 3: 

a~ = (n - I)R2an_2 - RnA_n+2 (n > 3). 
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(56.15) 

(56.16) 

Thus the problem of determining the coefficients has been solved. 
It is easily shown by elementary arguments of the type used in § 54 

that, if Nand T have second order derivatives satisfying the Dirichlet 
condition, the series for <I>(z), <1>' (z) and o/(z) will be uniformly and ab
solutely convergent on L (and consequently also outside L); it follows 
from this that they are solutions of the problem. 

NOTE. If one had started from the boundary condition (41.5) instead 
of from (56.2), one would have obtained for rp(z), ~(z) series, for which one 
could have proved by the method of § 54 that they solve the problem, 
provided X nand Y n have first order derivatives satisfying the Dirichlet 
condition. Thus, by applying the boundary condition (41.9) [i.e., con
dition (56.2)J, one has been forced to impose more restrictive conditions 
than would have been necessary with the condition (41.5). However, 
it is easily seen that these additional limitations are not due to the problem, 
but to the elementary method used in proving the correctness of the 
solutions. In fact, it is almost obvious (and this is easily verified directly) 
that, starting from (41.5), one would find for cp(z), y(z) series which 
could have been obtained by differentiating those found above for <I>(z), 
\f(z). But as i?(z), t.J;(z) satisfy the conditions of the problem, obviously 
<I>(z) == ~' (z), '¥(z) = '¥' (z) will also solve the problem. 

§ 56a. Examples. 
10. U n i-d ire c t ion a I ten s ion 0 f a pIa t e, W e a ken e d 

b y a c ire u 1 a rho 1 e. 
Let the edges of the hole be free from external stresses and let at 

infinity 
X(oo) === P y(oc) == X(oo) == 0 

x 'Y Y , 

where p is a constant, (i.e., tension in the direction Ox which is equal to 
p at infinity). Then, as is shown by (36.10) (remembering that, by sup
position, C = 0), 

r' == _:to 
2 

(S6.1a) 
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Further, since on the contour N - iT == 0, one must put in the formulae 
of § 56 Ak == 0 for all k. Under these circumstances (56.12) and (56.16) 
give 

an == 0 (n > 3), a~ == 0 (n > 5). 

Also, from (56.4), (56.14), (56.13), (56.15) and (56.16), 

ao = ~, a~ = - ~, a1 = a~ = 0, a2 = - ~ R2, 

a~ = 1- R2, a3' = 0, .. 2 

and hence, finally, 

p ( 2R2 ) P ( R2 3 R4 ) 
cI>(z) = 4" 1 --;2 , 'Y(z) = - 2 1 ----;;: + Z4 • (56.2a) 

Next determine the corresponding components of stress in polar 
coordinates. By (39.4), putting z = reifi

, 

;; + && = 4~ <I>(z) = p~ (I _ 2;2 e-2iil-) = 

( 
2R2 ) 

= P 1 - T cos 2& , (S6.3a) 

,,-....,,-.... -
&&-rr + 2ir& == 2[z<I>'(z) + '¥{z)Je2i

-& = 

{ 
2R2 -2i.f} 2i& R2 3R4 -2i& } ==p --e -e +----e , r2 r2 r4 

........... ,,-.... 

whence, separating real and imaginary parts and solving for rr, &3--and r&, one finds 

- p ( R2 ) P ( 4R2 3R4 ) rr == - 1 - -- + - 1 - -- + -- cos 2&, 
2 r2 2 r2 r4 

~ p ( R2 ) P ( 3Rt) it& = - 1 + - - - 1 + -- cos 2&, 
2 r2 2 r4 (56.4a) 

-- p ( 2R2 3R4) 
r&=--· 1+----- sin 2&. 

2 r2 r4 , 
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At the internal boundary (i.e., for r == R), as was to be expected, one 
has - -rr == r& == 0, 

-while the value of && there is given by 

-&& == P(1 - 2 cos 2,&) on L. 

-The maximum value of %-& thus occurs for cos 2-& == - 1, 1.e., for 

where -&&rnax == 3P, 

so that the value 0/ the tensile stress is increased. 

This problem ,vas first solved by G. Kirsch (Zeitschrift des Ver. d. lng., 1898) 
in a quite different way. Cf. also the solution by G. V. Kolosov [1J, pp. 20-24. 
The solution for the case of an elliptic hole will be given in § 82a. 

In order to find the displacements, calculate the functions 

cp(z) = f <I> (z)dz, tJ;(z) = f 'Y(z)dz. 

One obtains, omitting unimportant constants, 

p ( 2R2 ) P ( R2 R4 ) 
cp{z) == 4 Z + ~z- , ~(z) == -2 z + -Z--~3 . (56.2' a) 

Then, by (39.3), one has 

2fl(vr + iv&) == e-i&{xcp(z) - zcp'(z) - ~(z)} == 

P { 2R2. 2R2. . 2R2 2R4. } == - (x - l)r + x -- e-2t& + -- e2t& + 2re-2t& + -- _ __ e2l& , 
4 r r r r3 

whence, separating real and imaginary parts, 

Vr = L {(x - 1)r2 + 2R2 + 2[R2{x, + 1) + r2 - R4 Jcos 2.&}, 
8tJ.r r2 

p { R4} v,a. == - --- R2(X - 1) + r2 + - sin 2&. 
4flr r2 
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2°. B i-a x i a I ten s ion. 
The problem of bi-axial tension of a plate with a circular hole is solved 

still more easily; in that case one has at infinity 

By (36.8) 

X(oo) == y(oo) == P xy(OO) == o. x y , 

r = ~, r' = 0, 
2 

and, similarly as before, one finds 

I R2 a2 == P , 

while all other coefficients of the series for ij>(z) , 'F(z) vanish. Hence 

p pR2 
cI>(z) == -, 'Y(z) = -2 (56.Sa) 

2 z 
and 

P pR2 
<p(z) == -z, ~(z) == - --. 

2 z 
(56.5' a) 

The stresses and displacements can be calculated, using, as before" 
the formulae (39.4) and (39.3) which give 

...-.... ( R2) - ( R2)"'-"" 
rr == p 1 - -;2' && == P 1 + ---;2' r% == 0, (56.6a) 

p 
Vr == - [(x - 1)r2 + 2R2], v& == o. 

4t.LY 
(56.6' a) 

This solution could have been obtained directly from the solution of 
problem 10 by superimposing t\VO uni-directional stress distributions 
along the axes Ox and Oy respectively. 

3°. U n i for m nor m a I pre s sur e, a p p lie d tot h e 
e d g e 0 f a c ire u I a rho I e. 

Consider now the case when the edge of the hole is subject to uniform 
normal pressure P and when the stresses vanish at infinity. Then 

N == - P, T == 0, r == r' == o. 
In (56.8) 

(k =F 0); 
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hence, on the basis of the formulae of § 56, one finds that 

a~ == PR2 
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and that all other coefficients of the expansions for <I>(z) and '¥(z) are 
zero. Thus 

and 

PR2 PR2 
<I>(z) == 0, 'Y(z) = T' cp(z) = 0, tf;(z) == - -z- (56.7a) 

-- PR2 
rr=---, r2 

- PR2 
.&&=-

2 ' r 
-r.& = 0, 

(56.7' a) 

4°. A concentrated force, applied at a point of 
the i n fin i t e pIa n e. 

Let the stresses at infinity be zero (r == r' == 0) and the stress, applied 
to the edge of the circular hole, have constant magnitude and direction: 

X y 
X n = 2rcR' Y n == 2nR (56.8a) 

where X, Yare constants. Obviously (X, Y) is the resultant vector 
of the external forces. 

Under these conditions the normal and tangential stresses N, Tare 
given by 

N == - 2~R (X cos 3- + Y sin 3-), T = - 2~R (- X sin & + y cos &), 

whence 

- . ~ N'T 1 ( ".0-rr - ~ rv- = - 1- == - -- X - iY)et on the contour. 
21tR 

Hence only one of the coefficients in (56.8) does not vanish, i.e., 

X-iY 
Al == - 27tR ' 

and, by (56.14) and (56~16) for n == 3, 

a == _ X + iY a' _ x(X - iY) a' = _ R2 .X + iY 
1 21t( 1 + x) , 1 - 21t( 1 + x)' 3 7t( 1 + x) , 

while the remaining an and a~ are zero. 
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Thus the problem is solved by the functions 

<I>(z) == _ X + iY ~, 'Y(z) = x(X - iY) 1 
27t{1 + x) z 21t(l + x) z 

§ 56a 

x + iY R2' 

7t( 1 + x) z3' 

Let it now be assumed that the radius of the hole tends to zero and that 
the stress (X n, Y n) increases beyond all bounds, so that the resultant 
vector (X, Y) remains unchanged. Then the preceding formulae give 

X + iY 1 'Y( x(X - iY) 1 
<J>(z) == - 21t(1 + x) Z' z) = 21t( 1 + x) z· (56.9a) 

Under the stated circumstances it will be said that a concentrated 
force (X, Y) acts at O. The state of stress, caused by a concentrated 
force, is determined by the functions <1>, 'Y of (56.9a). The determination 
of the components of stress and displacement does not offer any dif
ficulties. For example, the stress components in polar coordinates are 
given by 

-- x. + 3 X cos .& + Y sin & 
rr=-

21t(x + 1) r 

-- x - 1 X cos .& + Y sin .& 
.&% == --- ------

21t(x + 1) r 
(56.9' a) 

x. - 1 X sin .& - Y cos & 
r& == ---- ----, 

27t(x + 1) r 

NOTE. When considering thin plates ("generalized plane stress"), 
the constant x in the preceding formulae must be replaced by 

3-(5 
x*==--

l+a 

(cf. § 32), and the quantities X, Y by 

XO yo 

2h' 2h' 

where xo, yo are the components of the concentrated force, applied 
to the plate of thickness 2h. In fact, it must not be forgotten that X 
and Yare distributed over the thickness of the plate. 

S°. Concentrated couple 
Consider now the case, when a constant tangential force T is applied 
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to the edge of the hole. Let the stresses vanish at infinity. Then 

- -rr == 0, r& == T on the contour, 

and only the coefficient Ao = - iT in the series (56.8) will be different 
from zero. 

The formulae of § 56 give 

a~ == - AoR2 = iTR2; 

all other quantities an, a1: vanish. Hence, putting 

M 
TR2 == ---

one has 

<I>(z) == 0, 

27t' ' 

i1'vJ 1 
'¥(z) = --- -, 

27t Z2 
(56. lOa) 

where M obviously denotes the resultant moment about the centre 
of the external forces, applied to the boundary. These formulae remain 
valid also in the limiting case, when R decreases and T increases in such a 
way that M remains constant. Then (56. lOa) leads to what will be called 
the effect of a concentrated couple, with moment M about the origin, 
on the infinite plane. The stress components are easily found to be 

rr == && = 0, - M r& = ---. 
21t'r2 

(56.Ila) 

(Cf. also the Note preceding this example). 

§ 57. On the general problem of concentrated forces. In § 56a, 40
, 

expressions have been found for the functions <P and 0/, corresponding 
to concentrated forces acting at the origin of coordinates on an un
bounded body. Now let the region S be arbitrary in shape and, in addition 
to ordinary forces corresponding to the functions <I> and 0/ holomorphic 
in 5, let a concentrated force (X, Y) be applied to the body, say at the 
point z === o. The effect of this concentrated force may be superimposed 
on that of the ordinary forces, and therefore the functions <I> and 'Y will 
have the form 

x + iY I 
<J>(z) == - 2rc(1 + x) -; + <Po(z), 

x(X-iY) 1 
'Y(z)= ( ) -+'Yo(z) (57.1) 

21t 1 + x. z 

near z = 0 [cf. (56.9a)], where <1>0 and 'Yo are functions holomorphic 
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in the neighbourhood of that point. If the concentrated force is applied 
at some arbitrary point z = zo, instead of at z = 0, then, using Zo as 
origin of an auxiliary coordinate system, (57.1) will take the form 

where Zl == Z - Zoo Reverting to the old system, one finds from (38.3) 
and (38.4) 

X+iY 
<I>(z) == - 2n( 1 + x) 

'P'(z) = x(X - iY) 
2n(1 + x) 

1 

Z-Zo 

zo(X + iY) 1 \T? + TO' 2n(1 + x) (Z_ZO)2 

(57.2) 

The index ° on the symbol indicates that the function is holomorphic 
near the point z == Zoo Integrating one obtains for cp and tJ; 

X+iY 
qI(z) = - log (z - zo) + qlo, 

27t(1 + x) 

x(X - iY) zo(X + iY) 1 
Iji(z) = 21t( 1 + x) log (z - zo) + 21t( 1 + x) z _ Zo + tPo· 

(57.3) 

In an analogous manner one finds for a concentrated couple M, applied 
at z === zo, 

iM 1 
<P(z) == <Do(z), '¥(z) == - 2;- (z _ ZO)2 + 'P' o(z), (57.4) 

and 

iM 1 
(jl(z) = (jlo(Z) , Iji(z) = 2;- (z _ Zo) + ljio(z) (57.5) 

[cf. (56.1 Oa)]. 
It is thus seen that the point of application of a concentrated force 

or couple is an isolated singular point of the functions qJ, tJ;, <1>, 'Y. Con
versely, every isolated singular point Zo == Xo + iyo of these functions 
(if the existence of such points is admitted) may be considered the 
point of application of concentrated forces or moments. In order to 
determine the analytic character of the functions <p and 'f near these 
points, it is sufficient to apply the reasoning of § 35 by surrounding the 
point Zo by a sufficiently small contour Lo and considering this contour 



CHAP. 9 SOLUTION FOR REGIONS, BOUNDED BY A CIRCLE 

as one of the boundaries of S. Then, by § 35, one has near z = Zo 

X+iY 
rp(z) == - -- ) log (z-zo) + ~*(z), 

2n(1 + x 

x(X-iY) 
~(z) = log (z - zo) + ~*(z), 

27t(1 + x) 
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(57.6) 

where ~*, r.¥* are single-valued near zo, X and Yare the components 
of the resultant vector of the external forces, applied to Lo (or to any 
other contour, surrounding zo). 

The' functions <p*, ~*, which are single-valued in the neighbourhood of 
the isolated singular point zo, may be represented by the Laurent series 

+~ +00 
<p* == ~ (cx n + i~n) (z - zo)n, q;* == ~ (cx~ + i~~) (z_zo)n. (57.7) 

-~ 

Simple reasoning, based on (33.3), shows that the resultant moment 
about the origin of the forces, applied to Lo from the inside, is given 
by 

I x(xoY-yoX) I Xo Y-YoX 
Mo == 2n~_1 + == 27t~_1- + xoY -yoX, (57.8) 

l+x l+x 

(provided the contour is infinitely small). Taking into consideration 
that the resultant vector of these forces is (X, Y), one obtains for the 
resultant moment M about the point Zo 

, xoY-yoX 
M = Mo - (xoY - yoX) == 27t~_1 - 1 + x' (57.9) 

Thus, Zo is the point of application of the concentrated force (X, Y) and 
of the concentrated couple with moment M. 

However, it is seen, that the knowledge of X, Y and M does not 
yet determine the singularities of ~ and q;. In fact, the coefficients of 
the negative powers of (z - zo) in (57.7), which characterize the singu
larities of <p and r.¥, are arbitrary (within the limits of convergence), with 
the exception of the imaginary part of the coefficient CX~l + i~~l which 
is determined by (57.9). Thus, the nature of the singularities, caused 
by concentrated forces and couples, remains to a large measure un
decided, unless additional conditions are introduced. It was only possible 
to obtain completely defined expressions for these singularities [cf. 
(57.2)-(57.5)J, because the concentrated forces and couple were intro
duced by means of a definite limiting process. 
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Exactly the same expressions would have been found by a number of 
other limiting processes. One of the simplest examples, which more or 
less accurately reproduces the special conditions of the application of 
"concentrated" forces and couples, will now be stated. Imagine that 
a rigid disc be introduced into a circular hole in an infinite plate, 
and let this disc, which has the same radius as the hole, be joined to the 
plate along its circumference. Further, let some force and couple (in the 
plane of the plate) act on this disc. The solution of the problem of elastic 
equilibrium of plates under these conditions will be given below (cf. § 83a, 
examples 3°. and 4°., where the solution of the more general case of an 
elliptic disc is given). If one now allows the radius of the disc to tend to 
zero, leaving the force and couple unchanged, the above-mentioned 
solution gives in the limit a result which agrees exactly with those 
obtained above. 

In the sequel, when speaking of concentrated forces and couples 
applied to internal points of bodies, it will be assumed that the cor
responding singularities are given by the formulae (57.2)-(57.5). 

NOTE. The above formulae may be applied to the determination of 
particular solutions of the equations of the plane theory of elasticity in 
the presence of body forces, which gives the possibility to reduce these 
equations to the equations for the case when body forces are absent 
(§ 28). For example, one may proceed for this purpose in the following 
manner. Omitting in the formulae (57.2) and (57.3) the terms <Po, 'F 0' 

CPo, ~o' one obtains certain particular solutions (for the case of no body 
forces) which correspond to the effect of a concentrated force (X, Y) 
applied at the point Zo == Xo + iyo. 

The displacement components corresponding to this solution are given 
by 

- x(X + iY) 
2~(u + iv) = log [(z - zo)(z - zo)] + 

21t(1 + x) 

x - iY z - Zo 
+-----~-

27t (1 + x) Z - Zo ' 

(57.10) 

obtained from (31.2) and (57.2). The stress components may be evaluated 
in a similar manner using (32.9), (31.10) and (57.2). 

Choose now instead of X and Y the quantities X(xo, yo)dSo and 
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Y(Xo, yo)dSo, where X(xo, Yo), Y(xo, Yo) are certain (real) functions of 
the point xo, Yo and dSo = dxo dyo is an (infinitesimal) area element 
surrounding this point. In that case one obtains the displacement and 
stress components which correspond (approximately) to the effect of 
body forces [with components X(xo, Yo), Y(xo, Yo)] on the part of the 
body corresponding to the element dSo' Summing these expressions for 
all the elements dSo, one is easily seen to arrive at some particular 
solution correspe>nding to the effect of body forces (X, Y) on the entire 
body under consideration. 

In particular, one finds for the displacement components 

2[J.(u + iv) == - x J J(X + iY) log (z - zo) (2 - zo)dxo dyo + 
27t(1 + x) 

s (57.11) 

1 J J Z - Zo + 27t(J + x) (X - iY) -i---z-
o 

dxo dyo· 
s 

The corresponding stress components can be evaluated either directly 
in an analogous manner or with the help of formulae expressing the 
stress components in terms of the displacements given by (57.11). 

It is readily verified directly that for sufficiently general assumptions 
regarding the functions X(xo, Yo), Y(xo, Yo) one can actually derive a 
certain particular solution of the equations under consideration. 

§ 58. Some cases of equilibrium of infinite plates containing 
circular discs of different material *. By means of a simple modification 
of the formulae of § 56a, a number of problems are easily solved which 
are important from the point of view of application. These problems 
refer to the equilibrium of infinite plates with circular holes into which 
discs of the same or other (likewise isotropic and homogeneous) material 
have been inserted. 

For the solution of some of these problems use will be made of the 
solution of the problem of equilibrium of elastic circular (continuous) 
discs under the influence of uniform normal pressure, applied to their 
edges. This solution was already stated in § 41 a for discs of arbitrary 

* The problems considered here are particular cases of the problems of the 
equilibrium of elastic homogeneous bodies made of different materials, bounded 
by concentric circles. Certain references dealing with these problems will be given 
in § 59a, 3°. 
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shape; in the present case it may, of course, be obtained directly from 
the formulae of § 54, but it is simplest to utilize the fact that the con
ditions of the problem will obviously be fulfilled by putting 

Xx = -P, Yll == -P, Xv == 0 (58.1) 

in the entire disc, where P denotes the magnitude of the constant 
pressure, applied to the edge. 

In fact, for such a stress distribution, the stress on an arbitrarily oriented 
element red\lces to the normal pressure P; this follows immediately from (8.8). 
Thus, in particular, the edge will be subject to the normal pressure P. This will 
likewise remain true in the case of discs of arbitrary shape. 

It is easily verified that the functions <I>(z) , 'Y(Z) , q?(Z) , ~(z), corre
sponding to the state of stress (58. 1 ) , have the form 

p pz 
<I>(z) = - 2' '¥(z) == 0, q?(Z) = - 2' tf(Z) = ° (58.2) 

(omitting unessential arbitrary terms which only effect the rigid body 
displacements). The polar components of stress and displacement follow 
then from (39.4) and (39.3): - --. -rr =,&& = -P, rir == 0, (58.3) 

P(x - l)r 
V.s- == O. (58.3') Vr =-

4fL 

Next, a number of selected problems will be solved. 

1°. Infinite plate with a circular hole into which 
an elastic circular disc \vith an originally larger 
r a diu s has bee n ins e r ted. 

It will be assumed that there is no friction between the disc and the 
plate, so that the interaction of these bodies reduces to normal pressure 
on the edges of the disc and the plate. In view of the complete symmetry, 
this pressure will be constant along the boundaries. Therefore it is 
obvious that the solution of this problem may be constructed from the 
solution of problem 3° of § 56a - for a plate with a hole - and from 
(58.3) and (58.3') - for the disc -~, if one wants to calculate the magnitude 
of the pressure P acting between the plate and the disc. 

Let the radius of the undeformed disc be R + e:, where R is the radius 
of the hole in the plate before deformation (and e: is, of course, assumed 
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to be small, i.e., of the same order as the admissible displacements). 
All terms (elastic constants, components of stress etc.) referring to the 
disc will be marked with an index O. For example, v~ will denote the radial 
displacements of points of the disc, while Vr will refer to those of points 
of the surrounding plate. 

It follows from the conditions of the problem that, after insertion of 
the disc into the hole in the plate, one must have along the common 
boundary of the disc and plate 

Vr - v~ == e. (58.4) 

The radial displacement v~ of a point of the rim of the disc may be considered 
to consist of the radial displacement (- e:), necessary to reduce the radius of the 
disc to R, and of the displacement vrl which it undergoes together with the point of 
the edge of the hole with which it is in contact. Thus v~ = - e: + vr1 whence 
follows (58.4). 

But by (56.7' a) and (58.3') 

PR2 
Vr = , 

2tJ.r 

o P(xo-l)r 
v =- . 

r 4tJ.o 

Putting in these expressIons r = R and substituting them In (58.4), 
one finds 

PR + P(xo - J)R = e:, 

2fL 4[.10 

whence 

(58.5) 

and the problem is solved. (Note that in actual fact one should have 
put r == R + e for the points of the disc, but in view of the magnitude 
of € this is of no importance). 

In the case of an absolutely rigid disc one will have, instead of (58.4), 

and hence, proceeding as before, 
2l-l€ 

P -- R · 

(58.4') 

(58.5') 

The same value of P would have been obtained by putting in (58.S) 
l-lo = 00 and assuming Xo to be finite. 
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In this case (56.7' a) gives for the plate 

.-.. 2f.LRe.-.. 2f.LRe .-.. 
rr == - 2' && == 2' r% == 0, 

r r 

ER 
Vr ==-, 

r 
v.& = O. 

§ 58 

(58.6) 

2°. S t ret chi n g 0 f p-J ate s wit h ins e r ted 0 r a t
t a c h e d rig i d dis c s. 

In § 56a (example 1°), the solution was obtained of the problem of a 
plate with a circular hole of radius R under uni-directional tension. The 
functions <p(z), ~(z), giving the solution of this problem, may be rewritten 

p ( ~R2 ) P ( y R2 aR4 ) <p(z) == -4 z + -z -, ~(z) == - - z + ~ + -, (58.7) 2 z Z3 

where 
~ == 2, Y == 1, S == - 1. (58.8) 

The stresses and displacements, corresponding to these functions <p(z) 
and ~(z), whatever may be the real constants ~, y, a, are easily calculated 
on the basis of (39.4) and (39.3) which give (cf. § 56a) 

;; ===:t [1 _ yR2 + (1 _ 2~R-=-_ 3~R4) cos 2&J ' 
2 r2 r2 r4 

.-.. p [ yR2 ( 30R4) J 
&% == 2 1 + 7 - 1 - r4 cos 2& , (58.9) 

r& = - ~ 1 + --+ sin 2&, 
.-.. P ( ~R2 30R4 ) 

2 r2 r4 

and 

(58.10) 

~v.& = - ~ {~(x - 1)R2 + 2r2 - 2SR4} sin 2&. 
8tJ.r r2 

If the constants ~, y, 0 have the values (58.8), one obtains the earlier 
solutions of the problem of tension of a plate with a circular hole. By 
allotting these constants other (real) values, one may solve some problems 
which are of equal interest. Thus, for example, it is easy to deduce the 
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solution of the problem of the stretching of a plate with a circular opening, 
cut before deformation and filled with a perfectly rigid disc of the same 
radius R. 

First, suppose that the rigid disc is J·oined to the surrounding 
plate along its edge. It may be assumed that the rigid disc is not dis
placed during the stretching of the plate; otherwise it would be sufficient to 
subject the entire system to a rigid displacement, in order to return the 
disc to its original position. Hence the conditions of the problem are 

Vr = 0, v,a. = 0 for r = R. (58.11 ) 

The problem ,viII be solved, if one succeeds in choosing the constants 
~, y, 8, figuring in (58.9) and (58.10), so that (58.11) is satisfied. By (58.10). 
the conditions (58.11) give 

x-I + 2y = 0, (x + 1)~ + 2 + 2a = 0, (x - 1)~ + 2 - 2~ = 0, 

whence one finds 
2 

~=--, 
Ie 

x-I 1 
Y == - , 0 =-, 

2 x 
(58.12) 

or, remembering that x = (A + 3fL)/('A + t-t), 

2(A + fL) ~ ~ == A + l.L • 
~ == -. A + 3[1-' Y = - A + fL -, 0 A + 3fL (58.12') 

(This problem can also be solved for the case when, in addition, ar
bitrarily given forces and couples act on the rigid disc; cf. § 83a). 

Next consider the problem when the disc is not joined to the plate, 
but only inserted into the opening, under the assumption that there 
is no friction between the disc and the surrounding plate. Instead of 
(58.11), one has now the conditions 

..--.. 
Vr ==: 0, r& == 0 for r == R, (58.13) 

since it may no longer be postulated that V.s. == 0 at the edge of the plate, 
because points of the plate there are free to slide on the rim of the disc. 
As in the last example, it is easily verified that (58.13) will be satisfied, if 
one puts in (58.9) and (58.10) 

4 x-I x-I 
~ == - 3)( + l' Y == - 2 0 == - 3>< + 1-' (58.14) 

or 
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However, it must be noted that the first of the conditions (58.13) 
assumes that the material of the plate is in close contact with the disc 
all along the common boundary; if this assumption is modified, the 
problem becomes considerably more difficult *. It is easily verified that for 
the values of ~, y, 0, given by (58.14) and determined under the above -assumption, the normal stress rr becomes positive over certain parts of 
the common boundary, i.e., the disc does not press on the surrounding 
material, but pulls it away. However, this is physically impossible, 
because the disc and the plate are not joined to each other. In order to 
make the problem physically possible, it is sufficient, for example, to 
suppose that the radius of the rigid disc is somewhat larger than was the 
radius of the opening before the stretching of the plate and before the 
disc was inserted. The solution, corresponding to this supposition, is 
obtained by superimposing the preceding solution on that given by 
(58.6). One has, of course, to take € so large that the composite solution has -rr < 0 along the common boundary. 

3°. S t ret chi n g 0 f pIa t e s wit h ins e r ted 0 r a t
t a c h e del a s tic dis c s. The preceding results will now be gen
eralized to the case when the disc, inserted into the opening of the 
plate, is also elastic, but not of the same material as the plate. 

An attempt will be made to satisfy the conditions of the problem, as
suming that in the region occupied by the plate (i.e., for r > R) the 
elastic equilibrium is determined as before by the formulae (58.7), viz., 

p ( ~R2 ) P ( Y R2 OR4 ) q?(z) =- z+~, ~(z) =-- z+-+- , 
4 z 2 Z Z3 

and that the equilibrium in the region, occupied by the disc (i.e., for r< R) 
is governed by 

p ( YoZ3) P q?o(z) == 4 ~oZ + Ji2' ~o(Z) = - 2 0oZ, (58.15) 

where ~, y, ~, ~o, Y01 ~o are real constants, subject to definition. 

This method of solution of the problem displays (outwardly) an artificial character, 
since the form of the solutions has been partially guessed beforehand. One could, 
of course, have eliminated any artificiality by using infinite series instead of 
(58.7) and (58.15). In that case one would have found for the solution of the problem 
that all coefficients of the series, with the exception of those retained above, must 
vanish. This observation also applies to the other problems treated in this section. 

* Such a problem has been considered in a recent paper by M. P. Sheremetjev [IJ. 
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The stresses and displacements, corresponding to the functions cp(z) 
and t¥(z), are given by (58.9) and (58.10). Those corresponding to CPo(z) 
and ~o(z) nlust be calculated from the formulae of § 39 which give 

- p 
rro == 2 [~o + ~o cos 2&J, 

- p [ (6YO 
) ] &&0 = 2 ~o + R2 r 2 -00 cos 2& , (58.16) 

- p (3yO ) • r-&O == 2 R2 r2 - ~o SIn 2&, 

and 

v~ = :r_{~0(Xo-1) + [Yo(X~-:-3) r2+2~oJCOS2&}' 
flo (58.17) 

o _ pr_{ Yo(xo + 3) 2 -2~} ·n 20.. v,a. - R2 r 00 SI v. 
8 fLo 

Let it first be assumed that the disc has been welded into the hole and 
that the radii of the disc and the hole were equal before deformation. 
Then the following boundary conditions must be satisfied: 

.--... .....-... - ..--.. 
rro == rr, r&O == r&, v~ = Vn vg == Va. for r == R. (58.18) 

Substituting in (58.18) the expressions (58.9), (58.10), (58.16) and (58.17), 
one finds the following equations for the determination of ~, Y, ~, ~o' Yo, 
00 : 

~o == 1 - y, ~o == 1 - 2~ - 30, 3yo - 00 == - 1 - ~ - 30, 

~o(xo-I) x-I + 2y 10("0- 3) + 200 (x + 1)~ + 2 + 20 
-

l-Lo fL fLo 

Yo(Xo + 3) - 200 __ (x - I)~ + 2 - 28 

~o 

Solving this system of equations, one obtains 

2(fLo-fL) fL(Xo-1)-fLo(x-l) fLo-fL 
~ == - , Y:::;:= , ~ == ---, 

f.L + f.Lo'X 2fLo + (1.(1<.0 - 1) [.L + fLoX 

_ flo(x + 1) _ 0 0 _ f.Lo(x + 1) 
~o - 2flo + fl(xo - I)' Yo -, 0 - fL + fLox 

(58.19) 
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Consider now the circumstance that, because of the relation Yo = 0, 
the functions C'fIo(z) and ~o(z) characterizing the elastic equilibrium of 
the disc are linear: 

CPo(z) = ~ ~oZ, ~o(z) = - ~ ~oZ; (58.15') 

this means that the disc undergoes homogeneous deformation. In rectan
gular coordinates the stress components will be constant; in fact, it 
is easily verified that 

x~ = p ~o ~ ~o yz = p ~o -; ~o, Xz = O. (58.20) 

In the direction of the Ox axis the disc is subj ect to tension, while in the y 
direction it suffers tension or compression, depending on the sign of ~o -, 80• 

In the limiting case fLo == (X) (perfectly rigid disc), one obtains for 
~, y, 8 the values (58.12); in the limiting case ~o = 0 (no disc), one obtains 
for these constants the values (58.8). Finally, if [1. = ~o' " = "0' one is 
dealing' with a continuous homogeneous plate. In this case (58.19) 
shows that ~ = y == 0 == Yo == 0, ~o == 00 == 1 and that the functions 
rp(z) , tJ;(z) , characterizing the equilibrium of the plate as well as of the 
disc, are given by 

p p 
cp(z) == 4 z, y;(z) = - 2' z, (58.15") 

as had, of course, to be expected. 
Next consider the case when the disc has been inserted into 

the opening in the plate, assuming that the radii of the disc and of the 
hole were the same before deformation and that no friction is present. 
Obviously the boundary conditions have the form 

.....- ..-..- --. 
rrO == rr, r&O = 0, r& = 0, v$ = Vr for r = R. (58.21) 

Substituting in (58.21) from (58.16), (58.17), (58.9) and (58.10), one finds 

~o = 1 - y, ao = 1 - 2~ - 3a, 3yo - 80 = 0, 1 + ~ + 38 = 0, 

~o(xo-l) x-I + 2y yo(xo-3) + 200 ~(x + 1) + 2 + 20 

tLo ~o 

Solving these equations, one obtains 
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l-L(Xo + 3) - 2l-Lo 
~ = 2 , 

(l.(xo + 3) + l-Lo(3x. + 1) 

~ == _ [.L(xo + 3) + [.Lo(x - 1) , 
[.L(xo + 3) + (l.o(3x + 1) 

2fLo(:K + 1) 
------ ----
tJ.{xo + 3) + [.Lo(3x + 1) , 

Yo == 

y== 
(.L(Xo - 1) - t-Lo(x - 1) 

2tLo + fL(xo - 1) 

[.Lo(x + 1) 
~o === , 

2t-Lo + f.L(xo - 1) 

~o = 6(lo(x + 1) 
lJ.{xo + 3) + (.Lo(3x + 1) 

-- --

229 

(58.22) 

As is easily seen, the values of rro and rr will be positive on parts of 
the common boundary, and this is physically impossible. The problem 
can be made physically possible by superimposing on the present solution 
that of problem 1 0 *. 

By putting in (58.22) [.LO === 0 or t-Lo == 00, one finds for ~, y, 0 the values 
(58.8) or (58.14) respectively. 

* The (more complicated) case when the disc may lag behind the surrounding 
material was considered by M. P. Sheremetjev [1]. 



CHAPTER 10 

THE CIRCULAR RING 

§ 59. Solution of the first fundamental problem for the circular 
ring. 

A solution, using definite integrals and differing from the one to be deduced here, 
was published by G. V. Kolosov [5J. S. G. Mikhlin [8J (using power series) solved the 
somewhat more general problem where the ring consists of two concentric rings 
with different elastic constants, under the supposition that they are joined along 
the common boundary. In particular, the inner ring may be a continuous disc. 

Consider the case when the region 5 occupied by the body is a circular 
ring, bounded by two concentric circles Ll and L2 with radii Rl and R2 
(Rl < R2) and centre at the origin. Let the external stresses acting on - -Ll and L2 be given, i.e., the values of rr -i rir on Ll and L2 as functions 
of the angle &. Expanding this expression for Lv as ,veIl as for L 2 , in 
complex Fourier series, one will have 

_ _ +00 

rr - i r& = ~ A ~ e'ik& on L1, 
-00 

(59.1 ) 
_ _ +00 

• Q ~ A" '1
0

k,S- L rr - 1,. r1T = ~ k e on 2' 
-00 

The boundary conditions may then be written (cf. § 56) 

r 
-1-00 

~ A' ik& ~ J,;e 

<I>(z) + <D(z)- e2'i&[z<l>'(z) + 'Y(z)] = ') -00 
+00 

l _:: A~e;k& 
(59.2) 

By (35.2), 
<I> (z) = A log z -1- <1>* (z), 

where A is a real constant and <I>*(z) is holomorphic inside the ring, so 
that it may be represented by a Laurent series. The function '¥(z) is 
holomorphic in the considered region (§ 35) and hence may likewise be 
expanded as a Laurent series. 

230 
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Thus, inside 5, 
+00 +00 

<I>(z) == A log z + ~ a]r;Zk, '¥(z) == L a~zk. (59.3) 
-00 -00 

The requirement of single-valuedness of displacements is expressed by 
(35.7) which, since there is only one internal boundary, becomes 

A = 0, xa_1 + a~l == O. (59.4) 

However, this condition will not yet be imposed, since the more general 
solution has many interesting interpretations. 

It will be remembered that the quantities Yk and Y~ of § 35 \vere the 
coefficients of terms of the form (a log z) in the expansions of the functions 

cp(z) = I <I>(z)dz 
.,' 

and 

4(z) = J 'F(z)dz. 

In the present notation these terms are a_I log z and a~l log z respectively. 

Instead of (59.4), assume for the time being that A is an arbitrarily 
given real constant. Substituting from (59.3) in (59.2), one finds 

+00 
2A log r - A + ~ (1 - k)akrkeikff + 

-00 

r ~oo A '. eik& for r = R , 
+00 +00 k 1 

+ ~ ii yl: e-ik& _ 2: a' rk-2 eik& = J -00 
k k-2 l +00 

-00 -00 I" ik& t !oo Ake for r = R2 0 

(59.2') 

Comparison of terms independent of .& gives 

2A log R 1 - A + 2ao - a~2Ri2 == A~, 
A 1 R A '--2" 2 og 2- + 2ao-a_zR 2 = Ao; 

(59.5) 

here the assumption has been made that ao = ao i.e., that ao is real, which 
can always be done, since any constant imaginary part of <I>(z) has been 
shown not to influence the stress distribution. 

Comparison of terms involving e'ik& for k == ± 1, ± 2, . .. gIves 

(1 - k)akRf + a_7cRik - a~_2Ri-2 == A~, 
(1 - k)akR~ + a_kR;k - a~_2Ri-2 = A~. 

(59.6) 
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Eliminating a~2 from (59.5), one finds 

A~R~ - A~Ri A A(R~ log R2 - Ri log R1) 
a - + 

o - 2(R~ -Ri) 2- R~ -Ri 
(59.7) 

Since ao is real, it follo\\'-s that 

C:' "R2 A'R2 r\j(Ao 2 - 0 1) == o. (59.8) 

[If ao had not been assumed to be real, one would have had on the left

hand side of (59.7) ao + aOinstead of ao and (59.8) would still have 
2 

been valid.] A simple calculation shows that (59.8) expresses that the 
resultant moment of the external stresses must be equal to zero. 

Next the remaining coefficients will be determined. Dividing the 
first equation of (59.6) by R~-2, and the second by R~-2, and subtracting, 
one obtains the first of the following formulae: 

where 

(1 - k) (R~ - Ri)a k + (R'22k+2 
- Ri2k+2)ii_k = B k , 

(R~k+2 - Rik+Z)ak + (1 + k) (R~ - Ri)a- k = B_k' 

B - A"R-k +2 - A 'R-k+2 · k- k 2 k 1 , 

(59.9) 

(59.10) 

the second equation (59.9) is obtained from the first by replacing k 
by - k and by going to the conjugate complex expression. (It will now 
be sufficient to consider (59.9) only for k = 1, 2, 3, ... , since for k = - 1, 
- 2, - 3 one obtains a system of equations which is conjugate to the 
former). 

For any given value of k, the system of two equations (59.9) will de
termine ak and a_k , provided the determinant 

R- 2k+2 R-Zk+2 
2 - 1 

= (1-k2) (R~-Ri)2_(R~k+2_Rik+2) (R22k+2_Ri2k+2) (59.11) 

does not vanish. 
The determinant D vanishes for k = 0, ± 1, and it is easily verified 

that for all other values of k it is different from zero. The value k = 0 
is of no interest. For k = + 1, (59.9) gives 

o = Bv (R~ - Ri)a1 + 2(R~ - Ri)a-1 = B_1• (59.12) 
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For k == - 1, one finds two equations, obtained from (59.12) by 
transition to the conjugate complex values. Thus, for the problem to 
be possible, one must have, in addition to (59.8), 

(59.13) 

A simple calculation shows that this condition gives no new information, 
since it states that the resultant vector of all external forces must 
vanish. 

To verify the earlier statement regarding the values of the determinant (59.11), 
consider 

D = Rt/(~), 
where 

and 

I(~) = (1 - k2) (~- 1)2 + ~k+l + ~-k+l - ~2 + 1. 

It is easily verified that 

I ( 1) = I' ( 1) = til ( 1) = I"' ( 1) = 0, 

IIv(~) = (k + l)k(k - 1)[(k - 2)~k-3 + (k + 2)~-k-3J. 
If I k I >= 2, the last expression is positive for ~ > o. Thus, for; > 1, one will have 

f'"(~) > 0, I"(~) > 0, t'(~) > 0, f(~) > O. q.e.d. 

To show that (59.13) is the condition that the resultant vector of the external 
forces must vanish, consider first points of the outer circle. It is easily verified that 

......-.. .-. ~ .-. 
Xn + iY n = (rr + i r.&) ei '&, Xn-iY n = (rr - i r.& )e-i& on L 2 • 

Denoting by (X", Y") the resultant vector of the external forces, applied to L 2 , 

one has 
2~ 2~ 

X" - iY" = f (X n - iY n)R,.d!;). = R2 f r;;- i ;&)e-i'&d.& =:: 2rcR2A i, 
o 0 

by definition of A~. Similarly, one has for the inner circle 

X'- iY' = - 2rcRIA~. q.e.d. 

When (59.13) is satisfied, the system of equations (59.12) becomes 
possible, although it does not permit calculation of both the coefficients 
a1 and a-I; thus one of them may be chosen arbitrarily, neglecting tor 
the time being the condition of single-valuedness oj displacements. 
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All the other coefficients ak (k == ± 2, ± 3, ... ) are found by solving 
(59.9). For any given k, one determines simultaneously aT:: and a_k. In 
fact, (59.9) gives 

(1 + k) (R~ - Ri) Bk - (R;2k+2 - Ri2k+2)B_k 

(k == ± 2, ± 3, ... ), (59.14) 

and ii_k is obtained from this formula by replacing k by - k and by 
transition to the conjugate complex value. Thus all coefficients ak have 
been determined for k ::j=. 0, ± 1. 

Finally, the coefficients a~ may be found from one of the two formulae 
(59.6), with the exception of a~2 which can be calculated from one of 
the equations (59.5). Since all ab with the exception of aI' a_I' have already 
been determined, all a~, except for a~l and a~3' can be calculated in this 
way. 

Now the condition oj single-valuedness oj displace1nents will be in
troduced, Le., condition (59.4). One then finds, by (59.7), 

AI/R2 A'R2 
a -- 0 2- 0 1 

o - 2(R~ - Ri) · 
(59.7') 

The coefficients a_v a~l are determined by the second equation of (59.4) 
and, for example, by the first equation (59.6) for k == + 1, which gives 

a_l - a~l = A;R1· 

Solving (59.4) and (59.15) for a-I and a~l' one obtains 

A;RI 
a-I == , 

l+x 

, xA~Rl 
a -- · 

-1 - 1 + x ' 

finally, one finds from (59.12) 

B_1 2A~Rl 
a - -------------

I - R~ - Ri (1 + x) (Ri + R~) · 

(59.15) 

(59.16) 

(59.16') 

The formulae (59.16) could have been written down immediately, using 
(35.9). Thus all coefficients in the expansions for '¥ and «t> have been 
found; in particular, a~3 can now be calculated from (59.6), because 
a l and a_I are known. 

Note with regard to the convergence of the above series that the 
series for cI>(z) , cp' (z) and 'Y(z) will obviously be alsolutely and uni-
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formly convergent in the ring (including the boundaries), if the following 
serIes converge: 

00 00 00 

~ ! ak ! R~, ~ k I ak ! R~-l, ~ I a~ I R~, 
k=l k=l k=l 

00 00 00 
(59.17) 

"" I I R-k " k I I R-k -
1 

~ a_k l' ~ a_ k 1 , ~ I a~k I Rik
• 

k=l k=1 k=l 

Convergence of the latter series will be ensured, if it is assumed that - -the quantities rr and r&, given on Ll and L 2 , have second order derivatives 
with respect to &, which satisfy the Dirichlet condition. In fact, the co
efficients A~ and A~ of the series (59.1) will then satisfy inequalities of 
the form (§ 53) 

I C 
I Ak 1< --, 

I k3 I 
/I C 

I A,. I < I k3 1 
(k=± 1, ±2, ... ). 

Hence it is easily concluded on the basis of (59.10), (59.14) and (59.6) 
that the following inequalities will hold true for k = 1, 2, 3 ... : 

k C , k C I I R-k C '-k C I ak I R2 < k3 ' I ak I R2 < k2 ' I a_ k 1 < k3 ' I a_k I Rl < k2 ' 

whence it follows immediately that the series (59. 17) converge. 
The second fundamental problem can be solved in a similar manner. 
If one con1pares the solution deduced here with that obtained by 

application of Airy's function, the advantage of the introduction of 
functions of a complex variable becomes obvious. 

With regard to the above considerations of convergence of the series, it may 
be shown, as in § 56, that, if one uses the boundary conditions in the form (41.5), 
it has to be assumed that X nand Y n have on L1 and L2 first order derivatives, 
satisfying the Dirichlet condition. 

The Airy function is usea in A. Almansi [2J, J. H. Michell [lJ and A. Timpe [1J 
for the solution l among others, of the first fundamental problem. Timpe has the 
same expression for the boundary conditions which is represented by (59.2') 
above, and he deals with it at great length. The coefficients are determined, eight 
at a time, from systems of eight linear equations with eight unknowns. 

§ 59a. Examples. 
1°. Tub e, sub j e c t t 0 U n i for m ext ern a 1 and 

i 11 t ern alp res sur e s. 
Let the internal and external circles be subjected to uniformly dis-- -tributed normal pressures PI and P2' so that rr = -PIon Lv rr = - P2 
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....-
on L2, r-& == 0 on Lv L2• In this case 

A~ == -Pv A~ == -P2· 

All other coefficients A~, A~ vanish. The condition for the existence of 
a solution is obviously satisfied. Formulae (59.7') and (59.5) give 

P2R~ - p1Ri ' (Pl- P2)RiR~ 
ao == - 2(R~ _ Ri)' a_2 == R~ _ Ri (59.1a) 

All the other coefficients ak , a~ are zero. Thus 

<I>(z) == _ P2R~ - P1Ri 'Y(z) = _ (P2 - Pl)Ri R~ 
2(R~ - Ri) , R~ - Ri 

1 
(59.2a) 

The polar components of stress are 

- P2R~ - P1Ri (P2 - Pl)RiR~ 1 
rr = - R2 R2 + R2 _ R2 -;2 , 

2 - 1 2 1 

(59.3a) 

-r&= o. 
This problem was also solved by G. Lame. 

2°. S t res s dis t rib uti 0 n ina r i n g, rot a tin gab 0 u t 
its c e n t r e. 

Let the ring rotate in its plane about 0 with a constant angular velocity 
(0 and let no other external forces act on it. Let the system of axes Oxy 
rotate together with the body and hence be fixed relative to it. Then the 
problem reduces to a static one, the applied forces being centrifugal in 
origin. 

One of the particular solutions of the equations of equilibrium is given 
by the formulae of § 28. The stresses, given by (28.6), are easily found to 
have the following polar components: 

--. 2A + 3ll- --. 2A + tL -
rr == - pw2r2, && == - pw2r2, r& == O. (S9.4a) 

4(A + 2!.L) 4(A + 2tL) 

If one wants to apply this solution to thin plates (§ 26), one has to replace 
A by A*, so that 

2A* + 3tL 
-

4(A* + 2t.t) 
2A* + !.L 

----
4(A* + 2u) 

1 + 30' 
8 

(59.Sa) 
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The stresses (59.4a) do not satisfy the boundary conditions on the 
..-.... -

edges of the plate. In fact, one has there r& = 0, but rr takes constant 
values which will be denoted by PI and P2. 

The solution of the present problem is obtained by superposition of 
the stresses (S9.4a) and (59.3a) for 

(59.6) 

The problem 'is thus solved. In the case of a thin plate, A* replaces A. 
The solution, obtained in that manner, gives only mean values of the 
stresses. For not very thin plates this will not be sufficient. (For more 
complete solutions, cf. A. E. H. Love [IJ § 102). When Rl = 0, one 
finds the solution for the case of a solid rotating disc. 

3°. Certain generalizations. 
From the point of view of engineering applications considerable 

interest attaches to the solution of the more general problem when the 
body under consideration consists of several concentric rings with 
different elastic constants which are either welded together or are in 
contact with each other along the interfaces, where the outer circle 
may be extended to infinity and the internal ring may be reduced to 
a solid disc. 

Such problems can be solved with the help of series in exactly the 
same manner as this has been done in the preceding section. 

The case when the body consists of two concentric rings which are 
welded together was solved by S. G. Mikhlin [8J. More general problems 
of this type were studied in a sequence of recently published papers by 
G. N. Savin, D. V. Vainberg and other authors. A description of large 
sections of this work and a listing of the corresponding literature has 
been given in the monographs by G. N. Savin [8J and D. V. Vainberg 
[IJ, and this makes it possible not to dwell on this work here. 

§ 60. Multi-valued displacements in the case of a circular ring. 
Consider now the general case and study the results, given by the 

formulae of § 59 when one omits ~he conditions of single-valuedness 
of displacements which are expressed by (59.4), viz., 

(60.1 ) 

If" these conditions no longer hold, the boundary conditions (59.2) 
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are not sufficient for the complete determination of <I>(z) and 'Y(z); 
some of the coefficients in the expaIlsions for these functions remain 
indeterminate and a known number of arbitrary constants is retained 
about which more will be said below. By fixing these constants in an 
arbitrary manner, one obtains definite expressions for <I> and '-Y which 
satisfy all the conditions of the problem, except the condition of single
valuedness of displacements. In fact, if one describes a closed path L', 
starting from some point z, passing around the inner circle in an anti
clockwise direction and reacl1ing again z, one finds that the increase in 
u + iv for one circuit of this path is given by 

[u + ivJL' = ~ {(x + l)Az + xa_1 + a~l}; 
f1. 

(60.2) 

this follows from (35.6), using the notation of § 59. 
-It has been seen i:p § 4S that, in spite of the multi-valuedness of 

the displacements, such a solution may be given a definite and very 
simple physical interpretation. 

Firstly, this solution makes sense in the ordinary way, if one does 
not apply it to the complete ring, but to a part of it obtained by re
moving from the ring a strip, bounded by tvvo lines a'b' and a"b" con
necting the inner and outer circles (in Fig. 29 the removed part has been 
shaded). One then has a simply connected body, i.e., a "curved beam", 
bounded by two circular arcs and the lines a'b' and a"b". In this simply 
connected part the functions u, v are single-v"alued. The functions <I> and 
'Y correspond to some definite state of elastic equilibrium of the beam 
for which the external stresses, applied to the circular boundary, have 
known values, i.e., those which appear in the boundary conditions of 

Fig. 29 

§ 59 for the solution of the problem 
of the continuous ring. As regards 
the external stresses, applied to 
the ends a'b' and a"b", they may 
be calculated from the functions 
<I> and '¥ by the help of the previ
ously deduced formulae. The pro
blem of equilibrium of a curved 
beam will be considered in § 61. 

Turn now to the case of the 
continuous ring. It has been seen 
in § 45 that the solution considered 
here, admitting multi-valued dis-
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placements, corresponds to a particular mode of deformation, which is 
called dislocation. This type of deformation will no\v be described in as 
far as it applies to the present problem, and, in parts, this will involve 
repetition of what has been said in § 45. 

Produce a cut ab, joining the inner and the outer circle, and denote 
the sides of this cut by (+) and (-), as indicated in Fig. 29. Then, for 
a circuit along a closed contour L' starting from sonle point (x, y), con
sidered to lie on the side (-), and ending at the same point, but now 
conceived to lie on the side (+), the components of displacement undergo, 
by (60.2), the increases 

u+ - u- == - zy + el, v+ - v- = ex + ~, (60.3) 

where 
nA(l + x) 

e == -----, 
[,L 

(60.4) 

(u+, v+) and (u-, v-) denote the displacements of the point (x, y), con
sidered to lie on the sides (+) and (-) respectively. 

In accord with the statements of § 45, the multi-valuedness of the 
displacements in the present solution may be interpreted by means of 
the hypothesis that before deformation a (small) transverse strip with 
sides a'b', a"b" (see Fig. 29) had been removed from the ring and that 
the free edges had been joined. For this purpose it was assumed that 
before deformation the ends a'b' and a"b" were congruent and disposed 
in such a way that a"b" is obtained from a'b' by a rigid displacement, 
consisting of a rotation e: about the origin and a translation (ex, ~). When 
joining the free edges together, those points which would correspond to 
each other, but for the above-mentioned rigid displacement, must be 
combined. 

Note that, as indicated in § 45, the quantities e, lX, ~ do not depend 
on the shape of the cut ab nor on its location in the ring; in the present 
case this follows immediately from (60.4). Thus, the transverse strip 
which must be cut from the ring before deformation may be taken from 
any part of it; one of its sides, for example a'b', may be given any shape 
and location, and the position of the other side will be determined by the 
quantities 6:, el, ~. 

It should be remembered here that it is only for the sake of convenience 
that reference has been made to "removal" of strips, since in practice 
one has often to "add" material in one part and remove it in another. 
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The quantities €, (/.., ~ represent, in the terminology of § 45, the charac
teristics of the dislocation. According to § 45, knowledge of these quantities 
and of the external stresses, applied to Ll and L 2 , will completely de
termine the deformation of the body under consideration. In the present 
case this fact is verified directly, because it is easily seen that, if those 
quantities are known, all coefficients in the expansions for <l>(z) and 
'¥(z) are determined (except for the imaginary part of ao which is un
important); in fact, these coefficients may be calculated as in § 59, the 
only difference being that (59.4) is to be replaced by the more general 
condition (60.4) for given values of €, tX, ~. 

The coefficients in the expansions of the functions <l>(z) and 'Y(z) 
will now be determined for the particular case, when no external forces 
are present (i.e., N == T = 0 on Ll and L 2). Then all A~ and A; vanish 
and (60.4) gives 

[.L€ - I l1. . 
A = 7t(1 + x)' xa_1 + a-I = 7ti (ot + z~). (60.4') 

Together with the equation a-l - a~1 == 0, obtained from (59.15), the 
second equation of (60.4') leads to 

a - _ !L(ct + i~)i a' _ [L(ot - i~)i (60.5) 
-1 - 1t'( I + x) , -1 - n( I + x) · 

Further, (59.7) gives 

tJ.€ l-L€(R~ log R2 -- Ri log RI ) 

ao == 2n(1 + x) - n(1 + x) (R§ _ Ri) (60.6) 

and, finally, by the second equation of (59.12), by (59.5) and (59.6) 
(for k = 1), one obtains 

_ _ 2l1.(ex - i~)i a' == _ 2[LeRiR~ 10 R2 
al - n(l + x) (Ri + R~)' -2 n(l + x)(R~ - Ri) g Rl' 

, 2l1.(tX + i~)i RiR~ 
(60.7) 

a_ 3 = -. 7t(1 + x) Ri + R~ · 
All remaining coefficients are zero, ~nd hence 

, , I 

a-l lY() a_I a_2 a_3 (60 8) 
<I>(z) = A log z + ao + alz + -, I Z = - + -2 + -3 ' · . z z z z 

where the coefficients have the values stated above. 
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In the particular case, when € = ex = ~ = ° (i.e., when the displace
ments are single-valued), one has <I>(z) == '¥'(z) = 0., as was to be ex
pected, because it is known (§ 40) that, if the displacements are single
valued, no stresses occur in the absence of external forces. 

If external forces are present, the corresponding solution may be 
obtained by superimposing the solution just found on that of § 59 which 
was deduced under the hypothesis of single-valuedness of displacements. 

As has been stated in § 45, the interpretation of multi-valued dis
placements in the case of the circular ring was first given by A. Timpe [lJ, 
who also found formulae equivalent to those deduced here. 

Turning now to the dislocations, corresponding to (60.8), it is noted 
that one may distinguish between the following three simple cases: 

10. € =1= 0, ex = ~ = 0. This dislocation is obtained, for example, 
by cutting from the ring a radial sector with straight edges, forming 
the angle €, and by joining the ends. 

')0. E = O. ex :::/::. 0, B = 0. This dislocation is obtained, for example. 
if one cuts the ring along the positive Ox axis, slides the lower against 
the upper edge by a distance ex and again joins the contacting parts. 
'The same dislocation is obtained, if one removes along the positive 
Oy axis a strip of thickness rx and rejoins the ring by displacing the 
free edges parallel to the Ox axis. In the latter case, when tX > 0, a strip 
must be added. 

3°. € = 0, ex = 0, ~ =J: o. This case follows from the preceding one 
by interchanging the parts played by the axes Ox and Oy. 
, Thus, it will be sufficient to state the formulae referring, for example, 
to the cases 1 ° and 3°. The expressions for the functions <P and '¥ and 
for the polar components of stress will be stated here. They agree with 
those, obtained in a different manner by A. Timpe [lJ; the method used 
here was taken from the Author's paper [IJ. Note, however, that in the 

A + 3tJ. 
following formulae x has been replaced by . 

A+l-l 

1°. (e =J: 0, ex == ~ == 0): 

<I>(z) == €l-l(A + l-l) {~_ R~ log R2 - Ri log Rl } €tJ.(A + l-l) 
27t(A + 2fl) 2 R~ - Ri + 27t(A + 2[L) log z, 

(60.9) 
'I" E[L(A + [L)RiR; Rz I 

(z) == - 7t(A + 2!-L) (R~ - RD log Rl .~' 



242 III. SOLUTION BY SERIES § 61 

- e~(A+ l-L) { 1 RiR~ R2 R~logR2-RilogRl} 
rr = 7t(A + 2[.L) logr + -;'2 · R~ -Ri log Rl - -- R~ - Ri ' 

--- el-L(A + l-L) { 1 Ri R~ R2 
itit== logr--. log-- (60.10) 

rc(A + 2[.1.) r2 R~ -Ri Rl 

_ R~ log R2 -Ri log Rl -L } 
R2 _R2 I 1 , 

2 1 
-r& =0. 

3°. (e == 0, C( == 0, ~ ;:;6 0) : 

<ll(z) == _ ~fL(A + fL) 
21t{:A + 2fL) 

{ 
2z 1 } 

Ri + R5 z' 

In the case of a thin plate (§ 26) A must be replaced by :A*. 

(60.11 ) 

Hitherto it has been assumed that no external loading is present. 
If arbitrary external stresses occur, these solutions have to be combined 
with those of § 59 for single-valued displacements. 

§ 61. Supplement. Ben din g 0 f a cur v e d b e a m b y 
for c e s, a p p lie d tot h e end s, for arb i t r a r y d i s
tribution of external stresses on the curved 
b 0 U n dar i e s. 

Let it be assumed that one is dealing with a part of a ring, bounded by 
two radii. First, let the curved boundaries be free from external loading. 
The solutions, obtained in § 60, satisfy, of course, all equilibrium conditions 
and give zero external stresses on the circular boundaries. The dis
placements will be single-valued in the region considered here. However, 
the stresses, applied to the straight edges (ends) of the beam, will be dif-
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ferent from zero and will depend on the three constants (/.., ~, E. Generally 
speaking, it is impossible to choose these constants, so that one obtains 
at the ends a given external stress distribution. But, as will now be 
shown, one may always arrange that the stresses, applied to one of the ends, 
will be statically equivalent to a given force and couple, i.e., that they 
have a known resultant vector and moment. The forces, applied to the 
other end, will then be statically equivalent to a force and couple, op
posite to tIle former. 

If the length of the beam is large compared with its width, the given 
resultant vector and moment of the forces, applied to an end, may be 
replaced by a fictitious distribution of forces, using Saint-Venant's Princi
ple (§ 23). In the sequel, when speaking of the force a~d couple applied 
to an end of the beam, this will refer to application of external forces 
which are statically equivalent to those given in the problem. For 
example, it may be assumed that one of the ends is clamped; then, due 
to the clamping, reactions will occur which statically balance the force 
and couple applied to the other end. 

Let the part of the ring, to be considered here, correspond to values 
of & in the interval '&1 < & < '&2' Consider first the solution 1 0 of § 60. 
The resultant vector of the forces applied to either of the ends will be -zero. In fact, it is easily seen that, if && is determined from (60.1 d), 

The resultant moment of the forces acting on the end -& == &2 (per unit 
thickness of the beam in the direction perpendicular to the plane Oxy) 
about 0 is given by 

R2 (R2 _R2)2-4R2R2 (log R2)2 
f 2 1 1 2 R ('A + ) 

M = 2.h &:& r dr = h 2 2 1 SfL fL 
2(Rz - R1) • 7t(A + 2l-L) , 

(61.1) 

where 2h is the thickness of the beam in the direction perpendicular to 
the Oxy plane. 

The solution of the problem of flexure of a curved circular beam by 
couples, applied to its ends, is thus obtained by substituting in the 
formulae (60.10) 
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€l-L(A + [.L) 1 4M (R~ - Ri) 

1t(A + 2(1.) = h (R2 R2)2 4R2 R2 (log R2)2 · 
2- 1 - 1 2 R 

1 

(61.2) 

It is easily seen that the denominator on the right-hand side of (61.2) is always 
positive; in fact, let 

(R~ - Ri)2 - 4RiR~ (lOg ~:) 
2 

= Rt/(x), 

where 
R~ 

%=-t >1, /(x) = (x-l)2-x(logx)2. 
R2 

But 

/(1) = 1'(1) = /"(1) = /"'(1) = 0, 

and 
2logx 

j'''(x) = 2 • 
X 

Hence, /'''(x) > 0 for x > 1, whence follows that /"(x) > 0, j'(x) > 0, I(x) > 0 
for x > 1, q.e.d. . 

Next consider the solution 3° of § 60 and assume that the direction 
of the coordinate axis is such that &2 == rc/2. On the end.& = '&2 one has -&& = 0, as is shown by (60.12). Thus the resultant vector of the external 
forces, applied to this end, passes through 0, is parallel to the axis Oy 
and its magnitude (i.e., its projection on the Oy axis) is 

R2 (R2 + R2) logR2 _ R2 + R2 

j _ 1 2 Rl 2 1 ~f.L(A + t-t) 
P = 2h r& dr = 2h R2 R2 · ( 2 ). 

1+ 2 7tA+ (l 
( 61.3) 

RI 

Hence one can solve the problem of bending of a beam by a transverse 
force, applied to the end .& = '&2' by substituting in (60.12) 

~f.L(A + f.L) 1 P(Ri + R~) 
( ) -h R · 

1t A + 2fL 2 (Ri + R~) log R2 -R~ + R~ 
1 

(61.4) 

It is easily verified that the denominator on the right-hand side of (61.4) 
is always positive [cf. remarks following (61.2)J. 

The problem for the case of forces normal to the end of the beam 
may be solved in the same manner. The solution can either be found 
directly, as in the preceding case, or by adapting this solution. In fact, 
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consider the part of the ring included between the radii.& == 0 and.& == 7t/2. 
The preceding solution gives on the end.& == 7t/2 a system of forces, 
statically equivalent to a single force, parallel to Oy and passing through o. 
Consequently, the forces applied to the section .& == 0 will be equal 
in magnitude and opposite in direction to that force, i.e., they will be 
equal to a force, normal to the straight end .& = 0; the line of action of 
this force passes through O. By adding a suitable couple (using the so
lution already found for flexure by a couple), one can always obtain 
a force the line of action of which passes through an arbitrary point. 

The preceding solutions of the problem of bending of curved beams by forces 
and couples applied to the ends (and likewise for other types of loading) were 
found by Kh. Golovin [lJ; Golovin's paper remained unknown outside Russia and 
his solutions were rediscovered independently by several other authors. 

Thus the complete solution has been found for the case when the 
curved sides of the beam are free from external stresses. Now suppose 
that these sides are likewise loaded in an arbitrary manner. The so
lution may then the obtained by the following method. 

Imagine that the beam be extended into a complete ring and impose 
arbitrary loads on the curved boundaries of the added part, in such a 
way, however, that these loads, together with those given for the curved 
sides of the original beam, are statically equivalent to zero; then solve 
the problem for the complete ring by the method of § 59. 

Such a solution will satisfy on that part of the ring, which corresponds to 
the original beam, the known conditions on the curved boundaries. 
There only remains to select the solutions of the present section in such 
a way that one obtains, by their superposition, at the straight ends 
forces which give the known forces and couples (where, of course, the 
latter must be such that they statically balance the forces given on 
the curved boundaries). 

Note that by varying the loads on the curved boundaries of the com
plementary part of the ring, different solutions may be obtained. This 
does not contradict the uniqueness theorem, because only the resultant 
vector and moment, and not the stress distribution at the straight ends 
have been taken into consideration. All the different solutions, mentioned 
above, will correspond to different distributions of the external stresses 
at the ends (which, however, give the same resultant vectors and mo
ments). All these solutions, by Saint-Venant's Principle, will differ little 
from each other in parts of the beam which are not too close to the ends, 
provided the \vidth of the beam is small compared with its length. 
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NOTE. It will be recalled that in the case of plane stress (§ 25) the 
plane faces of the beam, parallel to the plane Oxy, are subject to normal 
stresses which are not arbitrary. 

When the thickness of the beam (in the direction perpendicular to 
the plane Oxy) is small, one can assume that one is dealing with gener
alized plane stress (§ 26) and then these faces are free from external 
loading. However, it must not be forgotten that in this case A must be 
replaced by A * . 

§ 62. Thermal stresses in a hollow circular cylinder. Since the 
problem of dislocations in a circular ring has been solved (§ 60), the 
problem of deformation of a hollow cylinder, the transverse sections of 
which are circular rings and which is placed in a t"ro-dimensional 
axially symmetrical flow of heat, can likewise be solved on the basis of the 
results of § 46. Consideration will be limited tere to one simple application. 

The notation of § 46 will be retained. In the present case the region 5 
is bounded by two concentric circles with radii Rv R2 (Rl < R 2) and 
the origin as centre. 

Suppose that the hollow cylinder under consideration is heated by 
being placed in a heat flow and that T = Tl for r = Rl and T = T2 
for r == R 2, where Tl and T2 are constant and r is the distance of a 
point (x, y) from the origin. Then, as is easily verified (cf. Note at end 
of this section), 

T 
__ T2-Tl T l logR2 -T2 logRl 
---.~-~ 100- r + . 
log R2 -log Rl 0 log R2 - log Rl 

(62.1) 

Hence, denoting by F(z) the same quantity as in § 46 and omitting 
the imaginary part of an arbitrary constant, one obtains 

T 2 - TIT 1 log R2 - T 2 log Rl 
F(z) == ~-- log z +. (62.2) 

log R2 - log Rl log R2 -log Rl 

Thus, in the present case, one has by (46.6), omitting again a constant, 

T -T 
2 1 z log z + 

log R2 - log Rl 
u* + iv* = 

T 1(log Rz + 1) - T 2(log Rl + 1) + z, 
log R2 - log Rl 

(62.3) 

and it is seen that, since there is only one internal contour Lv (cf. § 46) 
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T 2 - Tl * B1 = --_. (Xl == ~i = o. 
log R2 -log R1 ' 

(62.4) 

This means that the solution of the "auxiliary" problem of § 46 is ob
tained by substituting in (60.9) and (60.10) [cf. (46.16)] the value 

rev T2-Tl 
E == -. . 

A + f.L log R2 - log R1 
(62.5) 

Since the stresses Xx, Y 11' Xy in the auxiliary problem are the same 
as in the original one, these stresses are obtained directly from (60.10) by 
substituting for € the above value. In this way a well known formula has 
been obtained (cf. for example A. Foppl [IJ). In order to calculate the 
displacements, one has to find the displacements u' and v' of the auxiliary 
problem. Then u and v will be given by (46.8) and (62.3). 

NOTE. Several additional remarks ,viII now be made with regard 
to the present problem, i.e., to the case when the cross-section is a cir
cular ring. 

If the temperature distribution T is not given, but only its values on 
the circles Ll and L 2, it may be calculated in the follo\ving manner. 

The problenl of finding T is a particular case of the so-called first fundamental 
problem of the theory of the logarithmic potential (Dirichlet problem); it consists 
of the determination of a function (i.e., T), harmonic in a region, for given values 
on the boundary. It may be shown that this problem has always a unique solution 
(under very general conditions). The general solution of this problem for the case 
when the region is a circular ring is given belo\v. 

For the determination of F(z) one has 

2T = F(z) + F(z) 

and, by (46.12) putting Zl = 0, 
+00 

F(z) = A log z + L akzk, 
-00 

where A is a real constant. 

(62.6) 

(62.7) 

The function F(z) must be determined for the boundary conditions 

F(z) + F(z) == 2/1(&) for r = Rv 

F(z) + F(z) = 2/2(&) for r == R 2, 
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where fl(if), f2(if) are the known values of T on Ll and L2. Let these 
functions be represented by their complex Fourier series 

+00 +00 
fl(S-) = ~ A~eik&, 12(&) == ~ A~eik&, (62.8) 

-00 -00 

where by § 52, since the functions II and t 2 are real, 

and, in particular, 

i.e., A~. and A~ are real. 
The boundary conditions may now be written 

f 

+00 
2 L A I eik& for r = R , 

+00 +00 k 1 

2A log r + ~ a ""eiltS. + ~ Ii rke-ik& == -00 
k k +00 

-00 -00 l2 ~ A ~eik~ for r = R2" 

Hence 

2A log Rl + ao + tlo = 2A~, 

Rk + - R-k 2A' ak 1 a_k 1 == k' Rk + - R-k 2A// ak 2 a_k 2 = k (k i= 0) ; 

(62.9) 

(62.10) 

the equations (62.9) determine A and ao + cio' while each pair of equations 
(62.10) gives ak and tl_k' where it is sufficient to give k only positive values, 
in order to find all the coefficients. The imaginary part of ao remains 
indeterminate, as was to be expected, and may be fixed arbitrarily. 

For example, if T = Tl for r = Rl and T = T2 for r = R2, where 
Tl and T2 are constants, one has 

A~ == T I , A~ = T 2 , A~ = A~ = 0 (k =1= 0), 

and F(z) is given by (62.2). 
Note the important fact that multi-valued terms in the function 

f F(z)dz can only originate from the term A log z and the term a_1z-1 

in the expansion (62.7) . However, as shown by (62.9) and (62.1 0), the 
constants A and a_I are determined solely by A~, A~, A; and A~. Con
sequently, the characteristics of the dislocations for the auxiliary problem, 
and therefore also the stresses X x, Y 11' X 11 in the original problem, depend 
solely on the quantities 
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CHAPTER 11 

APPLICATION OF CONFORMAL MAPPING 

It has been seen in the earlier chapters of this Part that the use of 
power series for the unknown functions leads to effective results in the 
case of regions bounded by one or two concentric circles. By mapping 
given simply or doubly connected regions on a circle or circular ring, 
such expansions of the unknown functions will likewise secure effective 
solutions. The present chapter deals briefly with this problem, while a 
more satisfactory application of conformal mapping by other means 
will be described in Parts V and VI. 

§ 63. Case of simply connected re~ions. 10. Consider first the case 
of a finite region S bounded by a simple contour L which may be mapped 
on the circle I ~ I < 1 by the function z == <.O(~); denote by y the cir
cumference ! ~ I = 1 of that circle. 

Since, in the notation of § 50, the functions ~l(Z) and ~l(Z) are ho
lomorphic in S, the functions cp(~) and ~(~) ,viII be holomorphic in y. 
Hence one will have inside y the expansions 

+00 +00 +00 
cp(~) == ~ ak~k, ~(~) = ~ a~~k, cp'(~) = ~ kalc~k-l. (63.1 ) 

o 0 0 

One can thus try to solve the fundamental boundary problems by substi
tuting these series (assuming them to converge on y, i.e., for ~ = <1 = ei &) 
in (S 1.1) or (41.5) which give certain systems of equations for the de
termination of the coefficients ak and a~. 

This procedure will be explained for the case of the first fundamental 
problem. The boundary condition (51.1) will now be ,vritten 

cu(cr) - -
cp( a) + --==::::::- cp' (<1) + ~(<1) = t 1 + it 2' (63.2) 

w' (0') 

omitting an arbitrary constant on the right-hand side. It can always 
be assumed that the point z = 0 corresponds to the point ~ = 0, i.e., 
that <.0(0) = 0. It is also known that C@l(O) and the imaginary part of 

250 
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CPl' (0), or, in terms of cp(~), that cp(O) == ao and the imaginary part of 

'P'(O)), Le., 3[al /w'(O)] , may be fixed arbitrarily. Hence, in the following, ao w'(O . 
will be put equal to zero, while the imaginary part of a1/w'(O) will be 

left indeterminate for the time being. Further, suppose that c.u((j}Jw'(cr) 
may be expanded (for cr = ei,S.) in a series of the form 

(t.) ((J' L _ +~OOb ilea. _ + ..... r:::'b k 
-- - ~ k e - ~ k a 
00' (cr) -00 -00 

(63.3) 

which will be assumed to be absolutely convergent. It is easily shown 
that this condition will be met, if the contour L satisfies the conditions 
of § 47. 

In fact, this follows from the well known theorem of S. N. Bernstein [1J which 
states that, if a function f(~) satisfies the Holder condition for the index C( > ! 
(cf. § 65 for a definition of this term), the series of Fourier coefficients of this 

function is absolutely convergent. In the present case, w(O')/6)'(O') has a continuous 
first order derivative and hence satisfies the Holder condition for ex; = 1. 

Developing 11 + i/2 in a complex Fourier series (assuming this to 
be possible) 

+00 +00 

11 + it2 == ~ Akeik
& == ~ AkO"k (63.4) 

-00 -00 

and substituting (63.1), (63.3) and (63.4) in (63.2), one obtains 
00 +00 00 00 +00 

~ akO"k + ~ b~(jl ~ kri k(j-k+l + ~ ri~(j-k == ~ A k(jk. (63.5) 
k=l l=-oo k=l k=O -00 

Multiplying out the series of the middle term on the left-hand side -
the operation being known to be permissible, if it is assumed, for example, 
that the series for cp'(a) .. as well as the series (63.3) converge absolutely
and comparing coefficients of am (m = 1, 2, ... ), one finds 

00 

am+~krikbm+k_l==Am (m== 1,2, ... ); 
k=l 

similarly, one obtains from (j-m (m == 0, 1, 2, ... ) 
00 

ii m + ~ kiikb_m+k _ 1 = A_m (m == 0, 1, 2, ... ). 
k=l 

(63.6) 

(63.7) 

The equations (63.6) form an infinite system of .equations for the 
infinitely many unknowns ak - Each of these equations provides two 
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real equations for the quantities ri..k, ~k' where 

rJ.k + i~k = ak, (J.k - i~k = ak· 

If one succeeds in solving this system by one or the other method, 
the function cp(~) will be determined. The coefficients a:n in the expansion 
for ~(~) can then be found from (63.7). Thus, the basic problem consists 
of the solution of the system (63.6), i.e., of the determination of the 
function cp (~). Further, if the series for cp (~), ~ (~), cp I (~), determined in 
this manner, are found to be uniformly convergent for' I ~ I = 1 and if 
the series for cp/(~) is, in addition, absolutely convergent, one can be 
sure that the conditions of the problem will be satisfied. 

Obviously, uniform convergence for I ~ J = 1 entails uniform convergence for 
J ~ J ~ 1 and, hence, continuity of cp, cp' and t.¥ up to the contour, i.e., the regularity 
of the solutions (§ 42). 

Note that, having found cp(~), the function tfJ(~) may be determined directly 
without recourse to (63.7). In fact, if cp(~) is known, the boundary value of '-J;(~) 

on J ~ I = 1 is given by 

- (1.)(0') 
tfJ(O') = 11 - i/2 - ~(O') - <0'(0') cp'(cr) 

[cf. (63.2)J. Hence, the function ~(~) may be calculated directly by means of 
Cauchy's formula. 

In many cases, the actual solution of the system of equations (63.6) will 
present no difficulties. An analogous system, obtained for one particular 
case by D. M. Volkov and A. A. 'Nazarov [1,2J, was solved by the 
method of successive approximation. Still earlier, P. Sokolov [IJ gave 
the solutions of a number of particular problems, which are of practical 
importance, by an analogous method. The present treatment will be 
restricted to the following remarks ·of a general character with respect 
to the system (63.6), and a start will be made with the simple case 
when (i)(~) is a polynomial 

(U(~) = Cl~ + C2~2 + ... + cn~n (c1 =1= 0, Cn =1= 0). (63.8) 

In this work use will be made of the following notation which is a par
ticular case of a somewhat more general notation explained in § 76 and 
which will be widely used. If . 

f(~) = ao + al~ + ... + an~n 
is some polynomial, then 1(~), where the bar extends only over t, will 
be understood to be the polynomial obtained from f(~) by replaciI).g the 
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coefficients by their conjugate complex values, so that, by definition, 

7 (~) === flo + iil~ + ... + an~n. 
In this notation one will have (remembering that cr = ei&, a = e-1:~ = 0"-1) 

f(a}= ao + a;cr + ... + ancrn = ao + a1v-1 + ... + ana-n = f( + ). 
Applying this notation to the expression (i)($)Jw'($), figuring in (63.2), 

one finds 

= an c1an - 1 + 2c2an - 2 + ; .. +_nc
n 

The right-hand side, considered as a function of the complex variable (j 
in the entire plane (and it is, obviously, a rational function), has no poles 
outside the circle y, including its boundary, with the exception of the point 
(j == 00, because (i)'(~) does not vanish inside and on y (§ 47) and hence 
w'(l/~) does not vanish on or outside y. In fact, suppose that at some 
point ~o, for I ~o I> 1, one has ()}'(I/~o) = 0; taking the conjugate com
plex value, one has (i)' (1 /~o) = ° or w' (~l) == 0, where ~l = 1 /~o and 
I ~l I < 1, which is impossible. Thus, one has an expansion of the form 

(i)(~ ~ 

( ) 

= bnfSn + bn_1ern
-

1 + ... + bIer + bo + ~ b_ker-k , 
_, 1 k=l 
()) -

(j 

which holds for ! (j I > 1 and, in particular, for ($ = e'W-. Hence in the 
present case the series (63.3) contains only a finite number of terms 
with positive powers of ($, and, in fact, one finds 

bk = 0 (k > n + 1). (63.9) 

The equations (63.6) now reduce to the following: 

am = Am (m > n + I) (63.6') 
and 

a1 + albl + 2a2b2 + ... + nanbn = Av 
a2 + fl l b2 + 2ii2b3 + ... + (n - l)cin_1bn = A 2 , (63.6") 
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one also finds from (63.7) 
m+n+l 

ii:n + ~ kakb_m+k_l == A_m {m == 0, 1, ... ). 
k=l 

§ 63 

(63.7') 

Thus, one has for the determination of the coefficients aI' ... , an 
the n equations (63.6/1) which correspond to 2n real equations for the 
determination of the 2n real coefficients (l.,k, ~k (k = 1, ... , n), where 
(l.,k + i~k == ak • If the equations (63.6/1) have a solution, the remaining 
coefficients are determined by (63.6') and (63.7') and it is easily proved 
directly that the series for cp(~) and ~(~), obtained in this manner, will 
satisfy the conditions of the problem, provided the given functions 11 
and 12 are sufficiently regular, i.e., for example, they have second order 
derivatives with respect to it, satisfying the Dirichlet condition. 

In fact, if this last condition is satisfied, one will have inequalities of the form 

C 
I Am I < [m [3 (m = ± I, ± 2, ... )~. (a) 

whence it follows by (63.6') that the series for cp(~) and cp'(~) will be absolutely and 
uniformly convergent for I ~ I :::;;; 1. Further, (63.7') shows that a:n, = - cm + A-m' 
where 

m+n+l 
cm = L kiik b-m +k- 1 * 

k=l 

But the series ~ A -m converges absolutely by (a); the series ~ em is likewise ab
solutely convergent, because its terms are found in a number of terms of an ab
solutely convergent series, obtained by multiplying out the absolutely convergent 
series ~ kiik and ~ b k' It follows directly from this that the series for t¥(~) is absolutely 
and uniformly convergent for I ~ I ~ 1. 

Thus, the solution of the problem will be obtained, provided the system 
(63.6") can be solved. However, it is clear that the system (63.6") cannot 
give definite values for all the coefficients (1.,11 ~v ... , ~n' ~n; in fact, 
it is known beforehand that the imaginary part of al/w' (0) == ((1.,1 +i~l) /w' (0) 
remains always arbitrary. This means that the determinant of the 
system (63.6/1) must vanish, and from this it is known to follow that, for 
the existence of a solution, the quantities A l' ... , A n must satisfy a 
certain additional condition which will be deduced by excluding un
knowns from (63.6"). This condition will obviously express the demand 
that the resultant moment of the external forces must vanish (and this 
condition had been allowed for by assuming 11 + if2 to be continuous 
on the contour), because the present problem has a solution for this 
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(and only this) sufficient condition (cf. the existence proof in Part V.). 
It follows from the theorem of uniqueness of solutions that all coefficients 
av ... , an are completely determined, with the exception of the first 
only the real part of which ror, better, the real part of a1/w'(0)] will be 
fixed. The system (63.6") will be discussed in greater detail in § 84. 

2°. As an example, consider the case when L is Pas cal's Lim a
<; 0 n. By § 48, 2° (writing a instead of m) 

z == (t}(~) == R(~ + a~2), R > 0, 0 < a < t. 
One has 

w{cr) cr + acr2 2a(1 - 2a2) 
-- == ~-_ == acr2 + (I -2a2)cr- == 

CJ)' (1) 1 + 2acr 2a 1+-
(1 

= acr2 •• + (1 - 2a2)a - 2a(1 _ 2a2) ~ (_ l)k (~2a_)k, 
k=O a 

and hence in the present case n == 2, 

b2 == a, bi == 1 - 2a2, b_k == (- 1)k+l(2a)k+l(1 - 2a2), 

(k == 0, 1, 2, ... ). 

The system (63.6") will now reduce to the following: 

a l + ii1(1 - 2a2) + 2ii2a == Av a2 + ala == A 2 0 

Substituting a2 = - aa1 + A2 , obtained from the second of these 
equations, into the first equation, one finds 

_ A l -2aA2 
al + al == 2 ' 1-2a 

which determines the real part of alo Hence, in order that the problem 
have a solution, one requires that the imaginary part of A 1 - 2aA2 be 
zeroo It is easily verified directly that this is the condition for the vanishing 
of the resultant moment of the external forces. 

Putting for definiteness 3(a1) = 0, one finds 

A l -2aA2 _ 

a l == 2( 1 _ 2a2)' a2 = A2 - ala == A2 - ala, 

m+3 
am = Am(1n > 3), a~ == - L kakb-m+k-l + A_m' 

k=l 
(m> 0) 

and the problem is solved. The series obtained for <p(~) and ~(~) can be 
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summed and expressed by means of Cauchy type integrals, but this 
will not be done here, since the corresponding formulae are more easily 
obtained by another method (cf. § 84). 

3°. Now consider the general case when (U(~) is not a polynomial. By 
omitting from the expansion 

(U(~) = Cl~ + C2~2 + ... + cn~n + cn+l~n+l + ... 
all terms, beginning with Cn+l~n+l,one obtains instead of c.u(~) a poly
nomial wn(~) which does not map the region 5, but a region Sn on to the 

. unit circle, where Sn represents an approximation to 5 which improves 
with increasing n. The solution of the problem for the region 5 n has been 
seen to present essentially no difficulties. The simplification brought 
about by replacement of (U(~) by the polynomial (t.)n(~) is equivalent to 
omitting in (63.6) and (63.7) all terms involving bk for k > n + 1. 

It has been seen that in this case the problem reduces to the solution 
of a finite number of linear equations with a finite number of unknown 
coefficients, namely, to the solution of (63.6") and to the calculation of 
the remaining coefficients by means of (63.6') and (63.7'). This is one of 
the methods of approximate solution of the infinite systems (63.6) and 
(63.7), i.e., of approximate solution of the original problem. Letting now 
n increase beyond all bounds, the regions 5 n will tend to 5 and the 
approximate solution will tend to the exact one, i.e., the functions q> and 
tJ;, found for the regions 511,' will tend to definite functions giving the 
exact solution for the region S. Under known general assumptions with 
respect to the contour of the region S and to the functions f 1 and 12 
given on the contour, this statement may be proved rigorously (cf. § 89 
for a more detailed discussion). 

4°. Quite similar remarks refer to the method of solution of the second 
fundamental problem. This problem is even simpler, since, when the 
displacements on the contour are known, the coefficient a1 is completely 
determined and the boundary problem will not be subject to any ad
ditional conditions. Thus, the system analogous to (63.6") will always 
have a unique solution. 

5°. In the case of infinite regions, mapped on to the circle I ~ I < I by 
a function of the form 

(63.8') 

results are obtained which are as simple as for finite regions. No further 
detail will be given on this, since in the above (and likewise in more 
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general) cases effective solutions may be deduced by the method of 
Part IV. 

The method of solution of the fundamental problems, studied in this 
section, is given in more detail and with certain additional interesting 
extensions in Chapter VI of the book by L. V. Kantorovich and V. I. 
Krylov [IJ; the presentation given here has been reproduced without 
essential changes from the earlier editions of the present book. 

§ 64. Example of application of mapping on to a circular rin~. 
Solution of the fundamental problems for a continuous ellipse. 

It is natural to try to generalize the method of § 63 to the case of 
doubly-connected regions by using transformations on to the circular 
ring. However, even for regions of a very simple form, direct application 
of this method does not lead to simple results. Mapping on to the circular 
ring will be used here to solve the fundamental problems for the continuotts 
ellipse. 

The first fundamental problem for a region, bounded by tvvo eccentric circles, 
has been solved by G. B. Jeffery [1J, using a method which is essentially close to 
tQ.,at of § 63. A solution for a region bounded by two confocal ellipses has been 
given recently by M. P. Sheremetjev [2J and A. I. Kalandiia [5]. It should be 
noted that an earlier solution of this problem is due to A. Timpe [2J which has 
turned out to be incorrect, as will be shown below. In fact, Timpe tried to .obtain 
the solution 01 the problem by expanding the corresponding Airy function as a 
series in terms of a certain system of particular solutions of the biharmonic equation'. 
But it is not difficult to verify that his system of particular solutions is incomplete. 
The complete system is easily constructed, starting from the complex representation 
of the biharmonic functions and utilizing conformal transformation on the circular 
ring. Further observations on some other work referring to problems of an analogous 
type may be found in the monograph of G. N. Savin [8]. 

The fundamental problems for the continuous ellipse were solved by O. Tedone [1J 
and T. Boggio [3J by other, more complex, means. The solution, given in this section, 
,\\"as first presented in the Author's paper [16J and it was also contained in the 
earlier editions of'this book. Recently D. I. Sherman [18J gave a solution, based 
on the integral equations of G. Lauricella. The final formulae of Sherman agree 
with the Author's earlier formulae, if the latter are somewhat transformed. In fact, 
the Author originally gave only the equations (64.21) and (64.21') for the calculation 
of the coefficients ck , appearing in (64.23). However, by taking into consideration 
the coefficients of the expansion (64.24), formula (64.27) follows directly from those 
mentioned earlier. By substituting the expression for ck on the right-hand side 
of (64.19), one obtains a formula which agrees with that of D. I. Sherman. 

It is a fact that the finite region, bounded by an ellipse, may, like 
every region bounded by a single contour, be mapped on to a circle. 
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But the corresponding transforming function is complicated and in
convenient. That is the reason why another transformation will be used 
here. 

Imagine that the ellipse has been cut along the segment connecting 
its foci. This cut may likewise be conceived as an ellipse which is confocal 
with the original one and whose minor axis is zero. Thus, one has the 
limiting case of regions, lying between two confocal ellipses. This region 
may be mapped on the ring between two circles 11 and Y2 in the ~ plane 
bv putting (§ 48, 5°) (1 ) 

z = <o(~) = R ~ +~, R> O. (64.1) 

Circles of radius p in the ~ plane will correspond to ellipses in the z plane, 
where the parametric representation of the latter is 

x = R (p + ~ ) cos &, Y = R (p - + ) sin &. (64.2) 

The circle P == 1 of the ~ plane will correspond to the segment AB of 
the Ox axis (of the z plane), enclosed between the points 

x=-2R and x == + 2R. 

When the point ~ describes the circle P == 1, the corresponding point z 
moves along the segment AB in accordance with the law 

z = x = 2R cos & = R (cr + ~) (cr = ei~), (64.3) 

so that the points (j' = ei& and cr = e-i& of the ~ plane correspond to one 
and the same point of the segment AB. 

Thus, one can take for Yl the unit circle; the radius of Y2 will be denoted 
by Po (Po> 1). The magnitude of Po will be determined by the given ec
centricity 2R and the major semi-axis of the ellipse a = R(po + l/po), 
whence it follows that 

Po == 
a + Va2 -4R2 

2R 

(since - Va2 - 4R2 would give Po < 1). 

(64.4) 

In the notation of § 50, the functions CPl(Z) and Y;l(Z) must be holo
morphic inside the uncut ellipse. Furthermore, they must be holomorphic 
in the ellipse, cut along AB. Hence cp(~) and ~(~) must be holomorphic 
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in the ring between 11 and 1"'2 and they will have expansions of the form 
+00 +00 

t:p(~) === ~ ak~k, tI;(~) = :z a~~k, (64.5) 
-00 -00 

which are convergent for 1 < I ~ [ < Po. 

Actually, the series (64.5) will even converge for l/po < I ~ ! < Po' since it can 
easily be shown that cp(~) and q;(~) may be analytically continued into the region 
between Yl and the circle of radius p' = l/po. For this purpose it is sufficient 
to consider the Riemann surface of two sheets, superimposed on the z plane, with 
branch points at A and B. The relation (64.1) gives the transformation of this 
surface on the ring l/po < I ~ I < Po, and hence the above statements are justified. 

For p = Po, the functions (64.5) must satisfy the boundary condition 

(64.6) 

where 11 - if2 is a known function of -& [cf. (63.2); the conjugate complex 
expression has been given here solely for the sake of convenience]. 

Further, one must have on Yl 

t:p ( cr) = ~ (<1) , ~ ( cr) == '-i; (0:) , ( 64.7) 

because the points cr and cr correspond to one and the same point of the 
segment AB in the z plane. Conversely, if this condition is satisfied, the 
functions qJl(Z) and ~l(Z) will take one and the same value, when the 
point z approaches the segment AB from either side, and hence they will 
be analytic functions in the uncut ellipse. 

It follows from (64.5) and (64.7) that 
, I 

ak = a_kJ ak = a_I;:. (64.8) 

Introducing the series (64.5) into (64.6), noting that for P = Po 

w'(~) = R(l- ~z) = R(l- ;;), 
- (- 1) (o~ ~) w(~) = R (; + T = R '~ + -;;f ' 

1 
and multiplying both sides of (64.6) by 1 - ~' one obtains 

( 1 - ~:) +£ ii/.k + (p~ + ~2)}:,oo kak~k-l + 
Po -00 ~ Po-oo 

+ +~:bk<;;k = (/1- i/z) (1 - ~z) for P = Po, (64.9) 
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where use has been made of the notation 

( 1 -~) ~(~) = (1 -~) +~ooa~~k = ~oo(a~_a~+2)~k = ~oobkr,k, (64.10) 
~ ~ -00 -00 -00 

so that 
(64.11 ) 

Expanding the right-hand side of (64.9) in the complex Fourier series 
+00 

(/1- i/2) (1 - P02e-2i&) = ~ Akeik&, (64.12) 
-00 

putting ~ = poei & and comparing coefficients of eik
&, one finds 

poka_k - pok-4a_k_2 + (k + 2)p~+2ak+2 + kpt-2ak + bkP~ = A k, 

or, noting that by (64.8) ii_1c = ak' a-k-2 = ak+2' 

(k + 2) k+2 -k-4 - + k k-2 + -k - + b k A Po a k+2 - Po a k+2 Po ak Po a k kPO = k' 

Replacing k by - k - 2 and noting that by (64.8) and (64.11) 

b-k - 2 == a~k-2 - a~k = a~+2 - a~ = - bk , 

one finds 

- (k+2)pok-.4ak+2+p~+2ak+2-kpokak-p~-2iik-bkPok-2=A_k_2· 

Elimination of bk from (64.13) and (64.13') finally leads to 

(k + 2) (p~ - p(2)ak+2 + (P5k +4 
- po2k-4)ak+2 -

- k(p~ - p(2)ak - (p~k - po2k)ak == Bk, 
where 

B A -k + A k+2 
k = kPO -k-2PO· 

(64.13) 

(64.8') 

(64. 13'} 

(64.14) 

(64.15) 

The coefficients ak can be determined from the recurrence formula 
(64.14), provided ao and a1 are known. [In actual fact, (64.14) gives for 
each k two equations obtained by separating real and imaginary parts; 
instead of this, one may deduce a second equation by going to conjugate 
complex quantities (see later).] The coefficient ao may be fixed ar
bitrarily, since one can always add an arbitrary constant to cp(~). The 
formulae (64.14) show that, as was to be expected, the coefficient a2 (and 
hence also a4 , a6 ••• ) does not depend on ao; in fact,~ for k = 0, the terms 
involving ao cancel out. In order to calculate a1 == a_v put k == - 1 in 
(64.14) which gives 

_ B-1 A_1po 
a+a- - (64.16) 

1 1 - 2(p~ _ P02) - p~ _ P02 · 
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This relation permits calculation of the real part of a1 and at the same 
time shows that one must have 

A_l = a real quantity, (64.17) 

so that the problem can be solved. It is easily verified directly that 
(64.17) expresses the condition for the vanishing of the resultant moment 
of the external forces. (The vanishing of the resultant force vector has 
already been taken care of by assuming 11 and 12 to be continuous on the 
bounda~y.) 

The imaginary part of at remains arbitrary, as was to be expected, 
since one can always add to Cf'1(Z) a term of the form Ciz, where C is an 
arbitrary real constant; hence one can add to <p(~) a term of the form 
Ciz = CiR(~ + 1/~). It is easily seen that this imaginary part does not 
affect a3 , as, etc. Thus, by giving arbitrary values to ao and the imaginary 
part of at and by determining successively all remaining coefficients 
by means of (64.14), one obtains an expression for <p(~). 

After this the coefficients bk can be found from one of the formulae 
(64.13) or (64.13'). In this way one finds an expression for 

(I - ~2) 1jJ(~) = +~bk~k k~O bk~k +k~l b_k~-k 
or, remembering that b_k = - bk- 2 (Le., in particular, b_1 = - b_1 = 0), 

(64.18) 

It will be shown below that for definite conditions the series for tJ;(~) 

and cp(~) converge in the relevant region. The right-hand side of (64.18) 
vanishes for ~ = ± 1 and, consequently, the function tJ;(~), obtained by 
dividing the right-hand side by 1 - 1/~2, will not be singular for ~ = ± 1 
(see remarks following (63.7) with regard to direct determination of 
t.J;(~) by use of cp(~) and the boundary condition.) 

Thus the problem is solved. The second fundamental problem can be 
solved in a similar manner. 

Before turning to the question of the convergence of the abov~ series, 
it may be noted that calculation of the coefficients ak (k = 2, 3, ... ) can 
be simplified as follows. For convenience put 

k( 2 -2) + ( 2k -2k) -Po - Po ak Po - Po ak = Ck' (64.19) 

in which case (64.14) becomes 

CJc+2 - Ck == B k• (64.20) 
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Substituting in this formula successively k == 0, 2, ... 2n - 2, adding 
the results thus obtained and noting that Co == 0, one obtains 

n=l n-l 

C2n == L B2k = ~ (A 2kP0
2k + A_2k_2P~k+2). (64.21 ) 

k=O k-O 

Similarly, substituting In (64.20) successively k == 1, 3, ... , 2n - 1 
and adding, one finds 

n n , + ~ B + ~ (A -2k+l + A 2~+1) C2n+1 = CI ""'" 2k-1 = CI ~ 2k-IPO -2k-IPO' (64.21 ') 
k=l k=l 

where, by (64.19) and (64.16), 

c1 = (p~ - P(2) (al + til) == A_1po. (64.22) 

Thus, one has found closed expressions for the quantities Ck. The 
coefficients ak , however, can be expressed very simply in terms of the 
Ck; in fact, writing down the conjugate complex equation of (64.19) 
and solving .. for ak , one finds. 

k(p~ - P(2)Ck - (p~k - Po2k)Ck 
a - -

k - k2(p~ _ P02)2 _ (p~k _ P02k)2 
(k = 2, 3, ... ). (64.23) 

The expressions (64.21) and (64.21') for Ck may be further simplified, 
if one introduces instead of the coefficients A k of (64.12) the coefficients 
Ck of the expansion of the function 11- i/2 as a complex Fourier series 

-00 

Comparing (64.24) with (64.12), one observes that 

Ak == Ck - P02Ck+2· 

The expression (64.22) for CI takes then the form 

CI = C-1Po - CIPOI. 

(64.24) 

(64.25) 

(64.26) 

Substituting (64.25) and (64.26) on the right-hand side of (64.21) and 
(64.21'), one finally finds the simple formula 

Ck = C_k?~ - C kPOk (k = 1, 2, ... ). (64.27) 

Finally consider the question of the convergence of the series obtained 
above and suppose that the functions 11 and 12 have second order deri
vatives, satisfying the Dirichlet condition (or more generally, being of 
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bounded variation). Then one has for the coefficients Ck of (64.24) 
inequalities of the form 

C 
I C k I < Ikr (k = ± 1, ± 2, ... ). 

On the basis of (64.27), (64.23) and (64.13) or (64.13') one easily finds 
the inequalities 

k eke ' 
laklpo < Ik13 ' Ibklpo <hi (k= ± 1, ±2, ... ), (64.28) 

from which follows immediately the absolute and uniform convergence 
of the series for ~ (~), <p' (~), (1 - 1 !~2) tJ; (~) in the interval 

1 
- < I ~ I < Po, 
Po 

and hence the suitability of the solutions. 



PART IV 

ON CAUCHY INTEGRALS 

In the subsequent chapters wide use will be made of so-called Cauchy 
integrals. A systematic study of the properties of these integrals may 
be found in the Author's book [25J, but for the convenience of the reader, 
who wants to limit himself to the information actually required for the 
understanding of what follows, the essentials will be given in the present 
Part. Some deductions will be stated without proofs; these may be found 
in the book mentioned above, or in I. I. Privalov's book [IJ. On the 
other hand, a number of elementary formulae and results will be given 
here which are of practical value and which are not contained in those 
books. 



CHAPTER 12 

FUNDAMENTAL PROPERTIES OF CA UCRY INTEGRALS 

§ 65. Notation and terminology. 
1°. In the sequel, unless stated otherwise, L will be a simple smooth 

contour, a simple finite smooth arc or the union of a finite number of 
such disconnected arcs and contours in the plane Oxy (Fig. 30). In this 
case L will be called a simple smooth 
line, where the words "simple" and 
"smooth" will often be omitted. 

Thus the line L may consist of parts 
placed separately from each other. If L 
contains arcs, their ends will be called 
ends oj the line L. 

The line L will always be given a 
definite positive direction; in the case 
when it consists of disconnected parts 
a positive direction must be chosen on 
each of these parts. 

! 
Fig. 30. 

If one draws about any point of the (simple, smooth) line L, which 
does not coincide with one of its ends, a circle of sufficiently small radius, 
this circle will be divided by L into two parts one of which will 
lie on the left and the other on the right of the line (looking in the 
positive direction of L; cf. Fig. 30). In accordance with this, a distinction 
may be made between releft" and "right" neighbourhoods of the point 
t on L, other than one of its ends. For example, the left neighbourhood 
of t consists of points, not on L and in the left section of a circle drawn 
with sufficiently small radius about t. 

In a similar manner one may distinguish between left and right 
neighbourhoods of any part of a line L, the ends of which are not ends 
of L. As before, a part of the line L will always be a part consisting of (a 
finite number of) arcs or contours belonging to L. The left and right 
neighbourhoods will be denoted by (+) and (-) respectively. 

2°. The definitions of § 37 will now be recalled and partly extended. 

267 
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Let F(z) be some function, given in the neighbourhood of L, but not on 
L, and assume that F(z) is continuous there. (As in § 37, the function 
F(z) will not be assumed to be analytic). Also let t be some point of L 
other than its ends (if the last exist). 

The function F(z) will be said to be continuous at t from the left (or right), 
if F(z) tends to a limit as z tends to t along any path remaining, however, 
on the left (or right) of L [i.e., z may take any position in the left (right) 
neighbourhood of tJ. The limiting values of F(z) as z -?- t from the left 
or from the right will be denoted by 

F+(t) or F-(t) 

respectively and they will be called the boundary values of F(z). 
This notation, and the term "boundary value" will only be used in 

such cases when the corresponding limiting values exist as z tends to t 
along any path on the left or on the right of L, i.ea, when F(z) is continuous 
at t from the left or from the right. 

Let L' be some part of L the ends of which do not coincide with those 
of L (if such exist). The function F(z) will be said to be continuous at 
L' from the left [or right], if the limiting value F+(t) [or F-(t)] exists 
for all points t of L'. 

As mentioned in § 37, if F(z) is continuous on L' from the left [or 
right], the function F+(t) [or F-(t)] will be continuous on L'. Hence it 
follows that, if the line L' be added to the left [or right] neighbourhoods 
of L' and if the function F(z) be given its values F+(t) [or F-(t)] on L', 
then F(z) will be continuous in the left [or right] neighbourhood, including 
the line L'. 

3°. Let t(t) be some, in general complex, function of the point t of L; 
this means that 

(65.1 ) 

where fl(t) and f2(t) are real functions of t on L. 
In future, t will denote a point as well as its coordinates, i.e., t = x + iy. 
The function f(t) will be said to satisfy on L the Holder condition, or 

just the H condition, if for every pair of points tl , t2 of L the following 
inequality holds true: 

1 f(t2) - l(t1) 1 < A 1 t2 - tl 1'\ (65.2) 

where A and lL are positive constants and 0 < lL < 1; A is called the 
H older constant and lL the H older index. 
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The condition (65.2) is easily seen to be equivalent to 

] f(t 2) - f(t1) ] < Bai2' 

269 

(65.3) 

where B is a positive constant and 0'12 is the length of arc of L between 
t1 and t2; if t1 and t2 lie on a contour forming part of L, the shorter of the 
two arcs between t1 and t2 must be taken for 0'12. If L consists of several 
different parts, the condition (65.3) must be understood to be fulfilled 
for any pair of points lying on one and the same part. 

The equivalence of the conditions (65.2) and (65.3) follows from these propositions 
which are easily proved: 

1°. If (65.2) is satisfied for any pair of points whose distance does not exceed 
some fixed number 8, it will be satisfied for the whole of L, provided, if this should 
be necessary, A is replaced by a larger value. 

2°. For any pair of points tI , t2 whose distance does not exceed 8 

I t -t I k ::;: 1 2 S 1, 
0'12 

where k is a positive constant. Proofs of these propositions may be found, for 
example, in the Author's book [25J. 

If t.t > 1 in (65.2) or (65.3), it is easily seen that the derivative of 
f(t) with respect to the arc s of L will be zero; hence, in this case, f(t) =const. 
on L or, if L consists of different parts, on each of these parts. This case 
is of no interest, and for this reason consideration will be restricted to 
t.t< 1. 

NOTE. If for a given point to of L one has the inequality 

] f(t) - f(to) I < A I t - to ]I-t 

for all t of L, sufficiently close to to, the function f(t) will be said to satisfy 
the H condition on L at the given point to; however, this does not mean 
that f{t) satisfies the H condition in the neighbourhood of to, i.e., that (65.2) 
holds true for any pair of points in the neighbourhood of to on L. 

4°. In the sequel the following well-known notation will sometimes 
be used. Let ~ be a variable quantity which runs through some set of 
values and tends to 0 [or to ooJ. Then O(~) will denote a quantity such 
that O{~)/~ remains bounded for suffi~iently small [or sufficiently large] 
values of I ~ ]. In other words, for those values of ~ 

O(~) < C.I ~], 
where C is a finite constant. Further, o(~) will denote a quantity such 
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that (the modulus of) o(~)/~ will be as small as desired, when I ~ I is 
sufficiently small [or sufficiently large], i.e .. , 

I o(~) I < c · I ~ I, 

where c is a positive quantity which only depends on ! ~ I and which 
tends to zero for ~ ~ 0 [; -+ 00]. 

For example, if I(t) satisfies the H condition in the neighbourhood of 
the point to, this condition may be written 

for all points tv t2 which are sufficiently near to to. 
One particular case of this notation should be noted. Consider the 

expression 0(1 ~ lex), where rx is a real number. By definition, 0(1 ~ let)/I ~ let 
remains bounded when I ~ I -+ 0 [I ~ 1 ~ 00]. In particular, for rx = 0, 
the expression 0(1 ~ j<X) becomes 0(1). Thus 0(1) denotes a quantity which 
remains bounded for sufficiently small [or sufficiently large] values 
of I ~ [. Similarly~, 0(1) denotes a quantity which tends to zero for 1; I ~ 0 
[or ! ~ I -+ ooJ, i.e., 1 0 (1) I < €, where e: only depends on [ ~ [ and lim e: = Q 

for 1 ~ I -+ 0 [or I ~ I ~ 00[. 
For example, the condition that I(t) is continuous on L may be written 

§ 66. Cauchy integrals. Let L be the same as in the preceding 
section and let f(t) == 11(t) + i/2(t) be some, in general, complex function 
given on L. Unless stated otherwise, it will always be assumed that t(t) is 
finite and integrable in an ordinary (Riemann) sense. 

The integral of the form 

_1_ f j(t)dt (a) 
2rci t-z' 

L 

taken over L with z some point in the plane of L, will be called an integral 
of the Cauchy type or Cauchy integral; the factor 1/21ti is not essential 
and has only been introduced for the sake of convenience. 

For the present it will be assumed that the point z does not lie on L. 
In that case the integral (a) has a definite meaning and represents a 
function of the complex variable z throughout the entire plane with the 
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exception of the points of L. This function will be denoted by F(z), so that 

F(z) == _1_. ( fl~ . 27t~.; t _ z (66.1) 
L 

It is easily seen that F(z) is holomorphic in the whole plane, excluding 
the points of L .. If L consists of contours, as shown in Fig. 30, the preceding 
statement must be understood in the sense that F(z) is holomorphic in
side all parts into which the plane is divided by L. (It must not be thought 
that F(z) is analytically continued when z passes from one part to another; 
this will become clear from the following work.) 

Further, it is easily seen that for z -7 00 F(z) tends to zero, Le., 

F(CXJ) == 0. (66.2) 

§ 67. Values of Cauchy integrals on ~he path of integration. 
Principal value. Hitherto it has been assumed that the point z in (66.1) 
does not lie on the line of integration L. Now let z coincide with some 
point to of L. For the present write formally 

~l_~._ [f(t)dt . ~~ (67.1) 
21t~. t - to 

L 

If I(to) =F 0, the integrand becomes infinite like I t - to 1-1 as t --+ to. 
Hence the integral has no meaning in the ordinary sense. However, 
for certain conditions referring to I(t), the integral (67.1) may be given a 
definite interpretation. In fact, assume that to is not an end of L (if 
such exist) and separate from L a sufficiently small arc t1t2 \vhich contains 
to in such a way that 

(67.2) 

Denote the arc t1t2 by I and the remaining part of L by L - I and consider 
the integral 

_1_. [_ f(t)dt . 
27tt. t - to 

I...,-l 

(67.3) 

This integral is completely defined in the ordinary sense, since, as t travels 
along the path of integration L-I, I t-to I > 0 where 0 is some positive 
constant. 

Next suppose that tl and t2 tend to to in such a way that (67.2) remains 
satisfied. If under these conditions the integral (67.3) tends to a definite 
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limit, this limit is called the principal value 01 the Cauchy integral (67.1). 

a 1 
Fig. 31. 

Clearly, if (67.1) has a meaning in 
b the ordinary (Riemann) sense, its 

principal value will exist, but the 
converse proposition is, generally 
speaking, not true. (In this connection 
the term ordinary means that tl and 
t2 tend to to in an arbitrary manner, 
so that (67.2) is no longer fulfilled). 

The principal value of an integral, 
if it exists, will be denoted by the 
same symbol as the ordinary integral, 
i.e., by (67.1), where it must be under-
stood that, if the integral has no 

meaning in the ordinary sense, its principal value must be taken (provided 
that it exists). Some authors use a special symbol for the principal value; 
for example, the integral sign is accented (') or the letters VP (Valeur 
Principale) are put in front of it. 

No consideration will be given to the problem of finding the most 
general conditions for the existence of a principal value, but instead 
one very important case (which is completely sufficient for the purpose 
of this book) will be stated when this existence is definitely ensured. In 
fact, the principal value 01 the integral (67. 1) exists, il the function I(t) 
satisfies the H condition in the neighbourhood 01 the point to' i.e., the con
dition (cf. § 65) 

I l(t2) - l(t1) I < A I t2 - t1 I f.L, 0 < f.l. < 1. (67.4) 

This proposition will now be proved by actually expressing the principal 
value of the integral by an ordinary integral. For this purpose investigate 
the integral (67.3) and consider first the case (cf. Fig. 31) when L consists 
of a simple closed arc ab, i.e., consider the integral 

_1_ f I(t)dt (67.3') 
21ti t - to ' 

ab-l 

where the positive direction is from a to b. 
This integral may be written as follows: 

_1_. ( I(t)dt = _!_. j-- I(t) - !(to) dt + I(to: f -~ . (67.5) 
27tz., t - to 27tZ t - to 21t2 t - to 

ab-l ab-l ab-l 
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The first integral on the right-hand side tends to the limit 

_l_fl(i) - /(io) dt 
2rci t - to ' 

ab 
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as tl -+ to, t2 -+ to, because it converges in the ordinary (Riemann) sense; 
in fact, by (67.4), 

! I(t) - /(to) I A 
< l' I t - to ! ! t - to I -(J. 

and since 1 - f.L < 1, this inequality ensures convergence of the integral 
by a well-known elementary convergence theorem. 

Next consider the second integral on the right-hand side of (67.5) 
which is easily represented in the form 

1 Jt" dt 1 1 
-2--------: t t =:::: -2 . [log (t --- to) J~ + -2 . - [log (t --- to) J~2' 

7Ct - 0 TCt 7t't 
ab-l 

where by log (t - to) on the parts atl and t2b of the line ab must be under
stood any branches of this function which change continuously with t 
on each of the parts atl , t2b separately. These branches may be chosen 
arbitrarily on each of these parts, but for the sake of definiteness they 
will be related by the following condition: the value log (t - to) for 
t =:::: t2 is to be obtained from the value log (t - to) for t === tl by me~ns of 
a continuous change of log (t - to), as the point t moves from t1 to t2 
along a (infinitely small) semi-circle, lying to the left of L (cf. Fig. 31). 
Under this condition the branch log (t - to) on atl completely determines 
the choice of the branch on t2b, and, provided this choice has been made, 
one may write 

where 

1 f dt 1 b - to 1 tl - to 
2;r t - to = 27ti log a - to + 2;.i log t2 ~t;' 

ab-l 

b -to 
log-- === log (b - to) -log (a - to), 

a-to 

(67.6) 
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for the choice of logarithms, stated above. Further, since by supposition 
I tl - to III t2 - to I == 1, 

t1 -~ to 
log--== ie, 

t2 - to 

where e is the angle, shown in Fig. 31. Obviously, as tl ~ to' t2 ~ to, one 
has: lim e = 7t. Hence, proceeding in (67.6) to the limit, one obtains 

· 1 f dt 1 b - to 11m --. = ! + --. log ._- . 
21t't t - to 21t't a - to 

ab-l 

Thus, the integral (67.3') has a definite limiting value and this limit is, 
by definition, the principal value of the integral 

_1_ ( f(t)dt 
2rci ~ t - to 

ab 

it is given by the formula 

1 f f{t)dt 1 b - to 
---:-- -- = It(to) + ~-. I(to) log--- + 
27t't t - to 27t't a - to 

ob 

+ ~1~ f t(t) - t(to) dt 
2TCi t - to ' 

(67.7) 

ab 

where the integral on the right-hand side has an ordinary (Riemann) 
value. 

The preceding statement implies that the condition (67.2) is satisfied. If this 
condition were not fulfilled, one would have instead of (a) 

(b) 

where r 1 == I t1 - to I, r2 == I t2 - to !; hence, if (67.2) is omitted, the expression 
(b) would not tend to a limit. 

Now let L be an arbitrary line of the form discussed in § 65, 10. Then, 
selecting on L some arc ab containing to (in such a way that a or b do 
not coincide with to), one may rewrite the integral (67.3) 

_1_. J~ f(t)dt == _1_. r f(t)dt + _1_. r JJ!~ . 
21tz t - to 27t't. t - to 21t't" t - to 

£-1 ab-Z L-ab 

Provided (67.2) is satisfied, the first integral on the right-hand side 
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has just been sho,vn to tend to a definite limit, as t1 -+ to, t2 -> to; the 
second integral obviously does not depend on ir and t2• Hence (67.3) tends 
to a definite limit \vhich is, by definition, the principal value of (67.1); 
on the basis of the preceding work, this principal value is given by 

__ L-.-J J(t)d"- = If(to) + __ 1_. l(to) log b ---~. + 
27t2 t - to 21t'z a - to 

L • 
1 Jt- f(t) - t(to) 1 J j(t)dt 

+ 2~i -t~t~-- dt + -2~i -. t ~ to . (67.8) 

ab L·-ab 

This formula shows little symmetry and it will not be used below; 
it has only been introduced here to show that the Cauchy principal value 
exists under the conditions referring to f(t), stated earlier, and that it may 
be expressed by means of ordinary integrals. 

NOTE. 1. The formula (67.8) is considerably simplified, if L is a 
simple contour. The relevant formula for this case may be deduced 
from (67.7) by letting the end b of the arc ab tend to the end a, so that 
one obtains in the lin1it the contour L. Assuming, for definiteness, that 
1:he positive direction on this contour is chosen in such a way that the 
finite part of the plane bounded by L lies to the left when looking along 
L in the positive direction, one will have (for b == a) 

and (67.7) takes the form 

b -to 
100"---::::::: 0 

b t ' a- 0 

-~-; j' Js!l~ = M(to) + --~-;- r _f(t) -- t~o) __ dt. 
27t2 t - f 0 2rct . t - to 

L L 
In fact, it is sufficient to assume that 

(67.7') 

NOTE. 2. Assuming that I(J) satisfies the Holder condition for the 
values of t under consideration, the following situation will be noted. 

It is unnecessary to introduce the condition (67.2), in order to define 
the principal value of the Cauclly integral. 

as i2 -+ to, t1 -+ to, i.e., that r1 == I tl - to I, Y2 = I t2 - to j are infinitesitnal 
quantities of equal order of magnitude. Obviously one ,vilI again have 
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under this condition that 
. t1 - to . 

11m ---- = 't1C 
t2 -to 

(cf. remarks following 67.7), and hence all the preceding conclusions and 
formulae will remain valid. 

In particular, the condition (67.2) may be replaced by 

(67.2') 

where 0'1 and (J2 denote the lengths of the arcs tlto and t2to, so that the 
point to divides the arc tlt2 into two equally long parts. 

NOTE. 3. Obviously the formulae and conclusions of this section 
will remain in force, if f(t) satisfies the H condition only at a point to 
(cf. § 65, 3°), i.e., if 

I f(t) - t(to) I < A I t - to Ill-
(for t sufficiently close to to); thus there is no need for the H condition 
to be satisfied for any pair of points in the neighbourhood of to- But in 
that case the above work will only hold true for the given value to' 

§ 68. Boundary values of Cauchy integrals. The Plemelj for
mulae. As regards the values of the Cauchy integral 

F(z) = _1_. f f(t)dt (68.1) 
2rc't t ~ Z 

L 

on the line of integration, considered in § 67, a distinction must be made 
between its boundary values, i.e., between the limits of F(z) as z tends 
to to on L from the left or from the right. The following important pro
position holds true with regard to these boundary values. 

If the function I(t), given on L, satisfies the H condition in the neighbour
hood 01 a point to of L, other than one of its ends, the integral F(z) is con
tinuous at L from the left and trom the right, i.e., the boundary values P+(to) 
and P-(to) exist. (Naturally, the H condition is only satisfied for points of 
L near to, since /(t) is not given for other points of the plane. See also 
§ 65, 2°). 

These boundary values are given by the formulae 

1 f t(t)dt 
F+(to) == tf(to) + --. , 

27tt..- t - to 
L 

(68.2) 
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1 f J(t)dt 
F-(to) = - tt(to) + 2ni t - to ' (68.3) 

L 

where the principal values of the integrals mlttst be taken on the right-hand 
sides. 

The formulae (68.2) and (68.3) may be replaced by the equivalent 
expreSSIons 

F+(to) - F-(to) == f(to) , 

F+(to) + F-(to) = _I, f j(t)dt . 
1t~ t - to 

L 

Further, the following proposition holds true: 

(68.4) 

(68.5) 

If the function j(t) satisfies the H condition on some part L' 01 L, the 
boundary values F+(to) and P-(to) also satisfy the H condition on L', except 
possibly in an arbitrarily small neighbourhood of the ends oj L' (it the latter 
exist). 

The above theorems were first given by]. Plemelj [IJ and refined by 
I. I. Privalov. The formulae (68.2) and (68.3) were likewise given by 
J. Plemelj (in the same paper) and for this reason will be called Plemelj 
formulae. The proofs of the formulae and theorems of the present 
section may be found in the books by I. I. Privalov [IJ, A. I., Mar
kushevich [IJ and the Author [25J. 

NOTE. 1. The expression (68.4) follows from (68.2) and (68.3) which 
have been obtained under the supposition that f(t) satisfies the H con
dition in the neighbourhood of the point to- But it may also be extended 
(in a conventional way) to the case when t(t) is only continuous in the 
neighbourhood of to- Draw through to some straight line Ll which does not 
coincide with the tangent at to and select on this line two points t' and til 
in such a way that the segnlent t't" is bisected by to. Then, if f(t) is con
tinuous (on L) near to, the difference 

F(t") - F(t') 

tends to the limit /(to) as if ~ to, til -+ to (provided t' and t" are all the 
time equidistant from to). Hence, denoting this limit by F+(to) ~ F-(to) , 
one finds (68.4) to be still valid under the new conditions for t(t). 

This circumstance was likewise noted by]. Plemelj [IJ; the proof may 
be found in the Author's book [25J. It can also be shown that F(t") - F(t') 
tends uniformly to the limit I(to) (with regard to the position of to on 
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some sufficiently small part of L), if the non-obtuse angle between the 
straight line ~ and the tangent to L at to is not less than some fixed acute 
angle (the proof of this proposition is given in the Author's book [25J). 

NOTE. 2. The following result follows immediately from the 
statements of the preceding Note: If the function f{t) is continuous 
on L in the neighbourhood of to and if the boundary value F+(to) [or 
F-{to)] exists, the boundary value F-(to) [or F+(to)] also exists and these 
boundary values are related to each other by (68.4). 

NOTE. 3. In contrast to what has been said in Note. 3 of § 67, it 
is not sufficient for the existence of the boundary values F+(to), F-(to) to 
assume that f(t) satisfies the H condition only at a given point to (cf. 
§ 65, 3°.) and not in some (arbitrarily small) neighbourhood of to (on L). 
However, under this last supposition, there will exist limits of the function 
F(z) as z -+ to from the left or from the right, if it is assumed tBat this 
transition takes place along a definite path not tangential to L. 

NOTE. 4. Let L b~ a simple closed arc the ends of w·hich will be 
denoted by a and b and the positive direction of which is from a to b. 
The behaviour of the function F(z) near the ends is easily determined. In 
fact, let it first be assumed that j(a) = o. Then, extending the line L 
beyond the end a, for example by a segment of the tangent there, and 
putting on the additional part f(t) == 0, one arrives at the case where 
a is not an end. Hence, applying the earlier results, it is easily concluded 
that F(z) tends to a definite limit as z tends to a along any path. [By 
(68.2) and (68.3), one will have F+(a) = F-(a), because in the present 
case /(to) = f(a) = O.J If f(a) =F 0, the formula (68.1) can be rewritten 
in the form 

F(z) == _1~. f j(a)dt + _1_. f j(t) - f(a) dt == 
27t2 t - Z 27t2 t - z 

ab ab 

f(a) 1 b - z 1 f j(t) -j(a) d 
=- og +- t 

27ti a - z 27ti t - z ' 
ab 

and it is easily seen, on the basis of the preceding remarks, that near a 

F(z) = j(a). log 1 + F*(z), 
27t't Z - a 

(68.6) 

where F*(z) tends to a definite limit as z ~ a. Similarly, one has for the 
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end b 
j(b) 1 

F(z) === - --. log ---- + F**(z), 
27t'Z Z - b 

(68.7) 

where F**(z) tends to a definite limit as z --* b. 
These results can be immediately extended to the case when L contains 

an arbitrary number of closed arcs akbk. 

§ 69. The derivatives of Cauchy integr~ls. 1°. As before, let 

F(z) == _1 -;-ffl~dt , (69.1) 
27t2 t - Z 

L 

where j(t) and L are the same as at the beginning of § 66 and z is a point 
not on L. Derivatives of any order of F(z) may be obtained by differ
entiating the integral on the right-hand side with respect to z, so that 

,If j(t)dt 
F (z) = 2r.i (t _ Z)2 ' (69.2) 

L 

and, in general, 

(k) k! f t(t)dt F (z) =-- . 
2rci (t - Z)k+l 

(69.3) 

L 

Now the question arises \vith regard to the behaviour of these deriva
tives when z approaches L from one or the other side. This question is 
easily answered, if it is assumed that f(t), given on L, satisfies certain 
conditions. 

For example, suppose that j(t) has on some arc ab of L a first derivative 
with respect to t which satisfies on L the H condition. By the derivative 
of t(t) with respect to t will, of course, be understood the limit 

lim f(t'~ - t(t) 
t' -t 

as i' -7- t in an arbitrary manner, remaining all the time on the arc ab; 
this derivative will be denoted, as usually, by I' (t) or dt(t) Idt. 

Subdivide the integral on the right-hand side of (69.2) into two in
tegrals one of which is taken over the arc ab and the other over the re
mainder of L. Obviously, the second integral represents a function of z 
which is holomorphic near the points of the arc ab, other than its ends. 
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The first integral can be transformed by an integration by parts: 

~l_.j t(t)dt = __ 1_. {t(t)d 1 = _ [JJ!lJt=b + _1 .jf'(t)dt . 
21t''t (t - Z)2 27tt .. t - z t - Z t=a 21tt t - Z 

ab ab ab 

Since, by supposition, f'(t) satisfies the H condition on ab, it is clear 
that, using the results of § 68, the right-hand side of the preceding formula 
is continuous at ab from the left and from the right, if one excludes the 
ends a and b; hence the same will be true with regard to F' (z). 

Proceeding progressively to the higher order derivatives, it is easily 
shown that the function F(n)(z) is continuous at ab from the left and 
from the right, excluding the ends a and b, provided the function j(t) 
has an n-th order derivative with respect to t which satisfies on the 
same arc ab of L the H condition. 

U sing the results of § 68, it rna y be shown that under the stated conditions 
the boundary values [F(n)(t)]+ and [p(n) (t)J- satisfy the H condition on 
ab, if (arbitrarily small) neighbourhoods of the ends a and b are excluded. 

2°. Consider the first derivative F'(z). If the function is subjected 
only to the H condition, it is already impossible to assert that the 
derivative F'(z) is continued continuously on L; it may even turn out 
to be unbounded near the boundary. 

The following simple estimate of the modulus of this derivative is 
often useful. 

Let to be a point of the line L lying at a finite distance from its ends 
(if such exist) and let f(t) satisfy the H condition near this point. Then, 
for points z sufficiently near to to, 

canst. 
I F'(z) J ~--

8GX 
(69.4) 

where 0 is. the shortest distance from z to Land oc is a constant smaller 
than unity. (In fact, if ~ is the Plemelj index for f(t), then, assuming 
tot < 1, which is always admissible, one may take oc = 1 - lJo). 

This estimate follows directly from an estimate in the author's book 
[25J. 

NOTE. If one determines the position of the point t on ab by means 
of the arc s, measured from some fixed point (say a) of L in the positive 
direction, one obviously has 

df(t) dt. 
-- = t'(t) - = et(%t'(t), (69.5) 

ds ds 
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where (X is the angle between the positive tangent to L at t and the Ox 
axis. Hence 

f' (t) = df~ ~ = e-iex df(t) 
ds dt ds 

(69.6) 

By supposition, the line L was to be smooth, i.e., such that the angle (X 

changes continuously with t (or with s). It does not follow from this that 
a satisfies the H condition. Therefore, if j'(t) satisfies the H condition, 
this is not necessarily true for dj(t) Ids. 

If, in addition, it is assumed that (X satisfies the H condition, then it 
follows from the fact that j'(t) satisfies the H condition that also dj(t)/ds 
satisfies that condition, and vice versa. 

Further, it does not follow from the existence of the second derivative 
t" (t) with respect to t 

/,,(t) = df'S!l 
dt 

that d2j(t)/ds2 exists, even if it is assumed that a satisfies the H con
dition. But, if it is assumed that the derivative drx/ds (which is known to 
represent the curvature of the line L at t) exists, then the derivative 
d2f(t)/ds2 exists and it may be expressed by the formula 

d2j(t) ( dt )2 d2t. . da --= f"(t) - + f'(t) - = e2tfY.j"(t) + ie"fY. - f'(t), (69.7) 
ds2 ds ds2 ds 

which follows from (69.4); this derivative will satisfy the H condition, 
if that condition is satisfied by j"(t) and by d~/ds. 

Similar reasoning may be applied to derivatives of higher order. 

§ 70. Some elementary formulae, facilitating the calculation 
of Cauchy integrals. A number of simple formulae will now be deduced 
which facilitate calculations in many cases. 

Let L be a simple smooth contour. Denote by S+ the finite part of the 
plane bounded by L, and by S- the infinite part of the plane consisting 
of the points lying outside L. The contour L will not be included with S+ 
or S-. The region, consisting of 5+ and of the points of L, will, by an 
obvious notation, be denoted by 5+ + L, and the region, consisting of S
and of the points of L, by S- + L. The positive direction of L will be 
chosen so that the region 5+ lies on the left. 

Now the following well-known formulae will be recalled. 



282 IVw ON CAUCHY INTEGRALS § 70 

1°. Let t(z) be a function, holomorphic in 5+ and continuous in 
5+ + L. Then 

_1_. f I(t)dt = I(z) for z in S+, 
27t~ t - z 

(70.1 ) 

L 

_1_ j" I(t)dt = 0 
27ti t - z 

for z in 5-; (70.2) 

L 

(70.1) is Cauchy's formula and (70.2) is a direct consequence of Cauchy's 
theorem, because in this case the integrand t(t)j(t - z), considered as a 
function of t, is holomorphic in 5+ and continuous in 5+ + L. 

2°. Let t(z) be a function, holomorphic in 5- including the point at 
infinity and continuous in 5- + L. (It will be remembered that this 
means that for sufficiently large I z I 

C1 C2 I(z) = Co + - + -2 + ... , z z 

so that Co == 1(00).) Then 

_1_. Jr I(t)dt === _ I(z) + /(00) 
27t~ t -- Z 

for z in S-, (70.1') 

L 

-~ f I(t)dt = 1(00) 
27tZ t - Z 

for z in S+; (70.2') 

L 

(70.1') will be called Cauchy's formula for the inlinite region S-. The 
signs on the right-hand sides of (70.1') and (70.2') must be inverted, if the 
positive direction on L is chosen in such a way that S- (and not 5+) lies. 
to the left. 

Nate how the formulae (70.1') and (70.2') may be deduced from 
Cauchy's formula and theorem for finite regions. Assume for the time 
being that 1(00) === O. Let r be a circle with centre at the origin and 
with so large a radius that the contour L and the point z lie inside r. 
Then, assuming z to lie in the region between Land r, one has by Cauchy's. 
formula 

I(z) == __ 1_. f I(t)dt = __ 1_. J I(t)dt __ 1_. f I(t)dt , 
27t't t - Z 27t't t - Z 27t~ t - z 

r+L L r 
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where r = L denotes the union of the contours rand L and the positive 
direction on r is assumed to be clockwise; the (-) sign on the right-hand 
side follows from the fact that the region between rand L lies to the 
right for motion along Land r in the positive direction. 

It will now be shown that the integral 

I - 1 f j(t)dt ---- ----
21ti t -- z 

r 

is zero. In fact, the value of I does not change, if the radius R of the circle r 
is arbitrarily increased, since the function j(t) is holomorphic outside L. 
On the other hand, as j(c>o) = 0, one will have for sufficiently large' t I 

c 
, j(t) I < -, t-, ' 

where C is a positive constant. Hence, putting 

t == Rei
&, whence dt == iRei&di}, J dt ! == R ! d& /, 

one has 
2n 21t' 

! I I < _1 f I t(t) I Rd& < ~-f CR~ < ~f d& = C 
21t I t - z 1 2rc R I t - z I 27t R - r R - r ' 
000 

'\vhere r == I z ]. Thus, '\vhen R -7 00, I -+ 0. But since I does not depend 
on R, I == 0. Thus (70.1') has been proved under the supposition j(ex;) == o. 

In order to prove (70.2') under the same condition, it will be assumed 
that z lies in 5+. Then 

I(t) 
t-z' 

considered as a function of t, is holomorphic in the region between L 
and r. Therefore, by Cauchy's theorem, 

o = ~1_ (t(t)dt = _1_ r t(t)dt + _1_ r j(t)d~. 
2rri &I t - z 27ti .} t - z 27ti ~ t ,- Z 

r+L L r 

But the last integral, denoted earlier by I, is zero, and hence the 
required formula (70.2') follows for j(oo) ==: o. 

If now Co = j(oo) *- 0, on applying the formulae just deduced to the 
function t(z) - Co' which vanishes at infinity, and noting that 
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} f codt { 0 for z in 5-
21Ci t - z = Co for z in 5+' 

L 

one obtains (70. }') and (70.2') for the general case. 
With a view to the generalization of the preceding formulae, the following 

terminology will now be introduced. Let a be some finite point of the 
z plane and let the function I(z) have the form 

I(z) = G(z) + lo(z) (a) 

in the neighbourhood of this point, where 

Al A2 Al 
G(z) = + ( )2 + ... + z-a z-a (z-a)l 

(b) 

(AI' A 2 , • • ., Al being constants). Then it will be said that j{z) has at 
that point a pole 0/ order 1 with the principal part G(z). 

Similarly, if in the neighbourhood of the point z = 00, i.e., for suf
ficiently large ! z I, the formula (a) holds true, where now fo(z) is ho
lon1orphic near z = 00 and vanishes at that point, and where 

G(z) = Ao + A1z + ... + AzZl (c) 

(Ao, AI' ... , 4z being constants), then it will be said that t(z) has at 
z = 00 a pole of order l with the principal part G(z). 

It will be noted that in the case of the point at infinity the constant Ao 
has been added to the principal part. 

A function to(Z) , holomorphic in the neighbourhood of the point a, may be 
expanded in a series of the form 

lo(z) = Co + c1(z - a) + c2(z - a)2 + .... 
Even in the case when I(z) is holomorphic near the point at infinity, i.e., when 

for sufficiently large I Z I 

c1 c2 
j(z) = Co + - + - + ... , 

Z Z2 

the function I(z) will be said to have at z == 00 a pole of zero order with the principal 
part co' 

The following simple formulae will now be proved. 

3°. Let t(z) be holomorphic in S+ and continuous in 5+ + L with the 
possible exception of the points a l , a2, ••• , an of 5+, where it may have 
poles with the principal parts G1(z), G2(z) , ••. , Gn(z). Then 
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1 J'~ f(t)dt ---; - = f(z) - G1(z) - G2(z) - .•. - Gn(z) for z in S+ 
21t't t - Z 

(70.3) 

L 

and 

_1_ff(f)dt == 
27ti t - Z 

- G1(z) - G2(z) - ... - Gn(z) for z in S-. (70.4) 

L 

4°. Let f(z) be holomorphic in S- and continuous in 5- + L with 
the possible exclusion of the finite points av a2, ••• , an of S- and also 
the point z === 00, where it may have poles with the principal parts 
G 1 (z), G 2 (z), .. . , G n (z) , Goo (Z) • Th en 

-1---;-f I{f)dt == - j{z) + G1(z) + ... + Gn{z) + Goo{z) for z in 5- (70.3') 
27t2 t -- Z 

L 

and 

_~fj{t)dt == 
27ti t - z 

G1{z) + ... + Gn{z) + Goo{z) for z in S+. (70.4') 

L 

These formulae are easily established. Because of the similarity in the 
proof, attention will be restricted to (70.3) and (70.3'); the reader may 
verify the other two formulae in a similar manner. 

First consider (70.3). Applying Cauchy'S formula to the function 

fo{z) == f{z) - G1{z) - · · . - Gn(z) 

which is holomorphic in 5+, one finds (assuming z to lie in 5+) 

__ 1 r fo(t)dt _ ~1 r j(t)dt ___ 1 (C1{t)dt _ _ _1 fGn(t)dt 
lo(z) -. -. . · · · . · 

27tt.l t - Z 27tt. t - Z 21t't&- t - Z 27t't t - Z 
L L L L 

But each of the functions Gk(z), k = 1, ... ,n, is holomorphic in S
and vanishes at infinity, because these functions are of the form (b). 
Hence, by (70.2'), 

-l-f Gk(t)dt = 0, k = 1, 2, ... , n. 
2rci t - z 

L 
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io(z) = _l-;J" jJt)dt , 
2nz t-z 

and so (70.3) follows. L 

§ 71 

'"[0 prove (70.3'), let r be a circle with centre at the origin and \vith 
radius so large that L and the points z, av a2, ••• , an lie inside r. Ap
plying Cauchy's formula to the function 

to(z) == t(z) - G1(z) - G2(z) - · .. - Gn(z) - Goo{z) 

which is holomorphic in the region between Land r, one has (\vith the 
former convention regarding the positive direction on r) 

to(z) = - -~j" lo(t)dt == __ 1-;f1o(t)dt ___ ~-;f_!o~)dt_ 
2nz t - z 2nz t - Z 27tZ t - z 

L+r L r 

(assun1ing, of course, that z lies in 5-). But, by (70.2'), the last integral 
vanishes, since fo(z) is holomorphic outside r and vanishes at infinity. 
Hence 

to(z) == __ l_.j"to(t)dt == --I-;f t(t)dt + 
27tZ t - Z 27tZ t - Z 

L L 

+ _1_. f G1 (t)dt + 
27tz t - Z 

1 J~ Gn(t)dt 1 (Goo{t) +-. +--; dt. 
27t1, t - z 2nz ~ t - z 

L L L 

But all the integrals on the right-hand side containing G1(t), G2{t), .. " 
Gn(t), Goo(t) vanish, since these functions are holomorphic in 5+ and the 
point z lies in S-. Hence 

1 f j(t)dt 
to(z) == - -2 --:- t ' 

7t't - Z 
L 

and so (70.3') follows. 

§ 71. On Cauchy integrals, taken along infinite straight lines. 
Hitherto consideration has been restricted to integrals taken along 

finite lines. There is no difficulty in extending the definition of Cauchy 
integrals to the case where the line of integration goes to infinity; it is 
only necessary to study the question of convergence of such integrals 
with infinite integration limits. 

In the sequel only those cases of infinite lines of integration will be 
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considered which are straight lines. Without affecting generality it can 
be assumed that the line of integration is the real axis. This case will be 
considered below in detaiL 

Thus let L be the real axis and consider the Cauchy type integral 
+00 

1 f f{t)dt - 1 f I(t)dt · 
2-;i t - z - 27ti . t - z ' 

L -00 

(71.1 ) 

in the present case t is a real variable, which assumes all real values, and 
/(t) is a function (in general complex) of the real variable t: 

I{t) == 11(t) + i/2 (t), 

where 11(t) and t2(t) are real functions. Unless stated otherwise, it will always 
be assumed that t(t) is finite and integrable in the ordinary sense on every 
finite segment of the straight line L. 

For the present let it be assumed that z does not lie on L. The integral 
(71.1) will converge uniformly, if, for sufficiently large ! t I, the inequality 

B 
I t(t) I < TtfiL (71.2) 

holds, where Band fL are positive constants. (This condition is, of course, 
sufficient, but not necessary.) In fact, in this case the integrand is of 
order I t \-1-(.1. for large J t I and the above statement follows from a 
known convergence criterion for integrals \vith infinite limits. 

However, in the sequel the more general case will occur where t(t) --?-c 
as I t I --* 00, the limit c being the same for t ~ + 00 and for t -+ - 00. 

This limit will be denoted by f(exo). It "'''ill now be assumed that for suf
ficiently large I t I 

t(t) = c + o(~) = t(ex» + 0 (~), [J. > o. (71.3) 

Then (71.1) will diverge, i.e., 
Nil 

will not tend to a limit as N' and N" tend independently of one another 
to - 00 and + 00 respectively. In fact, 
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N" N" N" 

( l(t)dt ==/I(t) - c dt + C/ dt . 
. t-z t-z t-z 

N' N' N' 

Elementary reasoning shows that 

N" 
I'"' dt r" 
j = ± rxi + log -, , 

.. t-z r 
(a) 

N' 

where ex (0 < ex < 7t) denotes the angle between the straight lines con
necting z with N' and N" 
(Fig. 32) and r', r" the 
distances of z from N', 
N". The (+) sign refers 
to the case when z lies in 
the upper half-plane and 
the (-) sign to the case 
when z lies in the lower 
half-plane. 

If N' and N" tend (in
dependently of one an
other) to - 00 and + 00 

N 
s+ , 

+ 

y 

o 
x 

z 
Fig. 32. 

respectively, a. tends to Te, but log r" jr' does not have a limit. Hence the 
preceding integral does not tend to a limit and the same may be said 

with respect to the left-hand side of (a), because the first integral on 
the right-hand side converges on the basis of (71.3). However, if N' and N" 
do not increase independently of each other, but if it is assumed that at 
all times N' == - "!", then log r" jr' tends to 0 and 

+J.V +00 

· f t(t)dt ft(t) - c . 11m == dt ± 1'C'lC. 
lV-:roo t - z t - Z 

(71.4) 

-N -00 

'The expression on the left-hand side is called the Cauchy principal value 
of the integral 

+00 

J
r j(t)dt 

t-z 
-00 

or / t(t)dt , 
t-z 

L 
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tak:en between infinite integration limits. In future, when using integrals 
with infinite limits, their principal values will be 1-tnderstood whenever these 
integrals do not exist in the ordinary sense. 

It has been seen that, provided (71.3) is satisfied, the principal value 
exists 'and 

+00 +00 

_l--;-J· t(t)dt == _1_. (f(t) - /(00) dt ± !f(oo), (71.5) 
27t2 t - Z 27t2 .., t - z 

-00 -00 

where on the left-hand side the principal value must be taken, while 
the integral on the right-hand side exists in the ordinary sense; the 
signs (+) or (-) must be chosen according to whether z is in the upper 
or in the lower half-plane. (Note that for the definition of the principal 
value it is not necessary to assume N' = - N", but it will be sufficient 
if lim Nt/N" = - 1.) 

Thus th€ term Hprincipal value" will be used in two different, but 
analogous senses: vvhen the integrand becomes infinite at some point 
(as in the preceding sections) or when the integration limits are infinite. 

Next suppose that the point z == to lies on the path of integration, 
i.e., on the real axis L. Then the integral 

+00 

J j(t)dt == 1-' f(t)dt 
t - to ~ t - to 

L -00 

must ~e taken as principal value in both the senses stated above, i.e., 
its value will be defined as 

+00 to-& N 

J j(t)dt == lim {J" t(t)dt. + J t(t)dt }, (71.6) 
t - to .l.V-*oo t ---- to t - to 

-00 &~O -N to+& 

if that limit exists. 
I t is easily seen that +00 

J_dt_=O 
t ---- to · 

(b) 
-00 

The principal value (71.6) will clearly exist, if (71.3) is fulfilled and if t(t) 
satisfies the H condition near to' It follows from (b) that the principal 
value of (71.6) may then be expressed by either of the following formulae: 
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+00 +00 

j-f(t)dt =j"t(t) ~oo) dt 
. t -- to t - to 

(71.6') 

-00 --00 

or 
+00 +00 

(l(t)dt = (t(t) - /(to) dt, 
J t - to . t - to 

(71.6/1) 

~OO -00 

where the principal values on the right-hand sides may be understood 
only in one of the senses indicated above; in the first case, it ,viII be the 
limit 

00 

lim { ff(t) -/(00) dt +Jf' I(t) - f(<x» dt}, 
&-+0 t - to t - to 

-00 

since both integrals in the curly brackets converge; in the second, it 
will be the limit of the ordinary integral 

+N 

lim f I(t) - /(to) dt, 
).V---?oo t - to 

-N 

since the integrand is now integrable in the ordinary sense. 
Let I(t) satisfy (71.3) and, of course, the conditions of integrability 

and finiteness imposed at the beginning of this section. Then F(z), 
defined by 

+00 

F(z) === _l_.ff(t)dt == _1_. [I(t)dt , 
21t2 t - Z 21t2 ~ t - z 

(71.7) 

L -00 

will, obviously, be holomorphic in the upper as well as in the lower haIf
plane (but, generally speaking, not on L). Denote these half-planes by 
S+ and S- respectively; the boundary L will not be included with 
either of these regions. The Plemelj formulae and the theorems on the 
boundary values stated in § 68 are extended without difficulty to the 
present case. 

In fact, if to is a point on L (lying at a finite distance from the origin) 
and if t(t) satisfies the H condition near this point, 
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+00 

(71.8) 

-00 

+00 

F-(to) == - tt(to) + 2~i f :~:o . (71.9) 

-00 

P+(to) and F-(to) denote here the limiting values of F(z) as z -+ to along 
any path on the left and right of L respectively, i.e., in 5+ or 5-. Further, 
if j(t) satisfies the H condition on some segment of L, F+(to) and F-(to) 

satisfy the H condition there, except possibly near the ends of the 
segment. The statements in the Notes at the end of § 68 will also remain 
true in the present case. 

In order to verify the correctness of (71.8) and (71.9) and of the sub
sequent statements, it is sufficient, for example, to represent the integral 
(71.7) in the form (71.5) and to divide the integral on the right-hand side 
into two integrals: the one to be taken over a finite segment, containing 
to, the other over the remaining part of the straight line. 

Hitherto, when speaking of the behaviour of the function F(z) near 
a point of the boundary L and of its boundary values, points in the finite 
part of the plane have always been implied. In order to study the behaviour 
and the boundary values of F(z) near the point at infinity (which in the pres
ent case lies on L), one may, for example, proceed in the following 
manner. 

Introduce the coordinate transformation 

1 
z=--

~' 
(71.10) 

then the point ~ == 0 of the c: plane corresponds to the point z === 00 

of the z plane and vice versa; the real axis of the z plane becomes the 
real axis of the ~ plane and upper and lower half-planes correspond to 
one another; when the point z == t travels along the real axis in the positive 
direction from t == - co to t === + 00, the corresponding point 

1 
(J ==--

t 
(71.10') 

of the ~ plane also travels along the reai axis in the positive direction as 
follows: from (j == 0 to (J === + 00, from (j == - 00 to (j == 0 (since the 
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points (J === - 00 and (J === + 00 represent the same point z: === 00 of the 
~ plane). 

Introducing the transformation (71.10) in (71.7), changing the inte
gration variable in accordance with (71.10') and introducing the notation 

F(z) = F (- ~) = F*(~), I(t) = 1 (- ~) = 1*(0"), (71.11) 

one finds 
+00 

F(z) = F*(~) = ~ /' /*(O")dO" 
27tz. 0'( (J - ~) 

-00 

(71.12) 

Assuming for the time being (in order to simplify the reasoning) 
that j(t) satisfies the H condition at the point t = 0, it is easily seen 
that one can rewrite the preceding formula in the form 

+00 +00 

F(z) === F*(~) == _l_.jf*((j)dcr __ l_.jl*(O")dO" ; 
2nz (1- ~ 2nz (j 

(71.13) 

-00 -00 

all these integrals must be taken as Cauchy principal values. Obviously 
these will exist, if, as it has been assumed, f(t) satisfies the H condition 
for all finite t and the condition (71.3) for large 1 t I. The second integral 
on the right hand side of (71.13) is constant, and hence the study of the 
function F(z) near z == 00 is reduced to that of the integral 

+00 

~1_jf*((j)dcr 
2ni (J - ~ 

(71.13') 

-00 

near ~ === 0, i.e., to a problem discussed earlier. 
In general, the study of the integral (71.1) may be reduced to that of an integral 

of the same form taken over a finite closed line, e.g., a circle. For this purpose it is 
sufficient, for example, to introduce the transformation 

1 
z+i=-~+i'~ (A) 

Then the real axis L of the z plane becomes the circle l~ of the ~ plane which is 
tangential to the real axis and passes through the point ~ = - i, and the integral 
(71.1) takes the form 

1 I" f* (a)dcr 1 f f* (cr)dcr 
2m .. 0" - T - 21ti cr + i ' 

l I 
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where 

t* ( (J) == t ( -i cr. ) . 
cr+z 

Note that (A) transforms the half~plane 5+ on to the region bounded by the 
circle t. 

In order to utilize immediately the earlier results, impose on j(t) 
the condition that 1*(0') is to satisfy the H condition near 0' = 0, i.e., that 

1/*(0"2) - t*(<SI) ! < B I 0'2 - cr1 ]tJ., 0 < !-L < 1. 

This leads for j(t) to the condition 

1 1 tJ. 

! l(t2) -/(t1) ! < A --- 0 < l-L < 1 
t2 tl 

(71.14) 

for sufficiently large I t1 j, I t2 I; (71.14) will be called the H condition for 
the neighbourhood 01 the point at injinity. Nate that (71.3) is obviously 
a consequence of (71.14) for the neighbourhood of the point at infinity, 
but that the converse statement is not true. (71.3) may be called the 
H condition for the point z = 00 (but not for its neighbourhood). 

Assuming that j(t) satisfies the H condition in the neighbourhood of 
the point at infinity, i.e., the condition (71.14), it will no\v be shown that 
the boundary values of F(z) exist when z tends to infinity along any 
path which remains in either the upper or lower half-plane. These 
boundary values will be denoted by F+(oo) and F-(oo) respectively 
and (71. 13) will be used to prove their existence and to calculate their 
values. 

If z -+ 00, remaining in the upper or lower half-plane, then ~ -+ 0, 
::llso remaining in the upper or lower half-plane. Hence, applying (71.8) 
to the first integral on the right-hand side of (71.13), one obtains 

+00 +00 

. 1 {f* (cr)da 1 f f* (cs)da 
F+(oo) = F*+(O) = If*(O) + -. ~----. ---, 

2nz. 0' 2TIZ (j 

-00 -00 

and the first of the following formulae is deduced: 

F+(co) == if((X)), P-(oo) = - tf(oo); (71.15) 

the second formula may be proved in an analogous manner. Obviously, 
one can now discard the assumption regarding the behaviour of j(t) 
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near the point t = 0, adopted temporarily above. 
The following property of the integral F(z), as defined by (71.7), 
will now be noted. Suppose that not only j(t) but also the product t/(t) 
satisfies the H condition near the point at infinity. 

It is easily seen that, if tf(t) satisfies the H condition near the point at infinity, 
then also t(t) satisfies that condition; in addition, obviously t( (0) = 0, so that, 
by (71.15), F+( 00) = F-( 00) = O. 

Under these conditions the product zF(z) tends to a definite limit as 
Z -+ 00 along any path remaining in the upper or lower half-plane. In 
fact, putting 

(71.16) 

one has 
+00 +00 +00 

zF(z) == _1_j zfl(t)dt = _l_j-- fl(t)dt ___ 1_ (iI(t)dt 
27ti t(t - z) 27ti t - z 2TCi./ t J 

-00 -00 -00 

whence, by (71.15), 
00 

lim [zF(z)] = + ltl(OO) _~l_. (tl(t)dt = ±Ml(OO) __ I_.jf(t)dt, (71.17) 
z-+ 00 21t't J t 21t''t 

-00 -00 

where the upper or lo\ver sign must be chosen according to whether z 
remains in the upper or lower half-plane. 

This formula may also be written 

F(z) = ~ + 0 ( +) in each half-plane, (7l.l8) 

where A is a constant (\vhich may have different values in the different 
half-planes) and o(l/z) indicates, as always, that z.o(l/z) tends to zero 
as I z I grows beyond all bounds. 

Similarly, it may be shown that, if in addition to tf(t) also the product 

t2/'(t) = /2(t) (71.19) 

satisfies the H condition in the neighbourhood of the point at infinity, 
then 

F' (z) = - ; + 0 (:2) in each half-plane, (71.20) 
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where A is the same constant as in (71.18). It is readily seen that one 
may limit the proof to the case when the derivative f'(t) is continuous 
for all values of t, and not only at the point at infinity*. In fact, integrating 
by parts, one obtains 

+00 +00 

F'(z) = _1_j f(t)d~ === _1_jt'(t)dt 
2ni (t - z) 2 2rri t - z ' 

-00 -00 

whence, noting that 

1 1 t 
t-z Z2(t - z) - -z - Z2 ' 

one easily deduces 
+00 

z2F'(z) = _1_.j t2(t)dt -_l-.jtf'(t)di. 
21t2 t - Z 27t2 

-00 -00 

Letting Z -7 00, one finds by (71.15) 
+00 

1 r 

lim [z2F'(z)J === ± it2(oo) ---.J tj'(t)dt, 
~oo 2m 

-00 

and it is easily verified that the right-hand side agrees with the right
hand side of (71.17), taken with the opposite signs. [Using the substitution 
t = - l/a, it is seen that 12(00) = -/l(oo).J 

It is just as easily shown that, if in addition to (71.16) and (71.19) the 
following relation also holds true: 

'(71.21) 

where t3(t) satisfies the H condition in the neighbourhood of the point at 
infinity, then 

2A ( 1 ) F" (z) = -- + 0 - , 
Z3 Z3 

(71.22) 

where A is the same constant as before. 

* In fact, otherwise one may replace the function t(t) by another function to(t) 
with the stated property which differs from t(t) only on some finite interval 
a < t < b. The estimate for the difference of the corresponding integrals is quite 
elementary_ 
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These results can be formulated briefly as follows: under the stated 
conditions both sides of the equality (71.18) can be differentiated where 
differentiation under the sign 0 is admissible. 

The generalization of the above work to any order derivatives is 
obvious; however, only derivatives up to and including the second order 
will be encountered in subsequent chapters. 

§ 72. On Cauchy integrals, taken along infinite straight lines 
(continued). A number of formulae, analogous to those of § 70, may 
be deduced, in order to simplify the calculation of Cauchy integrals, taken 
over an infinite straight line L. Consideration will be limited here to the 
simplest of these formulae which may easily be generalized by the 
reader. 

1°. Let j(z) be a function, holomorphic in 5+ and continuous In 
s+ + L including the point at infinity, and let 1(00) == a. Then 

_1~. f j(t)dt = j(z) - i a for z in S+, (72.1) 
21t1- t - Z 

L 

_1_. f j(t)dt == - ta 
27t1- t - Z 

for z in S-. (72.2) 

L 

2° . Let I(z) be a function, holomorphic in S- and continuous In 
s- + L including the point at infinity, and let 1(00) = a. Then 

_ 1_. f I(t)dt =.1a "2 for z in S+, (72.1') 
21t1- t - z 

L 

~1_. r j(t)dt = - j(z) + ta for z in S-. 
27t2.. t - Z 

L 

(72.2') 

The condition that j(z) is continuous in S+ + L [or in 5- + LJ and 
at z = 00 may be expressed as follows: 

j(z)=j(oo)+o(l)=a+o(l) for z-+oo in S++L [or in S-+L]. (72.3) 

(The notation 0(1) denotes a quantity which tends uniformly to zero 
as I z I -+ 00; cf. § 6S, 4°) . 

The formulae (72.1) and (72.2') may be called Cauchy formulae for 
the regions 5+ and S- respectively. 
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Formula (72.1) will now be proved. Draw about the origin as centre a 
circle with sufficiently large radius R, so that the point z lies inside. 
Consider the contour r, consisting of the segment AB of the real axis 
contained in the circle and of the semi-circle, lying in 5+; select the 
positive direction on r in such a way that AB is in the direction Ox. 
Since, by supposition, the point z is inside r, one has by Cauchy's formula 

f(z) = -l-;-f j(t)dt = _1_.( j(t)dt + _1_. f j(t)dt , 
27t2 t - Z 27t2.. t - Z 27t2- t - z 

r AB y 

where y is the semi-circle, forming part of the path of integration. 
The second integral on the right-hand side tends, thanks to (72.3), 

to the limit 
7tZ 

a.--. = -!a as R -+ 00; 
27t2 

the first term then tends to a definite linlit, as R ~ 00, and this linlit 
IS given by j(z) - la. But 

+R 

11m -- = 1101 --
. 1 /. j(t)dt · 1 f j(t)dt 

R--,..oo 21ti. t - z R--,..oo 2ni t - z 
AB -R 

is also, by definition, the principal value of the integral 

_1_ r t(t)dt 
2rri aI t - z ' 

L 

and so (72.1) is proved. Note that also the existence of the principal 
value of the preceding integral has been proved by this argument; this 
was not obvious beforehand, since in the present case j(t) is subject 
to the condition: f(t) = a + 0 (1), and not to the condition: f(t) = 

=a + 0(1 t l- fL) under which the existence of the principal value had 
been proved earlier. 

The other formulae of this section can be proved in an analogous 
manner. 



CHAPTER 13 

BOUNDARY VALVES OF HOLOMORPHIC FUNCTIONS 

§ 73. Some general propositions. Let L be a simple contour, 
S+ and S- the finite and infinite parts of the plane, bounded by L; let the 
positive direction on L be such that S+ remains on the left. The contour 
L will not be included in 5+ or 5-. Further, let 

be a continuous function given on L. 
Consider the question as to whether I(t) can be the boundary value of 

some function F(z) = U(x, y) + iV(x, y), holomorphic in 5+, where 
reference here is, of course, to boundary values as z -)0- t from S+. 

It is easily seen that, in general, this cannot be the case, if the con
tinuous function I(t) is otherwise arbitrary. In fact, it is known that it is 
sufficient to give the boundary value 11(t) on L of a function U(x, y), 
harmonic in S+, in order to completely determine this function; but 
then also its conjugate function V(x, y) will be completely determined, 
neglecting an arbitrary constant term, and hence also the boulldary 
value 12(t) of this function, if indeed it exists. Clearly the roles played 
by 11(t) and 12(t) may be interchanged. 

The problem of determining a harmonic function from its boundary values 
represents the well-known Dirichlet problem. Also note that it does not follow from 
the existence of the boundary value of U(x, y) that those of its conjugate function 
V(x, y) exist. 

It follows from the above that only one of the two real functions 
11(t), t2(t) may be given arbitrarily, if the function I(t) = tl(t) + i/2(t) is 
required to be the boundary value of some function, holomorphic in 
S+. Hence it ,,~ill be of great interest to find the necessary and sufficient 
condition that a continuous function t(t), given on L, represents the 
boundary value of some function F(z), holomorphic in S+; an analogous 
question will arise with regard to the region S-. The following theorems 
answer these questions: 

298 
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I. A necessary and sufficient condition for a continuous function 
t{t), given on L, to be the boundary value of some function, holomorphic 
in 5+, is 

1 J. f{t)dt -. == 0 for all z in S-. 
27t~ t - Z 

(73.1 ) 

I.J 

II. A necessary and sufficient condition for a continuous function 
I(t), given on L, to be the boundary value of some function, holomorphic 
in 5- (incl'lf~ding the point at infinity), is 

1 /. f(t)dt . 
~-. = a lor all z zn S+, 
27t~. t-z 

(73.2) 

L 

where a is some constant which is equal to the value of the above-men
tioned holomorphic function at infinity. 

These propositions are almost obvious on the basis of the results 
of the preceding sections. In fact, if t(t) is the boundary value of some 
function holon1orphic in 5+, condition (73.1) holds true by (70.2); 
hence (73.1) is necessary. It is also sufficient, for, assuming it to be 
fulfilled, one may write 

F(z) === _1_. f~ I(t)dt . 
27t't t - Z 

(73.3) 

L 

Taking into consideration that F(z) = 0 for z in S-, and hence F-(to) = 0 
on L, one obtains from (68.4) and Note 2 of § 68 that 

F+(to) = f(to), 

i.e., if (73.1) is satisfied, f{t) represents the boundary value F+(t) of the 
function F(z), defined by (73.3). 

The second theorem:" may be proved in an analogous manner. If f(t) 
is the boundary value of a function, holomorphic in S-, (73.2) is neces
sary by (70.2'); it is also sufficient, since, if it is satisfied, the function 

F(z) = -- -:-. f t(t)dt + a (73.4) 
2rc2 t - Z 

L 

is holomorphic in 5- and takes the boundary value F-(to) = f(to); 
the last conclusion follows from (73.2), (68.4) and from Note 2 of § 68. 

Hitherto it has been assumed that the function f(t) is only continuous. 
If, in addition, it is assumed that it satisfies on L the H condition (§ 65), 
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then (73.1) and (73.2) may be given a new form which is in many respects 
very convenient. In fact, denoting by to some point of L and performing 
in (73.1) and (73.2) the limiting process z --+ to from S+ and S- respectively, 
one obtains, on the basis of the Plemelj formulae (§ 68), 

- t/(to) + _1_. f t(t)dt = 0 (73.1 ') 
27t'l- t - to 

L 

and 

1 r f(t)dt 
i/(to) + 21ti. t _ to = a (73.2') 

L 

respectively (for all to on L). These conditions are equivalent to the con
ditions (73.1) and (73.2). In fact, (73.1') expresses that the boundary 
value of the function 

F(z) = _1_. r t(t)dt J 

2rwz. t - Z 
L 

holomorphic in S-, is zero along the entire boundary L of 5-; hence, 
applying Cauchy's formula to S- or from §37, 2°, F(z) = 0 throughout 
S-, which is the condition (73.1). Similar reasoning applies to (73.2) and 
(73.2'). The conditions (73.1') and (73.2') were stated by J. Plemelj [IJ. 

So. far it has been assumed that L ~s a simple contour. Consider now 
the case when L is an infinite straight line and let the real axis represent 
this line. As in § 71, let S+ and S- represent the upper and the lower 
half-planes respectively. The following theorems are easily proved in a 
manner analogous to that used in the preceding proofs. 

Let f(t) be a function, continuous on L, for which for large [ t I 

f(t) = a + 0([ t [-I') = 1(00) + 0([ t [-It), (73.5) 

where a and t.t are constants and f.l. > O. Then 
III. A necessary and sufficient condition for the function j(t) to be 

the boundary value ot a function, holomorphic in S+ and continuous in 
S+ + L (including the point z = 00), is 

1 f f(t)dt · --. ~-- = -ta for all Z In s-. 
21t2 t - z 

(73.6) 

L 

IV. A necessary and sufficient condition tor the function I(t) to be 
the boundary value oj a junction, holomorphic in 5- and continuous in 
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5- + L (including the point z = 00), is 

__ 1_. f f(t)dt = ia for all z in 5+, 
2n2 t - Z 

(73.7) 

L 

If, in addition, j(t) satisfies on L, including the point at infinity [cL 
(71.14)J, the H condition, (73.6) and (73.7) may be replaced by 

1 1 f j(t)dt 
- 2-1(tO) + 21ti t _ to = -la (73.6') 

L 

and .1/(t ) + _1_ f _f(t)dt = l.a 
20 2' t t 2 7t2 - 0 

(73.7') 

L 

respectively, where to can be any point of L. 
The proofs of these theorems will be left to the reader. 

§ 74. Generalization. The formulae and theorems of the preceding 
section, referring to the case of regions bounded by one simple contour, 
can immediately be extended to the case when the boundary consists 
of several such contours. 

It is easily seen that the conditions (73.1), (73.2), (73. I') and (73.2') 
remain valid, if 5+ is a connected finite region bounded by simple con
tours Lv L2 ... , L m , Lm+l which do not intersect each other and the last 
of which surrounds all the others, if L is the union of these contours and, 
finally, if S- is the part of the plane which is the complement of the 
region 5+ + L with regard to the entire plane. Thus the region 5- con
sists of the finite regions 5"1, 5"2, ... , 5;", bounded by Lv L 2 , ••• , Lm 
respectively, and of the infinite region S~+l' consisting of the points 
outside L m +1• The function F(z), holomorphic in 5-, must then be con
ceived as the union of the functions, holomorphic in 51' 5"2, . · ., 5;,,+1' 

§ 75. Harnack's theorem. A theorem which is frequently used and 
,vhich is due to A. Harnack [IJ follows almost immediately from the 
results of the preceding sections. 

Let L be a simple contour and let 5+, 5- be the finite and infinite parts 
into which the plane is divided by L (which does not itself belong to 5+ or 
5-). Let f(t) be a real and continuous function on L. Then, if 

1 f j(t)dt 
--, === 0 for all z in 5+, 
27t2 t - z 

(75.1 ) 

L 
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I(t) == 0 everywhere on L. Also, if 

I(t) == const. on L. 

-~--r t(t)dt = 0 for all z in 5-, 
2rri t t - z 

L 

§ 75 

(75.2) 

In fact, it follows from (75.1), on the basis of the results of § 73, that 
I(t) is the boundary value of some function F(z) == U(x, y) + iV(x, y), 
holomorphic in S-, i.e., /(t) == U- + iV-. But since j(t) is a real function, 
the boundary value V- of the function V(x, y), harmonic in S-, is zero 
everywhereonL. Hence V(x,y) == Oevery\\-~hereinS-. Therefore U == C;:::-:: 
== const. in 5-, and hence /(t) == U- == C on L. Substituting this value 
in (75.1) and noting that 

1 r Cdt - C 
2ni t - -; - , ... 

L 

it is verified that C == o. 
It may be sho,vn in the san1e manner that it follows from (75.2) that 

j(t) == C == const.; however, in this case it is impossible to conclude that 
C == 0, since, substituting j(t) == C in (75.2), one obtains the identity 
0==0. 

Thus the theorem is proved. It will be left to the reader to generalize 
it to the case of the regions considered in § 74. In that case it follows 
from (75.1) that j(t) =Ck on L ,: (k== 1,2, ... ,m), I(t) =0 on Lm+v 
and from (75.2) that /(t) == Con L, where C, Cv C2, ••• , em are constants. 

It is also easy to formulate a theorem, analogous to the preceding one, 
for the case when L is an infinite straigllt line. 

NOTE. 1. The following conclusion follo\\-~s directly from Harnack's 
theorem (having in mind the case when L is a simple contour). 

Let jl(t), 12(t) be two real continuous functions, given on L. Then, if 

_1_ ( tl(t)dt = _1_ J'" t2(t)dt for all z in 5+ (75.3) 
21ti.; t - z 2rci t - z ' 

L L 

fl(t) == 12(t) on L; also, if 

__ 1_ f 11(t)dt == _1_ f t2(t)dt for all z in 5-, (75.4) 
21ti t - z 2rri t - z 

L L 
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12(/) == 11(t) + canst. on L. This result is verified by applying Harnack's 
theorem to the function 12(t) - 11(t). 

NOTE. 2. It is not difficult to show that the preceding theorem 
remains true, if it is not assumed that I(t) is continuous, but if it is allowed 
to have a finite number of first order discontinuities. This case will not 
be considered further here and it will only- be noted that the theorem, if 
properly formulated, will hold for much more general conditions. 

§ 76. Some special formulae for the circle and the half-plane. 
When L is a circle or a straight line, the formulae of § 75 may be given 

a form which is convenient for future applications. 
10. First some special notation will be introduced. Let 

F(z) == U(x, y) + iV(x, y) (76.1 ) 

be a function of the complex variable z, defined in some region of the 

y 

5 

o 

Fig. 33. 

plane z. Then F(z) [where the bar only 
extends over FJ is to denote the function, 
having the conjugate complex value of 
F(z) at the point z, which results from a 
reflection of the point z in the real axis, i.e., 
which is simply the conjugate complex 
value of z (Fig. 33). 

X Thus, by definition, 

F(z) = F(z) (76.2) 
or 

F(z) == U(x, - y) - iV(x, - y). (76.2') 

For example, if F(z) is a polynomial 

F(z) == aoZn + a1zn
-

1 + .'. + an, 

then obviously by (76.2) 

(76.3) 

F(z) == cloZn + a1zn - 1 + ... + an, (76.3') 

i.e., F(z) is obtained from F(z) by replacing the coefficients by their 
conjugate complex values. Similarly, if F(z) is a rational function 

(76.4) 
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then 

F(z) = iiozn + ii1z
n-1 + ... + an (76.4') 

boZn + b1zn - 1 + ... + bn • 

It is easily seen that, if F(z) is holomorphic in some region S, F(z) 
is holomorphic in the region S, obtained from S by reflection in the real 
axis (cf. Fig. 33). 

In fact, putting 

one has by (76.2') 

U1(x, y) = U(x, - y), V1(x, y) = - V(x, - y). 

Hence, if U(x, y), V(x, y) satisfy the Cauchy-Riemann conditions 

8U 8V oU oV 
-=---

oy 8x 

in 5, then U1(x, y), V1(x, y) will satisfy the Cauchy-Riemann conditions 

8U1 8Vt aU l 8V l 
-- = --, -- = ---

OX 8y oy OX 
in the region S. 

If the function F(z) is holomorphic in 5, except at certain points where 
it has poles, the function F(z) will have the same properties in Sand 
its poles ,viII be at points obtained from the poles of the function F(z) 
by reflection in the real axis. 

Note also that the function F(z), conjugate complex to F(z), may be 
represented as 

F(z) = F(z); (76.S) 

this follows from (76.2) by replacing z by z. 
Now suppose that the function F(z) is defined in one of the half

planes S+, S- into which the z plane is divided by the real axis, say, 
in the region 5+. Then the function F(z) will be defined in the region 
5-. Further, if the boundary value F+(t) exists, where t is some point of 
the real axis, it follows immediately from (76.2) that .also the boundary 
value F-(t) exists and that 

F-(t) = F+(t) (76.6) 

(since, if in (76.2) z -)- t from S-, Z -+ t from 5+). 
Obviously the roles played by 5+ and S- may be interchanged; in 

that case one will have 
F+(t) == F-(t). (76.6') 
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2°. Let y be the unit circle with centre at the origin of the plane 
of the complex variable ~; the points of y will be denoted by 0' so that 

(76.7) 

Denote by :2:+ and ~- the regions I ~ I < 1 and I ~ [ > 1 respectively and 
choose the positive direction on y so that the region ~+ remains on the left. 

Let F(~) be a function, defined in ~+[or :2:-J. Consider the function 
F * (~), defined in L-[ or ~+ ] in the following manner: 

(76.8) 

or, remembering the meaning of the symbol F, 

(76.8') 

The last formula shows that F*(~) may be defined as follows: the 
function F * (~) takes values, con
jugate complex to those of F(~) 
at points which are reflections 
of the point ~ in the circle y 
(Fig. 34). [It will be remembered 
(§ 48, 1°) that the reflection of 
the point ~ in the circle y is the 

_-I-----~----+--.----t-~ point~' == 1/~, because in the 
o J present case the radius of the 

Fig. 34. 

circle is unity.] 
I t is easily seen that, if F (~) 

is holomorphic in ~+[or ~-J, the 
function F * (~) is holomorphic in 
~-[or ~+J, and vice versa. For 
example, if F(~) is holomorphic 

in ~+, it may be represented by the series 

(76.9) 

which is absolutely convergent in ~+, i.e., for [~l < 1; the function 
F * (~) will then be represented by the series 

-( 1 ) _ til a2 
F * (~) = F ~ = ao + T + ~ + · · ., (76.9') 

absolutely convergent in 1:-, i.e., for I ~ I > 1. 
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Now suppose that F(~), defined in ~+, has the boundary value F+(a) 
for ~ -+0', where 0' is a point on y. Then it is easily seen from (76.8') that 
also the function F*(~) has the boundary value F;.(cr), defined in L-, and 

F;(cr) = F+(a), (76.10) 

because, if in (7 6.8') ~ -+ a on y remaining in ~-, then ~' == 1 If, tends to 
l/cr =:::: (j remaining in :L+. Clearly the roles of ~+ and 2:- may be inter
changed; instead of (76.10) one will then have 

(76.11) 

3°. Using the fact that every function, holomorphic in :L+ [or ~-J, 
corresponds to a function F(1/~), holomorphic in L- [or~2:+J, one may, 
in the case of circular boundaries, modify the formulation of the pro
positions I and II of § 73 which hold in the general case. In fact, the 
following theorems are easily proved: 

I. A necessary and sufficient condition for the function f(cr), continuous 
on the circle y, to be the boundary value 01 some junction, holomorphic inside 
y, is 

1 f j(cr)dcr . . 
--. z;: = Ii for all z;: ~ns~de y, 
21CZ (j-

(76.12) 

y 

where ii is a constant which is equal to the value of the above-mentioned 
function at ~ == O. 

II. A necessary and sufficient condition for the function I( a), continuous 
on the circle y, to be the boundary value oj a junction, holomorphic outside 
y, ~s 

1 f f( cr)da 
-. ~ = 0 for all ~ outside y. 
2nz cr-

(76.13) 

y 

The conditions (76.12) and (76.13) follow directly from the conditions 
(73.2) and (73.1) and from the statements of the present section. For 
example, if f((1) is to be the boundary value F+(cr) of some function F(~), 

holomorphic inside y, the function f((j) must be the boundary value 
F;(cr) of the function F*(~) = F(I/~), holomorphic outside y; this follows 
directly from (76.10). Hence, applying (73.2), one obtains immediately 

- -
(76.12), where if, == F*(oo) == F(O) == F(O). 

The condition (76.13) may be proved in an analogous manner. However, 
one special point must be noted: let (76.13) be fulfilled and let it be 
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required to find the function F(~), holomorphic outside y and taking 
the boundary value f(cr) on y; if one wants to use for this purpose Cauchy's 
formula for the infinite region L - (§ 70), viz. 

F(~) = -~ f f(cr)dcr + F(oo), (76.14) 
21t't. (j - ~ 

y 

one has to kno\v F(oo). As is easily seen, this quantity is given by 

F(oo) = _1_. f f(cr) dcr. (76.15) 
21t't (J 

y 

Introducing (76.15) in (76.14), one may write 

F(~) == - -~-J(' f(cr)dcr . 
27ti cr( 0" - ~) 

(76.14') 

y 

By (70.2'), for ~ inside y, 

1 (f( cr)dcr 
-. = F(co), 
27t't oJ a - ~ 

y 

whence, for ~ = 0, one obtains (76.15). Thus (76.15) may, obviously, be replaced by 

F(oo) = _1_ ( f(cr)da 
2 

. .,.. , 
TIt." rs - ":>0 

y 

where ~o is any point inside y. 

Note the following formulae which will be used in the sequel. Let 

~(~) = ao + al~ + ... = ~(O) + ~~'(O) + ~ ~"(O) + . .. (76.16) 
1.2 

be a function, holomorphic inside and continuous up to y. Then 

1 r crlccp( cr)dcr _ - k - k-l --. - ao~ + al~ + ... + ale (k=O, 1,2, ... ) (76.17) 
27t't ., cr - ~ 

y 

for all ~ inside y. In fact; o-kcp(o-) is the boundary value of ~k~( 1 !~), holo
morphic outside y, except at the point ~ = 00 near which it has the form 

_ ( 1 ) ( al a2 ) ~k~ ~ = ~k iio + T + ~ + .... = 

(1) - k...L - Yk-l -= ao~ I a1'o + ... + ak + 0 ~ , 
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and (76.17) follows immediately from (70.4'). In particular, for k === 0, 
one has for all ~ inside y 

~l_. f ~dO" = cp(O). 
21t''t (J - ~ 

(76.18) 

y 

This formula is the same as (76.12), but written somewhat differently. 
4°. As before, using the fact that to every function F(z), holomorphic 

in the upper [or lower] half-plane 5+ [or S-J, corresponds the function 
F(z), holomorphic in the lower [or upper] half-plane S- [or S+], one 
deduces the following propositions from the conditions (73.7) and (73.6). 

As in § 73, let f(t) denote a function given on the real axis L, where it 
is continuous and such that for large ! t ! 

f(t) = a + 0(1 t I-~) = f(oo) + O(! t I-~), f.l = canst. > O. (76.19) 

Then 
III. A necessary and sufficient condition for the function f(t) to be the 

bo'undary value of a junction, holomorphic in 5+, is 

1 f j(t)dt 
--. = iii for all z in 5+. 
27t't t - z 

(76.20) 

L 

IV. A necessary and sufficient condition for the function t(t) to be the 
boundary value ot a junction, holomorphic in 5-, is 

_1_. r Mdt = - ta for all z in 5-. 
27t2 I t - z 

L 

(76.21) 

§ 77. Simple applications: solutions of the fundamental pro
blems of potential theory for a circle and half-plane. As simple 
applications of the preceding results the solutions of the fundamental 
problems of the theory of the logarithmic potential will now be given 
for the cases of a circle and a half-plane. 

The first fundamental problem (Dirichlet problem) consists of determi
ning a function, harmonic in a region, when its boundary values are 
given. (The solution of this problem for the circuJar ring by use of in
finite series was stated at the end of § 62.) 

The second fundamental problem (Neumann problem) consists of 
determining a function, harmonic in a given region, when the boundary 
values of its normal derivative are given. 
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1°. Fir s t fun dam e n tal pro b 1 emf 0 r a c i r c 1 e. 
For simplicity, let the radius of the circle be unity and its centre at the 

origin. As before, denote the circumference of the circle by y and its 
points by (J == ei~; other points of the plane will be denoted by ~. Let 
the unknown harmonic function be P and its conjugate complex function 
Q. The latter function is known to be determined apart from an arbitrary 
constant, if the function P is known. Finally, put 

F(~) == P + iQ, (77.1 ) 

where F(~) must be holomorphic inside y. 
By the condition of the problem, the unknown function P must take 

the definite boundary value P+, as ~ tends to the point cr of y (from the 
inside of y), which must be equal to the real function 1((3) or I(it), given 
on y; it will be assumed that the given function 1(&) is continuous on y. 
Hence the boundary condition of the problem may be written 

p = I(it), (77.2) 

where, for simplicity, P has been written for P+. 

As a matter of fact, if it is assumed that P takes (definite, finite) boundary 
values for all points on y, then the given function f(S) must necessarily be 
assumed to be continuous; this follows from the statements in § 37. 

The problem will now be restricted by assuming that not only the 
function P, but also its conjugate complex Q, and hence also the function 
F(~) take definite boundary values. (This condition is not necessary and 
has only been introduced to simplify the reasoning.) Denoting F+(cr) 
by F(a), the boundary condition (77.2) may now be written 

F(cr) + F(cr) = 2/(&). (77.3) 

Multiplying (77.3) by _1_. da, where ~ is a point insider, and integrat-
27t~ 0' - ~ 

ing around y, one finds 

_1_/ F(a)da + _1_J F(a)dcr == _1 / j(&)dcr 
2rri cr - ~ 2rci cr - ~ 1ti (J - ~ • 

(77.4) 

y y y 

On the basis of Harnack's theorem (§ 75), this condition is completely 
equivalent to the preceding one. (Cf. § 75, Note 1.) 

By Cauchy's theorem, the first integral on the left-hand side is equal 
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to F (~) ; by (76.18), the second integral equals 

F(O) == c(o - i~o' 

§ 77 

where <Xo and ~o are real (for the present, unknown) constants. Thus 

1 J-- f(&)dcr . 
F(~) = -. ~ - C(o + 2~O' 

7t2 cr-
(77.5) 

'Y 

There remains still to determine eto - i~o. For this purpose put ~ = 0 
in (77.S) which gives 

21t 

1 J f(&)dcr 1 ( 2cx.o == -. == - f (fit) dit. 
1t2 cr 7t ~ 

(77.6) 

y o 

Thus eto may be determined from this formula; the quantity ~o, however, 
remains quite arbitrary, as was to be expected, because the function 
Q, conjugate complex to P, was determined by P apart from an arbitrary 
real constant, and hence F (~) must be determined apart from an· imaginary 
constant. 

Introducing the value of <Xo in (76.5), one finds 

F(~) == _1. J t(!J.)dcr - _~ (jJ.&)dcr + i~o = 
7t2 (J - ~ 27t2 .J (j 

y 'Y 

1 ( cr+~ da . == -. j(&) --.- + 2~o· 
27t2 ~ cr-~ cr 

(77.7) 

y 

This last formula is the well known Schwarz torm1.tla ; the unknown harmonic 
function P is obtained from it by separating real and imaginary parts 

p == 91 F(~) = ffi _1_. f t(&) cr + ~ . dcr . 
21t2 cr - ~ (j 

(77.7') 

It has only been proved that, if the solution of the problem satisfying 
all the imposed conditions exists, it is necessarily given by this formula. 
There remains to prove that this formula actually gives the solution. 
This will be done, assuming that f(&) satisfies the H condition. In this 
case, on the basis of the statements of § 68, the function F(~), determined 
by (77.7), takes definite boundary values which satisfy (77.3); hence 
P satisfies (77.2). 



CHAP. 13 BOUNDARY VALUES OF HOLOMORPHIC FUNCTIONS 311 

The existence and uniqueness of the solution may be proved for much more 
general conditions (it is sufficient, if t(!it) is continuous), but no space has been devoted 
to this here, since this problem is considered in any textbook on complex function 
theory or potential theory. 

It follows from the equivalence of the conditions (77.3) and (77.4) that'the 
boundary values of F(~) satisfy (77.3). That F(~) satisfies (77.3) may be verified 
directly on the basis of the Plemelj formulae (68.2). In fact, denoting by 0'0 == ei&o 

some point on y, one has 

1 /. f(i})dcr 1 j-- t(fJ)dcr 
F+(cro) = t(fJo) + -. ---- --. --- + i~o = 

1t'~..J (J - 0'0 2ttt cr 
y y 

1 J cr + (Jo da = t(!i}o) + -. t(fJ) ---.- + i~o· 
21t~ cr - Go (j 

y 

Writing under the integral sign 0' == ei&, <ro = ei&o, one finds 
21-

1 J fJ - fJo . .. . F+(cro) = t(fJo} + ---;-- f(fit) cot dS- + ~~o= t(fJo) + an ImagInary quantIty, 
21tt 2 

whence 0 

Substituting in (77.7') 

cr = ei&, ~ = pei4J , dcr = iei&d&, 

one easily deduces Poisson's formula 
21t 

P _ _ 1-J~ (1 - p2) t(&)d% 
27t 1 - 2p cos (& - t.J;) + p2 

(77.8) 

o 

which solves the above problem without the use of complex variables. 

20
• The sec 0 n d fun dam e n tal pro b 1 emf 0 r a c ire 1 e. 

Let F(~) denote the same function as in 10
; it will be assumed that 

the derivative F/(~) takes the definite boundary value F'(cr). 
One deduces from the equation 

that 2P == F(~) + F(~) = F(pei &) + F(peifJ
) 

2 'OP = ei&P'(pei&) + ei&F'(pei&) = I P'(~) + I P'('(,). 
op p p 

(77.9) 

The boundary condition of the problem under consideration has the 
form (denoting by n the outward normal) 

'OP 'OP 
'On = f(&) or ----a; = f(&) on y, (77.10) 
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where f(~) is a given continuous function. By (77.9) this condition may 
be written 

c;F'(c;) + aF'(cr) = 2/(&) on y. (77.11 ) 

In the same manner as in 1 0 one obtains 

-1-f aF'(a)da + -1-f (JF'((j)d~ == _1_ r f(&)da 
21Ci (j - ~ 2r:i c; - ~ 1ti. r:; - ~ , 

y 'Y Y 

where ~ is an arbitrary point inside y; hence, applying Cauchy's formula 
and (76.18) and noting that aF'(c;) vanishes for c; = 0, one finds 

~F'(~) = _I, f t(ftt)d(J . 
TC't (j - ~ 

(77.12) 

This formula determines F'(~) and shows that the right-hand side must 
vanish for ~ = 0, if the problem is to have a solution. This means that, 
in order for the problem to be possible, one must have 

21t 

or f f(&)d& = 0, (77.13) 

o 

In contrast to the Dirichlet problem, the Neumann problem does not 
always have a solution, but only when (77.13) is satisfied. 

If the condition (77.13) is satisfied, the function F'(~), determined by 
(77.12), will be holomorphic also for ~ = 0. The function F(~) is deter
mined by integration 

F(~) == _I, f~f f(&)d~ + const., 
1t't ~ 0' -

(77.14) 

'Y 

where canst. denotes an arbitrary complex constant. The value of the 
unknown function P = ffi F(~) is thus determined apart from an ar
bitrary real constant. This was to be expected, because, if P is a solution 
of the Neumann problem, P + canst. will obviously be a solution of the 
same problem. 

It is easily seen (cf. the preceding problem) that the formulae, just 
obtained, actually solve the stated boundary problem, if, for example, 
the given function /(&) satisfies the H condition. 
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Inverting the order of integration and evaluating the inner integral 
on the right-hand side of (77.14), noting that 

f d~ 1 1 
~ ((j _ 1:) = ---;; log 1: - -;; log (cr - 1:) + const., 

and using (77.13), one obtains the formula which was stated by T. Bog
gio [4J 

F(~) = --~ff(&) log (a_Q!.cr + const. = 
nz (j 

y 21t 

1 j'" == --; f(&)log((j-~)d&+const.; (77.15) 

o 

sevarating real and imaginary parts gives the formula of U. Dini [IJ 
21t 

1 J~ p = --; 1(&) log r d& + const., (77.16) 

o 

where r = 1 (j-~ 1 and const. is an arbitrary real constant. However, in 
most applications, it is convenient to use the formulae (77.12) and (77.14). 

3°. The fir s tan d sec 0 n d fun dam e n tal pro b 1 ems 
for the h a I f-p I a n e may be reduced to the corresponding problems 
for the circle by means of conformal transformation (cf. § 71) or may 
be solved directly by a method, analogous to that used in the earlier 
problems for the circle. In view of the complete analogy with the above 
work, only short remarks will be made here. 

Let j(t) be a real continuous function, given on the real axis L, and let 
it be required to find P(x, y), harmonic in the upper half-plane 5+ and 
taking the boundary value P+ = I(t) on L including the point at infinity, 
so that for z -?- 00 (in 5+ + L) P -7 a, where a is the real constant 

a = f(ex;). (77.17) 

Introducing the function of a complex variable 

F(z) = P + iQ, (77.18) 

holomorphic in S+, and assuming that this function has a definite boun
dary value F+(t) for all points of L, including the point at infinity, one 
can write down the boundary condition of the problem 

F(t) + F(t) = 2f(t) on L, (77.19) 
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where F(t) has been written instead of P+(t). Let 

F(oo) = a + ib, ' 

§ 77 

where a is the same as in (77.17) and b is some other real constant; multiply 

both sides of (77.19) by_l---;-.~, where z is an arbitrary point of S+, 
27t't t- z 

and integrate along L: 

_1_. f F(t)dt + _1_. f F[i)dt = -~ f t(t)dt . 
21C't t - Z 21C't t - Z 'It't t - Z 

L L L 

Noting that F(t) is the boundary value of F(z) holomorphic in the upper 

half-plane, F(t) is the boundary value of F(z) holomorphic in the lower 
half-plane, P(oo) == a + ib and F(oo) = a - ib, and applying (72.1) 
and (72.1 '), one concludes that the first integral on the left-hand side 
equals F(z) - t(a + ib), while the second integral equals !(a - ib). 
Hence 

F(z) == _1. f f(t)dt + ib, 
1t't t - Z 

(77.20) 

L 

where, as was to be expected, the quaritity b remains arbitrary. 
I t is easily verified that (77.20) solves the problem, if the function j(t), 

for example, satisfies the H condition on L (including the point at in
finity, cf. § 71.) 

The second fundamental problem may be solved in an analogous manner. 



PART V 

APPLICATION OF CAUCHY INTEGRALS TO THE SOLUTION OF 
BOUNDARY PROBLEMS OF PLANE ELASTICITY 

As mentioned earlier, the solution of the fundamental boundary 
problems of the theory of elasticity for regions of general form presents 
great practical difficulties. However, the~e are certain classes of regions 
for which effective solutions may be obtained by simple means. In plane 
elasticity, one such class comprises regions which may be mapped on to 
a circle by rational functions (one particular case has already been 
encountered in § 63). At first sight this class may appear to be too restrict
ed; however, as \viII be explained in detail in § 89, regions of this type 
may be used to approximate to any desired accuracy simply connected 
regions of arbitrary shape. 

This Part will be devoted almost entirely to the solution of boundary 
problems for regions of this kind. However, at the beginning (§ 79), there 
will be given the solutions of the first and second fundamental problems 
for arbitrary regions bounded by one contour, using a method closely 
connected with the method of solution for regions of the particular type 
described above. Finally, after a short introduction to other methods, 
the detailed solution of the above-mentioned problems will be given for 
the case of regions, bounded by an arbitrary number of contours (§ 102). 
This solution is due to D. I. Sherman. It will thus be seen that Cauchy 
integrals present very convenient means for the theoretical solution of 
general problems as well as for the effective deduction of practical 
results. 
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CHAPTER 14 

GENERAL SOLUTION OF THE FUNDAMENTAL PROBLEMS FOR 

REGIONS BOUNDED BY ONE CONTOUR 

In this chapter a general method of solution of the first and second 
fundamental problems will be studied for regions bounded by a simple 
contour (§ 79). These solutions follow from integral equations whicll, for 
their part, are obtained directly from the functional equations deduced 
in § 78. These latter equations form the foundation for the practical 
methods studied in the remaining chapters of this Part and 'they 
may be investigated directly without recourse to integral equations. For 
this reason § 79 may be omitted by any' reader not acquainted with the 
elements of the theory of integral equations, since the understanding 
of the subsequent chapters, containing solutions of problems for par
ticular cases, does not require knowledge of that section. 

§ 78. Reduction of the fundamental problems to functional 
equations. 

10. Let S be a finite or infinite region of the z plane, bounded by one 
simple contour L satisfying the conditions of § 47. Let 5 be mapped 
on to the circle I ~ I < 1 of the ~ plane by the function 

z = (V(~) (78.1) 

and let the circumference of that circle be denoted by y. 
In the case of finite regions 5, it will be assumed that the point ~ == ° 

corresponds to the point z == 0, while in the case of infinite regions the 
point ~ = 0 is to correspond to the point z = cx). Thus, for finite regions 

w(o) == 0 

and for infinite regions (cf. § 47) 

(U(~) = ~ + a holomorphic function. 

It should also be remembered that w'(~) =1= 0 inside and on y (§ 47). 
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(78.2) 

(78.3) 
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Further, it ,viII be assumed (for the time being) that for infinite region~ 
stresses as well as displacements remain bounded at infinity. This is 
equivalent (§ 36) to the supposition that both the stresses at infinity and 
the resultant vector of the external forces applied to the boundary 
vanish (conditions which must always hold true for finite regions). 

Under these conditions and with the notation of § 50, the functions 
((Jl(Z) and ~l(Z) will be holomorphic in S (including the point z == 00 in 
the case of infinite regions, cf. § 36). Hence the functions q;(~) and ~(~) 
will be holomorphic inside the circle I ~ I < 1. It will be assumed that 
cp(~), cp'(~), ~(~) are continuous up to the circumference y of the circle under 
consideration, i.e., that these functions have definite boundary values 
as ~ approaches points of y along arbitrary paths; or, in other vvords, 
it will be assumed that the solutions are regular (§ 42) and only such 
solutions will be studied. 

In addition, one may al\vays assume (§ 41) tl;1 (0) == 0 for finite regions and 
~l(OO) = 0 for infinite regions, i.e., in both cases it may be assumed that* 

~(O) == 0. (78.4) 

In the case of the first fundamental problem for finite regions the 
imaginary part of cp~ (0), i.e., of 

may also be fixed arbitrarily. 

cp'(O) 
w' (0) , 

2°. The boundary condition of the jirst /'ltndamental problem takes 
the form (cf. § 51) 

w(cr) - -
<p ( (j) + ---- <p' ( (j) + trJ ((1) =::..::: f -1- if" =:::: f 

'( ) T 1 .... , , w (J 

(78.5) 

\vhere Ci == ei
& is an arbitrarJT point of y and ?( 0'), cp' (0'), tJ;( 0') must be 

interpreted as boundary values for ~ --?- (j from inside y. This condition 
may be rewritten in conjugate complex form 

~(cr) + ~CJj- cp'(cr) + ¢(cr) =/1 - if2 == f. 
(U'(u) 

The quantity t == 11 + i/2 is defined on L by the equation (§ 41) 
8 

(78.6) 

t = II + it2 = if (Xn + iY n)ds + const., (78.7) 

u 
* Instead of (78.4) one may introduce the condition <p(O) = 0, as was done in 

the preceding editions of this book. However, the condition given here somewhat 
simplifies the reasoning. 
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where s is the arc coordinate of L and the constant may be fixed ar
bitrarily. This expression will be a given function of % (because s is a 
known function of .&) or of cr. 

It will not only be assumed that f is single-valued and continuous, but 
also that it has a continuous derivative with respect to it, satisfying the 
H condition (§ 65, 3°). For this it will obviously be sufficient, if the func
tions X nand Y n satisfy the H condition. 

It will be recalled that single-valuedness and continuity of f = 11 + i/2 '\rvould 
be impossible, if the resultant vector (X, Y) of the external forces did not vanish, 
because in that case t 1 + if 2 would undergo an increase i (X + i Y) for every 
complete circuit of L, i.e., it would not revert to its original value. 

The following will now be noted. Provided cp(~) has been found in one 
way or another, the function ~(~) can be calculated directly from the 
boundary condition. In fact, equation (78.6) gives the boundary value 
~((j) of t.f;(~) which therefore is determined by 

Iji(~) = -~ 1 tJ;(O")dcr · 
21C2 a - ~ 

y 

Introducing in this formula ~(O'), as determined by (78.6), and remem
bering that by (76.18) 

1 1 cp(O')dG -
2rci - cr _~ = cp(O) = 0 , 

y 

one obtains 

~(~) == __ 1 r fdG - -1-1 ~ 
2rci &I (J - ~ 21ti w' (0') 

cp'(cr)dcr 
(78.8) 

y y 

There still remains the problem of finding cp(~). For this purpose a 
functional equation will be constructed which contains only ~(~) and 
which follows directly from the boundary condition. In fact, rewriting 
(78.S) as follows: 

_ w(cr) _ 
~(O") = f - cp(a) - w'(cr) cp'(cr) (78.9) 

and denoting the right-hand side for the time being by F(cr), it is seen 
that the function F(cr) must itself represent the boundary value of some 
function ~ (~), holomorphic inside y and vanishing for ~ == O. However, 
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it is known (cf. § 76, 3°) that the necessary and sufficient condition for 
this to be true is 

1 /,. F(cr)dcr 
--. --y == a for all ~ inside y; 
21t2. (j - s 

(b) 

y 

the constant ii on the right-hand side of (76.12) is in this case equal 
to zero, since ~(O) = O. 

Introducing into the preceding equation for F(cr) the right hand side 
of (78.9), one finds 

-1-f Idcs _ cp(~) --I-f w(O') • rp'(cr)dcr = 0 
21ti Ci - ~ 2rci w' (cr) (j - ~ 

y y 

or , finally, 

1 r w( Ci) rp' (cr)dcr 
SO(~) + -. -,_. -~ + ii == A(~) 

21t2 ~ (t) (cr) cr - ~ 
y 

for all ~ inside y, where 

A (z:) = -~-. f Idcr . 
27t2 (j - ~ 

y 

In deducing (78.10) use has been made of the fact that 

-l--;-f <p(cr)dcr = <p(Z:). 
27t2 0' - ~ 

y 

(78.10) 

(78.11) 

The expression (78.10) is the functional equation from which the 
function cp(~) must be determined. It will be seen in the next section that 
this equation completely determines the unknown function, if, in the 
case of finite regions, the imaginary part of cp' (0) jw' (0) is fixed. 

Hitherto it has been assumed that in the case of infinite regions the 
resultant vector (X, Y) of the external forces, applied to the contour L, 
and the stresses at infinity vanish; it has likewise been assumed that the 
rotation vanishes at infinity. This assumption will now be relaxed. 
In that case the functions C?l(Z), ~l(Z) for infinite regions have the form 
(§ 36) 
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X+iY 
CPl(Z) = - ) log z + rz + cp~(z), 

27t(1 + x 

x(X-iY) 
~l(Z) == log z + r'z + ~~(z), 

27t(1 + x) 

(78.12) 

\vhere rp~(z), ~~(z) are functions, holomorphic in S (including the point 
Z == 00), and m rand r' are given quantities; further, the imaginary 
part of r may be fixed arbitrarily. The quantities X and Y can be cal
culated beforehand, since the external stresses, acting on the boundary, 
are known. 

By (78.3) these formulae may be written 

x + iY rc 
<p(~) = 2r.(1 + x) log ~ + -~- + CPo(~), 

x(X - iY) r'c 
~ (~) = ~ ~ -------log ~ + - + ~o(~), 

2,.;(1 + x) ~ 

(78.13) 

where CPo(~), ~o(~) are functions, holomorphic inside and continuous up 
1:0 y. [Cf. (50.14) and (50.15), where it should not be forgotten that the 
-region 5 has there been mapped on to the region outside the circle, while 
here it has been mapped on to the inside of y.] 

In the sequel, when solving the first fundamental problem, it will 

always be assumed that the imaginary part of r is zero, so that r = r, 
i.e., it will be assumed that there is no rotation at in/,t'nity. 

Substituting (78. 13) in (78.5), it is seen that ~o(~), ~o(~) must satisfy 
the same condition (78.S) as the functions cp(~), ~(~), with the only dif
ference tllat / has now to be replaced by to, where 

x + iY rc (0(0') {X-iY 1 re} / =/- logcr--- ---- + 
o 21t (1 + x) fj (i) , ( (j) 21t (1 + x) · Ci a2 

x(X + iY) _ r'c + log cr --=:-
27t(1 + x) rs 

Of, noting that a = 1/0", 

X + iY rc w(O") { X-iY _}-10=/- logcr--- __ )cr-rccr2 -r'ca. (78.14) 
21t cr w' ( 0") 21t ( 1 + x 
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In this expression i,s, may be written instead of log G. It is easily seen 
that 10 will be a single-valued, continuous function on y the derivative 
of which with respect to -& satisfies the H condition, provided the given 
functions Xn and Y n satisfy (as it has been assumed) that condition. 

The single-valuedness of 10 follows from the fact that 1 increases by 
. . (X + iY) log 0' • • 
~(X + ~ Y) and Increases by the same quantIty for every 

27t 

complete circuit of y (in anti-clockwise direction which corresponds to 
a clockwise circuit of L, leaving the infinite region 5 on the left). 

Thus CPo(~) and ~o(~) will be found from the same condition as cp(~) 

and ~(~). Hence the more general case can always be reduced to that 
considered earlier. 

3°. Next the second lu,ndamental problem will be investigated. In 
this case the boundary condition has the form (§ 51) 

w(O') - -
xcp{a) - __ q;'(0") - tJ;{cr) = 2[.L(gl + ig2) == 2[.Lg, (78.15) 

(ti' (cr) 

where gI' g2 are the known boundary values of the displacements u, v. 
The almost complete analogy with the first fundamental problem is 

easily seen. Assuming at first that (in the case of infinite regions) 

X = Y = 0, r = r' = 0, 

i.e., that cp(~) and ~(~) are holomorphic, and proceeding as in the case of 
the first fundamental problem, one obtains the equation (analogous to 
78.10) 

xq:>(~) - _l_.j_W{O') . cp'(cr)da _ ci = B(~) 
27tt cu' (0') (J - ~ 

for all ~ inside y, where 

is a known function. 

y 

B(~) = 2ft, r gdcr 
27t't., cr - ~ 

y 

(78.16) 

(78.17) 

Equation (78.16) is the functional equation which completely de
termines the function <p(~) ; this will be proved in the next section. 
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.I.~fter the function <p(~) has been found, the function ~(~) may be 
determined from the formula 

~(~) = _ _ [.t.f_gdG __ 1 .f_w,(crL . _r.p'(cr)dcr. 
7t~ (J - ~ 27t~ W (J) G - ~ 

(78.18) 

y y 

I'he case when X, Y, r, r' are not zero, but have arbitrarily fixed 
values (referring, of course, to the case of infinite regions) may be re
duced to the preceding one in the same way as this ,vas done for the 
first fundamental problem. 

4°. The functional equation for ~(~) for the case of the mixed fun
dal1zental problern, when the external forces are given for one part and 
the displacements for the remaining part of the boundary, may be 
constructed in an analogous manner. In this case the equation becomes 
somewhat more complicated and no consideration \vill be given to it 
here (cf. also end of § 79,4°). 

§ 79. Reduction to Fredholm equations. Existence theorems. 
The proofs of the existence theorems, given in this section, have been taken, 

without essential changes from the Author's paper [11]. However, several simpli
fications and corrections of two elementary, but annoying blunders in the Author's 
reasoning in that paper have been introduced here. One of these had been 
kindly brought to the Author's notice by S. G. Mikhlin and the correction ,vas 
already included in the first edition of this book. T'he other, despite its obvious 
and elementary nature (or rather because of it), remained unnoticed and. was only 
discovered by the Author himself, while preparing the third edition. A short 
account of these proofs \vas also given in the .A.uthor's papers [9, 10]. 

1°, The functional equations (78.10) and (78.16) represent a somewhat 
unusual type of integral equations which are, however, easily reduced 
to ordinary Fredholm equations of the second kind. 

In the case of infinite regions, it will again be assumed that 

X = Y = r = r' = 0, 

SInce the problems can always be reduced to this case (cf. § 78). 
2°. A beginning will be made with the first f'undamental problem. In 

order to reduce (78.10) to a Fredholm equation, it will be rewritten 

~(~) + _l_.J~ ~ - w(~) .q/(cr)dcr + kw(~) + ii = A(~), (79.1) 
27tz (0' (0") (J - ~) 

y 
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where 

k = rp'fl. --, 
(0'(0) 

(79.2) 

it is easily seen, on the basis of (76.18), that the left-hand side of (79.1) 
is identical to the left-hand side of (78.10). In the case of infinite regions 
(0'(0) == 00 and hence k = O. 

Differentiating (79.1) with respect to ~, one obtains 

qJ'(~) + ~l_.f~{(O(O") --(U(~)} ~ dcr + kCi)'(~) = A'(~), (79.3) 
21t2 o~. cr - ~ (0'(0") 

Y 

whellce, letting ~ tend to an arbitrary point 0'0 of y, one finds 

tp'(O'o) + _1_. f-1- {(O(O') - (0 (cro) } cp'(ot dcr + kCi)'(cro) = A'(cro). 
21t2 vero cr-ero w'(cr) 

(79.4) 

y 

It is readily seen that this transition to the limit is completely justified 
under the conditions postulated earlier for the function f and the contour 
L. In fact, it has been assumed that t has a first deri,rative satisfying the 
H condition. Therefore A' (~) will be a function, continuous inside and 
up to y; the function A'(O'o) in (79.4) denotes the boundary value of 
A '(~). 

Further, the conditions assumed with regard to L ensure the con
tinuity of U)(~), (U'(~), (J)II(~) up to y, with the exclusion of the point ~ == 0 
in the case of infinite regions, and also that 6.)' (~) ::1= 0; hence it follows 
that the function 

K(~, cr) = _1_ ~ cu(cr) - (t)(~) = co(er) -~ - (a - ~)Ci)'(~) (79.5) 
6.)' (a) a~ cr - ~ (U'(O") (0' - ~)2 

is continuous for all values of (j and ~ inside and on y, except for (J == 0, 
~ = 0 in the case of infinite regions. 

In fact, by Taylor's formula with the remainder term in the form of a definite 
integral, one has 

a 

w(a) - (U(~) - (U'(~) (0' -l:) = f w"(t) (0 - t)dt, 

y .., 

where the integral may be taken along the segment of the straight line connecting 
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0' and ~. Putting t = rs - A( a -~), one obtains 
1 

(1)(0') - <.t)(~) - w'(~) (0' -~) = (cr - 1;)2 r oo"[cr - :A(cr - ~)JAdAI 
.; 

o 
and so the continuity of K(~, 0') is proved. 

Finally, by supposition (cf. § 78), the functions cp(~), cp'(~), ~(~) are 
continuous up to the boundary. 

The equation (79.4) may also be deduced from the equations obtained 
in a different way by V. A. Fok [1,2J who, however, restricted con
sideration to finite regions. (cf. V. A. Fok and N. I. Muskhelishvili [IJ). 

The preceding formulae refer to the cases of finite as well as of infinite 
regions. However, in the latter case, they may be given a somewhat 
different form which will be lllore convenient. First of all, in that case 
k = O. Hence (79.1) beconles 

1 f w(cr) - (U(~) -
cp(l:) + 27ti W' (0') (0' _ l:) cp' (0') dO' + Ii = A (l:) . (79.1 ') 

y 

Further, noting that in accordance with the imposed conditions 

c 
w(l:) = ~ + wo(l:) , 

where (t)o(~) is holomorpllic inside y, one has 

VJ(O') - (U(~) <00(0') - wo(~) c 
- O'~ • 

Substituting this expression in (79.1'), one finds 

cp(~) + _1_. f w:(a) - wo(l:) cp'(O')dO' + it = A(l:) , 
27tt {t} (0") (0- - ~) 

(79.1 ") 

y 

because, as is easily verified, 
21t 

1 f cp'(o-) da 1 f ~ 
2m W'(O') -;- = 27t W'(O') d~ = 0; 

y 0 

in fact, the expression conjugate complex to the last integral 
2n: 

1 r cp'(O") d& _ 1 f cp'(cr) dO' 

27t ~ (0' (~ - - 27ti cu' (0') ---;; 
o y 
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is zero, because cp'(cr)jcrCiJ'(a) is obviously the boundary value of a function, 
holomorphic inside y. 

Differentiating (79.1 ") 

cp'(~) + _1_. r ~ {~o(u) ~ wo(~) } cp'(cr)dcr == A '(~) (79.1 "') 
21t2 • 2~ w' ( (j) (j - ~) 

y 

and taking, as before, the limit ~ -+ cro, one obtains the integral equation 

cp'(CiO) + _!~. j ~ { CiJo(cr) - CiJo(cro)} ([>'(0") dO" = A '(0"0)' (79.4') 
2n2 cero (j - 0'0 (0' (0') 

y 

Thus equation (79.4) which will now be written 

1 j -cp'(cro) + -. K(O'o, o-) cp'(O')dcr + kw'(cro) == A'(O"o) 
21t2 

(79.6) 

'Y 

and which is applicable to both cases may in the case of infinite regions 
be replaced by (79.4'), i.e' J 

cp'(O"o) + _1_. jKo(O-OJ 0") cp'(cr) de; == A'(O"o), (79.6') 
21tZ 

y 

where 

Ko(~, 0") = 1 __ (7 (,)0(0") - CiJo(~) . 
(U'(cr) o~ (J - ~ 

(79.5') 

The integral equations (79.6) and (79.6') will now be investigated 
and a beginning will be made with the case of infinite regions. 

Substituting in (79\6') 

cp'(cr) === cp~ + icp~ 
and 

Ko{O'oJ 0') == Kl + iK2 

and separating real and imaginary parts, one obtains two real Fredholm 
equations; this system may be reduced by ordinary means to a single 
equation. This equation will not be written down, since it is sufficient to 
know that (79.6') reduces to a single Fredholm equation (of the second 
kind). 

Suppose now that (79.6') has the (continuous) solution <p'(cr). By 
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substituting this solution in the second term on the left-hand side of 
(79.1"') one finds some function tp'(~) which is seen to be holomorphic 
inside y and to have a definite boundary value on y. Further, it is also 
seen that this boundary value coincides with the function cp'(cr), figuring 
in the second term on the left-hand side of (79.1 '"), Of, in other words, 
that the holomorphic function qJ'(~), thus determined, actually solves the 
functional equation (79.1 "'). Finally, it is readily seen that one obtains 
the solution cp(~) of the functional equation (79.1 "), if one determines 
this function by the same equality (79.1")' with the understanding that 
one has to use as function <p'(0') appearing in the second term on the left 
hand side the solution of the integral equation (79.6') under consideration. 

Once qJ(~) has been found the function ~(~) is determined by (79.8), 
VIZ., 

(79.7) 

y y 

Since cp(~), ~(~) and cp'(~) are continuous up to y, the functions cp(~) 

and ~(~) give a regular solution of the problem. Thus a definite regular 
solution of the problem corresponds to every (continuous) solution 
t:p'(a) of the integral equation (79.6'). 

For the determination of the constant ii, referred to above, it is sufficient to 
put ~ = 0 in (79.1"), or, better still, in (78.10) which is equivalent to (79.1"); in 
this way one obtains 

1 f w(cr) -i'i == A (0) - --. "--===:- cp'(cr)dcr . 
27tt ow' ( cr) 

y 

The properties of cp'(~), stated above, have been discussed earlier and those of 
cp(~) are then obvious; those of y;(~) follow from the same reasoning and from the 
fact that (79.7) may be written 

1 f T dcr 1 f cu(cr) - oo(~), oo(~), , 
~(~) = 21ti cr -=-e- - 21ti ~'(cr-) (0- _ ~) rp (cr)da - oo'(Q cp (~). (79.7) 

y y 

It will now be shown that the integral equation (79.6') has always a 
unique solution. It is known that for this purpose it will be sufficient to 
prove that the corresponding homogeneous equation 

If -cp'(ao) + --. Ko(O'o, cr)q/(O')dcr = 0 
27t2 

(79.6") 

y 
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has no non-zero solution. This is ahnost obvious on the basis of the earlier 
remarks. In fact, if this equation had a solution different from zero, 
one could by means of this solution obtain a solution of the fundamental 
problem for the case f = 0 with cp'(~) =F O. However, this would mean 
that a non-zero solution exists for the case when no external forces 
act on the boundary and that the corresponding internal stresses in the 
body differ from zero. The impossibility of this is proved by the uni
queness theorems (cf. § 40, 3°, § 42, 2°; also § 41,3°). Thus the existence of 
the solution of the first fundamental problem has been proved for 
infinite regions. 

The case of finite regions will be considered next. For the time being 
it will be assumed that the constant kin (79.1) has been fixed arbitrarily. 
In order to remove the term kw{~) in this equation, introduce the trans
formation 

cp(~) = - kw(~) + CPo(~), (79.8) 

where cpo(~) is a new unknown holomorphic function. One thus obtains 
from (79.1) the equation 

CPo(~) + -. - CPo(O')dO' + a = A(~) 1 f 6>{0') - w(~) -,-

27C2 00'(0') (0' -~) 
(79.9) 

y 

from which follows, as before, 

~~(~) +_1_. fK(~,())cp~(O')dO' = Af(~) 
27t't 

(79.10) 

y 

(79.11 ) 

y 

As in the case of (79.6'), this equation may be reduced to a system 
of two Fredholm integral equations from which one finally obtains a 
Fredholm equation (of the second kind). It will be shown below that 
(79.11) always has a (unique) solution. 

First, however, consider the construction of the solution of the original 
problem, once any (continuous) solution <p~(0') of (79.11) has been found. 

Substituting this solution in the second ternl on the left-hand side of 
(79.9), one obtains the function <Po(~). The function cp (~) will then be 
given by (79.8) and it will be the solution of the functional equation 
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(79.1) for the given value of k. In order that the function cp(~), de
termined in this manner, will lead to the solution of the original problem, it 
is, however, necessary and sufficient to select the value of k to satisfy 
(79.2), i.e., 

cp'(O) 
k == -----

<0'(0) 

or, using (79.8), 

This is obviously possible only if 

<p' (0) 
o == a real number. 

w'(O) 

(79.12) 

(79.13) 

Let it be assumed that (79.13) is fulfilled. Then (79.12) determines the' 
real part of k. By fixing the imaginary part of k arbitrarily a definite 
expression will be obtained for the unknown function cp(~); after de
termining the corresponding function ~(~) .from (79.8) one finally finds 
a certain regular solution of the original problem. 

The meaning of the condition (79.13) IS easily explained. In fact, 
introducing the function ~o(G) by letting , 

'Po(cr) + ~ 'P~(cr) + ~o(cr) = 11 + i/2 + ~ w(cr) (79.14) 
(O'(G) cu'(O) 

or 

-- , 
cu(G) , . ([>0(0)-

'Po( cr) + w' (cr) 'Po (cr) + ~o( cr) = 11 - 212 + W' (0) w(a). (79.15) 

It is readily verified directly that by (79.9) the function l.};o(G) represents 
the boundary value of some function t.fJo(~), holomorphic in y (and 
vanishing for ~ = 0, the last fact has no significance here). In fact, 

interpreting ~o(G) as the expression given by (79.14) and taking into 
consideration (79.9), it is easily seen that 
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_1_ f ~o(cr)dcr -
27ti cr _ ~ - 0, 

y 

which proves the statement on the basis of § 76, 3°, Theorem I. 

I CPo (cr) w'(cr)dcr + 1 w(cr)cp~(cr}dcr = 1 d[cpo(cr}w(cr}] = 0, 

1 CPo(cr)w'(cr}dcr + I w(cr)cp~(cr)dO: = I d[cpo(cr)w(cr)] = 0, 

I Iji 0 ( cr) w ' ( cr) dO: = / ~ 0 ( cr) w' ( cr ) d cr = 0, 

y 

I w(cr)w'(cr)dO: = I zdz, I w(cr)w'(cr)dcr = 1 idz, 

y L y L 

I idz = -I zdi, 
L L 

one obtains 

o == 21 (t1dx + f2dy) + {~ - cp~t~} IZdZ. 
6)'(0) (l) 0 

L L 
But 

(ZdZ = I (xdx + ydy) + i ( (ydx-xdy) == - 2iS, 
~ ~ 

L L L 

where 5 is the area of the region inside L. Hence 

1(1 dx + t d ) == is {(()~(O) _ qJ~(O)}. 
1 2 y w'(O} w'(O} 

(79.16) 

L 

The expression in the curly brackets differs from the inlaginary part 
of ~~(O)/w'(O) only by a factor, and hence (79.13) is equivalent to 

(79.17) 

L 
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which is the condition lor the vanishing 01 the resultant moment of the 
external stresses applied to L. 

Now equation (79. I I) will be considered and it will be shown that it 
has a unique solution. For this purpose the corresponding homogeneous 
equation 

(79. I I') 

'Y 

will be studied. This equation is obtained, if one wants to solve the first 
fundamental problem in the above-stated manner in the absence of 
external stresses, Le., for 11 == 12 == ° on L. As under this condition 
(79.17) will obviously be satisfied, the condition (79.13) will be fulfilled 
for any solution cp~(O') of (79. I I '). Selecting the real part of k in accordance 
with (79.12) and fixing its imaginary part arbitrarily, the solution of the 
first fundamental problem for 11 = 12 === 0 may be constructed starting 
from cp~(O'). If this function does not vanish everywhere on y, the solution 
constructed in this manner will not correspond to the case of absence of 
stresses. In fact, the function ~(~) will be given by cp(~) == - k(U(~) + CPo(~) 
and, in the absence of stresses, one should have cp(~) == Ciw(~) + canst., 
where C is a real constant. Hence, in this case, <Po(~) = mw(~), where m 
is some constant. Substituting this expression in (79.9) with A(~) == 0, 
one obviously finds mw(t:) == const. which is only possible for m == 0, 
i.e., CPo(~) == canst., and hence cpo(~) == 0. Thus the presence of a 
non-zero solution of (79.11') ~implies a solution of the first fundamental 
problem, giving the state of stress in the absence of external forces, 
\vhich is impossible by the uniqueness theorem. In this way it has been 
shown that the homogeneous equation, corresponding to (79.11), has no 
solution which is not ide..ntically zero, and therefore (79.11) has one and 
only one solution. 

Solving (79.11) and assuming (79.17) to be satisfied, the function 
cp(~) will be found from (79.8) with the real part of k chosen in agreement 
with (79.12); the function ~(~) can then be determined by (78.8) and the 
solution of the original problem obtained. The imaginary part of k 
remains arbitrary, as was to be expected, since a term of the form Ciw(~) 
in the expression for cp(~), where C is a real constant, does not affect 
the stress distribution. 

It will be remembered that (79. 17) is the condition that the resultant 
moment of the external forces must vanish. The condition for the vanish-
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ing of the resultant force vector is ensured by the continuity of the func
tions f 1 and f 2 on L; that is the reason why it does not appear in explicit 
form. 

Thus the existence of the solution of the first fundamental problem 
has also been proved for the case of finite regions. At the same time 
(theoretical) methods of solution have been given for this problem for 
the cases of finite as well as of infinite regions. 

3°. Next consider the second fundamental problem. This problem has 
been seen to reduce to the solution of the equation (78.16) which is 
quite analogous to the equation obtained for the first fundamental 
problem. The'methods of solution of the first and second problems are 
so alike that there is no point in repeating the reasoning. 

A certain difference occurs only in the case of the problem for finite 
regions; in fact, one will have now instead of (79.8) 

(79.18) 

and k will have to be determined from the equation 

k_k=%(O) 
X w'(O) 

(79.19) 

which gives a definite value for k (remembering that x > 1) without 
any additional condition for the existence of the solution. 

Thus the existence of the solution of the second fundamental problem 
has been proved and at the same time a (theoretical) method has been 
obtained for its solution. 

40
• The mixed fundam~ntal problem may be solved by methods analogous 

to those above. In this case the stated procedure does not lead directly 
to a Fredholm equation, but to a so-called singular integral equation 
which is then easily reduced to a Fredholm equation. The mixed problem 
has been solved in this way by D. I. Sherman [10J. The solution may be 
considerably simplified,. if use is made of the general theory of singular 
equations which has been developed recently. 

5°. A more detailed study of the integral equations for the first and 
second fundamental problems, obtained above, was likewise presented by 
D. I. Sherman [7J. In fact, Sherman introduced into these equations a para
meter A (not to be confused with the Lame constant), similar to' that 
occurring in the general theory of Fredholm equations, and proved that 
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all the characteristic values of this parameter are real and distributed 
inside the region - 1 < A < 1. This fact is of practical value, since it 
shows that the above integral equations may be solved by iteration 
methods, i.e., that the Neumann ·series will converge for those values 
of A to which these equations correspond; in fact, the integral equations 
for the first and second fundamental problems correspond to the values 
A == 1 and A = - l/x respectively (remembering that x > 1). 

Apart from these results, Sherman deduced in the above paper a 
number of other results which are of independent interest. 

In the later chapters of this Part remarks will be made with regard to 
the existence theorems for regions of more general shape and also with 
regard to some other general methods of solution of the fundamental 
problems. 

§ 79a. On some other applications of the preceding integral 
equations. The integral equations of § 79 ITlay also be applied to certain 
other important problems of the theory of elasticity, e.g. the (appro
ximate) theory of bending of plates, loaded by forces normal to their 
plane. It has already been stated above that the case of plates clamped 
along their edges may be reduced to the so-called fundamental bi-harmonic 
problem, i.e., to the same boundary problem as the first fundamental 
problem of plane elasticity. 

The case of plates with tree edges has been found to reduce to the same 
boundary problem as the second fundamental problem of plane elasticity; 
the only difference is that the constant x has to be replaced by some 
other constant, likewise larger than unity. This has been proved by 
S. G. Lekhnitzky [3[ and, later on and independently, by Ie N. Vekua [3J. 



CHAPTER 15 

SOLUTION OF THE FUNDAMENTAL PROBLEMS FOR REGIONS 
MAPPED ON TO A CIRCLE BY RATIONAL FUNCTIONS. 

EXTENSION TO APPROXIMATE SOLUI'ION FOR REGIONS OF 
GENERAL SHAPE 

As stated earlier, Cauchy type integrals provide the means for ob
taining theoretical as well as practical solutions of the fundamental 
problems for certain fairly wide classes of regions. The starting points for 
this work are the formulae (78.10) or (78.16) or analogous formulae 
to be stated below. The case for which the mapping function U)(~) is 
rational is particularly simple, since, as will be shown in this chapter, 
the solution in this case is obtained by quite elementary means. However, 
for the sake of clarity, a beginning will be made with the direct solution 
of the problems for some very simple regions. 

The major part of the results stated in this chapter were contained in 
the Author's papers [4, 5, 7, 8.J 

In theirtvvopapers [1, 2J D.IVI. Volkov and A. A. Nazarov gave a method which 
apparently permits solution by elementary means in the case of a wider class of 
regions. However, this class has not been specified by the authors with sufficient 
exactness, so that it cannot be stated beforehand in what cases, in addition to 
those stated by the Author here, a solution may be obtained by elementary means. 
In fact, in order to state the cases, where one can certainly obtain elementary 
solutions by applying completely definite methods, the Author, in those of his 
papers which were devoted to elementary methods, has limited consideration to 
cases where co(~) is a rational function. In addition, he should indicate that he does 
not agree with Volkov and Nazarov in their claim that their method leads to 
simpler calculations; cf. § 87a. 

§ 80. Solution of the first fundamental problem for the circle. 
It has already been stated in § S4 that many solutions of this problem 

are known. Among those mention will be made only of the solutions by 
G. V. Kolosov [1, 2J, G. V. Kolosov and I. N. Muskhelishvili [IJ and 
G. V. Kolosov [5J which was also published in 1931. In § 54 this problem 
was solved by the use of series. Cauchy type integrals achieve the object 
more rapidly and give a solution which is more convenient in ap
plications. 

334 



CHAP. 15 SOLUTION FOR PARTICULAR REGIONS 335 

Let R be the radius of the circle S with circumference L. In the present 
case 

z == (U(~) = R~, (80.1 ) 

where here and below the notation of § 78 \\Till be used. In particular, y 
will denote the unit circle ! ~ I = 1, 0' === eMf a point on this circle. 

The boundary condition now becomes 

r.p(cr) + acp'(cr) + y(o-) = 11 + it2 = t 
or 

cp(cr) + crcp'(o-) + ~(Q") = 11 - it2 = 1 
Expressing the fact that the right-hand side of 

tJ;( a) = 1- tp( 0") - acp' (cr) 

(80.2) 

(80.3') 

must be the boundary value of some function ~(~), holomorphic inside y, 
and vanishing for ~ = 0, one obtains by (76.12) 

-1-f jdcr __ l_fcp(j)dcr __ 1_/1' cr~)dcr = 0 
27ti cr - ~ 21Ci (j - ~ 21ti .., cr - ~ , 

y y y 

which leads to the functional equation ';l == ~(O). Thus 

) 
1 (c)Cp'(cr)dcr - 1 f fda 

cp(~ + -. + a = -~. . 
27t't .. 0- - ~ 27t't cr - ~ 

(80.4) 

y y 

This equation is nothing else but the functional equation (78.10) for 
the case w(~) ==: R~; the deduction given here repeats the derivation 
of § 78 for the particular case under consideration. 

In the case considered here the functional equation may be solved in 
a simple manner without transition to an integral equation, since the 
integral on the left-hand side can be immediately calculated in finite form. 

In fact, consider the first three terms of the expansion for qJ(~) 

(80.S) 

from which follows 

and hence, by (76.17), 
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(80.4) may thus be written 

~(~) + al~ + 2a2 + a = -1-.f I des~. 
27t't (j-

y 

§ 80 

(80.6) 

This last relation determines cp(~) apart from al~ + 2a2, i.e., the 
unknown constants ai' a2 have still to be found. For this purpose one 
has to express the condition that aI' a2 are coefficients of the expansion 
(80.5), for ~ and ~2 respectively [If this condition is not satisfied, the 
function cp(~) defined by (80.6) obviously will not fulfill (80.4)J. These 
conditions will now be forn1ulated. For this purpose one has only to 
set ~ == 0 in the equations obtained from (80.6) by one and two differ
entiations with respect to ~ and take into account that, by definition, 
a1 = <p' (0), 2a2 == cp" (0). This gives respectively 

al + til = -1-.fl des , 
27t2 ()2 

(80.7) 
y 

1 r da 
a2 =-2 . 1-3 " 

7t2 • (J 
(80.8) 

y 

The last formula determines the constant a2• 

The relations (80.7), (80.8) may also be obtained by substituting in (80.6) the ex
pansions 

and 

1 j-- fda 1 i Ida 1 f ( ~ ~2 ) da 
2rci (j - ~ = 21ti ( ~) = 21ti I 1 + -;; + ~ + ... ~ = 

y cr 1--;; y 

y 

1 f fda ~ f fda ~2 ( fda 
=- -+- -+- -+ 2rci 0' 21ti 0'2 2rri ." er3 • " • 

y y y 

and by comparing coefficients of ~1, ~2. 
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Substituting t = 11 + it2' (j == ei
&, the formula (80.7) gives 

2n 

a l + al = -1-f(/1 + if2)e-i &diJ-. (80.9) 
21C' 

o 

This condition can only be fulfilled when the right-hand side is real, 
i.e., when 

2n 

f(- 11 sin i) + 12 cos &)d& = 0, 

o 

which expresses the necessity for the vanishing of the resultant moment 
of the external forces [cf. (54.3)J. If it is satisfied, the real part of a1 is 
completely determined by (80.7), while its imaginary part, as expected, 
remains arbitrary; putting, for definiteness, 3(a) = 0, one obtains from 
(80.7) 

a
l 

= a
l 

= -1-.fl dcr . 
41tZ 0'2 

(80.10) 

Y 

Finallv. one finds 

(80.11 ) 

where a l and a2 are given by (80.8) and (80.10). 
Having found cp(~), the function ~(~) may be immediately determined, 

because its boundary value ~((j) is given by (80.3 /). Determining y;(~) 

from Cauchy's formula and taking into consideration that [cf. (76.18) 
and (70.3)J 

1 r cp(cr)dcr -
-. -- = <p(0) = 0, 
21tt. (j - ~ 

y 

_1_fcrcpl((j)dCi = -1_f([/(O") dcr = <p/(~) _ ~ 
21ti 0' - ~ 21'Ci cr· 0' - ~ ~ ~ , 

y y 

one obtains 

tJ;(~) =-I-.f fda - <p/(~) +~- <p(O). 
21tZ (j - ~ ~ ~ 

(80.12) 

y 
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It is easily seen that the soltltion obtained ,viII be regular (in the sense 
of § 42), if the function f given on L has a derivative satisfying the H 
condition. 

Thus the problem has been solved. It will be noted that the last terms 
on the right-hand sides of (80.11) and (80.12) may be omitted, because 
constant terms in the expressions for cp(~), ~(~) do not influence the 
stress distribution. These constants have only been calculated with the 
"fundamental biharmonic problem" in mind, where the constant terms 
are signi fican t. 

Omitting the above-mentioned constant terms, one has instead of 
(80.11) and (80.12) the much simpler formulae 

<p(~) == _1_. f f da - al~' 
27t'~ (j - ~ 

(80.11 ') 

y 

~(~) == _1_~ f J da _ q>'(~) +~. 
27tt 0: - ~ ~ ~ 

(80.12') 

y 

au .au 
In this case the boundary value of -~~ + 2 -- may differ from /=/1 +if 2 

uX oy 
by a constant term. If one takes (80.11) and (80.12), the above boundary 
value will be exactly equal to t. 

The solution deduced above is very convenient for applications, as 
will become apparent from the examples considered in the next section. 

§ 80a. Examples. 
1°. C ire u 1 a r dis c u n d ere 0 nee n t rat e d for c e 5, 

a p pI i edt 0 its b 0 U n dar y. 
This problem was first solved by H. Hertz in 1883 and studied in detail by 

J. H. Michell [2J, using methods quite different from those used in this book. 
Cf. also A. E. H. Love [1J § 155. 

Let the concentrated forces 

(X v Y 1)' (X 2' Y 2), .. · , (X n, Y n) 
act at the points 

Zl = Reit:X1 , Z2 =::: Reit:X2 , ••• , Zn = Reia.n 

(0 < OC1 < <X2 < ... < tl.. n < 21t) 

of the edge of the circular disc. The points 
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correspond to these points in the ~ plane. 
Under these conditions the expression t = 11 + it2 will be constant 

on each of the arcs (J'1(J'2, 0"20"3' ••• , anal (because these arcs are free from 
external forces), but it will change discontinuously by i(X k + iY k) for 
a passage through the point (Jk (cf. § 43). For the derivation of the 
formulae of the preceding section to be used here it has been assumed 
that the function 11 + i/2' given on the contour, is continuous (and 
even has a derivative satisfying the H condition). However, it is readily 
verified by direct checking of the final results that these formulae lead 
also to the solution in the case under consideration here. 

For example, let t == 0 on O"nO"l' Then one \vilI have on the arcs 0"1(j'2' 

0'20"3, etc. that I = i(Xl + iY1), t =-:: i(Xl + iY1) + i(X2 + iY2)' etc. 
respectively. In order t.hat t attain its original value 0 on (J n(j'! after one 
complete circuit, one must, obviously, have the conditions Xl + X 2 + ... 
+ Xn = 0, Y1 + Y2 + ... + Y n = 0, i.e., the resultant ,rector of the 
applied forces must vanish. This condition is necessary, because 
au au . 
-~ + i--- must be sIngle-valued inside y, since the region under ox ay 
consideration IS simply-connected. 

Further, 

I 1 f Ida 1 f -_. -~~-- = -- 'I 
2rri a - ~ 2iti 

y 

(Xl + iY1) + ... + (Xn + iYn) 0"1-~ + ... + log----. 
2TC an - ~ 

The last term is, of course, zero, but it has been written down for the 
sake of symmetry. After some obvious manipulations one finds 

1 /'-' f dcr 1 ~ . . 
--. = ----{(Xl + zY1) log (O"l-~) + (X2 + zY2) log (0"2-~)+ 
27t't.J 0" - ~ 27t 

y ••• + (Xn + iYn) log (O"n-~)}. 
Similarly, 

1 it dcr 1. . -. = -{(X1-ZY1) log ((jl-~)+ ... +(Xn--zY n) log (crn-~)}· 
27t't (j - ~ 2rr 

y 
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Finally, the constant a l has to be determined. For this purpose use 
may be made of (80.10) ; however, it will be simpler to adopt the following 
procedure. Since, by supposition, a1 = til ~ cp' (0), one finds from (80.11), 
replacing the integrals on the right-hand side by the expressions above, 
differentiating with respect to ~ and putting ~ == 0, 

1 n X k + iY kIn ._ 
2a1 = - L = - ~ (Xk + tYk)O"k' 

27t k=l (jk 21t k=l 

In order that a1 may be real, the right-hand side of this expression must 
be a real quantity. This condition is easily seen to lead to 

n 
~ (XkY k - YkXk) = 0, 

k=l 

where Xk + iYk = Zk = O"kR, i.e., to the vanishing of the resultant moment. 
If the above conditions (for the resultant force and moment) are 

satIsfied, the solution of the problem is given by (80.11') and (80.12') 

1 n ~ n 
<p(~) = -- ~ (Xk + iY k) log (O"k -~) - - ~ (Xk+iY k)crk, (80.la) 

21t k=l 41t k=l 

tl;(~) = 

It is easily established that the stress function U will be continuous 
up to y, so that one will 
actually have the concen
trated forces at the specified 
points. 

Consider, for example, the 
case when two equal and 

X opposite forces (P, 0) and 
(- p, 0), parallel to the Ox 
axis, act on the disc at the 
points Zl = Reiet. and Z2 = 
=Re~(Tt-et.)= _Re-irx (Fig. 35). 

Fig. 35. Then, reverting to the old 
variable z=R~, one obtains 

from (80.1a) and (BO.2a), omitting inessential constant terms, 
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P { Zl- Z2 } q?l(Z) = - 27t log (Z1 - z) -log (Z2 - z) + 2R2 Z, 

P { Zl Z2} - log (Zl - z) -log (Z2 - z) - + , 
~ ~-z ;-z 

, P {I 1 Zl - Z2 } <PI (Z) == CPl (Z) == - - - , 
21t' Zl - Z Z2 - Z 2R2 

I P {I 1 Zl Z2} 'Y (z) - .f. (z) - -- - + -----
1 - 'i"l - 2rc Z1 - Z Z2 - Z (Zl - Z)2 (Z2 - Z)2 • 

The stresses will be given by the formulae 

Xx + Yll = 4g{ <l>1(Z) , 

Y y- Xx + 2iX1l = 2[z<1>;(z) + 'Y1{Z)J. 

Substituting for <PI and 'Y 1 and noting that 

(see Fig. 35, &1 and &2 being positive or negative, when the point z lies 
above or below the line of action of the forces), one finds 

2p {COS -&1 cos &2 cos (/..} - + ---
7t' r1 r2 R' 

X1.;- Yll = ~ {COS 3&1 + COS &1 + COS 3&2 + COS &2}, 

7t'1 '2 

hence 

2X1/ = _:L {Sin 3&1 + sin -&1 _ sin 3&2 + sin &a}; 
7t' r1 r2 

X 1/ = _ 2p {Sin &1 cos2 &1 _ sin &2 Cos2 &2 } . 
~ ~ ~ 
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The displacements u and v are also easily obtained, using the formula 

2~(u + iv) == Xq>l(Z) - zcp; (z) - t.Yl (z) 

which gives 2fJ.(zt + iv) == 
P { Z2 - Z Z2 - Z Zl - Z Z2 - Z (x - 1) cos (f., } 

==~. x log + log _ _ + _ _ - :..---_ - Z • 
21t Zl - Z Zl - Z Zl - Z Z2 - z R 

The values of the multi-valued functions, occuring in this formula, have 
to be restricted to one definite branch. If another branch is used, the 
resulting displacements will differ from the first by a rigid body dis
placement. Separating real and imaginary parts and replacing x by its 
value (A + 3(i)/().. + (i), one finds 

p {2()" + 2fL) r 2 2fL cos ex X} 
1[. == -- log - + cos 2&] - cos 2&2 - .- , 

4fl1t A + fL rIA + fl R 

P { 2fl .. 2fl cos rx Y} v == -- -- (&1 + &2) - SIn 23-1 - SIn 2&2 - .- · 
4tJ.1t A + fL A + fl R 

In these formulae x + .iy == z. In the last formula one may write y - l 
instead of y, where 1 is the distance of the centre from the line of action 
of the forces (obviously this amounts to the addition of a rigid body 
displacement). In that case all points, lying on the line of action of the 
forces, will remain there after deformation. 

If one is not dealing with plane deformations, but with a thin disc, 
one must use A * instead of A and p must be conceived as the quantity 
Fj2h, where F is the concentrated force and 2h is the thickness of the plate. 
(Actually, in the above work, P denotes a force which does not act at 
a point, but on a straight line, perpendicular to the Oxy plane, and which 
is estimated per unit length of this line.) 

A large number of examples of a similar kind may be treated which are 
of interest for technical applications. In particular, it is very simple to 
deduce solutions for all those cases which were considered by J. H. 
Michell [2J using other, artificia:l methods (cf. G. V. Kolosov and I. N. 
M uskhelish viIi [1]). 

2° . Dis c u n d ere 0 n c e n t rat e d for c e san d c 0 u pIe s 
act i n gat i n t ern alp 0 i n t s. The solution of this problem is 
likewise obtained with extraordinary simplicity from the general formulae 
of § 80. For this purpose it is sufficient to introduce into the functions 
'?, ~ definite singularities at the points of application of the concentrated 
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forces and couples, as stated in § 57. It will be left to the reader to find 
the general solution. For the sake of brevity, consideration will be restrict
ed here to the example of two exactly opposite forces one of which acts 
at the centre, while the other acts at an arbitrary point of the disc. Without 
affecting generality, it may be assumed that the second force is applied at 
a point of the Ox axis (and directed along it). Thus one has the two 
concentrated forces (- p, 0) acting at 0 and (+ p, 0) at zo, where 
Zo is reaL 

In the case under consideration the functions Cf>l(Z), tJ;l(Z) will ha\re the 
following forms (cf. § 57) : 

p P 
CPl(Z) = 21t(1 + x) log Z - 21t(1 + x) log (z - zo) + Cf>~(z), 

xp xp 
~l(Z) = - . log z + ) log (z - zo) + 

27t(1 + x) 2n(1 + x 

P Zo 0 + --. +~l(Z) 
27t(1 + x) z-zo 

or, in terms of ~ == zjR, 
P 

cp(l:) = 21t( 1 + x) {log ~ - log (~ - ~o)} + ~o(~), 

xp 
tJ;(~) = - 27,(1 + x) {log I: -log (~ - ~o)} + 

p ~o 
+ 21t(1 + ~.~ - ~o + 'fo(q, 

where CPo(~), ~o(<:) are holomorphic inside y and <:0 = zolR. 

(80.3a) 

(80.4a) 

The boundary condition (assuming the edge of the disc to be free) 
may be written 

cp ( 0") + crcp' ( cr) + tJ; ( 0") == 0 

or, substituting from (80.4a), 

where 
p (j - ~o xp to == -- log ---- log (1 -~00") + 

27t (1 + x) () 21t (1 + x) 

+ __ P_ {_Cf =_~_o _ (j' _ cr2} 

21t( 1 + x) 1 -- cr~o ' 

(80.Sa) 

(80.6a) 



344 V. SOLUTION OF BOUNDARY PROBLEMS § 80a 

and hence 

p xp (j-~ 

10 = 21t(1 + x) log (I - O"~o) - 21t(1 + x) log ($ 0 + 

p {I 1 - O'~o 1 } 
+ 21t(1 + x) -;;" cr - ~o - ~ · (80.6' a) 

Th~ functions <po(~), ~o(~) will be found from (80.9') and (80.10), where 
one has to replace <p, y;, t by CPo, ~o, to. Calculation of the integrals oc
curring in these formulae presents no difficulty. 

The choice of the branches of the multi-valued functions log (I - ~) and 

log (1 - ~~o) is arbitrary. However, they must be chosen in such a way that they 
represent on y conjugate quantities. For the first function, a branch will be chosen 
which is holomorphic outside y and zero for t; = 00; for the second function, a 
branch will be taken which is holomorphic inside y and zero for ~ = o. 

Noting the properties of the branches of the functions log (I - ~ ) 
and log (1 - ~. ~o), as chosen above, one has from the formulae of § 70 
and by Cauchy's formula 

1 f a - ~o da 1 J da 
-2 · log "~ = 0, -. log (1-~0($) <: =log(I-~o~)· 

7t't (j 0" - 21tt (j -

y y 

Also, by the sanle formulae, 

1 f { (j - ~o 2} de; ~ - ~o "~_ ~2, 
27ti 1 - (j'~o (j - (j a - ~ = 1 - ~o~ 

y 

1 J {I 1 - O'~o I} da 
2rci -;;. (J - ~o - a2 (j - ~o = 0. 

y 

Hence 

_l_{ to da == _ xp log (l-~o~) + p<: { ~ - ~o -t;}, 
21ti, (j-~ 2~(1+x) 21t(1+x) l-~o~ 

y 

1 J to de; _ 
21ti 0' - ~ 

p 
( ) log (I - ~o~). 

21t 1 + x 
y 
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For the calculation of a1 it will be noted that 2a1 equals the value of 
the derivative of the last but one expression for ~ = 0 (cf. § 80). Thus, 

(x - l)P~o 
a -----

1 - 47t( 1 + x) , 

and, by (BO.II ') and (80.12'), one finds 

<Po(~) = - 27t(lx~ x) log (I - ~o~) + 27t(t~ x) { I~ -=-~~~ - 4-

P I P(x - 1 )~~ + 1 
'h(~) = 27t( 1 + x) og (I - ~o~) - 21t( 1 + x) (1 - ~o~) 

{x - l)P~o~ 

41t( 1 + x} , 

P l-~~ 
27t(1 + x) • (1 - ~o~)2 · 

A constant term has been omitted in the last expression. Finally, by 
(80.4a) , 

p ~ xp 
<p(~) = 27t(1 + x) log ~ -To - 27t(1 + x) log (I - ~o~) + 

+ p~ { ~-~o _~}_ (x-l)P~o~ 
27t(l + x) 1 - ~o~ 47t(1 + x) , 

xp ~ + p . ~o + 
~(~) = - 27t(1 + x) log <;; - ~o 27t(1 + x} ~ - ~o (80.7a) 

P 10 1 _ _ p (x - 1 )~~ + 1 
+ 27t(1 + x} g ( ~o~) 27t(1 + x) · 1 - ~o~ 

P 1-~~ 
---
27t (1 + x) · (1 - ~o<:) 2 ' 

and the problem is solved. When dealing with a thin plate one has to 
replace x by x*. 

The problem for systems of arbitrarily distributed forces can be solved 
just as simply. 

3°. Rot a tin g dis c wit hat t a c h e d dis ere t e mas s e s. 
Let the thin elastic plate rotate about its centre with angular 
velocity n and let there be arbitrary discrete masses attached to points 
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of the plate. It is sufficient to find the solution for the case of one mass m, 
because the solution of the general case may be obtained by super
position of several such solutions. 

The effect of a concentrated mass obviously reduces to the action of 
a concentrated centrifugal force in a radial direction and of magnitude 
F == mlQ2, where l is the distance of the mass from the axis of rotation; 
a reaction, equal in magnitude and opposite in direction to the force F, 
will act at the axis of rotation. Thus the solution of this problem will 
be obtained by adding to the solution of the problem of a rotating disc 
without discrete masses (cf. end of § 59a) the solution of the problem, 
considered in the preceding example. In the present case p = F j2h = 
1nlQ2j2h, where 2h is the thicklless of the plate (because p is calculated per 
unit thickness). 

The solution of the problem of a disc rotating about an eccentric 
axis may be obtained in a similar manner. 

§ 81. Solution of the second fundamental problem for the circle. 
In the notation of the preceding sections the boundary condition in 
this case takes the form 

(81.1) 
or 

(81.2) 

where gl' g2 are the given displacements of points of the boundary. 
In view of the complete analogy \vith the problem of § 80, only the 

final solution will be recorded here: 

xcp(~) = ~f g da + al~ + 2a2 + a, 
7t't (J - ~ 

(81.3) 

y 

l..l f g dcr 1, al -
y;(~) == --. -- ~ (~) + - + xao , 

TC't cr - ~ ~ ~ 
(81.4) 

y 

where 
- l.L f g de; 2l.L f g dcr xao = xcp(O) = -. + -. -3-' 

n't e; 7t2X cr 
(81.S) 

y y 

~x f gdcr [J. JO-(x.2 - 1 )a1 === -. -- + -. g da. 
rc't 0-2 7t2 

(81.6) 

y 'Y 



CHAP. 15 SOLUTION FOR PARTICULAR REGIONS 347 

- f.L f - d a2 = --.- gcr (5. 

1t'tX 
(81.7) 

y 

This solution will be regular, provided the function g, given on the 
boundary, has a derivative satisfying the H condition. 

§ 82. Solution of the first fundamental problem for the infinite 
plane with an elliptic hole *). Use will be made here of the transfor
mation of the region 5 under consideration on to the region I ~ ! > 1, 
i.e., on the infinite plane with a circular hole. (In the Author's earlier 
work the transformation on to the circle has been used instead.) 

The relevant transformation is (cf. § 48, 5°) 

z=w(~)=R(~+7) (R>O, O<m<l). (82.1) 

The circle I ~ I == 1 corresponds to the ellipse L with centre at the origin 
and semi-axes 

a = R(l + m), b == R(l-m). 

By suitable choice of Rand m one may. obtain ellipses of any dimension 
and shape. If m == 0, the ellipse becomes a circle. In the limiting case 
m == 1, it is the segment of the Ox axis between the points x == ± 2R 
and the region 5 is the infinite plane with a straight cut. 

In the present case 

W(O") 1 

w'(O") (j 

W(cr) 

w' (0") 
=c; 

and the boundary condition takes the form 

1 0-
2 + m 

cp(o:) + -
1 - mcr2 cp'(c;) + ~(O") == f 

(j 

or 

cp( 0-) + cr 
1 + mc;2 

cp'(cr) + ~(O") == f. c;2-m 

First assume that 

X=y=O , r = r' = ° 

(82.2) 

(82.3) 

[the notation being the same as in § SO; cf. (50.14) and (50.15)J, I.e., 
*) N.I. Muskhelishvili [4]. 
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that the resultant vector of the external forces applied to the contour 
is zero and that the stresses as \vell as the rotation vanish at infinity. 
Then <p(~) and ~(~) will be holomorphic outside y, including the point at 
infinity. In addition, one may assume cp(oo) :=: o. 

The statement that tf;{cr) must represent on y the boundary value of 
some function tJ;(~), holomorphic outside y, takes by (76.13) the form 

_I~/ f drs __ 1_ / cp(a)dcr __ 1_/_1 0'2 + m cp'(O') dO' = 0 
21ti cr - ~ 2rri a - ~ 2rci (J • 1 - mcr2 ' 0' - ~ , 

y y y 

where ~ is a point outside y; noting that by (70.1'), i.e., by Cauchy's 
formula for infinite regions, 

~l~. / cp(cr)da == _ cp(~) + cp(ex:» = _ cp(~) , 
21t''l (J - ~ 

'Y 

one obtains 

1 f 1 0'2 + m -- dcr 1 / f dcr - cp(~) + --. -. cp'(cr) ---
27t'l (j 1 -mcr2 (J - ~ - 27ti (1 - ~ • 

(a) 
y y 

This equation, corresponding to the functional equation (78.10) for the 
general case, can immediately be solved, because 

1 (12 + m --
-. 2 cp'(O") 
(j 1 - mcr 

is the boundary value of the function 

1 ~2 + m --; ( 1 ) 
~. 1 - m~2 (() ~' 

holomorphic inside y, as a result of which the integral on the left-hand 
side of (a) becomes zero. 

Since q>(~) is holomorphic outside rand cp( 00) = 0, 

a1 a2 
cp (~) = T + ~ + ... for I ~ I > 1. 

Hence 
a1 2a2 

q/(~) = - - - -- - . .. for I ~ I > 1 , 
~2 ~3 
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so that 

which proves the above statement. 

Thus one obtains the very simple formula 

1 f t dO" 
cp(~) = - 21ti cr - ~ (82.4) 

y 

which determines cp (~). In this way the boundary value ~ ((j) of the 
function ~(~) will be known by (82.3), and therefore y;(~) is given by 
Cauchy's formula [(70.1 ')] 

~(~) = - _1_. f l)I(a)da + 1)1(00); 
21tz cr - ~ 

y 

substituting for y;(cr) from (82.3) and noting that (see remarks below) 

1 f cp(cr)dcr _ 1 f 1 + mc;2 '() de; _ 1 + m~2 '(") - ---0 - 0' cp (J --~--cp ~ 
21ti (J - ~ '27'Ci (J2 - m (J - ~ ~2 - m ' 

y y 

one finds finally, omitting the constant ~(oo) which does not influence 
the stress distribution, 

1 f f dcr 1 + m~2 , 
y;(~) = -~2 . ~ - <: <:2 <p (<:). 

7t'l- (1- -m 
(82.5) 

y 

It is easily seen that the formulae obtained give a regular solution of 
the problem, provided t has a derivative satisfying the H condition. 

For the deduction of the formulae preceding (82.5), it is sufficient to note 

that cp(cr) is the boundary value of cp(l/~), holomorphic inside "(, and that 

1 + mcr2 

(j cp'(O') 
a2 -m 

is the boundary value of a function, holomorphic outside "( and vanishing at 
infinity (cf. also preceding note). 

The constant ~(oo) may be determined by (76.15); in fact, 

4( 00) = _1_. f ~(O')da. 
21t~ a 

y 
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Substituting for 4(0') from (82.3) and taking into consideration that 

~-;- f cp(O') dO' = 0, _1 -f 1 + m0'2 cp'(O')da = 0, 
2~2 (j 2rci 0'2 - m 

y y 

one obtains 

4(00) = __ 1. (t da
. 

21':2 01 (j 

Y 

§ 82 

Next, the general case will be considered and it will be treated in 
accordance with the rule of § 78. By (50.14) and (50.15) 

X+iY 
<p(~) = rR~ - 2n(1 + x) log ~ + (()o(~), (82.6) 

tjJ(~) = r'R~ + ~~l~i~) log ~ + tjJo(~), (82.7) 

where C?o(~) and tfo(~) are holomorphic for I ~ I > 1 and where one can 
assume 

C?o(oo) = 0; 

in addition, as always for the solution of the first fundamental problem, 

it will be assumed that there is no rotation at infinity, i.e., that r = r. 
Substituting these expressions in (82.2), it is seen that CPo(~) and tJ;o(~) 

satisfy the same boundary condition (82.2), the only difference being 
that 1 must be replaced by f 0' where 

f 0 = f - r R (a -+- a2 + m ) _ r'R + 
0-( 1 - mcr2) a: 

X + iY 1 X - iY (J2 + m 
+ 2n og a + 2n(1 + x) · 1 - m(J2· 

(82.8) 

It will be remembered that 10 will be single-valued on y, because the 
increase of f for a complete circuit of y will be compensated by the in
crease of the logarithmic term. 

The functions CPo(~) and tfo(~) may be found by help of the formulae, 
stated above, 

1 J' to da <Po(~) == - ~2' - ,... , 
7tt (J - I.:, 

(82.4') 

'Y 
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(82.5') 

y 

and the problem is completely solved. 

§ 82a. Examples. 
1°. S t ret chi n g 0 f a pIa t e w.i t han ell i p tic hoI e. 
Let the edge of the hole be free fronl external stresses and let the state 

of stress at infinity be tension of magnitude p in a direction forming an 
angle oc with the Ox axis. Then X == Y === 0 and by (36.10) [putting 
Nl == p, N2 == OJ 

r - r - L r' - _L e-2iCX - - ,- . 
4 2 

(82.1 a) 

Also in the present case f == o. Hence (82.8) gives 

__ pR ((1 0'2 + m) pRe2i
if. 

to - 4 + 0"( I - m0"2) + 20" ' 

_ pR ( 1 1 + m0'2) pRe-2icxO' 
/0=-4 -;;+(1 O'2 -m + 2 . 

The function (~2 + m) /~( 1 - m~2) is holomorphic inside y, except at 
~ == 0, where it has a pole with the principal part m/~; the function 
~(1 + m~2)/(~2 - m) is holomorphic outside 'Y, except at ~ == 00, where 
it has the form m~ + O(I/~). Hence, by the formulae of § 70, 

1 f 0'2 + m dO' m 
21'Ci a(l - mtj2) · 0' - ~ == - T' 

y 

1 f 1 + mcr2 dIS 1 + m~2 + mY == _ (1 + m2)~ 
- (j • == -~ "~2' 21ti cr2 - m c; - ~ ~2 - m - m 

y 

Further, it is obvious that 

_1_ J O"dO" = 0, 
27ti 0' - ~ 

1 f dO' 1 
21Ci O'(cr -~) - -~. 

y y 

Thus (82.4') and (82.5') give 

mpR pRe2icx pR(2e2i
if. - m) 

CPo(~) == - 4~ + -2~ = 4~ , 
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pR PR(l + m2)~ 1 + m~2 I 

~o(~) ==--4[- 4(~2-m) -~ ~2-m -CPo(~), 

and, finally, by (82.6) and (82.7) 

cp(~) = P: (~ + 2e2iGt 

~- m), 
PR {. e2'irf. (1 + m2) (e2i rf. - 111,) ~ } 

w(~) == - -- e-2trf.~ + --- ., (82.2a) 
I 2 n1~ m ~2-m 

and the problem is solved. 

A solution of this problem, by a quite different method, was given by C. E. 
Inglis [lJ. and it 'Nas found again in 1921 by T. Poschl [1]. It has been seen that 
this solution is a very particular case of the general solution of the first fundamental 
problem for the infinite plane with an elliptic hole Vv~hich ,vas published by the 
A u thor [4] in 1 91 9; cf. also the Author's paper [7J. A particular case of this problem 
(tension in the direction of the major axis of the hole) \vas solved in 1909 by G. V. 
J{olosov [lJ. 

In 1931, L. Foppl published a (very complicated) solution of the above-mentioned 
particular case which he considered as an illustration of his method of solution of 
problems by the help of conformal mapping. The general method of Foppl (studied 
in the same paper) is very difficult to understand (at least the Author has not 
succeeded in doing so). 

The calculation of the components of stress and displacement is not 
difficult. Only the sum 

- -pp + .&it == 4 m <I>(~) 
will be determined here, where by the preceding formulae 

4<p'(~) ~2 + m -- 2e2i rf. (p2e2i& + m_2e2irf.) (p2e-Zf&_m) 
4<P(~) = w'(Q = P ~2 _ m = P (p2e2 i& - m) (p2e-2i& - m) ~ 

The denominator of the last fraction is real and equal to 

p4 - 2mp2 cos 2& + m2• 

Separating the real part in the numerator one finds 

- - p4 - 2p2 cos 2(& - ~) - m2 + 2m cos 2a 
pp + && :::= p ~- . 

p4 - 2mp2 cos 2& + m2 

- -On the boundary of the hole p :::= 1 and pp = o. Hence the value of && 
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along the edge of the hole is given by 

-- 1 - m2 + 2nt cos 2ex - 2 cos 2(& - ex) 
&& == P . ; 

1 - 2m cos 2& + m2 

this formula, apart from the notation, agrees with that gIven by 
1'. Poschl [1J (Note that his formula contains a misprint). 

In the case of bi-axial tension, when at infinity 

r' == 0, 

one obtains either directly or by superposition of the preceding solutions 
7r 

for ex == 0 and l/.. == -
2 

(Y) pR (Y 1n) I (Y) ::-:::: _ PR(l + m2)t: 
<p s == 2 s - --r' !f ~ ~ ~2 - m . 

2° . E II i P tic hoI e the e d g e 0 f w hie his sub j e c t t 0 

u n i for m pre s sur e. In this case 

Xn == - P cos (n, x), 

Y n == - P cos (n, y), 

where P is the magnitude of the pressure; hence 

(X n + iY n)ds == - P(dy - idx) == Pidz. 

Therefore 

t = i I (X n + iY n)ds = - pz ::::::: - PR ( er + -: ) , 

f == - PR (~ + mer) . 
Substituting these values in (82.4) and (82.5) (assuming the stresses to 

vanish at infinity) one finds 

PRnt PR PRm 
cp(~) === - -~- , ~(~) == - --~- - ~ 

and the problen1 is solved. 
The displacements and stresses will only be calculated here for the 

limiting case m = 1 (i.e., the straight cut; cf. Fig. 36.); their calculation 
in the general case is likewise not difficult. 
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In fact, one finds by (50.7), (50.9) and (50.10) 

.-.... P(p2 _ 1)3 (p2 + 1) 
pp = - P + (p4 _ 2p2 cos 2& + 1)2 ' 

&& == _ P + P(p4 -_1) (1 + 2p2 + p4 - 4p2 cos 2&) 
(p4 _ 2p2 cos 2-& + 1)2 ' 

~ 2Pp2(p2 - 1)2 sin 2& 
p.& = (p4 _ 2p2 cos 2& + 1)2 ' 

PR (1 + X)p2 cos 2& + 1 - x - 2p2 
V --~-

p - 2t-Lp· Vp4 - 2p2 cos 2& + 1 

PRp (1 - x) sin 2& 
v.& = - . -----;-.::::::::====~===:::::::::======== 

2t-L Vp4 - 2p2 cos 2-& + 1 · 

P 
A r---- -----'\ 

C! ! r! ! ! ~ ! ! ! ! ! ~) , ) 
y 

§ 82a 

P 
Fig. 36. 

N 
Fig. 37a. 

N' 
Fig. 37b. 

3°. E 11 i P tic hoI e the e d g e 0 f w h i chi s sub j e c t t 0 

u n i for m tan g e n t i a 1 s t res s T. 
In this case 

(Xn + iY n)ds == Tdz, 

f = iTz = iTR ( a + :), f = - iTR C-l- + ma ). 

As in the preceding example, one obtains (assuming the stresses to 
vanish at infinity) 

TRmi ,L(>') = _ TRi TRmi, 1 + m~2 
cp (1;;) = ~ , 'I' '0 1;; + ~ · 1;;2 - m . 

4°. Elliptic hole (or straight cut) part of the 
e d g e a f w h i chi s sub j e c t t 0 u n i for m pre s sur e. 

Consider now the case when the uniform pressure P acts only on 
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the part zlM Z2 of the boundary (Fig. 37 a) and vvhen the stresses, as 
before, vanish at infinity. 

In this case (cf. example 2°.) one may take (beginning the circuit at Z1) 

f == - pz === - PR( (J + :) on the arc zl Alz2, 

Following around the contour (in anti-clockuJise direction) and returning 
to ZI' the expression t undergoes the increase 

By (82.8) 

x + iY X-iY 
10 = 1 + 2r. log (J + 2r.(1 + x) 

P(Z1 - Z2) log cr P(z 1 - z 2) 
== f - 2 . + 2 ·(1 ) 7tZ 1tZ + X 

(12 + m 

· 1- mc;2 ' 

because, for example by (78.7), X + iY = iP(Zl - Z2); it must not be 
forgotten that in the above-mentioned formula the direction of the 
circuit is that which leaves the region occupied by the body on the left, 
i.e., in the present case this direction is clockwise. 

The value of the multi-valued function log (j may be fixed arbitrarily 
at any point (e.g. at the point 0'1 == ei

&l, corresponding to the point Zl); 

for a circuit along y the function log 0' must vary continuously, so that 
for a complete circuit (in clockwise direction) log (j undergoes an increase 
2rci and to reverts to its original value. Hence to will be single-valued and 
continuous on the entire contour. 

If to had discontinuities, this ,vould correspond to concentrated forces at the 
locations of these jumps; hO'\~rever, by supposition, no concentrated forces are 
to be present. Note that the derivative of to has discontinuities at the points, 
corresponding to Zl and Z2' but it is easily verified that the formulae, deduced below, 
give the solution of the problem. 

There remains the determination of CPo(~) and t.J;0(~) from (82.4'), 
(82.5'). Denoting by 0'2 the point of y which corresponds to Z2 (Fig. 37b), 
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one finds 

-- dcr-
1 J. log cr 

· 2rci cr - ~ 
y 

dO' P(ZI-Z2) 1 (0"2 + m 

21ti( 1 + x) · 21ti.; 11 - m 0'2 
-----
(j-~ 

y 

But 

where log cr2 must be understood as the quantity -ie, with e being the 
0'1 

angular distance of the points 0'1 and 0'2' measured from 0'1 in anti-clock
wise direction; further, 

1 f 0'2 + m dO' 
21ti 1 - m0'2 • cr _ ~ = 0, 

y 

the latter result following from the fact that the integrand IS holo
morphic inside y. 

There remains the calculation of the integral 

1 (log 0' 
I(~) == -. --- de 

21tt.; (] - ~ 
y 

which is most easily achieved in tl1e following manner. One has 

dI 1 flog 0' 1 f 1 
d~ = 21ti (cr _ ~)2 dO" = - 2n:i log 0" d 0" · ~ = 

y y 
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But by Cauchy's formula for infinite regions 

1 I" dcr 1 
27ti j -0'(0' - ~) - -~. 

y 

and 

because for a circuit of y the function log cr increases by 21ti. Hence 

dI 1 
-==------; 
d~ ~ (Jl- ~ 

consequently 

I(~) == log (cr1 - ~) -log ~ + const. 

Thus, omitting constant terms, one has 

'Po(Q = ~{- mR log~ + [R (~ +~) -Z2]log (0"2 -~)-
27t~ ~ (11 ~ 

- [ R (~+ 7) - ZI] log (O'I-~) - (Zl- Z2) log ~ } , 

where 

Zl = R (0'1 + ~), Z2 = R ( 0'2 + ::). 

The function tfo(~) may be obtained in the same manner; one thus 
finds finally 

'P(~) = ~ {- mR log ~ + [R (~ + ~) - Z2] log Z(2 - ~) -
21t2 ~ (;1 ~ 

-[R(~+ ~~)-Zl]log(O'l-~)- X(:1~;2) log?:}, 

P { R(l +m2
) 0"2 1 +m~2 

~(~) = -2 . - ?:2 ~log- +R(cr1-0'2) ~2 -
1t2 -m crl -m 

- - 2 
_ _ Zl-Z2 Zl-Z2 1 + nt } 

- z210g (cr2-~) + zllog (0"1-~) - ----log~- · · 
x+l x+l ~2-m 
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If the entire contour is loaded, 

and one obtains the simple formula deduced directly for this case (cf. 
example 2°). 

On the other hand, letting the arc zl Mz2 tend to zero and increasing 
P in such a way that lim P I Z2 - Zl I == F is a finite quantity, one 
obtains in the limit the case of a concentrated normal force applied to 
the edge of the hole. 

It is also easy to find directly the solution for the case of any number 
of arbitrary concentrated forces applied to points of the contour or to 
internal points of the body. (Cf. the analogous solution for the circular disc.) 

5° . A P pro x i mat e sol uti 0 n 0 f the pro b 1 e m 0 f 
ben din g 0 f a s t rip (b e a m) wit han e 11 i P tic hoI e. 

The stress function 
1 

U = _-Ay3 
6 

corresponds to the following state of stress: 

Xx = -Ay, Yv == Xv = O. (82.3a) 

Hence, cutting from the body a strip bounded by the straight lines 
Y = ± a, the edges of this strip will be free from external stresses, while 
purely normal forces X x = - Ay will act on any transverse (Le., parallel 
to Oy) section of the strip. These forces are statically equivalent to a 
couple with moment 

+a 

M = 2h f Ay2dy = ~ Aha3 ; (82.4a) 

-a 

the forces act per unit thickness of plate (normal to the plane Oxy). Thus 
the above function solves the problem of bending of continuous strips 
(beams) by couples, applied to their ends (Fig. 38). The functions ~l(Z), 
~l (z) corresponding to U are easily seen to be 

Aiz2 Aiz2 
tpl(Z) = --, tVl(Z) = -. (82.Sa) 

8 8 

It will now be assumed that an elliptic hole with centre at the origin 
has been cut out of the strip. The problem of bending of such a beam 
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will now be solved approximately, subject to the conditions that the edge 
of the hole is free from external forces and that, at large distances from 
the hole, the state of stress 
tends to that given by (82.3a) ; 
thus it will be assumed that 
the dimensions of the hole are 
small compared with the length ! 
of the beam (see also the penul
timate paragraph of this sec
tion) and the problem will be 
solved as if the elliptic hole 

Fig. 38. 

were in an unbounded plate. Under these circumstances one must have 

Aiz2 
C?l(Z):::::: cp~(z) + -- , 

8 

Aiz2 

~l(Z) = t.f;~(z) - , 
8 

(82.6a) 

where cp~, ~~ are functions, holomorphic outside the ellipse including the 
pain t at infinity. 

For simplicity, it will be assumed that the major axis of the ellipse is 
directed along the axis of the beam. The solution of the general problem 
would only be slightly more complicated. The solution for the particular 
case when the major axis is perpendicular to the axis of the beam was 
found by A. S. Lokshin [lJ using different methods. 

Introducing the variable ~, one has in an obvious notation 

Ai ( m)2 
~(~) = ~o(~) +SR2 ~ +T ' 

Ai ( m)2 
~(~) = q;o(~) -8R2 ~ +T · 

'(82.7a) 

Substituting from (82.7a) in the boundary conditions (82.2) or (82.3) 
with t = 0, it is seen that q>o(~), ~o(~) satisfy the same conditions, provided 
one takes instead of t or f 

AiR2(1 - m)2 ( 1 )2 
10 =- 8 a---; , 

(82.8a) 

io = 
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respectively. Substituting these expressions in (82.4') and (82.S'), noting 
that the right-hand sides of the preceding formulae represent functions 
holomorphic inside y with the exception of the point (J = 0, where they 
have poles vvith the principal parts 

80'2 80'2 

respectively, and applying (70.4), one finds immediately 

____ 1_/ to dcr ___ R2A(1 -. m)2i 
CPo(~) - 27ti G -- ~ - 8~2 ' 

y 

1 / 10 dcr 1 + m~2 I 

~o(~) = '--2 . ~ -~ ~2 CPo(~) = 
1t~ 0'- -m 

(82.9a) 

R2A(1 - m)2i 1 + m~2 
4~2 · ~2 - m ' 

and the problem is solved. 
For m == 0, one obtains the solution for the circular hole, while m == 1 

gives that for the case of a straight cut; it is easily verified that in the 
latter case CPo(~) = tJ;0(~) == 0, i.e., a longitudinal cut does not influence 
the state of stress. 

The problem of bending by transverse forces and other analogous 
problems may be solved in the same manner. A number of such problems 
for the case of circular, elliptic and some other types of holes (in fact, 
holes bounded by hypotrochoids approximating to triangles and squares, 
cf. § 48, 4°) were solved and studied in detail by M. I. Naiman [IJ using 
the methods of this book. Many problems, important from the point of 
view of application, were solved by G. N. Savin [2J who reduced them 
to numerically convenient formulae and gave a number of tables which 
enabled comparison of the deduced results with experiments; a detailed 
study is given in Savin's monograph [8J. More will be said about Savin's 
work in § 89. S. G. Lekhnitzky [2J studied several cases of bending of 
beams with circular holes at a somewhat earlier stage. Even earlier 
than this, Z. Tuzi [lJ gave the solution of the problem of pure bending 
of a beam with a circular hole (which can be obtained from the solution 
given above by putting m = 0). 

Experiments with models have sho\vn that the solution remains 
sufficiently exact from the practical point of view, when the dimensions 
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of the hole are not small compared with the width of the strip, provided 
they are not larger than 3/5 of the width of the beam for circular holes 
(Z. Tuzi) and 1/3 for square holes (G. N. Savin). 

All the above solutions are approximate and based on the consideration 
of an infinite plane with the corresponding holes. There also exists a 
(fairly complicated) exact solution of the first fundamental problem of 
the theory of elasticity for an infinite strip (of finite width) with sym
metrically distributed circular holes which was given by R. C. I. Hovvland 
and A. C. Stevenson [IJ. 

§ 83. Solution of the second fundamental problem for the 
infinite plane with an elliptic hole. In this case the boundary condition 
bas the form 

or 

where gv g2 are the given components of displacement of points on the 
ellipse. 

At first, it ,viII be assumed that the displacements remain bounded 
at infinity (i.e., X = Y ::== r == r' == 0); one then obtains in the same 
manner as in § 82 

2f.L 1 f g dcr 
cp(~) = ---. --, 

X 21tz, (J -.~ 
(83.3) 

y 

~(~) = ~f g dcr -~ 1 + m'C,2 c:p'(Q + Ij;(oo). (83.4) 
1tz, Ci - ~ ~2 - m . 

y 

If one leaves the value of ~(CX)) arbitrary, the boundary condition will 
be fulfilled apart from a constant term. In order to determine ~(oo), 

multiply both sides of (83.2) by _1_. dcr and integrate around y. This is 
2nz Ci 

easily seen to give [cf. remarks following (82.5)J 

~(oo) == -~fg dcr_, (83.5) 
1tZ cr 

y 
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and the problem is solved for the case when the displacements are to be 
bounded at infinity. 

In the general case, assuming as in § 82 that r == r, i.e., tllat the rotation 
at infinity is zero, one has 

X+iY 
cp(~) = rR~ - 27t(1 + x) log <: + 'Po(<:), (83.6) 

x(X-iY) 
cp(~) = r'R<: + 27t(1 + x) log <: + ljio(<:)' (83.7) 

Substituting these expressions in (83.1), one sees that tpo(~) and t¥o(~) 
satisfy the same boundary condition as <p(~) and t¥(~), except that 2fLg 
must now be replaced by 

r'R X-iY (j2 + m 

21t(x + 1) · 1 -m(j2 ' 
+--

whence follows 

2[.Lgo = 2flg - rR ( x(j _ cr 1 + mcr
2

) + 
(j2-m 

(83.8) 

+ r'RO' _ X + iY . 1 + mcr
2 

(83.9) 
21t{x + 1) 0'2 - m · 

The values of CPo(~) and t¥o(~) will be obtained from (83.3) and (83.4) 
by replacing <p, ~, g, g by CPo, t¥o, go, go respectively. Thus (cf. § 82a, 
example 1°) 

2(.L 1 f g dO' - , R 
<Po(~) = - -- -2 -. <: + (rm + r ) y , 

X 1t~ a - x..., 
(83.10) 

y 

y 

x + iY 1 + m 2 1 + m~2 I 

+ 27t(x + 1) · <:2 _ m - <: <:2 _ m tpo{~) + y.,o(oo), (83.11) 

where t.¥o(X)) is determined by the following formula, obtained from 
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(83.5) and (83.9), 

Y;o(oo) === - ~f go dcr === - ~f g dcr + m(X + iY) . (83.12) 
7t2 cr 7t2 (J 21t'(x. + 1) 

y y 

It is easily verified that the above solution ,viti be regular, if the function 
g, given on the contour, has a derivative satisfying the H condition. 

In the limiting case m == 1, one obtains the solution of the second fun
damental problem for the infinite plane with a straight cut. 

§ 83a. Examples. 
1°. U n i-d ire c t ion a 1 ten s ion 0 fan i n fin i t e pIa t e 

wit h a rig ide 11 i P tic c e n t r e. Let the infinite plate with 

Fig. 39. 

a rigid elliptic centre, welded into it, be subject to uni-directional tension, 
as in § 82a, example 10 (Cf. Fig. 39). It will be assumed that no external 
forces, apart from those exerted by the surrounding material, act on 
the rigid kernel, and hence X = Y = o. In the notation of § 82a, 
example 10

, one will have 

r = r = ~, r' = _!pe-2icx
• 
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The applied tension may cause a (rigid) translation and rotation of the 
kernel. Since the translation may be eliminated by a rigid displacement 
of the entire system, it may be neglected and it may be assumed that 
the kernel rotates about its centre by an (unkno\vn) angle E. The boundary 
values of the displacement components will thus be 

(83.1 a) 

so that 

g = ie(x + iy) = iez = ieR (cr + :-), g = - ieR (: + mcr ) . 

Further, since 

1 It g dcr 

2n£.. cr - ~ 
'Y 

== izR_l .j"(cr +~) 
27tt cr 

y 

dcr 

cr-~ 

1 f g dcr _ ieR 
-- ~----

21ti (J - ~ ~ 
y 

ic::Rm 

and, by (83.12), ~o(oo) == 0, one obtains from (83.6), (83.7), (83.10) and 
(83.11), putting X == Y = 0, 

R 
cp(~) == rR~ + (2~mei + rm +. r') --, 

x~ 

(83.2a) 

- 1 + nt~2 R + (2!-Lmzi + rm + f') --- . --- . 
~2-m x~ 

There remains the determination of the angle z from the condition 
that the resultant moment of the forces, acting on the elliptic centre from 
the surrounding material, must vanish. This moment will be calculated 
by the help of (33.3). 

Since in the present case cp(~), ~(~), and hence C?l(Z), ~l(Z), are single
valued, the resultant moment Mo of the forces, acting on the side of 
the rigid centre, will be equal to the increase of ~Xl(Z) for a complete 
circuit of the ellipse (in clockwise direction). Thus it will be sufficient 
to calculate the multi-valued term of 

ffiXl(Z) = ffi f \jIl(z)dz = ffi I Iji(l;:)w'(l;:)dl;:. 
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The second formula of (83.2a) shows that, putting r' = B' + ie', 
this multi-valued term is 

ffi { i2!J.<:R2 (1 + 1:2) log ~ - iC'mR2 (1 + ~) log ~}. 

Hence 

The condition M 0 = 0 thus gives 

e= 
m(l + x)C' 

2fL(m2 + x) 

pm( 1 + x) sin 20c 

4fL(m2 + x) 

(83.3a) 

(83.4a) 

and the problem is solved. In the case of a circular centre (m = 0) 
the rotation is zero, while in the limiting case of the segment of a straight 
line, i.e., for a straight rigid reinforcement (m = 1), it is 

p sin 20c 
e =-~---. 

4~ 
(83.4' a) 

In the case of bi-axial tension, when 

r = r =~ r' = 0, 2' 

one obviously will have E = 0 and 

pR ( m ) pR ( x (1 + m2) ~ 1 + m~2 m) 
cp(~) = -2" ~ + x~ , \jJ(~) = 2 ~ - ~2 -m + ~2 _;;; • x~ . (83.5a) 

2° . Cas e w hen the e 11 i p tic c e n t rei s not a 11 0 wed 
tor 0 tat e. 

If under the conditions of the preceding example (uni-axial tension) 
the rigid elliptic kernel is restrained in its original position by a couple, 
then e = 0 and (83.2a) gives 

- R 
cp(~) = rR~ + (rm + r')~, 

, (x (1 +m2)~) --, 1 +m~2 R 
~(~) = r R~ + rR ------ + (rm + r) --.~. 

~ ~2-m ~2-1n. xC: 

(83.6a) 
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The moment Mo of the couple restraining the kernel is, by (83.3a), 

Mo :::=: ~ 27tm R2C' (1 + ~) = - 7tpmR2 (1 + ~) sin 2rx. (83.7a) 

3°. Case when a couple with giv'en moment acts 
on the elliptic kernel. 

It will be assumed that the stresses vanish at infinity. Then (83.2a) 
gives 

cp(~) = 2fJ.
meRi , tjI(~) = 2fJ.eRi (x + m 1 + m~~), (83.8a) 
x~ x~ ~2-m 

where by (83.3a) 
Mox 

E===-- ---
41tl-LR2(m + x) 

(83.9a) 

4°. Case when a force acts on the centre of the 
elliptic kernel. 

It will be assumed that the stresses vanish at infinity. It is easily 
seen that the kernel does not rotate in this case. In fact, this is obvious 
from symmetry considerations for the cases when the force acts along 
one of the axes of the ellipse; the general case is then obtained as a com
bination of these two cases. Further, it may be assumed that the kernel, in 
general, remains in its original position (because this may always be 
brought about by a rigid displacement of the entire system). Hence 
one has in (83.10), (83.11) and (83.12): g == 0, r = r' == 0, whence it 
follows that .. 

X + iY 1 + m2 m(X + iY) 
CPo(~) = 0, ~o(~) = 27t(x + 1) · ~2 _ m + 27t(x + 1) , 

where (X, Y) is the applied force; therefore, by (83.6) and (83.7), 

X+iY 
cp(~) === - 27t(x + 1) log~, 

x(X-iY) X + iY 1 + m2 m(X + iY) 
tjI(~) = 27t(x + 1) log ~ + 27t(x + 1) · ~2 -- m + 27t(x + 1) · 

§ 84. General solution of the fundamental problems for regions, 
mapped on to the circle by the help of polynomials. It is not ac
cidental that the solutions for the regions considered in the preceding 
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sections (§ 80-83) have been so simple and elementary. Actually, it 
has been shown that the solution of the fl1ndamental problems may always 
be obtained in elementary form and that, in fact, it may be expressed 
by Cauchy type integrals, provided the mapping function w(~) is rationaL 

The solution of the fundamental, biharmonic problem for the case when 
(a)(~) is a polynomial was first given by E. Almansi [lJ. T. Boggio [1, 2J stated 
a method of solution of the second fundamental problem for the case \vhen (z.)(~) 

is a rational function. The present method is quite different from the methods 
employed by these authors and is, in the Author's opinion, much simpler. It was 
first studied in the Author's paper [4J and given in greater detail in his paper [5J. 

A beginning will be made with the first fundamental problem and, in 
particular, with the case when (O(~), mapping S on to the circle I ~ I < 1, 
is a polynomial 

(84.1 ) 

(i.e., the region 5 must be finite *); c1 cannot be zero, because w'(~) would 
vanish inside the circle and the transformation would not be single
valued and invertible. No generality is lost by omitting a constant term, 
i.e., it may be assumed that ~ == 0 corresponds to z == O. 

In this case the functional equation (78. 10), viz., 

1 f w(cr) ~'(O")d() 
cp (~) + -2 -. ==- ~ = A (~), I ~ I < 1, 

7t2 w'(O") 0"-
(84.2) 

Y 

which determines the function cp(~), may be solved in an elementary 
·and very simple manner. It will be remembered that the function A(~) 
is given by 

1 f f dcr 
A (~) == -2 -. ~ ; 

1t'l- (j -

(84.3) 

y 

as in § 78, it will be assumed that t ::::=: 11 + if2' given on y, has a derivative 
satisfying the H condition. 

In the present case cu(cr)jw'(cr) is the boundary value of the rational 

* Regarding infinite regions, cf. the end of this section. 
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function 

holomorphic outside y (cf .. § 63), except at ~ = (X) \V?here it has a pole 
of order n. Hence this function may be represented outside y in the form 

cut) ) = bn'C,n + bn_1sn
-
1 + · .. + b1s + bo + ~ b_ks-k

• (84.5) 
_, 1 k=l 

W ~ 

It should be noted that it is unnecessary for the deduction of the solution 
up to the boundary to calculate all the coefficients of (84.5) : it is sufficient 
to determine only bo' bv ...... , bn , and this is known to requz·re only elementary 
algebraic operations. 

As a result of the fact that w(cr)jw'(cr) has the above stated form the 
integral on the left-hand side of (84.2) can be calculated by elementary 

methods. In fact, cp'(cr) is the boundary value of <p'(lj~), holomorphic 
outside y (§ 76, 2°). Hence 

w(cr) , 
cu'(cr) '11 (cr) 

is the boundary value of 

holomorphic outside y except at ~ == 00 where it has a pole of order 
not greater than n. Its principal part there will now be found. One has 
cp(~) == a1Z: + a2~2 + .... + an~n + an+l~n+l . . . (I ~ 1 < 1) (84.6) 

(where only those terms which have bee1t written down will, in jact, be re
quired). Hence 

cp'(~) === a1 + 2a2~ + ..... + nan~n-l + (n + l)an+l~n + ... 
and therefore 

_, ( 1 ) _ 2a2 na n (n + 1) a n+ 1 
cp ~ = a1 + -~- + ... + ~n-l + Sn + ... (I <: 1 > 1). 
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Thus, for I ~ [ > 1, 

C;;~(+) qi' ( ~ ) = Ko + Kl~ + · .. + Kn~n + 0 ( ~ ), (84.7) 

where o( +) denotes a function, holomorphic outside y and vanishing 

for ~ == 00, while 

Ko == a1bo + 2a2b1 + · · · + (n - l)a n- 1bn- 2 + nanbn _ 1 + (n + l)an+l bn , 

Kl == albl + 2a2b2 + · · · + (n - 1)iin- I bn- 1 + nanbn , 

K2 == a1b2 + 2a2b3 + · · · + (n - l)a n- I bn , 

K n-l === al bn- 1 + 2a2bn , 

Kn :::::: a1bn· 

Therefore, by (70.4') and (84.7), 

1 j. W (cr) m' (cr) de; 
-. T == Ko + Kl~ + ... + Kn~n, 
2ttZ w' (cr) (cr - ~) 

y 

and (84.2) gives directly 

(84.8) 

(84.9) 

- 1 r f d(j ~(~) + a + Ko + Kl~ + ... + Kn~n == -. == A(~).(84.10) 
2nz.. (1 - ~ 

y 

In this expression the constants 

Ii + K o, K v ... , Kn 

are, at present, still unknown; they must be determined from the con
ditions that the constants av a21 • • ., an, an+V occurring in the expression 
(84.10) for cp(~) by means of K o, K I , ... , K n , must represent the coef
ficients of (84.6). These conditions will now be formulated. Noting that 

1 1 ~ ~2 
,., ==~+-2 +-3 + ... , 

(1-1.:> cr (j (J 

one has 

1 f f dcr 
A (~) == -2 -. ~ = Ao + Al~ + A2~2 + · · ., 

7tZ (J-
(84.11 ) 

Y 
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where 
21t 

Ak == -1-.ft (j-k-1dcr = __ 1 {t e-ik&d&, k == 0,1,2, .... (84.12) 
27t2 21t' • 

y 0 

Comparing coefficients of t:1 , ••. , ~n+l on both sides of (84.10), one obtains 
the (n, + 1) equations 

alc+Kk=A k , k== 1,2, ... ,n. (84.13) 

an+1 = A n+1 · 

The last of these equations gives directly the value for an+1 : 

1 J' _ _ -n-2 an+1 - An+l - --. !cr dcr. 
21tz 

y 

The remaining formulae, by (84.8), may be rewritten 

al + albl + 2a2b2 + 
a2 + a1b2 + 2a 2b3 + 

an- 1 + a1b n- 1 + 2a2bn 

an + a1bn 

+ (n - l)a n- 1bn - 1 + nanbn = AI' 

+ (n - l)a n- I bn == A 2 , 

(84.14) 

(84.15) 

Thus, a system of linear algebraic equations has been obtained for the 
determination of the constants av a2, ••• , an; this system agrees with 
the system (63.6") which was obtained when solving the problem by a 
different method. 

Putting ak == (J.,k + i~k and separating real and imaginary parts, one 
obtains from (84.15) 2n linear equations with the 2n unknowns 

Cl..le, ~lp k:::::: 1, 2, ... , 1L 

(Instead of this system of equations one may construct the conjugate 
complex S)Tstem in terms of ale') 

This systenl must have a solution, provided the condition for the 
vanishing of the resulting moment of the external forces is satisfied, 
i.e., the condition * 

* The condition (84.16) is obviously equivalent to the condition 

f jdz + f Jdz = 0, or J jw'(~)df, + J Jw'(~)dl, = 0; 

L L 
hence, taking into consideration (84.1) and (84.12), one obtains 

CIA! + 2c2A 2 + ... + ncnAn - c1A1 - 2c2A2 - ••• - ncnAn == O. 
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f (/ldx + t2dy) = 0; (84.16) 

L 

in fact, it is known that under this condition the original problem has 
a solution, and hence the system (84. IS) cannot be incompatible. In 
addition, it is clear on the basis of the uniqueness theorem that the system 
under consideration completely determines the unknown constants, 
if one fixes (arbitrarily) the imaginary part of the quantity 

I 0) == cp' (0) == _~~_ 
({I ( W'(O) W'(O) . 

Fixing this imaginary part (arbitrarily), finding the quantities aI' a2 , 

... ,an satisfying the system (84. 15), substituting them into the ex
pression for Ko, K I , •.• , K n together with the expression (84. 14) for 
an+I and introducing the values obtained into (84. 10) *, one arrives at ,. 
the expression for cp(~) which satisfies the relation (84.2) identically . 

... ~fter this the function tY(~) may be calculated from (78.B)J viz'J Iff dr; 1 f (0(0') rp'(r:;)dcr -
~(~) ==--. --. -,------- cp(O). 

21t't (j - ~ 27t~ W (cr) (j - ~ 
(84. 17) 

y y 

, in the present case the second integral on the right-hand side is expressed 
in finite form by cp(~). In fact, 

is the boundary value of 

W,( crl ({I' (cr) 
W (0") 

* The constant an +1 appears only in the expression for Ko; since this last 
constant may be neglected because it does not change the stresses, it is actually 
not necessary to compute an + 1 and Ko. 

Further, the substitution of aI' a2, .", an in the expressions (84.8) for 
K IJ K 2, ••• , Kn actually need not be performed, since the values of R o, K I , ••• J Kn 
can be evaluated by use of (84.13) from the formulae 

Kk = Ak-ak , k = 1,2, ... , n. 

Finally, it should be noted that the special form of the system of algebraic 
equations (84.15) makes it possible to apply to its solution fast methods which 
greatly ease the task of computation, as was sho\vn by M. M. Kholmianskii [1]. 
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~(+) '(Y 
w' (~) <p ,,), 

holomorphic inside y, except at ~ = 0; on the basis of (84.7), it is easily 
seen that one has inside y * 

w (-~ ) _ 1 _ 1 .. 
--- ~' (~) = K 1- + ... + K n ~ + a holomorphlc functIon. 

U)'(~) ~ ~n 

Hence, by (70.3), 

1 J~ w(a-)<p'(cr)dcr w( + ), KI K .. 
2rci (0'(0-) (0- - 1:) = ~ <p (1:) - ~- - · · · - ~ , 

'Y 

and (84.17) gives 

•. 1 r f drs w( + ) KI K..-
tj;(~) = 2m. rs - ~ - -;;-(~) <p'(1:) + T + ... + Tn- <p(O). (84.18) 

The preceding results apply, with obvious insignificant modifications, 
to the case of an infinite region 5 mapped on to the circle I ~ I < 1 by a 
function of the form 

(84.1') 

* If one puts temporarily 

w( +) '(") _ 11(") 
(O/(~) <p ~ - S J 

one has in the notation of § 76, 2° 

and 
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The problem must first be reduced to the case when <p(~) and ~(~) are 
holomorphic inside 'Y (§ 78). Afterwards, the procedure stated above 
the system, analogous to (84.15), will always have a (unique) solution 
without the supplementary condition (84. 16). 

NOTE. 1. The solution of the problen1 considered in this section can 
also be obtained by the following process leading to essentially the same 
computations as the above. 

Noting that 

is holomorphic outside y and has at infinity a pole of order not higher 
than n, i.e., that it may be represented in the form (84.7), where 
Ko, K I } ... , Kn are constants which are not known beforehand, one 
finds, as above, the formula (84.10). However, the constants Ko,1<'1' 
... , Kn can be determined by direct substitution of the expression for 
<p(~) obtained from (84.10) into the initial function?-l equation (84.2), 
whence 

n 1 J w{o-).- - -- Ko - KI~ - ... - Kn~ - --:- _ {KI + 2K2(j + ... + 
27tt W' (0-) 

Y 

K - n-I} dcr 1 J co (cr)A' (cr)da _ + n ncr + --. __ - O. 
G - ~ 21t'L co' ( (j) (0' - ~) 

(84.19) 

y 

The integrals appearing on the left-hand side are readily computed 
in finite form, just as the integral of the formula (84.9) was evaluated * 
and the left-hand side of (84.19) becomes an n-th degree polynomial 
the coefficients of which involve the quantities K o, Kv K 1 , ••• , K n, Kn 
linearly; setting these coefficients equal to zero, one finds a system of 
linear equations in the stated quantities to the solution of which the 
original problem is reduced. 

NOTE. 2. For tIle study of the system (84.15) one relies not only 
on the uniqueness theorem for the solution, but also on the less ele
mentary existence theorem. proved in § 79. However, one can proceed 

* For this purpose one must use the expansion (84. 11), or rather (n + 2) of 
its first terms. 
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readily without application of the existence theorem, limiting oneself to 
the uniqueness theorem and obtain thus an elementary proof of the 
existence theorem for the particular case of interest here, when w(~) is a 
polynomial. 

In fact, it is readily verified directly (and this is left to the reader 
as an exercise) that by (84.16), which must be assumed fulfilled, one of 
the 2n equations obtained by separation of real and imaginary parts in 
the equations (84.15) is a consequence of the remaining (2n - 1) 
equations * . Therefore, if one adds to these (2n - 1) equations an 
equation expressing that the imaginary part of a1/w'(0) is equal to an 
(arbitrary) given quantity ex (for example, zero), one obtains a system 
of 2n linear equations with 2n unknowns which is certainly soluble, 
because its corresponding homogeneous system obtained for f == 0, 
ex = 0 has no nonzero solutions as a consequence of the uniqueness 
theorem. 

§ 85. Generalization to the case of transformations by means 
of rational functions. The cases of regions, mapped on to t,he circle by 
the help of polynomials and of functions of the form (84.1'), are particular 
cases of regions mapped by means of rational functions of general form. 
In this more general case the solution may be obtained by the same 
method as above; the only difference is that in this case one has, In 
general, to calculate roots of a certain algebraic equation. 

Consider again the functional equation (78.10)" viz., 

rp(~) + _1_. f w(?") • ~O")dO" + Ii = _1_. If' t dO" = A(~); (85.1) 
21t2 w'(cr) (j - ~ 2n2., cr - ~ 

y y 

although the notation used here is the same as in the preceding section, 
the function cu(~) is now a rational function of general form which trans
forms conform ally the given region S on to the circle I ~ I < 1. In the 
case when S is infinite it will be assumed that the point z == 00 cor
responds to the point ~ == o. 

Also in the present case the integral on the left-hand side of (85.1) 

* It then also turns out that, if the condition (84.16) is not fulfilled, the system 
is insoluble. It will be noted that actually it is more convenient to operate instead 
of with the above system with a system obtained by adding to the equations 
(84.15) their conjugate complex equations, a fact which has been mentioned 
earlier. 
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may be evaluated by elementary means, as it will novv be proved. 

Consider the expression Ci>(cr)/{t)'(cr) which is the boundary value of 
the rational function 

Ci>' (~) 

Since w(~) may now have outside y poles other than at ~ == 00, w(l/~) 

may have poles inside y, and not only at the point ~ == 0, as it was the 
case in § 84. The function w(l/~) cannot have poles outside and on y 
except at ~ == (X) , because w(~) must be continuous inside and on y, 
except at ~ == 0 in the case when the region is infinite. Similarly, it will 
be remembered that w'(~) cannot have zeros inside or on y. 

Denote the poles of (t) (~), other than the pole ~ == (X) (if it exists), by 
~l' ~2' • • ., ~n; these poles are the roots of the algebraic equation 
1 /(t)(~) == 0 to which reference has been made earlier, and all of them will 
lie outside y. Then the poles of the function Ci>( 1 /~), other than the pole 
~ == 0, will be 

all of which lie inside y. These points and, generally speaking, the point 
~ == ° \vill also be poles of the function w( 1 /~) /w' (~) which lie inside y. 
Hence this function may obviously be represented in the following 
manner: 

where co' •.. , el, Ckl are known constants, R(~) is a rational function, 
holomorphic inside and on y and vanishing at ~ == 0, and mo, mv ... , mn 
are the orders of the poles 0, ~~, ... , ~~, respectively. 

Consider now the product 

Obviously, this product represents a function, holomorphic inside y with 
the exclusion of the points 0, ~~, ... , ~~, where it may have poles of 
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order mo, ml , •.. , 1nn (but not higher), and hence it may be written 
in a form, analogous to (85.2), 

where Co, C z, C kZ are constants and Qo(~) is a function, holomorphic 
inside y and vanishing for ~ == o. 

It is easily seen that the following important statement is true: the 
constants C l (l === 1, 2, ... , mo) are linear combinations (with known 
constant coefficients) of the quantities 

)0'(0), cp"(O) , ... , cp{mo)(o), (a) 

and the constants C kl are similar combinations of 

q;'(~~), <p"(~~), .•. , cp(mk)(~~), k == 1,2, ... , n. (b) 
These relations are readily written down. Further, as is easily seen, the 
constant ·Co is a linear combination of the quantities (a) and of cp(mo+l)(O). 
It will be seen below that for the solution of the problem under con
sideration here (i.e., the first fundamental problem) there is no need to 
actually compute Co. When speaking later of the quantities C l' this will 
always imply that l ~ 1. 

N ow consider the expressIon 

~ '((1) 
(J}'(cr) (jl 

on the left-hand side of (85.1) which is the boundary value of 

By (85.3), this may be written in the form (remembering that ~~ = l/~k) 

- l ( _ ( 1 ) _ mo _ n mk C kl~k~z - 1 ) n - = Co + ~ Cl~l + ~ ~ -(Y ~Y)Z + no y' (85.4) 
~ l=l k=l l=l ~k \:, ~ 

where no ( ~ ) is holomorphic outside y and vanishes at ~ = 00. The 
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constants Gz, Ckl are obviously linear combinations of quantities, con
jugate complex to (a) and (b); the same is true for Co. 

Applying (70.4'), one immediately obtains 

1 r c.u(O')cp'(O")dcr - mo - n mk 
-. __ = 0 0 + ~ Cl~l + ~ :l; 
27t~ ~ 6)' (0') (0' - ~) l=1 k= 1 1=1 

y 

It is easily seen that the expression 
_ mo_ n mk 

Co + :E Cl~l +:E :E 
1=1 k=11=1 

where C~, C~l are constants, i.e., using the notation of § 70, in the form 

Goo(t:) + Gl(~) + ... + Gn(~)· 

Substituting this expression in the left-hand side of (85.1), one finally 
obtains 

mo n mk 

cp(~) + Ii + Co + ~ Cl~l + L ~ (85.5) 
1=1 k=ll=1 

From this follows an expression for cp(~) as a function holomorphic 
inside y (and continuous up to y), because the points ~k lie outside y. 

It remains to formulate the condition that the quantities (a) and (b), 
linear combinations of which are the coefficients eland C kZ, actually 
are the relevant derivatives of cp(~), as determined by (85.5). 

This condition is readily expressed by differentiating the equality 
(85.5) a corresponding number of times and substituting for ~ the 
corresponding value 0 or ~~, ~~, ... , ~~. 
For example, one must have 

n 
i?'(O) + 01 + ~ Okl = A'(O), 

k=1 

etc. Thus one deduces a system of linear equations (with constant co
efficients) in the unknown quantities (a), (b) and their conjugate complex 
values. This system (cf. § 84) will have a unique solution, if, in the case of 
finite regions, the imaginary part of cp'(O)jc.u'(O) is fixed arbitrarily and 
if, in the same case, the following condition is satisfied: 
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r J (fldx + f2dy) = 0, (85.6) 

L 

which is necessary for the existence of the solution of the problem. 
Having found the quantities (a) and (b), the values of Cl , Ckl can also 

be determined; substituting their values into (85.5), one arrives at an 
expression for cp(~) which is exact apart from a constant Co which may 
be omitted, since it does not influence the stress distribution. However, 
if this constant has nevertheless to be determined for some purpose, it 
is sufficient to compute from (85.5) the value of cp(rno+ 1)(0) and to 
substitute it together with the values of the quantities (a) and (b) into 
the linear combination expressing Co. 

Having found cp(~), the function t.l;(~) may be found from (78.8), viz., 

1 f f dcr 1 f w{O') cp'{cr)dcr -
~(~) == -. ~- - -. , --- cp(O) , (85.7) 

21t't c; - ~ 21t2 (U (a) a - ~ 
y y 

h k·· °d· h w{cr) '() h b d w ence, ta lng Into cons! eratlon t at -'(- cp cr IS t e oun ary 
W 0') 

value of the function Q{~), one obtains directly 

1 f f d c; U) ( ~ ), mo C I "!.", k C Ie I 

tJ;(~) ==-2 . ~ --,(y)-CP (~) +. ~ n + ~ ~ -(Y ~)l - cp(O), 
7t't (J - (U S 1=1 \.:J k=1l=1 S -~k 

Y v (85.8) 

where the constant term - cp(O) may be omitted. 
Thus the problem is solved. In the case of infinite regions, it is sometimes 

more convenient (mainly for the sake at clarity) to use the transformation 
on to the region ! ~ ! > 1; but this is not always so, since the method 
used here is equally applicable to finite and infinite regions. With obvious 
minor modifications, the above reasoning will also apply to that method 
of conformal mapping. 

NOTE. With obvious modifications one may also apply the method 
of solution stated in Note 1 at the end of § 84. Also the observations in 
Note 2 of that section are readily extended to the case considered here. 

The method of solution, discussed above, may be somewhat modi
fied, and in some concrete cases this may lead to considerable simpli
fications. For example, it will sometimes be profitable to multiply 
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beforehand both sides of the boundary condition by a conveniently 
chosen polynomial. One such method was stated in the 'earlier editions 
of this book; generally speaking, it leads in the end to about the same 
amount of computations as the present method, although in certain, 
individual cases it simplifies the calculations. 

§ 86. Solution of the second fundamental problem. On the 
solution of the mixed fundamental problem. In the preceding 
sections the first fundamental problem has been considered for the sake 
of definiteness. However, comparing the boundary conditions of the 
first and second fundamental problems in the form given in § 78, it 
becomes clear that the above methods of solution may, almost without 
any change, be transferred to the case of the second fundamental problem. 
Hence there is no necessity to restate the method separately for appli
cations to the second fundamental problem. 

The solution of the mixed fundamental problem is somewhat more 
complicated; however, in this case too, effective solution can be achieved 
by elementary means when, as in the preceding sections, the transforming 
function w(~) is rational. Such a solution was stated by D. I. Sherman 
[10]. However, no time will be devoted to this problem here, SInce a 
simpler method will be studied in the next Part. 

§ 87. Other methods of solution of the fundamental problems. 
Reverting to the first fundamental problem, attention will now be 

drawn to the fact that in some cases it is practically more convenient 
to start from the boundary condition (51.3) rather than from (51.1); 
this condition may be written 

-- -- ...-... ---
[<1>(0") + <I>(cr)]w'(cr) - cr2[w(cr) <1>'(cr) + cu'(O')'¥(cr)] = [pp -i p&]w'(o-) (87.1) 

or 

[<I> ( cr) + <1>( O")J w' (0") - a2 [ w( cr) <1>' (0") + W' (0") 'Y( cr)] == [Pr + i;&] w' (0") ; (87.2) 

the left hand sides of these equalities must be understood as the corre
sponding boundary values the existence of which is assumed. 

When w(~) is a rational function, the method of § 85 again leads to an 
elementary solution. On the basis of the work of that section, its ap-
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plication is so obvious that no space will be wasted on details (cf. N. I. 
Muskhelishvili [5J for a detailed study); however, a simple example will 
be presented in the next section. It should only be noted that this method 
is particularly convenient in the case when the region, occupied by the 
body, is infinite, because in that case cp(~) and ~(~) are not single-valued, 
whereas <I>(~) and 'Y(~) are holomorphic throughout the region under 
consideration. 

Similarly, the method of solution of the second fund~mental problem 
may be modified by replacing the boundary condition (78.15), which 
may be rewritten 

-- --
xcp(cr) - w(cr)<I>(O') - ~(O") == 2tL(gl + ig2), (87.3) 

by a condition obtained by differentiation of (87.3) with respect to &; 
noting that (J = ei& and multiplying the differentiated equation by 
(- ie-i&) , one thus finds 

[x<I>(cr) - <D(o:)Jeu'(cr) + (12[W (0-) <1>' (0') + w'(O') 'Y{O')] = 

[ 
dgl . dg2 ] 

== 2(.L dcr + t d;; · (87.4) 

§ 87a. Example. 
Solution of the first fundamental problem for 

ani n fin i t e p I a new i t hac i r c u 1 a rho 1 e *). 
In this case let 

z == w(~) = R~, (87.1a) 

where R is the radius of the hole, i.e., the region is mapped on [ ~ I > 1. 
The boundary condition (87.1) then takes the form 

<P ( cr) + <I> ( 0") - O'<P' ( 0') ---- 0"20/ ( 0") == N - iT, (87.2a) 

where Nand T are the normal and tangential external stresses with the 
same sign convention as in § 56 (in fact, N is the projection of the external 
stress on the normal n to the circle, directed towards the centre, while T 
is the projection on the tangent, directed to the left when looking along n). 

For the sake of simplicity, it will be assumed that the stresses vanish 
at infinity. Then q,(~), '¥(~) are not only holomorphic outside y, including 
the point at infinity, but they also vanish at infinity, if it is assumed that 

*) This problem has been solved by another method in § 56. 
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the rotation there is zero. Thus, for large ! ~ 1, 

4>(1:) = ~1 + 0 ( ~2-)' 4>/(~) = 0 ( ~2), \f(~) = ~ + 0 (~2); (87.3a) 

in addition, if the displacements are to be single-valued, the condition 

xiil + a~ = ° (87.3' a) 

must also be satisfied. [cf. (56.6); a1 and a~ may be determined before
hand (cf. § 56), but this will not be done here.] 

Calculations may be somewhat simplified by multiplying both sides 
of (87.2a) by 0'-1 === e-i~; this gives 

_1 4>(cr) + _1 4>(cr) - <1>'(0") - 0'0/(0") == - (X n - iY n) (87.4a) 
0" (1 

Of, going to the conjugate complex expression, 

O"<P ( 0' ) + 0:<1> ( 0") - <1>' ( 0') - a:'¥ ( 0') == - (X n + i Y n), (87.Sa) 

because, as is easily verified, 

N - iT = - (Xn - iY n)ei~. (87.6a) 

It will be assumed that each of the functions <D(~), <p' (~), 'f(~) are 
separately continuous up to the boundary. 

Formulating now the condition that 0''Y(0:), as determined by (87.4a), 
is the boundary value of ~'¥(~), holomorphic outside y, one obtains by 
(76.13) 

_1_ r cr4>(cr)dcr + _1_J O"<i>(cr)do: __ 1~ J ~dcr + 
2rci • 0: - ~ 2rri 0" - ~ 21ti (j - ~ 

y y y 

1 f Xn + iYn + - dO" == 0, (87.7a) 
2rci () - c: 

y 

where ~ is some point outside y, or 

1 r Xn + iYn 
- ~<I>(~) + a1 + -2 . - 1: dcr = 0, 

7t~ • (j -

y 



382 V. SOLUTION OF BOUNDARY PROBLEMS § 87a 

whence finally 

<l>(~) = I, f Xn + iYn d(j+~, 
27t2~ C; - ~ ~ 

(87.8a) 

y 

In transforming (87.7a), use has been made of the formulae of § 70 and of the 
fact that a<D(a) is the boundary value of ~<1>(~), holomorphic outside y and equal 

--- - -
to a l for ~ :=::: 00, and that O'<D(a), <1>/(0") are the boundary values of ~<I>(1/~), <I>/(1/~), 
holomorphic inside y. 

The constant a l is not determined by the functional equation (87.7a) 
which will be satisfied by the expression found for <I>(~) for any value 
of al; in fact, expressing that alan the right-hand side of (87.8a) is 
the coefficient of ~-l in the expansion for <l>(~), one obtains the identity 
a l == al' However, this was to be expected, since, for the present, no 
consideration has been given to the condition of single-valuedness of the 
displacements. 

Next, the function ~'Y(~) will be determined. Its boundary value is 
known from (87.4a), if <P(~) is replaced by (87.8a). In order to find ~'Y(~) 
from Cauchy's formula, one has to know its value a~ for ~ === 00; this 
value may be found from (87.4a) by multiplying it by dcr/27tifj and by 
integrating around y which gives 

2:r 

- ,If . de; 1 f. X-iY 
al-al == --. (Xn-zYn) - == -- (Xn-tYn)d& == ---R-' (a) 

~ a ~ ~ 
y o 

where (X, Y) is the resultant vector of the external forces, applied to 
the edge of the hole. 

1 1 
The following considerations lead to (a) : ~ <I>(cr) and - <I>'(cr) are the boundary 

0'2 (J 

val ues of functions) holomorphic ou tside 'Y and vanishing at infinity like ~ -3 ; 

1-
hence the corresponding integrals are zero. Further, ~ <1>(0') is the boundary value 

2 
1 - 1 (j 

of ~ ct> (~) holomorphic inside y, except for ~ = 0, where it has a simple pole 

with the principal part al/~' Finally, 'o/(a) is the boundary value of a function, 
holomorphic outside y and having, for large I ~ I, the form 

a~ ( 1 ) T+ O ~. 

The quantities al and a~ may now be determined from (87.3' a) and 
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..:Y + t:Y 
27tR(1 + x) , 

x(X-iY) 

21tR(1 + x) · 
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(87.9a) 

Applying Cauchy's formula to determine ~'Y(~) from its boundary value 
as given by (87.4a), one finds 

'Y(~) == __ --;-_ n - 'l n dcr + ~ _ s +~. (87.10a) 
1 f X'Y <D(Y) <D'(Y) , 

27t2~ (j - ~ ~2 ~ ~ 
y 

Thus the problem is solved by (87.8a) and (87.10a), \vhere at and a~ 
have the values given by (87.9a). 

As a simple example consider the case when a uniformly distributed 
force, parallel to the Ox axis, acts on the right-hand half (- rcj2 < 3- < 1t/2) 
of the hole, while the other half is free from stresses *. This problem was 
solved directly in the above-mentioned paper [IJ by D. M. Volkov and 
A. N. Nazarov \vho did not deduce general formulae of the type (87.8a) 
and (87.1 Oa). 

In this case 

Hence 

and therefore 

+T'C/2 

1t 7t 
for -- < -& < -, 

2 2 

for the remaining values of &, 

for all &. 

X = R f Xnd& = r.Rp, 
-T'C/2 

p 
a -----

t - 2(1 ~ x) , 
xp 

2(1 + x) · 

Since Y n == 0, the integrals in (87.8a) and (87.1 Oa) are equal to 

+i +i 

j~ X ndcr f dcr f de; --==p =-p , 
cr-~ e;-~ ~-(J 

y -i 

where the last integral must be taken along the right-hand semi-circle in 

* It is readily verified that the preceding formulae are applicable in spite of 
the fact that Xn is discontinuous. 



384 v. SOLUTION OF BOUNDARY PROBLEMS 

the positive direction, so that 

f X ndcr - , . ~ - i 
~_ ~ = P[log (~- (j)J~:::':.} = p log ~ + i 

'Y 

for a suitably chosen branch of the logarithmic function. 

§ 88 

Substituting this value in (87.8a) and (87.1 Oa), closed expressions are 
obtained for <I>(~) and 'Y(~), but it is unnecessary to write them down 
here. 

§ 88. Further examples. Application to some other boundary 
problems. 

1°. The method of solution of §§ 84-87 is applicable, in particular, 
to all those simply-connected regions for which the conformal transfor
mations on to the circle have been stated in § 48. 

The case of the infinite plane with an elliptic hole \vhich is one of the 
examples of § 48 has been considered in detail in §§ 82, 83. 

The case of finite regions, bounded by Pascal's lima<;on, has been 
studied in § 63 as an application of the method of series expansions; 
application of the method of § 84 leads much faster to the final results. It 
will be left to the reader to solve the fundamental problems for this case 
by use of the method of § 82. 

The case of the infinite plane with hypotrochoidal holes (cf. § 48, 4°) 
has been studied in detail by G. S. Shapiro [lJ who applied the method 
of § 82 to several practically important problems (cf. also reference in 
§ 89 to the work of G. N. Savin). 

The solution of the first fundamental problem for regions, bounded 
by Booth's lemniscates (§ 48,6°), was obtained by G. N. Bukharinov [lJ 
by means of the method stated in § 85. 

Several other examples which are of greater interest from the point 
of view of application will be stated in the next section. 

2°. The problem of frictionless contact between an elastic and a rigid 
body under mutual pressure may also be easily solved by a method, 
analogous to that of §§ 84-87, provided the region, occupied by the elastic 
body, can be mapped on to the circle by means of a rational function. The 
solution of the problem by such a method was given by the Author in 
his paper [19J and it was studied in detail in the second edition of this 
book. A simpler solution of this problem was given in the third edition. 
It will be reproduced in the next chapter (§ 128). 
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3°. As has already been stated in § 79a, the problem of bending of 
plates under the influence of lateral loads reduces, in the case \vhen the 
edges of the plate are clamped, to the fundamental biharmonic problem, 
i.e., to the same boundary problem as the first fundamental probl~m of 
the plane theory of elasticity, while in the case of free edges it leads to 
the same boundary problem as the second fundamental problem. Recent
ly (and almost simultaneously) A. I. Kalandiia [lJ and M. M. Fridman 
[2J have shown that the case when the edge of the plate is supported 
leads to a problem analogous to a certain problem of the plane theory of 
elasticity; in fact, it leads to the problem referred to under 2° above 
(cf. also § 128). 

Therefore, if the region occupied by the plate is mapped onto the 
circle with the help of a rational function, the effective method of solution 
studied above may be applied to it directly (or almost directly in the 
third case). Regarding the third case, cf. A. I. Kalandiia [2J. (See 'also 
the earlier papers of A. I. Lourie [1, 2J and M. M. Fridman [IJ. 

In another paper, A. I. Lourie [2J gives the solution of the problem of 
bending of circular plates for all the three above-mentioned edge con
ditions. 

Note also the recently published note by M. M. Friedman [IJ on the 
bending of plates with curvilinear holes. 

Finally, it should be mentioned that it has recently been shown by 
L. A. Galin [3J that the method of complex representation in conjunction 
with complex transformation also allows the effective solution of some 
boundary problems in those cases where parts of the body are subject 
to plastic deformation; generally speaking, problems of this type are 
very complicated, since the line of division of the elastic and plastic 
regions is not known beforehand *. 

§ 89. Application to the approximate solution of the general 
case. The above method of solution may also be applied successfully 
to the approximate solution of the fundamental problems for simply-
connected regions, bounded by practically arbitrary contours. It will now 
be indicated how this can be done and it ,vill be necessary for this purpose 
to repeat some of the statements made at the end of § 63. 

* Cf. likewise G. N. Savin [8]. 
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Let 5 be a given region bounded by one simple contour L and let 

z == w(~) (89.1 ) 

rna p the region 5 on to the circle ! ~ ! < 1. It ,vill first be assumed that 
S is finite. Then w(~) is holomorphic for [ ~ I < 1, and hence it may be 
expanded, for the stated values of ~, in a series of the form 

(89.2) 

it has been assumed here that Co = <0(0) = 0, but this is, of course, not 
essential. 

If one only retains the first n terms of (89.2), i.e., if one. takes instead 
of w(~) the polynomial 

(89.3) 

then 

(89.4) 

will map on to the circle I ~ I < 1 some region 5 n' and not s. If one takes 
n sufficiently large, the region S1l will be as close as one pleases to the 
region 5; it has already been indicated in § 63 that this will be so for 
known, very general conditions referring to the contour L. In practice, 
it is usually sufficient to retain only a small number of terms in the 
expansion (89.2), in order to obtain a region, sufficiently close to S. 

In very many cases even a crude approximation is sufficient. For 
example, if one is dealing with frequently occurring practical applications 
of the equations of the theory of elasticity to bodies such as rock stratas 
which are far from being homogeneous, it is clear that in such cases 
great accuracy is unjustifiable. Thus one may practically solve a given 
problem for the regions Sn by retaining a number of terms in (89.2) which 
will be sufficient for the stated purpose, and the solution will represent an 
approximate solution for the original region S. 

In the case of infinite regions, one has instead of (89.2) an expansion of 
the form 

(89.2') 

(assuming Co == 0) and instead of (89.3) 
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(89.3') 

and the earlier statements will again apply. 
Naturally, any other expansion in a series of rational functions can 

be used for w(~) instead of these power series. It may be proved that 
under knovvn, general assumptions with regard to the contour L and to 
the selected method of expansion, the solutions for the regions 5 n will 
tend to the solution for the given region 5, ,vhen n ~ 00; the proof is 
giv'"en in the Author's paper [6J and, for more general conditions, in a paper 
by D. I. Sherman [5J. 

It will only be noted that the method of approximate solution 
gives good results even in cases when L is not smooth, but has corners 
(angular points), e.g. vvhen L is a polygon. In order to transform regions, 
bounded by straight line segments, on to the circle, the known Sch\varz
Christoffel formula may be used. 

The above method \vas applied successfully by G. N. Savin to the 
solution of a number of practically important problems. Referring the 
reader in the first place to the recent monograph of G. N. Savin [8J 
as well as to his papers [1, 2J and the paper by A. N. Dinnik, A. B. 
Morgaevskii and G. N . Savin [1], consideration will here be restricted to 
two examples taken from G. N. Savin [lJ (cf. also G. N. Savin [8J) 
which illustrate the practical usefulness of the method (cf. also the 
recent paper by C. A. M. Gray [1J). 

As a first example consider the region, represented by the infinite 
plane with a hole in the form of an equilateral triangle. In this case the 
mapping function may be written in the form 

j' 2 dt 
w(~) = - A (1 - t3):I""t2 + canst., 

1 

where A is a real constant determining the dimensions of the triangle. 
Expanding in a power series, one finds for a suitable choice of the arbitrary 
constant 

By retaining the first two or three terms of this expansion one obtains 
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instead of the triangle the contours illustrated in Figs. 40 or 41 re
spectively. 

As a second example consider the infinite plane with a square hole. 
In this case 

~ 

dt 
cu(~) == -A J (1 + t4)!- + canst., 

/2 
1· 

where A determines the dimensions of the square. Expanding in a 
power series and choosing the appropriate value for the arbitrary constant, 
one finds 

( ( 
1 1 3 1 y 1 Yll ) cu~) = A ---~ +-S7 __ - S + .... 
~ 6 56 176 

Fig. 40. Fig. 41. 

( 
1 ~2) 

(O(~) = A ~ -'3 ( 
1 ~2 ~5 ) 

w(~) = A - - - + -
~ 3 45 

The contours corresponding to the retention of the first 2, 3 and 4 terms 
of this expansion are shown in Figs. 42, 43, 44. 

It is seen that an approximation, sufficiently good for most purposes, 
is given by three terms. By a slight modification of the coefficients of the 
terms retained even better approximations may be obtained; practical 
methods for deducing better approximations have been evolved by 
M. I. Naiman in a paper \vhich has not yet been published. G. N. Savin 
also considers in detail the case of holes with straight sides of different 
lengths. 

In order to avoid any later reference to this problem, it will be noted 
here that the above methods may likewise be applied to the semi-infinite 
regions considered in the next chapter. 
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Finally, it should be stated that these methods of approximate solution 
can also be applied successfully to regions bounded by several contours, 
if they are combined with the so-called "alternating method" ("Schwarz 
algorithm") or the method of successive approximation, analogous to 
that used by Schwarz in solving Dirichlet's problem. This method admits 
reduction of a given boundary problem for regions, bounded by several 
contours, to the successive solution of the same problem for several 
regions, each bounded by a single contour, for successively varying 
boundary conditions. An infinite number of such operations is required 
for the exact solution, but practically useful approximate solutions may 
be obtained after a finite number of steps. Each separate problem for 
a region bounded by one contour may likewise be solved approximately, 
using the above method. 

It should be noted that the method of successive approximation has 
been developed by S. G. Mikhlin [5, 9, 13J and by D. I. Sherman [5J; 

Fig. 42. 

(U (~) = A ( + - ~ ~3) 

Fig. 43. Fig. 44. 

( 
1 1 1) <u(~) =A - - - ~3 + - ~7 
~ 6 56 ( 

1 1 1 1) <u(~) = A - __ ~3 + ~~7 ___ ~ll 

~ 6 56 176 
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a study of their results may be found in Mikhlin's book [13J. Note also the 
work of A. Ya. Gorgidze [1, 2J. A convergence proof of the Schwarz algo
rithm for very general conditions has been given by S. L. Sobolev [2J. 

The method of successive approximation was applied by S. G. Mikhlin 
[4J to the solution of the first fundamental problem for a half-plane with 
an elliptic hole. This problem has been solved by D. I. Sherman [4J 
using a different method. 

Finally, the recent papers by D. I. Sherman [24-26J will be noted 
which give new successful examples of the effective solution of certain 
boundary value problems which are of significant practical interest. 



CHAPTER 16 

SOLUTION OF THE FUNDAMENTAL PROBLEMS FOR THE 

HALF-PLANE AND FOR SEl\iI-INFINI'"fE REGIONS 

Hitherto consideration has been restricted to regions bounded by 
(finite) contours. The study of the case where the boundary is an open 
line, extending to infinity in both directions ("semi-infinite region"), 
does not meet with any essentially new difficulties. In certain cases it 
is convenient to map the region under consideration on to the half
plane rather than on to the circle (there being, of course, no essential 
difference between these two methods). The general case will not be 
considered in the present chapter; only the solution of the fundamental 
problems for the half-plane and for certain definite semi-infinite regions 
will be treated. 

The general case of semi-infinite regions has been studied by S. G. 
Mikhlin [7J. In recent papers, R. Tiffen [2, 3J gives what appear to the 
Author to be much more complicated solutions of the problems considered 
in this chapter in which is reproduced without essential changes the 
study presented in the second (1935) and third editions of this book. In 
particular, in R. Tiffen [3J, the method of solution with the aid of con
formal mapping is set forth for the case of a parabolic contour as in the 
Authors' own work (cf. § 95). 

§ 90. General formulae and propositions for the half-plane. 
1°. Let the region 5, occupied by the body, consist of the "lower" half

plane (Fig. 45) bounded by the 
Ox axis, i.e., of the points 
y < O. In §§ 90, 91 temporary 
use will be made of the no
tation of Chap. 5, i.e., 

cp(z) , t.J;(z) , <I>(z) , 'Y(z) 

will again be written instead 
of CfJl (z), ~1 (z) etc. 

It will be assumed that the 

A 0 B 

'... ..,./ 5 '.... ,..."" ...... _--C 

391 Fig. 45. 
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stress components satisfy those conditions of continuity and 
differentiability which apply throughout the preceding work. In addition, 
it will be assumed that the stresses, and likewise the rotation (which is 
inessential, but somewhat simplifies the study), tend to zero, as z ap
proaches infinity along any path remaining in S. If the boundary of 
the region 5 did not extend to infinity, but were instead a circle, it 
would follow from these conditions that <I> and '¥ would have the forms 

, , 

<I>(z) == ~ + 1'2
2 

+ ... , \f1'(z) == ~ -+-~ + ... z z Z Z2 

for large I z I (cf. § 36). 

In the present case the condition will be imposed that the functions 
<I> and 'Y may be represented for large I z I by 

l' ( 1 ) "'{' ( 1 ) <I>(z) = -; + 0 -;' If(z) = ---;- + 0 -; , 

, y ( 1 ) <I> (z) = - -;2 + 0 -z2 ' 
(90.1 ) 

where y and "'(' are constants. (With regard to this choice, see also the 
Note at the end of § 93.) 

In addition, the functions <D(z) and 'Y(z) will be holomorphic in every 
finite region, contained in S. 

The following conditions may be added to (90.1): 

cp{z) = y log z + 0(1) + const., 

~(z) = y' log z + 0(1) + const.; 
(90.2) 

in these formulae one definite branch of the multi-valued function log z 
must be selected, e.g. log I z I + i.&, where .& (argument of z) varies 
from - 7t to o. 

It will be remembered that the symbols 0 (l/z) and 0(1) denote quantities such 
that 

10(~)1<~-, 10(1)I<e, 
z ! z I 

where e only depends on I z I and e -+ 0 as I z I ~ co. The condition (90.2) would 
follow from (90.1) by an integration, provided one had on the right-hand sides of 
(90.1) 0 (1/z1 +(.I.) instead of (l/z), where ~ is a positive constant (which is arbi
trarily small). 
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Finally, the further condition will be introduced: the resultant vector 
01 the external forces, applied to a segment AB at the Ox axis, tends to a 
definite limit as A and B move to infinity (A towards the left and B 
towards the right). This condition will always be satisfied, if only a finite 
part of the boundary is loaded. 

This last condition will now be formulated mathematically. If X', Y' 
are the components of the resultant vector of the external forces, applied 
to AB, then one has by (33.1) 

[ oU 3UJB 
X' + iY' == + i ~ + i - , , ox ay A 

(90.3) 

where 

au au - - --- + i- == <p(z) + Zcp'(Z) + ~(z) == cp(z) + z<l>(z) + tl;(z). (90.4) ox oy 

In order to be justified in applying (33.1) to the segment AB of the 
boundary, certain conditions must be imposed on the behaviour of (90.4) 
near the boundary. However, one may avoid this without any additional 
assumptions, if one replaces the evaluation of the resultant vector of the 
forces applied to AB by that of the resultant vector of the forces applied 
to any simple arc A' B' in S J the ends A', B' of which lie infinitely close 
to the points A, B (cf. § 35). For example, one may take as the arc A'B' 
an arc obtained from the semi-circle ACB (Fig. 45) by selecting on it 
A' J B' infinitely close to A, B. 

In the sequel, in order to simplify the notation, the letters A, B will 
be written instead of A I, B' and this should not cause any confusion. 

If A and B lie sufficiently far away and on different sides of 0, 
then (90.1), (90.2) and (90.4) give 

() . () r. _, r _,. , 
[ 
~U ':lUJB" " -- + 2-, - == y log- + y1t2 + y log--y 1t2 + s:, (90.3) ox oy A r' r' 

where r' and y" are the distances of A and B from 0 and e is arbitrarily 
small (and tends to zero as r', r" increase). In order that the preceding 
expression will remain finite for any abitrarily large y' and y" (indepen
dent of each other), it is obviously necessary and sufficient that 

y + y' === o. (90.5) 
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Under tl1is condition the vector (X, Y) of the external forces, applied 
to the whole of the Ox axis, will be given by 

. .[3U .0UJ+00 
X + zy == 't -+ 't~ == -1t(y-y'). ox oY_oo 

It follows from (90.5) and (90.6) that 

y==-
X+iY , 

, y = 
2rc 

Hence one has finally for large I z I : 

X-iy7" 

21t 

(90.6) 

(90.7) 

<I>(z) = - X ~ziY + 0 ( ~ ), 'Y(z) = X ;::Y + 0 ( + ) , 
x + iY ( 1 ) 

<1>' (z) = 21tZ2 + 0 Z2" , 

X+iY 
\f>(z) == - log z + 0(1) + const., 

21t 

~(z) == 
X_i}T 
---log z + 0(1) + const. 

21t 

(90.1') 

(90.2') 

Note also that under the above conditions the stress components 

wlll be of order O(ljz), while the displacements will have for large I z I 
the form 

2fL(U + iv) == xylog z-y'logz -y = + 0(1) + const. == 
z (90.8) 

x(X + iY) X + iY _ X - iY z 
== - log z - log z + -=- + 0(1) + const. 

21t 2n 21t Z 

If X == Y = 0, then X x, Y 1/' X 1/ will be of order 0 (1 jz) and u + iv will be 
bounded. 

The same fundamental problem may be set for the region S as for the 
regions considered in the earlier chapters of this Part. One has only to 
give special consideration to the fact that the behaviour of those quanti-



CHAP. 16 SEMI-INFINITE REGIONS 395 

ties which are given on the boundaries should be in agreement at infinity 
with the conditions imposed above. 

2°. In the first fundamental problem, the quantities Y 11 == N (t) and 
X y == T(t) will be given on the axis Ox as functions of the abscissa t. 
On the basis of (90.1'), it is easily found that for large I t I 

(90.9) 

In the second fundamental problem the functions u and v, given on Ox, 
must satisfy by (90.8) the conditions 

2fL(u + iv) = - x+ 1 (X + iY) log t + c + 0(1) for t > 0, 
27t 

. X + 1 
2fL(U + ~v) = - 27t (X + iY) log I t I + c + 

i(x - 1) . +--(X + ~Y) + 0(1) 
21t' 

where c is a constant. 

for t < 0, 

(90.10) 

The reader ,viII easily establish analogous conditions for the mixed 
fundamental problem. 

In the cases ot the second fundamental and of the mixed problems the 
quantities X, Y will be assumed known. 

3°. Only the solutions of the stated fundamental problems will be 
given below (§§ 93, 94, 113, 114). Consideration will be restricted to 
the uniqueness theorems. 

The uniqueness theorems for the pres~nt case are readily proved by 
a method which is completely analogous to that studied in § 40 for the 
case of infinite regions. In the present problem, one must apply the 
integral formula (40.4) to the region bounded by the segment AB of the 
boundary and the semi-circle ACB (Fig. 45), and then go to the limit 
when A and B move to infinity in opposite directions. This proof is 
directly applicable to the case when the displacement and stress com
ponents are continuous up to the boundary without the point at infinity, 
where they behave in accordance with the assumed conditions. 

Thus, in this case, the proof of the uniqueness theorem is readily 
carried out for the first and second fundamental problems of § 42 under 
the assumption that the solutions under consideration are regular, i.e., 
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that the corresponding functions cp(z), cp'(z), t.l;(z) are continued con
tinuously at all finite points of the boundary. 

It may still be added that by the existence theorems the solutions 
of the second and mixed problems are determined completely and the 
solution of the first fundamental problem apart form a rigid body 
displacement (but only a translatory one); this follows from the fact 
that by an assumed condition the rotation corresponding to the solution 
under consideration vanishes at infinity. 

NOTE. 1. The formulae (90.1), (90.2) or (90.1'), (90.2') may be 
replaced by others which are more convenient for the study of the 
behaviour of the functions under consideration near the boundary. 
For example, one may obviously write instead of (90.2') 

X+iY 
cp(z) = - log (z - zo) + rp*(z) + canst., 

27t 

tJ;(z) = 
X-iY 

log (z - zo) + ~*(z) + canst., 
27t 

(90.2") 

where Zo is an arbitrarily fixed point outside 5 (i.e., a point of the upper 
half-plane) and cp*(z), ~*(z) are functions, holomorphic in S and of order 
0(1) for large I z I. 

NOTE. 2. 0 nco nee n t rat e d for c e sap p lie d tot h e 
b 0 un dar y. 

If one retains only the first terms in the formulae (90.2'), i.e., if one 
writes 

X+iY X-iY 
cp{z) = - log z, tJ;(z) = --log z 

2~ 2~ 
(90.11 ) 

and applies them to the whole half-plane S, then it is easily seen that they 
correspond to the effect of a concentrated force (X, Y) applied to the 
boundary at the origin. In fact, for a circuit along an infinitely small 
semi-circle below 0, the expression oUjox+i oUray increases by i(X+iY), 
and hence the resultant vector of the forces, applied (from above) to this 
semi-circle, equals (X, Y); further, it may be shown that the resultant 
moment of the same forces about the origin is zero. 

The components of stress and displacement corresponding to these 
functions <p and ~, i.e., to the effect of concentrated forces, may be cal
culated by means of the general formulae of § 32 or § 39. For example, 
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one has by § 39 for the polar components of stress 

- - X + iY. 2 . 
rr + && == 49l<p'(z) == - 4ffi: e-'l& == - -- (X cos it + Y SIn &), 

21tr 1tr 

- - - 2 && - rr + 2ir& = 2[zg/'(z) + ~'(z)Je2i~ = - (X cos & + Y sin &), 
1tr 

whence 

- 2 --l'r=---(Xcos&+Ysin&), &3-:::::0, r&==O. (90.12) 
rcr 

This solution of the problem of the effect of a concentrated force on 
the boundary agrees in essence with the solution found by Flamant 
(Cf. A. E. H. Love [lJ §§ 149, 150). This problem is the two-dimensional 
analogue of the problem of the effect of a concentrated force on the 
boundary of a body, occupying the half-space (the boundary of which 
is an unbounded plane), i.e., of the so-called problem of Boussinesq. 

§ 91. The general formulae for semi-infinite regions. Next 
consider semi-infinite regions and the generalization of the formulae 
of the preceding section to this case. Let L be the boundary of the region 
S which is a simple open line extending in both directions to infinity. 
The line L divides the plane into two parts one of which is 5; the second 
part will be denoted by S'. The positive direction on L will be chosen in 
such a way that it leaves S on the left. 

It will be assumed that the line L has the following property: if Mo 
is some fixed point, the rays MoA, MoB linking Mo to two points A and B 
of L tend to definite positions as A and B move to infinity along L in 
opposite directions. 

Let n(Mo) be the (signed) angle covered by the ray MoJt,1 as the point 
M, moving along L in the positive direction, describes the entire line. 
It will be said that IJ(Mo) is the angle subtended by L at Mo- It is easily 
seen that the magnitude of IT (M 0) will be the same for all points on one 
side of L and that the angles IT, II' subtended by L at points lying 
in Sand 5' respectively are related by the condition 

II - n' == 21t. (91. 1 ) 

For example, if S is the lower half-plane, its boundary L is the Ox axis, 
but the positive direction of L is the negative Ox direction (because S 
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must lie on the left for motion in that direction). Then, for points Mo 
of the lower half-plane, one has II == 7t, while for points M 0 of the upper 
half -plane II' === ~ 7t. 

In the present case of semi-infinite regions it will be assumed that 
the functions <I>(z), 'Y(z) , <I>'(z) are also subject to the condition that for 
large I z I (cf. § 90) 

4>(z) = ~ + 0 ( + ) , 'Y(z) = :' + 0 ( + ) , <1>' (z) = - ~ + 0 ( :2 ) 
or, what is the same thing, 

y ( 1 ) Y' ( 1 ) <I>(z) = + 0 -, o/(z) == --- + 0 - , 
Z -zo Z Z -zo Z 

<I>'(z) _ _ Y (_1 ) 
- ( )2 + 0 2' 

Z -- zo Z 

(91.2) 

where Zo is some (arbitrarily) fixed point of 5' (i.e., not in S); in (91.2) 
o(ljz), o(l/z2) are symbols for functions, holomorphic in S and having 
for large I z I the indicated order. 

The following may still be added to these conditions (cf. § 90): 

cp(z) = y log (z-zo) + 0(1) + canst., 

~(z) = y' log (z - zo) + o( 1) + canst.; 
(91.3) 

here o( 1) is the symbol for a function, holomorphic in S and tending to 
zero as I z ! -? 00. 

As in the preceding section, it will also be assumed that the resultant 
vector of the external forces, applied to an arc AB of L, tends to the 
definite limit (X, Y) as the points A and B move to infinity in opposite 
directions. 

In the present case one finds instead of (90.3') the formula 

[
aU 3UJB r" _., _ + i- = y log~, + yIT'i + y(e21~ - e2~(X) + 
ax oy A r 

" + y' log ~ - y'TI'i + € (91.3') 
r' 

where one may move along L, since Zo does not lie on this line, and where, 
as above, n' is the angle subtended by L at points of S', while tX, ~ are 
the (signed) angles between the Ox axis and the limiting positions of 
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the rays MoA and MoB, drawn from some fixed point lvlo, as A and B 
move to infinity along L, the first in the negative and the second in the 
positive direction; r' and r" are the distances of Zo from A and B re
spectively and € is a quantity tending to zero as A and B move to infinity. 
Clearly, one may assume 

~-(X:::::::IT'. (91.4) 

As in the preceding section, the conclusion is drawn that one must have 

y + y' == 0 (91.5) 
and that 

[ au dU] - . 2'~ 2'-X + iY == i - + i- == (y-y')ll'- -z,(e 11-1 - e 'j,(X)y 
dX oy L 

Of, using (91.5), 
(91.6) 

In the analogous formulae of the preceding section it had been assumed that the 
boundary of 5 was described in the negative direction; hence one had to take 

[ 
oU oU]+oo [oU oU] + i -- + i-instead of - i -- + i ~ . 
(}X oy -00 OX oy L 

It will now be assumed that TI' ::j=. 0, i.e., that IT ;:j=. 21t. Then, adding 
to (91.6) the relation obtained by transition to the conjugate complex 
expression and solving for y and y, one finds 

2Il'(X + iY) + i(e2if3 - e2i<x) (X - iY) 
y== 

4(n'2 - sin2fI') 
(91.7) 

and, by (91.S), 

, 2fI'(X-iY) _i(e-2ir3_e-2i(X) (X + iY) 
y==-

4(I1'2 - sin2 II') 
(91.8) 

In deducing these formulae it has been assumed that IT' '* O. If 
Il' == 0, then (91.6) gives X == Y == O. This shows that for II' == 0 it 
is necessary for the existence of a solution under the above conditions 
that the resultant vector of the external forces, applied to the boundary, 
be zero. 

§ 92. Basic formulae, connected with conformal transformation 
on to the half-plane. It is convenient for the solution of problems of 



400 V. SOLUTION OF BOUNDARY PROBLEMS § 92 

the theory of elasticity for semi-infinite regions to make use of trans
formations on the half-plane rather than on the circle. (As stated earlier, 
there is no difference in principle between the two approaches.) 

As for transformations on to the circle, it is advantageous to introduce 
on the z plane of the elastic body curvilinear coordinates, related to the 
traIlsformation. 

As before, denote the region under consideration by 5 and its boundary 
by L. Let 

z == U)(~), (z == x + iy, ~ == ~ + i1)) (92.1 ) 

be the function mapping 5 on to the lower half of the ~ plane, i.e., on to 
the half-plane 'll < 0, so that finite points correspond to finite points. 

x 0 ~ 

Fig. 46a. Fig. 46b. 

Straight lines'll == canst., lying in this half-plane, obviously correspond 
in the S region to some open lines which go to infinity at both ends; 
these lines will be denoted by (~). Similarly, the semi-infinite straight 
lines ~ == canst. in the lower half of the ~ plane correspond in S to lines (1)) 
which begin on L and go to infinity (Figs. 46a, 46b). 

Since in S a con1pletely definite point z = U)(~ + iT;) of the z plane 
corresponds to every pair (~,~) for 1] < 0, the quantities ~ and YJ may 
be conceived as curvilinear coordinates in the z plane. The lines (~) 

and (1)) form an orthogonal net of coordinate lines. 
Let z be some point of s. Draw at z the tangents to the lines (~), (T;) 

in the directions of increasing ~ and 1]. These tangents which will likewise 
be denoted by (~) and (1)) will represent the axes of the curvilinear coor-
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dinates at the point z (Fig. 46a) ; all this is quite analogous to the procedure 
in § 49. -+ 

Let A be some vector starting from the point z == (~+ iTJ) and let 
Ax, Ay be its projections on the axes Ox, Oy and A~, A"l) its projections 
on the axes (~) and (1J). As ill § 49, 

(92.2) 

wllere (f.. is the angle bet,veen the axes (~) and Ox, measured from Ox 
in the positive direction. 

In order to determi~ eiif., the point z will be given a displacement dz 
in the direction (~); the corresponding point ~ will then undergo a dis
placement d~ > 0 in the direction ~ of the ~ plane. Obviously~ 

whence 

. w' (~) etif.= ___ _ 
I (0' (~) ! ' 

-iif. e == 
w'(~) 

I w'(~) 1 

(92.3) 

Thus one obtains 

(0' (~) • 

AI; + iA1) = I w'(Q I (Ax + tAy). (92.2') 

.....-.... ............. ..-.... 
Denote by Vt;' v"l) the components of displacement and by ~~, 1)"1), ~'Yl 

the components of stress in the (;), (1)) directions of the curvilinear 
coordinate system. By (92.2'), 

co' (~) 
vi; + iV1) = I w'(~) I (u + iv) , (92.4) 

where u, v are the components of displacement with respect to Ox, Oy. 
By § 8, the following relations hold between the stress components in 
the two coordinate systems: 
..-.... ..-.... .....-........-...-
~~ + ~'t1 = Xx + Y 11' ~~ - ~~ + 2i~~ == (Y 11 - Xx + 2iXy)e2i if., (92.5) 

where, by (92.3), 
2iC( _ w' (~) (i) , (~) c.u' (~) 

e ---.--.--==~~. 

(J./ (~) w' (~) (0' (~) 
(92.3') 
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The expressions for the components of displacement and stress in 
terms of functions of the complex variable ~ may be found as in § SO; 
it will now be agreed to denote by 

C?l (z), ~1 (z), <PI (z), 'Y 1 (z) 

the functions 
cp(z) , ~(z), (P(z) , ~(z) 

of Chapter 5 (and likewise of § 90). As in § 50, write 

cp(~) == CP1[(O(~)J, ~(~) == ~l[(I.)(~)J, 

'P' (~) ~' (~) (92.6) 
<})(~) = <})l[W(~)J = ()/(~)' '¥(~) = '¥l[W(~)J = ~~Q. 

Applying now the formulae of § 32, expressing Xx, Y y , Xy in terms 
of 'Pi' ~v <PlJ 'Y l' one finds by (92.5) and (92.3') 

-- --~ ~ + 'Yj~ == 2 [<I> (~) + <I> (~) ] === 4 m<l> (~) , (92.7) 

...--...-- - 2-
1l~ - C:~ + 2i~11 == --- {w(~) <1>' (~) + (1.)' (~)'Y(~)}. (92.8) 

(1.)' (~) 

Using (92.4) and the formula 

2l-LCu + iv) == xcp(~) _ w(~) cp'(~) - ~(~), (92.9) 
w'(~) 

the expression for vI; + '£vTj is also easily deduced. Finally, adding (92.7) 
and (92.8), one finds the useful relation 

-- -- - 1-
~~ + i~'1 == <I>(~) + <D(~) + _ {(I.)(~)<l>' (~) + (1.)' (~) 'Y(~)}. (92.10) 

(1.)' (~) 

§ 93. Solution of the first fundamental problem for the half
plane. Let the body S occupy the lower half-plane. By the conditions 
of the problem 

y 11 = N(t) , X 11 == T(t) on Ox, (93.1 ) 

where N(t) and T(t) are given functions of the abscissae t (which represent 
the normal and tangential stresses). 

By (32.8) 

Y y - iX1I = <I>(z) + <1>(z) + z<l>'(z) + 'Y(z). (93.2) 
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Hence the boundary condition may be vvritten 

<I>(t) + <I>(t) + t<l>' (t) + ,¥(t) == N - iT (93.3) 

or 
<I>(t) + <I>(t) + t<l>' (t) + "o/(t) == Iv + iT. (93.4) 

The left-hand side of (93.3) must be understood as the boundary 
value of the right-hand side of (93.2), and an analogous statement holds 
true with respect to (93.4). In what follows it will be assumed for the 
sake of simplicity (unless stated otherwise) that there exist also boundary 
values <I>(t), <I>'(t), ,¥(t) of the functions <t>(z), <t>'(z), '¥(z) separately. 

The condition (93.3) could, of course, have also been deduced from (41.23); how
ever, it must not be overlooked that the quantity T of the present section is the 
quantity (- T) of that formula. This follows from the fact that, when moving 
along the Ox axis in the positive direction, the region S lies on the right, and not 
on the left. 

It will be assumed that .lv and T are continuous functions satisfy"ing 
the condition (90.9), i.e., that 

(93.5) 

From the condition that '-J?(t), defined by (93.4), is to be the boundary 
value of some function '¥(z) , holomorphic in the lower half-plane and 
vanishing at infinity [as follows from (90.1 )], one obtains by (76.21) 

+00 +00 +00 

_1_J' N - iT dt --I--f <P(t)dt __ I_)f' <i>(t)dt _ 
27ti t - z 27ti t - z 2rci t - z 

-00 -00 -00 

+00 

--I-f t~ dt = 0, 
2rr:i t-z 

-00 

where z is any point of the lower half-plane. But <I>(t) is the boundary 
value of <l>(z) , holomorphic in the lower half-plane and vanishing at 

-- - - -
infinity, and <I>(t) , t<l>'(t) are the boundary values of <I>(z) , z<D'(z) , ho-
lomorphic in the upper half-plane and likewise vanishing at infinity 
[cf. (90.1)J, and hence, by (72.2') and (72.2), the conclusion is drawn that 
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the second integral in the preceding formula is equal to - <I>(t), while 
the last two integrals vanish. Thus 

+00 

1 f N-iT <I>(z) = - --. dt. 
21t~ t - z 

(93.6) 

-00 

Having found <I>(z) , the function 'Y(z) may be determined from (72.2'), 
since the boundary value 'Y(t) is given by (93.4). Thus one obtains, 
using the formulae of § 72, 

+00 

I f N + iT 
'Y(z) == - 27ti t _ z dt - <Il(z) - z<l>'(z) == 

-00 

+00 +00 

1 f Tdt z f N - iT 
== - -; t - -; + 2m (t _ Z)2 dt = 

-00 -00 

+00 +00 

1 f N + iT 1 f N - iT == --- dt + -- tdt. 
21ti t - z 2rci (t - Z)2 

(93.7) 

-00 -00 

It is readily verified on the basis of § 68, § 69, 10 and § 71 that, if 
N (t), T(t) and their first derivatives N' (t), T' (t) satisfy the H condition 
at the finite points and the derivatives tN(t), tT(t), t2N'(t), t2T'(t) satisfy 
the H condition likewise near the point at infinity, the expressions 
obtained for <I>(z) and 'Y(z) satisfy all the postulated conditions. In 
particular, the functions <I>(z) , <1>' (z), 'Y(z) are continuous up to the 
boundary and have for large I z I the required form determined by 
(90.1) and (90.5). Thus, the problem has been solved. 

The above result agrees essentially with that obtained by G. V. Kolosov 
[IJ by another method. The same problem was also solved later (and 
independently of G. V. Kolosov) by M. A. Sadovski [1, 2J. But neither 
of these authors presented a strict investigation of the solution. 

NOTE. 1. It is readily verified directly on the basis of results in § 68 
and § 69, 2° that, if N(t) and T(t) satisfy only the H condition (including 
the point at infinity), the displacement and stress components correspond
ing to the functions <I>(z), 'Y(z) and determined by (93.6), (93.7) will be 
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continuous up to the boundary and that the boundary condition (93.1) 
will be satisfied. But then the functions <I>(z) and 'Y(z) may not be 
continued continuously on the boundary, which was not required by 
the problem formulated; the function <I>(z) and the expression z<D'(z) + 
+ 'Y(z) will be continued continuously on the boundary. 

NOTE. 2°. The right-hand sides of (93.6) and (93.7) obviously are 
holomorphic functions in the lower as well as in the upper half-planes, but, 
in general, they are not analytic on the common boundary Ox of the 
half-planes. It is clear, however, that, if any part of the boundary remains 
unloaded, the right-hand sides of (93.6) and (93.7) will also be analytic 
on that part, and hence <I>(z) , 'Y(z) may be continued analytically through 
this part from the lower into the upper half-plane. 

This property of the solution is easily proved directly \vithout re
ference to (93.6) and (93.7). In fact, let 

Q(z) = - <I>(z) - z<I>'(z) - '¥(z); (93.8) 

since, by supposition, <I>(z) and 'Y(z) are holomorphic in the lower half
plane, Q(z) is likewise holomorphic there. Next consider the functions 

- --
$(z), Q(z) == - <I>(z) - z<l>'(z) -- 'Y(z) 

which are holomorphic in the upper half-plane. By (93.3) and (93.4), one 
has on any unloaded part of the Ox axis 

<I>(t) = Q(t), <I>{t) == Q(t), (93.9) 

where <I>(t), Q(t) are the boundary values, assumed by the corresponding 

functions for z ~ t from the lower half-plane, while °<p(t), Q(t) are those 
assumed for z ~ t from the upper half-plane. 

It follows from the first equality (93.9)that Q(z), holomorphic in the 
upper half-plane, is the analytic continuation of <I>(z) from the lower into 
the upper half-plane, and hence the analytic continuity of <1>(z) is proved. 
Similarly, the second equality (93.9) leads to the conclusion that Q(z) 
is analytically continued into the upper half-plane, where it takes the 

value <I>(z). Hence it follows by (93.8) that 'Y(z) may also be analytically 
continued, and the earlier proposition is proved. 

In particular, it is now seen that, if only a finite segment of the boun
dary is loaded, the functions <I>(z) and 'Y{z) may be expanded for suf
ficiently large I z I in Laurent's series. 
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These results present simple means for studying the behaviour of 
<I>(z) and 'J"(z) fQr large 1 z I, provided the behaviour of the stress com
ponents at infinity is known. It will be remembered that the behaviour 
of <I>(z) and o/(z) at infinity had been postulated a priori in § 90 and that 
this step seemed to be artificial in character. However, it will be easy 
now to remove (or diminish) this artificiality. In fact, it may be readily 
proved that <I>(z) and '}J'(z) necessarily have the form, given by (90.1), if 
only a finite part of the boundary is loaded and if the stresses are, for 
example, subject to the following condition: the quantities 

tend (uniformly) to zero as z moves to infinity (remaining, of course, in 
the lower half-plane). No space will be devoted here to the proof \vhich 
\\rill easily be provided by the reader. 

§93a Example. As an application of the above results consider 
the case when the segment 

of the Ox axis is subject to a uniform pressure p, while the remaining 
part of the boundary is free from external forces. Then T == 0 for all t, 
N == - p for - a ~ t s:: + a, N == 0 for the remaining values of t, 
and (93.6), (93.7) give 

+a +a +a 

cf>(z) = -P--;-f-!~ == _J-;- r_d~, 
21t2 t - Z 27t2 ., Z - t 

'¥(z) = - ~-. --P j-- dt 
27t2 (t - Z)2 ' 

-a -a -a 

whence 

<I>(z) == L._ [log (z _ t)Jt= +a == ~ log z - a 
27t2 t = -a 21ti z + a ' 

paz 
'f(z) == ---'( 2 2)· 

1t't Z - a 

(93.1a) 

Note that the results of § 93 have been applied, although in the present case the 
given function N(t) is discontinuous; the correctness of the final result may be 
verified directly. 
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In (93.1 a) the term log (z - a) /(z + a) means the increase of the function 
log (z - t) for a continuous change of t from - a to + a. For greater 
clarity, write z - t == pe~i&, where p == I z - t I and e is the angle between 
the vector starting from t and ending at z and the axis Ox which 
will be assumed to lie between 0 and it and to be measured from the 
positive Ox axis in clockwise direction (Fig. 47). Then 

, z- a PI, 
log (z - t) = log p - 1,6, log ~-- == log - - t(61 - 62), (93.2a) 

z + a P2 

\vhere 81 - O2 is the angle subtended at z by the loaded segment of the 
Ox axis. 

Tlle stress components \vilI now be calculated. One has 

(93.3a) 

2pa z-z 
Xv - Xx + 2iX lI ~ 2[z<!>'(z) + 'Y(z)] = --;-- '" == 

7tt Z2 -'aw 

4pay 4PayCi2 - a2) = - --.. -~----- , 
1t'(Z2 - a2) (z2 - a2) 

(93.4a) 

p 
y 

p 

x 

z 
Fig. 47. 

whence, finally, 

p 2pay(x2 - y2 - a2) 
Xx = --; (61 - e2) + n[(x2- + y2 _ a2)2 + 4a2y2J-
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Y __ ~ (ll _ e ) _ 2pay(x2 - y2 - a2) 
11 - VI 2 --

7t 7t[(x2 + y2 - a2)2 + 4a2y2] 
(93.Sa) 

X
y
= ~a~2 . 

7t[(X2 + y2 _ a2)2 + 4a2y2] 

The solution of this problem was first given by]. H. Michell [3J and 
was later obtained by G. V. Kolosov [1, 2J by a different method. (However, 
both papers by Kolosov contain a misprint in the expression for X 11' 

where a2 appears instead of a). 
The law of the stress distribution becomes clearer, if one '\vrites in 

(93.4a) the term Z2 - a2 as 

then 

(93.4' a) 

which gives, in conjunction with (93.3a), 

p y cos (61 + (2), 
Xx = - ~ (61 - ( 2) + 2pa ---~--

~ PIP2 

p y cos (61 + (2) 
Y'Y = - - (61 - ( 2) - 2pa ------ (93.5' a) 

7t PIP2 

Y sin (81 + (2) 
Xv == - 2pa . 

PIP2 

These formula demonstrate that the stress. components are continuous 
up to the boundary, provided the points t = ± a are excluded. At these 
points they cease to be continuous but remain bounded (as is seen 
by noting that y = - PI sin 61 == - P2 sin ( 2). It is likewise clear 
that the boundary conditions are satisfied. 

The components of displacement are also readily calculated and it 
is verified that they remain continuous up to the entire boundary (in
cluding the points t = + a), provided the point at infinity is excluded, 
since they increase with I z I ~ 00 like log [ z [. 

The solution for a tangential stress, applied to a segment of the boun
dary, may be deduced just as simply. 
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§ 94. Solution of the second fundamental problem. In this case 
the boundary condition may be written 

(94.1 ) 

or 

(94.2) 

It will be assumed that the displacements remain bounded at infinity 
which, by what has been said in § 90, is equivalent to the condition 
X == Y == 0. (The more general case, considered in § 90, is easily reduced 
to the preceding one by means of a method analogous to that of § 78.) 

The condition (94.1) may be replaced by one obtained by differentiating (94.1) 
with respect to t; in that case one has only to deal with <I>(z), 'Y(z) , and the difficulty 
arising from the presence of the logarithmic terms in cp(z), q;(z) is removed. The 
problem will be solved by such methods in § 113, 2°. 

Under this condition and those of § 90 the functions cp(z), tJ;(z), cp'(z) == 
= <I>(z), tJ;'(z) == 'Y(z), holomorphic in the lower half-plane, must satisfy 
(90.1') and (90.2') with X == Y == O. Only the following of these conditions 
will be considered here: 

cp(z) = 0(1), tJ;(z) = c + 0(1), cp'(z) = 0 (+), (94.3) 

where c is some constant which is not given beforehand (so that the 
basis of the problem is somewhat more general in comparison with the 
conditions of § 90); the constant term in the expression for cp(z) has been 
omitted, as usually, without affecting generality. 

By (90.10) one has, in addition, to assume that for large 1 tIthe 
given functions satisfy the condition 

gl + ig2 = G + 0(1), (94.4) 

where G is a constant which is, in general, complex. Further, it will now 
be assumed that gl + ig2 satisfies the H condition on the boundary, 
including the point at infinity. 

Expressing that the function ~(t), determined by (94.2), must be the 
boundary value of the function ~(z), holomorphic in the lower half-plane, 
one obtains by (76.21) 

+~ +~ +~ -~f gl + ig2 dt + ~f cp(t)dt __ 1_. f tcp'(t)dt = - !e, 
7t't t-z 27t't t-z 27t2 t-z 
-~ -~ -~ 
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where z is an arbitrary point of the lower half-plane, or, applying the 
formulae of § 72, 

+00 

-00 

where, in particGlar, use has been made of the fact that t~'(t) is the boun
dary value of z,?'(z), holomorphic in the upper half-plane and vanishing 
at infinity. The value of c is obtained by letting z ~ 00 (in the lower 
half-plane)-; then, using the second formula (71.15), one finds 

lc = - flG. 

Thus 
+00 

X([)(z) == -~-f gl + ig~_ ~G. 
1t~ t-z 

(94.S) 

-00 

The function ~(z) is now easily determined from its boundary value, 
given by (94.2); in fact, applying (72.2'), one obtains 

+00 

t.t r gl - ig2 X f ~(t)dt 1 f tcp' (t)dt 1 q;(z) == -. dt- --. -- + -. --+ "2C 
1t~ '" t - Z 27t~ t - Z 21C't t - z 

-00 -00 -00 

or, applying again the formulae of § 72 and substituting for c, 

+00 

t.t f gl - 'tg2 -
~(z) =: -. dt -- zcp'(z) - flG, 

7t't t - z 
(94.6) 

-00 

where, in particular, use has been made of the fact that q;(t) is the 
boundary value of cP (z), holomorphic in the upper half-plane and vanishing 
at infinity. It is easily seen, on the basis of the results of § 71 , that these 
functions ~(z), ~(z) satisfy all the conditions of the problem, including 
'(94.3), if, for example, the expression gl + ig2 and its derivative g~ + ig~ 
with respect to t satisfy the H condition and if the expressions 
t(gl + ig2 - G), t2(g~ + ig~) satisfy that condition near the point at 
infinity. Thus the problem is solved. 

If it is not only required to satisfy (94.3) but also the conditions (90.1'), (90.2'), 
it is sufficient to assume, in addition, that also t3(g~ + ig2) satisfies the H con
dition near the point at infinity. 
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The solution of this problem (by other means) was likewise given by 
M. A. Sadovski [1, 2J who also made a careful study of the character 
and of the conditions for the existence of the solution. 

§ 95. Solution of the fundamental problems for regions, mapped 
on to the half-plane by means of rational functions. Case of a 
parabolic contour. \iVhen the given region 5 may be mapped on to the 
half-plane b~y a rational function (U(~), the fundamental problem may 
be solved by elementary means, as in the analogous cases of § 84 
et seq. 

In view of the analogy with the earlier work, consideration will be 
limited here to an explanation of the method of solution by the concrete 
example, where the boundary L is a parabola and 5 is the part of the 
plane, lying outside the parabola (i.e., not on the side of the focus). 

Consider the transformation 

z == (U(~) = i(~ - ia)2, (a > 0), (95.1 ) 

I.e., 
x = - 2~(1) - a), y = ~2 - (1) - a)2. (95.1 ') 

The real axis 1) = 0 of the ~ plane corresponds in the Oxy plane to a line 
with the parametric representation 

x == 2a~, y == ~2_a2, 
1.e., to the line 

(95.2) 

this is the parabola L with parameter 2a2 , its axis parallel to the axis 
Oy and its vertex at the point (0, - a2); the origin is the focus of the 
parabola. 

When the point ~ moves along the ~ axis from the left to the right, 
the corresponding point z moves along the parabola likewise from the 
left to the right. 

It is readily verified that (95.1) maps the region 5, outside the parabola, 
on to the half-plane 1J < O. The coordinate lines (~) and (rJ) are easily 
seen to be confocal parabolas; the axes of the parabolas (~) and (11) 
are orientated in opposite directions. Fig. 46a of § 92 shows several 
parabolae of the family (;) [i.e., 11 = const.] and those parts of some 
parabolas c: == const. which are included in S. 

The angle, subtended by the parabola at points inside the parabola 
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(Le., outside S), is seen to be (- 21t'), so that one has to take 

TI' = - 21t 

§ 95 

(95.3) 

in the formulae of § 91. The solution of the fundamental problems for S 
presents no difficulties. As an example, the first fundamental problern 
will now be solved (the second fundamental problem can be solved in an 
analogous manner). 

Let cr denote points of the real axis of the ~ plane. Then, by (92.10), 
the boundary condition may be written 

- (j + ia (J-ia 
<1>(0") + <1>(0") + --<1>'(0") - . 7(0") == N + iT, (95.4) 

2 cr + 'ta 

where Nand T are the known boundary values of the normal and - ..--.. 
tangential stresses ~iJ and ~~. The condition (95.4) will now be multiplied 
by 0" + ia which gives 

(0" + ia)<p(O") + (0" + ia)<P(O") + (0" + ia)2 <P'(O") - (cr-ia)\f(a) = F, (95.5) 
2 

where 
F =: (N + iT) (0" + ia). (95.6) 

It has, of course, been assumed here that Nand T are given in such a way 
that they do not violate the conditions imposed in § 90 with regard to the behaviour, 
of the stresses at points, away from the origin. 

The method of solution, to be used below, may, of course, be applied directly to 
(95.4); in the earlier editions of this book the problem under consideration was 
solved in that manner. The present method, however, leads more quickly to the 
solution. 

The conjugate complex form of (95.5) is 

(0'-ia)2 -
(0 -- ia)<Il(a) + (0" - ia)<l>(a) + 2 <1>'(0:) -

-- -
- (0- + ia)'¥(O") = F. (95.7) 

The unknown functions <I>(~), 'Y(~) which are holomorphic in the lower 
half-plane satisfy on the basis of (90.1) and of (95.1) the conditions 

<P(~) = 0 ( ~2 ), 'Y(~) = 0 ( ~2 ), <P'(~) = o( ~3 ) • (95.8) 

Expressing that the function (cr - ia)'Y(cr) , determined by (95.5), 
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is the boundary value of the function (~- ia)'¥(~), holomorphic in the 
lower half-plane and vanishing at infinity, one obtains, applying (76.21), 

-00 -00 -00 

+00 

1 f (0' - ia)2 <D'(O")dO" + -- === 0, 
2rci 2(0' - ~) 

-00 

where ~ is a point of the lower half-plane; noting that (cr - ia)<D(a) is 
the boundary value of (~- ia)<I>(~), holomorphic in the lower half-

plane and vanishing at infinity, and that (0" - ia)<D(O') and (0" - ia)2<1>'(a) 

are the boundary values of (~- ia)<I>(~) and (~- ia)2<1>'(~), holomorphic 
in the upper half-plane and vanishing at infinity, one finds, applying 
the formulae of § 72, 

+00 

1 f F dcr . - --; - (~ -- ~a)<I>(~) === 0, 
27t't 0" - ~ 

-00 

whence 
+00 

1 f F dO' 
<I>(~) == - .. . 

27t~(~ - ta) (j - ~ 
(95.9) 

-00 

The function (~- ia)'Y(~) is now easily determined from its boundary 
value given by (95.5). One thus obtains 

+00 

'P'(~) = . 1 . f F dG + ~ + ~a <I>(~) + (~+ i~)2 <I>'(~). (95.10) 
21tt(~ - 2a) 0" - ~ ~ - 'ta 2(~ - ta) 

-00 

It is readily seen that the above solution satisfies the imposed con
ditions, if the given function F and its first derivative F' with respect to 
(j satisfy the H condition and if this condition is satisfied near the point 
at infinity by the functions (SF and 0"2F'. 

Hence the problem is solved. 



CHAPTER 17 

SOME GENERAL METHODS OF SOLUTION OF BOUNDARY 

VALUE PROBLEMS. GENERALIZATIONS *) 

One of the general methods of solution of the fundamental boundary 
value problems of the plane theory of elasticity for simply-connected 
regions has been studied in §§ 78, 79. The present chapter gives a short 
introduction to several other methods (also applicable to multiply 
~onnected regions) which are either generalizations of the methods of 
the earlier chapters of this Part or closely related to them. 

Only one new method, due to D. I. Sherman (§§ 101, 102), for the solution 
of the first and second fundamental problems will be studied in detail 
and justified with complete proofs. 

At the end of this chapter (§ 104), several other general problems of the 
theory of elasticity will be formulated to which analogous methods of 
solution may be applied. 

§ 96. On the integral equations of S. G. Mikhlin. The nlethod of 
reduction of the fundamental problems to integral equations which was 
studied in § 79 cannot be applied directly to multiply connected regions, 
since it relies on the conformal transformation of the region under 
consideration on to the circle and such a transformation (simple and 
invertible) is impossible, if the given region is multiply connected. 

However, S. G. Mikhlin succeeded in modifying the above-mentioned 
method so that it becomes applicable also to multiply connected regions. 
The essentials of this modification will now be .summarized. It is known 
from the theory of functions of a complex variable that the problem 
of conformal transformation of a region S, bounded by one simple 
contour L, on to the circle is equivalent to the determination of the 50-

called Green function for this region, i.e., of the real function G(x, y) 
which is defined in the following manner: 

10. G(x, y) is a regular harmonic function throughout S, except at a 

*) This chapter is not necessary for the understanding of the later work. 

414 
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given point (xo, Yo) where it has a logarithmic singularity. Thus 

1 
G(x, y) = log- + Go(x, y), 

r 

415 

where r is the distance between tIle points (x, y) and (xo, Yo) and Go(x, y) 
is a regular harmonic function. 

2°. The boundary value of G(x, y) on L is zero. 
If Ho(x, y) is the harmonic function, conjugate to Go(x, y), then the 

analytic function of the complex variable 

1 
M(z) = log + Go(x, y) + iHo(x, y), 

z-zo 

where Zo = Xo + iyo, is called the complex Green function. As shown 
by the preceding formula, the function M(z) is multi-valued because of 
the presence of the logarithmic term. Since the complex Green function 
depends on z as well as on zo, it is more logical to denote it by M(z, zo) 
rather than by M(z). 

The fact that the problem of determination of the Green function is 
equivalent to the problem of conformal transformation of a given region 
on to the circle permits modification of the method of §§ 78, 79 so that 
the use of conformal mapping may be replaced by a study of the function 
M(z, zo). 

On the other hand, the concept of the Green function, whether real 
or complex, may also be applied to multiply-connected regions, bounded 
by several contours. Hence the above-mentioned method may be gen
eralized to the case of multiply-connected regions. 

In this way S. G. Mikhlin reduced the first and second fundamental 
problems of the plane theory of elasticity for multiply connected regions 
to Fredholm integral equations which are somewhat more complicated 
(as was to be expected) than the equations of § 79 (which apply only to 
simply connected regions), but which are quite useful for general in
vestigations. In particular, they have been used in a number of papers 
by S. G. Mikhlin [1-3, 7, 9J to prove the existence theorems. The 
reader's attention is drawn to these papers and likewise to the book 
[13J by the same author in which he gives a sufficiently complete study 
of the results. 

Apart from the first and second fundamental problems for multiply 
connected regions, S. G. Mikhlin also solved by his method other boundary 
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problems which are of great interest; for example, the problem of 
elastic equilibrium of a body, composed in a definite manner of different 
homogeneous parts having different elastic constants (restricted, of 
course, to those bodies to which the solutions of plane elasticity may 
be applied); this problem is treated in S. G. Mikhlin [10J and several 
particular cases are considered by elementary means in his paper [8J. 

§ 97. On a general method of solution of problems for multiply 
connected regions. One general method of solution of boundary value 
problems, developed by D. I. Sherman [1, 5] and S. G. Mikhlin, deserves 
special consideration; this method permits the construction of the 
Fredholm equation for a given multiply connected region, if by some 
means the general solution of the corresponding problem has been 
deduced for simply connected regions each of which is bounded by 
one of the simple contours, constituting the boundary of the given 
multiply connected region. For this purpose these general solutions must 
be presented in a definite manner, e.g. in the form given by the solutions 
of the integral equations, stated in § 79. 

Particularly simple and practically useful equations are obtained 
in the case where the above-mentioned, separate, simply connected 
regions are mapped on to the circle by rational functions for which 
the effective methods of solution, studied above, maybe applied. An 
example of such a case is the half-plane with elliptic holes, considered by 
D. I. Sherman [4J. 

In turning to the general case, it will be noted that the integral equations, 
obtained in the manner stated above, have the following, practically 
useful properties: If these equations are solved by the known algorithm 
of successive approximation (i.e., by expanding the solutions in so-called 
Neumann's series), then this algorithm coincides, in essence, with the 
algorithm, generalizing the algorithm of Schwarz for the problem of 
Dirichlet; with regard to this generalized algorithm of Schwarz com
ments have already been made in § 89. 

A study of this method will also be found in S. G. Mikhlin's book [13J; 
Mikhlin's investigation differs somewhat from that by D .. I. Sherman, 
since the latter starts from integral equations, obtained by the Author 
(§ 79), while Mikhlin starts from his own equations mentioned in the 
preceding section. 
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§ 98. The integral equations, proposed by the Author. The 
integral equations, deduced in § 79, are quite useful for general in
vestigations and give effective, practically applicable results in a number 
of important particular cases, but they suffer from one essential dis
advantage; namely, the transforming function w(~) is required for their 
construction. The same disadvantage attaches to S. G. Mikhlin's equations 
(§ 96), since the complex Green function M(z, zo) has to be determined. 

Integral equations have long ago ceased to be useful only for general 
theoretical investigations; lately, rather effective methods have been 
developed for their numerical solution, in particular, in those cases, 
\vhere they involve only simple (and not multiple) integrals, as is the 
case with those which are of interest here. 

It is therefore very desirable for direct practical applications to have 
integral equations whose kernels are related directly and simply to the line 
elements constituting the boundary of the region and which do not involve 
elements the determination of which requires preliminary solution of 
auxiliary boundary problems as Dirichlet's problem (or its equivalent) 
for the determination of the functions w(~) or AI (z, zo)' 

Equations of this type, used by G. Lauricella-HD. I. Shernlan, ","ill 
be considered in detail in §§ 101, 102; these equations are, in the Author's 
opinion, the simplest and most suitable for the purpose of general in
vestiga tions. 

However, the Author proposes to devote some space here to equations, 
obtained in his papers [17, 18J, since the trend of thought, leading to 
these equations, is closely related to that which led to the results of the 
preceding chapters of this Part, and since they are of interest in them
selves. 

These equations are very similar to those of G. Lauricella (cf. § 101), but never
theless they differ significantly from Lauricella's. In the Author's opinion Lauri
cella's equations had (at least outwardly) a rather complicated form, so that at 
the time he did not notice the similarity and supposed that his equations \vere 
considerably simpler. 

Moreover, the Author's equations were the subject of a number of 
investigations by other authors (in the first place D. I. Sherman) worthy 
of reference, since the methods of investigation, developed by them, may 
be successfully applied to the solution of analogous problen1s. 

For the sake of clarity, a beginning will be made with the case of 
finite regions 5, bounded by one simple smooth contour L; the positive 
direction on L will again be such that it leaves 5 on the left. 
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The first and second fundamental problems will be considered sinlul
taneously. The boundary conditions for these problems may be written as 

kcp(t) + tcp'(t) + ~(t) = f(t), (98.1 ) 

where, in the notation of § 41, for the first fundamental problem k == 1, 

s 

f(t) = fl(t) + i/2(t) = i I (Xn + iYn)ds + C, (98.2) 

o 

while for the second fundamental problem k == - x, 

f(t) = - 2[.L(gl + ig2); (98.3) 
cp{t), cp'(t), ~(t) are, of course, the corresponding boundary values the 
existence of which is thus assumed, i.e., the unknown solution is assumed 
to be regular. The arbitrary constant on the right-hand side of (98.2) 
may be fixed to suit convenience. . 

CondItIons will now be stated such that the right-hand side of the 
equation 

~(t) = j(t) - kcp(t) -- lcp' (t), (98.4) 

equivalent to (98. 1), must be the boundary value of some function 
~(z), holomorphic in S. It is known from § 73 that a necessary and 
sufficient condition for this to be so is given by 

_l-J~ lit) - kcp(~l- ~cp'(t) dt == 0 
27ti t - z 

L 

for all z outside 5, or 

-k----;-f ~dt + __ 1 . I ttp'(t)d~ = A(z) 
21t1- t - Z 27t1- t - z 

(98.5) 

L L 

for all z outside 5, where 

A(z) = _1_. I 1(i)dt . 
27t1- t - Z 

(98.6) 

L 

In this way the functional equation has been deduced for the deter
mination of q>(z). Once one has succeeded in finding by some means the 
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function cp(z) , holomorphic in S and satisfying (98.5), the problem 
will be solved, since ~(t) can be determined from (98.4) by Cauchy's 
formula 

t.J;(z) = _1_. (rJ;(t)dt = _l_.J'~T(i)dt _~ (;p(i)dt _ _ 1_./'trp'(t)dt (98.7) 
21tt ~ t - Z 21tZ t - Z 27CZ ,,: t - Z 21t't ., t - z 

L L L L 

(where, of course, z lies in S). 
The functional equation (98.5) may be readily reduced to a Fredholm 

equation in the following manner. [It would be of interest to study (98.5) 
independently witllout reduction to a Fredholm equation. In all pro
bability this would offer the opportunity of finding new classes of regions 
for which the fundamental problems may be solved effectively.] * In (98.5), 
let z tend to some point to of L (remaining, of course, outside 5). Then, 
on the basis of the Plemelj formulae (cf. § 68), one obtains, assuming 
([)(t), (()' (t) and t(t) to satisfy on L the H condition, 

- k f cp(t)dt - I 1 j-' tcp'(t)dt 
-lkcp(to) -r- -. ~-- - -!to({) (to) + --. --- == A(to), (:l) 

27t't. t -- to 27C2" t - to 
L L 

where A (to) is the boundary value of A(z) as z -+ to iro112 outside 5, i.e., 

_. 1 /-. t(t)dt . 
A (to) == -It(to) + --. ---- == a(to) + zb(to) ; 

27t't. t - to 
(98.8) 

L 

a(to), . b(to) denote here real functions ,vhicll will be assumed known. 
Equation (a) which is obviously not a Fredholm equation may be 

simplified as follo\vs. Expressing that cp(t) and cp'(t) must be the boundary 
values of functions, holomorphic in S, one finds by (73.1 ') 

1 I'~ cp(t)dt 
- !<P(to) + 2m. t _ to = 0 , 

L 

1 j' , (t)dt - 1.m'(to) ....L - cp = o· 
2T I 2' t t ' 1tz, - 0 

(b) 

L 

the first of these conditions becomes in its conjugate complex form 

* The truth of this statement in the preceding editions has been confirmed in 
a known measure by interesting results obtained recently by D. 1. Sherman 
[25, 26J which have already been referred to in § 89. 
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1- 1 f cp(t)dl 
- 2rp(tO) --2. - - = o. 

m t-to 
L 

§ 98 

(c) 

Multiplying (b) and (c) by -to and k respectively and adding them to (a), 
one obtains 

- k r - t- to 1 f' t-· to - krp(to) ---. rp(t)d log-- + --. cp (t) -- dt == A(to), 
21t't ., t - to 21t't t - to 

L L 

and finally, integrating the second integral on the left-hand side by 
parts, 

~ k / - t- to 1 / t- to 
-k~(to)-~-. ~(t)dlog-~---. <p{t)d = A (to). (98.9) 

27tt t - to 27t't t - to 
L L 

This is the integral equation which was mentioned earlier and which 
was to be deduced. 

It may still be written in a different way. In fact, if 

(98.10) 

where r == I t - to I and .& === '&(to, t) is the angle between the vector 
~ 

tot and the Ox axis measured in the positive direction, one has 

i-to 
log = - 2i-&, 

t-to 
I-to 2°,& •• --- === e- t == cos 2-& - 1, SIn 2.& . 
t - to ' 

hence (98.9) becomes 

- 1/-kcp(to) --; {kcp(t) +e-2i&cp(t)}d& = - A (to). (98.9') 

By writing L 

cp(t) = P(t) + iq(t), (98.11 ) 

where P(t) and q(t) are real functions, and by separating real and imagi
narypaTts, (98.9') may be represented in the form of the two real equations 

kP(to) - : / {P(t) (k + cos 2&) + q(t) sin 2&}d& = - a(to), 
L 

kq(to) --~f {P(t) sin 2& + q(t)(k - cos 2-&)}d-& = b(to). 

L 

In these equations 
8-& 

d-& = --ds os ' 

(98.9") 
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where s is the arc coordinate of the contour, corresponding to the point t. 
I t is easily seen that 

0& cos Cl 
---

OS r 

where Cl = o:(to, t) is the angle between the outward normal at t and the 

vector tot. 

In order to verify the last relation, it is sufficient to remember that by the Cauchy 
-Riemann equations 

-= as 
a log r 

on 
1 or 

=--, 
r on 

because log rand ,s. are the real and imaginary parts of the function log (t - to) of 
the complex variable t (for fixed to); n denotes here the normal ,vhich points to the 
right as one moves in the positive direction of the tangent. 

If it is assumed that the angle between the normal (or tangent) to L 
at the point t and some fixed direction (considering this angle as function 
of t or s) satisfies the H condition, then 

cos 0: K(to, t) 
------

r r~ 

where {.L is a constant such tllat 0 < {.L < 1 and K(to, t) is a function 
continuous on L (which even satisfies the H condition). (Cf., for example, 
the Author's book [25J). 

Thus the system (98.9") represents an ordinary system of Fredholm 
equations. Correspondingly the equations (98.9) or (98.9'), equivalent 
to (98.9"), may be called Fredholm equations. 

As the study of these integral equations in the case of simply connected 
regions does not present any difficulties (cf. S. G. Mikhlin [13J for 
the case k = 1), the following results will be merely enunciated here and 
the reader will later be given references, where the corresponding proofs 
may be found. First of all, it will be noted that, as is easily seen, every 
(continuous) solution cp (t) of (98.9') will satisfy the H condition every
where on L, on the basis of the conditions assumed above. But, in ad
dition, the solution was to be such that the derivative cp'(t) also satisfies 
this condition on L, because this had been assumed in the deduction of 
the equation. It is readily verified that fulfilnlent of the last condition is 
ensured, if it is assumed that the curvature of the line L satisfies at every 
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point the H condition and that the function f(t), given on L, has a 
derivative with respect to t which satisfies the H condition. 

Consider the first fundamental problem. In this case k = 1 and f(t) 
is given by (98.2). Since, by supposition, the function /(t) is continuous 
on L, the condition that the resultant vector of the external forces 
is to vanish will be automatically satisfied; however, the condition 
of vanishing of the resultant moment is expressed by (cf. § 41) 

I (/ldx + f2dy) = o. (98.12) 

L 

It is easily verified that the homogeneous system, obtained from 
(98.9") for a (t) = b(t) = 0, has the solution 

p(t) + iq(t) = iEt + ex + i~, (98.13) 

,"There €, tX, ~ are real constants; this follows from the fact that (cf. § 34) 
the state of stress and the constant C will not be changed by adding to 
cp(z) an expression of th.e form iez + ~ + i~. On the other hand, it 
may also be verified directly that P(t), q(t), as given by (98.13), satisfy 
(98.9"). 

The formula (98. 13) involves linearly three arbitrary real constants 
and it gives three linearly independent solutions of the homogeneous 
system. 

\Vriting t = ~ + i'll, one may take as these three solutions 

1) P = - '1), q = ~, 2) P = 1, q = 0, 3) P = 0, q = 1. 

It may be shown that the homogeneous system has no other linearly 
independent solutions. Hence, by the general theory of Fredholm 
equations, the system (98.9") will only have solutions, if the right-hand 
sides of these equations satisfy three conditions of a well known form. 
IIo\vever, a closer study shows that two of these conditions are auto
matically satisfied as a consequence of the fact that a(t), b(t) are not 
arbitrary, but such that a(t) + £b(t) is the boundary value of a function, 
holomorphic outside 5 and vanishing at infinity; the third condition, 
as was to be expected, reduces to the condition (98.12). 

Thus, if (98.12) is satisfied, the system (98.9") or, what is the same 
thing, the equation (98.9') has a solution which is determined apart from 
an expression of the form (98.13). In addition, it may be shown (and this 
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is not obvious beforehand) that every solution cp(t) of (98.9') \-vill be the 
boundary value of a function, holomorphic in 5; this function cp(z) 
follows from cp(t) by the help of Cauchy's formula, and t.Y(t) will then be 
determined by (98.7) .The solution of the first fundamental problem 
has thus been obtained. 

In the case of the second fundamental problem, where k == - x and 
t(t) is given by (98.3), quite analogous results may be found; the only 
difference is that the homogeneous system, corresponding to (98.9"), 
has now only the two linearly independent solutions 

cp(t) == P(t) + iq(t) === ~ + i~, (98.14) 

where C1.. and ~ are arbitrary real constants; the system (98.9/1), in spite 
of the presence of the solutions of the corresponding homogeneous 
system, is always soluble (as a consequence of the particular form of 
the right-hand sides) and its solution gives the solution of the original 
problem, as in the case of the first fundamental problem. 

Hitherto, it has been assumed that the region S is finite and simply 
connected. Suppose now that 5 is bounded by several simple contours 
Lv L2, ••• , L m, Lm+l the last of which contains all the preceding ones, as 
in § 35 (cf. Fig. 14); the contour Lm+l may be absent in which case 5 will 
be infinite (i.e., the infinite plane with holes). It will be assumed that 
the individual contours L j satisfy in a certain way the conditions of 
smoothness, stated above. As always, let L = Ll + L2 + ... + Lm + 
+ Lm+l denote the complete boundary of 5 ; the positive direction of L will 
be chosen in such a way that it leaves 5 on the left. 

The only difference from the case of finite, simply connected regions 
is that here the unknown functions q;(z} and ~(z) may be (and, in general, 
will be) multi-valued. In fact, by (35.11) and (35.12), 

1 m 
cp(z) ::::= - 21t(1 + x) i::}Xj + iYj ) log (z - Zj) + CfJo(z), 

x 
~(z) = 

2n( 1 + x) 

m 

1: (Xj - iYj) log (z - Zj) + ~o(z), 
i=1 

(98.15) 

where (X j , ¥j) are the resultant vectors of the external forces, applied 
to the contours L j , Zj are arbitrarily fixed points inside L j (j = 1, ... , m) 
and CPo(z) , ~o(z) are functions, holomorphic in 5, if this region is finite 
(i.e., if Lm+l is present) ; if 5 is infinite (i.e., if Lm+l is absent), then (cf. § 36) 

<Po(z) = rz + q;*(z), ~o(z) == r'z + ~*(z), (98.16) 
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where <p* (z), ~* (z) are functions, holomorphic in 5 including the point 
at infinity; in the case of the first as well as of the second fundamental 
problem it will be assumed (§ 40) that the constants r, r' are known 
beforehand; further, in the case of the second fundamental problem for 
infinite regions, it will also be assumed that the quantities 

i.e., the components of the resultant vector of the external forces, applied 
to the entire boundary L of 5, are known. 

For the sake of brevity, it will now be assumed that 5 is finite, i.e., 
that Lm+l is present; the case of infinite regions may be considered in 
quite an analogous manner. 

A beginning will be made with the first fundamental problem. In this 
case the boundary condition may be written (as in the case of simply 
connected regions) 

q>(t) + tq>'(t) + tJ;(t) == f(t) + Cj on L j (j== 1,2, ... ,m,m + 1), (98.17) 

where now, instead of (98.2), 
s 

f(t) = if (Xn + iYn)ds + C; on L; (j = 1,2, ... , m, m + 1), (98.18) 

o 

while the arc coordinate s is measured (in the positive direction) on 
each of the contours L j from an arbitrarily fixed point of that contour, 
and C j is a constant having, in general, different values on different L j ; 

these constants are not known beforehand, except for one, say, Cm+1 

which may be fixed arbitrarily, and it will be assumed here that C m+l === o. 
Substituting fronl (98.15) into (98.17), one finds 

(j)o(t) + t<po(t) + ~o(t) === f o(t) + C j on L j (f == 1, 2, ... ,m, m + 1), (98.19) 

where 

1 
j o(t) = j(t) + 27t( 1 + x) 

m 

2: {Xj + iYj} {log (t -- Zj) - x log (t-·- Zj)} + 
j=1 

t m ",1(j - iYj +-- ~ 
2n(1 + x) j=1 t- Zj 

(98.20) 

On the left-hand side of the boundary condition (98. 19) one has the 
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boundary values of holomorphic (i.e., single-valued, analytic) functions; 
the right-hand side is likewise a single-valued function (assuming, of 
course, the choice of definite branches on each contour L j ), because for 
a circuit in the positive direction (leaving 5 on the left) of the contour L; 
(f = 1,2, ... , m) the function I(t) undergoes an increase i(Xj + iY j ), 

while the second term on the right-hand side of (98.20) shows the sa.me 
increase, but with opposite sign; similarly for Lm+v under the condition 
(which is implied) that the resultant vector (X, Y) of all external forces, 
acting on L, is equal to zero. 

Since in the case of the first fundamental problem the quantities 
Xi' Y j are known beforehand, the function to(t) in (98.19) is determined 
on every L j • 

Applying to (98. 19) the same reasoning as in the case of a single 
contour, one arrives at exactly the same equation (98:..9) with k = 1 or 
at the equivalent equation (98.9'); the only difference will be that 'Po(t) 
takes now the place of cp(t), while I(t) is replaced by f o(t). In addition, 
the right-hand side now involves the initially unknown constants 
C1 , C2 , ••. , em which must be determined in the process of solving 
the problem. 

In the case of the second fundamental problem, proceeding in an ana
logous manner, one finds, in the former notation, the boundary con
dition 

- xC?o(t) + tq:;~ (t) + ~o(t) == f o(t), 

where this time 

m 
~ (Xj + iYj ) log 1 t-Zj 1+ 

i=1 

t m X·-iY· + ~ 3 3 

27t(1 + x) j=l t- Zj 

(98.21 ) 

(98.22) 

Thus one obtains the same equation (98.9) for k == - x as in the case 
of a single contour, if one replaces q:;(t) by ~o(t) and f(t) by fo(t). In the 
present case, the unknown constants Xj, Y j appear on the right-hand side 
and they must be determined at the same time as the function C?o(t). 

It may be shown that in the case of multiply connected regions the 
derived integral equations allow complete solution of the corresponding 
boundary problems. 
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A preliminary study of these integral equations was given in the 
Author's notes [17, 18J, quoted earlier, in which, for the sake of definite
ness, the first fundamental problem was considered; this study was 
based on the supposition that the existence theorems for multiply 
connected regions had already been proved by some other method. 

Soon after, D. I. Sherman [2,3,6, I1J gave a very complete study of 
these equations in which he did not rely on other proofs of the existence 
theorems, but, on the contrary, proved these theorems directly by means 
of the equations under consideration. 

D. I. Sherman also modified these equations so as to give them a form 
more convenient for studies of a general character and for applications. 
In particular, in his paper [11J, he studied in detail the question of the 
distribution of the eigenvalues of the integral equations, obtained by 
a definite modification of the above equations, introducing some para
meter A, as is done in the general Fredholm theory. This investigation 
showed that for values of A, corresponding to the first and second fun
damental problems, the solutions of the relevant integral equations may 
be expanded in Neumann's series which, in general, can be obtained 
by the method of successive approximation. 

By means of the method of this section D. I. Sherman [6J also solved 
one particular case of the mixed fundamental problem when the external 
stress is given on one of the contours, bounding the region, while the 
displacements are given on the others. 

Further, D. I. Sherman [8J solved by a method, analogous to the 
preceding one, the first and second fundamental problems ior bodies, 
consisting of different homogeneous parts; as indicated in § 96, the same 
problem was solved somewhat earlier by S. G. Mikhlin by use of another 
method. 

In later papers D. I. Sherman gave new solutions of the above as 
well as of some other boundary problems by means of a method which 
is a generalization of that of the present section; this work will be dis
cussed below. 

Finally, one more interesting problem will be mentioned which was 
solved by G. N. Savin [7J * by a method, analogous to that above; this 
problem deals with the equilibrium of an elastic plane \vith an infinite 
number of identical, equally spaced holes which are subject to the same 
external forces. A study of this solution may likewise be found in S. G. 
Mikhlin [I 3J . 

* Cf. also G. N . Savin [8]. 
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§ 99. Application to contours with corners. The form of the 
equation (98.9') or of the system (98.9") suggests that, if the integrals 
occurring there be considered as Stieltjes integrals, these equations 
may be applied to regions, bounded by contours of a much more general 
form than has been assumed for their deduction. 

The investigations of L. G. Magnaradze [1-3J, based on known 
results by]. Radon and partly by T. Carleman, show that this is actually 
the case and that the above-mentioned equations, interpreted in a 
suitable generalized sense, apply, for example, to the case where the 
contours, bounding the region, have corners other than cusps. There 
may even be infinitely many such corners; it is sufficient if the boundary 
of the region consists of contours having so-called "bounded rotation" 
(according to ]. Radon). 

It may be noted that L. G. Magnaradze [4J succeeded in extending 
these results also to one very general class of three-dimensional bodies 
the surfaces of which may have polygonal edges (even an infinite, but 
denumerable number of them); in this case one has, of course, to apply 
the corresponding integral equations for three-dimensional bodies. 

§ 100. On the numerical solution of the integral equations 
of the plane theory of elasticity. Equation (98.9') or the equivalent 
system (98.9/1) may, thanks to their simplicity, be used successfully for the 
numerical solution of the corresponding boundary problems of the plane 
theory of elasticity. One of the methods of numerical solution is outlined in 
the Author's note [21J and it was studied in greater detail by A. Ya. 
Gorgidze and A. K. Rukhadze [IJ who applied this method to several ex
amples and gave also estimates of accuracy. 

This method seems to give satisfactory results also in cases when the 
boundaries have corners. 

§ 101. The integral equations of D. I. Sherman-G. Lauricella. 
Recently D. I. Sherman [15-17J succeeded in deducing integral 

equations for the solution of the first and second as well as of the mixed 
fundamental boundary value problems of the plane theory of elasticity 
which deserve greater attention. Apparently the most natural way of 
arriving at these equations is the following which is based on one simple 
general idea, analogous to that used by I. Fredholm [IJ for the de
duction of the integral equations for the second fundamental problem 
in the three-dimensional case. 
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D. I. Sherman begins directly from the formulae (101.3) and (101.4) without 
indicating the means by which these were obtained (and he considers separately 
the cases k = - x and k = 1). 

I. Fredholm's idea consists, in principle, of the following. If one takes instead of 
the body under consideration the half-space and writes down the known formulae 
solving the corresponding boundary problem in closed form, using definite integral's 
over the plane boundary of the half-space, then these formulae, when applied to the 
given body (taking now the integrals over the surface of that body instead of over 
the plane), do not, of course, solve the boundary problem in closed form; they lead, 
however, to integral equations which under certain conditions will be Fredholm 
equations. 

At first suppose that the region 5 under consideration is finite and 
bounded by one simple contour which satisfies the same conditions as 
in § 98. The boundary conditions of the first and second fundamental 
problems will now be written, using the notation of § 98, 

kr.p(t) + tq/ (t) + t.l;(t) = t(t), (101.1) 

remembering that k == 1 and k == - x for the first and second problem 
respectively. 

Under the supposition that S is the upper half-plane, L is the real axis 
and cp(z) , t.!;(z) , zcp'(z) vanish at infinity, the solution of the boundary 
problem (101.1) is given by 

(jl(Z) = 1. f f(t)dt , 
27tzk t - z 

tJ;(z) == _1_. f f(t)dt - z<p' (z). 
27tz t - Z 

L L 

The solution for k = - x can be found in § 94, where in the present case G = 0 
and the difference in sign arises from the fact that the problem has been solved 
there for the lower half-plane. The solution for k = 1 is obtained in an analogous 
manner. It may also be deduced from the solution of the first fundamental problem 
for the half-plane, found in § 93. 

Substituting in the second formula above for cp'(z) and introducing the 
notation 

1 
6>(t) = k f(t) , (101.2) 

one finds 

) 
1 f w(i)dt 

cp(z = -2' t ' 
TIt -z 

(101.3) 

L 
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ljJ(z) = -~ I~ (;(ifdt + _1_. r w{t) dl ___ l_. J t())(t)dt -. (101.4) 
27tt •. t - Z 21tt .. t - Z 21t2 {t - Z)2 

L L L 

In the case ,vhen L is the real axis (as it has been assumed for the present), 
- - --
t = t, dt = dt; the reason why dt and t have been written instead of dt and t in 
the second and third integrals of (101.4) respectively will become clear later on. 

Integrating the last integral of (101.4) by parts, this formula may be 
rewritten -

~(z) =-= -k--:-f CJ)(t)dt __ 1_. / tw'(t)dt. . (101.4') 
21C~ t - Z 21tt t - z 

L L 

Now the case when 5 is not the half-plane will be considered and 
an attempt will be made to find the solution of the boundary problem 
(101.1) in the form (101.3), (101.4), where w(t) now denotes some function 
of points of the conto2tr L which is initially unknown and has to be deter
mined. It will be assumed that <o(t) has a derivative w'{t) which satisfies 
the H condition. This is easily seen to ensure the continuity of the 
functions cp{t) , cp'(t) , ~(t) up to the boundary, i.e., the regularity of the 
solution (in the sense of § 42). 

Using the Plemelj formulae for boundary values of Cauchy integrals 
and substituting into (101. 1), the boundary values of the functions 
cp(z) , tJ;(z) , determined by (101.3), (101.4'), and likewise the function 

cp'{z) == _1_/ w(t)dt == _1_ r w'(t)dt 
2rci (t - Z)2 21ti &I t - Z 

L L 
[where the latter expression is obtained by an integration by partsJ, 
one finds the integral equation 

k f t-to 1 f-- t-to kw(to) + --. (i){t)d log _ _ ---. w{l)d _ _ == !(to)' (101.5) 
21t2 t - to 27t1. t - to 

L L 

This is the integral equation, obtained by D. I. Sherman in the quoted 
papers [15, 16J. It is seen to be very similar to the equation (98.9) 
which, for the purpose of comparison, will now be written in its conjugate 
complex form 

k f t - to 1 f - t - to -krp(to) --~. rp(t)d log _ _ ---. rp(t)d _ _ = - A (to). (a) 
21t'l- t - to 2r:~ t - to 

L L 

However, it differs essentially from (101.5) by the sign of the first in-
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tegral, by its right-hand side and, what is more important, by the character 
of the conditions, imposed on the unknown functions. In fact, the un
known function of (101.5) is subject to no other condition except one 
referring to its continuity, while the unknown function <p(t) of equation 
(a) must be the boundary value of a function, holomorphic in S. This 
last condition, as already stated in § 98, is automatically satisfied in the 
case of finite simply-connected regions which will no\v be considered; 
but in the general case it plays an essential part. 

Equation (101.5) ,viII now be considered. As in § 98, let t - to ::=..-:: rei&; 
(101.5) then becomes 

1 ,', -
kw(to) + -;./ {kw(t) _e2i

-& w(t)}d& = I(to). (101.5') 

IJ 

Further, \vriting 

w(t) === P(t) + iq(t), I(t) == 11(t) + il?(t), (101.6) 

one obtains the system of two Fredholm equations 

1 f~ kP(to) + Iv. {P(t)(k - cos 2-&) - q(t) sin 2it}d-& === 11(to), 

L '. ( 101.5") 

kq(to) - ~ j {P(t) sin 2% - q(t)(k + cos 2-&)}d& === 12(to)' 

lJ 

The following should be noted with regard to the systenl (101.5"). 
For k == 1, i.e., for the first fundamental problem, this system reduces 
to that, deduced by G. Lauricella [3J for the solution of the fundamental 
biharmonic problem \vhich, as has been pointed out earlier, is equivalent 
(with certain reservations in the case of multiply connected regions) 
to the first fUQdamental problem of plane elasticity. For k == - x., 
i.e., for the second fundamental problem, the system (101.5") corresponds 
to the system, like\vise deduced by G. Lauricella [1, 2J for the second 
fundamental problem in the three-dimensional case. 

However, Lauricella does not use Cauchy integrals and he presents the 
connection between the functions, which directly occur in the correspond
ing problems (the biharmonic function U in the fundamental biharmonic 
problem, the displacement components in the second fundamental 
problem), and the auxiliary functions p, q of points of the boundary r 
in a (apparently) very complicated fornl. Lauricella's integral equations 
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likewise are not as simple as (101.5"). This last circumstance is, of COtlrSe, 
of no significant importance, but the formulae (101.3) and (101.4), 
expressing the relations between the functions <p(z), tJ;(z) and w(t) === P(t) + 
+ iq(t), are of great value and so is the form (101.5) of the integral 
equation which clearly demonstrates the connection with Cauchy integrals. 
In fact, the discovery of this relationship considerably simplifies the 
analysis, in particular in the case of multiply connected regions (with 
regard to which more will be said later), and, in addition, offers the 
opportunity of deducing (relatively) simple solutions of a number of 
other important boundary value problems. Therefore it seems only 
just to call (101.5) or (101.5') the equations of p. I. Sherman-G. Lau
ricella. 

III the case of multiply connected regions, it is advisable, according 
to D. I. Sherman, to somewhat modify (101.3), (101.4) and the integral 
equations which follow from them, thus leading to (relatively) very 
simple results; this question will be treated in greater detail in the next 
section. 

§ 102. Solution of the first and second fundamental problems 
by the method of D. I. Sherman 1). Let the region 5 be bounded 
by several, simple, non-intersecting contours Lv L2, ••• , L m, Lm+v the 
last of which contains all the others, and let L === L1 + L2 + ... + Lm+l 

denote the complete boundary of S. In addition, it will be assumed that 
each of the contours L has a curvature, satisfying the H condition. The 
finite regions, bounded by the L j (f = 1,2, ... , m), will be denoted by 
Sj, and the infinite region, bounded by Lm+v by Sm+1' 

The first fundamental problem will be solved first. Without affecting 
generality, it may be assumed that the resultant vectors (X k' Y k) of the 
external forces applied to the contours Lk (k == 1, 2, ... , m) are equal 
to zero and that therefore the unknown functions <p(z), ~(z) are single
valued, since otherwise one can take away from them multi-valued 
terms (which are known beforehand) and transfer them to the right 
hand side of the equality expressing the boundary condition 2) which 
then leads back to the preceding case. In addition, it must obviously 
be assumed in order to make the problem possible that also the resultant 
vector of the forces applied to the contour Lm+1 vanishes. 

1) I). 1. Sherman [15, 16J. These papers have been reproduced here with only 
insignificant modifications. 

2) Cf. (98.15), (98.19), (98.20). 
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The boundary condition is 

cp(t) + tcp'(t) + t.l;(t) = I(t) + Ci on Lj(j == 1,2, ... , m + 1), (102.1) 

where I(t) is a given function (which is single-valued and continuous 
on every L j ) and Cv C2 , ••• , em, c m+l are initially unknown constants 

only one of which may be fixed arbitrarily; it will be assumed that 

Cm+1 == o. 
Following D. I. Sherman, the solution will be written in the form 

cp(z) == _1_. j w(t)dt + ~ _b~_, (102.2) 
21t~ t - Z i=1 Z - Zj 

L 

t.l;(Z) =_I_jW(t)dt +_I_jW(t)dt __ l_jtW(t)dt + ~ b; (lO2.3) 
2rci t-z 2rci t- z 2rci (t-Z)2 1=1 Z-Zj' 

L L L 

where w(t) is a function of points of L, subject to definition, Zi are ar
bitrarily fixed points of Sj, j == 1, ... , m (so that they lie outside 5) 
and bj are real constants, related to w(t) in the following manner: 

b; = i j {w(t)dl - w(t)dt}, j = 1, 2, ... , m. (102.4) 

The introduction of bj leads to the modification of the integral equations which 
was mentioned at the end of § 101. In the case of simply connected regions (m = 0), 
the formulae (102.2), (102.3) become (101.3) and (101.4) for k = 1. 

Only regular solutions of the initial problem will be sought (in the 
sense of § 42). For this purpose it is sufficient to assume that the unknown 
function w(t) has a derivative w'(t) satisfying the H condition. 

Substituting in (102.1) the boundary values of the functions cp(Z) , 
cp'(z), t.l;(z) as determined by (102.2) and (102.3), one obtains as in § 101 

1 j t - to 1 j - t - to N(tO) + -. w(t)d log _ _ - --. w(t)d _ _ + 
27tZ t - to 27t~ t - to 

L L 

+ £ { b; + _ b; _ (1 ___ ~)}-Ck = I(to) on L k, 
i=1 to-zi to-Zj to-zi 

k = 1, 2, ... , m + 1. (102.5) 

It will be expedient to further modify this equation by adding to the 
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left-hand side the term 

(a) 

where bm+1 is a purely imaginary constant, related to w(t) by the fornlula 
[ef. note following (102.4)J _ 

1 1 { w(t) (i) (t) -} 
bm+1 === 2rci -t2- dt + T dt ; (102.6) 

L 

it will be assumed that the origin of coordinates lies in S. 

Thus one obtains the equation 

lIt - to 1 1 - t - to (0(to) -r- --a w(t) log _ _ -- --. w(t)d _ _ + 
27t2 t - to 27t2 t - to 

L L 
-

+ ~ 1 + ---::-_=-::-- 1 ---_-~ - C,~ === /(to) on L k , 
m+ 1 { b· b· ( t)} 
1'=1 to-Zj to-Zj to-Zj 

k === 1, 2, ... , n~ + 1, (102.5') 

where Zm+l === o. 
In addition, the unknown constants Clc will be related to the unknown 

function (U(t) by the formulae 

Ck === -I w(t)ds, k = 1,2, 000, nt, (102.7) 

where ds is the element of arc of L k • 

If one now replaces the constants bj , C j on the left-hand side of (102.5') 
by the expressions (102.4), (102.6) and (102.7), then (102.5') becomes an 
integral equation which involves no other unknowns but (U(t). Separating 
real and imaginary parts, as was done in § 101, one obtains a system of 
two Fredholm equations, but since this system serves no purpose in 
what follows it will not be written down here. 

The integral equation (102.5') will be called the equation of D. I. Sher
man. In the case of simply connected regions, it differs from (101.5) 
only by the term 

!2 + ~l (1 _~o). 
to to to 

It will be assumed below that the function j(t) given on L has a de
rivative /'(t) satisfying the H condition. It is not difficult to show that 
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under this condition and under the conditions assumed for the boundary 
L every (continuous) solution w(t) of the equation (102.5') has a de
rivative w' (t) satisfying the H condition. 

I t "viII now be shown that, if (102.5') has a solution, then necessarily 
bm+1 = 0, provided the resultant moment of the external forces is zero; 
the vanishing of the resultant vector of the external forces is ensured by 
the single-valuedness and continuity of the function t(t). The condition 
for the resultant moment may obviously be written [cf. § 41J 

ffi I f(t)dt = 0, (102.8) 

L 

\vhile (102.1) may be presented in the form 

- - {I 1 t} cp(t) + tcp' (t) + ~(t) + bm+1 t - t + [2 - C i == f(t) on L j , (102.1') 

if one interprets cp(t) , cp' (t) and tJ;(t) as the boundary values of the expres
sions (102.2) and (102.3). lV1ultiplying both sides of (102.1 ') by dl and 
integrating over L, one finds after an integration by parts 

( {cp(t)dt - cp(t)dt} + bm+1 ({ dt + d!} + 27tib m+1 = (j(t)dt. 
~ .. t t .J 

L L L 

Since the last term on the left-hand side of this equation is real and all 
the other terms are purely imaginary, one must have bm+1 == 0, as was 
to be proved. 

I'hus, in order to satisfy (102.8), every solution w(t) of (102.5') is at 
the same time a solution of the original equation (102.5), and hence 
a solution of the boundary problem (102.1), and the constants C j will 
be determined by the formulae (102.7). 

I t will now be proved that the equation (102.5') always has a solution. 
[Equation (102.5) would only be soluble under the condition (102.8)J. 
For this purpose the homogeneous equation, obtained from (.102.5') 
for j(t) ==-.: 0, will be considered and it will be shown that it has no non-zero 
solutions. Let wo(t) be any solution of this equation and CPo(z), tJ;o(z) , 
CJ be the corresponding values of cp{z) , ~(z) and the constants Ci , de
termined by (102.2), (102.3), (102.4) and (102.7) for w(t) = wo(t); in 
particular, by (102.2) and (102.3), 
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(102.9) 

Yo(z) =;: _!-. 1-- cuo(t)dt_ -~- -~. J"' lwi~t)dt + £ - b~ -, (102.10) 
21tz.- t - Z 27tz. t - z 1 = 1 Z - Z j 

L L 

where by are the constants, given by (102.4) for 0)(/) ::::-:: wo(t) , and the 
expression for ~o(z) has been transformed by means of an integration 
by parts. The functions i?o(Z) , ~o(z) satisfy the boundary condition 

CPo(t) + tcp~(t) + ~o(t) -C7 === 0 on L j , j = 1, ... , m + 1, C'~~+l = 0, (102.11) 

as may be seen from (102.1 '), taking into consideration that in the present 
case f(t) = 0 and also bm+1 == 0, since obviously (102.8) "vilI be satisfied. 
Hence CPo(z), ~o(z) solve the first fundamental problem in the absence of 
external forces, and therefore, by the uniqueness theorem, 

90(Z) == izz 1r c, (102.12) 

where e: is a real and c a complex constant; thllS, by (102.11), using the 
fact that C~+l == 0, 

~o(z) = - c, 
and, obviously, 

C7 == 0, f == 1, 2, ... , m + 1. 

It follows from (102.9), (102.10), (102.12) and (102.13) that 

. 1 J'" wo(t)dt 'tn b7 
Z€Z + C == ----:- --+ ~ , 

27tz t - Z i=l Z - z} 
L 

-- I 0 _ c == _1_. f woit)dt _ ~_.~_. (lwo(t)dt + ~ ~--. 
27t2 t - Z 27tz." t - Z 1=1 Z -~ Zj 

L L 

Introduce now the notation 

m b? 
icp*(t) === wo(t) + L 1 - iet - c, 

i=l t - Zj 

__ , m b? _ 
i~*(t) = wo(t) -lwo(t) + ~ 1 + c. 

i=l t - Zj 

The equations (102.9'), (102.10') may then be written 

(102.13) 

(102.14) 

(102.9') 

(102.10') 

(102.15) 

(102.16) 
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_I~. j rp*(t)dt = 0, _1~. f 1jJ*(t)dt = ° for all z in 5, 
27tZ t - Z 27tt t - Z 

L L 

and hence (cf. § 74) cp*(t), t.J;*(t) are the boundary values of the functions 
cp*(z), ~*(z), holomorphic in the regions 51' 52' ... , Sm+l' and 

qJ*(oo) = ~*(oo) = o. 
It will now be recalled that in the present case bm+1 == 0, where bm+1 

is given by (102.6) for w(t) = cuo(t). Substituting in (102.6) with bm+1 == 0 
for cu(t) the expression wo(t), obtained from (102.15), and taking into 
consideration the previously stated property of cp*(t), it is easily seen that 
€ = o. 

Further, eliminating wo(t) from (102.15) and (102.16), one finds 

q>* (t) + lcp*' (t) + 1jJ* (t) = i ;; bJ {_ I _ _ I + ( l ., } - 2ic 
j=1 t-Zj t-Zj t-zi )'" 

on L. 
Multiplying both sides of this equation by dt and integrating over the 
contours Lk(k = 1, 2, ... , m), one obtains 

j {q;*(t)dt - cp*(t}dl} = i ~ bJ j{ _ dt _ + dE } - 27tbg, 
i=1 t - Zj t - Zj 

Lk Lk 

and hence, since the b7 are real, 

b2 = 0, k = 1, 2, ... , m. ( 102.17) 

Therefore 

rp*(t) + lcp*'{t) + ~*(t) == - 2iC on L k, k == 1, 2, ... , m + 1. 

Consequently cp*(z), ~*(z) solve the first fundamental problem for the 
regions 5 k' k == 1, 2, ... , m + 1, in the absence of external forces. Ap
plying the uniqueness theorem to the region Sm+l and using the con
dition cp*(oo) = tJ;*(co) == 0, one finds cp*(z) = ~*(z) == 0 in Sm+l' and 
hence c == O. Further, the uniqueness theorem applied to the regions 
5 k(k = 1, ... ,m) gives (remembering that c = 0) 

cp*(z) == i€kZ + Ck, ~*(z) == - Ck on L k , k = I, 2, ... , m, 

whence, by (102.15)-( 1 02.17), 

wo(t)=-€kt+ick on L k, k=I,2, ... ,m; 
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in addition, since <p*(z) == tJ;*(z) == 0 in 5 m+l' 

<Oo(t) == 0 on L m+1. 

437 

Finally, using successively the equations (102.4), (102.17), (102.7) and 
(102.14), it is easily verified that €k == Ck == 0 for all k, and hence c.uo(t) == 0 
everywhere on L. 

Thus the homogeneous equation, corresponding to (102.5'), has no 
solutions, different from zero. Consequently the equation (102.5') has 
one and only one solution w(t). Substituting this solution w(t) in (102.2) 
and (102.3), one obtains the solution of the original problem, provided 
the condition (102.8), expressing zero resultant moment of the external 
forces, is satisfied (the vanishing of the resultant vector of the external 
forces being ensured by the continuity of j(t) on L). Thus the problem is 
solved. 

If (102.8) is TI.ot satisfied, ~(z) and ~(z) will not satisfy the boundary condition 
(102.1), since in that case bm +1 =1= 0 and the solution of (102.5') will not be a solution 
of (102.5). 

N ext consider the second fundamental problern. In this case the boundary 
condition may be written 

xcp(t) - tr.p' (t) - tJ;(t) == g(t), (102.18) 

where, as before, 

(102.19) 

Taking into consideration (101.3) and (101.4) (for k == -x) and likewise 
the form of the functions ({)(z), ~(z)J as determined by (35.10) and (35.11), 
the solution of this problem will be sought in the form 

1 f w(t)dt m 
cp(z) ==:~. + ~ Aj log (z - Zj), 

27t2 t - Z j=l 
( 102.20) 

L 

~(z) = -~f -;;;(i)dt + _1_. f w(t)dt __ l_. f lw(t)dt -
27tt t - Z 21t~ t - Z 27t'z (t - Z)2 

L L L 
m 

- ~ xAj log(z - Zj), (102.21) 
i=l 

where the Aj are constants. These constants will be related to the un
known function <u(t) by the formulae 
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A; = f e»(t)ds. (102.22) 

Lj 

It is easily seen that the displacements, corresponding to the functions 
~(z), ~(z), are single-valued in S. 

As in the preceding case, a regular solution of the problem will be 
sought. As above, it is for this purpose sufficient to assume that the 
unknown function w(t) has a derivative w'(t) satisfying the H condition. 

x f t - to 1 r - t - to xw(to) + --, w(t)d log -_ -_ + --. w(t)d -_ --_ + 
27t't t - to 21t~ .. t - to 

L L 

+ j~lx{log (to -Zj) + log (to - z;)} f e»(t)ds = g(to) on L, (102.23) 

Lj 

where log (to - Zj) + log (to - Zj) must be conceived as a single-valued 
function which is equal to 2 log I to - Zj I. 

It will be assumed below that the given function g(t) has a derivative 
g' (t) satisfying the H condition. Then, as in the case of (102.5'), every 
(continuous) solution w(t) of the equation (102.23) will have a derivative 
u/ (t) satisfying the H condition. 

The integral equation (102.23) is found to be always soluble. In order 
to see this, consider the homogeneous equation, obtained from it for 
g(t) = O. Let wo(t) be any solution of this homogeneous equation and 
<tJo(Z) , ~o(z) the corresponding expressions for the functions ~ (z), y;(z). 
Then 

xcpo(t) + t~~ (t) - ~o(t) == 0 on L. 

Hence, by the uniqueness theorem, 

CPo(z) == c, ~o(z) == xc, 
where c is a constant. As a consequence of the single-valuedness of 
q?o(Z) , ~o(z) which are simply constants, one obtains from (102.20) or 
(102.21) that 

A7 = 0, f == 1, 2, ... , m, (102.24) 

where the A7 are determined by (102.22) for w{t) == wo(t). 
Further, it follows from (102.20) and (102.21) that 
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__ 1 __ (_wo(t)dt_ == c 
2rci, t-z ' 

L 

x I~ wo(t)dt 1 J-- [w~ (t)dt -- --- ----- - -- == xc 
2TCi ./ t - z 21ti t - z ' 

L L 
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whence it is easily concluded (cf. the case of the first fundamental prob
lem) that the functions cp*(t), ~*(t) determined by 

icp*(t) == wo(t) -c, -i~*(t) == xWo(t) + lw~(t) + xc (102.25) 

are the boundary values of some functions q>*(z), ~*(z), holomorphic in 
the regions 5 v 52' ... , Sm+v while cp*(oo) == tJ;*(oo) == O. 

Eliminating wo(t) from (102.25), one obtains 

x<p*(t) - tcp*' (t) - ~*(t) == - 2ixc on L k , k == 1, 2, ... , m + 1. (102.26) 

Applying the uniqueness theorem for the second fundamental problem 
to each of the regions 5 k' one finds 

cp * (z) == C b ~ * (z) == xc k + 2ixc in 5 k' k == 1, 2, ... , n't + 1, 

and, since one has in Sm+l: tJ;*(oo) = cp(*oo) === 0, obviously cm+1 == 0, 
c = o. 

The functions cp* (z) = 0, ~* (z) = 2ixc clearly solve the second fundamental 
problem for Sk with the boundary condition (102.26); by the uniqueness theorem, 
the most general solution is obtained by adding to cp*(z) some constant ck and to 
~*(z) the constant XZk [cf. (34.13) and the remarks follo"\ving it]. 

One thus has 

tp*(Z) == Ck, ~*(z) == XCk in S k(k == 1, . ~ ., m), 

cp*(z) == r.j;*(z) == 0 in Sm+l. 

But then, by (102.25), 

wo(t) == iC k on L k , k == 1, ... , m, wo(t) == 0 on L m+1 • 

It follows from this by (102.24) and (102.22) that all ck=O, and con
sequently wo(t) == o. 

Thus the homogeneous equation, corresponding to (102.23), has no 
solutions different from zero, and therefore the equation (102.23) has 
always one and only one solution. Hence the problem is solved. 
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With obvious insignificant modifications, the above results likewise 
apply to the case when the contour Lm+l is absent and hence 5 is the 
infinite plane with holes. 

§ 103. On the solution of the mixed fundamental problem 
and of certain other boundary problems by means of D. I. Sher
man's method. The method of the preceding section may be success
fully extended to the solution of certain other important boundary 
value problems. 

In the first place the mixed fundamental problem will be mentioned. 
This problem was solved for regions of the same shape as in the preceding 
section by D. I. Sherman [17J who used in this case the same representa
tion for the functions q?(z), ~(z) as in the case of the second fundamental 
problem, i.e., (102.20), (102.21). However, this time the integral equation, 
to which the stated representation leads directly, is already not a Fred
holm equation, but belongs to a class of singular integral equations 
studied subsequently by G. F. Mandjavidze [1, 2J. D. I. Sherman hirnself 
did not develop the general theory of this class of singular equations and 
stated without a detailed investigation a method of solution based on 
reduction to a Fredholm equation. (Another method of solution for 
simply connected regions was also given by D. I. Sherman and has 
already been mentioned in § 79). However, an ingenious complete study 
of Sherman's integral equation 'ATith the aid of his general theory 
mentioned earlier has been presented by G. F. Mandjavidze [2l. 

Using a method, analogous to the preceding one, D. I. Sherman [20J 
gave a new and simpler solution than that by S. G~ Mikhlin [10, 8J of 
the first fundamental problem for bodies consisting in a definite manner 
of homogeneous parts having different elastic constants; this problem 
(and likewise the corresponding second fundamental problem) has 
already been mentioned in §§ 96, 98. 

Finally, D. I. Sherman [22J gave (by means of a method, analogous 
to the above) the general solution of the following problem. Let S be 
a region of the same shape as in § 102, and let it be required to find the 
elastic equilibrium of a (homogeneous) body, occupying S, if the normal 
component of displacement Vn and the tangential component of the 
external stresses T on the boundary L of S are given. For T = 0, this 
problem reduces to that of the frictionless contact of the body under 
con3ideration with rigid profiles at its boundary L. In the following 
Part, this last problem will be solved for the case when the region 5 is 
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simply connected and mapped on to the circle by means of rational 
functions, as has already been mentioned in § 88, 2°. 

Finally, it should be noted that analogous methods apply to the 
problems of equilibrium of plates subject to normal loading for different 
boundary conditions: when the edge of the plate is clamped, free or 
supported, and likewise when on different parts of its boundary different 
conditions are given which correspond only to the cases stated. Reference 
will here only be made to the basic papers by Z. I. Khalilov [lJ, G. F. 
Mandjavidze [2J, A. I. Kalandiia [1, 2, 4J, M. M. F:ridman i2l. 
consideration with rigid profiles at its boundary L. 

In the following Part, this last problem will be solved for the case when 
the region S is simply connected and mapped on to the circle by means 
of rational functions, as has already been mentioned in § 88, 2°. 

§ 104. Generalization to anisotropic bodies. The methods of the 
present Part may be successfully generalized to the case of homogeneous 
anisotropic bodies. As shown by S. G. Lekhnitzki, complex representation 
of the solution may also be given in this case, although it will, of course, 
be more complicated than for isotropic bodies. By means of such a 
representation and of a suitable generalization of the above methods 
a number of general as well as particular problems have been solved. 
The scope of this book does not permit a study of these questions. Therefore 
only reference will be made to the literature on this subject; a detailed 
statement on the literature is given in the survey by M. M. Fridman [3J. 

The interesting papers by S. G. Lekhnitzki will not be quoted here 
in detail, since they are studied in his recently published book [lJ. 
Among publications of a theoretical character, giving the general solution 
of several fundamental boundary value problems, the following should 
be mentioned: S. G. Mikhlin [llJ, G. N. Savin [3, 4J, D. I. Sherman [9, 19J, 
I. N. Vekua [2J. 

The solution of many particular, but practically important problems 
was given in the above-mentioned book by S. G. Lekhnitzki; this book 
does not only summarize the author's work, but also that of other in
vestigators. For this reason no detailed reference will be made here to 
work, giving solutions of a particular character, as this can be found 
in that book and in G. N. Savin [5, 6J (cf. also Savin [8J). 

§ 105. On other applications of the general representation of 
solutions. The methods of solution, studied in Parts IV and V (as well 
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as in Part VI), of the boundary problems of plane elasticity are based 
on the general representation of the solutions of the corresponding dif
ferential equations by means of functions of a complex variable. Such 
general representations of the solutions of partial differential equations 
by means of "arbitrary" functions acquired exaggerated importance at 
the outset of the development of mathematical physics, similar to that 
given to the integration of ordinary differential equations by means of 
quadrature. But it soon became clear that the determination of a 
"general solution" by no means exhausted a problem and that for the 
solution of the corresponding boundary problems such general solutions 
were often next to useless. 

This fact caused the usual reaction in such cases and led to other 
extreme points of view which have been dominant until quite recent 
times, i.e., that no benefit whatsoever may be derived from "general 
solutions" . 

However, in actual fact, this is not so. The general solutions, if they 
can be found and if they are used efficiently, are often extraordinarily 
useful, particulary in practical problems. In a number of such cases they 
permit the construction of a complete theory of a given problem in a 
manner which is simpler and more thorough than would have been 
possible by other, hitherto known methods; the theory of plane elasticity 
may serve here as an example. 

In contrast to this, the hitherto known, general solutions of the equations of the 
three-dimensional theory of elasticity do not permit the construction of a complete 
general theory; however, they have been found to be useful for the solution of a 
number of problems of a special character and have served as means for the solution 
of several general problems. 

Therefore it has been found very desirable to extend methods, analogous 
to those studied above, to other sections of the theory of elasticity as 
well as to a wider range of problems. There exist already results in this 
direction which deserve more attention and further development. 

Since there is no space to dwell at length on this range of problems, 
reference will be made to the work of I. N. Vekua, where the method of 
complex representation of solutions is generalized to a wider class of 
differential equations of the elliptic type, to which the equations of 
plane elasticity belong (in the static case); a full study of this work is 
given in I. N. Vekua's book [lJ and therefore only those of his papers 
[4, 5J will be quoted here which refer directly to the theory of elasticity. 
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The method of general representation has also successfully been 
applied to several problems of elastic vibrations, but again no more can 
be said about this here. 

Finally, only a reference will be made to the general solutions of the 
equations of the three-dimensional theory of elasticity, stated by Boussi
nesq, B. G. Galerkin, P. F. Papkovich and others (see also the earlier 
remarks referring to this problem). Some information on this question 
may be found in the text books by L. S. Leibenson [lJ, P. F. Papkovich 
[lJ and A. E. H. Love [1J. 



PART VI 

SOLUTION OF THE BOUNDARY PROBLEMS OF THE PLANE 
THEORY OF ELASTICITY BY REDUCTION TO THE PROBLEM 

OF LINEAR RELATIONSHIP 

Many important problems of the theory of elasticity, including the 
problems considered in Chapters 15 and 16, may be solved very simply 
by reduction to a single boundary problem of complex function theory 
which the Author calls the problem ot linear relationship 01 the boundary 
values, or, briefly, the problem at linear relationship. The formulation of 
this problem and its solution for several particular cases (which will be 
required later on) is given in Chapter 18. 

This problem has been called by many authors the R i em ann pro b 1 e ID. 

It would have been more correct to call it the H i 1 b e r t pro b 1 e ro, as has 
been. done in the Author's book [25J. However, the Author proposes now to use the 
above term as an alternative. 



CHAPTER 18 

THE PROBLEM OF LINEAR RELATIONSI-IIP 

§ 106. Sectionally holomorphic functions. As in § 65, let L be the 
union of a finite number of simple, non-intersecting arcs and contours 
in the complex z plane; these arcs and contours will always be assumed 
to be smooth. As in § 65, L will be called a simple smooth line and it will 
be assumed that it has a definite positive direction (i.e., on each arc or 
contour which is a component of L). The ends of the arcs (if such exist) 
will form part of L and will be called ends of the line L. 

These closed arcs (i.e., including their end points) will often be denoted 
by ab or, if there are several of them, by akb'e> k == 1, 2, ... , where the 
symbols are to indicate that the positive direction is from a to b or 
from a k to bk • 

As in § 65, a distinction will be made between "left" and "right" 
neighbourhoods of the points of L, other than its ends. 

Denote by Sf that part of the plane which contains all points not 
belonging to L; in other words, Sf is the z plane cut along L. If L consists 
only of arcs, then 5' is a connected region, while, if L includes contours, 
Sf consists of several connected regions, bounded by these contours. 

Let F(z) be some function, given in Sf (but not on L) and satisfying 
the following conditions: 

1°. The function F(z) is holomorphic everywhere in S'. 

2°. It is continuous from the left and from the right at all points of 
L, other than the ends a k , bk • 

3°. Near the ends ak, bk 

A 
1 F(z) I < , 0 < [.L < 1, 

I z-c Ifl. 
(106.1 ) 

where c is anyone of the ends a k , bk , A is a positive constant and ~ is 
likewise a constant, subject to the stated condition. 

Such a function F(z) will be called sectionally holomorphic in the entire 
plane or, more simply, sectionally holomorphic. The line L will be called 
the line of discontinuity of F(z) or the boundary. 

447 
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As in § 65, denote by F+(t) and P-(t) the boundary values of the 
function F(z) at the point t of L from the left and right respectively. 

On occasion, functions will be considered which satisfy the above 
conditions everywhere, except at a finite number of points Zl' Z2, ••• 

not belonging to L, where F(z) may have poles (without any other 
stipulations). In such cases the function F(z) will be said to be sectionally 
holomorphic everywhere, except at the points Zl' Z2' •••• In particular, 
functions will often be considered which are sectionally holomorphic 
everywhere, except at the point at infinity, where they have a pole, i.e., 
functions which have for sufficiently large 1 z 1 a series expansion of the form 

(106.2) 

Finally, the following condition will be introduced: when it is said 
that F(z) vanishes at some point to of L which is not an end, this will 
imply that F+(to) == F-(to) == 0; if to is an end, then the vanishing of 
F(z) at to will imply that F(z) -+ 0 as z ->- to' 

NOTE. The definition of the concept of sectionally holomorphic 
functions may, of course, be extended to the case, where the function is 
not given in the entire cut plane 5', but only in some part of it. For 
example, let So be some connected region bounded by one or several 
contours, the union of which will be denoted by Lo, and let the union 
L of contours and arcs, considered above, be entirely contained in So. 

If the function F(z), given in So (except at points of L), satisfies the 
conditions 1 0_30 and if, in addition, it takes definite boundary values 
on the boundary Lo of So, then it may be called a function, sectionally 
holomorphic in So. Such a function may be extended into a function~ 
sectionally holomorphic in the entire plane, by putting, for example, 
F(z) == 0 outside So. 

In the sequel, unless stated otherwise, sectionally holomorphic functions 
will be assumed to be given in the entire plane (except on the line of 
discontinuity). 

§ 107. The problem of linear relationship (the Hilbert problem). 
Let L be a given smooth line which satisfies the conditions of the 

preceding section. The following problem will be considered: 
To find the sectionally holomorphic function F(z) with the line of dis-
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continuity L the boundary values at which trom the left and trom the right 
satisfy the condition 

F+(t) = G(t)P-(t) + /(t) on L (107.1 ) 

(except at the ends), where G(t) and I(t) are {unctions, given on Land 
G(t) =F 0 everywhere on L. 

In addition, it will be assumed tl1at the functions G(t) and t(t) satisfy 
the H condition. 

Since the concept of boundary values from the left and from the right 
is not defined for the ends of the line L, the reservation has been intro
duced that (107.1) is to be satisfied on L, except at the ends. In the sequel, 
this stipulation will be omitted, although it will always be implied. 

The above problem will be called the problem at linear relationship 
at the boundary values or simply the problem 0/ linear relationship or 
the Hilbert problem [because the boundary values are connected (related) 
by a linear expression (with, in general, variable coefficients)]. 

If /(t) = 0 everywhere on L, the problem will be called homogeneous. 
The homogeneous problem was first considered by Hilbert for the case 
where L is a simple contour; the non-homogeneous problem (for the 
same case) was proposed by I. I. Privalov (under somewhat more general 
assumptions). However, a complete, but very simple solution has only been 
found recently. This solution and its literature is studied in the Author's 
book [25J. 

Only the particular and very simple case when G(t) is a constant will 
be studied here, because it is the case required in the later sections. For 
the sake of clarity, the cases when G(t) == 1 and G(t) = g, where g is an 
arbitrary constant different from unity, will be considered separately. 

§ 108. Determination of a sectionally holomorphic function for 
a given discontinuity. The simplest case of the problem of § 107 occurs 
when C(t) = 1. Then the problem reduces to the determination of a section
ally holomorphic function F(z) for the given discontinuity I(t) so that 

F+(t) ~ F-(t) = /(t) on L. (108.1 ) 

The solution of this problem may be written down immediately. 
In fact, consider the Cauchy integral 

F o(z) = _1_. r f(t)dt . 
27tz &; t ~ Z 

L 
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On the basis of the statements of § 68, F o(z) is a sectionally holomorphic 
function which vanishes at infinity and for which by (68.4) 

Ft (t) - Fo(t) = f{t) on L (except at the ends). (a) 

By Note 4 of § 68 the function F o(z) satisfies near any end c of L the condition 
(106.1), viz., 

A 
I Fo(z) 1<----, 

I z - c II-' 

even for arbitrarily small, positive ~. 

Hence Fo{z) is one of the solutions of the problem. Next consider the 
difference F(z) - F o(z) = F * (z), where F(z) is an unknown solution. 
By (I 08. 1) and (a) 

Ft (t) - F;(t) = 0 on L. 

Thus, on the basis of a known p~operty of functions of a complex variable 
(§ 37, 4°), the values of F*(z) on the left and on the right of L continue 
each olher analytically. Therefore, if one prescribes for the function 
F * (z) suitable values on L, this function will be holomorphic in the entire 
plane, except possibly in the neighbourhoods of the ends ak, bk of L. 
However, since in the neighbourhood of any end c, by (106.1), 

A 
\F*(z) I < ,0<fl<1, ]z-c 1(1. 

(b) 

the point c is a removable singularity and it may be assumed that F*(z) 
is holomorphic in the entire plane. 

By (b) the product (z - c)F *(z) remains bounded near c; hence this product function 
has a removable singularity at that point (cf. for example, I, I. Privalov [IJ). 
Therefore (z-c)F *(z) may be assumed to be holomorphic near c, i.e., (z-c)F *(z) = 
=F**(z), where F**(z) is a holomorphic function. Thus F*(z) can only have a first 
order pole at c; but by (b) there is no such pole, because (z - c)F *(z) -r 0 as z ~ c. 

Consequently, by the I~iouville theorem, F*(z) = C == const. in the entire 
plane and the general solution of the problem is given by 

F(z) = Fo{z) + C 
or 

F(z) = _1_. J' j(t)dt + C, 
21tz t - Z 

(108.2) 

L 
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where C is an arbitrary constant. If it is required that F(oo) = 0, then 
one has to take C == o. 

The solutiol1 of a somewhat more general problem "viII now be found. 
In fact, it will be assumed that the unknown function F(z) is sectionally 
holomorphic everywhere, except at the point at infinity where it may 
have a pole of order not greater than m, Le., it must have there the form 
(106.2). It-is then easily seen (by application of the generalized Liouville 
theorem) that 

F(z) == ~I_. J' t(t)dt + P m(Z) , 
21tz t - Z 

L 

where P rn(z) is a polynomial of degree not higher than m, i.e., 

P m(z) = Cm,zm + Cm _ 1z1n-l + ... + Co; 

Co, C1, • •• , C m are here arbitrary constants. 

(108.3) 

( 108.4) 

The generalized Liouville theorem consists of the follo\ving: If a function F(z) 
is holomorphic in the whole plane, except at the point z = 00, and if for large I z ! 

F(z) = O(zm), 

Vv'here m is a positive integer, then F(z) is a polynomial of degree not higher than 'In. 

Finally, if the solution is permitted to have poles of order not greater 
than mv m 2, . · ., m z, m at the given points Zv Z2' ... , ZI, (X), then 

1 /' j(t)dt 
F(z) == --. J + R(z), 

27t't t - Z 
( 108.5) 

L 

where R(z) is an arbitrary rational function \vith poles of the type in
dicated, i.e., 

l (7j1 (7j2 
R(z) = ~ --- + ----2 + ... + 

i=1 Z - Zj (z - Zj) 
Cintj + 

(z - Zj)mj 

+ Co + C1z + ... + Cmzm, 

where the C jk, C k are arbitrary constants. 

(108.6) 

NOTE. It follows from the above statements that every sectionally 
holomorphic function F(z) may be represented in the form of a Cauchy 
integral 

F(z) = -~-. f t(t)dt + C, 
21t't t - Z 

L 
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where f(t) denotes the discontinuity of F(z) on the line L, i.e., 

t(t) == F+(t) - P-(t), 

and C is a constant. 
Further, if F(z) is a sectionally holomorphic function in some region 

So which does not coincide with the whole plane (as in the Note at the 
end of § 106), then this function may always be represented in the form 
of the sum of a function holomorphic in So and a Cauchy integral, Le., 

F(z) == _1_. r t(t)dt + F*(z), 
21tz. t - z 

L 

(108.7) 

where L is the line of the discontinuity f(t) == F+(t) - F-(t) inside So 
and F*(z) is a function, holomorphic in So. The expression (108.7) holds 
true everywhere in So, except at points of L where F(z) is, in general, not 
defined. 

The truth of (108.7) follows from the fact that the difference 

F(z) __ 1_. f t(t)dt = F*(z) 
27tz t - Z 

L 

is a function, holomorphic in So except at points of L, where obviously 

F*+(t) - F*-(t) == 0 on L, 

and hence F*(z) is holomorphic everywhere in So, provided it is given 
suitable values on L. 

The function F*(z) may likewise be represented by a Cauchy integral 
taken over the boundary Lo of the region So. 

§ 109. Application. One interesting application of the formula (108.7) 
will be stated here which is due to D. I. Sherman [14J. Let there be given 
an elastic body, such as a plate with several holes, and let solid discs 
of the same material be inserted into these holes; however, let the contours 
of these discs differ slightly, in the unstressed state, from those of the 
holes. It will be supposed that the boundaries of the inserted discs and 
of the corresponding holes are brought into CQntact without any gaps 
and that they are welded together (or restrained by frictional forces 
from sliding relatively to each other). 

Denote the body, obtained in this manner, by So and its boundary 
by Lo. It will be assumed that Lo is a simple contour. 
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The results of this section will also remain true (with obvious insignificant 
modifications), if it is assumed that Lo consists of several contours; this corresponds 
to the case, where not all holes are filled by discs and where some of the inserted 
discs have holes. 

Further, denote by L the union of the contours of the holes into 
which discs have been inserted. 

As before, let cp(z) and ~(z) be the functions which determine the elastic 
equilibrium of the body So. These functions are defined in each of the 
regions into which the region So is divided by L and they are holo
morphic there; however, they suffer discontinuous changes for a passage 
through L. 

This is obvious for regions, occupied by discs, because these functions are as
sumed to be single-valued. However, single-valuedness of cp(z), q;(z) in the regions, 
occupied by the material surrounding the discs, follows from the fact that the 
resultant vector (and also the resultant moment) of the forces, applied to the edges 
of the original holes by the discs, obviously vanish. 

It will be assumed that the external forces X n , Y n, acting on the 
boundary of the body 501 are given and that, in addition, the discon
tinuities in the displacements for a passage through L are determined by 

(109.1 ) 

where the functions gl(t) and g2(t) are likewise given; they depend on 
the shapes of the holes and inserted discs before deformation and on the 
method by which the edges of the discs and of the surrounding plate 
were brought into contact before welding occurred. 

Under these conditions one has the following boundary conditions: 

cp (t) + tcp' (t) + tJ;(t) == j(t) on Lo, (109.2) 

('()+(t) + trp'+(t) + ~+(t) == ~-(t) + tcp'-(t) + tP-(t) on L, (109.3) 

x~+(t) - tcp'+(t) - tJ;+(t) = xcp-(t) - tcp'-(t) - ~-(t) + 2tLg(t) on L, (109.4) 
where 

s 
~ 

I(t) = iJ (Xn + iYn)dsonLo,g(t) = gl(t) + ig2(t) onL (109.5) 

o 

are known functions. 
The condition (109.2) expresses that the external stresses, acting 
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on the boundary Lo of the body So, are given. The condition (109.3) 
indicates that the stresses, acting from either side on the element of 
the line of division, balance each other. Finally, (109.4) shows that 
the discontinuities in the displacements of the line of division are known. 

As a matter of fact, (109.2) must only be satisfied exactly, apart from 
an arbitrary constant; similarly, (109.3) must be fulfilled, apart from 
arbitrary constants on each of the contours, constituting L. However, 
it is easily seen that the last constants may be included with the unknown 
functions. 

Adding (109.3) and (109.4), one finds 

2fLg(t) 
iO+(t) - cp-(t) = --- on L. (109.6) 

x+l 

Further, taking the conjugate complex form of (109.3) and using (109.6), 
one obtains 

where 

~+(t) - ~-(t) = 2(l.h(t) on L, 
x+l 

h(t) == - g(t) - 19' (t), g' (t) = d~~t) , 

i.e., h(t) is a function, known on L. 

(109.7) 

(109.8) 

On the basis of the statements in the Note at the end of § 108, one 
deduces that 

~ f g(t)dt 
cp(z) = CPo(z) + 1ti(x + 1) t - z ' 

L 

l.L f h(t)dt 
Iji(z) = ljio(z) + 1ti(x + 1) t - z ' 

(109.9) 

L 

",There ~o(z), ~o(z) are functions, holomorphic in So. 
For the sake of brevity, let 

~ 1-' g(t)dt l.l In h(t)dt 
cp*(z) = 1ti(x + 1) ~ t _ z' Iji*(z) = rti(x + 1) t _ z' (109.10) 

L L 

and (109.9) becomes 

cp(z) = <?o(z) + qJ*(z), ~(z) ==: ~o(z) + t.fJ*(z); (109.11 ) 
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the holomorphic functions Cf'o(Z) , tVo(z) are subject to definition, while 
<p* (z), tV* (z) are known, sectionally holomorphic functions, determined 
by (1 09. 1 0) . 

Substituting (109.11) in the boundary condition (109.2), one obtains 

(109.12) 
where 

-,- -
jo(t) == f(t) - <p*(t) - tcp*(t) - tV*(t) (109.13) 

is a function, known on L o. 
One has thus arrived at the usual first fundamental problem for 

the body So. After having determined Cf'o(z), tVo(z), the functions cp(z), tV(z) 
may be found from (109.9) or (109.11). 

Consequently, it is seen that the problem under consideration redu,ces 
directly to the cu,stomary first jttndamental problem for the sante region So. 

If, instead of the stresses, displacements are given on L o, the problem 
will reduce in the same manner to the customary second fundamental 
problem. 

If the discs and the surrounding body ha"\re different elastic properties, 
then the above is no longer true; more will be said about the solution 
of this case later on. 

§ l09a. Example. Consider the simplest case of a circular ring w~ith 
outer radius 1 and inner radius r into which a circular disc of radius r + e; 

has been inserted, where € is a known quantity. Then So is the unit 
circle, Lo the circumference of this circle and L a circle with radius 
r < 1. 

If it is assumed that the origin lies at the centre and that the positive 
direction on L (as well as on Lo) is counter-clockwise, it is easily seen 
that, with t == pe1

't}, one has 

and 

g(t) = - €(cos -& + i sin.&) == - €e i '& == -:!- on L 
r 

h( ) -( ) - I 2et 2er t = - g t - tg (t) = - = -- on L. 
r t 

Hence (109.10) gives 

f - 2flZ z for I z I < r 
~*(z) == ~ r(x + 1) 

l 0 for! z I > r 

f 0 for! z I < r 

~*(z) == ~ 4tL€r 1 ' 

t - - for! z I > r 
x + 1 z 
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and the functions CPo(z) , ~o(z) are determined by the boundary condition 

--,--. -
~o(t) + tcpo (t) + tVo(t) == j o(t) on L o, 

where 
4f.LEr 

jo(t) == j(t) + t. 
x+l 

The last expression follows from (109.13), since cp*(t) = cp~(t) = 0 on Lo, because 
<i'*(z) = 0 for I z I > rand 

-- 4tJ.e:r 1 4tJ.e:r 
~*(/) = - --=- = - t on I.,o. 

)(+11 x+l 

Thus, in order to solve the original problem, one llas to find the solution 
~of th~ customary first fundamental problem for the circle, after adding 
to the stresses, actually acting on Lo and characterized by j(t), the fictitious 
stresses corresponding to the second term in the expression for f o(t), 
obtained above .These fictitious stresses are easily seen to correspond to 
a distribution of uniform normal tension of magnitude 

4f.Lr 
E. 

x+1 
Thus the solution of the problem may be written down directly, using 
the formulae of § 80 *. 

§ 110. Solution of the problem: F+ == gF- + f. 
Consider the case G(t) = g, where g * 1 is a given, in general complex 

constant. The boundary condition in this case will have the form 

F+(t) -gF-(t) = j(t) on L, except at the ends. (110.1) 

It will now be assumed that L consists of n simple smooth arcs Lk 
(k = 1,2, .. _, n) which have no points in common; these arcs, as in
dicated earlier, will be denoted by akb k , where ak, bk are the ends of Lk 

The case, where L consists only of contours, is easily seen to reduce directly to 
the problem of § 109. For example, if L consis~s of one simple contour which divides 
the plane into two regions 5+ and S-, adjoining L on the left and right respectively, 
one may consider, instead of F(z), the function F *(z), defined as follows: F *(z) = 
F(z) in 5+, F*(z) = gF(z) in 5-; then (110.1) takes the form F;t(t) - F*(t) = /(/). 
One may proceed in an analogous manner, when L consists of several contours. 

In the case where L consists of contours and arcs, the problem is likewise easily 
solved. 

* Certain other simple applications were given by N. D. Tarabasov [1, 2J and 
A. G. Ugodchikov [IJ; a more complicated case has been studied by D. I. Sherman 
[23J. 
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and the positive direction is from ak to bk • (Fig. 48). 
First, a solution will be studied which may have a pole of arbitrary order 

at infinity, and a beginning will be made with the homogeneous problem 

F+(t) - gF-(t) == O. (110.1') 

A particular solution Xo(z) of this problem will be sought in the form 

n 
Xo(z) = II (z - aj)-Y(z - bj)y-t, 

i=1 

where y == <X + i~ is a constant. 

(110.2) 

The function X o(z) is holomorphic in 5', i.e., in the plane cut along L, 
if a definite branch of this function is selected, e.g. the branch for which 

bn 
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Fig. 48. 

lim [znxo{z)] == 1; Of, in other words, the branch which has for large I z I 

the form 

1 <X-n+l 
Xo(z) == - + + ... ; 

zn zn-l 
(110.3) 

in the sequel, unless stated otherwise, this branch will always be implied. 
It is readily verified by an investigation of the variation in the ar

gument of z - ak or z - bk , when z describes a closed path beginning 
at a point t of the arc akbk and leading, without intersecting L, from 
the left side of akbk around the end ak to the right side of the arc (as in 
Fig. 48) or around the end bk (not shown in Fig. 48), that 

Xo(t) = e-2rtiYXt (t), 
(110.4) 
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By definition, the po\ver with complex exponent 

(z - akt-Y = e-Y log(z-ak) = e-y[log I z-ak 1+ i9-] = e-y1og I z - ale I e-iY&, 

where log! z - ak ! is real, so that 

(z - ak)-Y = Iz - akl-Y e-iy&, 

where -& = arg (z - ak) and Iz - akl-Y is the uniquely defined value e-y1og lz-akl. 

When z goes from the left side of Lk around ak to the right side, as shovvn in 
Fig. 48, then ,a. increases by (+ 21t), and hence (- iyS) by (- 2rtiy) , and therefore 
(z - ak)-Y must be multiplied by e-21tiy. 

When z goes from the left side of Lk around bk to the right side, then 
.& = arg (z - bk ) increases by (- 21t) and 

(z - bk)y-l = 1 z - bk Iy-1 ei(y-l).f) 

must be multiplied by e-2;ri(y-1) = e-2rriy, as in the first case, since e2n:i = 1. 

Hence X o(z) will satisfy the boundary condition ( 11 O. 1 '), provided 
e21tiy = g, I.e., 

. log g log I g I e 
y = oc + 2~ === --. == . + --- , 

27t't 2rt't 2rc 
(110.5) 

where e denotes the argument of the constant g. This argument is de
termined, apart from an additive term 2krci, where k is an integer; 
however, e will always be chosen in such a manner that 

o < e < 2rc, (1 10.6) 

by which condition e is completely determined. In particular, if g is 
a real, positive number, then e = 0, while, if g is a real, negative number, 
{) = rc. 

It will now be investigated as to \vhether the inequality 

A 
Xo(z) < , 0 < (.L < 1 

Iz-clIL 
(110.7) 

is fulfilled, \vhere c is any end ak , bk ; this condition must, by supposition, 
be satisfied by any sectionally holomorphic function. By (110.6), 

o < CI. < 1. (110.8) 

If g is not a real positive number, then r:t. =F 0, 1 - ex < 1. Hence, ex
cluding the case when g is real and positive, the inequality (110.7) will 
be fulfilled by taking ~ = tX for c = ak, (.L = 1 - tX for c = bko 

One has 

(z - ak)-Y = (z - a
k

)-(IX+ir3) = e-(cx+ir3) log(z-uk) == e-(cx+ir3) (logr+i&), 
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where r = I z - ak 1, .& = arg (z - ak ). Hence 
o e 

(z-a )-y = e-a:logr.0 = - = -----, 
lc ra: ! z - ak !" 

where e = ef'.a--i(a:-&-f'logr), so that Ie! = e"&. When z is in the neighbourhood 
of the point ak in the plane, cut along L, then .& lies between finite limits (because 
z cannot cross L) and therefore I 0 ! is bounded and, in addition, leI> at where 
a is a positive constant. Similar reasoning applies to the neighbourhood of the 
point bk • 

Thus, a particular solution Xo(z) of the homogeneous problem has 
been found (for rt =F- 0) ; it is given by (110.2) with y determined by (II 0.5). 
This particular solution does not vanish anywhere in the finite part of 
the plane and it is unbounded like I z - ak I-a: and I z - bk Ia:-l near 
the ends ak and bk respectively. 

The most general solution of the homogeneous problem will now be 
found which has a pole at infinity. For this purpose it will be noted 
that Xo(z), being a solution of the homogeneous problem, satisfies the 
condition 

xt(t) = gXo(t) on L, (110.9) 

whence 
xt(t) 

g = "Xo(t) on L. (110.9') 

Replacing in (II 0.1 ') g by its value (110.9'), one obtains 

F+(t} F-(t) _ 0 on L 
xt (t) Xo(t) - J 

or 
Ft (t) - F;(t) = 0 on L, 

where F*(z} denotes the sectionally holomorphic function F(z)jXo{z). 
It follows from the preceding relation that F *(z) is holomorphic in the 
entire plane, except at the point z = 00, provided it is given suitable 
values on L (cf. § 108). Further, since F*(z) can only have a pole at 
infinity, it must, by the generalized Liou"ille theorem, be a polynomial. 

Thus, the most general solution of the homogeneous problem is given 
by 

F(z) = Xo(z}P(z), (110.10) 

where P{z) is an arbitrary polynomiaL 
If it is desired to obtain a solution which 15 also holomorphic at 
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infinity, it must be assumed that the degree of the polynomial P(z) 
does not exceed n; this follows from the behaviour of Xo(z) at infinity, 
as determined by (110.3). If one requires that F(oo) = 0, then the degree 
of P(z) may not be higher than n - 1. 

In general, the solution (11,0.10) will not be bounded near the ends. 
However, if it is desired to find the solution which is bounded near the 
given ends C1, c2, ••• , cP ' the polynomial P(z) must be chosen in such a 
manner that it vanishes at these points, i.e., P(z) = (z - c1) (z - c2) ••• 

(z - zp)Q{z), where Q(z) is a polynomiaL In that case the solution F(z) 
will not only be bounded near the ends Ck, but it will vanish there. (It 
is seen that a solution which is bounded near certain ends, but does not 
vanish there, does not exist, assuming, of course, all the time that ~ =1= 0.) 
Writing 

(110.11) 

all solutions bounded near the ends c1, c2, ••• , c" may be represented 
in the form 

F(z) = X v(z) . Q(z), (110.12) 

where Q(z) is an arbitrary polynomial. 
Naturally, X v(z) is itself a particular solution of the homogeneous 

problem, similar to Xo(z). However, it is bounded near the given ends 
and it vanishes at these ends in such a way that 

X1)(z) == I Z-Cj 1~.0, 0 < ~ < 1, (110.13) 

o being a bounded quantity; in fact, 10 I > a = const> o. [cf. remarks 
following (11 0.8)J. 

Among the solutions Xp(z) the two following will be specially noted: 

n n 
X(z) == Xo(z) 11 (z - aj) (z - bj) == II (z - aj)I-Y (z - bi)Y, (110.14) 

1=1 1=1 

which is bounded near all ends (where it actually vanishes), and 

n n [z- b.lY 

X*(z) = Xo(z)i~l (z - bi ) = i~l z - a: J ' (110.15) 

which is bounded near the ends bj , l' == 1, 2, ... , n (where it vanishes). 
For large I z ! these solutions have the forms 

X(z) = zn + ~n_lzn-l + ... + ~o + ~-l + ... , 
z 

(110.16) 
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X ( ) 1 Y -1 Y-2 
*z = +-+-+ .... z Z2 

(110.17) 

Next consider the non-homogeneous problem. 
boundary condition (110.1) may be written 

Using (110.9'), the 

F+(t) F-(t) f(t) 
--~ 

Xt(t) Xo(t) Xt(t) 

or 
Ft(t) -F;{t) == f*(t), 

where F*(z) == F(z)jXo(z), f*(t) = t(t)jxt(t). 
Using the results of § 108, one finds 

Xo(z) f t(t)dt 
F(z) = 21ti xt (t _ z) + X o(z)P(z) , 

L 

(110.18) 

where P(z) is an arbitrary polynomial. This is the general solution of 
the problem, admitting a pole at infinity. 

If it is desired to obtain the solution, holomorphic at z == 00, it must 
be assumed, in view of (110.3), that P(z) is a polynomial of degree not 
higher than n: 

(110.19) 

where Co, Cv ... , en are arbitrary constants. If, in addition, it is re
quired that F(CXJ) = 0, one has to assume Co == o. 

In general, the solution F(z) will not be bounded at the ends ak, bk-

However, by a suitable choice of the polynomial P(z), it may be ar
ranged that it is bounded at certain ends Cv C2, ••• , C p. It is simple 
to prove this directly by constructing the general solution, having that 
property. For this it will be sufficient to repeat the reasoning leading to 
(110.18), but using, instead of the particular solution Xo(z), the solution 
X:p(z) as determined by (110.11). 

Also in that case one is led to the condition Ft (t) - F*(t) = f*(tL where this 
time 

F(z) t(t) 
F.(z) = X;p(z) , f.(t) = X~+(t) ; 

however, X :l)(z) vanishes now at the ends c11 ••• , c:p; but since, by supposition, 
the unknown function is bounded near these ends, I F * (z) I <A / J z - C J jlJ., 0::;: (.L < 1, 
and the former reasoning applies, provided one does not consider the fact that, 
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in general, f*(t) is not bounded near the ends ci' It is readily shown by a study of 
the behaviour of f*(t) near these ends [cf. N. I. Muskhelishvili [25J) that this cir
cumstance is of no importance. As a matter of fact, it has been shown earlier that, 
if a solution of the required type exists, it is given by (110.20) and that the first 
term on the right-hand side of (110.20) actually renlains bounded near the ends 
CI , c2, • •• , c1J" 

Thus the general solution, bounded near the ends C1' c2, ••• ,cP ' is 
given by 

~ X p(z) jla I(t)dt 
Fz- IXZPZ ( ) - 27ti. X: (t)(t - z) T ~() (), 

(110.20) 

L 

where P(z) is an arbitrary polynomial. 
It follows from (110.11) and (110.3) that for large I z I 

X (z) - zp-n + S zp-n-l + · p - p-n-l ••• , (110.21) 

therefore X p(z) is holomorphic at infinity only for p <. n. 
If p < n + 1, the first term on the right-hand side of (110.20) remains 

bounded as z ~ 00 and, in order to obtain a solution which is also ho
lomorphic for z = 00, one must assume that P(z) is a polynomial of degree 
not higher than n - p; for p == n + 1, one has to assume P(z) == o. 

However, if p > n + 1, a solution which is holomorphic at infinity 
will only exist, provided certain conditions, to be stated now, are satisfied. 
Since for large I z I 

1 1 t 
--- == -------- ... , 
t-z z Z2 

one has the expansion, likewise valid for large ! z !, 

_1_( __ t_(t~_dt_=_ A2 __ A~_ 
21ti'" xt (t) (t - z) z Z2 • • • , 

(110.22) 

L 

where 

1 r tk-1t(t)dt 
A k =-. x+() , k= 1,2, .... 

27tz . p t 
(110.23) 

L 

Hence, if it is required that the solutiQn (110.20) should be holonlorphic 
at infinity for p > n + 1, then one has to put P(z) = ° and, in ad
dition, I(t) must be subject to the conditions Ak = 0, k = 1,2, ... , 
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p - n - 1, I.e., 

_1_ r tk-lj(t)dt 
--+- ==0, k=1,2, ... ,p-n-l. 

21ti. Xp (t) 
(110.24) 

L 

Thus (110.24) must be satisfied, in order that for p > n + 1 a solution, 
holomorphic at infinity and bounded at the ends Cv C2, .... , ern may exist. 

Further, if it be required that F(oo) = 0, then in the preceding formula 
k = 1, 2, ..... , p - n. 

Hitherto the case where oc == 0 has been excluded, i.e., the case where g 
is a real, positive number. If (J., = 0 (assuming as before that g =j=. 1), one 
may use the particular solution X*(z), determined by (110.15): It is 
readily seen that this solution remains bounded near all ends and does 
not vanish anywhere when y == i~ -=F O. Applying the same reasoning as 
before, one obtains the general solution of the problem 

F(z) = 3y(z) J t(t)dt + X*(z)P(z), (110.25) 
2rci X; (t) (t - z) 

L 

where P(z) is an arbitrary polynomial; in the present case the solution 
is seen to be necessarily bounded near all ends *. If it is desired to find a 
solution, holomorphic for z = 00, one has to put P(z) == C = const., 
as may be seen from (110.17); if, in addition, F(CXJ) == 0 is required, 
then P(z) == O. 

The formula (110.25) is, of course, also applicable for C( -=F 0, when 
it becomes a particular case of (110.20) and gives all solutions, bounded 
at the ends bI , b2 , ••• , bn • 

Finally, the general solution of the problem will be found under 
the supposition that it may have poles of order not greater than m1, 

m 2 , • • ., ml, m at the given points Zv Z2' ••• , Zl' co. Reasoning as before 
and taking into consideration (108.5), one obtains for the general solution 
of the required form, applicable for oc =1= 0, 

Xo(z) (j(t)dt R F z --- -LX Z Z ( ) - 21ti 01 X t (t)( t - z) I 0 () () , 
(110.26) 

L 

where R (z) is a rational function of the form [cf. (108.6) ] 

l { C'l C'2 C.} R(z) == ~ '+ ' + ... + 1
m

j'm' + P(z), (110.27) 
1=1 Z - Zi (z - Zi)2 (z - Zj) ) 

* It can be shown that the first term on the right-hand side of (110.25) remains 
bounded. 
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P(z) being an arbitrary polynomial of degree not higher than m + n. 
The polynomial P(z) must be such that the pole of P(z)X o(z) at infinity is not 

1 
of greater order than m; however, it is known that for large I z I: Xo(z) = - + 

zn 
oc-n - 1 +--+ .... zn+l 

When ex == 0, an analogous formula results which is obtained by 
substituting X*(z) for Xo(z); in that case the degree of the polynomial 
P(z) must not exceed m, because for large I z I 

X*(z) == 1 + Y-1 + .... 
z 

In conclusion, note the particular case of the problem under consi
deration when g == - 1; the boundary condition takes then the form 

F+(t) + F-(t) == f(t), 

and one has 
. log(- 1) 

y == IX + 't~ == . 
Hence, by (110.2), 

n 
Xo(z) === IT (z - aj)-t (z - bj)-i == 

j=l 

and, by (11 O. 14 ) and (11 O. 15), 

27t't 

1 

1 

2 

X(z) === v(z-at ) (z-b1) ••• (z-an)(z-b n ) , 

V (z - bl ) ... (z - bn ) 
X*(z) == . 

V (z - at) ... (z - an) 

(110.28) 

(110.29) 

(110.30) 

(110.31) 

(110.32) 

The most general solution of the problem, admitting a pole at infinity, 
is given by (110.18) with X o(z) replaced by the value (110.30); using the 
fact that now Xo(z) == IjX(z), one has for the general solution 

F(z) = 1 f X+(t)f(t)dt + ~, (110.33) 
27ti X(z) t - z X(z) 

L 

where X (z) is determined by (110.31) and P(z) is an arbitrary polynorrlial. 
Assuming the degree of the polynomial not to exceed n, one obtains 
the solution which remains holomorphic at infinity. 

The solution, bounded near all ends, is obtained from a formula which 
follows from the general formula (110.20) for p = 2n and X j)(z) deter-
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mined by (110.31): 

F z) - X(z) 1 -- j(t)dt X(z)P(z) 
( - 2ni X+(t)(t - z) + · (110.34) 

IJ 

If the solution is also to be holomorphic at infinity, one must assume 
P(z) == 0 and, in addition, subject the function j(t) to the following 
conditions, which follow from (110.24): 

-1-1 t'c-1t(t)dt = 0, k = 1, 2, ... , n - 1. 
21ti X+(t) 

(110.35) 

L 

If also F(oo) = 0, then k = 1,2, ... , n in (110.35). 

NOTE. 1. In many cases the integrals, occurring in the formulae 
of the present section, may be easily evaluated in finite form. For 
example, this is true in the case, which often occurs in practice, when 
f(t) is a polynomial 

f(t) = Amtm + Am_1tm-1 + ... + Ao· 

In fact, consider the integral 

1 f(t)dt 
I(z) = X;(t)(t-z) (110.37) 

L 

which occurs in (110.20); in particular, 
for p = 0, one obtains the integral of 
(110.18). 

Simultaneously with the integral I 
consider another integral 

Q(z) == _1_ 1 t(~)d~ . (110.38) 
27ti X ZJ(~) (~ - z) 

A 

where A is the union of the n con-
tours AI' A2, ••• ,An, surrounding the 
arcs L 1, L 2, • • ., Ln in clockwise direc- Fig. 49. 
tion, as shown in Fig. 49, and assume 
that in this case z remains outside these contours. 

(110.36) 

·z 
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Using (110.21), it is concluded that for large I ~ I 

I(~) -1 I ~-1 ~-2 -:-y p(~) = rxQ~q + rxQ-l~q + ... I rxo + -~- + ~ + ... , (110.39) 

where q == n - p + 1n and the coefficients tJ..q , tJ..q - 1, ••• , ~o (the others 
not being required) are easily determined by elementary means; for 
q < 0, one has to assume that all of them are equal to zero. 

In fact, l/X p(~) is the product of binomial terms of the form (~- C)A which 
may be expanded as follo~~s 

A A ( C )A " ( C A(A - 1) c2 
) 

(~ - c) = ~ 1 - - = ~A 1 - A - + - - . .. . 
~ ~ 1 . 2 ~2 

By (110.21), the sum of the exponents A equals=n - p, i.e. an integer (or zero). 

Hence, by (70.3'), one obtains 

Q(z) = j(z) - ~qZq - ••• - (Xo 
Xp(z) 

(if q < 0, the polynomial on the right-hand side vvill vanish). 

In (70.3') the integral is taken over one contour only, but obviously this is of no 
importance. The difference in sign arises from the fact that the positive direction 
of the path of integration in the present case is opposite to that in § 70. 

On the other hand, letting the contours Ak shrink into the arcs Lk 
and noting that X p(~) in (110.38) will then tend to X; (t) or X~(t), de
pending on the position of ~ on A k , it is readily seen that 

or, since one has X;(t) == Ilg xt(t) on Lk and must change the sign of 
the integral when replacing the path bkak by the path akbk, 

J t(~)d~ r t(t)dt 
Xp(~) (~- z) = (1 - g). xt(t) t-z) 

Ak Lk 

hence it is obvious that 

r t(~)d~ J j(t)dt 
~ Xp(~) (~-z) = (1 -g) X:(t) (t-z)· 

A L 
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Consequently 

I(z) = r ~jl~~~_~ = ~~1Ci Q(z) = 
.J X; (t) (t - z) 1 ~ g 
L 

== __ .~1ti { i(z~ _ _ ,., zq _ _ n 1/ (110.40) 
1 - g X p (z) lAq • • • lAO· 

The fact that the function 1 IX p(Z) may be unbounded near the ends is easily 
seen not to influence the above reasoning, since near any end c 

1 const, 
I X p(tfl < -l~ - c IlL ' ~ < 1, 

and hence integrals, taken over a small circle surrounding the end, tend to zero 
(cf. Fig. 49). 

Integrals of the form 

I'· tm-J(t)dt 
X+(t) , 

.' P 
L 

(110.41) 

where 1n is an integer (positive, negative or zero), may likewise be 
evaluated in finite form. In fact, proceeding as in the preceding case, it 
is found that 

\vhere A is the same as before. On the other hand, if <X- m denotes the 
coefficient of z-m in (110.39), then, by the residue theorem, 

(' ~m-lt(r,)d~ = _ 2r:ia._ m 
,J X p(~) 

and, consequently, 
(' tm-lj(t)dt = _ 27tirA_ m 

., X; (t) 1 - g . 
(110.42) 

L 

Analogous results may be obtained when t(t) is a rational/unction, and 
not only a polynomiaL 

It must be borne in mind that, if j(t) is represented by different po
lynomials (or different rational functions) on the different arcs con
stituting L, then the calculation of the preceding integrals may, in general, 
not be as easily performed. 
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If L only consists of one arc and if I(t) is not a polynomial, then in the 
majority of cases which are of practical interest one may replace j(t) with 
sufficient accuracy by a polynomial with a small number of terms, or by a 
rational function. 

NOTE. 2. When solving the boundary problems above, the selected 
particular solutions X p(z) of the homogeneous case have been used in 
a definite manner. However, it is obvious that nothing will be changed, 
if X p(z) is replaced by ex p(z), where C is an arbitrary constant which 
is not zero. It is only important in (110.20) and those formulae, connected 
with it, that X; (t) on L is the value taken by the selected functions X p(z) 
on L from the left. 

For example, let g = - 1 and L be a segment ab of the real axis. 
In agreement with the above condition, that branch of the function 

X(z) = V(z-a) (z-b) 

in (110.33) must be taken which for large I z I is given by 

( a)t ( b)t a + b (a-b)2 v(z-a) (z-b) = z 1 -- 1-- === z- - + ... 
z z 2 8z 

This function takes on the segment ab purely imaginary values. But 
sometimes it is more convenient to deal with a function, having real values 
on this segment. Such a function is, for example, 

v(z-a) (b-z) == ± iV(z-a) (z-b) = ± iX(z). 

If one takes the lower sign, i.e., 

v(z - a) (b - z) = - iX(z) , 

one obtains a function which is easily seen to take positive values on 
the left side of the segment ab of the Ox axis. 

§ 111. Case of discontinuous coefficients. It is also not difficult 
to find the solution in the case, where the coefficient G(t) in the boundary 
condition 

F+(t) - G(t)F-(t) = j(t) on L (111.1) 

remains constant on different parts of L, but changes discontinuously 
for transition from one part to another; in this connection the term "part" 
refers to sections, into which the line L may be divided by a finite number 
of points cj on it. However, in this case one has to admit that the function 
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F(z) may be unbounded near the points of discontinuity Cj as well as near 
the ends of the line L, where it must satisfy the same condition as at 
the ends; in general the points cj will be analogous to ends. 

I t will be left to the reader to deduce the solution in the general case; 
only the following particular case will be studied here, which is the only 
one required in the sequel. 

Let L be a simple contour and let 
this contour consist of the narcs 
Ll = alb!, L2 == a2b2, ••• , Ln == anbn 
without common ends (Fig. SO); the 
notation has been chosen such that 
during a circuit of L in the positive 
direction the points aI' b1, a2, b2, • • • , 

an,b n are encountered in the stated 
order. 

Denote by L' the union of the arcs 
L k , k = 1,2, ... , n, and by L" the 

°1 
Fig. 50. 

remaining part of L, i.e., the union of the arcs b1a2, b2a3 , ••• bnav and 
assume that 

G(t) = g on L', G(t) = 1 on L", ( 111.2) 

where g =F 1 is, in general, a complex constant. Thus the boundary 
condition (111.1) takes the form 

F+(t) - gP-(t) == f(t) on L', F+(t) - F-(t) == j{t) on L". (111.3) 

It will be assumed that the given function j(t), satisfying the H con
dition on L' and L" separately, may change discontinuously for passage 
through the points ai' bi . 

The homogeneous problem will be considered first: 

F+(t) - gF-(t) == 0 on L', F+(i) - F-(t) = 0 on L". (111.3') 

The second of these equations shows that the values of the unknown 
function F(z) inside and outside L continue each other analytically 
through the part L" of L, or, in other words, that L" is not effectively 
a line of discontinuity. 

Thus one arrives at the same homogeneous problem 

F+(t) - gF-(t) == 0 on L', (111.3") 

where F(z) is a function, holomorphic in the plane cut along L', as in 
the preceding section. Hence, for example, the function Xo(z), deter-
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mined by (110.2) and (110.5), is, for C( :=/:= 0, a particular solution of 
(111.3'), as may easily be verified directly; for ex == 0, one has to take 
X*(z), determined by (110.15), instead of Xo(z). 

Now consider the non-homogeneous problem (111.3). Using the solution 
Xo(z) and noting that, by (110.9') [remembering that here L' takes the 
place of L in § 110J, one finds that 

xt(t) 
g = Xo(t) on L' (111.4) 

and that 
X+(t) 
_0 __ = 1 on L" 
Xo(t) , 

(111.5) 

because the function Xo(z) is holomorphic everywhere, except at points 
of L'; consequently (111.3) may be written as one single formula 

whence, as in § 108, 

F+(t) 

xt(t) 

F-(t) 

xt(t) 

j(t) 
xt(t) on L, 

F(z) = Xo(~) J~ f(t)dt 
21tt xt (t) (t - z) + Xo(z)P(z) , 

L 

(111.6) 

where P(z) is an arbitrary polynomial and F(z) may have a pole at in
finity. 

The formula (111.6) does not appear to differ from (110.18); however, this is 
due to the notation: in (110.18), the integral is taken, in the notation of this section, 
along L', and not along L. The formula (111.6) '\Jvill actually agree with (110.18), 
if l(t) = 0 on L", and this is quite natural, since in that case one is dealing ef
fectively with the same problem. 

If the function is to be holomorphic at z == 00, it must be assumed that 
the degree of P(z) does not exceed n; if F(z) is to vanish at infinity, the 
degree of P(z) must not exceed n - 1. 

If g is a real, positive number, then one has to take in (111.6) X*(z) 
instead of Xo(z). 

If F(z) may have poles at given points, not on L, the formula (111.6) 
must be replaced by another one, analogous to (110.26). 

Finally, it may be noted that the preceding results are easily extended 
to the case, where the line L extends to infinity, e.g., where it is an infinite 
straight line; this extension is so obvious that no more need be said here. 



CHAPTER 19 

SOLUTION OF THE FUNDAMENTAL PROBLEMS FOR THE 
HALF-PLANE AND FOR THE PLANE WITH STRAIGHT CUTS 

The results, studied in Chapter 18, offer the possibility of solving in 
a very simple manner the principal boundary problems for those cases, 
where the region under consideration is the half-plane or the plane with 
straight cuts (along one and the 
same straight line), including the 
first and second fundamental 
problems for the half-plane which 
have already been considered in 
the preceding Part. Some of 
these problems, and likewise 
the important problem of con
tact of two elastic half-planes, 

y 

\vill be considered in this chapter (§ 119) 1) :Fig. 5l. 

5+ 

... 
x 

s-

For this purpose certain of the results of the preceding chapter must 
be applied also to the case when the line L is an unbounded straight 
line. In spite of the fact that the case when the line L extends to infinity 
has not been considered there, the extension of the corresponding results 
to this case is so simple that no space will be devoted to it here apart 
from some remarks in the relevant sections. 

§ 112. Transformation of the general formulae for the half
plane 2). 1°. It will be assumed that the elastic body occupies the lower 
half-plane y < 0 which will be denoted by 5-, so that the region S- is 
to the right, if one moves in the positive direction along the Ox axis. 
The upper half-plane will be denoted by 5+ and the Ox axis by L. (Fig. 
51 ). 

First, general formulae will be recalled which will constantly be used: 

1) For a number of the problems considered here see the recent monograph of 
L. A. Galin [4J and likewise that of I. la. Staerman [4J. 

2) N. I. Muskhelishvili [22J. 
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Xx + Y 1/ == 2[<I>(z) + <I>(z)], 

y 11 - Xx + 2iX1/ == 2[z<l>'(z) + 'Y(z)], 

2fL(U + iv) == xcp(z) - zrp'(z) - ~(z), 

(112.1 ) 

( 112.2) 

(112.3) 

where <I>(z) == cp'(z), ':F(z) == ~'(z) are functions, holomorphic in S-. As 
in Chapter 16, it will be assumed that the resultant vector (X, Y) of 
the external forces, acting on the boundary, is finite and that the stresses 
and rotation vanish at infinity; hence one has for large I z I, as in § 90, 

x + iY ( 1 ) X + iY ( 1 ) 
<I>(z) == - 27tz . + 0 z' cI>'(z) = 27tZ2 + 0 ~ , (112.4) 

X-iY (1) 'Y(z) == + 0 - , 
21t'z Z 

X+iY 
cp(z) == - log z + 0(1) + const., 

27t 

X-iY 
~(z) == ----log z + 0(1) + const. 

27t 

The following formula follows from (112.1) and (112.2): 

Y 11 - iXlI == <I>(z) + <I>(z) + z<l>'(z) + 'Y{z), 

while the formula 

2t-t{ u' + iv') == x<l>(z) - <I>(z) - z<P' (z) - 'F(z) 

(112.4') 

( 112.5) 

( 112.6) 

( 112.7) 

IS obtained from (112.3) by differentiation with respect to x, so that 

I ou , ov 
U ==: -, V == -, (112.8) ox ox 

where this notation will be used in the sequel. 
2°. These formulae will now be transformed by extending the definition 

of the function <I>(z) to the upper half-plane. This extension may be 
achieved in many ways, because <I>(z) is, in general, not defined in the 
upper half-plane. However, practically useful formulae are obtained by 
executing the process by definite methods, one of which has been stated 
earlier, while another analogous one will be indicated in § 113. In fact, 
the function <I>(z) has been defined in the upper half-plane in such a way 
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that its values there continue <I>(z) analytically from the lower halt-plane 
through the unloaded parts of the boundary (if such exist). 

A way of doing this is easily deduced from (112.6) [cf. Note in § 93J. 
Actually, this formula shows that on the unloaded parts of the boundary, 
where obviously Y; = X; == 0, 

<I>-(t) - <I>+(t) = 0, (a) 
provided that in· the upper half-plane the function <1>(z) is defined in 
the following manner: 

<I>(z) = - <P(z) - z<l>'(z) - 'Y(z) (for z in 5+). (112.9) 

This will now be explained in detail. 
Here use has been made of the notation, introduced earlier; in fact, 

the signs (+) and (-) indicate the boundary values from the left and 
from the right of L (Le., in the present case, from the upper and lower 
half-planes), while F(z) denotes the function obtained from F(z) in the 
following manner (§ 76) : 

F(z) = F(z); (112.10) 

if F(z) is holomorphic in S-[or S+J, then F(z) will be holomorphic in 
5+[S-J. 

It will also be remembered [(76.6), (76.6')J that, if F(z) is defined, say, 
in the lower half-plane and if F-(t) exists at a point t of the real axis, then 
F+(t) exists and 

F-(t) == F+(t) ; (112.10') 

similarly, interchanging the parts played by the upper and lower half
planes, 

F+(t) = F-(t). (112.10") 

It is clear from the above that the right-hand side of (112.9) represents 
a function, holomorphic in the upper half-plane 5+, and that on the un
loaded parts of the boundary the condition (a) holds true. 

Replacing in (112.9) the variable z by Z, assuming that z lies in S
(and hence z in 5+) and taking conjugate complex values on both sides 
of (112.9), one finds 

<l>(z) = - <I>(z) - z<l>'(z) - 'Y(z) , 

whence 
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"o/(z) = - <I>(z) - <I>(z) - z<l>' (z) ; (112.11 ) 

this formula expresses '¥(z) for z in 5- in terms of <I>(z) which has been 
extended into the upper half-plane. 

Without the extension of <D(z), the formula (112.11) does not make sense, beca.use 

it involves <J>(z) which is, by definition, equal to <D(z); however, in order that <l>(z) 
for z in the lower half plane (i.e., for z in the upper half-plane) have a meaning, the 
function <I>(z) must be defined in the upper half-plane. 

Introducing the value (112.11) for 'Y(z) in (112.2), one obtains the 
following expressions for the stress components in terms of the single 
function <I>(z) , defined in the upper as well as in the lower half-plane: 

Xx + y 11 = 2[<1>(z) + <I>(z)], (112.12) 

Yll -Xx + 2iX lI = 2[(z-z)<I>'(z) -<I>(z) -<I>(z)J, (112.13) 

whence 

y 11 - iX y = <l>(z) - <I>(z) + (z - z)<I>' (z), (112.14) 

where the last formula could also have been obtained directly from (112.6). 
Further, it follows from (112.7) that 

2[J.(zt' + iv') = x<l>(z) + <I>(z) - (z - z)<I>'(z). (112.15) 

An expression for 2[J.(u + iv) is likewise easily deduced, if one also 
extends <p(z) into the upper half-plane under the condition <p' (z) = <I>(z) 
in the upper half-plane as welL Noting that, by (112.9), in the upper 

- -
half-plane <I>(z) = - [zq/ (z) + 9(z)]', one obtains 

- -
<p(z) = - z<p' (z) - t.f;(z) + canst. (for z in S+), ( 112.16) 

and hence, as before, 

~(z) = - <p(z) - zq/(z) + canst. (for z in S-). ( 112.17) 

With this value for ~(z) the formula (112.3) becomes 

2f.L(tt + iv) = x<p(z) + cp(z) - (z - z)cp'(z) + const.; (112.18) 

it is seen that for a given function <I>(z) the displacements are defined 
apart from a rigid body translation, as was to be expected. 

If the rotation does not vanish at infinity, the arbitrary constant which in
fluences the rigid body rotation enters into the function <I>(z) and in this way 
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into cp(z) on the right-hand side of (112.18). However, under the present conditioll 
by which the rotation is to vanish at infinity, the function <I>(z) is uniquely de
termined for any given state of stress of the body. 

Note still a formula which follows from (112.17) and (31.4) : 

8U 8U -,--- + - = cp(z) - cp(z) + (z - z)cp (z) + canst. (112.19) ox 8y 

It will be noted that it follows from the definition of the function 
<I>(z) in the upper half-plane and from the conditions (112.4) and (112.4') 
which, of course, refer to the lower half-plane that the conditions (112.4) 

also hold for the upper half-plane. 
3°. In the sequel, it will be assumed that <I>(z) is continuous from the 

left and from the right at all points t of the real axis, except possibly at a 
finjte number of points tv t2, ••• , tk which will always be specially 
mentioned (so that no such points will exist, unless stated otherwise) 
and that 

lim y<J>I(Z) = lim y<l>'(t + iy) = 0 ( 112.20) 
y""""O y.....-,.O 

for any point t of the real axis, except possibly for tv t2, • • ., tko 

Further, it will be assumed that near the points ti' mentioned above, 

A 
I cp' (z) I = I <I>(z) I < ex' 0 ~ oc < 1, 

I z -- ti I 
(112.21) 

in other words, extending in a natural manner the definition of § 106 

to the case when the line of discontinuity extends to infinity, it will 
be assumed that the function <I>(z) is sectionally holomorphic with the 
real axis as line of discontinuity. 

The preceding conditions ensure that the stress components are 
c)ntinued continuou3ly at all points of the boundary except, may be, 
at the points tv t2, 0 •• , tk (including the points introduced in order not 
to lose solutions important from the point of view of applications). 
In addition, these conditions are readily seen to ensure that the dis
placement components are continued continuously as well as the ex
pression (112.19) at all finite points of the boundary without exceptions. 
It will be recalled that, if the expression (112.19) is continued con
tinuously on the boundary, this includes the presence of concentrated 
forces applied to the boundary (§ 43). 

Finally, note that the adopted conditions ensure that the derivatives 
u', v', are continued continuously at all points of the boundary except 
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at the points t1 , t2 , ••• , tk • For this it is readily seen that the derivatives 
with respect to t of the boundary values of u, v are equal to the boundary 
values of the derivatives u', v', i.e., 

[ oV]-_ dv-
ox - dt -, ( 112.22) 

by (112.20). 

§ 113. Solution of the first and second fundamental problems 
for the half-plane. The solutions of the first and second fundamental 
problems were given in §§ 93, 94; new solutions will be deduced here 
on the basis of the formulae of § 112, thus exhibiting their simplest ap
plication. 

10. Fir s t fun dam e n t a I pro b 1 e m. In this problem the 
external stresses are given, i.e., the pressure P(t) == - Y; [denoted in 
§ 93. by - N(t)] and the tangential stress T(t) == X;, applied to the 
entire boundary Ox which will again be denoted by L. It will be assumed 
that P(t) and T(t) satisfy the H condition on L, including the point at in
finity, and that they vanish for t === co. 

By (112.14), the boundary condition takes the form 

<I>+(t) - <I>-(t) = P.(t) + iT(t), (113.1) 

because for z, tending to t from the lower half-plane, the functions 

<I>(z) -+ <I>-(t) , <I>(z) ~ <I>+(t) , while (z - z) <I> , (z) == 2iy<l> , (z) tends to zero 
by (112.19). 

Strictly speaking, (112.19) only ensures the limit y<I>' (z) -7- 0, when z -+ t along 
the normal to the boundary. However, it is readily verified by means of a simple 
estimate of the derivative of a Cauchy integral, stated in the Author's book [25], 
that the final result gives a regular solution of the problem. 

A solution of the boundary problem (113.1), vanishing at infinity, 
may be written down on the basis of the results of § 108, where only the 
case of a finite line L has been considered; however, the applicability 
of the relevant formulae to the present case is obvious. In fact, 

<I>(z) == _1_. f P(t) + iT(t) dt. (113.2) 
27tz t - Z 

L 
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The problem is thus solved, because <I>(z) determines the components 
of stress and displacement by the formulae of § 112. 

The solution derived here coincides with the solution obtained in 
§ 93 (cf. Note lOin that section) .Regarding the behaviour of <P(z) at 
infinity, see the remarks in § 93. 

2°. Sec 0 n d fun dam e n tal pro b 1 e m. In this problem the 
boundary values of the displacement components u, v are given, Le., 
u- = gl(t), v- == g2(t) on L. It will be assumed that the given functions 
gl(t) and g2(t) have derivatives g~(t), g~(t), satisfying the H condition on L 
including the point at infinity, and that they vanish for t == co. 

The boundary condition 

u- + iv- == g1(t) + ig2(t) on L (113.3) 

gives, after differentiation with respect to t, 

(u-)' + i(v-)' = g~ (t) + ig~(t) 
Of, by (112.22), 

u'- + iv'- = g~ (t) + ig~(t). (113.4) 

By (112.15), this condition takes the form 

<I>+(t) + x<I>-(t) = 2fL[g~ (t) + ig~(t)J on L. ( 113.5) 

The validity of the assumption u'- = (u-)', v'- === (v-), under known conditions 
referring to the given functions gl(t), g2(t) may be verified after the solution has 
actually been constructed. 

For the time being, denote by Q(z) the following sectionally ho
lomorphic function: Q(z) == <I>(z) in 5+, Q(z) == - x<l>(z) In 5-. Then 
(113.5) takes the form 

O+(t) - Q-(t) = 2t-L[g~ (t) + ig~(t)J on L, (113.6) 

and hence, as in the preceding case, 

Q(z) = ~j' g~(t) + ig~(t) dt, 
7tZ t - Z 

( 113.7) 

L 

so that, finally, 
J Q(z) for y > 0, 

~(z) == l 1 - -; Q(z) for y < 0, 
(113.8) 
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where Q(z) is determined by (113.7). For the investigation of the be
haviour of this solution at infinity, cf. 10. 

The sectionally holomorphic function Q(z), introduced in the above manner, 
may again be denoted by <I>(z); one then obtains an extension of the original 
function <I>(z) into the upper half-plane, different from that stated in the preceding 
section. This new method of extension is characterized by the fact that the values 
of <I>(z) in the upper half-plane analytically continue the values in the lo,ver half
plane through those parts of the boundary (if such exist) where tt' = v' = 0 

The solution is also easily deduced when one begins ,vith (112.18); 
however, the above solution is more convenient, because it does not 
require an additional investigation, arising from the fact that cp(z) is 
not holomorphic at infinity, but behaves there like log z, unless a further 
condition, restricting generality, is imposed, as was done in § 94. 

§ 114. Solution of the mixed fundamental problem. 
If there is only one segment of the real axis on \vhich displacements are given, 

i.e., if in the notation of the main part of this section 11. = 1, the problem is fairly 
simple; however, no effective solution of this problem vvas obtained in the Author's 
paper [20J, published in 1935. Two years later, V. M. Abramov [1J gave a more 
effective solution of this case, using Mellin's integrals. The solution of this section for 
arbitrary 11. which was first presented by the Author in his paper [22J is incom
parably simpler. A somewhat more complicated solution \vhich is in essence closely 
related to that studied here ,vas deduced soon aftervvards by N. I. Glagolev [1, 2J 
who was not acquainted with the Author's work [22J. 

10. Let L' = Ll + L2 + ... + Ln be the union of a finite number 
of segments akbk of the real axis Ox, numbered in such a way that they 
are encountered in the order aI' bv a2 , b2 , ••• , an, bn when moving along 
the real axis in the positive direction. Let the components of displacement 
be given on L' and those of the external forces on the remaining part 
L" of the real axis. As before, it will be assumed that the elastic body 
occupies the lower half-plane S-; its boundary, i.e., the real axis, will 
be denoted by L == L' + L". 

Since one knows how to solve the first fundan1ental problem, the 
mixed fundamental problem under consideration may obviously always 
be reduced to the case where the components Y 11' X y of the external 
stresses, given on L", are zero. Hence it will be assumed that the part 
L" of the boundary is free from external forces, i.e., that 

Y; = X; = 0 on L". (114.1 ) 

(The solution of the general case may also be deduced directly; cf. the 
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Note at the end of this section). 
In view of the considerable practical importance of the present problem, 

the ordinary mixed problem in the form, formulated above and to be 
called Problem A, will be studied side by side with a somewhat modified 
problem, to be called Problem B. 

In both these problems the boundary condition on L' has the form 

u- + iv- == g(t) + c(t) on L', ( 114.2) 

where g(t) == gl(t) + ig2(t) is a function given on L'. 
In Problem A, it will be assumed that c(t) == c == canst. on L' and that, 

in addition, the resultant vector (X, Y) of the external forces, applied 
to L', is known. Without affecting generality, one may, for example, 
put c = 0, because its value only influences the rigid body translation. 

In Problem B, it will be assumed that c(t) = Ck on L k , where the Clc 

are constants which are inti ally unknown and which are, in general, 
differeIlt on different segments. In this case it will be assumed that the 
resultant vectors (X k' Y k) of the external forces, applied to the individual 
segmentsLk , are known. Without affecting generality, one of the constants 
C7c may be fixed arbitrarily, i.e., one may, for example, put c1 = o. For 
n = 1, the problems A and B coincide. 

The physical meaning of these problems will now be explained. One 
may imagine that rigid stamps with given profiles are placed on the 
segments Lk === akbk , that the points of the segments Lk of the boundary 
of the elastic body are brought in a definite manner into contact with 
the points of the profiles of the rigid stamps and that the same points 
remain (or are welded) together. Further, suppose that given forces be 
applied to the stamps and that the stamps can only move vertically. The 
problem of finding the equilibrium of the elastic half-plane under these 
conditions is Problem A, provided the stamps are rigidly inter
connected; if the stamps can move vertically, independently of each 
other, one arrives at Problem B. 

For greater understanding, consider the following particular case. 
Let there be only one stamp the profile of the base of which before contact 
with the elastic half-plane is given by y = f(x), a < x < b. Further, 
assume that the stamp is pressed into the half-plane by a given force, 
perpendicular to the boundary, and that the friction between the stamp 
and the elastic body is so great that no slip can occur. Then, assuming that 
the segment L' === ab of the boundary of the body has come into contact 
with the stamp, one obtains the boundary condition (114.2) in which 
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g(t) == gl(t) + ig2(t), where gl(t) == 0, g2(t) == t(t) and c(t) == c is a constant 
which may be put equal to zero. The case of several stamps, whether 
they are interconnected or not, is quite analogous. 

These problems represent idealizations of the problems of the pressure of founda
tions on the ground in the presence of sufficiently large friction (or, more correctly, 
cohesion), since slip and after-effects are excluded. 

The above problem may be generalized in the way that the stamps 
are not only permitted to move vertically, but also to rotate; this case 
will be discussed below in 40

• 

It is easily shown that neither of the problems A and B can have more 
than one solution, neglecting rigid body motion of the entire system 
(elastic half-plane and stamps). In fact, the proof of § 40 (cf. also end 
of § 90) may be repeated almost word for word, if it is noted that in the 
present case the integral of the expression (Xnu + Y nv)ds along the 
boundary of the region for the difference of two possible solutions is zero. 
Actually, one has on the part L" of the boundary: Xn == Y n = 0. Further, 
for Problem A, it may be assumed that the difference of the solutions 
U = v == 0 on the boundary; however, for Problem B (where for the 
difference of the solutions u = canst., v == const. on L k), all the integrals 

f(UXn + v¥n)ds = uf Xndt + v f Yndt = uXk + vYk 

vanish, since the resultant vectors (X k' Y k), applied to L k' are zero for 
the difference of two solutions. 

In the sequel, the uniquess theorem ,viII also be applied to cases, where 
the stress components are continued continuously at the points akJ bk • 

In such cases, as already noted in § 40, 3°, the uniqueness theorem 
remains in force, if the integrals of the expression (X nU + Y nv)ds, 
formed for the difference of solutions, when taken in S along infinitely 
small semi-circles about the points a k , bk as centres, tend to zero together 
with the radii of the semi-circles. In all the cases considered below this 
condition will be fulfilled, as the reader may easily veri(y in each indi
vidual case. 

It will be assumed below that the function <I>(z) satisfies the conditions, 
stated in § 112,3°, and that the ends aj' bj of the segments L j play here 
the parts of the points tj • In addition, the known function g(t) is to have a 
first derivative g'(t), satisfying the H condition on L'. 

In both problems A and B the boundary condition (114.2) gives 
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(u-r + (iv-), == g'(t) on L', whence by (112.15) [cf. (112.22)J 

<t>+(t) + x<I>-(t) = 2tLg' (t) on L'. 

481 

(114.3) 

However, the condition (114.1) is equivalent to the requirement that 
<I>+(t) - cp-(t) =::: 0 on Lit, i.e., that <I>(z) should be holomorphic in the 
entire plane, cut along L', and this will now be assumed. 

The condition (114.3) differs essentially from (113.5) in that now L' 
is only part of the Ox axis. 

A solution of the boundary problem (114.3), vanishing at infinity~ 
may immediately be written down on the basis of (110.18). In the present 
case, by (110.5), 

y = log (- x) = log~ + _1 
2ni 2rri 2 

or 

where ~ is the real quantity 

log x 
~=--

27t 

which "vas denoted by (-~) in § 110. 
Therefore, by (110.2), 

n 
Xo(z) == IT (z - ak)-~+i(3 (z - bk)-1-i (3. 

k=1 

(114.4) 

In future, Xo(z) will be denoted by X(z) and X+(t) by X(t). Thus 

and 

n 
X(z) == II (z - ak )-i+if3 (z - bk )-l-i(3 

k=1 

n 

X(t) == X+(t) == II (t - ak)-~+i~ (t - bk)-~-ir3, 
k=-1 

(114.5) 

(114.6) 

where (114.6) refers to the value, taken by X(z) on the upper side of 
the Ox axis (i.e., from the left of Ox); if the point t lies outside L', i.e., 
on L", the values from the left and from the right coincide: X-(t) = 
X+(t) = X(t); however, if t lies on L', one has, by the definition of the 
function X(z), X+(t) + xX-(t) = 0, whence 
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1 1 
X-(t) == --X+(t) == --X(t). 

x x 

Applying now (110.18), one obtains 

f.LX(z) I~ g'(t)dt 
<l>(z) == ---;;;~ ~ X(t) (t _ z) + X(z)P n-l (z), 

L' 

where P n-l(Z) is the polynomial of degree not higher than n - 1 

( 114.7) 

( 114.8) 

(114.9) 

because, by supposition, the function <1>(z) is to vanish at infinity. 
The coefficients Co, C l' .•. , C n-l of the polynomial P n-l (z) have still 

to be determined from the supplementary conditions of problems A and B. 
2°. Problem B will be considered first; in this case the known resultant 

vectors (X k' Y k) serve as supplementary conditions. In order to express 
these, the normal pressure P = - Y; and the tangential stress T === X;, 
acting on the boundary of the half-plane at the stamps, i.e., on L', will 
be calculated. 

By (112.14), one has for the point to on L' 

(114.10) 

or, by (114.3), 

Applying to the right-hand side of (114.8) the Plemelj formulae, one 
easily finds 

+ ' lJ-X(to) f g' (t)dt · 
<I> (to) = fLg (to) + ni X(t) (t _ to) + X(to)P n-l(to) , 

L' 

substitu ting this value of <I>+(to) in (114.11) and writing 

~X(to) f g'(t)dt 
<1>0 (to) = ~- X(t) (t - to) , 

L' 
one obtains 

P(to) + iT(to) = fL(X - 1) g'(to) + x + 1 <l>o(to) + 
x x 

(114.12) 
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By expressing that 

I [P(to) + iT(to)Jdto = - Y k + iX lc , k = 1,2, · · ., n, (114.14) 

Lk 

one deduces a system of n linear equations for the determination of 
the n constants C j; this system has a unique solution, as may be seen 
from the uniqueness of the solution of the original problem. 

3°. Next consider Problem A. Since the solution found above satisfies. 
the condition u'- + iv'- = u-' + iv-' = g'(t) on L' (as is easily verified 
by substitution), one has on the segments Lk 

u- + iv- == g(t) + Ck, 

where the Ck are constants. Olle has now to formulate the condition 

(114.15) 

having succeeded in satisfying this condition, one can also fulfill the 
condition C1 = C2 = ... = Cn = 0 by adding an arbitrary constant to 
the right-hand side of (112. 18). 

In order to express the condition (114.15), the value of u'- + iv'- \\-"ill 
be determined on the unloaded part L" of the boundary. By (112.15), 
one has for a point to of L" 

2[.1.( u'- + iv'-) = (x + 1 )<1> (to) := (x + 1 ) <Do (to) + {x + l)X (to)P n-l (to), 
(114.16) 

where <Do(to) is given by (114.12) and to is no,v on Ox outside L' (i.e., 
on L"). Obviously (114.15) reduces to the following conditions: 

g(a"+l) - g(bk) = ((ti'- + iv'-)dto, k = 1, 2, ... , n - 1. (114.17) 
.; 

Ole 

Substituting in (114.17) for u' - + iv' - from (114. 16), one obtains a 
system of n - 1 linear equations for the determination of the C;j. One 
more equation is given by the conditio!l that the resultant vector of 
the external forces (X, Y) applied to L' is known. This last condition 
is most simply expressed, using the first of the formulae (112.4) which 
gIves 
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. X +iY 
11m z<J>(z) == - . 
z-+oo 27t 

( 114.18) 

Applying (114.18) to (114.8), one deduces directly that the coefficient 
Co of zn-l in the polynomial P n-l(Z) is given by 

X+iY 
Co=-. (114.19) 

21t 

Thus only the coefficients C1, C2, ••• , Cn - 1 have still to be determined 
from the above system of n - 1 linear equations. This system will 
always have a unique solution, as in the preceding case. 

In the particular case g'(t) == 0 (stamps with straight profiles, parallel 
to the axis Ox), the formulae (114.8) and (114.13) become very simple, 
since the integrals vanish. 

4°. Hitherto it has been assumed that the stamps may only move verti
cally (i.e., at right angles to the boundary). The case will now be con
sidered, where the stamps may rotate (of course, in their own plane). 

In Problem A (the stamps being rigidly interconnected), let IF; denote 
the angle of rotation of the system of stamps, measured counter-clock
wise. Then in the boundary condition (114.2) the function g(t) must be 
replaced by g(t) + iet and hence in all the subsequent formulae g'(t) 
by g' (t) + ie. Correspondingly an additional term, involving e; as a 
multiplier, will appear in the expression for <I>(z). (This additional term 
may be calculated in finite form; cf. example 2° of § 114a). 

The additional displacements (uo, vo) of a point t of the boundary which are 
caused by the rotation of the stamps are given by Uo = 0, Vo = et, because, in 
general, the displacements, arising from a rigid body rotation by an angle e: about 
the origin, are Uo = - ey, Vo = ex, while on the boundary y = 0, x == t. 

The quantity IF; may not be given directly; for example, one may be 
given instead the resultant moment M about the origin of the ex
ternal forces which act on the stamps. 

These external forces do not, of course, coincide with those, applied by the 
profiles of the stamps to the sides of the elastic body; these last forces must balance 
the external forces, applied to the stamps. Obviously, the resultant vector (X, Y) 
and the resultant moment M of the external forces is equal to the resultant vector 
and moment of the forces, applied to the boundary of the elastic body by the faces 
of the starn ps. 

One thus has for the determination of e the additional relation 

M = -J toP(to)dto· 
L 

( 114.20) 
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In Problem B, the angles €k (k ::= 1, 2, ... , n) of the rotations of the 
various stamps may differ; if they are not given directly, but if, say, the 
moments M k of the external forces, acting on the individual stamps, are 
known, then one will have the n additional conditions for the deter
mination of the €k 

M k = -/ t;J> (to) dto· 

Lie 

(114.21) 

It is easily shown that these conditions completely determine the 
solution apart from a vertical rigid body displacement of the entire 
system; the proof is quite analogous to that stated above for the case 
\vhere the stamps may only move vertically. 

NOTE. If the part L" of the boundary is loaded by given externa1 
stresses, the boundary condition takes the form 

cp+(t) - k<f>-{t) == j(t) on L, ( 114.22) 

where 

k == - x on L', k == 1 on L", ( 114.23) 

and j{t) is a given function: 

t{t) == 2{1.g' (t) on L', j(t) = P(t) + iT(t) on L". (114.24) 

where P(t) and T(t) denote, as in § 113, the pressure and the tangential 
loading; it will be assumed that P(t) and T(t) satisfy the H condition 
on L" including the point at infinity and that they vanish for t === 00. 

One is thus led to the problem, considered in § 111. Applying (111.6) *, 
one obtains in the notation of the present section 

X(z) / f{t)dt 
<I>(z) = 21ti X(t) (t _ z) + X(z)P n-l(Z) , ( 114.25) 

L 

where tJ1e integral must now be taken over the entire boundary: The 
coefficients of the polynomial P n-l(z) may be determined as before. 

On the behaviour of <I>(z) near the point at infinity cf. § 93 following 
(93.7). 

* This formula was derived under the assumption that L is a closed contour. 
However, its applicability to the present case is obvious. 
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§ 114a. Examples. 
1°. S tam p wit h s t r a i g h tho r i Z 0 n t a I bas e. 
Consider the case of one stamp (n === 1) with a straight line profile, 

parallel to the axis Ox, which may only move vertically so that 

g' (t) = 0 on L I ; (114.1a) 

as stated earlier, this problem was solved by V. M. Abramov [IJ, using 
a quite different method. In addition, it will be assumed that the ex
ternal forces, acting on the stamp, have a resultant in the downward 
direction, so that 

( 114.2a) 

where Po is a given positive constant. 
TIle segment L' of the boundary which is in contact with the stamp 

will be assumed to lie symmetrically with regard to the origin; its length 
will be denoted by 2l, so that for points t of L': -l ~< t < l. 

Thus, in this notation and that of the preceding section, 

(114.3a) 

and (114.8) gives 
<I>(z) = CoX(z) 

or, using (114.1 9) , 

iPo iPo 1+*f.l 1 *f.I. <I>(z) = - X (z) = - (z + l)-:r t~(z _l)-::-1tJ , 

27t 27t 
(114.4a) 

and the problem is solved. 
The pressure P(t) and the tangential stress T(t), acting on the body 

underneath the stamp, are given by (114.11) which becomes 

x+l 
P(t) + iT(t) = <t>+(t). 

x 

Hence, substituting from (114.4a), one obtains 

. iPo x + 1 
P{t) + zT(t) = - X(t) = 

2rc x. 

== iPo It +_1 (t + ltHi~(t _l)-i-if3, (-l =< t =< l), (l14.Sa) 
21t x 
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where X(t) stands for X+{t), i.e., the value taken by X(z) on the left side 
of the segment (-1, + 1), and it should be remembered that the branch 
of X(z) is determined by the condition lim zX(z) == 1. 

z-+oo 

It is easily verified that under these conditions 

X(t) = 1 _ [~~]i(3 == __ 1 -= ei~ [log ~~i~ -,.i] = 
vt2 _12 t -1 iv12 _ t2 

e1r(3 'rJ] l+t 
't tJ og z.:.:t 1 1 -. -.e -<,.t<, 

~v/l2 - t2 

where the root Vl2 - t2 is positive and the logarithm real. Since 

log It 
~ == 2~-' eT:(3 == vx, 

one may still write 

.. 1-::; .~ I l+t 
X(t) == . 'V r.. e"'I-J og 1::.[ _ 

'tVl2 - t2 

V~ {[ 1 + t ] .. [ 1 + t ]} = ' cos ~ log --- + 1- Sln ~ log --~ 
i\ll2_t2 1-- t 1- t 

( 114.6a) 

(--l < t <,. 1). Substituting this expression in (114.5a) and separating 
real and imaginary parts, one obtains 

Pol + x. [ log x 1 + t ] P(t) = __ . __ cos log , 
7tVl2 - t2 Vx 21t l- t 

(114.7a) 

T(t) == Po 1 + x · [ log x 1 + t ] 
-----:-::====:=:.:: --_- SIn log . 
nV12-t2 Vx 21t 1-t 

(114.8a) 

These formulae agree with those, obtained by V. M. Abramov [lJ. 
It follows from (114.7a) that P(t) changes its sign an infinite number 

of times as t approaches the values -1 and + 1, so that effectively 
tensile forces, instead of compressive forces, act on certain parts of the 
boundary underneath the stamp. However, it is easily seen that these 
parts lie in very small neighbourhoods of the ends of the segment - 1, 
+ l. In fact, the point t at which P(t), positive for t = 0, vanishes for 
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the first time, when t approaches one of the values ± l, is determined 
by the equation 

or 

whence 

1 + t 1t 
~log == ±--

1-t 2 

1 + t 1t
2 

log l _ t = ± log x ' 

1t2 

t = ± 1 tanh -1 -. 
20gx 

However, for all actual bodies, 1 < x < 3, since 

A + 3[.L 
X== , A>O, tJ..>O; 

A+[.L 

(114.9a) 

therefore the smallest possible value of I t I is obtained by putting in 
(114.9a) x == 3 which gives 

t == ± O.9997l. 

Thus a change in sign of P(t) only occurs in those places near which the 
solution obtained does not, in general, describe the actual state of the 
body, because, obviously, Hooke's law does not apply for the stresses 
which must occur according to tIle formulae above. 

2°. S tam p \v i t h s t r a i g h tin c 1 i ned bas e. 
Consider the case of the same stamp as in the preceding example, 

x 
Fig. 52. 

but assume now that the resultant vector of the external forces, acting 
on the stamp, is zero, while the base of the stamp forms an angle e 
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with the Ox axis, the angle being measured in the positive direction 
(Fig. 52). 

Thus, in the present case, 

g(t) == gl + ig2 = iei, g'(t) == ie (114.10a) 

and 

x == y == o. (114.11a) 

Hence one has, by (114.8), in the notation of the preceding example 

l 

SlJ.X(z) J dt 
~~) == , 

it X(t) (t -z) 
(114.12a) 

-l 

where X(z) is given by (114.3a) and X(t) == X+(t). 
On the basis of Note 1 at the end of § 110, the integral may be evaluated 

in closed form. In the present case, for large I z I, 

X~Z) = (z + l)Ha (z _l)Hia= z (1 + ! r-ia 
( 1 _ ! Y+ ia 

= 

= z {I + (i - i~) ~ + ... } {I - (l + i~) ~ + ... } = 

= z - 2i~l + 0 ( + ) , 
and (110.40) gives 

l 

r dt 

• X(t) (t - z) 
2~i { 1 } - -z + 2i~l . 

x + 1 X(z) 
-l 

Hence (114.12a) becomes 

(f)(z) = 2fle:i {I - (z - 2i~l)X(z)}, 
x+l 

and the problem is solved. 

( 1 14.13a) 

The value of P(t) + iT(t) will now be calculated for a point t underneath 
the stamp. One has 
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2fJ.ei 
P(t) + iT(t) == <p+(t) - <I>-(t) == - (t - 2i~l){X+(t) - X-(t)} = 

x+l 

2l-Lei x. + 1 
-- (t - 2i~l) X+(t) , 
x+l x 

i.e., in the present notation, 

2~ei . 
P(t} + iT(t} == - (t - 2t~l)X(t). ( 1 14.14a) 

x 

Substituting for X(t) from (114.6a) and separating real and imaginary 
parts, one may obtain closed expressions for P(t) and T(t). 

Hitherto it has been assumed that the angle e is known and, con
sequently, that the stamp sustains in the given position some couple of 
the external forces which is :lot known beforehand. However, the problem 
may be stated differently; in fact, it may be assumed that the moment 
M of the couple of the external forces, acting on the stamp, is given and 
that it is required to find the corresponding angle of tilt e. 

For this purpose the moment AI, corresponding to a known angle e, 
will be calculated; this moment is given by 

l 

M = -jtP(t)dt ( 114.15a) 

-l 

(the positive direction of rotation being assumed to be counter-clockwise), 
where P{t) has the value, given by (114.14). 

The integral (114.ISa) is the real part of the integral 

l 

I == -j t[P(t) + iT(t)Jdt, ( 114.16a) 

-l 

which is readily evaluated in closed form. In fact, substituting from 
(114.14a), one finds 

l 

I = 2~ei j t(t - 2i~l)X(t)dt. (114.17a) 

-l 

This integral may be calculated by the same method as the integral 
in (II 0.42). Consider the integral 
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10 = j"(,("(, - 2i~l)X(~)d~, (114.18a) 

A 

taken in counter-clockwise direction over a contour A surrounding the 
segment L'(--l < t < 1). Shrinking the contour A into the segment L', 
one obtains +z -l 

10 = (t(t- 2i~l)X+(t)dt + (t(t -2i~1)X-(t)dt 
~ ~ 

-1 +1 

or, remembering that X-(t) = - (l/x) X+(t) = - (lilt) X(t), 

+z 

10 = 1 ~ x t jt(t - 2i~l)X(t)dt, 
-l 

and hence 2f.Le::i 
1= 10 • 

x+1 

On the other hand, one has for large I ~ I 

1 ( 1 )-1 + ifj ( 1 )-!-i[3 
X(~) = - 1 + - 1 - - =. 

~ ~ ~ 
1 { 1 1 ( 3 . ) 12 } =- l-(l-i~)- +-(t-i~) --2~ -+ ... X 
~ ~ 2 2 ~2 

x {I + (t + i~) ~ + ~ (! + i~) (~ + i~) ~: + ... } = 

1 2i~1 (1 - 4~2)l2 
=~ +-e2 + 2"(,3-'+ ... , 

whence it follows that the coefficient of ~-1 In the expansIon for 
~(~ - 2i~1)X(~) is equal to [2(1 + 4~2) 

2 

Therefore, applying the residue theorem to the integral in (114.18a), 
one finds 

and hence 
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It is seen that I is real and thus 1v[ === mI == J, so that 

M = 27t~{ 1 + 4~2)l2 E. 

x+1 
( 114.19a) 

For a given moment M, the angle of tilt E of the stamp will be determined 
by 

E= 
x+ 1 M. 

27t~{ 1 + 4~2)l2 ( 114.20a) 

Substituting this value of E in (l14.13a), one obtains the solution of 
the problem of the equilibrium of a stamp, subject to a given couple. 

3°. E f f e c t a f a s y m met ric a 11 y dis t rib ute d for c e s 
Let asymetrically distributed forces act verticaily downward on a 

stamp with a straight base which is not restrained to move vertically. 
The effect of these forces is equivalent to that of the same forces, applied 
symmetrically, and of a certain couple. Hence the solution of this problem 
will be obtained by adding the solutions of the problems 1 ° and 2°, 
treated above. 

§ 115. The problem of pressure of rigid stamps in the absence 
of friction. 

This problem was first solved by M. A. Sadovski [1J for one particular case. 
In the second edition of this book, the general solution for the case n = 1 was 
given, which was generalized by A. I. Begiashvili [1J to the case of arbitrary n. 
The much simpler solution, reproduced here, was given by the Author in his paper 
[22J; simultaneously (and independently) A. V. Bitzadze found a solution which is 

Consider now the problem of pressure of one or several stamps on 
the boundary of an elastic half-plane under the supposition that there 
is no friction. For greater clarity, it will first be assumed that there is 
only one stamp with a given profile. Let y = f(x) be the equation of the 
profile before it is pressed into the elastic half-plane. If it is assumed that 
the stamp may only move vertically, Le., in the direction normal to the 
boundary, then its profile, after pressure has been applied, will have the 
equation y === f(x) + c, where c is a real constant. It '{viII be assumed that 
the segment ab of the boundary of the body comes into contact with the 
stamp. Since a point of the elastic body, occupying before deformation 
the position (t,O) and after deformation the position (t + u, v), where 
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U, v are the components of its displacement, must lie on theliney = f(x) + c, 
one must have v = f(t + 2!-) + c. Assuming, as always, that u, v are 
small quantities and that f(x), f'(x) are likewise small (this supposition 
being a consequence of the requirement of small deformations), one has, 
omitting small quantities of higher order, v = j(t) + c (a < t < b), 
where v == v- is the normal displacement of points of the boundary of 
the elastic half-plane. The reasoning for the case of several stamps is 
quite analogous. 

Correspondingly, the boundary conditions for the problem of pressure 
due to a system of stamps which may only move vertically and are 
completely frictionless may be formulated similarly to the conditions 
for the problems of § 114, the only difference being (using the notation 
of § 114) that now 

x; = 0 everywhere on L, Y; = 0 on Lit, 

while on L' only the normal component ot displacement 
v- == j(t) + c(t) on L' 

(11S.1) 

(115.2) 

is given; as before, L denotes here the entire real axis, L' the union of 
segments Lk == akbk (k == 1, ... , m) and L" the remaining (unloaded) 
part of L. The first o~ the conditions (115.1) applies to the whole boundary 
L, since in the absence of friction the tangential stress at the boundary 
is also zero underneath the stamps. 

In (115.2), the function j (t) , given on L', characterizes the profiles of 
the stamps, and, in fact, y = t(x), where x belongs to L', represents the 
equation of the union of the profiles of the stamps before their displace
ment; c(t) is determined as follows: either c(t) = c on L' (rigidly inter
connected stamps) or c(t) = Ck on Lk = akbk (free stamps), where c and Ck 
are now real constants. Without affecting generality, one may assume 
in the first case that c = 0, and in the second case, for example, C1 = 0; 
the remaining constants will not be known beforehand. 

In the first case, the resultant vector (0, Y) of the external forces, 
pressing the system of stamps into the elastic body, will be given, and 
in the second the resultant vectors (0, Y k) will be known separately 
for each stamp. 

It had been assumed that the stamps may only move vertically; 
the case, where they may also rotate, may be reduced to the preceding 
one in quite the same manner as in §§ 114, 114a. In that case one must, 
in addition, be given either the angles of tilt of the stamps or the re
sultant moments of the external forces, acting on them. 
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I t is easily shown that the problems, as formulated above, can only 
have one solution, neglecting vertical rigid body displacements of the 
entire system; the proof is analogous to that for the case of § 114. 

It should still be noted that a translation of the stamps. parallel 
to the boundary L, has no influence on the elastic equilibrium (within 
the accuracy to which one is always restricted). 

It will be assumed that f'(t) satisfies the H condition on each of the 
segments Lk == akbk • 

As in § 114, the boundary conditions (115.1) show that <I>(z) is holo
morphic in the plane, cut along L'. In addition, it is easily deduced 
that the first of the conditions (115.1) gives by (112.14) 

<I>+(t) + <I>+(t) == <I>-(t) + <I>-(t) everywhere on L, 

\vhence it follows that the function <I>(z) + <I>(z) is holomorphic in the 
entire plane; further, since it vanishes at infinity, it must vanish every
where. Consequently 

<I>(z) == - <I>(z). (115.3) 

By (112.14) 

Y; - iX; = <I>-(t) - <I>+(t), 

whence, going to the conjugate complex expression and remembering (§ 112) that -- - -- -
<I>-(t) = <1>+(t) , <I>+(t) = <I>-(t) , 

- -Y; + iX; = <1>+(t) - <I>-(t) ; 

subtracting these equations, one obtains 
- -

- 2iX; = cI>-(t) + <I>-(t) - <1>+(t) - <1>+(t), 

and the above statement follows. 

On the basis of this result, the boundary condjtion (115.2), which 
,viII now be written [cf. remarks following (113.5)J 

v-' == I'(t) on L', (115.4) 

gives by (112.15) * 4'tJ-ij' (t) 
<{}+(t) + <I>-(t) == --on L'. (115.5) 

x+1 

Thus one has arrived at the boundary problem of § 110, and, in fact, 
at the particular case, where g = - 1.' Applying (110.31) and (110.33), 

* Cf. also (112.22). 
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one finds 

2f.L (X(t)f'(t)dt iPn_l(Z) 
~~) = +, 

7t{x + 1 )X{z) ~ t - z X(z) 
(115.6) 

L' 

where iP n-l(Z) denotes an arbitrary polynomial of degree not higher than 
n-l and 

( 115.7) 

here X(z) is the branch, single-valued in the plane cut along L', for 
which z-nX(z) -+ 1 as z -+ 00. In future, X+(t) will be simply denoted by 
X(t) so that, by definition, 

X(t) = V(t - al) (t - b1) ... (t - an) (t - bn ) == X+(t); (115.8) 

note also that 

X-(t) = - X+(t) = - X(t). (115.9) 

The condition (115.3), i.e., <I>(z) :=: - <l> (z), has still to be satisfied. 
It is readily verified that the first term on the right-hand side of (115.6) 
sa tisfies this condition; the second term will satisfy it if J and only if, 
all the coefficients of the polynomial P n-l(z) are real. 

The first of the preceding statements may be proved as follows. Denote, for 
the time being, the first term of (115.6) by <I>o(z), i.e., 

2~ J~ X(t)f'(t)dt . 
<I>o(z) = --- , 

1t(x + 1)X(z) t - z 
L' 

remembering that, by definition, <Do(z) = <DoCz) , one obtains 

- 2~ f )((t)f'(t)dt 
~oW = - , 

1t"(x + l)X(z) t - z 
L' 

because f'(t) is a real function. It is easily seen that X(z) = X(z), because by (115.7) 

X(z) represents the same root as X(z) and doubt may only arise with regard to its 

sign: X(z) = ± X(z); it is seen from the behaviour of X(z) and X(z) at infinity 
(both functions behaving for large I z I like zn) that the upper sign must be chosen. 
Finally, on the basis of these results and of (112.10"), 

-_~(t) = X+(t) == X-(t) = X-(t) = - X(t), 

and hence 
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The second statement follows because, as has just been shown, 

X(z) = X(z). 

Thus the general solution of the original problenl is given by (115.6), 
where 

(115.9) 

must be a polynomial with real coefficients. 
The pressure P{t), exerted by the stamps on the boundary of the haIf

plane, ,viII no\v be determined. By (112. 14), 

P(t) == - Y; == <I>+(t) - <I>-(t) , (115.10) 

whence follows, applying the Plemelj formula and remembering that 
X-(to) == - X+(to) == - X(to) , 

(115.11) 

The coefficients D j of the polynomial P n-1(Z) will be determined from 
the additional conditions, stated above when formulating the problems 
in the same manner as in § 114. 

For example, consider the case where the resultant vectors (0, Y k) 
of the forces applied to the stamps separately are given. Then 

- Y k = f P(to)dto, k = 1, 2, · · ., n, (115.12) 

LTc 

where P(to) is given by (115.11). One thus obtains a system of n linear 
equations in the unknowns Do, Dv ... , Dn - 1. It is easily shown, based 
on the uniqueness of the solution as a whole, that this system of linear 
equations also has always a unique solution. 

A method, completely analogous to that studied here, leads very simply to 
the solution of a problem, connected with the investigation of the stresses in a 
stratum above layers of coal; this problem "\vas stated and solved (using more 
complicated means) by S. G. Mikhlin [12J. 

Hitherto, it was assumed that the stamps may only move vertically. 
As stated earlier, the case, where the stamps can rotate, is easily reduced 
to the preceding one. 

§ 116. Application. The solution, obtained in the preceding section, 
will now be studied in somewhat greater detaiL To simplify the in-
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vestigation, the case of one stamp will be considered which comes into 
contact with the axis Ox along one continuous segment ab; the general 
case may be considered in an analogous manner. 

1°. In this case one will have, instead of (115.6) and (115.11), 
b 

<I>(z) = 2!L f V (t - a) (b - t)f' (t)dt + 
7t(x + I)V(z-a)(b-z) t-z 

a 
D + - (116.1) 

v(z - a)(b - z) 
and 

b 

P(to) = 4!L f V (t - a) (b - t)f' (t)dt + 
7t(x + I)V(to - a)(b - to) t - to 

a 
2D 

+ V ' (116.2) 
(to - a)(b - to) 

where D is a real constant. In these formulae, the function X(z) == 
== V (z - a) (z - b) has been replaced by the function V (z - a) (b - z) 
[cf. Nate 2 at the end of § 110) and, as a consequence, the expression for 

P(t) becomes reaL For a < t < b, the root V (t - a) (b _. t) must be 

taken as a positive quantity, while V(z - a) (b - z) must be taken as 

the branch, holomorphic in the plane cut along ab and taking positive 
values on the upper side of abo This branch is easily seen (cf. Note .2, 
§ 110) to be characterized by the condition that for large I z I 

v(z - a) (b - z) == - iz + 0(1). (116.3) 

The constant D is determined by the condition 
b 

f P(t)dt = Po, 

a 

(116.4) 

where Po is the given magnitude of the forces, applied to the stamp, 
and P(t) is given by (116.2). The constant D may be determined in 
a simpler manner by noting that it follows from (116.1) and (116.3) 
that for large j z I 

D· ( 1 ) 
<I>(z) = -f- + 0 Z2 ' 
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whence, comparing with (112.4), 

D= po. 
27t 

( 116.5) 

In order that a solution may be physically possible, one must 
obviously have P(t) > 0 (for a < t < b). Thus, after the solution has 
been obtained, it must be verified whether this condition is satisfied. 

I t will be assumed for the solution of the problem that the segment 
ab of contact between the 
stamp and the elastic half
plane is given beforehand. 
This corresponds, for exam
ple, to the case where the 
stamp has the form shown 
in Fig. 53 and where the 
force, applied to the stamp, 
is sufficiently large to ensure 
that the corners A and B of 
the stamp come into contact 

a 
A B 

b 

with the elastic body. The Fig. 53 

presence of the corners A, 
B also explains the occurrence of infinitely large stresses at the points a, b 
of the elastic body which coincide with the corners A, B of the stamp. 

2°. Considerable interest attaches to the case, where the rigid pr0file, 
pressed into the elastic half-plane, 

Po has no corners (e.g. circular disc) 
or where the force is not sufficient
ly large for the corners A and 
B to come into contact with the 
elastic body, as in Fig. 54. In 
that case the ends a and b of 
the region of contact are unknown 

A B 

a b 

Fig. 54. 

stamp now contains the two 

beforehand. However, the formu
lae obtained above also permit 
solution of this problem. In fact, 
the general formula (116.2) for 
the presure P(to) underneath the 

constants a, b which will not be known 
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beforehand. [The constant D is given by (116.5).J For the determination 
of these constants one has the two relations 

P(a) == 0, P(b) = 0, (116.6) 

\vhich express the condition that P(to) tends to zero continuously as to 
leaves the area of contact. This condition may be replaced by the more 
general one (which, in addition, is physically more obvious) that P(to) 
remains bounded near the ends a, b, provided these points are not corners 
of the profile of the stamp. In fact, it is seen that the condition of boun
dedness of P(to) near a, b entails also the relations (116.6). 

In order to express the condition of boundedness of the pressure 
P(to) in the neighbourhoods of the points a, b, introduce temporarily 
the notation 

Q(t) == (t - a) (b - t) 

and write (116.2) in the form 

or, noting that 

in the form 

(t 

Q(t) - 9(to) == _ t - to + a + b, 
t . ~. to 

b 

4(.LVQ(to) f f'(t)dt Ato + B + 2D 
P(to) == +, 

1t{x + 1) V Q(t) (t - to) V Q(to) 
a 

(a) 
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where 
b 

A -------4~ r j'(t)dt 
- 1t(x + 1).. VQ(i)' 

a 
b b 

B = -- 4fL J" tf'~ + 4(l.(a + b) f j'(~~~_ . 
7t(x + 1) YQ(t) 7t(x + 1) YQ(t) 

a a 

The first term on the right-hand side of (a) is not only bounded near 
the points a, b, but it also vanishes there, as may easily be shown using 
the bounds for the value of a Cauchy integral near ends which are 
given in the Author's book [25J. Hence it is necessary and sufficient for 
the boundedness of P(to) near a, b that A = 0, B + 2D = 0, or, by 
(116.5), that 

b b 

f j'(t)dt __ 

'\/(t-a) (b-t) 
== 0, 

.. tj'(t)dt x + 1 

J ----Po· 
Y (t - a) (b - t) 4fl 

a a 

If the conditions (116.7) are satisfied, the formula (a) gives 
b 

P(to) = 4(l.Y(to - a) (b - to) r f'(t)dt ; 
7t(x + 1) .. Y(t-a) (b-t) (t--to) 

a 

( 116.7) 

( 116.8) 

as has been stated earlier, this expression vanishes for to = a, to = b. 
It should still be noted that it is readily verified by transforming 

(116.1) in the same manner as (116.2) that, under the conditions (116.7), 
b 

~~) - . . - 2~Y(z - a) (b - z) f t'(t)dt 

1t{x + 1) V (t - a) (b - t) (t - z) 
( 116.9) 

a 

It may be added that (116.9) as ,veIl as (116.7) could have been ob
tained by seeking a solution (for the particular case n = 1) of the boun
dary problem (115.5), which remains bounded near the ends, and by 
applying the relevant formulae of § 110. 

In that approach the first condition of (116.7) coincides with the condition for 
the existence of such a solution, while tbe second condition of (116.7) expresses 
that the coefficient of Z-:l in the expansion of <I>(z) for large I z I must be equal to a 
given quantity, determined by the magnitude Po of the force applied to the stamp .. 
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Thus one has for the determination of a and b the two conditions 
(116.7) which, in general, determine a, b uniquely, provided the con
dition P(t) > 0 underneath the stamp has been observed (cf. § 116a). 

Hitherto the stamp was restrained to move vertically. The case, 
where it may tilt, can be studied in an anologous manner (cf. § 116a). 

§ 116a. Examples. 
1°. S tam p wit h s t r a i g h tho r i Z 0 n tal bas e 
In this case I' (t) = 0 and (116.1) gives, using (116.5) and writing 

a = - I, b = I, where 21 is the width of the base, 

.p(z) = Po 
21tV12 - Z2 

(116.1a) 

One finds for the pressure P(t) underneath the stamp, using the 
formula P(t) == <I>+(t) - <I>-(t) , 

Po 
P(t) = (116.2a) 

7tVI2- t2 · 

This solution was obtained (by other means) by M. A. Sadovski [IJ. 

2°. S tam p wit h s t r a i g h tin c 1 i ned bas e 
Let s: be the angle of tilt (cf. § 114a, 2° and Fig. 52). In that case 

f'(t) = is: and, by (116.1) and (116.5) (assuming a = -I, b == I), 
+l 

.p(z) = 2[J.e: f Vl2 - t2dt + Po . 
~(x + I)VI2 - Z2 t - Z 2rcVl2 - Z2 

-l 

The integral on the right-hand side may be calculated in closed form 

by (110.40). In the present case, g == - I, IjX;p(z) == Vl2 - Z2; since, 
by (116.3), 

Vl2 - Z2 == - iz 1 - - = - iz 1 - -- + _.. == ( 
l2 )! ( l2 ) 
Z2 2z2 

.12 . 't . 
== -tZ + - + .. _, 

2z 
formula (110.40) gives 

+l 

r vv:=-. t2 dt = ni(Vl2 - Z2 + iz). 
.. t- Z 

-l 
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Hence 

2t-t€Z 2tL€i Po 
<I>(z)=-~-- ___ + + . (116.3a) 

(x + 1)Vl2 - Z2 X + 1 2rr:Vl2 - Z2 

Using the relation P(t) = <t>+(t) - <1>-(t), one obtains for the pressure 
P(t) underneath the stamp 

p 
P(t) - 0 

... /l2 2 7t"V - t 
4tL€t 

---
(It + 1)Vl2-t2 0 

(116.4a) 

The solution will be physically possible, if P(t) >= 0 for -1 < t < 1, 
i.e., if 

( 116.5a) 

The resultant moment of the external forces restraining the stamp in 
the given position is likewise easily calculated by the formula 

+z 

M = - jtP(t)dt. 
-1 

In fact, applying the same method as in § 114a, 2° or evaluating the 
integral by ordinary means, it is found that 

M = 27ttL12 eo 
x+l 

3°. S tam p wit h cur v e d bas e 

(116.6a) 

Let the stamp be represented by a strip, bounded by the vertical 
straight lines x == - Z, x == + 1 and by an arc AB of a circle with radius 
R and convex downwards (cf. Figs. 53 and 54). It will be assumed that 
the radius R is very large. This assumption is necessary, because small 
deformations are being considered. With the usual degree of approxim
ation, one may write 

t2 
f(t) =-. 

2R 

This implies replacement of the arc of the circle by that of a parabola, 
having the same curvature at the vertex. 

Then (116.1) and (116.5) give, under the supposition that the entire 
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arc AB is in contact with the elastic body, 

+z 
ffi( ) 2[J. f tVl2 - t2 Po 
,*,Z = dt+. 

R7t(x + I)V12 - Z2 t - z 2rtVl2 - Z2 
-l 

The integral on the right-hand side may again be evaluated in closed 
form; in fact, since for large ! z I 

.1
2 

( 1 ) ZVl2_Z2 = _iZ2 + t2 + 0 -; , 

one obtains, by (I 10.40), 

and hence 

~ (l2 - 2Z2) 2r.liz Po 
<I> (z) = + + -----:=:-======= 

R(x + I)Vl2 - Z2 R(x + I) 27tVl2 - Z2 
(116.7a) 

By the formula P(t) = <p+(t) - <I>-(t) , the pressure underneath the 
stamp becomes 

P(t) = 2fL(l2-2t
2
) + Po (116.8a) 

R(x + I)Vl2 - t2 reVl2 - t2 

The solution will be physically possible, if P(t) > 0 for - l < t < l, 
i.e., if 

(116.9a) 

If Po does not satisfy the preceding condition, this means that the 
force of magnitude· Po is not sufficient to bring the arc AB of the stamp 
into complete contact with the elastic body. The arc A' B', which actually 
engages the elastic body for some given Po < 21t'tll2jR(x + 1), will now 
be found. 

From symmetry, it is obvious that the segment a'b' of the boundary 
of the elastic haIf-plane which enters into contact has its centre at the 
origin, so that one may write a' = - 1', b' = 1', where 21' is the length 
of the segment a'b'. The function <l>(z) and the pressure P(t), correspond-
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ing to a given l', will be obtained by replacing in (116.7a) and (116.8a) 
l by l'. Expressing that P{t) = 0 for t == + l', one obtains 

l' = VPrl?(x + 1) 

V27tfL 
(116.10a) 

It is sufficient to express that P(t) remains bounded for t = ± l'; the result 
would have been the same, as was to be expected on the basis of the statements 
in § 116. 

Alternatively, one may assume that l' is known and calculate the 
magnitude Po of the force necessary to make the length of the line of 
contact equal to 2l'. Corresponding to a given l', the functions <I>{z} and 
P{t} are determined by the formulae 

2~ Vl'2 - Z2 2~iz 
<I>(z) = R(x + 1) + R(x + 1) , 

P{t) -
4(Lvf2=-ti 

R{x + 1) 

(116.11a) 

( 116.12a) 

§ 117. Equilibrium of a rigid stamp on the boundary of an 
elastic half-plane in the presence of friction. 

This section reproduces, with minor modifications, the Author's paper [24]. 
At about the same time, N. I. Glagolev [1J published a paper in which he gave 
the solution of the problem under consideration for the particular case of a stamp 
with a straight base. Somewhat later, N. I. Glagolev [2J gave the solution for the 
case where the profile of the stamp is of arbitrary shape and where the friction may 
depend on the area of contact. L. A. Galin [1J gave a somewhat different method 
of solution (also applicable to an anisotropic body); cf. likewise L. A. Galin [4J. 

The problem of the equilibrium of a rigid stamp on the boundary 
of an elastic half-plane has been solved in the preceding sections for 
the two extreme cases, where the coefficient of friction is zero (§§ 115-
116) or infinite (§ 114); in the latter case, a further condition had to be 
imposed, namely, that the elastic material could not leave the stamp and 
that thus the presence of negative pressures, even arbitrarily large ones, is 
admissible. 

Using the method of the preceding sections, one may also solve the 
problem for a finite coefficient of friction such as will occur ill reality. 
In this context, consideration will be limited to the case where the stamp 
is on the verge of equilibrium; obviously, the solution for this case will be 
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an approximation to the case, where the stamp slides slowly along the 
boundary of the half-plane. More exactly, it will be assumed that T == kP 
underneath the stamp on the boundary of the half-plane, where P and T 
are respectively the pressure and the tangential stress, applied to points 
of the boundary of the half-plane, and k is the coefficient of friction 
which will be assumed constant. 

Recently L. A. Galin [2J gave a clever solution of the problem of the impression 
made by a rigid stamp with a plane base under the supposition that the segment 
of contact consists of three parts: a centre section with cohesion and two outer 
sections on ",~hich slip occurs. In a simultaneously published paper, S. V. Falkovicz 
[1J gave the solution of the same problem under the supposition that on the parts, 
where slip occurs, friction is absent. Cf. likewise L. A. Galin [4J. 

As before, let the Ox axis be the boundary of the elastic half-plane and 
the Oy axis perpendicular to it, so that the elastic body occupies the 
lower half-plane y < o. For this choice of axes, P == - Y;, T == X;. 

Further, assume that the stamp engages the elastic half-plane along 
one continuous segment L' == abo The result below is easily generalized 
to the case, where the region of contact consists of a finite number of 
individual segments (cf. preceding sections). 

In addition, it will be assumed that the stamp may only move vertically. 
As in tIle preceding sections, the case where the stamp may tilt is readily 
reduced to this case; cf. § 116a, 2° ~ 

The boundary conditions of the present problem have the form 

T(t) == kP(t) , 

v- == f(t) + const. 

(117.1) 

(117.2) 

on L', T(t) = P(t) == 0 outside L' on Ox. As before, t denotes here the 
abscissa of a point on the Ox axis, v is the projection of the displacement 
on the Oy axis, f(t) is a given function for the profile of the stamp, i.e., 
y == f(x) is the equation of this profile. It will be assumed that f(t) has a 
derivative I' (t), satisfying the H condition. 

In addition, it will be assumed that the quantity 

Po = f P(t)dt, (117.3) 

L' 

i.e., the total pressure exerted by the stamp on the half-plane, is known. 
The total tangential stress will then obviously be To == kP o. Thus 
the resultant vector (X, Y) == (To, - Po) of the external forces, acting 



506 VI. APPLICATION OF THE PROBLEM OF LINEAR RELATIONSHIP § 117 

on the stamp and balanced by the reactions of the elastic half-plane, 
will be given. 

In the notation and under the general suppositions of § 112, the bounda
ry conditions (117.1) and (117.2) of the present problem may be written, 
by (112.14) and (112.15) and using, as before, instead of (117.2) the 
condition v-' == I' (t), 

- -
(1 - ik)<P+(t) + (1 + ik)<I>+(t) == (1 - ik)<I>-(t) + (1 + ik)<I>-(t) , (117.4) 

x<l>-{t) + <I>+(t) - x<l>+(t) - <I>-(t) == 4i'rf' (t) (117 .S) 

on L', while the condition P(t) == T{t) == 0 on Ox outside L' is equivalent 
to the condition that the function <D{z) must be holomorphic outside 
the segment L' == abo _ 

The formula (117.4) shows that the function (1 - ik)<I>(z) + (1 + ik) <I>(z) 
is holomorphic in the entire plane; since it must vanish at infinity, 
one has 

(1 - ik)<I>{z) + (1 + ik)<I>(z) = 0 (117.6) 

in the whole plane. Expressing by the help of (117.6) the function cD(z) 
in terms of <I>(z) and substituting this value in (117.5), one obtains 
the boundary condition for <I>(z) 

<I>+(t) = g<f)-(t) -t- t o(t) on L', (117.7) 

where 

x + 1 + ik(x - 1) 4i[.L( 1 + ik)f' (t) 
g == - . , lo(t) == . 

x. + 1 - ~k(x - 1) x. + 1 - ~k(x - 1) 

These last formulae may be simplified by the introduction of the constant 
(x, determined by the conditions (remembering that x > 1, k > 0) 

x-I 
tan 7tCl.. == k ,0 < r:t. < l. 

x+l 
(117.8) 

Then 

(x + l)e ±1tio; 
x + 1 ± ik(x - 1) == V(x + 1)2 + k2 (x - 1)2e ±1tia === ---

cos ITr:t. 

and hence 

4i[.L( 1 + ik)ertirx cos ITr:t. 
g == - e21:i(1., lo(t) == t'(t). 

x+l 
(117.9) 
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Applying no\v the method of § 110 to solve the problem (117.7), 
noting that ill the present case 

log g 
Y= . =i+cx 

27t't 

and that one may take for the function Xo{z) in (110.18) the expression 
(z - a)-t-ex (b - z)-t+ ct (cf.. § 110, Note 2), one obtains 

b 

2tL( 1 + ik)ertir:t. cos 7t~ f (t - a)!+ex (b - t)!-o; I' (t)dt 
<I>(z) == + 7t(x. + 1) (z - a)i+ex (b - z)!-o; t - z 

a 

Co 
+ (z - a)!+O: (b _ z)t-rx' (117.10) 

where Co is a constant and where (z - a)t+ex (b - z)!-CX must be under
stoo(l to be that branch which is holomorphic outside the segment ab 
and ,vhich takes on the upper side of this segment the real, positive value 
(t - a)t+o; (b - t)!-IX; as is easily seen, this branch is characterized by 
the fact that 

. (z - a)!+IX (b - z)i-IX 
11m = - ie'1tiIX. (117.11) 
Z~OO z 

For the determination of y, it must be remembered that by the condition, in
troduced in § 110, the value of the logarithm must be taken for which 

o <: 91 log ~. < 1. 
21t1. 

The quantity, denoted in § 110 by ex, is now denoted by ! + cx, and the function 
t(t) by f o(t)· 

The constant Co is directly determined by (112.4) which gives 

. - To + iPo iPo(1 + ik) 
11m z<l>(z) = == - , 
z-+ 00 21t 27t 

whence, by (117.11), 

C 
_ Po(1 + ik)emIX 

0- 27t 



508 VI. APPLICATION OF THE PROBLEM OF LINEAR RELATIONSHIP § 117a 

and (117.10) becomes 
b 

2[1.(1 + ik)eTti(l. cos 1ttX f (t - a)t+(I. (b - t)!-(I. I'(t)dt 
<I>(z) = 1t(x + 1) (z - a)t+(I. (b - z)!-a: t - z + 

a 

Po(1 + ik)erri(l. + (117.12) 21t(z - a)!+(I.(b - z)t-(I. · 

It is readily verified that all the conditions of the problem will be 
satisfied, provided, as has been assumed, I'(t) satisfies the H condition on 
L'. Thus the problem is solved, because <I>(z) completely characterizes the 
state of stress. 

Naturally, the solution will be physically possible only in the case 
where the pressure P(t) at the points t underneath the stamp satisfies 
the condition P(t) >= o. The pressure is easily calculated on the basis of 
( 117.12). In fact, by (112. 14) , 

P(to) + iT(to) = P(to) ( 1 + ik) = <I>+(to) - <I>-(to)· 

This last difference, using the Plemelj formula, gives 

) 
4[.1. sin 7to: cos 7to: 

P(to = - I'(to) + 
x+l 

a 

Po cos 7ttX 

+ 1t(to - a)!+(I.(b - to)!-(I. · 
(117.13) 

For k = 0 (when also <X = 0), one obtains again the solution for the ideal
ized case without friction. 

§ 117a Examples. 
1°. S tam p wit h s t r a i g h tho r i Z 0 n tal bas e. 
In this case I'(t) == 0 and (117.12), (117.13) give 

Po(1 + k)e1tia: 
<P (z) - ---------..,-----::--

-- 21t'(z - a)!+CC(b - z)i-a: ' 

Po cos no: 
P(t) == . TC(t - a)t+(I.(b - t)t-a: 

(117.1a) 

(lI7.2a) 
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2° . S tam p wit h s t r a i g h tin c lin e d bas e. 
Let the base of the stamp form a (small) angle e with the axis Ox. Then 

I(t) == et + const., I' (t) == e. Substituting in (117.2) and putting, for 
simplicity, a == -l, b == + 1, one obtains by (110.40) 

) 
_ (1 + ik)e1tict Po(x + I) -87ttJ.€ocl-47ttJ.€z 2[J.e:i(1 + ik) 

<P(z - 27t(x+ I) (l+z)H<X(l-z)t-<x + x + 1 -. (117.3a) 

In the present case, one has for large I z ! 

_1_ = (1 + z)!+ct (1- z)!-ex = - ierticx(z + 2Za) + O(l/z). 
X j)(z) 

The pressure P(t) is given by 

P(t) 
_ <I>+(t) - <I>-(t) _ cos 7tOC P o(x + 1) - 87tfl€ocl- 41t~et 

! + 1- • (1 1 7. 4a) 1 + ik 7t(x + 1) (1 + t) rt.(1_ t) -ex 

The solution is physically possible, i.e., P(t) > 0 for -1 < t < 1, 
when 

The moment 

Po(}'.. + 1) 

47'C~1( 1 - 2oc) 

+l 

M == - f tP(t)dt 

-1 

(117.5a) 

is likewise easily determined; it is equal to the resultant moment of the 
external forces, acting on the stamp; in fact, proceeding as in § 114a, 
2°, one obtains 

21t[.L( 1 - 4Ct.2)l2 
M == 2oclPo + E. 

x+l 
(117.6a) 

This last formula determines € for given M and Po. In particular, if 
M = 0, i.e., if the external forces, acting on the stamp, are equivalent to 
a force applied to the centre of the base, then 

oc{x + l)Po s::=- e 

7t[.L1( 1 - 4oc2) , 
(1 17.7a) 

since 0 < ct: < i, this value of e leads, by {I 17.5a), to a possible solutione 
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§ 118. An alternative method for the solution of the boundary 
problems for the half-plane. In the preceding sections the solution 
of the boundary problems for the lower half-plane has been reduced to 
the search for a function <I>(z) , suitably extended into the upper half-plane. 

However, it is obvious (cf. the methods of solution, studied in the 
preceding Part) that these problems could be reduced directly to the 
search for a function 

(j)(Z) = I<p(Z)dZ, 

likewise extended into the upper half-plane [cf. (112.16)J. Some in
convenience would result from the fact that, in general, cp(z) is multi-valued. 
However, this inconvenience may be removed by separating from cp(z) 
the multi-valued part, which is very simply done. On the other hand, in
troduction of the function cp(z) instead of <I>(z) has the advantage that 
in constructing the boundary conditions, involving the boundary values 
of the displacements, one is not obliged beforehand to differentiate 
these values. 

§ 119. Problem of contact of two elastic bodies (generalized plane 
problem of Hertz). 

Consider two elastic bodies S11 S2 the shapes of which approximate to 
half-planes and whjch are in contact along a segment ab of their bounda
ries (Fig. 55). The segment of contact ab will not be given beforehand, 

y 

x 

Fig. 55. 

but will be subject to determination. The shapes of the boundaries 
(approximately straight lines) before deformation and the resultant 
vector of the external forces, applied, for example, by the body S1 to the 
body 52' will be initially known. It will be assumed that there is no 
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friction and, in addition, that the stresses and rotations in 51 and 52 
vanish at infinity. 

This problem, which is of great independent interest, is even more 
important, because it constitutes the problem of contact of two bodies of 
arbitrary shape (Le., having the two-dimensional case in mind), provided 
the area of contact is very small in comparison with the dimensions of 
the bodies; in that case, if one is interested in the stresses and displace
ments near the region of contact, one can assume without appreciable 
error that the bodies under consideration are in shape close to half
planes. 

In three dimensions, the problem of contact of two elastic bodies was 
first formulated and solved by Hertz under several restrictive assumptions; 
in particular, he assumed that the area of contact is very small and that 
the equations of the undeformed surfaces near the region of contact 
could be approximated sufficiently accurately by functions of the form 
z = Ax2 + 2Bxy + Cy2 with a suitable choice of coordinate axes. 
I. Ya. Shtaerman [2J reduced the three-dimensional Hertz problem, under 
more general suppositions, to an integral equation. 

Thus the problem of contact of two bodies, approximating to half-planes, 
which was stated above is the two-dimensional analogue of Hertz' 
problem, however in a somewhat generalized form, since it has not been 
assumed that the region of contact is small and, correspondingly, no 
assumption regarding the shapes of the boundaries has been made, 
except the condition that they should approximate to straight lines (and 
be sufficiently smooth). 

In recent times, several authors have considered this problem. I. Va. 
Shtaerman [1, 3J (cf. also his recent book [4J) reduced it to a Fredholm 
Equation of the first kind which in the present notation may be written 

b f P(t) log I t - to I dt == I(to) + const., (a) 
a 

where P(t) is the unknown pressure, exerted by one body on the other 
at a point t of the region of contact of the bodies, and t(t) is a given 
function. The problem of pressure of a rigid stamp on an elastic half
plane, as treated in the earlier editions of this book (§ 87), led to 
just that equation; this equation is easily solved by quadrature for 
given a and b (cf. the earlier editions of this book, § 88). 

A. V. Bitzadze [IJ reduced this problem to a singular integral equation 
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which is immediately solved in closed form. His equation may be ob
tained by differentiating equation (a). 

The following solution of the problem is obtained by a method, com
pletely analogous to that used earlier in the case where one of the con
tacting bodies was absolutely rigid (§ lIS). 

It ,vill be assumed that the body 51 occupies the lower half-plane S
and the body 52 the upper half-plane 5+ and the corresponding stresses 
and displacements, and likewise the constants A, l-L, It, will be provided 
with the subscripts 1 and 2. 

Let <l>1(Z) be a sectionally holomorphic function which corresponds 
to the body 51 and is d-efined as in § 112; let <P2(z) be the analogous 
function for the body 52' These functions are holomorphic throughout 
the plane, except at the segment ab of the Ox axis, because outside ab 
the boundaries of the bodies are free from external stresses. As, by 
supposition, there is no friction, one will have [X;]1 == 0 on Ox: hence, 

as in § 115, one may conclude that <P1(z) == - <P1(z); similarly, one finds 

that <D2(Z) == - <D2(z). Further, if P(t) is the pressure exerted by one 
body on the other at the point t, then, as in § 115, 

P(t) == cI>t (t) - cI>l(t) ; (119.1) 

similarly, one has 

P(t) = <l>2(t) - <1>: (t). ( 119.2) 

I t is seen from these condi tions that [<P 1 + <I> 2J + == [<1>1 + <I> 2J -, i.e. , 
that the sum <1>1 (z) + <l>2(Z) is holomorphic in the entire plane; further, 
since it vanishes at infinity, one must have <l>1(Z) + <l>2(Z) = O. Thus 

<1>1 (z) = - <1>1 (z), <l>2{Z) === - <l>2(Z), <1l2{z) = - <1>1 (z). (119.3) 

If now 

are the equations of the boundaries of the bodies 51 and 52 before de
formation, where t1{t), f2(t) as well as their derivatives t~(t), t~(t) must 
be small, one will have in the region of contact, after deformation, 

f1(t) + v1(t) == t2(t) + vt(t), 
whence 

V1- vi == j(t) on ab (119.4) 



CHAP. 19 BOUNDARY PROBLEMS FOR THE HALF-PLANE 513 

or [cf. (112.22)J 

Vi' - v;' == j'(t) on ab, (119.5) 

where 
t (t) = t 2 (t) -- t 1 (t) · (119.6} 

It will be assumed that t'(t) satisfies the H condition. 

With regard to the deduction of the condition (119.4), reference should be made 
to § 115. Strictly speaking, one should have written tl(t) + vi = F(t + ui), 
t2(t) + vt == F(t + ui)' where y = F(t) is the equation of the line of contact 
after deformation; however, within the accuracy considered here, it may be 
assumed that F(t + Uj) = F(t + utL in which case one obtains the stated relation. 

Expressing now the boundary condition (I 19.5) by means of (I 12. 15), 
applied to Sl and 52 respectively, one finds, in view of (119.3), 

<l>t(t) + <l>i(t) = it');) , (119.7) 

where 

( 119.8) 

One has thus arrived at the same mathematical boundary problem 
as in the case of the problem of pressure of an absolutely rigid stamp on a 
half-plane, i.e., at the problem, corresponding to the boundary condition 
(11 5.S); the only difference is that in this formula <1>1 (z) and 1/ K take 
the place of ~(z) and 4tL/x + I respectively. In addition, in the present 
case, the segment of contact is not known beforehand and, as in § 116, 
2°, it is required to find the solution <t>1 (z), vanishing at infinity and 
bounded near the ends a, b. 

Using the formulae of § 116 or directly those of § 110, one arrIves 
at the following conclusions. 

The function <D1(z) is given by [cf. (116.9)J 

b 

w --:=================--- . ( 11 9.9) ffil(Z) = V (z - a) (b - z) J-' I' (t)dt 
2rcK V(t - a) (b - t) (t - z) 

a 

For the determination of a and b one has the two relations [cf. (116.7)] 
b 

f I' (t)dt == 0 

vi (t - a) (b - t) 
(119.10) 

a 
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and , 

f tf'(t)dt 
\/(t - a) (b - tr = KPo, 

(119.11) 

a 

where Po is the magnitude of the resultant vector of the external forces 
applied by the body S2 to 51 (or S1 to 52) which will be assumed known. 

As in § 116, v/(z - a) (b - z) must be interpreted as a branch such 
that for large ! z ! 

v(z-a) (b-z) = -iz + 0(1), (119.12) 

and V (t - a) (b - t) for a < t < b refers to the positive value of the 
root. 

The pressure P(to) == <l>i (to) - <l>1{tO) is given by 

b 

V (to - a) (b - to) f I' (t)dt 
P(to) = · 

7tK V (t - a) (b - t) 
(119.13) 

a 

If the function I(t) is even, i.e., if 

1(- t) == f(t), (119.14) 

one may, from considerations of symmetry, write from the beginning 
a === -l, b = + 1, where 1 is subject to determination. In this case the 
condition (119.10) is automatically satisfied and 1 may be determined 
from the equation 

l 

f tf' (t)dt = t KP o' 
Vl2-t2 

o 

(119.11') 

The final formulae, obtained for (119.14) and a = - b, agree 
with those deduced by A. V. Bitzadze [1]. 

As shown in § 110, Note 2, the integrals in the preceding formulae 
may be evaluated by elementary means, provided I'(t) is a rational 
function or, in particular, a polynomial. For example, let 

I(t) = At2n , 

where A is a constant and n a positive integer; one then obtains im
mediately the solution, found by I. Ya. Shtaerman [lJ. Putting 

j(t) = ~(_l + _1 ) 
2 Rl R2 
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which corresponds to the case, where 51 and S2 are bounded by circles 
with radii R1 and R2 (which are large as compared with the region of 
contact), one obtains the solution, found by L. Foppl [IJ by other means. 
(As regards the calculations, this case is the same as in § lI6a, 3°.) 

Several other examples may be found in the paper [3J and the book [4J 
by I. Ya. Shtaerman. 

In the presence of friction between the bodies in contact, the problem 
is considerably more complicated. Solution of several problems of contact 
in the presence of friction which are of special practical interest has been 
given by N. I. Glagolev; some of these results are published in his paper 
[3J. 

§ 120. Boundary problems for the plane with straight cuts *). 
The fundamental boundary problems, and likewise some other prob

lems, for the case where the region, occupied by the body, is the entire 
plane with straight cuts, distributed along one and· the same straight 
line, are easily solved by methods, analogous to those used in the preceding 
sections. Let the Ox axis be the locus of the cuts. A beginning will be made 
with the deduction of several formulae, analogous to those of § 112. 

1°. G e n era 1 for m u 1 a e 
Let the region S', occupied by the elastjc body, be the entire plane, 

cut along n segments Lk == akbk (k === I, ... , n) of the Ox axis; the union 
of these segments will now be denoted by L. 

It will not be assumed in this section that the stresses vanish, but 
only that they are bounded at '£nfinity. 

Then ct>(z) and '¥(z) are holomorphic in S', including the point at 
;infinity, and for large I z I, by (36.4) and (36.S), 

X + iY 1 ( 1 ) 
ct>(z) == r - ( ) - + 0 2 ' 

27t 1 + x z Z 

I x(X - iY) 1 0 ( 1 ) 
'¥(z) = r + 2,.(1 + x) -; + --;2' 

(102.1 ) 

where (X, Y) is the resultant vector of the external forces, applied to 
the edges of L, 

r == B + .iC, r' === B' + ie' (120.2) 

*) This section reproduces, almost without modifications, the contents of the 
Author's paper [23J. 
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are constants, determined by (§ 36) 

2tJ.€co 2' 
B = 1 (Nl + N 2), c = 1 + x' r' = - -l(N1 - N 2)e- 1,(%,_ (120.3) 

N l' N 2 being the values of the principal stresses at infinity, ex the 
angle between Nt and the Ox axis and €co the magnitude of the rotation 
at infinity. 

In the usual notation, introduce the function 

Q(z) = <I>(z) + z<l>'(z) + 'Y(z), (120.4) 

which is also holomorphic in S' and has, by (120.1), for large I z I the form 

- - x(X + iY) 1 ( 1 ) 
Q(z) = r + r' + 27t( 1 + x) -; + 0 Z2 . (120.5) 

Substituting in (120.4) z for z and taking the conjugate complex value, 
one obtains 

'Y(z) == Q(z) - <Il{z) - z<l>'(z). ( 120.6) 

Since the stress components are expressed in terms of the functions 
<I>(z), 'Y(z), one may also express them in terms of <I>(z) and Q(z). 

In particular, one has by (32.8) 

Y 11 - iXll = <I>{z) + Q{z) + (z - z) <I>'(z). (120.7) 

Similarly, one may express the components of displacement by in
troducing instead of y;{z) the function 

6>(z) = jQ(Z)dZ = Z$(z) + ~(z) + const. (120.8) 

which, like the functions cp{z), y;(z), is determined by <J>{z) , 'Y(z) , apart 
from an additive constant. Thus (32.1) takes the fonn 

2lL(U + iv) = xcp(z) - <U(Z) - (z - z)<I>(z) + const. ( 120.9) 

It will be assumed in the sequel that <I>{z), Q(z) are sectionally ho
lomorphic in the sense of the definition in § 106, so that, in particular, 
near the ends a k , bk 

A A 
$(z) < I ICl ' I Q(z) I < I let ' (120.10) z-c z-c 

where A, ex are positive constants, 0 < ex < 1, and c denotes the cor-
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responding end. Further, it will be assumed that for all t on L which do 
not coincide with ends 

lim y<1>'(t + iy) == o. (120.11 ) 

2°. Fir s t fun dam e n t a I pro b I e m 
Consider now the solution of the first fundamental problem, i.e., assume 

the values of Y:, X;, Y;, X; on L to be given, where the (+) and (-) 
sign~, as always, refer to the boundary values on the upper and lower 
edges of the cuts. A (less simple) solution of this problem was given by 
D. I. Sherman [12]. 

In addition, it will be assumed that the constants fftr == Band 
r' == B' + ie', i.e., the values of the stresses at infinity, are known. 
Since one is concerned with the stress distribution, one may, without 
affecting generality, assume that C == 0, i.e., that 

r == r == B. 

By (120.7) and (120.11), the boundary conditions take the form 

<1>+(t) + O-(t) == Y; -iX:, <I>-(t) + Q+(t) == Y;-iX~ (120.12) 

on L. Adding and subtracting, one obtains 

[<I>(t) + Q(t)J+ + [<I>(t) + 12(t)J- == 2P(t), 

[<l>(t) - Q(t)J+ + [<I>(t) - O(t)J- == 2q(t) 

on L, where P(t), q(t) are the following functions, given on L: 

1 + _ i + _ 
P(t) = 2 [Yll + YyJ -2 [Xy + Xy], 

( 120.13) 

( 120.14) 

( 120.15) 

It will be assumed that P(t) and q(t) satisfy the H condition on L. 

Since <»(00) - 0(00) = - r', the general solution of the boundary 
problem (120.14) is given by (§ 108) 

Further, writing 

1 f q(t)dt -<J>(z) - Q(z) = -. - r'. 
TC't t - z 

L 

n 
X(z) = II (z - ak)t (z - bk)t 

k=l 

( 120.16) 

( 120.17) 
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and applying (110.33), one obtains the general solution of the boundary 
problem (120.13), bounded at infinity [as follows from (120.1) and 
(120.5)J, 

<I>(z) .Q z = _1_ r X(t)P(t)dt 2P n~ 
+ () 7tiX{z) ~ t - z + X(z) , 

L 

where P n(z) is the polynomial of degree not greater than n 

Pn(z) = CoZn + C1zn-l + ... + en; 

( 120.18) 

( 120.19) 

X(t) must be interpreted as the value, taken by X(z) on the upper (left) 
side of L. 

The formulae (120.16) and (120.18) give 

<I>(z) = <l>o(z) + ;(~; - tt"', Q(z) = Qo(z) + i'(~1 + tf', (120.20) 

where 

<P (z) == __ I -- f X{t)P(t)dt + _I~ fJJ!)dt 
o 27tiX(z) t - z 21ti t - z ' 

(120.21 ) 

L L 

1 f X(t)P(t)dt 1 j~ q(t)dt 
Qo(z) =-- ---. 

27tiX(z) t - z 27ti t ~ z 
( 120.22) 

L L 

It is easily seen that under the present conditions with regard to 
p (t) and q (t) the condition (120.11) is fulfilled on the basis of § 69, 2°. 

The polynomial P n(z) has still to be determined. It will be assumed 
that X(z) is a branch which for large! z ! has the form 

.X(z) = + zn + cxn_1zn- 1 + .... ( 120.17') 

The coefficient Co follows immediately from the first of the formulae 
(120.20) and from the condition <1>(00) = r which give 

Co = r + tr'. (120.23) 

The remaining coefficients must be determined from the condition of 
single-valuedness of the displacements. By (120.9), this condition implies 
that the expression xcp(z) - w(z) must revert to its original value as the 
point z describes a contour A k , surrounding the segment akbk === L k • 

By contracting the contour Ak into the segment Lb it is readily verified 
that the following relations express the condition of single-valuedness, 
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where the differences <l>t - <Do and nt - Do are easily determined by 
the Plemelj formula, 

2(x + 1) f P n(!Jdt + x I~ [<I>t (t) - <po(t)]dt + 
X(t) .: 

+ I[D.t(t) - Qo(t)]dt == 0, (120.24) 

k = 1, ... , n, 

which give a system of n linear equations for the constants C l' C 2' .•. , en. 
This system has always a solution. In fact, the homogeneous system, 

obtained in the case r = r' == 0 Y+ == X+ == y- == X- == 0 can 'y y y y , 

have no other solution except C1 == C2 == ... == Cn == 0, because the 
original problem, as is easily established by ordinary means, has in 
this case only the trivial solution <l>(z) == !2(z) == 0. Therefore the non
homogeneous system (120.24) always has a unique solution and the prob
lem is solved. 

In the particular case, where the edges of the cuts are free from stresses 
(problem 01 extension 01 plates weakened by cracks), <l>o(z) == Qo(z) == 0 and 
the solution takes the extraordinarily simple form 

P(z) - P(z)-
<Il(z) == 71 _ J-r' Q(z) == n + l-r' 

X(z) 2' X(z) 2' 
( 120.25) 

and the coefficients of P n(z) are determined by the conditions 

r P n{t)dt = 0, k = 1, 2, ... , n. 
~ X(t) 

(120.26) 

Lk 

For n == 1 (single crack), letting a1 = - a, bI = a, one obtains the 
formulae 

(2r + r')z .lr-' r\(z) == (2r + r')z + 12-r '. 
<I>(z) = 2v'~e-=- a2 - 2 ,~l. 2v' Z2 _ a2 

( 120.27) 

A solution of the (less simple) problem for the particular case n == 1 
is effectively contained in § 82a, as a particular case of the problem 
of the equilibrium of a plate with an elliptic hole under the influence 
of external forces, applied to its boundary. 
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3°. Sec 0 n d fun dam en tal pro b 1 e m. 
Consider now the second fundamental problem, i.e., assume that the 

values of the displacements u+(t), v+(t) on the upper edges and u-(t) , 
v-(t) on the lower edges of L are given; also, if u(ak ), v(ak) and u(b k ), 

v(b k ) denote the (given) displacements of the points ak, bk , assume that 

u+(ak) = u-(ak) == u(ak), v+(ak) = v-(ak) == v(ak), 
( 120.28) 

u+(b k ) = u-(b k ) == u(bk ), v+(b k } = v-(b k ) == v(b k ). 

In addition, let also the constants rand r' (without assuming this 
time C == 0) and the resultant vector (X, Y) of the external forces, 
applied to L, be known. 

In order to avoid having to consider directly the functions cp(z), cu(z) 
which may be multi..:valued, the boundary conditions will not be con
structed beginning from (120.9), but from a formula, obtained from (120.9) 
by differentiation with respect to x, i.e., from 

2~(u;' + iv') = x<l>(z) - 12(z) - (z - z)<J>'(z) , ( 120.29) 

where u', v' are the partial derivatives au/ox, ov/ox. Accordingly the 
boundary conditions may be written 

x<l>+(t) - O-(t) == 2~(u'+ + iv'+), 

x<l>-(t) - Q+(t) == 2~(u'- + iv'-). 

Adding and subtracting, one finds 

[x<ll(t) - Q(t)J+ + [x<l>(t) - Q(t)J- = 2f(t), 

[x<l>(t) + O(t)J+ - [x<I>(t) + O(t)J- = 2g(t) 

on L, where f(t), g(t) are the following functions, given on L: 

I(t) = ~[(u+' + u-') + i(v+' + v-')], 

g(t) = t-t[(u+' - u-') + i(v+' - v-')]. 

( 120.30) 

(120.31 ) 

(120.32) 

(120.33) 

It will be assumed that these functions satisfy the H condition on L. 
In the same way as ill the preceding problem, the general solutions of 

the boundary problems (120.32) and (120.31) are given by 

1 f g(t)dt - -
x<l>(z) + Q(z) = -. -- + r' + xr + r, 

7t't t- z 
L 

x<I>(z) - 12(z) = _1~ f X(t)f(t)dt + 2P n (z) 
7tiX(z) t - z X{z) , 

L 

(120.34) 

(120.35) 
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where X(z) is determined by (120.17) and,X(t) is its value on the left side 
ofL. 

The preceding formulae determine the unknown functions <I>(z), 'Y(z) 
apart from an additive term, containing the polynomial 

P n(z) = CoZn + C1zn-l + ... + Cn. 

The first two coefficients Co and Ci of this polynomial are immediately 
determined by (120.35), if one takes into consideration that for large 
I z I, by (120.1) and (120.5), 

x<l>(z) - Q(z) :- xr _ Ii _ r' _ x(X + iY) _1 + 0 (_1). (120.36) 
n(x 1r 1) z Z2 

It is readily verified, on the basis of (120.28) and (120.30), that the 
displacements u, v, calculated from (120.9) using the functions <Il(z), 
O(z) just found, will be single-valued. However, these displacements 
will assume on the cuts Lk the given values, apart from some constant 
terms which may be different on different cuts. Let the constants, 
by which the expression 2fL(U + iv), calculated from <I>(z), Q(z), differs 
on the cuts L 1, L 2, ••• , Ln from the given values, be denoted by CI , 

c2' ••• , Cn. The functions <I>(z) and Q(z) will satisfy the conditions of 
the problem only when CI = c2 = ... = en' 

These constants will be equal on the upper and lower edges of each cut, because, 
as is easily seen from the conditions introduced earlier, the expression 2tJ.(u + iv) 
tends to a definite limit as z approaches one of the ends ak , bk " If c1 = c2 = ..... = en' 
the condition ck = a may be attained at the expense of an arbitrary constant 
entering into the right-hand side of (120.9). 

It is easily seen, by (120.29), that the conditions for the Ck may be 
expressed in the form 

ak+1 

f[K~(t) - O(t)Jdt = 2!L{[u(ak+l) - u(bk)] + i[v(ak+1) - v(bk)J}, (120.37) 

k = 1, 2, ... , n - 1, 

where the quantities on the right-hand side are given [cf. (120.28)J. 
Substituting for x¢>(t) - Q(t) from (120.35), one obtains a system 

of n - 1 linear equations for the determination of the n - 1 coefficients 
C2, ••• , C n which were so far undefined; similarly as before, it is easily 
seen that thjs system always has a unique solution. Thus the problem 
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is solved. The solution for the particular case n = 1 was obtained in 
§ 83 by different means. 

The problem, where the displacements are only given apart from con
stant terms which are different on different cuts, may be solved in an 
analogous manner; however, in that case, the resultant vectors of the 
external forces, acting on the individual cuts separately, must also be 
gIven. 

4°. A certain mixed problem 
In conclusion, a certain problem will be solved which was considered 

by D. I. Sherman [13J. In this problem the external stresses, applied, 
say, to the upper edges of the cuts, and the displacements on the lower 
edges are given. D. I. Sherman solved this problem by rather complicated 
means, reducing it to a system of singular integral equations (which 
admittedly is simple), and there is one omission in his solution about 
which more will be said later. 

By (120.7) and (120.29), the boundary conditions may be written 

<t>+(t) + n-(t) = Y: - iX:, x<l>-(t) - Q+(t) = 2lJ.(u'- + iv'-) (120.38) 

on L. Multiplying the second of these equations first by - if yx, then 
by + i/VX, and adding to the first (cf. D. I. Sherman [13J, p. 333), one 
obtains 

[ <l>(t) + ~x Q(t)]+ - iyx [ <l>(t) + ;x Q(t)]-= 2fl(t), (120.39) 

[ <l>(t) - ~ Q(t)]+ + iyx [ <l>(t) - ~ Q(t)]-= 2f2(t) (120.40) 

on L, where 11(t), t2(t) are functions, given on L; it will be assumed that 
these fUIlctions satisfy the H condition on L. 

Thus the functions 
. . 
~ ~ 

<I>(z) + .. /- Q(z), <I>(z) - -:=- Q(z) 
·yx VX 

determine the solutions of the boundary problems (120.39) and (120.40) 
which are particular cases of the problem, solved in § 110. In the notation 
of that section, one has for the problem (120.39): g = iyx, while for the 
problem (120.40): g = - iYx. 

Solving these problems by the method of § 110 and taking into con-
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sideration the behaviour of <I>(z) , Q(z) at infinity, one finds 

<I>(z) + _i _ Q(z) = Xl(~) r /l(t)dt + Xl(Z)P~l)(Z), 
yx 2n2 f- Xl (t)(t-z) 

L 

<I>(z) - _i _ Q(z) = X2(Z) f +t2(t)dt + X 2(z)P;;)(Z), 
Vlt 2ni X 2 (t)(t - z) 

L 

where 
n n 
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(120.41 ) 

(120.42) 

X 1(z) = IT (Z-ak)-Yl(z-bk)Yl-l, X 2{z) == II (z-a k )-Y2 (z-bk)Y2-1, (120.43) 
1 1 

log (iy'x) log x. 
'Y - -1.+ __ 

1 - 2ni - 4 47ti' 
log (- i ~ /x) log It 

" = V =.a + -(120.44) 
)2 2 . 4 4' 7t2 7tZ 

For X1(Z) , X 2(z) one must select branches, holomorphic in the plane 
cut along L. 

By adding and subtracting (120.41) and (120.42), one may obtain 
closed expressions for <Il(z) and Q(z), but this will not be done here. 

For the determination of the 2n + 2 coefficients of the polynomials 
P~) and P<';) one has the following conditions. Firstly, that the functions 
<I> (z) and Q (z ) must behave at infinity j n accordance with (120. 1) and 
(120.5); in this connection it will be assumed that the constants r, 
r', X, Y, entering into these formulae, are given. 

The resultant vector of the forces, applied to the upper edges of the cuts, are 
determined by the values yt, X: on L; in addition, it is assumed that the resultant 
vector of the forces, applied to the lower edges, is known. The sum of these vectors 
is the vector (X, Y). 

Secondly, that the displacements must be single-valued, as in the case of 
the first fundamental problem. Finally; that on the lower edges of the 
cuts the expression 2fl(u + iv) assumes given values, and not only apart 
from certain constants; as in 3°, it is sufficient for this purpose to express 
that 2f.L(u + iv) assumes on the lower edges of the cuts the given values 
apart from a constant which is the same for all cuts. In this way one 
obtains a system of 2'n + 2 linear equations, since the first group renders 
four, the second n equations one of which is a consequence of all the others 
by the strength of the equations of the first group, while the last group 
contains n - 1 equations. These equations determine the 2n + 2 un
known coefficients and it is easily verified, on the basis of the uniqueness 
theorem (which obviously holds under the given conditions), that this 
system has always a unique solution. 
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D. I. Sherman [13J did not subject the unknown solution to the conditions, 
securing uniqueness, in contrast to what he did in his paper [12J in which he solved 
the first fundamental problem. Therefore his solution of the problem, considered 
just now, contains constants which cannot be determined without additional 
conditions. Sherman gave no study of his solution and assumed these constants 
to be arbitrary. 

For example, consider the case where there is only one cut L == ab 
the lower edge of which does not move (u- == v- == 0 on L), while the 
upper edge is free from stresses (Y: == X; == 0 on L), and where the 
stresses and rotation vanish at infinity (r == r' == 0). Further, let it 
be assumed that the vector of the external forces, applied to the lower 
edge, is equal to (0, - Po). 

This problem may be interpreted as follows: a rigid straight strip has 
been welded to the lower edge on which acts a symmetrically distributed 
force of magnitude Po in the negative y direction. 

In the present case, n == 1, 11(t) == 12(t) == 0, 

X 1(z) = (z - a)-Yl (z - b)Yl-l, X 2(z) == (z - a)-Y2 (z - b)Y2-1 

and, since <I>(z) and Q(z) must vanish at infinity (because r = r' == 0), 
one has, by (120.41) and (120.42), 

<J>(z) = C1X 1(Z) + C2X 2(Z), Q(z) = -iyXC1X 1(Z) + iYXC2X2(Z), 

where C1 and C2 are constants. These Gonstants are determined on the 
basjs of the conditions, following from (120.1) and (120.5), i.e., for large I z I 

cI>(z) _ iPo _1 (_1) Q(z _ - ixPo _1 0 (_1 ) 
- 27t(1 + x) z + 0 Z2' ) - 27t(1 + x) Z + Z2' 

whence, assuming that X 1(z) and X2(Z) refer to branches for which 
lim zX1(z) == lim ZX2(Z) = 1, 
Z~OO 

. 
l.e., 

Z-""OO 

G' C _ iPo 
1 + 2 - 27t(1 + x) , 

c _ iPo(1- iyx) 
1 - 47t( 1 + x) , 

C
2 
= iPo(1 + iyx) . 

41t(1 + x) 



CHAPTER 20 

SOLUTION OF BOUNDARY PROBLEMS FOR REGIONS, 
BOUNDED BY CIRCLES, AND FOR THE INFINITE PLANE, CUT 

ALONG CIRCULAR ARCS 

Important boundary problems for the circle and for the infinite plane 
with circular holes may be easily solved in a manner analogous to that 
used in the preceding chapter. The solutions of the first, second and 
mixed problems for these cases, and likewise for a more general case 
to be considered in Chap. 21, were given by I. N. Kartzivadze in his 
dissertation parts of which have been published in his papers [1, 2J; 
only finite regions are considered, since the case of infinite regions may 
be solved by analogous means. Those results of Kartzivadze which refer 
to regions bounded by circles will be studied in §§ 121-123. 

B. L. Mintzberg [IJpublished recently a solution of the mixed problem 
for an infinite region with circular holes; he was apparently only ac
quainted with the first of the above papers by Kartzivadze. 

In § 124, the solution of the fundamental problems for an infinite 
region cut along circular arcs will be given. 

§ 121. Transformation of the general formulae for regions, 
bounded by a circle. Let L be the unit circle with centre at the origin 
and let S+ be the inside of this circle and S- the remaining part of the 
plane (excluding L). 

Let the elastic body occupy one of the regions 5-, S+. Introduce polar 
coordinates r,'& by the relation 

z = x + iy = reifJ. 

...-... ...-. .-... 
and, as in § 39, denote by rr, &&, r& the stress components in polar co-
ordinates. The formulae, expressing these components in terms of the 
functions <I>(z) and 'F(z) (§ 39), will now be written as follows [(39.4), (39.5), 
where in the latter e2i~ has been replaced by (zjz)]: 

..-. ..-. 
rr + && = 2[<I>(z) + <I>(z)], (121.1) 

525 
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-
- - - - z 
rr + ir& = <l>(Z) + <l>(Z) - z<I>'(Z) - - 'Y(Z). 

z 
(121.2) 

Further, the formula 

2fl(u + iv) = xrp(z) - zcp'(z) - t.l;(z) + const. (121.3) 

will be recalled which expresses the displacement components u, v (in 
rectangular coordinates) in terms of the functions cp (z), tfJ (z), related to 
<l>(z) and 'f(z) by the formulae cp' (z) = <I>(z), ~'(z) = 'Y(z) ; differentiating 
(121.3) with respect to &, one finds the formula 

2/L(u' + iv') = iz [ x<1>(z) - <1>(z) + z<1>'(z) + ! '¥(z) J (121.4) 

where now 
, ou 

u =-, 
8& 

ov 
v' =-. 

0& 

The functions <I>(z) and 'F{z) are holomorphic in the region under 
consideration (5+ or S-). When this region is S-, these functions have 
for large I z ! the form 

<1>(z) = r _ X + i~~1 + 0 (_1 ), (121.5) 
27t( 1 + )() z Z2 

'¥(z) = r' + x(X - iY) ~ + 0 (_1 ), (121.6) 
21t (1 + x) z Z2 

where in the former notation 

r == B + iC, r' = B' + ie', (121.7) 

B - t(N + N) C 2fl€oo r' l(N N) -2icc -4 1 2' = , = -2 1- 2 e · 
1+)( 

(121.8) 

Using a previous notation (cf. § 76), the definition of <I>(z), originally 
defined in S+ [or in 5-], will now be extended to the region S-[ or 5+] 
by writing 

-(1) 1-(1) 1-(1) <1>(z) = - <1> ~ + ~ <1>' ~ + -z2'¥ ~ (121. 9) 

In S-[or 5+], i.e., for I z I > 1 [or! z ! < IJ. 

This extension has been selected in such a way that the values of <I>(z) from the 
right and left of L continue each other analytically through the unloaded parts 
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of the boundary (cf. § 11,2); with this aim in mind, one readily arrives at (121. 9), 
remembering (121.2) and noting that on L 

1 
Z=-. 

Z 

Replacing in' (121.9) z by liz, as one is, by supposition, justified to do 
for 1 z ! > 1 [or for I z I < 1], and assuming now ! z 1 == I z 1 < 1 [ or 
I z I === I z I > 1], one obtains 

<l> ( ~ ) = - <l>(z) + Z<I>'(z) + z2'Y(Z), 

whence, taking conjugate values, 

1 1-(1) 1 '¥(z) === - cI>(z) + - <I> - - - <I>'(z). 
Z2 Z2 Z Z 

(121.10) 

Since the components of stress and displacement may be expressed 
in terms of <I>(z) and 'Y(z), they may also, by use of (121.10), be expressed 
in terms of <I>(z) only, which is now defined throughout the plane (ex
cluding L). 

When 5+ is the region occupied by the body, the function <Il(z) is 
holomorphic in 5+ as well as in 5-, including the point at infinity; this 
follows from (121.6) and (121.9). However, the behaviour of <I>(z) at 
infinity must be subject to several conditions, in order that the cor
responding function '¥(z) will be holomorphic in 5+. In fact, let 

<Il(z) === Ao + A1z + A2Z2 + ... (for I z I < 1), 

Bl B2 
<J>(z) === Bo + - + - + ... 

Z Z2 
(for I z I > 1). 

(121.11) 

In order that '¥(z) , determined by (121.10), will also be holomorphic 
at z === 0, one easily deduces the condition 

Ao+Bo=O, Bl=O. (121.12) 

In the sequel it will be assumed that these conditions are satisfied. 
When 5- is the region occupied by the body, the function <I>(z) is 

holomorphic in 5- (including the point at infinity) as well as in 5+, except 
at the point z === 0 where it may have a pole. In fact, (121.9) together 
with (121.5), (121.6) shows that near z == 0 

r' x(X + iY) 1 
<I>(z) == ~2 + ( - + a holomorphic function. (121.13) 

z 2n 1 + x) z 
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The stress components will be obtained in terms of the function <I>(z) 
from the formulae (121.1) and (121.2), if one understands by'Y(z) in 
these formulae the expression (121.10). In order to give (121.10) the 
form which is most convenient for the present purpose, it may be noted 
that by (121.10) 

- - (1) <I>(z) - Z <1>' (z) == Z2,¥(Z) - <I> Z ; 

substituting this expression in (121.2), one finds 

- - (1) ( 1)-rr + i r.& = <I>(z) - <I> z + Z Z - -; o/(z), (121.14) 

where on the right-hand side one should understand by 'Y(z) the expression 
(121.10) . 

Similarly, one obtains from (121.4) 

2~(u' + iv') = iz [x<l>(Z) + <I> ( ~ ) - z (z - + ) o/(z) J (121.15) 

where again 'Y(z) is given by (121.10) and, as before, 

, OU 
u ==-, 

8& 

, ov 
v ==~ 

8% 
(121.16) 

It will now be assumed that <l>(z) is continuous at L from 5+ and from 
S-, except possibly at a finite number of points Ck of L near which 

canst. I 
I <I>(z) I < - (x' O<cx<l; (121.17) 

I z - Ck I 
-in addition, it will, be assumed that for all points t on L, except possibly 
the points Ck 

lim (1 - r) <I>'(z) = 0, z == rei
&. (121.18) 

r-+l 

It is easily seen, on the basis of (121.10), that 

lim (z - ~) '¥(z) == lim e-i& (r - _1 ) '¥(z) == o. 
r~l Z r-+l r 

( 121.19) 

- ....-..... 
If L contains unloaded sections L', i.e., if on L': rr = r& == 0, then, 

as shown by (121.14), <1>+(t) - <I>-(t) == 0 onL'. Consequently, the values 
of <I>(z) inside and outside of L are analytic continuations through 
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the unloaded sections of the boundary, as in the case of the half-plane. 
In fact, the definition (121.9) of <I>(z) in S-[or 5+] was chosen in order to 
ensure this property. 

A number of fundamental boundary problems for the circle are easily 
solved by use of the preceding formulae in a manner, similar to that 
used in Chap. 19 in the case of the half-plane. 

§ 122. Solution of the first and second fundamental problems 
for the region, bounded by a circle. These problems have been 
previously solved by different methods. Their solution will be outlined 
here as an illustration of the new method. 

1°. First fundamental problem for the circle 
In this case 5+ is the region, occupied by the body, and the boundary 

condition has the form 
..- ..-
pp+ + i p&+ = N(t) + iT(t), (122.1 ) 

where Nand T are the normal and tangential stresses on L which will 
be assumed known. By (121.14), this boundary condition takes the form 
C cf. remarks following (113. 1)] 

<t>+(t) - <I>-(t) == N(t) + iT(t). (122.2) 

One has thus arrived at the problem, solved in § 108; in the present 
case it is required to find the solution, bounded at infinity. Applying 
( 108.2), one finds 

<I>(z) = -~f N(t) + iT(t) dt + Bo. 
27tt t - Z 

(122.3) 

L 

where Bo == <1>( 00) is a constant, at present unknown. In order to de
termine Bo and also to ascertain whether the problem is possible, con
sider (121.12) which must, by supposition, be satisfied. 

For this purpose the constants Ao and B1 of (121.11) will be calculated. 
One has 

21t If dt If Ao = <1>(0) = -, [N(t) + iT(t)] - + Bo == - (N + iT)d& + Bo, 2nt t 2~ 
L 0 

21t 

B1 = lim [z<l>(z)] = - -l-.fCN(t) + iT(t)]dt = - _1 f(N + iT)ei& d&. 
Z~OO 27tt 2n 

L 0 
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The conditions (121.12) give then 
21t If -- (N - iT)d& + Bo + Bo == 0, 

21t 
o 

21t 

f (N + iT)ei
& d& = O. 

o 

The first of these formulae shows that one must have 

if this condition is satisfied, then 2iC 

fRBo == - _1 fNd&. 
47t 

o 

(122.4) 

(122.5) 

(122.6) 

The conditions (122.4) and (122.5) express that the resultant vector 
and moment of the external forces vanish, which are necessary for the 
existence of solutions. 

The formula (122.6) determines the real part of the constant Bo; the 
imaginary part of Bo remains undetermined, as was to be expected, 
because it only influences the rigid body motion. Thus the problem is 
solved. 

2° . Fir s t fun dam e n t a I pro b I emf 0 r the pIa n e 
with a circular hole 

This problem may be solved in the same way as the preceding one. 
In this case ...--.. .......-... 

pp- + ipS-- = N(t) + iT(t), ( 122.7) 

where N(t) and T(t) are the given external normal and tangential stresses; 
as in § 87a and § 56, N is the projection on the normal, directed towards 
the centre, while T is the projection on the tangent which points to 
the left as one looks along the positive normal. It will be assumed that 
N(t) and T(t) satisfy the H condition. 

On the basis of (121.14), this condition takes the form 

<P+(t) - <I>-(t) = - [N(t) + iT(t)] (122.8) 
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whicl1 is of a similar form as (122.2). However, in the present case, one 
has to find a solution \vhich has at infinity the given value r and at z == 0 
a pole with the principal part equal to 

r' x(X + iY) 1 
Z2 + 2T.:( 1+ x} --;.-; 

this follows from (121.5) and (121.13). Therefore, applying the results 
of § 108, one finds immediately 

1 j-'lV(t) + iT(t) x(X + i}r) 1 r' 
<I>(z) = - -. ----- dt + r + ---- - + -. (122.9) 

27tz . t - z 2!.L( 1 + x) Z Z2 

L 

The quantities X, Y (i.e., the components of the resultant vector of 
the external forces) may be calculated directly from the given data; 
in fact, 

21. 

x + iY = - I (N + iT}e;& dfi). 

o 

The constants rand r', ho\vever, which determine the stresses and 
the rotation at infinity must be assumed kno\vn. It is readily verified 
that the displacements ,viII be single-valued. 

The problem is thus solved. It is easily seen that for r === f' === 0 the 
present expression for <I>(z) in 5- agrees ~·ith that obtained in § 87 a 
(\vhere it had been assumed that the stresses and rotation vanish at 
infinity). 

3°. The second fundamental problem for 5+ and 
5- may be solved in an analogous manner, beginning with (121.15). This 
will be left to the reader. 

§ 123. The mixed fundamental problem for a region, bounded 
by a circle. This problem has so far not been solved. Let Lk = akb k 

(k === 1, 2, ... , n) be given arcs of the circle L, denoted in such a way 
that the ends are encountered in the order av bv ... , an, bn , av when 
passing around the circle in the counter-clock\vise direction. The union 
of these arcs will be denoted by L', so that 

L' = Ll + L2 + ... + L n , 

and the remaining part of L by L". 
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Let the components of displacement and of stress be given on L' 
and L" respectively. 

Since the problem of the case, Yvhere the external stresses are given 
along the entire boundary, has already been solved, the mixed problem 
under consideration may be reduced to the case where the displacements 
are given on the segments Lk = akb k , while the remaining part of the 
boundary is free from external stresses. (The solution of the general 
problem may also be obtained directly; cf. the Note at the end of this 
section.) 

1°. Solution of the mixed problem for the circle 
Consider first the case where 5'+, i.e., the inside of the unit circle, 

is the region occupied by the body. The boundary condition then takes 
the form 

u+ + iv+ = g(t) on L' , 

-- --rr+ + ir&+ = 0 on L", 

(123.1 ) 

( 123.2) 

where g(i) is a function, given on L'. It will be assumed that the derivative 
g' (t) satisfies the H condition. 

On the basis of (121. 15), one obtains from (123.1) 

x<l>+(t) + <Il-(t) == 2fLg'(i) on L', (123.3) 
where 

g'(t) = dg = _ ie-i~ dg . 
dt d& 

( 123.4) 

On the other hand, (123.2) leads, as noted earlier, to the condition <I>+(i) -
- <I>-(t) = 0 on L" which expresses that <I>(z) is holomorphic in the entire 
plane, cut along L'. 

Thus the problem of finding <I>(z) is reduced to the determination of 
a solution of the problem, considered in § 110, which must be bounded 
at infinity. In the present case the constant g of § 110 is equal to - l/x 
and 

j(t) = 2(l. g' (t). 
x 

By (110.5), 

Y = _1_. log ( __ 1 ) = _ log (~x) 
2~z x 2nz 

log" 
- - 21ti +-2-, 

I.e., 



CHAP. 20 REGIONS WITH CIRCULAR BOUNDARIES 

where 
log x 

~=--
27t 

Therefore, by (110.2), 

n 
Xo(z) = II (z - ak)-Hf3 (z - bk)-!-+i~, 

k=l 
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( 123.5) 

( 123.6) 

where one has to understand by Xo(z) that branch which for large I z , 
has the form 

1 cx_n+1 Xo{z) = - + + .... zn zn-l (123.7) 

Applying (110.18) and remembering that <D{z) is to be bounded at 
infinity, one finds 

[.LXo(z) f g'(t)dt 
<I>(z) ="Ttix xt (t) (t _ z) + X o(z)P " (z), ( 123.8) 

L' 

where P n(z) is a polynomial of degree not higher than n: 

Pn(z) = CoZn + C1zn-l + ... + en. (123.9) 

The const~nts Co, Cv ... , en have still to be determined so that they 
satisfy all the requirements of the original problem, i.e., the conditions 
(121.12) and the boundary condition (123.1); it will not be sufficient to 
satisfy only (123.3) which was obtained from (123.1) by differentiation 
with respect to it. It should be noted that (123.1) has to be fulfilled 
exactly, apart from a constant which must be the same for all L k , because 
then it may be satisfied exactly by a suitable choice of the arbitrary 
constant on the right-hand side of (121.3). It is easily seen that this last 
condition may be expressed by the relations 

f [x<l>+(to) + <I>-(to)] dto = 2!L[g(ak+1) - g(bk)], 
(123.10) 

k = 1, 2, ... , n, (a k+1 = a l ), 

where <J>+(to) and <I>-(to) must be obtained from (123.8). Since <I>+(to) = 

<I>-(to) on the arcs bkak+V the conditions (123.10) give 

(x + 1) f <l>o(to)dto + i~oAk; C; = 2!L[g(ak+1) - g(bk )] , (123.11) 

bkak+l 
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\vhere 

( 123.12) 

L' 

(123.13) 

One has thus obtained n linear equations in Co, Cv ... , en. The 
conditions (121.12) have still to be satisfied. It is readily verified that 
the second of these is a consequence of the conditions (123. 11), obtained 
above. In fact, it follows from (123.11), equivalent to (123.10), that 

f [x<l>+(to) + <I>-(to)]dto = 0, 

since, by (123.3), 

([x<l>+(to) + <I>-(to)]dto = 2fL[g(b k ) - g(a k )]. 

v 

However, since <I>(z) is holomorphic in 5+, the integral over the first 
term vanishes; hence 

and this means that the coefficient Bl in the expansion for <I>(z) in de
creasing powers of z near the point at infinity is equal to zero. 

Thus there remains only the first condition of (121.12) which may 
be written 

<1>(0) + <1>( 00) = 0, 

so that, by (123.8), 

- fl f g'(t) dt 
0 0 + Xo(O)C" + nix xt(t) -t == o. ( 123.14) 

L' 

Consequently, one has finally the n + 1 linear equations (123. 11) and 
(123.14) for the determination cif the constants Co, C1 , •• 0'. Cn, or, 
more correctly, a system of 2n + 2 linear equations for the determination 
of the real and imaginary parts of these constants. 
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It has still to be shown that this system has always a unique solution. 
But for this purpose it is sufficient to verify that the homogeneous system, 
obtained for g(t) ::::= canst., has no other solution except Co == C1 = ... 
= en == o. However, this is a direct consequence of the uniqueness 
theorem for the mixed problem. 

2° . Sol uti 0 n 0 f the mix e d pro b I emf 0 r the pIa n e 
with a circular hole 

This may be treated in quite an analogous manner. As mentioned in 
the introduction to this chapter, the solution of this problem was re
cently published by B. L. Mintzberg [IJ; his solution (for the particular 
case n == 1) is somewhat more complicated than that given here. 

In the present case, the boundary condition has the form 

u- + iv- == g(t) on L', (123.15) 

-rr~ + i rit- = 0 on L'" 

it follows from (123.15), using (121.15), that 

<I>+(t) + x<ll-(t) = 2fLg' (t), 

, 

while (123.16) gives, as before, $+ - <1>- == 0 on L". 

( 123.16) 

( 123.17) 

It is now required to find a solution <I>(z) which (as in the preceding 
case) is bounded at infinity and has at the point z = 0 a pole of not higher 
than second order [cf. (121.13)]. 

It will be assumed that the stress components at infinity, i.e., the 
constants r, r' in (121.5), (121.6), as well as the resultant vector (X, Y) 
of the external forces, applied to L', are given. 

As before, the results of § 110 will be applied for the solution of the 
problem (123.17). This time 

j(t) == 2tLg' (t), 

log (- x) log x 
= -21tT + J, 2ni (I 

y== 

I.e. , 

y = t - i~, 

where ~ is the same as previously, viz. 

log x 
~ = . 

21t 
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In the present case 
n 

XO(Z) == II (z - ak)-!+if' (Z - bk)-l-ir3 , ( 123.18) 
k=l 

where one has again to select a branch, satisfying (123.7); the general 
solution of the problem (123. 17), satisfying the conditions stated above, 
is given by [cf. (11 0.26)J 

l-LXo(z) f g'(t)dt {D2 Dl } 
<I>(z) = -----;;i xt (t) (t _ z) + Z2 + -z- + P n(z) X o(z), ( 123. 19) 

L' 

where P n{z) is a polynomial of degree not higher than nand D l , D2 are 
constants. These cons~ants are immediately determined from the con
dition [cf. (121.13)J that near z == 0 

z {D2 Dl} _ ~ x(X + iY) _1 0(1) 
X o( ) 2 + - 2 + 2 (1 +) + · ( 123.20) z Z Z 1t X Z 

Similarly, the coefficients Co and C1 of ~n and zn-l in the polynomial 
Pn{z) are determined by the conditions [cf. (121.5)J that for large I z I 

x + iY 1 ( I ) <I>(z) == r - -- - + 0 - ; 
21t( X + 1) Z Z2 

(123.21) 

in particular, Co == r. The values of the remaining coefficients C2, ••• , Cn 

are found from conditions, completely analogous to the conditions 
(123.10). It is easily seen that the required single-valuedness of the 
displacements will then be ensured. 

NOTE. It has been assumed that the part L" of the boundary is free 
from external stresses. However, the solution of the case, where L" is 
subjected to arbitrarily given loads, is easily written down; for this 
purpose it is sufficient to refer to the statements in § III (cf. also the 
Note at the end of § 114). 

§ 123a Example. 
This example was presented in the paper [IJ by B. L. Mintzberg who started 

from his own g~neral formulae which are more complicated than those deduced 
here; he was therefore obliged to evaluate several integrals, in contrast to the 
present method where the solution is obtained almost without any calculations. 
Other problems, treated in Mintzberg's paper, may likewise be solved in this 
way. 
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Let a rigid stamp be applied to the arc L' = ab of the circular hole 
of radius 1; let the profile of this stamp be an arc of a circle of the same 
radius and let it be rigidly attached to the elastic body. A normal force 
of magnitude Po which is distributed symmetrically is applied through 
the stamp. It will be assumed that the 5tresses vanish at infinity. 

Further, let the centre of the arc ab lie on the positive part of the Oy 
axis, so that X = 0, Y = Po. In the present case, n = 1, g{t) = const., 
g'(t) = 0, r = r' == o. Therefore, by (123.19), 

{ Dl D2} <I>(z) = Xo(z) CoZ + C1 + - + - , z Z2 

where 

)(o(Z) == (z -- a)-!+i~ (z -- b)-t-i~ 

with the supplementary condition lim zXo(z) == 1. 
Z-+OO 

It follows from (123.20), since r' = 0, X + iY == iPo, that 

ixPo 
D2 = 0, D1XO(0) = ( ) , 

27t X + 1 

and from (123.21), since r == 0 and, for large I z [, Xo{z) = Z-l + 0(1), 
that 

iPo 
Co = 0, C1 = - ( ) · 27t X + 1 

I t is also easily established by investigating the changes in the arguments 
of (z - a) and (z - b) as z moves along the Ox 'axis from infinity to the 
point z = ° that 

where c.v is the central angle subtended by the arc ab, and consequently 

xPoe-6)~ 
D1 = . 

27t(x + 1) 

With those values for the constants one finally obtains 

P {XC~B } <I>(z) = 0 (z - a)-t+ i (3 (z - b)-!-iB . - i , 
27t(x + 1) z 

and the problem is solved. 
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§ 124. Boundary problems for the plane, cut along circular 
arcs *). Let an elastic body occupy the plane} cut along the arcs 
LI = albl , .. " Lk == akbk of one and the same circle. As previously, 
it will be assumed that the ends of the arcs are encountered in the order 
av bl , .•. , an, bn , a1 as one moves around the circle in an anti-clockwise 
direction. The union of these arcs will now be denoted by L, so that 

L = Ll + L2 + ... + Ln· 

Let the radius of the circle be of unit length and its centre coincide 
with the origin. 

The solution of the boundary problems for such a body may be obtained 
in a similar manner as in the case of the plane with straight cuts (§ 120). 

A beginning will be made with (121.1)-(121.3) in which now <I>(z) and 
'Y(z) are defined throughout the plane, cut C!-long L, and instead of 
'Y(z) a function Q(z) will be introduced which will be defined in the 
following manner: 

-(1) 1 - (1) 1 -(1) Q(z) == <I> --; - --; <1>' --; - -;2 'If --; , (124.1 ) 

whence 

1 1 -( 1) 1 'F(z) == - <p(z) - - Q - - - <I>'(z). 
Z2 Z2 Z Z 

( 124.2) 

It follows from (124.1) that Q(z) is holomorphic everywhere in the 
plane cut along L (including the point z == 00), except at z == 0 where 
it has a pole of not higher than second order. In fact, it is easily seen 
from (121.5) and (121.6) that near z == 0 

r' x(X + iY) 1 .. 
Q(z) == - ~ - - + a holomorphlC functIon; ( 124.3) 

Z2 2n(x + 1) z 

if this condition is satisfied, the function 'Y(z), defined by (124.2), will 
satisfy the condition (121.6). 

Further, in order that 'Y(z), as given by (124.2), will be holomorphic 
near the point z == 0, the function Q(z) must satisfy certain conditions; 
in fact, if 

<I>(z) = Ao + A1z + ... (for I z I < 1), 

Bl (124.4) 
Q(z) = Bo + - + ... (for I z I > 1), 

z 

*) To the Author's knowledge, no solution of these problems has been published 
previously. 
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then, for 'Y(z) to be holomorphic near z = 0, it is necessary and sufficient 
that 

Ao == 130' Bl == o. ( 124.5) 

It will also be recalled that for large I z I 

<I>(z) = r _ X + iY ~ + 0 (_1 ). 
27t(x. + 1) Z Z2 

(124.6) 

Since the cOlnponents of stress and displacement may be expressed in 
terms of <D(z), o/(z), they may likewise be expressed in terms of <I>{z) and 
Q(z). In fact, 

;; + i ~ = <I>(z) + n ( ~ ) + z (z - + ) o/(z) , .( 124.7) 

2[L(tt' + iv') = iz [x<I>(Z) - n ( ~ ) - z (z -+ ) o/(z) 1 (124.8) 

where.o/{z) is now given by (124.2) and 

, OU 
~[, ==-

8& ' 

8v 
v'=-

8& 

It will now be assumed that for ali points t == ei& on L, except the 
ends ak , bk , the functions <P(z) and Q(z) are continuous at L from the 
left and from the right and that 

lim (1 - r)7{z) === o. (124.9) 
r4>o1 

In addition, it will be assumed that near any end c 

1 
<I>(z) const. 

I < i let ' z-c 
const. 

I Q(z) 1 -< , 0 < tZ < 1. (124.10) I z - C 1(% 

By means of the above formulae, all the boundary problems, solved in 
§ 120 for the case of straight cuts, may now be solved for the present 
type of cuts by methods, quite analogous to those used in § 120. In 
view of this analogy, consideration will here be restricted to the solution 
of the first fundamental problem, when the stresses on both sides of L are 

.............. - ......-..-.... 
given, i.e., when the values of rr+ + ir&+ and of rr- + ir&- on L are 
known. 

In addition, it will be assumed that the values of the stresses at infinity, 
i.e., the values of the constants Band r', as defined by (121.8), are known. 



540 VI. APPLICATION OF THE PROBLEM OF LINEAR RELATIONSHIP § 124 

Let the rotation vanish at infinity, i.e., assume that C == 0 and therefore 

r == r == B. 
By (124.7) and (124.9), 

- - - -<I>+(t) + Q-(t) == rr+ + i r&+, <I>-(t) + Q+(t) == rr- + i r&- on L, (124.11) 

whence, 3..dding and subtracting, one finds 

[<I>(t) + Q(t)J+ + [<I>(t) + Q(t)J- == 2P(t) 

[<I>(t) - Q(t)J+ - [<I>(t) - Q(t)J- == 2q(t) 
on L, 

where P(t) and q(t) are the following functions, given on L : 
- - 2- -

P(t) == t[rr+ + rr-] + 2 [r3-+ + rit-], 

- - 2 - -q(t) == t[rr+ - rr-] + 2 [r&+ - r&-]. 

(124.12) 

(124.13) 

(124.14) 

It will be assumed that these functions satisfy the H condition on L. 
Taking into consideration that the function <I>(z) - Q(z) is bounded 

at infinity and has, in accordance with (124.3), at z == 0 a pole with the 
princi pal part _r' + _x_(X_+_iY) 

Z2 2tt{x + 1) 

1 

Z 

one obtains from (124.13), using (108.5), 

<1>( ) "( ) - 1 f q(t)dt D x(X + iY) 1 r' z - ~l. Z - -. + 0 + .- + -, 
1t'l t -z 2tt{x + 1) z Z2 

L 

where Do is a constant. 
Similarly, one obtains from (124.12), using (110.26), 

<I> z Q z - _1_ r X{t)P{t)dt 1 { Dl D2} 
( ) + () - niX(z) ~ t - z + X(z) P n(z) + z + Z2 ' 

L 

where X(z) denotes one of the branches of 
n 

X(z) == IT(z - ak)* (z - bk)! 
k=l 

( 124.15) 

which is single-valued in the plane, cut along L, and X(t) has been 
written for X+(t), i.e., the value of X(z) on the left side of L; further, 
Dl and D2 are constants and 

Pn(z) === CoZn + C1zn-l + ... + en 
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is a polynomial of degree not higher than n. [Note that, in applying 
(110.26), use has been made of the fact that Xo(z) = IjX(z)J. 

Thus 

- 1 f X(t)P(t)dt ~I-f q(t)dt 
<P(z) - X( ) + 2 . + 27t2 Z t - Z 7t2 t - Z 

L L 

1 { Dl D2} Do x(X + iY) 1 r' 
+ 2X(z) P n(z) + ---;-- + ~ + 2 + 41t(x + 1) --; + 2z2' (124.17) 

Q(Z) = 1 f X(t)P(t)dt _ -I-f q(t)dt + 
27tiX(z) t - z 27ti t - z 

L L 

1 { Dl D2} Do x(X + iY) 1 r' 
+ 2X(z) Pn(z) + --;- + 7 - 2 - 41t(x + 1) -; - 2z2 • (124.18) 

The constants Dl and D2 may be determined immediately from (124.3) 
which, by (124.18), takes the form 

1 {Dl + D2} = _ x(X + iY) ~ _ ~ + 0(1) (124.19) 
2X(z) z Z2 41t{x + 1) Z 2Z2 

near the point z == O. If Dl and D2 satisfy this condition (by which they 
are uniquely determined), the right-hand side of (124.17) will be holo
morphic near z == o. 

The remaining constants in the above formulae, I.e., 

( 124.20) 

of which there are n + 2, are determined by the following conditions: 
<1>(00) == r, (124.5) and the single-valuedness of the displacements; 
this last condition (giving n equations) may be expressed in an analogous 
manner as in the case of straight cuts (§ 120, 2°). It is easily shown on 
the basis of the uniqueness theorem that these conditions determine 
the constants (124.20) uniquely. 

There are actually n + 3 conditions for the determination of the n + 2 constants, 
Le., there is one more condition than there are unknown constants. This is due to 
the fact that the quantity X + iY in (124.3) had been assumed known, i.e., it had 
been calculated beforehand from the stresses, given on the boundary. However, 
one may assume that it is initially unknown and find its value together with those 
of the constants (124.20) from the above conditions. Similarly, one could have left 
the coefficient of Z-2 in (124.3) indeterminate in which case one would have to 
retain the condition 'Y( 00) = r'o 
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It will be left to the reader to construct the solutions of the second 
and mixed fundamental problems, where in the latter case the external 
stresses and the displacements are given on the left and right edges 
respectively. 

§ 124a Example 
Ext ens ion 0 f the p I a n e, cut a 1 0 n g a c ire u I a r 

arc. 
Let the elastic plane be cut along the circular arc ab, let the edges of 

the cut be free from external stresses and let the stresses at infinity, Le., 

the constants rand r', be given, while r == r (implying that the rotation 
vanishes at infinity). The radius of the arc will be taken as unity and 
its centre at the origin; the axis Ox will be assumed to pass through the 
midpoint of the arc ab which subtends at the origin an angle 26 so 
that 

(124.1 a) 

In the present case, 1~ == 1, P(t) === q(t) == 0, X == Y == o. Hence one 
finds from (124. 17) and (124. 18) 

1 { Dl D2 } Do r' 
<I>(z) = 2X(z) Co + C1 + -z- + Z2 + 2 + 2z2 ' (124.2a) 

1 { Dl D2 } Do r' 
Q(z) = 2X(z) CoZ + C1 + -;- + Z2 - 2 - 2z2 ' (124.3a) 

where now 

X(z) == V(z - a) (z - b) == vz2 - 2z cos e + 1. ( 124.4a) 

It will be assumed. that Z-lX(Z) -* 1 for z -+ 00. It is easily seen that 
under this condition X(O) == - 1 and hence, near z == 0, 

= - ( 1 + ;a + ~ :: + ... ) (1 + 2
Z

b + ~ ~: + ... ) = 

1 + 3 cos 26 == - 1 - z cos 8 - - Z2 + .... 
4 

( 124.5a) 
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Hence for small I z I 

_._1 __ (Dl + !!~) == _ D2 _ _ D1 + D2 cos () _ D1 cos 8 _ 
2X(z) Z Z2 2Z2 2z 2 

1 + 3 cos 28 
8 D 2 + ..., ( 124. 6a) 

and (124.19) gIves 

(124.7 a) 

For the determination of Do, Co, ClJ one may use the formula (124.6), 
which now has the form 

. 1 ) 
<I>(z) = r + 0 ( ~ for large I z I , ( 124.8a) 

and the conditions (124.5). Since for large! z I 

1 1 cos 8 
X(z) = --;- + Z2 

+ ... , (124.9a) 

one obtains, by (124.2a) and (124.8a), 

Co + Do == 2r, C1 + Co cos e == o. (a) 

The second condition of (124.5) does not give any new information 
(as it coincides with the second of the preceding conditions). In order 
to formulate the first condition of (124.5), it will be noted that, by (124.2a), 
(124.6a) and (124.7 a), 

C1 Ao == <1>(0) == --
2X(O) 

and that, by (124.3a), 

D1 cos e 
2 

1 + 3 cos 28 D Do _ 
8 2 + 2 -

C1 Do r' sin2 e == - -- + -- + --------
2 2 4 

Co - Do 
Bo == Q(co) == -2-; 

therefore the first condition of (124.5) gives 

Co - Do == - 01 + Do + ~-r' sin2 e. (b) 

The relations (a) and (b) determine all the unknown constants; in 
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fact, one finds 

- e 
Co = t(r' - r') sin2

- + 
2 

- e e 
4r + (r' + r') sin2 -2 COS2

_
2 

---------. (124.10a) 

2 (1 + sin2 ~) 

(124.11a) 

I t is easily verified that the displacements are single-valued; this 
condition has not been used above, since another condition, ensuring 
their single-valuedness, had been introduced into the preliminary analysis. 
Thus the problem is solved. 

I 
I 
I , 
\ , 

\ , , 
" 

, 
o .," .. 

" ... x 

.... , 
.... ----, 

Fig. 56. 

In particular, if the stresses at infinity reduce to a tension p in a direc
tion, forming an angle (J.. with the Ox axis (Fig. 56), then 

p r =-, 
4 

( 124.12a) 



:HAP.20 REGIONS WITH CIRCULAR BOUNDARIES 

If one has uniform tension p in all directions, then 

r = 1., r' = o. 
2 

In this case 

and hence 

p cos e 
e ' 

1 + sin2 -
2 

e ' 
1 + sin2 -

2 

. fJ P Sln2

2 
DO=----e' 

1 + sin2 -
2 

m( ) _ P { z - cos e . 2 () } 
'.VZ - +sln-, 

2 ( I + sin2 ~) vI - 2z cos e + Z2 2 

Q(z) = P { z - cos 6 _ Sin2~}. 
2 (I + sin2 ~) vI - 2z cos e + Z2 2 
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(124.13a) 

( 124.14) 

(124.15a) 

In particular, for a semi-circular cut (6 === 7t/2), these formulae take the 
simple form 

P{ Z I} P{ Z I} <I>(z) = - + -, Q(z) == - - - . 
3 V Z2 + 1 2 3 vi Z2 + 1 2 

(124.16a) 



CHAPTER 21 

SOLUTION OF THE BOUNDARY PROBLEMS FOR REGIONS, 
MAPPED ON TO THE CIRCLE BY RATIONAL FUNCTIONS 

The methods of solution of the preceding chapters are easily extended 
to the cases of regions, mapped on to the circle by rational functions. 
It has already been seen in the preceding Part that the first and second 
fundamental problems for such regions are easily solved in closed form. 

The new method, studied below, leads to the same results, and about 
the same amount of calculation is involved in obtaining the final so
lution as would be required, when using the method of the preceding Part. 

However, the present method offers the possibility of solving also 
the fundamental mixed problem, and likewise some other boundary 
problems. 

§ 125. Transformation of the general formulae *). Let 5 be a 
finite or infinite region in the z plane, bounded by one simple smooth 
contour L, and let 

z = U}(~) (125.1 ) 

be the function which maps S on to the circle ! ~ I < 1 of the ~ plane; 
the boundary of this circle will be denoted by y and its positive direction 
will be assumed to be counter-clockwise. 

If the region 5 is finite, the function <u(~) is holomorphic inside y; 
if 5 is infinite, w(~) is holomorphic everywhere inside y, except at the 
point corresponding to z = 00, where it has a simple pole. Without 
affecting generality, it may be assumed that this point is the centre of y, 
i.e., the point ~ = 0; under this supposition 

(125.1 ') 

where (Uo(~) is holomorphic inside y and c is a constant which is not zero. 

* The results of §§ 125-127 are due to I.N. Kartzivadze [2J; some simplifications 
have been introduced by the Author. 

546 
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The formulae will now be recalled which express the components of 
stress and displacement in the corresponding curvilinear coordinates 
in terms of the functions <D(~) and 'Y(~) of the complex variable ~ == pei

& 

(§ 50): _ ___ 
pp + %& === 2[<1> (~) + <D (~) J, (125.2) 

;;p + ip& = <I>(~) + <I>(~) - P2~,2(~) {(U(~)<I>'(~) + (U'(~)o/(~)}, (125.3) 

"t- - -
2tJ.. I w'(~) I (vp + iv17) == - w'(~) {xcp(~) - w(~)<P(~) - ~(~)}, (125.4) 

P 

\\rhere cp(~), ~(~) are related to cI>(~), '¥(~) by the formulae 

<p' (~) == <I>(~)w' (~), t~' (~) == 'Y(~)cu' (~). ( 125.5) 

In the majority of cases it is more convenient to use instead of (125.4) 
the formula 

2/-L(u + iv) == xq?(~) - (O(~)<I>(~) - ~(~) ( 125.6) 

which gives the displacement components u, v in rectangular coordinates. 
If cp(~), ~(~) are given, the functions <1>(~), 'Y(z) are completely de

termined; ho\vever, if <I>(~), 'Y(~) are given, the functions cp(~), ~(~) are 
only determined apart from arbitrary constants. Hence one may in the 
last case rewrite (125.6) 

2f.L(u + iv) = xq?(~) - w(~)<I>(~) - ~(~) + const., ( 125.6') 

stressing the presence of the arbitrary constant. 
I t will now be assumed that w(~) is a rational junction; the definition 

of <P(~) will be extended into the region I ~ I > 1 by writing 

-(1) 1 - (1) <U'(~)<I>(q = - (U'(~)<I> ~ + ~ (U(~)<I>' -~ + 

+ ~2 W' (f) 0/ ( ~) for I ~ I > 1. ( 125.7) 

This extension has been chosen so that the values of <I>(~) on the left and on the 
right of y extend each other analytically through the unloaded parts of the boundary -L of the region S, i.e., through the segments on which pp = pi} = 0; in this choice 
one was guided by (125.3). 
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Replacing in (125.7) ~ by ~-1 (I ~ 1 = 1 ~ 1 < 1) and going to the conju-
gate complex expression, one finds 

(,)'(~)'Y(~) = ;2 W' ( + ) {<D(~) + <I> ( ~ )} - (,) ( + ) <D' (~). ( 125.8) 

This formula expresses 'Y(~) for 1 ~ 1 < 1 (this function is not defined 
for other values) in terms of <I>(~) for 1 ~ 1 < 1 as well as for 1 ~ 1 > 1. 

The definition of qJ(~) may likewise be extended to the region I ~ I > 1 
by imposing the condition that in this region 

f" 

cp(~) = J <D(~)(,)' (~)d~; ( 125.9) 

integrating both sides of (125.7) with respect to ~, one easily obtains, 
after omitting an arbitrary constant, 

(125.7') 

whence, similarly as before, 

1jI(~) = - (p ( ~) - (,) ( ~) <D(~) for I ~ I < 1. (125.8') 

Thus the components of stress and displacement may be expressed 
in terms of the single function <I>(~), defined for 1 ~ 1 < 1 as well as for 
1 ~ I> 1. - ..--.. 

The expression (125.2) for pp + .&& remains unchanged, while (125.3) 
is easily seen to take the form 

- {I 1}-+ ~2(,)'(~) (,),(t-1) - p2(,)'(~) 'Y(~), (125.10) 

where now 'F(~) is given by (125.8). 

In order to deduce (125.10), one has to proceed as follows: add and subtract the 
function <ll(I/~) on the right-hand side of (125.3) and replace the added term by the 
expression, obtained from (125.8) after going first to the conjugate complex value. 

Replacing y;(~) in (125.6') by the expression (125.8'), one obtains for 
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the displacement components u, v 

2fL(u + iv) = xq?(~) + q? ( ~) - {CJ)(~) - CJ) (-f)} ~(~) + const. (125.11) 

From (50.4) follows the analogous formula 

:~ + i:- = q?(~) - q? (~ ) + {CJ)(l:) - CJ) ( ~)} ~(<:) + const. (125.12) 

In the sequel also the expression for u' + iv' will be required, where 

, ou 
u =-, 

8& 

, ov 
v =-

8& 

This expression will be deduced by differentiating both sides of (125.6) 
with respect to .& and by transforming the resulting expression in the 
same manner as (125.3) above. One thus obtains 

2fL(u' + iv') = il:CJ)'(Q {x~(~) + ~ (.~)} -

_ i 2(U'(~) {~(U(~-1) _ (U(~) } <I>'(~) _ 
P 6J'(~-1) ~(U'(~) 

- ip2CJ)'(l:) CJ)'(~) {CJ)'~-l) - ~Ul~(~J 'f(~). (125.13) 

Under the usual conditions the functions <I>(~) and '¥(~) are holo
morphic inside y. The behaviour of '<I>(~), extended by (125.7) to the 
region I ~ I > 1, will now be studied outside y; it is sufficient for this 
purpose to investigate the behaviour of <I>(~)w'(~) == cp'(~). 

Revert to the formula (125.7) which defines <t>(~) for 1 ~ 1 > 1. The 
rational function 6J(~) may have poles at a finite number of points; all 
these points lie outside y, except in the case, where 5 is infinite and 
where, consequently, cu(~) has a simple pole for ~ = o. 

Denote by ~v ~2' • •• , ~r the poles of w(~) outside y, not counting the 
point ~ = 00 which may likewise be a pole. If the orders of these poles 
are m1 - 1, m2 - 1, ... , mr - 1, the function cu' (~) will have at the 
same points poles of order mI , m2, ••• , m r ; further, if w(~) has at infinity 
a pole of order m + 1, <u' (t:) will have there a pole of order m. 

Thus <I>(~)w'(~) will have poles of order not greater than mI , m2, ••• , mr 
at the points ~1' ~2' ••• , ~r; these poles originate from the first two terms 
on the right-hand side of (125.7), because, as is readily seen, the third 
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term represents a function, holomorphic outside y, including the point at 
infinity. In addition, the point ~ = co may be a pole of order not greater 
than m. 

It should also be noted that in the case of an infinite region <I>(~)(t,)'(~)' 
may have inside y, and, in fact, at ~ = 0, a pole of not greater than the 
second order. 

Thus, all possible poles of the function <I>(~)(t,)1 (~) and the maximum 
orders of these poles are known beforehand. 

Finally, it should be stressed that there will not always be a function 
'Y(~), holomorphic inside y as required by the present conditions, cor
responding to a given <I>(~), defined inside as well as outside y and having 
poles of the stated type. In fact, formula (125.8) shows that 'Y(~), cor
responding to a given 4>{~), may have poles at the points 

,1 I 1 
~1 = ~l' ".""' ~r = ~r ' 

and also at the point ~ = 0, lying inside y. 
Expressing that '¥(~) is also to remain holomorphic at the stated 

points, one obtains a known (finite) number of linear equations, relating 
a certain (finite) number of the first coefficients in the expansions of 
<I>(~) near the points ~~, ... , ~; 

<l> (~) = A kO + A kl (~ - ~~) + A k2 (~ - ~~) 2 + ... , k == 1, 2, ... , r 

to the coefficients of. the principal parts of the poles of the function 
<I>(~) at the points ~v ... , ~r; likewise, a known number of. analogous 
linear relations corresponds to the point ~ = 0. 

In order to verify the above, one has to keep in mind that the principal part 
of the pole of 

at ~~ may be obtained directly from the principal part of the pole of the function 

6)' (~) <}) (~) 

at the point ~k' In fact, if near ~k 

I B z Bl 
6) (~)<I>(~) = (~ _ ~k)l + ... + ~ _ ~k + a holomorphic function, 

then near"(k = ~kl 

(1) - (1 ) (- l)ZBz~~t~l Bl~~~ .. 
6)' y <l> y = I + ... - I + a holomorphlC functIon. 

~ ~ (~ - ~k) z ~ - "(k 

Similarly for the pole at the point "( = o. 
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These relations will not be written down here, but will simply be 
denoted by 

(125.14) 

They are always easily constructed for any given region, i.e., for any 
given function 6.) (~) • 

The construction of these conditions is especially simple in the case, 
where U)(~) is a polynomial, i.e., 

(125.15) 

when 5 is finite, or 

( 125.16) 

when S is infinite. The function <P(~)(O'(~) may then only have poles at 
the points ~ = co and ~ == 0 (the last pole only being possible when 5 
is infinite). 

Note also that, if 5 is infinite, one has near ~ == 0 [cf. (50.14)' (50.15)J 

r X 'Y 1 
<D ) '(>') c + 't 0 ( ) (~w ~ = - ~ + 21t(x + 1) ~ + 1, ( 125.17) 

r'c x(X - iY) 1 
'Y(~)cu'(~) == - - - - + 0(1), 

~2 27t (x + 1) z: 
( 125.18) 

where c is the same constant as in (125. 1') and, in the previous notation, 

. 2~eoo r = B + 'tC == t(N1 + N 2) + ~, 
x+l ( 125.19) 

r ' == B' + iC' == - t(Nl - N 2)e-2i
r:t., 

while X, Yare again the components of the resultant vector of the 
external forces, applied to the boundary of S. 

In future, it will be assumed that <P(~), defined for ! ~ I < 1 and for 
I ~ I > 1, is continuous at all points (J of the circle y from the left as well 
as from the right, except possibly at a finite number of points Yk = ei~k 
near which 

const. 
I <I> (~) I < I ~ _ Y k I'" 0 < a. < 1; ( 125.20) 

in addition, it will be assumed that for all points (j == e1·~ of the circle y, 
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except possibly for the same points Yk = ei&k, 

lim (1 - p )<1>' (pei &) = 0, ~ == pei&. 

By (125.8), one will then also have 

lim (1 - p)'Y(pei &) = 0 (125.22) 

with the same reservations as before. 

NOTE. 1. It is easily seen, on the basis of (125.21) and (125.22), 
that the last two terms on the right-hand sides of (125.10) and (125.13) 
tend to zero as p -+ 1, except possibly for the values (j = Y k. 

NOTE. 2. In the case of infinite regions 5, it is sometimes more 
convenient to make use of transformations on to the region I ~ I > 1 
rather than on to the circle I ~ I < 1; however, this distinction is not 
of great importance. The reader will easily introduce the necessary 
modifications in some of the preceding formulae. 

§ 126. Solution of the first and second fundamental problems. 
These problems have already been solved for regions of the type under 

consideration in Part V. The formulae of the preceding section offer the 
opportunity of solving these problems in a very simple manner. Consider, 
for example, the case of the first fundamental problem, where the 
boundary condition has the form 

..-.. ..-.. 
pp+ + i p&+ = N(O") + iT(O') ; (126.1 ) 

N(O') and T(O') are given functions of the point (j of the circle y, since the 
normal and tangential stresses are given at the point t of the actual 
boundary L which correspond to the point G. By (125.10), one then has 

<I>+(a) - <1>-(0") = N((j) + iT(O'). (126.2) 

Thus one has reached, for the determination of <I>(~), the same boundary 
problem which was obtained in the case, when the region S is a circle 
(§ 122, 1°). The essential difference arises from the fact that the unknown 
function <I>(~) may now have poles outside y, and this circumstance must 
be taken into consideration when constructing the general solution of 
the boundary problem (126.2). 

From the practical point of view it will be more convenient to some
what modify the condition (126.2) by writing it in the form 

[<I> ( O')cu I (0')]+ - [eI>( 0') cu' (cr)]- == [N( (j) + iT( (j)] cu' (0') (126.2') 
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and by choosing <I>(~)(U'(~) as the unknown function. The distribution of 
poles of this function has been discussed in the preceding section; it 
will be recalled that in the case, where the region 5 is infinite, the function 
<l>(~)c.v'(~) may also have a pole (of not higher than second order) inside y, 
and, in fact, at ~ = O. 

The general solution of the problem (126.2') has the form 

1 ,. N() 'T() <I>(~)Cl)'(~) = -.J G + Z G (iJ'(G)dG + R(~), 
27t$ (j - ~ 

( 126.3) 

y 

where R(~) is a rational function of ~ for which the general expression 
is easily written down, since all possible poles and their maximum 
orders of the function <D(~)Cl)'(~) are known. 

The arbitrary constants of R(~) may be determined from the following 
supplementary conditions: 

1. The function 'Y(~), determined by (125.8), must be holomorphic 
inside y. 

2. In the case, \vhere the region 5 is infinite, the stresses must have 
given values at infinity and the displacements must be single-valued. 

The first condition above is expressed by. the relations (125.14) which 
give a set of linear algebraic equations involving the real and imaginary 
parts of the unknown coefficients; the second condition renders similar 
equations. These equations completely determine the unknown constants, 
except for one real constant, in agreement with the fact that <l>(~) is 
only determined apart from an additive term iC, where C is an arbitrary 
real constant. In the case of finite regions, the above equations will only 
be compatible, provided the resultant vector and moment of the external 
forces vanishes. 

The above statements are a direct consequence of the uniqueness 
and existence theorems. 

By means of a more detailed analysis, it may be shown that these assertions are 
not based on the existence theorem (but only on the uniqueness theorem); this 
was done in the paper by I. N. Kartzivadze quoted above (cf. Note 2, § 84). 

The second fundamental problem may be solved in quite an analogous 
manner; on the basis of (125.13), this problem leads to the determination 
of <I>(~) from the boundary condition 

[x<l>(a)w'((j)J+ + [<I>((j)w'(cr)J- == 2(.Lg'(cr), ( 126.4) 
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where ,dg. -i{} dg 
g (0") = dO" = - ze dli ' (126.5) 

g(cr) = gl + ig2, gl and g2 being the boundary values of the displacement 
components ~t, v. 

The amount of calculations, required for the solution of the first and 
second fundamental problems by the present method, is approximately 
equal to that required, when applying the method of Part V. Therefore 
no more will be said about it here, particularly, since the first and second 
fundamental problems are particular cases of the mixed fundamental 
problem which will be considered in more detail in the next section. 

NO'TE 1. In the case of the first fundamental problem for an infinite 
region 5, the conditions 2 above are expressed by (125. 17), (125.18), 
where the real part B of the constant r and the constant r', determined 
by the stress components at infinity, must be assumed known. The 
constants X and Y may remain undetermined, as their values will be 
found from the remaining conditions, referred to above. However, they 
may be calculated beforehand from the given boundary values of the 
stresses; then, when requiring q,(~) and \f(~) to satisfy the conditions 
(125.17), (125.18), one will obtain additional equations which may be 
used to replace some of the other, less simple relations between the 
unknown quantities. 

In the case of the second fundamental problem for infinite regions, 
the constants X and Y as well as r, r' must be assumed known. 

NOTE 2. In order to solve the first and second fundamental problems, 
one may, of course, begin from (125.12) and (125.11) respectively. This 
will be especially convenient in the case of a finite region, because the 
unknown function cp(~) will then be single-valued. However, in the case 
of an infinite region, the multi-valuedness of the unknown function is 
easily removed by separating the logarithmic term, just as it was done 
in Part V. 

§ 127. Solution of the mixed fundamental problem *. 
Let Ll = alb!, L2 = a2b2, ••• , Ln = anbn be the arcs of the boundary 

L of the elastic body S, numbered in such a ,yay that the ends are en
countered in the order av bl , ... , an, bn , when passing around L in the 
positive direction. Let L' == Ll + ... + Ln and L" be the remaining 
part of the boundary. 

* A solution analogous (in the sense of the character of the result) to that 
derived here J but more complicated, was first given by D. I. Sherman [10]. 
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Let the displacements be given on L' and the external stresses on L". 
Without affecting generality, it may be assumed that L" is free from 
external stresses. The general case is also easily solved directly (cf. Note 
at the end of this section). 

Denote by rJ..k, ~k the points of the circle y which correspond to the 
points ak , bk of L, by y' the part of the circle, corresponding to L', 
and by y" the remaining part of y. The points CXk, ~k will play the parts of 
the points Yk, mentioned at the end of § 125. 

On the basis of (125.10) and (125.13), the boundary conditions of 
the present problem may be written 

<1>+( a) - <1>-( a) == 0 on y", 

1 
[<I>(cr)(O'(cr)J+ + - [<I>{cr)w'{cr)J- == I{cr) on y', 

.X 

(127.1 ) 

(127.2) 

where, if gv g2 are the given boundary values of the displacement com
ponents u, v on L', 

I(a) = _ 2[l.i a {dg1 + i dg2 } = 2tL {dg~ + i dg2 }. 

x d& d& x dcr da 
(127.3) 

it will be assumed that I(t!) satisfies the H condition on y'. 
The condition (127.1) shows that y" is not a line of discontinuity 

of the function <I>{~), i.e., that <I>(~) is holomorphic in the plane, cut along 
y', except at a finite number of points, where it may have poles; the 
same is, of course, true with regard to the function <I> (~) (U' (~) • 

For the determination of this last function one has the condition 
(127.2) which is exactly the same as the condition, obtained when dealing 
with the mixed fundamental problem for the case, where 5 is a circle 
(§ 123,1°); however, this time the unknown function may have poles at 
predetermined points ~1' ~2' .... , ~n 00, the order of these poles not being 
higher than the given numbers m1, m2 , ••• , mn m (§ 125). When the 
region S is infinite, there may also occur a pole of not higher than the 
second order at the point ~ = 0 .. 

As in § 123, 1 0, let 
log x 

~=-
27t 

n 

Xo(~) == n(~ - C(k)-i--i(3 (~ - ~k)-!+i~, 
k=l 

(127.4) 

(127.5) 
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where Xo(~) represents the branch for which 

lim ~nXo(~) = + 1; 
t;->oo 

one then obtains, by (110.26), 

U)'(~)<I>(~) = Xo(~) f t(cr)dcr + Xo(~)R(~), 
2m xt(O") (0" - ~) 

y' 

where R(~) is a rational function of the form 

D D 
R(~) = ~: + _~l + Co + Cl~ + ... + Cm+n~m+n + 

+f i" ~_kl_ 
k=l k=l (~- ~k) l 

(in the case of a finite region S: Dl = D2 == 0). 

(127.6) 

(127.7) 

(127.8) 

The constants Dj , Ci , Bkl in (127.8) have still to be determined on 
the basis of the following conditions: 

1. The function 'Y(~), corresponding to <I>(~) and defined by (125.8), 
must be holomorphic inside y. This condition is expressed by the re
lations (125.14). 

2. In the case of an infinite region S, the components of stress and 
rotation must have given values at infinity, the components of the re
sultant vector of the external forces, applied to L', must likewise take 
given values and the displacement components should be single-valued. 
These last conditions are equivalent to (125.17), (125.18) for given values 
of r, r', X, Y. 

3. Finally, the fact must be taken into consideration that, if all the 
above conditions are satisfied, the displacement components u, v will 
only take on the arcs (Xk~k the given values, apart from certain constants 
Ck (k = 1,2, ... , n), because, when solving the problem, it was only 
demanded that the derivatives of u and v with respect to {t have given 
values on these arcs. Thus, one has, in addition to the above conditions, 

(127.9) 

which may be replaced by the weaker conditions 

(127.10) 
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because, when (127.10) is fulfilled, the condition (127.9) may be satisfied 
by use of the arbitrary constant on the right-hand side of (125.6')-

The condition (127.10) may be expressed in a manner, quite analogous 
to that followed in § 123, when S was a circle. Therefore it will be un
necessary to write out the corresponding formulae. 

From the conditions 1-3 above one obtains a known number of 
linear algebraic equations for the determination of the unknown constants 
which will in this way be. completely determined, as is easily seen on the 
basis of the theorems of uniqueness and existence of the solution *_ 

The solution will be particularly simple, when the boundary L contains 
only two arcs alb! == L' and blal == L", i.e., when n == 1; in that case 
the conditions (127.10) are superfluous. 

NOTE 1. When the part L " of the boundary L is not free from 
external stresses, but subject to external loads, the problem is likewise 
easily solved directly. In that case the boundary condition takes the 

form [ <I>(cr)w'(cr) J+ + ~ [<I>(cr}w'(cr)]- = f(cr) on y', 

[ <1>( cr)w' (cr) ] + - [ <1>( cr)w' (cr) ] - = f(cr) on y", 

(127.11 ) 

where 2tJ. {dg 1 . dg 2 } I t(cr) == - ~ + ~ - on y , 
X dG dr; 

(127.12) 

f(cr) = w'(o-) {N(cr) + iT(cr)} on y"; 

N(cr) and T(cr) denote here the same as in § 126. It will be assumed that 
/{(5) satisfies the H condition on each of the parts y' and y" (but that it 
may be discontinuous at the points lI..k, ~k)' 

Applying the results of § 111, one obtains the formula, completely 
analogous to ( 127.7), 

- Xo(~) f t((j)dcr X )R(Y) 
<I>(~) - 2rci xt(cr) (cr _ ~) + o(~ ~ , (127.13) 

y 

* The uniqueness theorem has been proved in § 40. The existence of the solution 
has been proved in the papers by D. I. Sherman [17J and G. F. Mandjavidze [2J, 
referred to earlier. A somewhat more complicated study of the system of linear 
algebraic.equations which has been referred to in the text permits to show that 
it is uniquely soluble without operating on the existence theorem, but only on 
the uniqueness theorem (cf. Note 2, § 84). 
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where Xo(~) and R(~) are the same as before, i.e., as determined by 
(127.5) and (127 a8) ; however, the integral now extends over the entire 
circle y and t( cr) is determined by (127.12). The remaining calculations 
are the same as before. 

NOTE 2. One may (and sometimes this is lnore convenient) solve 
the present problem by beginning with the simpler formulae (125.11), 
(125.12) [cf. Note 2 at the end of § 126J. In that case it must not be over
looked that, when determining the function cp(~) from the corresponding 
boundary condition, this function has to remain bounded near the 
points (/..k, ~k' as follows easily from the conditions, imposed earlier on 
the function <I>(~). 

§ 127a. Example. Sol uti 0 n 0 f the mix e d fun dam e n tal 
problem for the plane with an elliptic hole 

In the notation of § 48,5°, one has in this case for the transformation 
on to the circle ! ~ I < 1 

6)(~) = R(~ + m~), R> 0, 0.;;;; m < I. (127.1a) 

One may also (and even somewhat more conveniently) use the transformation 
on to the region I ~ I > 1; however J the transformation on to the circle will be used 
here, in order to be able to make direct use of the formulae of the preceding section. 

The formulae (125.7) and (125.8) then take the form 

6)'(~)<I>(~) =R(~2 -m)<I>(+)+~-(~ +m~)<D{*)-

6)/(~)'I'(~) = - R (1 - ~~) <I>(~)- R (1 - ~) cl> ( ~) -

-R(~+ ~)<I>'(~) for I~I < 1, (127.3a) 

while (125.17) and (125.18) become 

, Rr X + iY 1 0 
6) (~)<I>(~) = - -~2 + 21t(x + 1) Y + (1), ( 127.4a) 

Rr' x(X - iY) 1 
6)/(Q'I'(~) = - T - 21t(x + 1) -e- + 0(1) . ( 127.5a) 

. 
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For simplicity, assume that n = 1, i.e., that the contour L is divided 
into two parts a1a2, a2aV the second of which is free from external 
stresses, while the displacements are given on the first. 

Denoting by 0"1 and 0"2 the points of y which correspond to the points 
a1 and a2 of the ellipse, one has 

Xo(~) = (~ - (JltHf3 (~ _ (J2ti+ if3, ~ = log~. 
2n 

Let 
( 127.6a) 

(127.7a) 

where &0 is the argument of the midpoint of the arc 0'10'2 and w is the 
angle subtended by this arc at the centre of the circle. 

For large I ~ I 
( 127.8a) 

where 

0"1 + 0'2 (U (U ) IX = 2 + i~((Jl - (J2) = ei~o cos 2 + 2~ sin 2- . (127.9a) 

Further, it is easily verified that 

Xo(O) = - e-[3w-i~o, (127.10a) 
so that for small I ~ [ 

[ ~ ]-!-ir3 [ ~ ]-!+ir3 
Xo(~) = Xo(O) 1 - ~ 1 - ~ = 

= Xo(O)[l + <Xo~ + ... ], (127.11a) 
where 

(127.12a) 

The formula (127.2a) shows that W'(~)<I>(~) must be holomorphic 
outside y, including the point at infinity; further, since <I>(~) is holo
morphic inside y, the function (I}/(~)<p(~) has at ~ = 0 a pole of not highe'r 
than the second order. Therefore, in agreement with (127.7), 

w'(~)<I>(~) = Xo(~) ( t(a)da + 
27ti w X t ( 0') (G - ~) 

( 127.13a) 

where Co, Cv D1, D2 are constants, subject to determination. 
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The values of the constants Dl and D2 are determined directly from 
(127.4a); in fact, by (127.13a) and (127.11a), the principal part of the 
pole of the function <I> (~) <0 I (~) at ~ == 0 is given by 

Xo(O) { ~: + Dl +<: OCoD2 } , 

,v-hence, by comparison with (127.4a), 

X+iY 
XO(O)D2 == - Rr, XO(O)(Dl + r:t..OD2) = ---, 

21t(x + 1) 

the values of Dl and D2 may be obtained from these formulae. 

( 127. 14a) 

The coefficients Co and C1 may be determined by the help of the 
conditions (127.Sa). For this purpose the principal part of the pole at 
~ = 0 of the function 'Y(~)w'(~), as determined by (127.3a), will now be 
calculated. It is given by 

C1 - mD2X O(O) Co + 'i.C1· 

<:2 + <: 

Comparison with (127 .4a), taking into consideration (127 .14a) and going 
to the conjugate complex value, yields 

- x(X + iY) 
C1 = - R(mr + ii'), Co + (XCI = - . (127.1Sa) 

27t(x + 1) 

Thus all the constants have been determined and the problem is solved. 
For m = 0, one obtains the solutions for the infinite plane with a circular 
hole. This case was considered independently in § 123, 2°. 

§ 128. The problem of contact with a ri~id stamp. 
1 0. S tat e men t 0 f the pro b I e m. U n i que n e S s 0 f 

solution 
In very many cases, occurring in practice, the boundary problems 

arise from the contact of the surface of the elastic body under consider
ation with the surfaces of other bodies. Several particular cases of pro
blems of this type have been considered in § 58, §§ 115 - 119. 

The case will be studied here where the given elastic body is in contact 
with an absolutely rigid body of given shape. It will be assumed that contact 
occurs along the entire boundary ot the elastic body and that the surfaces 
of the bodies are perfectly smooth, so that there is no friction. 
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To the Author's knowledge this problem was first formulated and 
solved by J. Hadamard [2J for the case of an elastic sphere. 

The solution of the problem for plane regions, mapped on to the circle 
by means of rational functions, was given in the Author's paper [19J 
and it was reproduced, with some additions, in the preceding editions of 
this book. III the second part of this section a solution will be deduced 
which is somewhat different in appearance, but essentially the same. 

In the later work, consideration will be restricted to the plane case and 
it will be assumed that the boundary of the elastic body consists of one 
simple contour; however, the body may be finite or infinite (infinite 
plate with a hole). Hence one will have to deal with one of the following 
two cases: 

A. Cas e a f a fin i t ere g ion 
An elastic disc is inserted into an opening of given shape in a rigid 

body (plate) ; the boundary and position of the disc, before deformation, 
differs slightly from the shape of the hole into which it is pressed (because, 
as always, displacements have to be small). 

B. Cas e 0 fan i n fin i t ere g ion 
Into a hole in an infinite elastic body (plate) a rigid disc is inserted 

whose boundary and known position, before deformation, differs some
what from that of the hole. In this case it will be assumed that the values 
of the stresses and rotation at infinity are given (i.e., that the constants 
r, r' are kno\vn) as well as the resultant vector (X, Y) of the external 
forces, exerted by the disc on the surrounding material. This vector is 
obviously equal to the resultant vector of the forces, applied from outside 
the disc (the forces, exerted by the elastic body on the edges of the 
disc, are not included here). 

The boundary conditions of these problems will now be constructed, 
although they could have been written down simply on the basis of 
the results of § 115 which hold for the particular case of a straight 
boundary. However, they will be approached here in a somewhat dif
ferent, possibly slightly clearer, manner and certain additional observa
tions will be made. 

First of all, since there is no friction, one will have on the boundary 
of the elastic body 

T = 0, 

where T is the tangential stress, acting on the boundary. 
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Next, the condition of contact between the elastic and the rigid bodies 
will be stated. As indicated earlier, it will be assumed in the sequel that 
contact occurs along the entire boundary. For greater clarity, attention 
,viII be concentrated, for the time being, on the case A. Let the elastic disc 
originally lie on the hole in the rigid plate (like a lid), so that its edge 
somewhat overlaps the edge of the hole. Further, let the points of the 
boundary of the disc, as a result of suitable forces applied to this contour, 
execute normal displacements Vn of such magnitude that in the end the 
boundaries of the disc and of the hole will coincide. The disc will then be 
inserted into the hole. The disc will no\¥ be in some state of elastic equilibri
um which is to be determined. Since the points of the edge of the disc can 
slip freely along the edge of the hole, the tangential displacements on the 
boundary will be initially unknown. However, the normal displacements 
Vn will be given, since they will be determined by the position of the 
boundary of the disc before deformation relative to the edge of the hole. 
Thus the boundary conditions of the present problem are 

T = 0, Vn = t on the boundary, (128.1 ) 

where t is a given real function of the arc coordinate of the contour. 
Consider novv the following circumstance. The process of compressing 

the disc until it has the dimensions of the hole (by means of normal 
displacements vn ) ma~y be performed, beginning from different positions 
of the disc before deformation; all these positions ma:y be obtained 
from some fixed position by means of rigid body displacements of the 
disc (as al\vays, one is here only concerned with small displacements). If 
one begins from some position of the disc (before deformation), differel1t 
from that on which the second condition of (128. 1) was based, the 
quantity / there will have a value /' which differs from / by the normal 
components of the rigid body displacement necessary to return the disc 
to its original position; the boundary conditions will now be 

T == 0, Vn == I' on the boundary. ( 128.1') 

However, it is obvious that the solution of the problem (128. I') may 
be obtained from that of (128.1) by superimposing on the latter the 
above-mentioned rigid body displacement which is known not to affect 
the stress distributions. 

Next consider Problem B (of an infinite region). Repeating the above 
reasoning almost word for word, one arrives again at (128.1) which has 
now to be supplemented by the conditions, stated earlier (i.e., that the 
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constants r, r', X, Y must be known). It should still be mentioned that 
the rigid body displacement of the elastic plate will be purely translatory, 
because the constant C === s(r), characterizing the rotation at infinity, 
is, by supposition, given beforehand. 

It is easily shown that the problem, corresponding to the boundary 
conditions (128.1), cannot have two different solutions. In fact, it will 
be remembered that in the proofs of the uniqueness of the solutions of 
the fundamental problems an important part was played by the fact 
that the expression X + y 

nU nV 

for the "difference" of two solutions vanished on the boundary (§ 40). 
However, this expression is the scalar product of the vector (X n, Y n), 
representing the stresses applied to the boundary, and the vector (u, v), 
representing the displacements of the points of the boundary. Further, 
since for the "difference" of two solutions satisfying the boundary 
conditions (128.1) one has T == 0, Vn == 0, 

the vectors (Xn' Y n), (2£, v) will be perpendicular to each other, and 
hence their scalar product will vanish. 

Therefore, by the same reasoning as in § 40, it n1ay be verified tllat the 
stress components in both solutions will be identical, and consequently 
the displacements may only differ by rigid body displacements. 

Further, it is obvious that, if one excludes the case when the boundary 
is a circle, the displacements can likewise not be different. In the case of 
a circular disc, solutions may clearly differ from each other by rigid 
rotations about the centre of the circle; in the case of an infinite plate 
with a circular hole, one will again have complete definiteness, because 
it has been assumed that the rotation at infinity is given. 

It has been shown that solutions of the stated problems, if they exist, 
are unique; the existence was recently proved by D. I. Sherman [22J. 
No space will be devoted to it here, but instead an effective method of 
solution will be stated for regions, mapped on to the circle by the help of 
rational functions *. 

2°. Sol uti 0 n for reg ion s, map p e don tot he c i r c I e 
by rational functions 

The method belo\v is completely analogous to that, studied in detail 
in § 126 for the cases of the first and second fundamental problems. 

* Regarding the case when the boundary of the body is a rectilinear polygon 
cf. G. N. Polojii [lJ who also gives references to his other work. 
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Therefore only general remarks will be made here and the application of 
the method will be demonstrated by means of examples. 

In the Author's paper [19J (and likewise in the second edition of this book) 
the solution was obtained by the method, applied in Part V to the solution of the 
fundamental problems. 

Let the region S be mapped on to the circle I ~ I < 1 by the relation 

z = <o(~), (128.2) 

where, by supposition, <v(~) is a rational function (one may also use the 
transformation on to the region I ~ I > 1); the circle ! ~ [ == 1 will again 
be denoted by y and the positive direction on it will be taken as counter
clockwise. 

The boundary conditions, in the notation of § 50, take the form 
",.--.... 

p& == 0, vp == f on the boundary. ( 128.3) 

-The expressions for p& and vp in terms of complex functions may be 
obtained from (50.11) and (50.7) respectively. In order to deduce that 

",.--.... 

for pit, it is sufficient to subtract (50.11) from its conjugate complex -expression in which case one finds on the left-hand side 2ip-9-. In a similar 
manner, vp may be calculated from (50.7). With these expressions (128.3) 
leads to 

cr2<o'(a){w(cr)<l>'(cr) + <v'(cr)o/(O")} - a2w'(cr) {w(cr)<p'{cr) + w'(cr)'¥{cr)} == 0, 

G(U'(G) {xq>(G) - :,~~ q>'(G) - y;(cr)} + 

_{ <o(cr) _ _} + (1CU' (0") xqI( 0") - - cp' (0-) - ~(O") = 4l-Lt( 0") ! w' (1) I, 
(0'(0') 

where all terms are to be interpreted as the boundary values of the respect
ive functions as ~ ~ (j from inside y; I(cr) denotes a kno\\"n real function 
of (j, which will be assumed to satisfy the H condition. 

For the present, it ,viTI be assumed that in the case, where 5 is infinite, 
the resultant vector (X, Y) of the external forces, applied to the edge of 
the hole (i.e., to the boundary of S) is equal to zero. In addition, the stresses 
are to vanish at infinity. 

Under these conditions, cp(~) and 4(~) as well as <l>(~) and 'Y(~) will be 
holomorphic inside y. 
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Introduce now the following functions which are sectionally ho
lomorphic, except for a finite number of poles: 

f ~2W'(~) [ W ( + ) <I>'(~) + w'(QlJ'(~) ] for I ~ I < I, 
Ql(~) = J (128.4) I + w' ( + ) [ w (~) <I)' ( ~ ) + w' ( ~ ) 0/ ( i ) ] for I ~ I> 1, 

f i w' (+) cp(~) - ~C;; (+) cp'(~) - ~w'(~)~(~) for I ~ I < 1, 

+ i w' (i) ~ (i) for I ~ I > 1. 

Obviously, the preceding boundary conditions may now be written 

11[(0") - Q1(cr) = 0, (128.6) 

nt(cr) - Qz(cr) = 4~ I w'(O") I j(rs). (128.7) 

As indicated above, the functions nl(~)' Q2(~) are sectionally holo
morphic, except for a finite number of poles, i.e., they are holomorphic 
in each of the regions I ~ I < 1, I ~ I > 1, except for a finite number of 
points where they have poles. These poles and their maximum orders 
will be known beforehand, since they arise from the poles of the rational 
function w(~) and from the factors ~-1, ~ on the right-hand side of (128.5). 
It is readily seen that to each pole ~k inside (outside) y there corresponds 
a pole ~~ = 1/~k of the same order outside (inside) y. 

Applying now the results of § 108 to the solution of the boundary 
problems (128.6), (128.7), one finds 

nl(~) = Rl(~)' (128.8) 

n2(~) = 2~ f I w'(a) I tt)da + R2(~)' 
'It2 (1 -

(128.9) 

y 

where Rl(~) and R2(~) are rational functions with undetermined co
efficients which have at given points poles whose order is not greater 
than a known limit. The general expressions are easily written down, but 
this will not be done here and only the following observations will be 
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made. By the definitions (128.4) and (128.5) of the functions Ql(~) 

and n2(~)' one must have 

whence, by (128.8) and (128.9), it is found that the rational functions 
Rl (~) and R2(~) must satisfy the following identities: 

(128.10) 

R2 (_1 ) = - R2(~) - 2~ /1 w'(cr) I j(cr) ~; 
~ 1t't r:; 

(128.11 ) 

Y 

in order to deduce the last condition, use has been made of the fact that, 
if f( 0') is a real function and if 

F(~) = 2~ / I dcr , 
1t't r:; - ~ 

y 

then 

F (_1 ) = - ~/_ f(r:;)da 
~ 1ti cr - 1/~ 

y 

or, noting that cr = 1/(5, 

F (_1 ) = 2~ / ~j(cr)dcr = _ 2~ / I(cr)dcr + 2~ /1 dcr . 
~ 7tz, O'(~ - 0') 7tZ r:; - ~ 7tz, (j 

y y y 

The relations (128.10), (128.11) impose definite conditions on the 
coefficients of Rl (~) and R2(~); these conditions, together with others to 
be stated below, serve for the determination of the above coefficients. 

Applying (128.8) and (128.9) to points inside y, one deduces from 
(128.4) and (128.5) 

~2W' (~) {w (+ ) <I>'(~) + w'(~)'Y(~)} = Rl(~)' (128.12) 

- ~w ( +) q/(~) - ~w'(~)~(q + ~ w' ( ~) cp(~) = 

= 2~ / j(cr) I w'(cr) I dcr + R2(~)' (128.13) 
re't 0' - ~ 

y 
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Application of (128.8) and (128.9) to points outside y renders no new 
information and only leads to the conditions (128.10), (128.11) which 
will be assumed to be fulfilled. For this reason consideration may be 
restricted to the preceding equations. 

Dividing these equations by ~2w'(~) and ~w~(~) respectively and noting 
that 

(U' (~) <I> (~) = <p' (~) , cu' (~) 'If (~) == tJ;' (~) , 

these saIne equations may be rewritten 

~'(~) + co (_1 ) [ cp' (~) J' = G(~) (128.14) 
~ (u' (~) , 

where G(~), H(~) are known functions, containing linearly a certain 
number of constants, as yet undetermined. 

The function t.l;(~) is easily eliminated between the last two equations. 
In fact, differentiating the second equation and adding it to the first, 
one finds, after certain reductions, 

(x + 1) n(~)cp' (~) + xQ'(~)cp(~) = G(~) + H' (~), ( 128.16) 

where 

w'(+) 
n(~) = ~2w'(~) · (128.17) 

Thus the function ~(~) satisfies the linear, first order differential 
equation 

Q'(~) 
q>'(~) + v n(~) q>(Q = F(~), (128.18) 

where 

F(~) = G(~) + H'(~) 
(x + 1)Q(~) ( 128.19) 

is a known function, containing linearly a certain number of undeter
mined constants, and 

'V ==--
x+l 

(t < v < 1). ( 128.20) 
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Integrating (128.18), one obtains 

cp(~) = [Q(~)r[K + r F(~)[Q(~)rd~J, 
where K is a constant. IV 

(128.21 ) 

Having found cp(~), one may determine ~(~) from (128.15). The un
known constants in the expressions for ~(~) and ~(~) rna)?" be determined 
from the conditions (128. 10), (128.11) and also from the requirement that 
these functions are to be holomorphic inside y. 

It has been assumed in the case, where the region 5 is infinite, that the 
stresses vanish at infinity. This condition is not essentiaL If it is assumed 
that the stresses have given finite values at infinity, the preceding reason
ing will remain valid. It must only be noted that in the case under 
consideration the functions cp(~) and ~(~) have first order poles at ~ = 0 
with known principal parts which can only affect the form of the rational 
functions Rl (~), R2 (~). 

In addition, it has been assumed that in the case of infinite regions the 
resultant vector (X, Y) is equal to zero. If the vector (X, Y) is not zero, 
the corresponding problem is easily reduced to the preceding one (cf. 
the second example of the next section). 

NOTE. In a quite analogous manner can be solved the somewhat 
more complicated problem obtained by replacing T = 0 by the condition 
that T is equal to a given function of t. 

§ 128a. Examples. 
10. C i r cuI a r dis c. In this case 

z = cu(~) = R~, (128.1a) 
where R is the radius of the disc and the boundary conditions (128.6) 
(128.7), ,,'ritten explicitly, take the form (after dividing the first equation 
by R2 and the second by R) 

[ 
1 - ( 1 ) 1 - ( 1 )]-[aCl>'(a) + a2'Y(a)]+ - -;; <1>' -;; + ~ 'Y -;; = 0, (128.2a) 

[: cp( a) - cp' (a) - crlj;(a)]+ -

-[-x~(:)+~,(:)+ :~(:)]-=4fLt(a). (128.3a) 

The subsequent calculations will be somewhat simplified, if it is assumed 
that cp(O) = 0, (128.4a) 
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and this may be done without affecting generality. 
Solving the boundary problems (128.2a) and (128.3a) and taking into 

consideration that the functions 

1 - (1) 1 -(1) (1) (1) 1 -(1) ~ <1>' ~ + ~ '¥ ~' - xl:~ ~ +~' ~ + ~ '¥ ~ 

are holomorphic for I ~ I > 1 [where it follows from (128.4a) that the se
cond of these functions is holomorphic for ~ = ooJ, that the first of these 
functions vanishes at infinity and that the functions 

x 
l:<I>'(l:) + l:2'¥(~), ~ !fl(~) - !fl'(~) - ~~(~) 

are holomorphic for I ~ I < 1, one finds that inside y 

~<I>' (~) + ~2,¥{~) = 0, (128.5a) 

- !fl'(~) - l:tV(~) + ~ !fl(~) = 2~ f t(O")d~ + a, 
s 1t~ (J -

( 128.6a) 

y 

where a is a constant. The condition (128.10) is automatically satisfied, 
while (128.11) gives 

21t 

- 2~ f da 2!J. f a + a = - -. /(0) - == - - t(a)d&. 
1t't (J 1t 

(128.7 a) 

y o 

(The multiplier I w'(a:) [ == R does not appear on the right-hand side, 
since (128.3a) had been divided by R.) 

Comparison of (128.5a), (128.6a) with (128.14), (128.15) shows that 
in the notation of § 128 

G(~) = 0, H(l:) = _A(l:)~ + a , (128.8a) 

where 

A(~) = 2~ft((J)d(j . 
7t't (j' - ~ 

(128.9a) 

y 

By (128. 17) and (128.19), one has in the present case 

1 
n(~) =~' 

F(~) = l:A'(~) - A(~) 
x.+l 

a 
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and, by (128.21), 

cp(<:) = K(,2v + <:2' j[<:A' (<:) _ A (<:) J<:-2v d<: + a<: , 
x+1 x-I 

where K is a constant; this last formula may still be written 
~ 

cp(<:) = K<:2v + <:2v j[~AI(~) _ A(~) + A(O)J~-2vd~ + 
1<.+1 

o A(O) a~ 

+ x-I ~ + x -- 1 
(128.10a) 

The lower integration limit in the last formula is justified, because, 
as it is easily seen, the expansion near the origin of the expression. 

[A(~) - A (0) - ~A'(~)J~-2v 

begins with a term multiplied by ~---2v+2, and it is known that 

21<. 
1 < 2v = < 2. 

x+l 

The constants K and a must be determined from the condition that 
cp(~) is holomorphic inside y and from (128.7a), because (128.4a) is satisfied. 

It is obvious that <p(~) will be holomorphic if, and only if, K = 0, 
because 2v is not an integer. 

The second term on the right-hand side of (128.10a) is easily seen to be a holo
morphic function, because the multi-valued multiplier ~-2v under the integral 
sign compensates the multi-valued factor ~2v outside the integral. Finally, it 
should be realized that the branches of ~2v and ~-2v must be chosen such that 

,...-2'1 __ 1_ 
~ - ~2v • 

The condition (128.7a) determines the real part of a; its imaginary 
part remains arbitrary, as was to be expected (because it only affects 
rigid body motion). Assuming this imaginary part to be zero and noting 
that the right-hand side of (128.7a) is equal to - A(O), one obtains 

and (128.1 Oa) finally gives 
~ 

a = a == - tA(O), 

cp(<:) = <:2v j[<:A'(<:) _ A(<:) + A (O)J<:-2vd<: + t(O)) <:; (128.1 la) 
l+x 2x-l 

o 
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by (128.6a) one finds now 

x 1 I 1 A (0) 
tJ;(~) = ~ cp(~) - ~ cp (7.:) - ~ A (7.:) + 2~-' (128.12a) 

where it is readily verified that the right-hand side is holomorphic at 
~ = o. Thus the problem is solved. 

2° . I n fin i t e p I a new i t hac ire u I a rho I e 
In this case the transformation on to the region I ~ I > 1 ,viII be applied, 

so that (128.1a) remains true. 
If t denotes the normal displacement, assumed positive when it is 

directed inward, i.e., towards the centre, the boundary conditions take 
the form (after division by R2 and R respectively) 

(128.13a) 

( 128.14) 

For the present, it will be assumed that the resultant vector (X, Y) is 
equal to zero and that the stresses and rotation vanish at infinity. Then 
<p(~), ~(~) will be holomorphic for I ~ I > 1, including the point at infinity, 
and for large I ~ I 

In addition, it may be assumed, without affecting generality, that 
~(co) = o. 

Normally it has been assumed in such cases that cp{oo) = 0; however, one may 
put instead t¥{ 00) = O. In the present case this last assumption is somewhat more 
convenient. 

Taking into consideration the stated properties of the unknown func
tions and solving the boundary problems (128.13a) and (128.14a), one 
finds for points of the region I ~ I > 1 

~<I>/(~) + ~2,¥(~) = a, (128.15a) 

cp' (~) + ~~(7.:) - ~ <p(7.:) = 2~ f t(cr)d~ + b, 
~ 7t2 cr -

(128.16a) 

y 
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where a, b are certain constants which may be determined in the following 
manner. By (128.10a) 

-a == a, 

and by (128.1Ia) (remembering that R had been eliminated) 
2rr 

b + b = - 2~ jl(cr) !~ = _ 2f.L jt(CI)d&. 
7t't CI 7t 

Y 0 

In addition, letting ~ -* co in (128.1Sa), (128.16a) and noting that 

1 
[~2'F(~)J~=oo == - -R [~~(~)J~=oo' 

one finds 
b == - Ra, 

and hence 

b = - Ra = - ~ jl(cr)d&. (128.17 a) 

o 
1 

The relation [~2'F(t;)J~=oo = - If [~tJ;(~)J~=oo above is obtained in the following 

manner. Remembering that 

'F(~) = y/(~) = tJ;/(~) 
CU/(~) R' 

so that, if for large I ~ I 

~(~) = ~ + °U2)' 
one has 

'Y(~) = _~ + 0 (_1 ). 
R~2 ~3 

Comparing (128.15a), (128.16a) with (128.14), (128.15), it is readily 
verified that in the present case 

G(~) = - ~2' H(r.) = _ A~'(,) - ~, 

where A(~) is given by (128.9); however, ~ lies now outside y. 
Thus one arrives again at (128.18), where now 

F(~) = G(~) + H'(r.) _ A(r.) - '(,A'(r.) 
(x 1r 1)12(~) x ~ 1 
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By (128.21), one has 
~ 

cp(~) = K~2v + ~-r[A(~) - ~A'(~)J~-2vd~; 
x + 1 .. 

00 

573 

the choice of the lower integration limit is justified, because the integral 
is easily seen to converge; on the other hand, this limit may be chosen 
arbitrarily. 

It is obvious that cp(~) will only be holomorphic, if K == 0, because 2v 
is not an integer (see above). Hence 

~ 

cp(~) = ~2v j[A (~) _ ~A '(~)J~-2vd~. 
x+l 

00 

( 128.18a) 

The function tf;(~) may now be found from (128.16a) which gives 

xlI b 
~(~) = ~ cp(~) - ~cpl(~) + ~A(~) + ~' (128.19a) 

where b is given by (128.17a). 
Hitherto it has been assumed that the resultant vector of the forces 

(pressures), applied to the plate from the sides of the disc, is equal to 
zero. If it is finite (still assuming the stresses and rotation to vanish at 
infinity), then, by the same method as in the analogous cases of the first 
and second fundamental problems (cf. § 78), it is readily seen that the 
solution is given by 

cp (~) + CPo(~), tY (~) + tJ;o(~), 

where cp(~), tY(~) are the same functions as above, while 

X + iY X + iY 
CPo(~) = - 27t(1 + x) log ~ - 27tX ' (128.20a) 

x(X - iY) (x - 1) (X + iY) 
~o(~)= 27t(I+x) log~- 47t(I+x)~2 . (128.21a) 

I t is likewise easily verified directly that CPo(~), tVo(~) solve the present 
boundary problem for f == 0 and for a given resultant vector (X, Y). 

The solution cp + CPo, tV + tVo corresponds to the case, where external 
forces, the resultant of which is equivalent to the force (X, Y) applied 
to its centre, act on the rigid disc. 
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If this force did not act at the centre, equilibrium of the disc would be impossible, 
because, since T = 0, the resultant moment (about the centre) of the forces, 
applied to the boundary of the disc, is equal to zero. 

When the stresses do not vanish at infinity, but have given (finite) 
values there, the corresponding problem is likewise easily solved. 

3°. Infinite plane with elliptic hole 
As in the case of the first and second fundamental problems, one might 

use here the transformation on to the region I ~ I > 1. However, use of 
the transformation on to the circle I ~ I < 1 simplifies the calculations 
somewhat. 

Thus, let 

z = <o(~) = R( + + m~), R> 0, 0 < m < 1. (128.22a) 

Then 

<o'(Q = - ~ (1 - m~2), W ( ~) = R (~+ ~), 

w' ( +) = R(m - ~2). 
(128.22' a) 

It will again be assumed that the stresses and rotation vanish at 
infinity and, in addition, that the resultant vector of the forces, applied 
to the boundary of the hole, is equal to zero (the general case may be 
reduced to this case.) 

Under these conditions cp(~) and t!;(~) will be holomorphic inside 'Y and, 
in addition, near the origin 

lJI'(~) = Iji' (~) = O(~2). 
w'(~) 

( 128.23a) 

On the basis of these formulae it is readily verified that the function 
Ql(~)' defined by (128.4), is holomorphic inside as well as outside y 
(including the point ~ == 00). 

However, the function Q2(~)' defined by (128.5), may l1ave at ~ = 0 
a first order pole ,vith the principal part 

R T {xmqJ(O) + ~(O)}. 

The following observation will now be made which considerably 
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simplifies the further analysis. It is known that addition of an arbitrary 
complex constant ~ to cp(t:) together with addition of xa to tJ;(~) will not 
alter the displacements (and, in consequence, not the stresses). It is easily 
seen that this constant may always be chosen such that [remembering 
that m *" 1 (1n < l)J 

X1ncp{O) + tJ;{O) = o. (128.24a) 

Thus, without affecting generality, it may be assumed that (128.24a) 
is fulfilled. 

Then Q2{~) will be holomorphic for I ~ ! < 1 and, as is easily seen, 
also for I ~ j > 1, including the point at infinity. Therefore the functions 
Rl(~) and R2{~) in (128.8), (128.9) are simply constants which will be 
denoted by a and b respectively and (128.12) and (128.13) may be written 

~2CU' (~) {cu ( + ) <1>' (~) + cu' (~)'Y(~)} = a, (128.25a) 

- ~cu ( +) <p'(~) - ~cu'(~H(~) + ~ w' (~ ) <p(~) = A(~) + b (128.26a) 

(for I ~ ! > 1), where 

A(~) = ~~ I f(cr) ~ cu~cr~ I dcr . (128.27a) 

y 

The conditions (128.10) and (128.11) give 

- - 2lJ. f-- da 
a == a, b + b === - -. j{a)! (O'{a) I - == 

7t't .; a 
y 2n 

= - 2lJ. It( (1) I (0'((1) [ d&. (128.28a) 
1! 

o 

Comparing (128.2Sa) and (128.26a) with (128.14) and (128.15), it 
is seen that, in the notation of § 128, 

G - a H _ A(~) b 
(~) - ~2CU' (~) , (~) - ~cu' (~) + ~cu' (~) · 

Finally, noting that in the present case 

_, ( 1 ) 
Q(~) = cu ~ m _ ~2 

~2W'(~) - - 1 - m~2' 



576 VI. APPLIC.:\TION OF THE PROBLElVI OF LINEAR RELATIONSHIP§ 128a 

one obtains from (128.19) 

B(Q 2b 
F(Q = R(x + 1) + R(x + 1) (m - ~2) (1 - m~2) + 

a-b + (128.29a) 
R{x + 1) (m - ~2) , 

where 

B(~) = m ~ ~2 {~A'(~) + ~ ~ :~: A(~)} 
The function cp(~) is given by (128.21) which now becomes 

~ 

( 128.30a) 

( 1 - m~2)V (1 - m~2 )Vf ( m _ ~2 )V 
<p(~) = K m _ ~2 + m _ ~2 F(~) 1 _ m~2 d~, (128.31a) 

-Vrn 

where K is a constant. The integrand has inside y only two singular 

points ~ == ± V tn, because m < 1, and it is easily seen that the integral 
converges (remembering that v > 0). Further, clearly the'second term 
on the right-hand side of (128.31 a) remains finite as ~ -+ - vm. Thus, 
for cp(~) to be holomorphic near ~ == - v'm, it is necessary that K = o. 
Hence 

~ 

( 
1 m~2 )Vf (m ~2)V 

<p(~) = m _ <:2 F(~) 1 _ m~2 d<:. ( 128.32a) 

-V~ 

Further, for cp(~) to remaIn finite for ~ -+ + vm, it IS obviously 
necessary that 

-i-Vm 

rF(~) (~~)" d~ = o. 
~ 1 - m~2 

(128.33a) 

-Vrn 

If the condition (128.33a) is satisfied, the right-hand side of (128.32a) 
is easily seen to be holomorphic inside y. Substituting from (128.32a) in 
(128.26a), assuming (128.33a) to be satisfied, an expression is found for 
tJ;(~) which will clearly also be holomorphic inside y. It is likewise readily 
verified that (128.24a) is fulfilled. 

There only remains to determine the constants a and b in the expres
sions for cp(~) and tJ;(~). For this purpose one has the relations (128.28a) 
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and (128.33a). It may be assumed that the integral in (128.33a) is taken 
over the segment - ym, + vm of the real axis and that on the path 
of integration 

( 
m _ ~2 )'J 
1 - m~2 

is positive. 
The condition (I28.33a) may be written 

I + (2Kl - K2)b + K 2a == 0, {I 28.34a) 

where 
+Vm 

J = f B(~) ( 1m_-m~2 rd~, (I28.35a) 

-V?n 

+Vm +Vm 

j-. (m - ~2)'J-l f (m - ~2)'J-l 
Kl = (1 _ m~2r+l d~, K2 = -(1 _ m~2r d~. (I28.36a) 

-Vm -Vm 
The constants Kl and K2 are real and it may be assumed that they 

have been calculated once and for all for ellipses of any given eccentricity 
(determined by m). It is easily seen that K2 < K 1. The quantity I may 
likewise be assumed known, since 1{(1) will be given. 

Equation (128.34a), together with (128.28a), determines a and b. In 
fact, subtracting from (128.34a) its conjugate complex equation, one finds 

I-I 
2Kl - K2 

b-b== (128.37a) 

which, together with the second condition (I28.28a), determines b. After 
this the constant a may be found from (128.34a). 

Thus the problem is solved. The present solution is easily generalized 
to the case, where the stresses at infinity have given finite values and 
the resultant vector (X, Y) is different from zero. 



PART VIr 

EXTENSION, TORSION AND BENDING OF HOMOGENEOUS AND 

COMPOUND BARS 



The first three chapters (22--24) of this Part are reproduced here in the same 
form as in the first (1933) and second (1935) editions of this book, apart 
from minor editorial modifications. In Chapter 25 of the third edition, the' 
study of the solutions of the problems of extension and bending by couples of bars, 
consisting of different materials with different Poisson ratios (§§ 146, 147, 
149), has been greatly extended. Further, a section (§ 150) has been added which 
deals with a solution, due to A. K. Rukhadze, of the problem of ben~ing of such 
bars -by transverse forces. The present (fourth) edition presents the text of the 
third edition without essential changes. 

As there is no space even to touch upon the interesting results of A. Ya. Gorgidze 
and A. K. Rukhadze, referring to the (approximate) solution of the problem of 
extension, bending and torsion of almost prismatic compound bars, as well as to 
the calculation of "secondary effects" for prismatic com pound bars, the relevant 
papers will only be listed here: A. Ya. Gorgidze [3-10J, A. K. Rukhadze [4-7J, 
A. Va. Gorgidze and A. K. Rukhadze [2, 3J. 

In the present Part, the problems of extension, bending and torsion of 
cylindrical (prismatic) bars will be considered, since they are of great 
practical importance. 

Chapter 22 is devoted to the classical results, referring to the problems 
of torsion and bending of homogeneous bars (the solution of the problem 
of extension being trivial in this case), which are, in principle, due to 
Saint-Venant. Since these results are studied with sufficient completeness 
in almost all text books on the theory of elasticity, only the basic theory 
will be presented here; certain results which are due to the Author 
and represent applications of complex function theory will be studied in 
greater detail with examples. 

The remaining chapters of this Part give results, referring to the 
problems of extension, torsion and bending of compound bars which 
arise in connection with certain problems of civil engineering, such as 
those of reinforced concrete. In principle these results are due to the 
Author. 

581 



CHAPTER 22 

TORSION AND BENDING OF HOMOGENEOUS BARS 

(PROBLEM OF SAINT-VENANT) 

§ 129. Statement of the problem. Consider a homogeneous isotropic 
bar, bounded by a cylindrical (prismatic) surface ("side surface") and 
two planes ("ends"), normal to the side surface. It will be assumed that 
there are no body forces present, that the side surface of the bar is free 
from external stresses and that given forces (satisfying, of course, the 
equilibrium conditions of the body as a whole) are applied to its ends. 

The Oz axis will be directed parallel to the generators of the side surface 
arld the plane Oxy chosen to coincide with the "lower" of the ends of the 
bar. The "upper" end of the bar will then have the coordinate z == l, 
where 1 is the length of the bar. 

The complete problem of the elastic equilibrium of such a bar under 
the stated conditions then leads to the following mathematical problem 
(§20): To find the quantities Xx, Yll' Zz, Y z, Z:m X ll , U, V, w which 
satisfy in the region V, occupied by the bar, the equations 

8Xx oX'V oXz ox +--+--== 0, oy OZ 

8Yx 8YlI 8Y z 
ox + oy + 8-;- = 0, (129.1 ) 

8Zx oZ'IJ oZz 
~- +~- +~ =0, ox oy OZ 

au 8v ow 
Xx = ).6 + 2~-, Yy = :A6 + 2lL-, Zz ::= 'A6 + 2[.1.--, ox oy 8z 

(129.2) 

Y == ( ow ~) z _ (~ OW) x _ (~ au ) 
• [L oy + oz' z - [L OZ + ox' y - [L oX + 8y , 

where 
8u OV ow 

e==-+-+-, ox 8y 8z 
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and, in addition, the following boundary conditions: 

Xx cos (n, x) + Xv cos (n, y) == 0 1 
y x cos (n, x) + Y 11 cos (n, y) == 0 1 on the side surface; 

Zx cos (n, x) + Zy cos (n, y) == ° 
finally, 

x z, y Z' Z z equal to given functions at the ends, 

i.e., for z == 0, z = l. 

§ 129 

(129.3) 

(129.4) 

The problem, when formulated in the above manner, presents con
siderable mathematical difficulties, particularly, if one is not only 
interested in its theoretical solution, but also in a solution which permits 
effective calculations. 

Fortunately, it has been found that in the majority of practical 
cases it is unnecessary (and even senseless) to consider the problem in 
such completeness. In fact, the actual distribution of the external stresses 
at the ends of the bar is rarely known; the resultant vector and moment 
of these stresses will be known more or less exactly. In other words, the 
union of forces and couples, statically equivalent to the resultant of the 
forces applied to the relevant end, will be given. 

On the other hand, by Saint-Venant's principle (cf. § 23), if one is 
dealing with bars which are of great length in comparison with the 
dimensions of the ends, one only needs to ensure that the resultant vector 
and moment of the forces, applied to the .ends, will have given values; 
the actual stress distribution at the ends, however, will have negligible 
influence on those parts of the beam which are not close to the ends. 

Thus there appears to be a rather wide choice of solutions. This 
arbitrariness may be used to simplify the problem in the following 
manner: one may prescribe beforehand the form of the solution which 
must, however, be sufficiently general so that one can obtain on the ends 
of the beam a str@ss resultant, statically equivalent to that given C'semi
direct method" of Saint-Venant). 

In this connection it is only necessary to consider one of the ends. 
In fact, having given the resultant vector and moment of the forces, 
acting on one of the ends, these quantities will also be determined for 
the other end, since the sum of the forces, applied to the ends, must be 
statically equivalent to zero (i.e., it must satisfy the equilibrium conditions 
of the body as a whole). On the other hand, each solution of the equations 
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(129.1) always gives a stress distribution on the surface of the body which 
is statically equivalent to zero (cf. end of § 20). 

The complete theoretical solution of the problem with the above simpli
fication and its application to a number of technically important cases 
is mainly due to Saint-Venant. 

Saint-Venant' s results are studied in his two extensive memoirs 
[1, 2J and in a number of other publications, in particular, in the lengthy 
notes in the French translation of A. Clebsch's book [2J. 

A. Clebsch (1833-1872), who was considerably younger and died 
earlier than his contemporary Saint-Venant, gave a very strict solution 
of a problem which is of interest here (A. Clebsch [1, 2J); he showed 
that, if one introduces beforehand the condition 

Xx = Yy = Xv == 0 in the region V, ( 129.5) 

there remains just sufficie'nt arbitrariness to satisfy the conditions at 
the ends and on the side surface, and that this condition leads to the 
solution, obtained by Saint-Venant by another lengthier method. Clebsch 
called the problem of the determination of the elastic equilibrium of a 
cylinder (with unstressed side surface) under the supplementary con
ditions (129.5) the "problem of Saint-Venant". 

The condition (129.5) obviously has the following physical n1eaning: 
if one imagines the given cylinder to consist of a number of longitudinal 
"fibres" (i.e., thin longitudinal prisms), these fibres exert neither direct 
nor shear forces on each other in transverse directions (i.e., the fibres may 
only exert on each other cohesive forces in the longitudinal direction). 

If (129.5) is satisfied, the conditions (129.3) on the side surface ob
viously reduce to 

Zx cos (n, x) + Z'lI cos (n, y) = 0, (129.3') 

because the first two conditions of (129.3) are automatically satisfied. 
The method of Clebsch will not be studied here (it can be found, for 

example, in A. G. Webster [IJ and also in I. Todhunter and K. Pearson 
[IJ); a less strict, but simpler method will be applied instead which 
agrees, in essence, with that used by A. E. H. Love [IJ, Chaps. XIV and XV. 

It should still be noted that the results of Saint-Venant may be 
obtained by beginning from the following formulation of the problem 
which is due to W. Voigt (cf. A. E. H. Love [IJ, Chap. XVI): To find the 
elastic equilibrium of the cylinder under consideration on the basis of 
the supposition that the stress components are linear functions of z. 

Consider, for definiteness, t;le forces applied to the upper end. The 
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union of these forces is statically equivalent to a force, applied to some 
(arbitrary) point 0', and to a couple. The point of intersection of the Oz 
axis with the upper face will be chosen as the point 0'. The force may be 
divided into two components: one in the Oz direction and the other at 
right angles to the Oz axis. The couple may be decomposed in the same 
manner: the moment of one of its components will be taken parallel 
to the axis Oz ("twisting couple"), while the moment of the other will 
be in the plane of the end ("bending couple"). 

Correspondingly, the problem may now be divided into the following 
four component. problems: 

a) torsion by couples, acting in the plane of the ends; 
b) ~xtension (or compression) by longitudinal forces, applied to the 

ends; 
c) bending by couples the plane of which is perpendicular to that of 

the ends; 
d) bending by transverse forces, applied to one of the ends and acting 

in its plane (one must, of course, in consequence apply to the other end 
a force which is equal in magnitude and opposite in direction to the 
above; the same is true with regard to the couple, in order that the entire 
system of forces be in equilibrium). 

It must be remembered that in the subsequent work one is not dealing 
with concentrated forces and with pairs of concentrated forces, but 
with forces and couples which are statically equivalent to certain stresses 
distributed over the ends. 

§ 130. Certain formulae. In order to facilitate future reference, 
it will be recalled that the equations (129.2) may be replaced by the 
following which are equivalent to them (§ 19): 

OU 1 OV 1 
- = - [Xx - O"(Yll + Z~)J,- = -E [Yll - cr(Zz + Xx)], ox E Oy 

(130.1 ) 
ow ~ = 2(1 + cr) Y.. au ~w = 2(1 + 0-) Z 
oy + OZ E .J OZ + ox E XJ 

{)v + ()u _ 2(1 + cr) X 
ox By - E 11' 
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where E is Young's modulus and (J Poisson's ratio \vhich are related 
to A and ll. by the formulae (§ 19) 

E = fL(3A + 2l-l} A cr = ----
2(A + fl.) , 

( 130.2) 

Ecr E 
A = (1 + G) (1 --- 2G)' fl. = 2(1 + G) · 

( 130.3) 

Finally, the compatibility equations of Beltranli-Michell (§ 22) will 
be reproduced which in the present case, with absence of body forces, 
have the form 

~xx+ 
1 820 

~yz+ 
1 820 

1+0: · --2 = 0, l+cr oyoz == 0, 
ox 

~ZZ+ 
1 820 

dZx+ 1 820 
--0 --=0, 

1+0- · 8z2 - , 1+0- ozox ( 130.4) 

1 820 1 820 
6.Y ll+ --0 ilXv + = 0, 

1+<1 ·oy2-' . 
8x8y 1+0' 

\"here 
o == X x + y 11 + Z z· (130.5) 

Each set of functions X 0:' ••• , Xli' satisfying these conditions (which 
will, in future, be simply called compatibility conditions) and the equa
tions (129.1), gives a certain possible stress distribution in the body (under 
the requirement of single-valued displacements). 

In the sequel, the set of equations (129.1 ) and (129 .2) \\i1l be called static 
equations ot an elastic body, while the equations (129.1) will, as before, 
be called equilibrium equations. 

§ 131. General solution of the torsion problem. The solution of 
the component problems will now be considered and a beginning will be 
made with the problem of torsion. 

Let the coordinate axes be as in § 129. The coordinate system will be 
assumed to be right-handed. Let the forces, applied to the ends, be 
statically equivalent to a twisting couple, i.e., to a couple with moment 
vector at right angle to the plane of the ends. Let M be the (scalar) 
moment of the couple, acting on the upper end (M > 0, when the couple 
tends to twist counter-clockwise, looking upwards, since, by supposition, 
the coordinate system is to be right-handed). 
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The first idea to enter one's mind is that all transverse sections of the 
cylinder will remain plane and that they will twist (in their own planes) 
about the Oz axis by some angle E. If the lower end is restrained from 
moving, it is natural to assume that the angle e: is proportional to the 
distance z of the section under consideration from the lower end, i.e., 

e: == 1:Z, (131.1) 

where 1: is a constant which measures the angle of relative twist of 
cross-sections, unit length apart. For this reason, 1: is called the relative 
twist. 

Under the present suppositions the displacement components will be 
given by 

U == - e::y = - "t'zy, V == 't'ZX, W == 0 

(since an infinitely small rigid rotation through an angle e: in the Oxy 
plane about the origin leads to u == - e:y, v == ex). Calculating the 
stress components from these displacements, it is easily seen that the 
equations (129.1) will be satisfied; however, it is also readily verified that 
the conditions (129.3) may not be fulfilled, unless one is dealing with 
a circular cylinder (this will become obvious on the basis of the later 
work). It is therefore clear that a too restrictive hypothesis has been 
introduced. 

The following investigation will now be pased on the assumption (which 
will be found to be successful) that the cross-sections do not remain 
plane, but that they warp (and that all cross-sections warp in an iden
tical manner). 

This supposition obviously leads to the following expressions for the 
displacement components: 

U = - 't'zy, V = "t'ZX, W = 't'rp(x, y), (131.2) 

where l' is a constant (relative twist) and rp(x, y) is some function of 
x, y, to be determined later (the factor "t' has been introduced into the 
expression for w simply for the sake of convenience). 

The formulae (129.2) give for the stress components, corresponding 
to the displacements (131.2), 

Xz=!L'r(:: -Y), YZ=!L'r(: +X)' (131.3) 

and 
(131.4) 
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Substituting these values in the equations (129.1), one sees that they 
will be satisfied, provided 

82~ 82~ 
-+--=0. 
8x2 8y2 

( 131.5) 

In other words, cp must be a harmonic function of the two variables x, y 
in the region, occupied by the body; since cp does not depend on z, it 
is, of course, sufficient to consider any cross-section S of the cylinder. 

Further, the condition (129 .3') (expressing absence of external stresses 
on the side surface) takes the form 

( :: - y ) cos (n, x) + ( :: + x ) cos (n, y) = 0 on L, 

where L denotes the boundary of the region Sand n the outward normal 
to L (i.e., the normal, directed outwards from 5). Noting that 

ocp ocp d~ 
-cos (n, x) + -cos (n, y) == -, ox oy on 

one obtains finally the boundary condition in the following form: 

dcp 
dn = y cos (n, x) - x cos (n, y) on L. (131.6) 

Thus the function cp which is called the torsion function must satisfy 
the following conditions: it has to be single-valued (because otherwise 
w would be multi-valued and such multi-valued displacements will not 
be considered here) and harmonic in 5, and on the boundary of this 
region its normal derivative must take a previously given value, in fact, 
the value 

y cos (n, x) - x cos (n, y). 

The problem of finding cp is thus a particular case of one of the fun
damental problems of potential theory - "the Neumann problem" 
- which has already been mentioned in § 77. 

The Neumann Problem, i.e., the problem of the determination of a 
function cp(x, y), harmonic in a region S, from the boundary condition 

d~ 
dn = f on L, 

where t is a continuous function given on L, has a solution if and only 
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if the condition 

f f ds = 0 

L 

is satisfied, where ds is the element of arc of the contour L; if this con
dition is fulfilled, the solution is determined exactly apart from an 
arbitrary constant term *. In § 140, the solution of a more general 
problem 'will be given. 

This constant is not essential, because replacement of <p by <p + canst. 
does not change the state of stress, as is readily seen from (131.3); it 
only gives rise to a rigid body translation of the beam in the direction 
of the Oz axis, as follows from (131.2). 

It is readily shown that in the present case the condition for the 
existence of a solution of the Neumann Problem is fulfilled. 

In fact, assuming that one has chosen as positive direction of L that 
which leaves the region 5 on the left and denoting by s the arc measured 
on L in this direction, one finds 

dy 
cos (n, x) = cos (t, y):::= ds' 

dx 
cos (n, y) == - cos (t, x) == - -, 

ds 

where t is the positive tangent. Hence 

f f ds = f [y cos (n, x) - x cos (n, y)Jds = J (y dy + x dx) = 
L L L 

= J dt(x2 + y2) = 0, 

as was required to be shown. L 

Thus, the function cp(x, y) can be determined by solving a Neumann 
Problem. 

Further, (131.3) and (131.4) show that the ends of the bar are only 
subject to tangential stresses. 

It is easily shown that, if <p satisfies the above conditions, the resultant 
vector of the stresses is equal to zero, i.e., 

f f Xz dx dy = 0, f f Y z dx dy = o. (131.7) 

s s 
* It goes without saying that the statement is true for several (very general) 

conditions, imposed on the boundary L of the region S. 
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In fact, by (129.1) 

whence 

J J Xzdxdy = J J {Xz + X( O~z_ + °O:z )}dXdY = 
s s 

f f { 8(xXz) 8(xYz) } J 
= ox + oy dxdy= X{Xzcos(nxl+Yzcos(ny)}ds; 

S L 

however, the last integral vanishes by (129.3'). This proves the first 
formula (131.7). The second formula can be proved in the same manner. 

The resultant moment of the external stresses, applied to the upper 
end, will be given by 

M = II(XYz - yXzldx dy = !l-'r II (X2 + y2 + X ~ - y ::) dxdy, 
L L 

I.e., 

M = "CD, (131.8) • 

where 

D = !l- I I (X2 + y2 + X :~ - y ::) dx dy. (131.9) 

s 

The formula (131.8) shows that the torsion moment is proportional to 
the relative twist "C. The coefficient of proportionality D is called the 
torsional rigidity. It is seen to be the product of the shear modulus t-L and 
a quantity which only depends on the shape of the cross-section, and 
not on the materiaL 

Once the torsion function ~ has been determined, the constant D 
may be calculated. It will be shown below that D is essentially positive. 
Therefore the constant "t' will be given by (131.8) for a given couple, i.e., 
for a given value of M, and the problem is solved. 

It only remains to prove that D > O. This result is most simply de
duced by an investigation of the potential energy, stored in the twisted 
bar. In fact, it is known that this energy is given by (cf. Note at the 
end of § 24) 
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U = t !((XnU + Ynv + Znw)dS, 
where the integral must be taken over the entire surface of the bar. 
However, in the present case, the integrand vanishes on the side surface 
and on the lower end, so that there only remains the integral over the 
upper end, where (since z = l) 

u==-'!ly, v='!lx, Xn=Xz, Yn=Yz, Zn=Zz=O; 
hence 

U = t f f(UXz + vYz}dx dy = ~ f f(XYz - yXz)dx dy = 1:2~D. 
s s 

and, since in the presence of deformation U> 0, one finds D > ° and the 
above assertion is proved. 

This result may also be proved directly. In fact, applying Green's 
formula and using (131.6), one obtains 

/'f(x ~ - y ~) dx dy =!f( o(xcp) - o(y~) ) dx dy = 
__ oy ox oy ox 
s s 

= - f G?{y cos (n, x) - x cos (n, y)}ds = - f G? ~: ds. 
L L 

However, one has by a known formula for every harmonic function cp 

f ~ ~: ds = f f{( ~: Y + ( : y}dXdY. 
L S 

Thus one finds from above 

o = ff{ x: - y :: + ( :: r + ( :; r} dx dy. 
s 

Multiplying this equation by t.L and adding it to (131.9), one obtains 

(131.9') 

S 

and hence the assertion follows. 
If one had D = 0, this would imply 

o([) 
ox = y, 

ocp 
~==-x 

oy 



CHAP. 22 TORSION AND BENDING OF HOMOGENEOUS BARS 593 

throughout 5; however, this is impossible, because y dx _. x dy is not a perfect 
differential. 

NOTE. 1. One may obviously add to u, v, w, respectively, terms 
of the form 

C/.. + qz - ry, ~ + rx - pz, y + py - qx, 

expressing rigid body motion, without affecting the state of stress. 

NOTE. 2. Since the above work was based on the formulae (131.2) 
the first two of which express rigid rotation of the cross-section about 
the axis Oz, it may be shown that a new solution of the problem is obtained 
by replacing this axis by another one, parallel to it. In fact, let 0l(a, b) 
be the point of intersection of the new axis with the plane Oxy; then 

U r == - '"t'z(y - b), VI === '"t'z(x - a), WI == 't'<PI(X' y), (131.2') 

where uI , VI' WI are the displacement components and <Pl is the torsion 
function, corresponding to the new position of the axis. The corresponding 
stresses will be given by 

Xz=ILT(::l -y+b), YZ=ILT(::l +x-a). (131.3') 

As above, it may be shown that CPr is harmonic and that it satisfies 
on L the condition 

dCPI 
dn == (y - b) cos (n, x) - (x - a) cos (n, y) == 

== y cos (n, x) - x cos (n, y) - b cos (n, x) + a cos (n, y) 

which may obviously be rewritten 

d 
dn (CPI + bx - ay) == y cos (n, x) - x cos (n, y). 

Thus, the harmonic function CPl + bx - ay must satisfy the same con
ditions as the function cp, whence it follows that these two functions 
may only differ by a constant, i.e., 

<Pl(X, y) == <p(x, y) + ay - bx + const. (131.10) 

Thus, by (131.2) and (131 .2'), 

u l == U + '"t'bz, VI == V - ~az, WI == W + ~ay - 'rbx + canst. (131.11) 
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The terms by which (u, v, w) differs from (ul , VI' WI) only express rigid 
body motion and therefore do not affect the stresses; this is likewise 
readily verified directly from (131.3') which give the same values as 
(131.3). 

§ 132. Complex torsion function. Stress functions. It is at times 
more convenient to introduce instead of the torsion function cp(x, y) its 
conjugate harmonic function ~(x, y) which is related to cp(x, y) by the 
Cauchy-Riemann equations 

oq; ot]; 
-==~, ox oy 

ocp o~ 
-=--
oy ox (132.1 ) 

The boundary condition (131.6) is easily expressed In terms of the 
function t,fJ. 

For greater generality, it will be assumed that the bar under con
sideration may contain longitudinal (likewise cylindrical) cavities so 
that the boundary L of the region can consist of several simple contours 
L I , L 2 , ••• , Lm+l the last of which surrounds all the others (cf. Fig. 14, 
§ 35). 

Let t denote the tangent to one of the contours Lk in the positive 
direction (i.e., leaving 5 on the left). Then 

dy 
cos (n, x) == cos (t, y) = -, 

ds 
dx 

cos (n, y) = - cos (t, x) == - ~ , 
ds 

where s is the arc of L k ; it thus follows, by (132.1), that 

d({J o({J Bcp B~ dx ot.J; dy d~ 
- == - cos (n, x) + - cos (n,y) == --+--==-, 
dn ox By ox ds oy ds ds 

Le., 

( 132.2) 

In addition, 

dx dy d 
Y cos (n, y) - x cos (n, y) = x ds + y Ts = Ts Hx2 + 12

). (132.3) 

Hence (131.6) takes the form 
dtJ; d - = -t(x2 + y2), 
ds ds 
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whence it follows that 

~ ==. t(x2 + y2) + Ck on L k , (132.4) 

where C k are constants which may have different values on the dif
ferent L k • 

A function ~, conjugate to a given single-valued harmonic function, 
may, in general, be multi-valued (cf. Appendix 3.). However, in the 
present case, this cannot happen, because by (132.4) the function t.Y 

reverts to its original value for a circuit of any of the contours Lko 
It is known that the function qJ is determined, apart from an ar

bitrary constant, and hence its derivatives will be fully determined; 
it follows from this that y; is defined by (132. 1), apart from an arbitrary 
constant. 

I t is thus seen that the constants C 11 0 •• , C m+l in the boundary 
conditions (132.4) may not be fixed arbitrarily. Only one of these constants 
may be fixed in an arbitrary manner, i.e., one may, for example, put 
Cm+1 = 0; all the remaining constants must then have completely 
determined (initially unknown) values. 

As one may dispose freely of one of the constants Ck , it is clear that one Vv~ill be 
justified in adding any arbitrary constant to the function ~. 

It will now be assumed that the constants C k have been given some defi
nite values. In that case the problem of determining tf; coincides with the 
problem of finding a harmonic function for given values on the boundary, 
i.e., the "Dirichlet problem" which has already been discussed in § 62 
(Note) and in § 77 and which is known to have always a unique solution. 
Having found ~, the function r.p may be determined from (132.1). HO¥l

ever, if the constants C k are chosen in a haphazard manner, the function 
q? may be found to be multi-valued. Thus, the constants C k must be de
termined from the condition of single-valuedness oj the function cp(x, y); as 
stated earlier, one of these constants may be fixed arbitrarily. 

In the case of multiply connected regions it is therefore, generally 
speaking, more convenient to operate directly with the function cp rather 
that with ~. 

In the case of simply connected regions, bounded by one simple 
contour L, single-valuedness of the function <? \vill be automatically 
ensured; only one constant which may be fixed arbitrarily will enter 
into the boundary condition. In this case it is often more convenient to 
operate with the function t.J;. 
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It is often also very convenient to consider the function F(3) of the 
complex variable 3 === x + iy, defined by 

F(3) = (() + i~, (132.5) 

where <p is the torsion function and tV its conjugate function. The function 
F(3) will be called the complex torsion function. It is obviously holo
morphic in the region S. 

By (131.3) 

X 'y ( o<p . oq:> . ) [ 8cp . 8~ .( . )] z - 1- z == 7t't' - - 1-~ - y - 'tx === 7t't' -- + 't - - 't X - zy , ox 8y ox ox 
whence, in the customary notation used earlier, 

(132.6) 

It is also convenient to use the so-called stress function, defined by 

'Y(x, y) = ~(x, y) - t(x2 + y2); (132.7) 

in terms of this function, the stress components are given by 

8'Y 8'Y 
X z = f,L't'-, Yz = - ~'t'-. (132.8) oy ox 

The function 'P' is not harmonic, since it obviously satisfies the equation 

~'Y == - 2. (132.9) 

It satisfies on the boundary the conditions 

'Y = Ck on Lk (k === 1,2, ... , m), (132.10) 

where C k are the same constants as in (132.4). 
The curves, defined in the plane of the cross-section S by the equations 

'Y(x, y) = const., (132.11) 

are the "lines of shear stress", i.e., the lines whose tangents llave at 
every point the direction of the stress vector (X z, y z), acting on the 
corresponding element of S. This is a direct consequence of (132.8). The 
boundaries of the region are always stress lines, as is, of course, obvious 
a pnorl. 

From the practical point of view, it is of great interest to find those 
points of the cross-section, where the magnitude of the resultant shear 
stress 

(132.12) 
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has a maximum, because it is at these points that failure of the material 
will begin. 

It is easily shown that these points lie on the boundary at the region. 
In fact, 

Using (132.9), it is readily seen that 

il(T2) == 2lJ.2-r2 {( 02~)2 + ( 82'1")2 + 2 ( 8
2
7 )2}, 

ox oy2 ox8y 

and hence that A(T2) > 0 throughout the region. On the basis of a 
well known theorem (cf. below), it then follows that the function T2 
may only attain its maximum value on the boundary, as was to be 
proved. 

One may not have the equal sign in the above inequality, since, by (132.9), at 
least one of the quantities (02'Y / ox2), (02'0// oy2) must have a modulus not less than 
unity. Incidentally, it may be shown by a simple reasoning that ~(T2) :> 4tJ.2't'2. 

If some function U, having continuous second order derivatives in a region 5, 
satisfies the inequality ~U > 0, this function can only attain its maximum value 
on the boundary. In fact, let it be supposed that U has its highest value at some 
internal point (xo, Yo). Describe, with this point as centre, a circle y of sufficiently 
small radius so that d U jdn < 0, where n is the outward normal to the circle. On the 
other hand, by Green's formula, 

f~~ ds = f flU dxdy, 

y a 

where cr is the area inside y. Since 6,U > 0, one is led to a contradiction, and hence 
the assertion is proved. 

§ 133. On the solution of the torsion problem for certain par
ticular cases. It has been seen that the torsion problem may either 
be reduced to the Neumann problem (for cp) or to the Dirichlet problem 
(for tf; ; in the case of multiply-connected regions, the constants C k must still 
be determined from the condition of single-valuedness of cp; cf. the 
preceding section). For this reason all the known, well developed methods 
of solution for the Neumann and Dirichlet problems may be applied. 

In addition, in view of the special simplicity of the boundary values 
of ~ or dcpjdn, one may fall back successfully on particular methods, 
designed for the present problem. 
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Saint-Venant himself solved and studied in detail (by constructing 
tables and graphs) the torsion problem for a large number of cross
sections of different shapes which are of practical interest. He obtained 
solutions for many cases (ellipse, equilateral triangle, etc.) by very 
simple means. For the case of the rectangular section, he gave a solution 
in the form of a rapidly converging series. 

The reader should consult Saint-Venant [IJ and also the small book 
on the theory of elasticity by A. N. Dinnik [IJ which is specially devoted 
to the torsion problem, where the solutions for a large number of 
cross-sections may be found. See also the book by I. Todhunter and 
K. Pearson [IJ and B. G. Galerkin [1, 2J; in the first of his papers, Galerkin 
gives the solution for a section, represented by an isosceles right-angled 
triangle. Finally, one' may also find remarks on approximate and ex
perimental solutions in the book by A. N. Dinnik [IJ. 

Only the (almost obvious) solution for the case of a circular or annular 
circular section will be quoted here. If the origin is placed at the centre, 
one has clearly: y cos (n, x) - x cos (n, y) == 0 on the boundary. Therefore 

drp = 0 
dn 

on the entire boundary. Hence cp == const., and one may take cp == O. 
The displacements and stresses are then given by 

u == - 't'zy, V == 't'ZX, W == 0, 

Xz == - [..tTy, Y z == [J.'t'X 

(133.1 ) 

(133.2) 

(the remaining stresses being zero). It is thus seen that in this case 
transverse sections remain plane, unlike in the other cases. 

By (131.9), the torsional rigidity is given by 

D = fl. f f (x 2+ y2)dx dy = fl.!, (133.3) 

s 
where I is the polar moment of inertia of the cross-section about the 
centre. In the case of a circular section with radius R, one has thus 

7tR4 
1=-

2 
while in the case of the circular ring 

(133.4) 

( 133.5) 
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where Rl and R2 are the inner and the outer radii. 

§ 134. Application of conformal mapping. 
The results of this section were given in the Author's papers [12, 13J. A detailed 

study of these results with several new applications is given in the book by I. S. So
kolnikoff [1] . 

The torsion problem may be considered solved, if one has been able 
to map the region 5 on to the circle (where, of course, S must be a simply 
connected region). In fact, let 

3 = x + iy =.: <.V(~) (134.1 ) 

be the function, mapping 5 on to the circle 1 ~ I < 1 whose boundary, as 
always, will be denoted by y. 

If the complex torsion function F(3), expressed in terms of ~, is given 
by 

cp + i~ = F(S) == I(~), ( 134.2) 

the function f(~) will be holomorphic inside y. The real part ~ of the 
function 

1 . 
-. f(~) = ~ - zcp 
't 

will satisfy on y the following boundary condition [cf. (132.4)J: 

~ == ~ (X2 + y2) + canst. = A33 + canst., 

or, by ( 134. 1 ) , 

~ == tw(O")w(O') on y, 

( 134.3) 

where G == ei
& denotes points of y; the arbitrary constant has been 

justifiedly omitted. 
However, in an earlier Part of this book, a formula has been deduced 

which permits to find a function, holomorphic inside y, when the boundary 
value of its real part is known. In fact, by (77.5), 

1 1 r w(O")w(O") 
~. f(~) = -. -~) dO" + canst., 

1- 7t~.. 2( 0' - ~ 
y 

whence, finally, 

f(") = _1_/ w(O")w(O")dO" 
s + canst., 

27t 0" - ~ 
( 134.5) 

y 
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and the problem is solved. 
If <.u(~) is a rational function, then <.u( O')cu( 0") = cu( 0')6)( 1/(1) will likewise 

be a rational function of (1 .. The integral on the right-hand side of (134.5) 
is, in this case, easily calculated by use of the residue theorem and it ob
viously leads to a rational function in ~, so that the solution will be 
expressed in terms of elementary functions. 

In general, if the expression cu ( a) c.u ( 1/0"), considered as a function of 0', 

is an analytic function inside (or outside) y, continuous up to y and has 
inside (or outside) y a finite number of poles, then the integral on the right
hand side of (134.5) may be directly evaluated by means of the residue 
theorem. 

The torsional rigidity D may be calculated from a simple formula 
which will now be deduced (see the Author's papers [12,13J). One has 
(§ 131) 

D = !L ff(X2 + y2)dxdy + fL ff x (:~ - y ::) dxdy = fLI + !LDo, (134.6) 

s s 

where I is the polar moment of inertia of S about 0 and 

Do = ff (x ~ - y ::) dx dy = ff{ 0: (xep) - 0: (yep)} dx dy. (134.7) 
s s 

Applying Green's formula, one obtains 

Do = - fep. (xdx +ydy) = - jep.d(tr2), (134.8) 

L L 

where L is the boundary of the region. 

Noting that on the boundary r2 = 35 = 6.) (a) (0 (0') and that 

q> = t[f(cr) + f(O')J, 

one may rewrite (134.8) 

Do = - t ({f(G) + f(G)}d {6>(G}6>(G)}. 
... 

( 134.9) 

y 

If (t)(~) is a rational function, t(~) will likewise be a rational function 
(see above) and hence also 1(1/(1), w (I/O') will be rational, so that the 
preceding integral is easily evaluated in closed form, using the theorem 
of residues. 
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In this case it is sometimes convenient to transform also the expression 
for 

I = ff (x2 + y2)dx dy = ff{ ~ (x2y) + ; (xy2)} dx dy = 

s s 

= - f xy(xdx-ydy). 

Noting that 

3+:3 x=----
2 ' 

-
3-3 

Y = 2i ' 

it is readily seen that 

However, 

I == - _1. fC3 2 - 32) (SdS + "jd3). 
82 

L 

L 

f Sd3 = f 33d3 = 0, f 323d3 = f 32d(t32
) = - f 323d3 

L L L L L 

(where the last relation is obtained by an integration by parts). Thus 

If If-I = -. 323d3 = -. 6)2(0') cu(O")dw(O'). 
4$ 4t 

(134.10) 

L 

If <.V(~) is a rational function, formula (134.10) permits calculation of I 
in closed form by elementary means. 

In the case of doubly connected regions, the torsion problem is likewise 
easily solved, provided the function (U(~) is known which maps this 
region on to the circular ring. In fact, in this case the problem is reduced 
to the determination of a function t(~), holomorphic inside the ring and 
satisfying the following boundary conditions: 

1 -
gt -. t(~) = t(U(~)(t}(~) + C1 on Y1' 

$ 

(134.11 ) 

where Yv "'(2 are the circles, bounding the ring, and C1, C2 are two real 
constants one of which may be fixed arbitrarily. One thus arrives at 
the problem solved in § 62 (Note). 
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In the present case, the function (1 Ii) I(~) plays the role of F(~) and in 
the expansion (62.7) (where z must be replaced by ~) one has to put 
A = 0, because t(~) would otherwise be multi-valued. For the functions 
11(&) and 12(&) of § 62 one has now 

( 134.12) 

PI and P2 denote here the same quantities as Rl and R2 in § 62. If one 
writes C2 = 0, then the constant C1 will be determined by (62.9). 

Having found t(~), the stresses may be calculated either in terms of 
the old coordinates x, y or in terms of the curvilinear coordinates of 
§ 49 which are related to the conformal transformation. 

~ 

Let T denote the vector of the shear stress, acting at some point of 
the cross-section 5, and X z, Yz its components in the Ox, Oy directions. 
The projections of this vector on the axes (p), (&) of the curvilinear 
coordinates will be given by (49.4) Vi,rhich has the conjugate complex form 

T - iT = l (,,)/(~) (X - iY ) 
p .& P I (,,) I (~) I z z 

or, substituting for X z - iYz from (132.6) and noting that 

dF dl 1 
F'(3) = d3 = d3 · w'(3) 

one deduces finally the very simple and convenient formula 

Tp - iT~ = (J.'t"~ {f'(~) - i6)(~) 6)'{~)}. (134.13) 
P I cu' ~) I 

On the boundary of the region Tp = 0, so that the preceding formula 
determines directly the boundary value of the shear stress T & and, in 
particular, the maximum value of this quantity. 

§ 134a. Examples. The method of the preceding section will now 
be applied to certain particular cases. 

1 o. E pit roc hoi d a I sec t ion. Let the section 5 be bounded 
by the epitrochoids, considered in § 48,30 (Fig. 23). Then 

3 = cu(~) = b(~n + a~) (n an integer> I, b > 0, a > n), (134.la) 

where, in the notation of § 48, b == Rm, m == IJa. 

Formula (134.5) gives (on replacing a by 1/a) 
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If (1 a) da t(~) = - b2(an + acr) - + - + const. = 
27t an (J' a - ~ 

y 

= ib
2
. f(1 + a2 + aGn-1 + a 1) dG ~ + const., 

27t~ crn - cr -
y 

whence, by (70.3), 

(134.2a) 

(the arbitrary constant having been omitted here), and the problem 
is solved. 

By (134. 13) one obtains for the stress components T P' T 3-

. iab2(n - 1)~n-2 - ib2(~n + a~) (n~n-l - a) 
Tp - tT& = !L"~ P I w'(~) I 

Of, putting ~ = pei
& and separating real and imaginary parts, 

T = _ ~"t'ab2(n - l)pn-2 (1 - p2) sin (n - 1)3-

P I co' (~) I ' 

apn-2[n - 1 - (n + l)p2] cos (n - 1)& - np2n-l - a2p 
T3-= _~~b2 -------------------------------------------I co' (~) I 
where 

I w'(~) I = V w'(~)w'(~) = b V n2p2n-2 + 2anpn-l cos (n - 1),& + a2. 

On the boundary (i.e., for p = 1) one has Tp = 0 and 

T 
_ T _ b n + 2a cos (n - 1)% + a2 

- .& - ~~ • vn2 + 2an cos (n - 1)% + a2 

If n < a, i.e., if the contour has no angular points, the maximum value 
of T occurs at those points of the boundary where cos(n - 1)& == - 1; 
these points are closest to the centre. The maximum value of T there 
is given by 

a2 - 2a + n 
T max = ~"t'b · a-n 

If a -* n, T max --?- 00, i.e., in the case of the boundary with angular 
points, as shown in Fig. 23, the stress T ma~ becomes infinite at those 
points. 
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The torsional rigidity is easily obtained from (134.9) and (134.10) 
which give 

lL7tb4 

D == (a4 + 4a2 + n). 
2 

2°. Boo t h's I e m n i sea t e. 
The solution of this problem (as well as of all the others, presented in this section) 

\vere published by the Author in 1929 in the papers, quoted earlier, and reproduced 
in the first edition of this book. Recently (1942), T. J. Higgins published the soIu tion 
of the same problem which he obtained by a more complicated method (cf. It S. So
kolnikoff [IJ, p. 184.). 

The transformation function for the region, bounded by this curve, 
was stated in § 46,6° (Fig. 27). Changing the notation slightly, one may 
write 

k~ 
w(~) = ~2 + a (a > 1, k > 0); (134.3a) 

one then obtains for f(~) the formula 

t(~) = -I-f k
2
a

2
dcr . 

27t' (0"2 + a) (I + aa:2) (0- - ~) 
y 

The integrand, considered as a function of (I, has outside y t\VO simple 
poles: 0"1 = iva and 0'2 == - iva; for large I (J I, it is of order I/a3

• 

Therefore, by the residue theorem, 

t(~) == - i(A1 + A 2), 

where AI' A2 are the residues, corresponding to the points 0'}1 0"2 respect
ively. One has 

[ 
k2a2 ] Al = (0" - i va) ~ 

(0'2 + a) (1 + a(2) (0' -~) a=iv(i 

_ k2va . 
- - 2i(1 - a2 ) (iva - C:) , 

similarly, 
k2 ya 

A2 == - ---------
2i(1 - a2) (iva + ~) , 

whence, finally, 
iak2 

t(~) = (a2 _ 1) (~2 + a) · ( 134.4a) 
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The stress components may be calculated as in the preceding example. 
Only the value of T == T ~ on the boundary will be given here: 

f.L~k( 1 + a2) 
T=------~~====~==~~ 

(a2 - l)Vl - 2acos2& + a2 

The maximum value of T occurs for cos 2-& == 1, i.e., at the ends of the 
minor axis, and it is given by 

T _ lL1."k(a2 + 1) 
max - (a + 1) (a - 1')2 . 

One easily obtains for the torsional rigidity 

D == lL7tk4(a4 + 1) . 
2(a2 - 1)4 

3°. The I 0 0 p 0 f B ern 0 u II i's 1 e m n i s cat e. An example 
will now be given of a simply connected region for which 6){~) is not a 
rational function. 

Assuming I ~ ! < 1, let 

3 == w(~) == aVl + ~ (a > 0), (134.5a) 

and select that branch of the multi-valued function vi 1 + ~ which 
is equal to unity for ~ == O. In other words (Fig. 57 a), 

.q) 
- 1.-

(U(~) == -vir e 2 

Fig. 57a. C; plane. 

As ~ describes the unit circle y, 

& 
cp=-

2 

y 

,.-- ... 
/ ..... , , , 

I , 
1 ~----~~-
\ , 
' .... _-,.,;' 

Fig. 57b. 5 plane. 

( - 7t < % < 1t) 

x 
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and 

Hence 

VII. EXTENSION, TORSION, BENDING 

3-
r = 2 cos-. 

2 

§ 134a 

If R and ~ denote the modulus and argument of 3, then, by the 
preceding formulae, 

R == a y 2 cos ~, tjJ = ~ , 
2 4 

whence 

R = a V 2 cos 2~. ( 134.6a) 

Thus 3 describes one loop of Bernoulli's lemniscate [Fig. 57b] and (134.5) 
maps the region inside this loop on to the circle I ~ I < 1. 

One finds for t(~) 

a2 r -- 1/ 1 dr; 
t(~) == ~ VI + (J Y 1 + - . -- == 

27t • (J (j - ~ 
y 

= ~f 1 +_ cr dcr (134.7a) 
27t V (J (j - ~ , 

y 

where one has to take that branch of the function (1 + (1)/ va which 
. .& 

ispositiveony, i.e., one must take vcr = etz. 
The integrand will be single-valued in the region, bounded by y and 

cut as shown in Fig. 58. Therefore (in the 
notation shown in this figure, where, in 
particular, Y1 denotes an infinitely small 
circle) 

2~i [f + f + f + fJ = A, 

where A is the residue at cr = ~ which is 
obviously equal to 

l+~ 
v~ · 

-I 

y 
Fig. 58. 
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By means of a simple transformation of the integrals, taken along rx and 
~ (the integral over Yl being infinitely small), one finds 

1 

_1_ r 1 + _ () da = 1 + ~ __ 1 J 1 -_ t dt 
2rci.. V cr (J - ~ v~ 1t vt t + ~ 

( 134.8a) 

y 0 

whence, omitting an arbitrary constant, 

2ia2 1 + ~ -
f(~) = - · - artan v~; 

1t' v~ 

in this formula one must take for 

- 1 1 + iv~ 
artan vt = 2i log 1 _ iV~ 

the branch which is defined by the series 

The problem is thus solved. 

4°. Con foe ale 11 ips e s. E c c e n t ric c i r c 1 e s. When the 
cross-section of the (complete) cylinder is bounded by two confocal 
ellipses or two (eccentric) circles, the solution is likewise easily obtained 
by transformation on to the circular ring. In particular, the solution 
of the last case may be deduced directly from example 1 0 of § 140a. 

§ 135. Extension by longitudinal forces. The solution of this 
problem is quite elementary and has, in essence, already been deduced 
in § 19. In fact, if 

F 
Zz = 5' x'" = Y ll = Y z = Z", = Xli = 0, (135.1 ) 

where F is the magnitude of the given force, assumed positive in the case 
of tension, and S is the area of the transverse section of the bar, then 
all the required conditions will be satisfied. This solution corresponds 
to normal stresses, distributed uniformly over the ends. The resultant 
of the stresses, applied to the upper end, will be equivalent to a force F, 
applied at its centre of area. 
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If the given force is not applied to the centre of area of the end, 
it may be transferred to that point by adding a couple the plane of which 
is perpendicular to the end (i.e., a bending couple). Thus, the solution 
of the problem of bending by a couple, stated in the next section, has 
to be added in this case. 

The displacements, corresponding to the stresses (135.1), are easily 
verified to be given by 

crF crF F 
u== - SEx, V= - SE Y' W= SE z, (135.2) 

where any rigid displacement of the bar as a whole may be added. 
The quantity SE, which is the coefficient of proportionality between 

the extending force F and the corresponding extension of the bar, may 
be called the rigidity 01 extension (compression). 

§ 136. Bending by couples, applied to the ends. In this case the 
solution is also quite elementary. 

In accordance with established custom, the bar will be placed ho
rizontally with the Oz axis running from the left to the right and the 
Ox axis vertically downward, as shown in Fig. 59 (where the Oy axis 
is not shown; it is directed away from the reader, because the coordinate 
system is to be right-handed). 

The ends which were formerly called "lower" and "upper" will now 
be called "left" and "right" 'respectively. In addition, it will be assumed 
that the point 0 lies at the centre 01 area 01 the left end, so that Oz is 
the "axis of centroids", i.e., the locus. of the centroids of the cross
sections. 

An attempt will now be made to satisfy the conditions of the problem 
by writing 

(a) 

These values obviously satisfy the equations of equilibrium and of 
compatibility (§ 130). It will now be investigated whether the stresses, 
applied to any transverse section (from the right), are statically equi
valent to a bending couple. 

Clearly, if the forces which are applied, say, to the right end are equivalent to 
a couple, then the forces, applied from the right to any section, must be equivalent 
to the same couple. 
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The resultant vector of these forces is equal to zero, since 

JJ·Z.dXdY = a //XdXdY=O; 
s s 

the last integral vanishes, because the orIgtn lies at the centroid of 
the section S. 

~ ____________________ ~zz 

O~-------------------+----4e-
Z 

x 
Fig. 59. 

The resultant moment of the above-mentioned forces about an axis 
through the centre of area of the section and parallel to the axis 
Oy is 

M= - f{Z.XdXdY = -a//X2 dXdY= -aI, (b) 

s s 
where I is the second moment of area of the section S about the axis Oy. 

Finally, the resultant moment of the forces about the axis passing 
through the centroid of the section and parallel to Ox is equal to 

If Zzydxdy = a/ /XYdXdYo (c) 
s s 

If 

//XY dx dy = 0, 

s 
i.e., if the coordinate axes Ox, Oy are principal axes of inertia of the 
section S (with regard to its centroid), then the moment (c) is equal to 
zero and the forces are equivalent to a couple with moment vector 
parallel to Oy and determined by (b). For a given value of M the constant 
a is determined by 

M 
a= --. 

I 
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Let it be assumed that the coordinate axes have been chosen in the 
stated manner. In that case the solution has been obtained of the problem 
of bending of a bar by couples, applied to the ends, whose moments 
are parallel to one of the principal axes of inertia of the section with 
regard to its centre of area. 

The above results will now be summarized. Let a couple ,vith vector 
moment, parallel to one of the principal axes of inertia of the end with 
regard to its centroid, act on the right end of the bar. If one takes as axes 
Ox, Oy the principal axes of inertia of any cross-section, e.g. of the left 
end, and directs the axis Oy parallel to the mon1ent of the couple, then 
the solution of the problem of bending is given by 

M 
Zz =:: - IX, XZ === Yy == Yz == Zx = Xv == 0. (136.1) 

In these formulae I denotes the moment of inertia of the end-section about 
the axis Oy and M is the magnitude of the moment of the couple (which 
is positive, if the moment is directed along the axis Oy). 

It is readily verified by direct substitution that the displacements, 

corresponding to these stresses are: 

M M M 
u = 2El (Z2 + GX2 - Gy2), V = El GXY, W = - EY xz ; (136.2) 

terms, expressing rigid body displacements, may be added to these 
formulae. 

The plane x == ° is a "neutral plane": fibres, lying in this plane, 
will neither be stretched nor compressed. Fibres, lying to one side of 
this plane, will be extended, while those on the other side will be com
pressed. 

The normal stresses are distributed over the cross-section according to 
the linear law, expressed by (136.1); cf. also Fig. 59. 

The points of the "central fibre", having before deformation the 
coordinates (0, 0, z), will move to points with coordinates (~, 1), t:), where 

M 
~ = 2El Z2, "1J = 0, ~ = z; (136.3) 

this is easily seen from (136.2). 
Thus the central fibre remains in the plane Oxz which is therefore 

called the plane at bending. In the present case it is parallel to the plane 
of the bending couple. The radius of curvature R of this line (after 



CHAP. 22 TORSION AND BENDING OF HOMOGENEOUS BARS 611 

deformation) is determined (apart from small, higher order terms) by 

1 d2~ 

R dz2 

(where it will be assumed that R < 0, if the curve is convex downward) ; 
hence one obtains the important relation. 

1 

R 

M 

EI 
(136.4) 

which expresses the so-called law of Bernoulli-Euler: the curvature 
of the central fibre is proportional to the bending moment. The quantity 
E1 is called the flexural rigidity. Since a constant value had been obtained 
for R, the central fibre in its deformed state will represent a circular 
arc of radius R which must be assumed very large in view of the assumed 
smallness of the deformations; in fact, the quantity l/R must be of the 
same order of smallness to which the deformations are restricted. 

The relation IjR = d2~/dz2 used above is based on the following reasoning; by a 
well known formula, 

1 ~H 3) 
_ = = ~H(1 + ~'2)_3/2 := ~"(1 __ ~'2 + ... 
R (1 +~/2)3/2 2' 

where accents denote differentiation with respect to z. In view of the smallness of 
the deformations, all but the first term of this expansion may be omitted and the 
stated result is obtained. 

In actual fact, the equation of the curve of the central fibre is given by 

Z2 
~=-

2R 

which is a parabola; however, the difference between this curve and the circle 
with radius R is a second order quantity. 

Points, lying before deformation on the normal to the section z = c, 
move as the result of the deformation to points (~, Ij, ~), where, in particular, 
by the last of the formulae (136.2) 

~ = c + w = c - ~ xc = c (1 - ;). 
Replacing on the right-hand side x by ~ which is justified in VIew of 
the smallness of IjR, one finds 
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this is the equation of the plane, perpendicular to the plane of bending. 
Thus, normal sections remain plane. 

If the moment of the bending couple is not directed along one of the 
principal axes of the cross-section, this couple may always be decom
posed into two each of which satisfy this condition, and the solution 
of the problem will be obtained by superimposing two solutions of 
the stated form. In this general case the plane of bending does not co
incide with the plane of the couple; however, in this case also it is per
pendicular to the neutral plane which will again exist. It will be left to 
the reader to prove this simple property. 

§ 137. Bending by transverse forces. Let the coordinate axes be the 
same as in the preceding section, i.e., select as origin the centroid of 
one of the ends ("left end"), and let the Ox, Oy axes be parallel to the 
principal axes of inertia of this end about its centroid. Let the forces, 
acting on the right end, be equivalent to a force W, applied at its 
centre of area and directed parallel to the axis Ox (Figs. 60a, 60b). The 

I 

~---Z-----: o I 
I 

~- ------- ..... -1- -- - -- ..... 
I 

I 

It 

Fig.60a. 

W X 
Fig.60b. 

y 

resultant moment M of the forces, applied (from the right) to any section 
which is a distance z from the left end, about the axis through the centroid 
of this section and parallel to Oy is obviously given by 

M == W(l - z), (137.1 ) 

where l is the length of the bar. 
If only a couple with moment M were acting on the section under 

c9nsideration, one might, on the basis of the results of § 136, write 

M 
Z == --x 

Z I' 

where I is the moment of inertia of the section about the axis, parallel 
to Oy and passing through its centroid. 
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An attempt will now be made to satisfy the conditions of the problem 
by writing 

M W(l- z)x 
Zz= ---x= - . 

I 1 
(137.2) 

However, it is clear that one may not now assume that all the remaining 
stress components vanish, because in that case the forces, acting at 
the cross-section, might not give the resultant vector W, acting in the 
plane of the section. However, let it nevertheless be assumed that 

(137.3) 

Substituting these values in the equations (129.1), one obtains 

and 

oXz BYz Wx 
-+-+-==0. ox oy I 

(137.4) 

It follows from the first two of these equations that X z, Y z do not 
depend on z. Equation (137.4) may be rewrittent 

oXz +~(y + WXY)_o 
~ By Z 1-' 

whence it follows that 

oQ 
X ---

Z - By' 
8n Wxy 

y =----
Z ox I' (137.5) 

where Q is some function of x and y. SUbstituting the expressions for 
the stress components in the compatibility equations (130.4), one sees 
that the first, second, third and sixth of these equations are satisfied 
identically, while the two remaining ones give 

whence 

8~n 
--=0 ox ' 

w 
--=-----

(1 + (;)1 ' oy 

Wy 
~n = - . - 2tJ.,! 

(1 + a)I ' 

where - 2fl.'t' denotes some constant. 

(137.6) 
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Noting that 

{ W [ ((j) y3 ] tJ.'t" Q } ~ _ ~(jX2y + 1 _ - - - - (X2 + yw) == 
2(1 + (j)J W 2 3 2 

Wy 
- - - 2fl'T, 

(1 + (j)J 
one may write 

n - - 1. O'X 2 1 - - -- - - X2 2 
w~ { ((j) y3} tJ. 'T 

- 1jJ1 2( 1 + a)1 2 Y + 2 3 2 ( + Y ), (137.7) 

where t¥1 is a harmonic function. 
If CPl denotes the harmonic function, conjugate to t¥v i.e., the function 

for which 
OCPl Ot¥l 
--=-, ox oy 

then obviously (137.5) may be written 

X z = ::1 - 1L'tJ' - 2(1 : a)1 {!ax2 + (1 - ta)y2} , 

OqJI W(2 + 0') 
Y z = BY + wrx - 2(1 + a)1 xy. 

(137.8) 

Finally, one can always write 

W 
<PI = {J.~<p - 2(1 + a)1 X' (137.9) 

where <p is the torsion function, defined earlier (§ 131), and X is some 
new harmonic function. Hence 

( 8<P) W {ox } X z == tJ.'t' - - y - ( - + to-x2 + {I - lo-)y2 , ox 2 1 + (j)J ox 

( ocp) W {OX } 
Y z = fL't' 8Y + x - 2(1 + a)l Oy + (2 + a)xy , (137.10) 

Zz = _ W(l - z) x. 
I 

The displacements corresponding to these stresses are easily calculated 
(by the general formulae of § 15 or by simple elementary means, as 
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used e.g. in A. E. H. Love [1J, Chap. x\r); the reader will readily verify 
that the following expressions satisfy (129.2): 

W 
u = - '!zy + EI {to'(l - z) (x2 

- y2) + ~_lZ2 - lz3}, 

w 
v = '!zx + E1 a(l - z)xy, ( 137.11) 

TV 
w === 'rep - EI {x(lz - tz2) + X + xy2}. 

A rigid body displacement may again be added to these expressions. 
The last of the formulae (137.11) shows that the function X must be 

single-valued, since Wand cp are single-valued. 
Substituting from (137.10) into the boundary condition on the side 

surface 
X z cos (n, x) + Y z cos (n, y) = 0 

and taking into consideration (131.6), to be satisfied by the torsion 
function cp, one obtains 

dX 
dn = - [iO'x2 + (1 - tcs)y2J cos (n, x) - (2 + a)xy cos (n, y) (137.12) 

on the boundary L of the region S. 
Hence one has to solve the Neumann problem, just as in the case 

of the torsion function, in order to find the function x. 
It is easily seen that the condition for existence of the solution of the Neumann 

problem, i.e., 

f {[tcrx2 + (1 - to')y2] cos (n, x) + (2 + a)xy cos (n, y) }ds == 0, 

L 

is satisfied in the present case. In fact, applying Green's formula, this condition 
becomes 

2(1 + cr) f f x dx dy = 0, 

S 

where the integral vanishes, since, by supposition, the centroid of S lies at the 
origin. 

The resultant vector of the external stresses, applied to the right 
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end, is easily seen to be parallel to Ox and equal in magnitude to W. 
In fact, by (137.4), one has 

f f f f { (
aX z aY z U' x )} X z dx dy = X z + x ax + ----ay + -[- dx dy = 

s s 

f r { o (xX z) o(x Y z) } W f f = + dxdy + - x2 dxdy = .. ox oy I 
s s 

= fX[Xz cos (n, x) + Y z cos (n, y)Jds + W = W, 
L 

since by (a) the last integral vanishes. 
In a similar manner, one finds 

f f Yzdxdy = f f {Yz + y( o~= + O~z + ~X)}dXdY = 
s s 

= f f { o~~ z) + O(~~ z) } dx dy + ~ f f xy dx dy = 

s s 

= f y[Xz cos (n, x) + Y z cos (n, y)Jds + ~ f f xy dx dy = 0, 

L s 

because, by (a), the first integral on the right-hand side vanishes, while 
the second is equal to zero as a result of the fact that Ox and Oy are 
principal axes of inertia for the section s. 

However, if g remains arbitrary, the forces applied to this end still give 
a twisting couple. In fact, the terms containing "t' give a couple with 
a moment determined by (131.8), while the terms with W give a couple 
with moment 

2(1 ~ cs)I ff{y :~ - x ~ + (1 -tCS)y3- (2+tcs)x2y}dXdY. (137.13) 

s 

In order to remove the twisting couples, it is sufficient to give "t' a suitable 
value so that the sum of the stated moments vanishes. 

The terms involving W determine the bending of the bar. The plane 
x = 0 is here the neutral plane and Oxz the plane of bending. The central 
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line (i.e., the line x = 0, y == 0, which passes through the centroids of 
the cross-sections) becomes a curve in the Oxz plane, its radius of cur
vature (at a given point z) being determined by the Bernoulli-Euler 
relation 

(137.14) 

where 

M = W(l- z) 

is the moment of the forces, applied to the transverse section (from the 
right) at the given point, about an axis which lies in the plane of the 
section in the direction of Oy. 

In addition, the terms involving 1"' cause torsion of the beam about the 
axis Oz. Clearly, in the case of sections symmetrical with regard to the 
Ox axis, one will have 1" == ° and no torsion will occur. 

Finally, if the force W is not parallel to one of the principal axes of 
inertia of the cross-section and does not pass through its centre of area, 
then its point of application may be moved to the centroid by introducing 
a suitable couple and the force may be decomposed into two parts, 
parallel to the principal axes of inertia. The unknown solution of the 
problem is then obtained by solving the problem of torsion and two 
problems of bending by forces, parallel to the principal axes. 

Consider now again the above case. Instead of X' its conjugate function 
X' will be introduced so that 

ox oX' 
-==-, ox oy 

Then, using the relation [cf. (132.2)J 

dX dx' 
dn = ds ' 

one obtains for X' the boundary condition 

X' = F k(S) + C k on L1, L 2, • • • , L m+1, (137.15) 

where Lk denotes the contours forming the boundary L of the region, 
C k are constants and 
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Fk(S) = - j[tcrX2 + (1 - tcr)y2J cos (n, x)ds - (2 + cr) jXy cos (n,y) ds 

= - j [tcrx2 + (1 - tcr)y2Jdy + (2 + cr) j xy dx 

= - t(l - tcr)y3 + j{(2 + cr)xydx - tcrx2dy} + const., 

where the integral is taken along Lk from an arbitrary point of this 
contour to the variable point (x, y). Noting that 

jX2 dY = x2y - 2 jXYdX + const., 

the preceding formula may be written 

y3 x2y j 
Fk(S) = - (1 -ta)- - a- + 2(1 + a) xydx + const. 

3 2 
(137.16) 

Since the last integral, if taken along the entire contour, will not, 
in general, vanish, the function X' will be multi-valued. However, in 
the case of simply connected sections bounded by one contour L, the 
integral, if taken around L, vanishes and X' will be single-valued, as 
was to be expected. 

By Green's formula 

f xy dx = =F I f x dx dy, 

where Sk is the part of the plane surrounded by L k • The upper sign must be 
chosen for L m+1, the lower for the remaining contours. The integral will only 
vanish in the case, where the centroid of Sk lies on the Oy axis. 

As in the case of torsion, it is sometimes convenient to consider the 
complex function 

G(5) = X + iX'· (137.17) 

§ 138. On the solution of problems of bending for different 
cross-sections. In his major work on bending [2J as well as in other 
papers Saint-Venant gave the solutions of bending problems for a 
number of cross-sections, in particular for a rectangle. As in the case 
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of the torsion problem, Saint-Venant illustrated his solutions by de
tailed explanations, numerical examples and graphs. The reader should 
consult his original work as well as the book by I. Todhunter and K. 
Pearson [IJ (cf. also the interesting paper by B. G. Galerkin [3J). 

Also in the problems of bending, conformal mapping may be of great 
help, just as it was for torsion. In particular, the results of § 134 (with 
obvious modifications) are easily applied to the present problem and 
the problem of bending may thus be solved for all the cases, considered 
in § 134a. But not much space will be devoted to it here and consideration 
will be limited to the simple example, presented in the next section. 

In a recently published paper, S. Ghosh [IJ applied the method of 
conformal transformation to bending problems; evidently he was only 
conversant with the Author's paper [12J and with the study of the 
problem, contained in the book by I. S. Sokolnikoff [IJ. 

§ 138a. Example. Ben din g 0 f a c i r cuI arc y 1 i n d e r 0 r 
tub e . 

Consider a cross-section of the shape of a circular ring, bounded by 
concentric circles Ll and L2 with radii Rl and R2 (Rl < R2). For the 
flng (cf. § 62, Note) 

+00 
G(5) = X + iX' = A log.5 + k (ak + ibk)3k, ( 138.1a) 

-00 

whence, putting .5 = rei&, 

+00 
X = A log r + ~ (a k cos k& - bk sin k&)rn. (138.2a) 

-00 

In (137.12) take for n the normal, directed away from the centre; 
then obviously 

cos (n, x) = cos &, cos (n, y) = sin &. 

Further, noting that 

[tcrx2 + (1 - icr)y2] cos & + (2 + a)xy sin & = 

= (! + ta)r2 cos .ft - lr2 cos 3.& (138.3a) 

and that 

dX OX 
-=-, 
dn or 

one obtains the boundary conditions in the form 
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A +00 
- + ~ k(ak cos k& - bk sin k&)rk-1 = 
r -00 

== - (!- + to')r2 cos & + !r2 cos 3& for r == R1, R2, 

whence, comparing coefficients of cos k& and sin k&, 

§ 138a 

A == 0, bk == 0 (k == ± 1, ± 2, ... ), ak == ° (k =f=. 0, ± 1, ± 3), 

al - R:J.2a_l == - (! + tcr)Ri, al - R22a_l == - (! + t(j')R~, 
3aaRi - 3a_aRi 4 == !Ri, 3aa - 3a_aR24 = !R~. 

These equations give 

a l == - (! + to") (Ri + R~), a-l == - (i + to')RiR~, 

The constants ao, bo remain arbitrary, as was to be expected. 
Finally, one finds for X{x, y) 

{ 
1{2R2} x= -(!+tcr) (Ri+R~)r+~ cos.& + ir3 cos 3.& + const. (138.4a) 

and the problem is solved. 
For Rl == 0, one obtains the solution for the solid bar with circular 

cross-section. 



CHAPTER 23 

TORSION OF BARS CONSISTING OF 
DIFFERENT MATERIALS *) 

§ 139. General formulae. 1°. The problem of the torsion of bars 
consisting of prismatic (cylindrical) components made of different 
materials and joined along their side surfaces will be studied next. 
Each component will be assumed homogeneous and isotropic. 

The cross-section S of the bar will consist of several regions So, Sv 
52' ... , 5 Tn' corresponding to different materials and bounded by curves 
to be called dividing lines. In the sequel, when speaking of a part of the 
bar, this will refer to such a region S j. 

Although the majority of the results to be stated below are true in the 
most general case, the reasoning will be given only for the special basic 
case, when the bar under consideration consists of a series of parallel solid 
bars which do not touch each other and which are surrounded by elastic 
material filling the space between them and the surrounding cylinder 
which is parallel to the component bars. 

The cross-section S of such a bar 
will consist of a set of different 
regions 51' S 2' ••. , S m' corre
sponding to the component bars, 
and a region So corresponding to 
the surrounding material. Let 
the boundaries of the regions S j 
be denoted by L j (f = 1,2, ... , m); 
the boundary of 50 will then 
consist of the closed contours L 1, 

L 2 , • • • , L m, Lm+v where the last 
contains all the preceding ones 

n 

l, 

G) 
(Fig. 61). . 

2°. It will now be attempted to FIg. 61. 

satisfy the conditions of the torsion problem, by writing, as for the case 
*) The results of the present chapter were first given in the Author's papers 

[14, 15]. 
621 
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of a homogeneous bar, 

u == - 't"zy, V = ~zx, w = 't'cp(x, y), (139.1) 

where the constant t' and the function qI(x, y) are subject to definition; 
the latter function will be called the torsion function. 

On the basis of (129.2), one finds, as in the case of the homogeneous bar, 
that in each region S;(j == 0, ... , m) 

Xz = T~j( ~: -Y), Yz = T~j( ~ + x), (139.2) 

where tLi denotes the shear modulus corresponding to the region S,; the 
remaining stress components are zero. 

By substituting these expressions in (129.1), it is easily seen that these 
equations, as in the case of the homogeneous bar, reduce to the Laplace 
equation 

~cP = o. 
Thus, in the present case, the function cp must also be harmonic in each of the 
regions 5,. The difference from the case of the homogeneous bar mani
fests itself only in the boundary conditions. These conditions express that: 

a) the external surface of the bar is free from external forces, 
b) the forces acting on elements of the surfaces, separating the dif

ferent materials, are equal in magnitude and opposite in direction, 
c) the displacements u, v, w remain continuous across the dividing 

surfaces (because, by supposition, the various parts of the bar are 
joined together). 

The condition a) obviously leads to 

Xz cos (n, x) + Yz cos (n, y) = 0 on Lm+l (139.3) 

on the boundary of S and (b) to 
[Xz cos (n, x) + Y z cos (n, y)], = [Xz cos (n, x) + Y z cos {n, y)Jk (139.4) 

on the common boundary between Sj and Sk' Here n denotes the normal 
to the corresponding contour, where it is implied in (139.4) that on both 
sides of the equality the normal points in one and the same direction. 
The subscripts j, k indicate that the expression in the brackets is evalu
ated for the material in the regions S, and Sk respectively. 

In the case which was termed above basic the conditions (139.3) and 
(139.4) assume the following form (in the notation of 1°) 

X z cos (n, x) + Y z cos (n, y) = 0 on Lm+l (139.3') 
and 
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[X z cos (n, x) + y z cos (n, y)J i = [Xz cos (n, x) + Y z cos (n, y)Jo (139.4') 

where n is understood to be the outward normal of So. 
Substituting for X z and Yz from (139.2), the conditions (139.3) and 

(139.4) may be expressed by the single formula 

!-Lk (d~) - fLi (dcp) = (tJ.k - t-Li) [y cos (n, x) - x cos (n, y)] (139.5) 
dn k dn i 

on the lines of subdivision, if one agrees to include among the lines of 
subdivision also the contours corresponding to free surfaces, assum~ng 
that f.Li = 0 tor a tree s'ttrtace. 

In the basic case this condition assumes the form 

fLO( ~:)o - fLj( ~: \ = (fLo - fL;)[y cos (n, x) - x cos (n, y)] (139.5') 

on L i , f = 1, ... , m + 1 with t-Lm+l == o. 

The condition c) leads to the requirement that the junction ~ is to 
remain continuous for the transition from one material to another. In 
other words, the function <p must be continuous in the entire region 

S = So + 51 + ... + Sm, 

including the dividing lines. 
It is readily shown that, if cp satisfies the preceding condition, the 

resultant vector (X, Y, Z) of the forces applied to either of the faces, 
say, the upper face vanishes. 

In fact, first of all it is clear that Z = 0 (because Zz = 0 everywhere). 
Further, taking into consideration that in each of the regions Si (j = 0, 
1, ... ,m) 

one will have 

J J J J {
8(XXz) 8(xYz) } 

X = Xzdxdy = ox + oy dxdy= 
s s 
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Transforming the last integrals using Green's formula, one obtains, 
finally, 

x = ~ f x[Xz cos (v, x) + Yz cos (v, y)Jds, 
Lj 

where L j denotes the boundary of 5 j and v is the outward normal to 5;. 
The integrations along the lines of subdivision must be performed twice, 
since these lines belong to the boundaries of two regions. The expression 
X z cos (v, x) + Yz cos (v, y) assumes for these integrations by (139.4) 
opposite sign3 without changing its ab30lute value; therefore the integrals 
along the lines of subdivision cancel each other. 

In (139.4), it was assumed that the positive normal n is taken to be one and 
the same for sections contiguous to a line of subdivision from either side. On 
the other hand, the normal v has for those sections exactly opposite directions. 

Therefore the integrals along the lines constituting the boundary of 5 
are likewise zero by (139.3). 

Thus X :::= O. An analogous procedure shows that also Y = o. 
Consequently, the forces acting on the "ends" produce pure couples. 

The moment M of the couple acting on the "upper" end is obtained 
by calculating the resultant moment of the above forces about the axis 
Oz. Obviously 

M == 'rD, ( 139.6) 
where 

m if ( a~ a~) D == ~ tL1 x2 + y2 + X - - y - dx dy. 
i=O w oy ox (139.6') 

s, 
The constant D is the torsional rigidity. As in § 131, it is quite easily 
shown that D > o. For a given moment M, the constant 't" is 
obtained from (139.6). Thus, in the end, the problem is reduced to the 
determination of the harmonic function cp which is continuous throughout 
the normal derivative of which has on the boundary of 5 given values and 
on the lines of subdivision of the sections .. 5j given discontinuities; these 
values are expressed by (139.5) which must be interp(eted in the sense 
stated above. 

In the so called basic case, the unknown harmonic function ~, continu
ous throughout S, must be determined from the conditions (139.5'). 

3°. Restricting the consideration to the basic case, the next section 
gives the solution of several, more general problems in which the con
ditions (139.5') are replaced by the conditions 
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~O(~:)o-~i(~:-)j=fj on L j , j= 1,2, ... ,m+ 1, 

where the Ij are functions given on the contours L j • 

For the problem of torsion 

Ii = ([.to - [.tj) [y cos (n, x) - x cos (n, y)]. 

625 

(139.7) 

(139.8) 

It is easily shown that the condition (139.7), apart from an arbitrary 
constant, determines the unkno,vn function qJ uniquely. In fact, 

~~1 (cpfjdS = ~~1 (G? [flO (ddCP) - fl; (dqJ).J ds == 
1-1... 1-1.., n 0 dn 3 

Lj L; 

== [1.0 f CP.( dcp) ds -.~ ~j ( cp (~~) ds, 
dn 0 1=1.., dn j' 

L Lj 

where L denotes the union of the contours Lv L 2, .... ,Lm + 1• But by 
a well known formula 

f d /. '" [( 0)2 (a )2J 
cp d: ds = jJ 0: + o~ dxdy, 

L S 

where t:p is a function, harmonic in some region S bounded by a contour L , 
and d~/dn is the derivative in the direction of the outward normal. 
Taking into consideration that for Sv .... , S m, in the present notation, 
n represents the inward normal, one finds 

m+ 1 f m (f [( o~ )2 ( oq> )2J 
;:1 cpf; ds = i~O ~i • OX + oy dx dy, 

L; s,. 

whence it follows that, if on all contours L; 

I; === 0, 
then 

~ = ocp = 0 
ox oy 

in the entire region S, and hence q:> === canst. 
If now CPl and tp2 are two solutions of the problem, then 

cP === CPl - CP2 

(139.9) 

will likewise be a solution, corresponding to the case I; == 0 on all con
tours. It follows from this that 
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CPl - CfJ2 = const., 

which proves the above statement. 

§ 140 

N ext consider the question of the existence of a solution and of its de
termination. First of all, it is easily seen from (139.7) that 

whence, using the fact that the integral over the normal derivative of a 
function, harmonic in a region, taken over the boundary of the region is 
zero, it follows that 

m+ 1J1 

~ Ij ds = O. 
i=1 

(139.10) 

Consequently, the condition (139.10) is necessary for the existence of a 
solution. It can also be shown to be sufficient, as will be seen later. This 
condition is always satisfied in the torsion problem, because, if Ii has the 
form (139.8), 

Lj 

for every L j separately (cf. § 131). Thus condition (139.10) is certainly 
fulfilled in this case. 

§ 140. Solution by means of integral equations. 
It will be assumed that one is dealing with the basic case of § 131, 1°. 
Taking into consideration the continuity of the unknown function <p in 

the entire region 5 and the discontinuity of its normal derivative on the 
contours L i , it is natural to try to represent this function in the form of a 
potential of a simple layer, distributed over these contours, since the po
tential of a simple layer has just the required properties. In this way one 
is led to the generalization of the known problem of Robin-Poincare 
(as it has been called in J. Plemelj's book [2J). 

Thus, let 

cp(x, y) = r p(s) log _1 ds = ~il JI' p(s) log -2- ds, 
..., r 7=1 r 

(140.1 ) 

L Lj 
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where r denotes the distance of the point (x, y) from the point s lying 
on one of the contours L j and p(s) [the density of the layer] is an unknown 
continuous function of s. The symbol s will refer at the same time to 
any of the contours L j over which the integration is extended. 

On the basis of the known properties of the potential function of a 
simple layer, the function cp, defined in (140.1), will be continuous through
out the region. Its normal derivative will be discontinuous for a 
passage through the L j • In fact, the following relations will hold: 

( dr.p) == _ 7tp(t) + f p(s) -,=050/ ds (j = I, 2, ... , m), 
dn j r 

L 

f cos~ 
1tp(t) + p(s) r ds, 

(140.2) 

L 

where (d~/dn)o and (dcpjdn)j relate to a point t on one of the contours 
L;, r denotes the distance between the points sand t and tJ; is the 
angle between the vector ts and the normal n at t (remembering that n is 
always the normal outward with regard to the region So; see Fig. 61). 

Using (140.2), the boundary condition (139.7) now becomes 

r cos tJ; 
7t(l-Lo + l-Lj)p(t) + ([.Lo - [1.j) p{s) ds = Ij(t), 

., r 
( 140.3) 

L 

where t denotes a point on L j (f = 1, ... , m + 1). In this way a system 
of Fredholm equations has been obtained which rnay be reduced to one 
single equation 

p(t) + ( K(t, s)p(s)ds = f(t), ( 140.4) 
." 

L 

where 

K(t s) = ~o - fl-; cos ~, f(t) = /;(t) for t on L;. (140.5) 
, n([.1.o + [.1.j) r n([.1.o + [.L;) 

Next examine for what conditions (140.4) has a solution. The ho
mogeneous equation 

p(t) + f K(t, s)p(s)ds = 0, (140.6) 

obtained from (140.4) by putting I(t) = 0, i.e., 
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t i(t) == 0, (f == 1, ... , m + 1), 

has only one linearly independent solution. In fact, the function qI, 

defined by (140.1) where p(s) is the solution of the homogeneous equation 
(140.6), will satisfy the boundary conditions (139.7) for Ii == O. As proved 
in § 139, such a function cp is constant throughout the region S. But for 
cp = const., (140.2) gives 

21tp (t) = ( ~: ) 0 - ( ~: ); = ° on L; (j = 1, 2, ... , m). 

Thus, the solution p of the homogeneous equation (140.6) is the density 
of a layer, distributed over the outside boundary Lm+l of the region S 
and giving a constant potential in this region; for example, this is the 
two-dimensional analogue of the "natural distribution" of electricity on 
a conductor. As is known (cf. e.g. J. Plemelj [2J, p. 63)~ the density of 
such a distribution is determined uniquely apart from a constant mul
tiplier, and this proves the supposition. 

By a known theorem of Fredholm, the adjoint homogeneous equation, 
I.e., 

p(s) + j K(t, s)p(t)dt = 0, ( 140.7) 

L 

will likewise have a unique (linearly independent) solution. 
In fact, it is easily verified that this solution is 

p*(t) = ~o + ~, (when t is on L i , f = 1, ... , m + 1). (140.8) 

Actually, if the point s is taken on Li (f < m + 1), 

j
K(t, s)dt == l-Lo - tLi jcos~ dt = fLo - tLj , 

7t([.Lo + [.1i) r fLo + fLi 
Lj Lj 

j K(t, s)dt =-= [.Lo - l-Li j cos IjJ dt = 0, i =1= j, i =1= m + 1 , 
1t([.to + [.1i) r 

Li Li 

j K(t, s)dt == ~ j cos ~ dt == - 2. 
1tfLo r 

Lm+l 

The above leads to the well known formula 
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(

0 if s is outside L i , 

(

COS t.J; , 

~ r dt = 7t, if s is on L j , 

Lj 2rr, if s is inside L i . 

(For Lm+l the sign has to be changed, since in that case, by the adopted 
notation, n will be the outward normal with regard to that contour, and 
not inward as it is with respect to all other Li.) 

Using these formulae, one immediately establishes that p*, defined 
by (140.8), satisfies (140.7), if the point s is taken on Li(f < m + 1). 
Finally, if s is on L m+1, then, similarly as above, 

f K(t, s)dt = 0 (j < m + 1), f K(t, s)dt = - 1, 

L; 

whence it follows that (140.7) is also satisfied in this case. 
Thus p*, defined by (140.8), is one of the solutions of (140.7); the 

remaining solutions may differ from it only by a constant factor. 
According to a known theorem of Fredholm, the original integral 

equation will have a solution if, and only if, the condition 
". I p*j(s)ds = 0 

v 

L 

is satified, i.e., by (140.8) and (140.5), if 

m+l ( 
.~ lids = O. 

1 = 1 __ 

L, 

(140.9) 

With the fulfillment of this condition the original integral equation 
(140.4) has a solution, determined apart from an additive term of the form 
Kp**, where K is an arbitrary constant and p** is the solutjon of the ho
mogeneous equation (140.6). The potential, corresponding to this term, 
is a constant. Therefore the function q? is uniquely determined apart 
from an arbitrary constant. 

In the case of the torsion problem, the condition for the existence of 
a solution, i.e., (140.9), is always satisfied, as has already been shown 
above. Consequently, the torsion problem always has a solution of the 
stated form; the torsion function q? is determined uniquely apart from 
an arbitrary constant which has no influence on the stresses and de
formations. 
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The problem of the torsion of a bar, consjsting of a number of hollow 
cylinders, inserted one into another and joined together along the side 
surfaces so that the curves, dividing the cross-section S of the bar into 
regions corresponding to different materials, are themselves closed 
contours, may be solved in quite an analogous manner (i.e., the problem 
of "composite tubes"). The case when the various component bars have 
longitudinal cylindrical cavities does not present any particular dif
ficulties. 

In the preceding work, it has, of course, been assumed that the closed 
contours Lv L21 etc. satisfy a definite condition of regularity. For the 
preceding work to be valid, it is sufficient to assume, for example, that 
each of the considered contours has at every point a continuously changing 
tangent and a bounded curvature. 

§ 140a. Applications. In several particular cases it is, of course, 
possible to obtain a solution of the problem without using integral equations. 
Thus, use of conformal transformation may sometimes be preferable, as 
will be shown in the first of the examples to be treated below. 

1°. Torsion of a circular cylinder, reinforced by 
a longitudinal round bar of a different materiaL 

Solution of this problem ,vas obtained by I. N. Vekua and A. I{. Rukhadze and 
published in their paper [IJ; part of this paper has been reproduced here almost 
vvithout any change. Solution of the case when there are cavities instead of the 
reinforcing rods was given by H. M. Macdonald [IJ. Another solution of the same 
problem was obtained by E. Weinel [IJ. See also a recent paper by R. C. F. Bar
tels [1]. 

Let the cross-section S of the bar consist of the region 51' bounded by 
the circle L l , and the region 52' bounded by the same circle Ll and a 
circle L2 enclosing the former. Let [J.l and [J.2 be the moduli of rigidity 
of 51 and S2 respectively .. 

If is easily seen that, if Ll and L2 are concentric circles and if the origin 
of the coordinates is taken at their centre, the torsion function will be 
constant, so that the ends of the inner rod and the surrounding cylinder 
move as if they were not connected with one another and the torsional 
rigidity of the composite bar were equal to the sum of the rigidities of 
the component parts. 

The case when Ll and L2 are not concentric is more complicated. The 
notation of the first part of § 48 will be used with the exception that 
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Z ::= X + iy is replaced by 3. Let 

~ 
x + iy = 3 = 1 _ a~ = 6>(t:) ( 140.1a) 

be the relation mapping the :3 plane on to the ~ plane. The circles Ll and L2 
will correspond to circles Yl and Y2 in the ~ plane the radii of the latter 
being PI and P2 (PI < (2)· These radii and the constant a are related to 
the radii r 1 and r 2 of the circles Ll and L2 and the distance 1 between their 
centres by the formulae (48.7) and (48.8). It should be remembered 
(§ 48) that 

1 
o < PI < P2 <-. 

a 
( 140.2a) 

By (140.1 a), the region 51 will correspond to the circle I ~ I < Pl and 
S2 to the circular ring PI < I ~ I < P2" Let cp be the torsion function; its 
values in SI and S2 will be denoted by qJl and q/2 respectively. Let ~ 
be the function, conjugate to <p and defined separately in 51 and S2; 
its values in 51 and S2 will be denoted by ~l and q;2. The functions Cf>v 
CP2' t.Vl and t.V2 are harmonic in the respective regions. 

The boundary conditions satisfied by <Pl and <P2 are (cf. § 139): 

d~2 
dn = y cos (n, x) - x cos (n, y) on L 2, 

( 140.3a) 

<PI = CP2 

d<P2 dcpl 
fL2 dn - tLl dn = (tL2 - ~l) [y cos (n, x) - x cos (n, y)] on Lv 

where n is now the normal directed away from the centre of the respective 
circle. Also let s be the arc measured anti-clockwise. 

Assuming that the first order partial derivatives of CPl' t.Vl' <?2' ~2 are 
continuous up to the boundaries of the regions of their definition (a 
fact which can be verified after the solution has been found) and taking 
into consideration the relations 

depl d~l depl d~l dCP2 dt.V2 d~2 
-- =--, -- =---, --=--
dn ds ds dn dn ds' ds dn 

(140.4a) 

following from the Cauchy-Riemann equations, one may replace the 
conditions (140.3a) by 
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tJ;2 == i(x2 + y2) + canst. on L2, 

d~1 d~2 
~d === - on L I , 

n dn 

!-L2tJ;2 - lJ.I t¥1 == !(f.L2 - fl.I) (X2 + y2) + canst. on L I• 

Let F(3) = q> + itJ; be the complex torsion function and let 

§ 140a 

(140.3a') 

I(~) == cp + itJ; (140.Sa) 

be the same function, expressed in terms of ~. Let II and 12 be the values 
of this function in 0'1 and 0'2' where 0'1 is the circle I ~ I < PI and 0'2 the ring 

PI < I ~ I < P2· 
Then one will have 

00 

fl(~) == ~ (a~ + ib~)~k in O'v ( 140.6a) 
k=O 

+00 
f2(~) == ~ (a~ + ib~)~k in 0'2' (140.7a) 

k=-oo 

whence, putting ~ === pei '&, 

00 

tJ;1 == b~ + ~ (a~ sin k& + b~ cos k.&)pk, ( 140.6a') 
k=l 

00 

tJ;2 == b~ + 2; [(pka~ - p-ka_;) sin kit + (pkbk + p-kb_~) cos k&J. (140.7a') 
k=l 

Further, note that 

But 

1 - a2p2 a~ a~ 
-(1 - a~) (1 - al;;) = 1 + I _ al;; + I _ at = I + (a~ + a2

l;;2 + ... ) + 
+ (a~ + a2~2 + ... ) == 1 + 2ap cos it + 2a2p2 cos 2& + .... 

This series converges absolutely for p < l/a. Thus 

p2 {OO } i(x2 + y2) == ! + ~ akpk cos kit . 
1 - a2p2 k=l 

(140.8a) 

Substitute (140.6a'), (140.7a') and (140.8a) in (140.3a') [where the middle 
condition may be replaced by otJ;]/op == Ot.J;2/0P (for P = PI)' since dt.J;l/dn and 
dtJ;2/dn differ from these only by a factor] and compare coefficients of 



CHAP. 23 TORSION OF COMPOUND BARS 633 

cos k&, sin kiJ. One easily finds for k > 1: 
, , , , , 

ak == ak === a_k === 0, 

~2kb" + b" === c ak- 1('j2k 
,2 k -k 2 ,2 ' 

vpikb~' + b~~ == vc1ak - 1pi k , 
(140.9a) 

b' - b" - 2kb' , 
k - k - Pl -k' 

where 
fl2 - fll 

V ===----, 
[.1.2 + [.Ll 

(140.10a) 

here C1 and C2 are the distances of the centres of Ll and L2 from the 
origin [cf. (48.6)J. 

The constants b~', b~ remain quite arbitrary, as was to be expected. 
The condition of continuity of cp gives, as is easily seen, a~ === a~', where 
the value of a~ and a~' is arbitrary. Therefore put 

b
' , , , 
o == bo = ao == o. 

Then, by (140. 9a), 
, , VlC1.,k 

b == c ak - 1 + ak - 1 
k 2 1 _ vock ' 

2k 
b' ~ == - lv P1 a k - 1 

- 1 - 'YC1.. k ' 
(140.11a) 

, 1 + C1.,k 
b == c ak - 1 + lv ak - 1 

k 2 1 _ vock ' 

where 

(140a.12) 

Substituting these values in (140.6a) and (140.7a), one finally obtains 

iC2~ 00 1 - ock 

Il(~) = y + ilv ~ ak-l~k, 
1 - as k=l 1 - Vt/.k 

ic ~ 00 ockak-l~k 00 pikak - 1 1 
12(~) == 2 + ilv ~ -ilv ~ 

1 - a~ k=l 1 - vock k=l 1 - VC1.,k ~k 

( 140.13a) 

These series and their derivatives are easily seen to converge absolutely 
and uniformly in the relevant regions including the boundaries. 

If v = 0, i.e., lJ.l == [J.2' one finds for 11 and 12 one and the same ex
preSSIon 
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I.e., 

VII. EXTENSION, TORSION, BENDING 

iC2~ 
t(~) =--

1 -a~' 

§ 140a 

This is the complex torsion function for the homogeneous cylinder. If the 
origin of coordinates is taken at the centre of the cylinder, one obtains 

F(3) = const. 

(cf. § 131, Note 2). 
Thus it may be said that the function f2(~)' determined by the second 

of the formulae (140.13a), consists of two parts: one, corresponding to the 
case when one deals with a continuous, homogeneous bar (first term), and 
the other, expressing the "indignation" aroused by the presence of 
the component bar. 

Once the functions fl(~) and f2(~) have been found, the stress components 
can be calculated by the formulae of § 134 (cf. I. N. Vekua and A. K. 
Rukhadze [IJ). The torsional rigidity D is likewise easily calculated 
from a formula of § 134. One finds 

, 7t12ri ((1.1 - (1.2) 2 
D = [.L21 + ([.Ll - tJ..2)I ~ -~---

{J-l + {J-2 

1tr4 
1 ___ 2 

- , 
2 

( 140. 1 Sa) 

here I is the polar moment of inertia of the solid bar of radius r 2 referred 
to its centre, and I' is the polar moment of inertia of the bar with radius 
r 1 referred to the centre of the first bar. 

If D' and D" denote the torsional rigidities of the component bars 
with the moduli of rigidity ~1 and [.l2' taken separately, then 

D' = ~l(I' - 7tl2ri), 
(140.16a) 
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[where the latter follows from (140.14a) by putting fLl = OJ. 
By (140.14a) and (140.16a) 

635 

47t,1 'I l2r2 00 (X.k( 1 - vk+1) 
D - (D' + D") == rlr2 1_ + 2~27tl2pi ~ (140.17 a) 

fLl + ~2 k=l (1 - a2picx.k)2 ' 

whence it follows that 
D' + D" < D, (140. 18a) 

as may have been expected beforehand. 
For the homogeneous cylinder (fLl == fL2)' one has instead of D 

Do == [1.21. 
In the general case when r1 is small, one has approximately, neglecting 

fourth and higher order terms in PI' 

D = fl-21 + 2IL2(ILI - IL2) 1', 
[1.1 + fL2 

whence follows the approximate formula 

~ = 1 + 2(ILI -- IL2) ~. (140.19a) 
Do [1.1 + fL2 I 

This formula reduces for t-Ll == 0 to that obtained by H. M. Macdonald [IJ 
for the hollow cylinder. 

If the cylinder is reinforced not only by one but by several longitudinal 
bars of the same material and if these rods are so thin and removed 
from one another that the regions which are "affected" practically do 
not overlap, then obviously the approximate formula (140.19a) may 
also be used in this case, provided one interprets I' as the sum of the 
moments of inertia of the component rods with regard to the centre of 
the circle L2• 

The torsion problem has also been solved in the case when Ll and L2 
are confocal ellipses (cf. I. N. Vekua and Rukhadze [2J) and when the 
boundaries are epitrochoids disposed in a definite manner. 

2°. Tor s ion 0 far e eta n g u 1 arb a r, con sis tin g 0 f 
two d iff ere n t r e eta n g u 1 a r par t s. The problem of the 
torsion of a rectangular homogeneous bar was solved by Saint-Venant 
(cf. e.g. A. E. H. Love [IJ § 221). It is often possible to obtain a solution 
of the torsion problem in cases which are excluded from consideration by 
the reduction of the problem to integral equatjons. For example, such 
cases occur when the boundaries have corners, as in the problem to be 
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X 

treated here. 
Consider a bar, consisting of 

two parts the cross-sections of 
which are rectangles with sides aI' 
2b and a2 and which meet along 
the boundary of width 2b (Fig. 
62). Let the moduli of rigidity of 
the component bars be fL1 and fL2 
respectively. Take the axis Oy 
along the dividing line of the 
regions 51 and 52' corresponding 
to the different materials, and let 

the origin be at the midpoint of this line; denote by Cf>1 and CP2 the values of 
the torsion function q:> in the regions Sl and 52' 

Further, introduce the harmonic function <P == Cf> + xy and denote its 
values in 51 and S2 by <1>' and <1>". It is immediately seen that the bounda
ry conditions are as follows: 

3<1>' 3<1>" 
Tx=2y(x=-av -b<.y<b), a~==2Y(X=a2' -b<y<:.b), (a) 

3<1>' 3<1>" 
[.Ll aX- -!-L2 ox = 2(~1- (.L2)Y (x == 0, - b < y <. b), (b) 

<1>' = <1>" (x == 0, - b <. y < b) , (c) 

3<1>' 0<1>" 
Ty=O(y=±b, -a1 <;x<; 0), -ay-=O(y=±b, 0<;x<;a2). (d) 

The harmonic functions cp' and <1>" will be determined in the form of the 
senes 

where 

00 

<1>' = ~ (A~n+l sinh mx + B2n +- 1 cosh mx) sin n~y, 
n=O 
00 

<1>" = :z (A;n+l sinh mx + B2n+ 1 cosh mx) sin my, 
n=O 

(2n + 1)7t 
m == --

2b · 

(e) 

(I) 

Each term of the two preceding series is obviously a harmonic function. 
The coefficient m has been chosen so that the conditions (d) are satisfied; 
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clearly also the condition (c) is fulfilled. 
There remains to satisfy (a) and (b). For this purpose it will be re

membered that in the interval (- b, + b) the function 2y may be re
presented in the form of a series: 

where 

I.e., 

00 

2y =::: 2: mA 2n +1 sin my, 
n=O 

(2)2 (- l)n 
mAzn+l = 4b -7t ' 

(2n + 1)2 

A == 4b2 -( 2)3 (-l)n 
2n+l 7t (2n + 1)3· 

(g) 

(h) 

The series (g) is a Fourier series for the function /, defined in the interval 

(- 2b, + 2b) in the following manner: 

/ =: 2y in the interval (- b, + b), 

t = 4b - 2y "" 

t =:: - 4b + 2y " " 
" 
, , 

(b, 2b), 

(- b, - 2b). 

On the basis of (g), the conditions (a) will be satisfied, if 

A~n+l cosh mal - B2n+1 sinh mal = A 2n+ 1, 

A~~+l cosh ma2 + B2n+ 1 sinh ma2 == A 2n+1, 

and the condition (b), if 

tJ.IA~n+l - tJ.2A~~.+1 = (~1 - l-L2)A 2n+ 1-

Solving the three preceding equations for A~n+l' A~~+l and B2n+1 and 
substituting the values thus found in (e), one obtains after some obvious 
transformations 

( 
2 )' 3 00 (_ l)n 

<1>' =:::: 4b2 -!: . 
rc n=O (2n + 1)3 

[[1.2 + ([.Ll-!L2) cosh ma2] cosh m (x + a1) + [1.2 sinh ma2 sinh mX-{.Ll cosh ma2 cosh mx . 
• SIn my, 

(1-1 cosh ma2 sinh mal + [1.2 cosh mal sinh ma2 

~" ::::= 4b2 (~)3 ~ (_ 1 )n . 
1t n=O (2n + 1)3 

[ -!J.l + (!J.l-[.L2) cosh mal] cosh m (x -a2) + (1-1 sinh mal sinh mx + (.L2 cosh mal cosh mx . 
• SIn my. 

[1.1 cosh ma2 sinh mal + [1.2 cosh mal sinh ma2 
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The form of the coefficients shows that the series obtained converge 
rapidly (uniformly and absolutely). Also, the use of differentiation during 
the process of deduction is justified. 

The torsion functions are given by 

<1> , "S mil • S CPI = - xy 1n 11 CP2 = 'V - xy In 2" 

The torsional rigidity is obtained fronl (139.6') which in the present 
case has the form 

f{( OCPl OCPl ) 
D = fl.l , x2 + y2 + X oy - y ox dx dy + 

81 

Substituting in this formula the expressions for CPl and tp2' one finds, 
00 1 1t4 

using the result that ~ == ~ {compare with the case of the 
n=O (2n + 1)4 96 

homogeneous bar, A. E. H. Love [IJ, § 225), 

D = ~ (!Llal + !L2a2)b3 + 

+ (~) 5 b4 ~ !L~ cosh ma2 +!L~ cosh ma1-(tLi + tL~) cosh mal coshm a2 _ 

7t n=O (2n+ 1)5 (tLl cosh ma2 sinh mal +tL2 cosh mal sinh ma2) 

( 4)5 b
4 

00 coshma1+coshma2-coshm(a1-a2)-1 
- - f.tlf.t2 ~ 

1t' n=O (2n+ 1)5 ~tJ.l cosh ma2 sinh mal + tJ.2 cosh mal sinh ma2) · 

If a l and a2 are large compared with b (in fact, if av a2 > Sb), one may 
with sufficient accuracy put 

sinh mal 
== I, 

cosh mal 

sinh ma2 == 1, 
cosh ma2 

1 

sinh mal 

-

1 
- -

cosh mal 

1 1 
- _. =0 

sinh ma2 cosh ma2 

and obtain for D the approximate formula (compare with the analogous 
expression for the case of the homogeneous bar, A. E. H. Love [IJ, § 225) 

8 tJ.2 +!J.2 (4)5 00 1 D = - (!J.lal + ~2a2)b3 - 1 2 b4 - ~ == 
3 ~1 + f.L2 1t n=O (2n + 1)5 
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3°. In conclusion, a recent paper by D. I. Sherman [27J will be noted 
in which has been solved the problem of torsion of an elliptical cylinder 
reinforced by a circular rod. The method of solution of this paper may 
be applied with success to the approximate solution of problems of the 
above type in a number of cases which are of practical interest. 



CHAPTER 24 

EXTENSION AND BENDING OF BARS, CONSISTING OF 
DIFFERENT lVIATERIALS WITH UNIFORM POISSON'S RATIO* 

The various cases of elastic equilibrium of bars, which were stated in 
§ 129, will novV be considered. It will be assumed that the different 
materials, constituting the bar, have the same Poisson's ratio (3, but, 
generally speaking, different Young's moduli (ct. § 139, 1°). 

Remembering that () has almost the same value for many materials, it 
becomes clear that this restriction is not very severe. On the other hand, 
it considerably simplifies the solution. 

According to Poisson's original theory, the quantity (J was the same for all 
materials and its value was equal to i. However, this circumstance is not confirmed 
by experiment. The variations in the values of (J for different materials are con
siderably less than those for E. For example, 
for copper: 1/(1 = 2.87, E = 1.25 X 106 [kg/cm2], 

while for aluminium: 1/(1 = 2.92, E = 740 000 [kgjcm2] 
(cf. Note 2 at the end of § 146). 

In fact, as a consequence, one may consider separately the case when 
Poisson's ratio is the same for all materials constituting the beam. The 
general case will be considered in the next chapter. 

In particular, for problems of extension (compression) and of bending 
by couples, the present case is almost as simple as that for homogeneous 
bars; this will be shown in §§ 142, 143. 

§ 141. Notation. 
The concepts of this section as well as the corresponding formulae also apply 

to the case, where the values of Poisson's ratios of the various materials are dif
ferent. 

Consider the quantity 

*) The contents of this chapter were taken from the Author's paper [15]. 

640 
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SE = J~rEdXdY = ~ SjEj! 

.. 1 
(141.1) 

S 

where E denotes the modulus of elasticity at a given point of the cross
section which takes constant values Ei in different parts 5;, corresponding 
to the materials constituting the elastic body; the areas of these parts 
of the cross-section will likewise be denoted by 5;. 

Further, the "reduced centre of gravity" of the cross-section vv'ill be 
understood to be the centre of gravity which is obtained by ascribing the 
various parts of the cross-section surface densities which are equal to 
the corresponding moduli of elasticity; thus, if the origin of the coordinate 
system is placed at the reduced centre of gravity, 

II Exdxdy = II Eydxdy = O. ( 141.2) 

s 8 

The "reduced moment of inertia" will now be defined as the moment 
of inertia, calculated under the same supposition with regard to the 
clensities of the different parts of the cross-section. In particular, the 
reduced moment of inertia I E about the axis Oy in the plane of the cross
section will then be given by 

IE = r)'~EX2 dx dy = ~ Elj! 

v 1 

(141.3) 

s 

where I j is the customary moment of inertia of the area Sj about the 
same aXiS. 

Finally, the principal axis of inertia of the cross-section, uIlder the 
same assumption with regard to the densities, will be called the "reduced 
principal axes". 

If the axes Ox, Oy coincide with the reduced principal axes of inertia, 
one will have 

I I Exy dx dy = ~ E j IIxy dx dy = O. (141.4) 

s Sj 

Here, as well as in § 142, 143 and at the beginning of § 144, it is un
neccessary to assume that one is dealing with "basic" cases (§ 139,1°); 
it is sufficient to suppose that the bar consists of a number of homo-
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geneous, isotropic, cylindrical bodies (fibres or strips), welded along their 
side surfaces. 

§ 142. Extension. It is easily seen that in the above notation the 
problem of extension of bars by longitudinal forces, applied to the reduced 
centre of gravity of the cross-section, is solved by the following formulae 
[cf. (135.1), (135.2)J: 

EjF · . S Z z = -- In the regIon j, 

SE 
crF crF 

(142.1) 

u==-x, V= --y, 
5E 5E 

(the remaining stress components being zero); F denotes here the total 
tensile force (F < 0 will correspond to compression). 

The rigidity of the bar for extension (compression) is equal to SE 
(see § 135). 

§ 143. Bending by a couple. The problem of bending by a couple 
whose moment lies in the plane of the ends is likewise very little different 
from the same problem for the homogeneous bar (§ 136). 

Let the origin lie at the reduced centre of gravity of the "left" end 
and let the axes Ox, Oy coincide with the reduced principal axes of 
inertia. 

If the moment of the couple, acting on the "right" end, is parallel 
to the axis Oy and if its magnitude is M, the solution is given by 

ME· 
Zz = - 3 X in 5 j (143.1) 

IE 
(the remaining stress components being equal to zero) and 

M M M 
u = -- (Z2 + crx2 - cry2), V = -- O'xy, w = - - xz. (143.2) 

2IE IE IE 
Substitution of these expressions in the static equations of the elastic 

body show that all the equations are satisfied; the boundary conditions 
are obviously fulfilled. 

The resultant vector of the external stresses applied, say, to the right 
end is equal to zero, since, by (141.2), 
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!!ZzdXdY = O. 

s 

The moment of these stresses about the axis Oy is, by (141.3), 

-!! xZ z dx dy = ~ !! Ex2dx dy = M; 
s s 

finally, the moment about the axis Ox is, by (141.4), equal to 

if 
M t-,. 

yZ.dx dy = IE J J Exydx dy = o. 
s s 

643 

The above solution thus satisfies all the imposed conditions. It is easily 
seen that in the case under consideration the Bernoulli-Euler law is 
valid; it is now expressed by 

1 
-

R 
( 143.3) 

The flexural rigidity is equal to IE. 

§ 144. Bending by a transverse force. The solution of the problem 
of bending by a transverse force will now be considered. Let the origin 
o be at the reduced centre of gravity of the "left" end and let the axes 
Ox, Oy coincide with the reduced principal axes of inertia. 

This problem may always be reduced to the case, where the transverse 
force, applied to the "right" end, acts through its reduced centre of 
gravity and parallel to the axis Ox (cf. § 137). 

Guided by the form of (137.10), ( 137.11) which refer to the homo
geneous bar, it will be assumed that the conditions of the problem may 
be satisfied by expressions of the following form: 

u == - 't'yz + A [-lO"(l - z) (x2 - y2) + ilz2 - tz3] , 

v = "t'xz + AO"(l - z)xy, (144.1 ) 

w === -rep - A [x(lz - iz2) + X + xy2], 

where <p is the torsion function of Chapter 23 and X === X(x, y) is some 
function which has still to be defined; I is the length of the bar and 
't', A are constants. 

Calculating the stress components, corresponding to these displace-
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ments, one finds X x = Y 11 = X y == 0 (as in the case of the homogeneous 
bar) and, in the regions 5 j {j == 0, 1, ... , m), 

Xz = fLl'( :: - y) - Bi{ ~ + !ax2 + (1 - !a)y2} , 

Yz = fLi"( ~ + x) - B l { ~ + (2 + a)xy} , 
(144.2) 

Zz = - Kj{l - z)x, 
where B j , K j are constants \vhich may have different values In the 
different regions 51; in fact, 

(144.3) 

Substituting the expressions (144.2) in the equilibrium equations, i.e., 
in (129.1), it is readily verified that the function X' as well as the function 
cp, must satisfy the Laplace equation in each of the subregions Sj; con
versely, the above equations will be satisfied under these conditions. 

N ow consider the boundary conditions. To ensure that the displacements 
u, v, w will be continuous throughout the body, the function X must 
obviously be continuous throughout the entire cross-section 5 (since the 
torsion function cp is, by definition, continuous throughout 5). 

The boundary conditions with regard to the stresses lead, as in the 
case of torsion, to the requirement that the expression 

Xz cos (n, x) + Y z cos (n, y) (a) 

must vanish on the free side surface and that it must be continuous 
for a passage through the surfaces separating the different materials. 

The resultant vector and moment of the stresses, acting on the right 
end, will now be calculated. First of ali, it is clear that the component of 
the resultant vector in the Oz direction is equal to zero. Its component 
in the Ox direction is given by 

X = f f Xzdxdy. 
s 

Remembering that (144.2) satisfies tIle equilibrium equations and, In 

particular, the equation 
oXz 8Yz 8Zz -+-+--=0, ox oy OZ 

one obtains, after substituting for Z z from (144.2), 
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BXz oYz -- + --+ AEix == O. ox By 

On the basis of this identity, one may write 

ff{ (OXz BYz) } X=:;: Xz+x ~+~ +AE;X2 dxdy= 

== ~ff{~(XXz) +~(XYz)} dxdy + AlE· 
1 OX oy 

Si 

However, as has been shown in § 139, under the above conditions for 
the expression (a) 

1: If {O(XXz) + O(YYz)} dx dy == 0; 
j ox oy 

consequently 

x = A ~E; I I x2 dxdy = AlE, ( 144.4) 

Sj 

Further, by assumption, X == W, where W is a given force. This con
dition determines the constant A : 

W 
A = IE' 

For the components of the resultant vector along the Oy axis one obtains 
in an analogous manner 

Y = I I Yzdxdy = A ~E; I I xydxdy. 
J 

S 8j 

Hence follows, by (141.4), that Y == o. 
Finally, since Z z == 0 for z = l, no bending couple will act on the 

right end. 

The moment of the twisting couple is given by 

M = "D + - W ~ E i rr{y Ox _ x Ox + 
2(1 + (j)IE 1=0 JJ oX oy 

s, 
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+ (1 - icr)y3 - (2 + !cr)X2y} dx dy, 

§ 144 

(144.6) 

where D is the torsional rigidity. The constant "t' must be determined 
from the condition M = 0 which may always be done, once the functions 
<:p and X have been calculated. 

The function <:p can be determined, using the results of Chapter 23. 
The function X has still to be found. Assuming, for definiteness, that 
one is dealing with the "basic" case (§ 139,1 0 ; Fig. 61), it is readily verified 
on the basis of (144.2) and (144.3) that the boundary conditions reduce, 
in the notation of Chapter 23, to the following (remembering that, by 
supposition, ~m+l == 0): 

(dX ) (dx) . ~o -d -~j - =/jonLj (1==1,2, ... ,m+l), 
n 0 dn i 

(144.7) 

where 

Ij = - (fLo - fLj) {[ tcrx2 + (1 - ;) y2] cos (n, x) + 

+ (2 + cr) xy cos (n, y)}. (144.8) 

Thus, one has arrived at exactly the same problem as in the case of 
torsion, except that the functions Ii, given on the contours, do not have 
the same values. 

It will now be investigated whether the condition (140.9) for the 
existence of a solution is satisfied. One has 

m+l1 1: lids == 
j =1 

L; 

= - fLo ( Htcrx2 + (1 - !cr)y2] cos (12, x) + (2 + cr)xy cos (n, y)}ds + 
aI 

+ i~l fLj I {[lcrx2 + (1 -lcr)y2J cos (n, x) + (2 + cr)xy cos (12, y)}ds 

LJ 

or, transforming the integrals by use of Green's formula, 

~~:I fj-ds = - II 2(1 + cr)fLo x dxdy - i~111 2(1 + cr)fLjxdxdy = 
L; So S; 
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= - ff Exdxdy; 

s 
however, the last integral vanishes, since, by supposition, the origin lies 
at the reduced centre of gravity. 

Thus, the existence condition is fulfilled and the present problem will 
always have a definite solution which may be obtained by the help of 
the same integral equation as in the preceding chapter, except that the 
functions jj are now determined by (144.8). 

In particular, the remark in Chapter 23 with regard to the applicability 
oj the solutions jar other shapes at cross-sections, e.g., for the case of a 
compound tube, still remains true. 

Finally, note that it follows from the formula for u, i.e., from the 
first formula of (144.1), that the curvature of the central line (which is 
the locus of the reduced centres of gravity) satisfies the relation 

1 W 
R == I (l- z); 

E 

in other words, the Bernoulli-Euler law again holds true. 

§ 144a. Example. Ben din g 0 f a com p 0 u n d c i r cui a r 
tube by a transverse force, applied to one of its ends. 

Let the cross-section of the bar con-
sist of two concentric circular rings 
51' 52 the first of which surrounds the 
second one, as shown in Fig. 63. The 
inner, middle and outer radii will be 
denoted by R 2, R 1 , Ro respectively, 
and the moduli of elasticity, corre
sponding to 51 and 52' by E 1, E 2• 

Let the transverse force act through 
the centre of the circles in the direc
tion of the Ox axis. In view of the 
complete symmetry, it is clear that 
"t' == 0, i.e., no torsion takes place. 
The function X(x, y) will now be found 

y 

x 
Fig. 63. 

and its values in the regions 51> 52 will be denoted by Xl and X2' respectively. 
Let r,'& denote the polar coordinates in the Oxy plane. By (138.3a) 
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[to'x2 + (1 - tcr)y2] cos & + (2 + cr)xy sin & == 
= - ~-r2 cos 3& + (! + i-0')r2 cos %. (a) 

Correspondingly, the boundary conditions have the form 

°XI 2 -- ::::::: kRo cos -& + ~_R2 cos 3& for 1" = Ro, or 

O!2 = _ kR~ cos -& + tR~ cos 3-& for r = R2, 
where 

i + to" == k 

and in the second condition the shear moduli l-Lv l-L2 have been replaced 
by the moduli of elasticity E 1, E2 which are proportional to them. 

Expanding the harmonic functions Xv X2 in series and substituting in 
the preceding formulae, these functions may be determined. However, 
it is easily shown that these conditions may be satisfied by writing (cf. 
solution for the hollow homogeneous circular cylinder in § 138a) 

Xl = (aIr + :~) cos -& + tr cos 3-& (R] -< r < Ro), 

X2 = (a2r + a;) cos -& + ir cos 3-& (R2 < r < R1). 

Substituting these expressions in (b), one immediately sees that all the 
conditions will be satisfied, provided 

2 I 4 2 I k 4: alRO - a l == - kRoJ a2R2 - a2 = - R2 , 

a2Ri + a~ == a1Ri + a~J 
E1(alRi - a;) - E 2(a2Ri - a~) == - k(El - E 2)Ri. 

Hence one finds 

E 1(R6 - Ri) (Ri + R~) + E 2(Ri - R~) [(Ri + R~)2 + R6 - R~J 
a1 == - k 2 2 2 2 E (R2 R2) (R2 R2) , E 1(R l + R 2) (Ro - R1) + 2 0 + 1 1 - 2 
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a = _ k El(R~ - R~) [(R~ + Ri)2 - R6 + R~J + E2(Ri - R~) (R~ + R~) 
2 E1(Ri + R~) (R~ - Ri) + E2(R~ + Ri) (Ri - R~) , 

while 
I 2 R4 I 2 4 

a l === a1RO + k 0' a2 === a2R 2 + kR2• 

Thus the problenl is solved. The solution for the case where the circles 
are not concentric was given by A. K. Rukhadze [lJ. The solution for the 
case of confocal ellipses was given by I. N. Vekua and A. K. Rukhadze [2J. 
In the paper [2J by A. K. Rukhadze the solution is given for the case of 
epi trochoids. 

The problem of bending of the rectangular bar, considered in § 140a, 
is likewise easily solved. 



CHAPTER 25 

EXTENSION AND BENDING FOR DIFFERENT POISSON'S 
RATIOS* 

In the general case, when the Poisson's ratios of the various materials 
may also differ, the problems of extension and bending become con
siderably more complicated. In fact, it will be found that it is now 
im possible to assume X x == y 11 == X 11 == 0, as was done in the case of 
Saint-Venant's problem as well as in the case where the Poisson's ratios 
were uniform. 

As a consequence, one has to give attention to a certain auxiliary 
problem of plane deformation which will now be introduced. 

§ 145. An auxiliary problem of plane deformation. The auxiliary 
problem, mentioned in the introduction to this chapter, consists of the 
following. It is required to find the elastic equilibrium of a beam, con
sisting of different materials in the same manner as described at the 
beginning of § 139 and under the supposition that it is subject to plane 
deformation parallel to the plane Oxy (i.e., that w = 0 and u, v depend 
only on x, y and 110t on z), for the following conditions: 

1. The external stresses, applied to the side of the bar, are equal to 
zero, i.e., X n == 0, Y n == 0, ( 145. 1 ) 
where, as always, 

Xn == X:r; cos (n, x) + X1/ cos (n, y), Y n == Y x cos (n, x) + Y 1/ cos (n, y) 

and n denotes the normal to the side surface. 

2. On the dividing surfaces of the different materials 

(145.2) 

where n is the normal to the (cylindrical) dividing surface in a definite 
direction and the subscripts j, k indicate the values for the materials 

* The problem of extension and of bending by a couple was solved by the 
Author in his paper [15]. The present chapter presents a new, more detailed study 
of the solution (cf. foreword to the third edition). 

650 
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occupying the regions j, k, adjoining the dividing surface. The con
ditions (145.2) express that the stresses applied to elements of the dividing 
surface from either side must balance each other. 

3. The displacements undergo the following discontinuities on the 
dividing surface: 

( 145.3) 

where (Uj, Vj), (Uk' Vk) are the values of the displacements on either side 
of the dividing surface and g, h are functions, given on these surfaces 
(and not depending on z). 

Since one is dealing with plane deformations and all the functions 
under consideration are independent of z, one may restrict the investi
gation to any transverse cross-section of the bar, just as this was done in 
the preceding chapters. 

It is easily shown by ordinary means that the solution, if it exists, will 
be unique (apart from rigid body displacement). Further, it may be 
assumed to be physically obvious that a solution exists. In fact, the 
present problem corresponds to the following physical problem which, 
for the sake of brevity, will be formulated for the case, where there are 
only two parts with transverse cross-sections S1 and 52' divided by the 
line L. Consider two bars which consist of the same materials as the given 
one, but which have cross-sections S~, S~, different from Sv 52' In fact, 
let it be assumed that the cross-section 5~ is obtained from 51 by im
posing on the points of the line L the displacement (- u1, - VI)' while 
5~ results from 52 by the displacement (- U 2, - v2) of the points of L; 
further, let 

u1 - u 2 = g, VI - V 2 = h. 

If the corresponding sides of these beams with cross-sections S~, S~ are 
now forced into contact, so that corresponding points touch each other, 
and if they are then welded together without disturbing the plane 
deformation, the compound bar, thus obtained, will exhibit exactly 
the same stresses and displacements as must be expected in the case 
of the above problem. 

The existence of the solution (under certain ordinary suppositions 
of a general character) may also be proved mathematically. This was 
done most simply in the paper [20J by D. I. Sherman (mentioned already 
in § 103) who considered the case which has been called basic in § 139,1 o. 

No space will be devoted here to this proof. 
With a view to what follows, it will be recalled that for plane deform-
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ation 
Xz == Y z == 0 throughout the bar, (145.4) 

( 8~t av) 
Zz == Aj - + - == O'j(Xx + Y v) on 51' OX By 

( 145.5) 

where Aj, (11 are the values of the Lame constant and Poisson's ratio in 
the region 5 i. 

§ 146. The problem of extension and of bending by a couple. 
In the case of the compound bar for which, however, Poisson's ratio 

was constant, the problem of extension and of bending by a couple was 
solved very simply and it was found possible to investigate separately 
the problem of a tensile force with its line of action along the axis Oz 
and the problems of bending by couples in planes parallel to the planes 
Oxz and Oyz. The possibility of such an independent study depended 
on the particular choice of the system of axes Oxy in the plane of the 
"left" ("lower") end (and, in fact, the origin 0 was placed at the reduced 
centre of gravity, while the axes Ox, Oy were directed along the principal 
reduced axes of inertia of this end). 

It will be seen later that in the case of different Poisson's ratios such 
a choice of coordinate axes does not, in general, offer the possibility 
of solving the above-mentioned problems separately. 

However, as will be shown in § 148, one'may also in the present case find a 
special system of axes which permits separate consideration of these problems; 
however, the determination of such a system requires the solution of several 
auxiliary problems of plane deformation. 

Therefore, in the present section, the system of axes Oxy will refer to 
any (rectilinear) system in the plane of the left end S and it will not be 
assumed that the plane of the bending couple is parallel to one of the 
planes Oxz, Oyz. 

1°. LetMvandM~denote the projections of the moment vector of the 
bending couple on to the axes Oy and Ox, and F the magnitude of the 
tensile force with line of action along the axis Oz. 

Guided by the form of the solution for the case of constant Poisson's 
ratio, an attempt will be made to satisfy the conditions of the problem 
by linear combinations of the following three solutions: 

Zz == Ejx, U == - i(Z2 + O'iX2 - O'iy2), v == - O'jXY, W === XZ, (146.1) 

Zz == Ejy, U == - (jiXY, V == - l(Z2 + O',1y2 - O'jX2), W = yz, (146.2) 
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Zz == E;, U == - GjX, V == - ajY, W == Z, ( 146.3) 

In the region Sj (the remaining stress components being equal to 
zero). 

If all the Poisson's ratios were the same and if the coordinate axes 
were chosen as indicated at the beginning of this section, these solutions, 
multiplied by suitable constants (the same constants being used for 
stresses and displacements), would give those of the problems afbending 
by a couple in the plane Oxz, of bending by a couple in the plane Oyz 
and of extension by a force, directed along Oz. 

In reality, however, solutions constructed in this manner do not 
satisfy the conditions of the above-mentioned problems for the reason 
that the corresponding displacements have discontinuities on the dividing 
lines between the sections Sj, Sk. 

In order to remove these discontinuities, the solutions of three auxiliary 
problems of plane deformation will be constructed which represent 
particular cases of the problem, formulated in § 145; the functions g, h 
in the formulae (145.3) will now be given the following values: 

gl == !(aj - O"k) (X2 - y2), hl = (aj - ak)xy, (146.1a) 

g2 == (aj - ak)xy, 

g3 = (aj - (Jk)X, 

h2 = i(O"j - ak) (y2 - X2), (146.2a) 

h3 = (aj - (Jk)Y (146.3a) 

on the dividing lines between the regions 5 j , 5 k • 

For the sake of brevity, these three problems will be denoted by 
(146.1a), (146.2a), (146.3a) respectively and it will be assumed that they 
have been solved. 

The components of displacement and stress, corresponding to these 
three auxiliary problems, will be denoted by superscripts (1) (2) (3) 

In particular, one will have in the region 5 j 

Z;l) = (1j(X~l) + y~l)), (146.1b) 

Z(2) = (j .(X(2) + y(2») 
z 3 X y' 

Z(3) = (j' .(X(3) + y(3») z 3 X y. 

(146.2b) 

( 146.3b) 

Superposition of the solutions (146. 1), (146.2), ( 146.3), multiplied 
by certain constants av a2, a3 respectively, and of the solutions of the 
problems (146.1a), (146.2a), (146.3a), multiplied by the same correspond
ing constants, is easily seen to give the solution of the problems of bending 
and extension of a bar for the following values of the moments M x' M 11 of 
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the bending couple and of the magnitude F of the tensile force: 

- My = (Ill + K 11)a1 + (112 + K 12)a2 + (113 + K 13)a3 , 

§ 146 

M x = (I21 + K 21)a1 + (I22 + K 22)a2 + (I23 + K 23)a3, (146.4) 

F == (131 + K 31)a1 + (132 + K 32)a2 + (133 + K33)a3, 

where 

lrx'?> = f f Ex{ex)x{'?»dx dy = ;: E j f f x(rx)x('?»dx dy, (146.5) 

S Sj 

Kex'?> = f f Ex(rx) Z~'?»dx dy = 7 E j I(x(rx) Z~'?»dx dy, (146.6) 

S S1 

tx, ~ == 1, 2, 3, 

and X(l) = X, X(2) = y, X(3) = 1; in more detail, 

In = ffEX2dX dy, 122 = f f Ey2dx dy, 112 = 121 = jf Exydx dy, 
s s S 

133 = jJEdX dy = SE' 1 13 = 131 = f f Exdx dy = SEXO' (146.5') 

S s 

1 23 = 132 = f f Eydx dy = SEYO' 
s 

where SE ::=:: :s E:jSj is the same as before and X01 Yo are the coordinates 
j 

of the reduced centre of gravity of the end S; 111 and 122 are reduced 
moments of inertia of the end 5 with regard to the axes Oy and Ox, 
and 112 = 121 is the reduced product of inertia. Further, 

Kn = f f XZ~l) dxdy, K12 = f( XZ~2) dx dy, K 13 = Jf xZ~3)dx dy, 

s s S 

K21 = ffYZ~l)dXdY, K 22 = ffYZ~2)dXdY, K23=I(YZ~3)dXdY, (146.6') 

s s s 

K31 = f( Z~l)dxdy, K32 = f f Z~2)dxdy, K33 = I( Z~3)dxdy; 
s s s 

it will be assumed that these constants have been calculated. 
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The problem will be solved, when the unknown constants al' a2, aa 
have been determined from the system (146.4) for given M'II' M x, F. 
The determinant 01 this system 

III + K11 112 + K12 113 + K 13 

~ == 121 + K2l 122 + K22 123 + K 23 

131 + K31 132 + K32 133 + K33 

(as will be proved below) is always different from zero; more exactly, 
L\ > O. Hence the system (146.4) determines the constants aI' a2, a3 

uniquely and the problem may be considered solved. 

2°. Before proceeding to the proof of the inequality ~ > 0, certain 
formulae will be considered which are connected with the expression for 
the potential energy of deformation and which will be required later on. 

It will be recalled that the following expression was introduced in 
§ 20: 

2W(e) === A(exx + eyy + ezz)2 + 2f.L(e;x + e;y + e;z + 
(146.7) 

which represents twice the potential energy per unit volume, corre
sponding to the strain components exx, ... , exll ; this deformation will be 
denoted by (e), and accordingly W(e) has been written above instead 
of simply W, as was done in § 20. 

The expression W(e) represents a positive definite quadratic form 
of the components of deformation (e) and it only vanishes for (e) == 0 
(i.e., for exx == eVY == ezz == e1lz === ezx == eXll == 0). 

It will be remembered that a quadratic form O(Xl' X2, ••• , xn) of the variables 
xl' %2' ••• , xn is called positive definite, if O(X1' %2' ••• , %n) > 0 for all (real) values 
of the variables, except when Xl = %2 = ... = Xn = O. The form is called positive 
semidefinite, if for all values of the variables O(X11 X 2, ••• , xn) > 0, i.e., if there 
exist some (real) values of Xl) %2' ••• , xn' not all zero, so that O(Xl' x 2, ••• , xn) = O. 

The stress components, corresponding to the deformation (e), are 
given by the formulae 

X x == A6 + 2~exx, Y 11 == A6 + 2l-Leyy, Z z === A6 + 2l-Lezz, 

y z === 2lJ.ellz, Z x === 2l-Lezx, X y == 2~ex'll' (146.8) 

(6 == exx + eyy + ezz) 
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and, accordingly, (146.7) may be written 

2W(e) == X~lxx + Y yeYlI + Zzezz + 2Yzellz + 2Zxezx + 2Xyexy' (146.9) 

Consider now two different deformations (e') and (e") and indicate 
the corresponding strains by one or two accents. The following expression, 
analogous to (146.9), will now be introduced: 

If one interprets the stress components X~, etc. and X;, etc. as their 
expressions in terms of the strain components e~x' etc. and e;x, etc., then 
W(e', e") reduces to a bilinear form in these last components. The equality 
between the two expressions for W(e', e"), given in (146.10), may be 
verified directly; this proves that 

W (e', e") == W (e", e'), 

i.e., that the bilinear form W(e', e") is symmetrical. 
If the deformations (e') and (e") are identical, i.e., (e') == (e") =: (e), 

then 
W(e, e) = W(e) , 

where W(e) is the same as in (146.7) or (146.9). 
It has been proved in § 20 that 

(146.11 ) 

f f (Xnu + Y nV + Znw)d'Z = 2 f f f W(e)dx dy dz = 2U, (146.12) 

v 

where L is the surface of the deformed body, n is the outward normal 
and V is the region, occupied by the body; U denotes the potential 
energy of strain of the entire body. 

The reader will easily prove in an analogous manner the following 
formulae: 

2U12 = jJ(X~U" + Y~v" + Z~w")d'Z = 2 fff W(e', e")dxdydz, 

~ v 

2U21 = ff(x:u' + Y:v' + Z:w')d'Z = 2 fff W(e",e')dxdydz. 

(146.13) 

~ v 
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It follows from (146.10) that U12 = U 2V i.e., 

/ /(X~U" + Y~v" + Z~w")d'2:. = / / (X:u' + Y:v' + Z:w')d'2:., (146.14) 

~ L 

which expresses the Reciprocal Theorem due to Betti (more correctly, 
the theorem of Betti has a somewhat more general form which also in
volves body forces). 

The preceding formulae will only be applied here to the case of plane 
deformations of a bar. In this case: Xz = Yz = w = 0, and all the 
functions under consideration are independent of z. Hence 

W(e', elf) == X~e:x + Y~e;y + 2X~e:y == X:e~x + Y;e~y + 2X;e~y = 
( ' , " ") ,,, ,,, ''') == A exx + eyy) (exx + eyy + 2[J.(exxexx + eyyey'Y + 2eXyeXY , 

W(e, e) == W(e) = A(exx + eyy)2 + 2[J.(e;x + e~y + 2e!v). 

(146.15) 

( 146.16) 

In the case of plane strain, it is more convenient to apply the formulae 
(146.12)-(146.14) not to the entire bar, but to a segment of unit length 
included between two normal transverse cross-sections. Instead of 
(146.12), one then obviously obtains 

/ (Xnu + Ynv)ds = 2// W(e)dxdy = 2U, (146.17) 

L s 

where U is now the potential energy per unit length of the bar, and, 
instead of (146.13), (146.14), 

2U12 = 2U21 = f {X~u" + Y~v")ds = / (X:u' + Y:v')ds = 
L L 

=2// W(e',e")dxdy. (146.18) 

s 

In these formulae S denotes the cross-section of the bar and L its boun
dary. 

In the case where the displacement components, as in the auxiliary 
problem of plane deformation of § 145, have discontinuities at the dividing 
lines between the parts 5 j , one has to understand by L the union of the 
boundaries of these regions, so that, if L j is the boundary of 5 j , the integral 
is to be taken along the whole of L j , and those parts of L j which are com
mon to the regions Sit Sl will be covered twice, once in the capacity of 
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boundary to Sj and a second time in the capacity of boundary to 5 l ; 

see (146.21) and (146.22) below. 

3°. Consider now the proof of the inequality ~ > o. Let (e(1»), (e(2»), (e(3») 
denote the deformations, corresponding to the auxiliary problems of plane 
deformation (146.1a), (I46.2a), (146.3a), and U ar3 (oc, ~ = 1,2,3) the ex
pressions (146.18) with (e(a»), (e([3») taking the places of (e'), (e"). It will be 
proved that 

( 146.19) 

where K a [3 are the constants, defined by (146.6); In particular, it will 
follow from this that K a [3 = K[3(1.. 

For this purpose transform the formula 

2 U ,,13 = f [X~") u (13) + y~") v (13)] ds ( 146.20) 

L 

in the following manner. As stated earlier, L denotes here the union of 
all contours bounding the parts Sj of the region S. Hence 

2U"13 = ~ f[X~")uj13) + Y~")vj13)Jds, (146.21) 

L, 

where L j is the boundary of S j and uj(3), vj(3) are the boundary values of 
2t«(3), v([3) on Li from the direction of the region 5 i; n denotes the normal 
to Li which is outward with respect to 5 j • 

Noting now that, by supposition, X n == Y n == 0 on the boundary of 
S and that during the integration the dividing line Lkl between Sk, Sl 
is covered twice, it is easily concluded that (146.21) may be rewritten 

2Uar3 = ~ f{X~O:)(U~) - u~r3») + y~a)(vjJ3) - vi r3»)}ds, (146.22) 
k,l 

where now the lines Lkl are only covered once and v is the normal, directed 
from Sk into Sl' 

The truth of (146.19) is easily proved by use of (146.22). Consider, 
for example, the relation K12 = K21 == 2U12. By (146.22), 

2U12 = ~ r{X~1)(U~2) - U)2») + y~1)(vlc2) - v\2»)}ds. 
k,l .; 

Noting that by (146.2a) 

uJc2 ) - U~2) == (Jk - O'l)XY, 
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and sUbstituting these expressions in the preceding formula, one obtains 

2U12 = :2: (Vk - VI) ({X~I)xy + !y~I)(y2 - x2)}ds. 
k,l L' 

Lkl 

... ;\pplying to this expression the same transformation which \vas used 
to deduce (146.22) from (146.21), but in the opposite direction, one 
finds 

2U12 = ~ (Ii f[X~I)XY + tY~)(y2 - x2)]ds, 

L; 

where L j and n are the same as in (146.21). 
Further, noting that 

X(l) =:::: X(l) cos (n x) + X(l) cos (n y) n x , y " 

y(l) == y(l) cos (n x) -+- yet) cos (n y) 
n x 'I Y " 

and transforming by use of Green's formula, one obtains 

2U12 = 7 (I; f fY(X~l) + y~l))dx dy, 

Sj 

SInce 
aX(l) oX(l) 
8; + -oy--'-Y- :::::::: 0, 

oy(l) 8y(1) 
__ x_ + __ Y_ == 0; 

ox oy 

hence, by (146.1b), 

2U12 = f f yZ;1)dx dy = K 21· 

S 

In exactly the same manner, applying the formula 

2U12 = ([X~2)U(1) + Y~)v(l)Jds 
... 

L 

for the calculation of 2U12 =:::: 2U2V one finds 2U12 == K 12• Hence 
2U12 == K12 = K2i' as was to be proved. 

TIle remaining formulae (146.19) may be proved in quite an analogous 
manner; this will be left to the reader. 

On the basis of (146.19), the determinant ~ may now be considered as 
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the discriminant of the following quadratic form in terms of av a2, a3 : 

where 
3 3 

2GO(al1 a2, a3) == ~ ~ I(f.~ a(f. a~, 
a;=1 ~=1 

3 3 3 3 

2G(a1, a2, a3) == ~ 1: K(f.~a(J.b~ = 2 ~ ~ Ua.rpa(f.a(3' 
(1.=1 ~=1 a.=1 (3=1 

( 146.23) 

( 146.24) 

( 146.25) 

It is easily seen that the quadratic form Go is positive definite, i.e., 
that GO(a1, a2, a3) > 0, unless a1 = a2 == a3 == O. In fact, it follows from 
the very definition of 10:(3 that 

2Go{av a2, aa) = I I E(a1x + a2Y + aa)2dx dy, 
s 

which proves the statement. . 
It should be pointed out that it is readily verified by the help of 

(146.12) that GO(a1, a2, a3) itself represents the potential strain energy 
per unit length of the bar, arising from the superposition of the deform
ations corresponding to the solutions (146.1) -(146.3) after they have 
been multiplied by aI' a2, as respectively (where it has been assumed that 
the component parts of the bar deform independently of each other, i.e., 
that they are not welded together). 

It is likewise easily proved that the quadratic form G(av a2, a3) is 
positive definite, unless all the Poisson's ratios have the same value. 
(If this is the case, then obviously all Ko:f3 vanish and the form G(a1 , a2, a3) 

is identically zero.) 
In fact, it may be shown that G(al , a2, a3) represents the potential 

energy of deformation per unit length of the bar, arising from super
position of the solutions of the auxiliary problems (146.1a), (146.2a), 
(146.3a) after multiplying them by a l , a2, a3 respectively. 

Indeed, let, as before, (e(l»), (e(2»), (e(3») be the (plane) deformations 
corresponding to the problems (146.1a), (146.2a), (146.3a) and let (e) 
denote the deformation 

(e) == a1(e(l») + a2(e(2») + a3(e(3»), 

i.e., the deformation with strain components 

ea;x = ale~~ + a2e12j + a3e~~, · •• , eXll == ale~~ + a2e<;J + a 3e~3~. 
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By (146.17), the strain energy per unit length of the bar IS given by 

2U = Jf W(e)dx dy, 

s 

where W(e) is defined by (146.16). However, it is readily seen that 

W(e) == aiW(e(l)) + a~W{e(2») + a;W(e(3») + 2a2aSW{e(2),e(3») + 
+ 2a

S
a

1 
W(e(3), e(l») + 2a

1
a

2 
W(e(l), e(2»), 

and hence, taking into consideration the definition of U«[3' 2U == 
== 2G(av a2, as), as was to be proved. 

If not all the Poisson's ratios have the same value and if at least one 
of the quantities av a2, a3 is different from zero, deformation necessarily 
takes place and therefore U > o. Thus the original proposition has been 
proved. 

If there is no deformation, one obviously has on the dividing lines Ljk between 
the parts S i' S k 

U j - Uk = - €jkY + ('tjkl Vj - vk = €i0 + ~jk' 
where Ejk' r:J..ik, ~jk are constants; on the other hand, one must have on these lines, 
by (146.1a)-(146.3a), 

Uj - uk = (O'j - (Jk) [!a! (x2 - y2) + a2xy + a aX] , 

Vi - vk = (crj - (jk) [a1xy + ia2(y2 - x2) + aaYJ; 

it is easily verified by comparison of these expressions that, if crj *' O'k' one must 
have a l = a2 = as = 0, €ik = Cf.jk = ~jk = O. 

The form Q{a1, a2, a3), being the sum of the two positive forms Go, G 
of which the former is certainly positive definite, must also be positive 
definite. However, it is known that the discriminant of such a form is 
certainly positive; therefore the assertion made at the end of subsection 1 0 

with regard to Ll. is proved. 

NOTE 1. The fact that Q(av a2, a3 ) is positive definite could have 
been proved more simply without splitting it up into the forms Go and G. 
Such a proof may be carried out, based on the fact that Q == Go -r- G 
is the potential strain energy, corresponding to the earlier stated com
bination of the solutions (146.1) - (146.3) and (146.1 a) - (146.3a); this 
statement is easily proved directly. 

However, a different procedure has been followed here, because it 
was desired to calculate the additional coefficients K«[3 which characterize 
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the influence of the different Poisson's ratios of the component materials. 

NOTE 2. Generally speaking, the coefficients Ka.f; are very small, 
if the Poisson's ratios of the different materials do not differ much from 
each other; in other words, they are of the same order as the squares and 
products of the differences (5j - (Jk' In fac~, denoting temporarily by (Jjk 

the differences (5j - Ok which occur on the right-hand sides of (146.1 a)
(146.3a) and considering Cijk as variables, it is readily verified that the 
solutions of the auxiliary problems (146.1a)-(146.3a) depend linearly 
on (Jjk' Further, by (146.22) and due to the fact that X~cc), y~cx) depend 
linearly on (5jk, it is seen that Ka.f; depends linearly on the squares and 
products of (Sjk, as was to be proved. 

§ 147. Particular cases. 1°. Ext ens ion 0 f a bar, h a v i n g 
a n a xis 0 f s y m met r y. It will be assumed that the axis Oz is an 
axis of symmetry of the bar, where the symmetry refers to geometrical 
as well as elastic properties. 

In that case the origin 0 is obviously the reduced centre of gravity 
of the Hleft" end. Directing the axes Ox, Oy along the reduced axes 
of inertia of this end, one has 112 === O. Further, on the basis of the sym
metry and of the form of the functions g3' h3 in the formulae (146.3a), 
it is easily seen that the solution of the corresponding auxiliary problem 
will likewise be symmetrical about 0 and, in particular, that 

It follows from this that 

K3I = K I3 = II xZ~3)dx dy = 0, K32 = K 23 = I I yZ;3)dx dy = o. 
s s 

Hence the equations (146.4) have the form (remembering that Xo == Yo == 0) 

- M 11 == (Ill + K 11)a1 + K 12a2, 

It,1 x == K 21a1 + (122 + K 22)a2, 

F === (S E + K3S)aS' 

If it is proposed to solve the problem of extension by a force of magni
tude F, directed along the axis of symmetry Oz, one must put in these 
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equations M x ~ Jf y === 0, i.e., a l == a2 == 0, and 

F 
a3 == . 

SE + K33 
(147.1) 

If all the Poisson ratios of the different materials, constituting the 
bar, have the same value, then K33 == 0, and one obtains the result, 
deduced earlier. If not all the a's are equal, then necessarily K33 > O. 

In the last case, the quadratic form 2G(a1, a2 , a3) is positive definite and therefore 
all the coefficients Kllt K 22, K33 are positive; this follows from the fact that 
Ku = 2G(1, 0, 0), etc. 

Since aa represents the relative lengthening of the bar as the result 
of P, SE + K33 is the rigidity of extension and the preceding formula 
shows that the difference oj Poisson's ratios (for constant S E) increases the 
rigidity of extension, independently at the sign of the difference (ji - (Jk' 

2°. Bar wit h pIa n e 0 f s y m met r y, ben t b y a c a u pIe. 
Let Oxz be the plane of symmetry of the bar (as regards its geometry as 
well as its elastic properties). It may then be assumed that 0 coincides 
with the reduced centre of gravity of the "left" end; the axes Ox, Oy 
are again to be principal reduced axes of inertia of this end with regard 
to O. 

For this choice of axes, one has in (146.4): 113 == 123 == 112 == O. Further, 
on the basis of the symmetry and of the form of the functions gi t hI 
in (146.1 a), it is easily concluded that the solution of the corresponding 
problem of plane deformation is likewise symmetrical with regard to Ox; 
in particular, Z~l)(X, - y) == Z;l)(x, y). Similarly, one finds Z~2)(X, - y) = 
= - Z;2) (x, y). Hence 

K12 = K21 = f f yZ~l)dx dy = 0, K23 = K32 = f f Z~2)dx dy = 0 

s s 

and the equations (146.4) take the form 

- My === (Ill + K 11)a1 + K l3a3, 

M x == (122 + K 22)a2, (147.2) 

F === K 3lal + (SE + K 33)aa' 

If it is desired to solve the problem ot bending by a couple whose plane 
is perpendicular to the plane ot symmetry, one has My = 0, F == 0; 
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hence a l ::=.:: a3 == 0 and 
Mx 

a2==~~--

122 + K22 ' 

§ 148 

(147.3) 

where K 22 > 0, unless all the Poisson's ratios have the same value. 
However, if it is proposed to solve the problem of bending by a couple 

whose plane is parallel to the plane :;j symmetry, one has Mx = 0, F = 0; 
hence 

where 

Kis 
K = Kll ----

SE + KS3 

My 
-al=~---

III + K ' 

SEK 11 + K 11K 13 - Kis 
SE + KS3 

(147.4) 

(147.5) 

If not all (Jk have the same value, then K > 0, because KI1K33 - Kia> 0, 
as this is the discriminant of the positive definite quadratic form in the 
variables ai' a3 

2G(a1, 0, as) = K 11ai + 2K1Sal a3 + Kssa;. 

It is easily seen that in both the above cases the Bernoulli-Euler law 
holds true and that in the first case the flexural rigidity is equal to 

122 + K 22 , 

while in the second case it is given by 

111 + K; 

(147.6) 

(147.7) 

it must not be forgotteIl that 122 and III are now reduced moments of 
inertia about the axes Ox, Oy. 

It is seen that in both cases the difference ot the Poisson's ratios in
creases the flexural rigidity (jor constant III and 122), independently oj 
the sign of (Ii - (Ik' 

Some simple examples will be presented in § 149. 

§ 148. Principal axis of extension and principal planes of 
bending. The equations (146.4) may be considerably simplified, if the 
arbitrary system of coordinate axes Oxy in the plane of the "left" 
("lower") end is replaced by another system O'x'y' in the same plane, 
where the new axis O'z' is given the same direction as the old axis Oz. 
In fact, as will be seen below, this new coordinate system may be chosen 
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in such a way that on the right-hand sides of the equations (146.4) 
all but the coefficients on the main diagonal vanish. 

Let K~~ denote the constants for the system O'x'y', corresponding 
to the constants K(J.~ for the system Oxy. The relations expressing K~~ in 
terms of K(J.~ are easily found; this will be left to the reader (cf. Note at 
the end of this section), and so, in what follows, only those relations 
will be deduced which are required in the later reasoning. 

For greater clarity, the transit to the new axes will be carried out in 
two steps, producing a translation of the origin and a rotation of the 
coordinate axes. 

Let the new system 0' x' y' only differ from the old system Oxy by the 
position of the origin and let a, b be the coordinates of the new origin in 
the old system, so that 

x' == x - a, y' = y - b. 

It is easily seen that in the present case K~3 = K 33 • In fact, in the auxi
liary problem corresponding to (146.3a), but in the new coordinates 
O'x'y', one will have for the discontinuities in the displacements on the 
dividing lines 

Uj - Uk == {O'j - (Jk)X' = {(Jj - (J'k) (x - a) ==:: (O'j - O"k)X + const., 

Vj - Vk == (O'j - (Jk)Y' = ((Jl - O'k) (y - b) = (O'j - (Jk)Y + const., 

and clearly the solution of this problem leads to the same stress distri
bution as the solution of the problem for the following discontinuities: 

Uj - U'k = (O'j - (Jk)X, Vj - Vk = (O'j - (5k)Y, 

because the constants in the previous formulae may be removed by rigid 
translations of some of the parts, constituting the bar. Thus, in particular, 
the stress component Z13) will be the same for these auxiliary problems 
in the systems Oxy and O'x'y'. This means that 

K33 = f f Z~3)dx dy 
s 

remains unchanged for the transit to the new system. 
Next, the constants K~3 = K~l and K~3 = K~2 will be calculated. 

Using (146.6') and the above result regarding Z~3), one has 

K~3 = f f x'Z~3)dx' dy' = f f(X - a)Z~3)dx dy, 

s s 
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whence 
(148.1) 

similarly 
K~3 == K 23 - bK33• (148.2) 

Denoting by I~~ the quantities, defined for O'x'y' in the same way as 
I(J.~ was defined for Oxy, the coordinates a, b will be chosen such that 

I~3 + K~3 == SEX~ + K~3 == 0, I~3 + K~3 = SEY~ + K~3 == 0, 

Of, since x~ == Xo - a, y~ == Yo - h, one obtains by the preceding formulae 

a = SEXO + K I3 , b = SEYO +K23 . (148.3) 
SE + K33 SE + K33 

With these values of a and b, the formulae, corresponding to (146.4), 
but for the new system of axes, acquire the simpler form 

- My == (Ill + K 11)a1 + (112 + K 12)a2, 

Mx == (121 + K 21)a1 + (122 + K 22)a2, 

F == (SE + Ka3)aa, 

(148.4) 

where, for simplicity, accents have been omitted, i.e., M 'Y' M x' I(J.~' K(I.~ 
have been written instead of My" M x" I~f>' K~~. Accordingly, the ne,\\r 
system of axes O'x'y' ,v ill now again be denoted by Oxy. 

The new axis Oz will be called principal axis ot extension (compression). 

The principal axis of extension may also be determined in the following manner. 
In (146.4), let a1 = a2 = 0, a 3 i= 0. Then 

My = - (SExo + K 13)a3 , M x = (SEYo + K 23)a3 , F = (SE + K 33)a3" 

Thus, in the present case, the forces applied to the "right" end are statically 
equivalent to a tensile force of magnitude F =1= 0, directed along the axis Oz, and 
to a couple with moment perpendicular to the line of action of the force. However, 
such a system of forces is known to be statically equivalent to a force of the same 
direction and magnitude. The line of action of this last force is easily found and it 
is the principal axis of extension, defined above. 

This term is justified by the fact that, if tensile forces of magnitude 
F be applied to the ends of the bar for which the line of action is the 
principal axis of extension, the solution of the problem will be obtained 
by putting a1 == a2 == 0, 

F 
a3 == -~---, 

SE + K33 

so that the extension will not be accompanied by bending. 
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The preceding formulae show that the rigidity of extension is equal to 

SE + K 33• (148.5) 

Since for different Poisson's ratios K33 > 0, it is seen that the dif
ference of Poisson's ratios (for constant SE) increases the rigidity 01 
extension, independently of the sign of (jj - (jk, a circumstance which 
had been observed above for a case with axes of symmetry. 

The formulae (148.4) may still be further simplified by means of a 
rotation of the axes Oxy in their plane. 

If the new system of axes O'x'y' is obtained from the old system by 
rotation through an angle rJ.., then 

x == x' cos rx - y' sin tJ.., Y = x' sin tJ.. + y' cos ti.., 

x' == x cos rx + y sin (/.., y' = - x sin rx + y cos 'X. 

( 148.6) 

( 148.7) 

The quantities K~l' K~2 == K~l' K~2 in the new system will now be 
expressed in terms of KIlt K12 = K 2V K 22• For this purpose, the auxiliary 
problems corresponding to (146.1a) and (146.2a) will be compared with 
the auxiliary problems in the new system. 

The discontinuities of the displacements for the above-mentioned 
problems in the old system are given by 

'It; - Uk = t(O'j - O"k) (X2 - y2), Vj - Vk = (O'j - O'k)XY (I) 

for the problem (146.1 a), 

Uj - Uk == (O'j - O'k)XY, Vj - Vk == (O'j - O'k) (y2 - X2) (II) 

for the problem (146.2a). Correspondingly, one has for the new system 

(I') 

and 

(II') 

In order to compare these problems, the boundary conditions (I') and 
(II') will be expressed i~ terms of the old coordinates x, y. In fact, by 
(148.7), one obtains instead of (I') 

u; - u~ == i(O'k - Gj) (X2 - y2) cos 2C1: + (O'j - O'k)XY sin 2C1:, 

v; - v~ == (0'; - O'k)XY cos 2C1: - i(O'j - O'k) (x2 - y2) sin 2C1:. 

Introducing now instead of u,; - u~, v; - v~ the quantities Uj - 'U'k' 

Vj - Vk' expressing the same discontinuities in terms of the old coordinates, 
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and taking into consideration that 

one obtains 

U j - Uk = (u; - u~) cos rJ.. - (v; - v~) sin ex, 

Vj - V k = (u; - 1i~) sin rJ.. + (v; - v~) cos C<, 

'l,(,j - Uk = t(O'j - (fk) (X2 - y2) cos ex + (CSj - (fk)XY sin (/.., 

Vi - Vk == ((fj - O'k)XY cos rx + !(O'j - O'k) (y2 - X2) sin ct. 

§ 148 

(148.8) 

The deduction of (148.8) may be simplified by considering, instead of x, y and 
U, v, the variables" = x + iy and u + iv. 

Thus it is seen that the solution of the problen1, corresponding to (I'), 
may be obtained by adding the solutions of the problems, corresponding 
to (I) and (II), which must be multiplied beforehand by cos ex and sin ex. 

respectively. Hence, if Z~(l) denotes the component Zz, corresponding to 
the problem (I'), and Z~l), Z;2) , as before, the stress components Zz, 
corresponding to the problems (1), (II), then 

Z~(l) = Z~l) cos ex .+ Z;2) sin C<. (148.9) 

Similarly, one obtains for the problem (II') 

Z~(2) = - Z~l) sin (X + Z~2) cos oc. 

Using (148.9) and (148.10), the quantities K~l' K~2' K~2 are easily 
expressed in terms of K 1V K 12, K 22• For example, 

K ' K' If 'Z'(l)d ' d ' 12 = 21 == Y z X Y = 
s 

whence 

= If (- x sin oc + y cos oc) (Zil ) cos oc + Zi2
) sin oc)dx dy, 

s 

K~2 == K12 cos 2(;( - i(K11 - K 22) sin 2cx. (148.1 I) 

'"The expressions for K~l and K~2 may be deduced by the reader (cf. Note 
at the end of this section). 

Now the expression ,viTI be deduced for the reduced product of inertia. 
1;2 in the new system. One has 

I~2 = f f Ex'y'dx'dy' = f f E(x cos oc + y sin oc) (- x sin oc + Y cos~)dxdy, 
s s 
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whence 
(148.12) 

the complete analogy with (148.11) is obvious (see the Note at the end of 
this section). 

The angle tI.. will now be chosen in such a manner that 

I~2 + K~2 == 1~1 + I(~l == 0. (148.13) 

By (148.11) and (148.12), one obtains 

(112 + K 12) cos 2t1.. - ~-(Il1 + K11 - 122 - K 22) sin 20c == 0, 

whence 

( 148.14) 

Giving tl one of the values, satisfying this condition (the other values 
differing by integral multiples of a right angle), one arrives at a system 
of axes Ox'y' for which (148.4) assumes the very simple form, mentioned 
at the beginning of the present section, 

- J\,ly ' == (I~l + K;l)aV M x' == (I~2 + K~2)a2' F::::::: (SE + K3S)a3, 

because, as is readily seen, one has in the new system I~3 + K;3 = 
== SEX~ + K~3 == 0, I~3 + K~3 == SEY~ + K~3 == 0, and, in addition? 
K~3 = K 33• 

The planes Ox'z and Oy'z will be called principal planes 01 bending. 
It is seen that, if Oz is the principal axis of extension and if Ox'z, Oy'z 

are the principal planes of bending, the problems of extension by forces 
with the line of action Oz and of bending by couples vvith planes parallel 
to Ox'z, Oy'z may be solved independently of each other. 

Omitting the accents, the last equations may be rewritten as 

-My = (Ill +Kl1)aV Mx= (122 + K 22)a2, F= (SE+K33)aS. (148.15) 

It is seen that the law of Bernoulli-Euler is valid for bending by couples 
with the planes Oxz, Oyz and that the respective flexural rigidities are 
given by 

III + K I1 , 122 + K 22 ; 

the rigidity of extension is again equal to 

SE + K 33• 

(148.16) 
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NOTE. It will be left to the reader to verify that for transition from 
one system of axes Oxy to another O'x'y' the quantities Krx~ are trans
formed in accordance with the same formulae as the quantities I (J.'(J0 

Instead of a simple verification, this property may be deduced by investigating 
the general expression for the strain energy of the deformed bar. 

For example, for a translation of the origin 0 to a new position O'(a, b) 

III = f f EX'2dx' dy' = f f E(x - a)2dx dy = III - 2aI13 + a2Iaa; 
s s' 

in correspondence with this one has 

K~l == Kll - 2aKl3 + a2K330 

It follows from this result that, from the point of view of simplifying 
the notation, it would have been expedient not to consider the quantities 
Ka.~' I rxt)separately, but to consider their sums I:t) == I cc(3 + K cc(3 which alone 
occur in (146.4). This has not been done (cf. § 146, Note 1), because 
it was desired to distinguish clearly the terms K cc (3 which only occur in the 
case where (5j - fjk =1= o. 

§ 149. Application of complex representation. Examples. 10. In 
order to find the solutions of the auxiliary.p-roblems of plane deformation, 
it is convenient, as in many other cases, to use functions of the complex 
variable 

:5 = x + iy. 

The general solution of the equations of plane elasticity for a ho
mogeneous isotropic body (§ 32) will now be written in the form 

~t + iv == acp(3) - ~3CP'(3) - ~~(3), 

Xx + Yy == fficp'(3), Yll - Xx + 2iX1/ = 2[3CP"(3) + tJ;'(5)], 

( 14901) 

(149.2) 

where <pC,), tJ;(3) are analytic functions of .3 in the region under con
sideration and 

_~_ A+3f.l _ (3-4a)(1 +cr) __ 1 __ 1 + a: ( ) 
a - -' - , ~ - - . 149.3 

2!J. 2~(A + [J.) E 2fL E 

In the case of the auxiliary problem of § 145, the constants tX, ~ have 
different values C/..j, ~j in the regions 5j , constituting the cross-section 
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of the bar, and the functions cp(.?), ~C3') are holomorphic in each of these 
regions (the multi-valued terms in the functions cP, ~ drop out in the 
present case, because the resultant vectors of the forces, applied to the 
boundaries of the regions 5 j , are all equal to zero). 

It will be recalled that the components X n , Y n of the stress vector, 
applied to the element ds of any contour from the positive direction 
of the normal n, are given by 

(149.4) 

where it has been assumed that the positive directions of the normal n 
and of the element ds are orientated with respect to each other as the 
axes OX,Oy. 

In correspondence with this, the condition (145.1) may now be written 

CP(5) + 3CP'(3) + ~(3) == const. (149.5) 

on the boundary of the region 5, while (145.2) becomes 

[CP(5) + 3CP'(3) + ~(3)Jj == [CP(3) + 3CP'(3) + ~C?)Jk + const. (149.6) 

on the dividing lines between the parts S j, 5 k. 

Further, the condition (145.3) takes the form 

[acp(3) - ~3CP'(3) - ~~(3)Jj - [C1:<P(S) - ~3<P'(3) - ~~(3)Jk == t (149.7) 

on the dividing lines between 5 j , S7u where t denotes functions given on 
these lines. In the cases (146.1 a), (146.2a), (146.3a) respectively one will 
have 

I == gl + ihl = l(crj - O"k)S2, 

I == g2 + ih2 === - !... (O"j - (Jk)32, 
2 

t == ga + ih3 = (O"j - (1k)3· 

(149.81) 

( 149.82) 

(149.83) 

2°. As an example, the case will be considered where the free surface is 
a circular cylinder and the dividing surface between the two materials 
is likewise a circular cylinder with the same axis. Let the region 51 be 
bounded by a circle with radius Rl and the region S2 by the same circle 
and a circle with radius R2 ; the origin 0 will be placed at the centre of 
these circles. 

As a consequence of the symmetry, it is obvious that the axis Oz 
will be the principal axis of extension and that the planes Oxz, Oyz will 
be principal planes of bending. 
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In the present case, the solutions of the auxiliary problems are easily 
found by expanding the functions ep and t.f; in the regions 51 and 52 in 
positive and in negative and positive powers of .3 respectively. Substitut
ingin (149.5), (149.6) alld (149.7), the coefficients areimmediatelydetermin
ed; any arbitrary constants which may occur do not influence the stress 
distribution (because of the uniqueness of the solutions of the problems). 

However, the case to be considered here is somewhat simpler, as the 
form of the solutions may be guessed immediately and, instead of infinite 
series, only a fe\v terms need be retained (see later). 

3°. The problem 01 extension will be solved first. It is easily guessed 
that it will be sufficient to '\vrite in this case 

epIC,) = AI..?' t.YI(3) === 0 in 51' 
B 

CP2C.~) == A 2.3', tV2(5) == ~2 in S'2' 
.3' 

where AI' A 2, B2 are real constants and the subscripts 1 and 2 with 
the functions ep and tJ; indicate the relationship of the functions to the 
regions 5v 52' 

For I == (0"1 - 0"2)3, the conditions (149.5), (149.6) and (149.7) respec
tively give, omitting arbitrary constants, 

2Al..? = 2A 2.3 + B 23-1 for 1.3 I == R1 , (149.9) 

(C(l - ~1)A13 == {C<2 - ~2)A23 - ~2B23-1 + (0'1 - 0'2)3 for 1.3 I == Rl e 

Further, for .3 == re i&, :3 = re-i&, one obtains, after division by ei!iJ., 

Hence 

B2 B2 
2 .. 42R2 + - == 0, 2AIRI == 2A2Rl + --, 

R2 Rl 
~2R2 

(0:1 - ~l)AlRl = (OCz - ~z)AzRl - Rl + (0"1 - O"z)R1o 

(C(l - ~l) (R~ - Ri ) + (C(2 - ~2)Ri + 2~2R~ , 
(0'1 - 0"2)Ri 

A2 == ----------,:----------~-----::-2 ' 
(exl - ~1) (R~ - Ri) + (CX2 - ~2)Ri + 2~2R2 

4. _ 2(0"1 - 0"2)RiR~ ° 

~ 3 - (0'1 - ~1) (R~ - Ri) + (CX2 - f32)Ri + 2~2R~ , 

(149.10) 
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the quantities elv ~v a2, ~2 are given by (149.3), where E and (J must be 
given the corresponding subscripts; in fact, 

2 (1 + (j 1) (I - 20"1) 
a1 - ~1 == E ", 

1 

Since always (J; < i, these expressions are all positive. 
Superimposing the above solution of the auxiliary problem, after 

mult~plication by a3, on the solution (146.3) which must also be multiplied 
by as, one obtains the solution of the original problem, provided aa is 
given the value 

F 
(149.11) 

\vhere F is the magnitude of the tensile force, 

SE == 5 1E 1 + 5 2E 2 == n[RiEl + (R~ - Ri)E2J, (149.12) 

K33 = f f Z~3)dxdy 
s 

and 

Z(3 ) == (j .(X(3) + y (3») in 5· (J' == 1 2) in the notation of § 146. z 3 X Y 3. , 

In the present case 

0';{X~3) + y~3») == 40"; fficp; (3) == 40';A; in 5; (j == 1, 2). 

Hence 

K3S == 4{510'1A 1 + S20"2A 2) == 
41t{ 0"1 - 0"2)2(R~ - Ri)Ri . 

---------:---~-~-~---:::------::-

(al - ~1) (R~ - Ri) + (Cl2 - ~2)Ri + 2~2R~ , 
(148.13) 

as was to be expected, for 0"1 '* 0"2' Kss > 0, as it only contains tIle 
factor (0"1 - 0'2)2. 

4°. Next consider the problem 0/ bending by a couple, assuming its 
plane to be parallel to Oxz. In this case the conditIons of the auxiliary 
problem of plane deformation, corresponding to (149.81), may be satisfied 
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by writing 

(149.14) 

where AI' A 2, B2, C2 are real constants. 
Substituting these expressions in (149.5), (149.6) and (149.17) with 

f == t(O'l - 0'2)32 gives, as in the preceding example, four equations 
for the determination of the constants AI' A 2, B 2, C2 which are easily 
solved and render the values of these constants. Only the expressions 
for the first three of these constants will be given here, since C2 does not 
influence the stress distribution: 

1 (0'1 - 0"2) (R~ - Ri) 
2" • (R4 R4) R4 (.J. R4 ' 

ell 2 - 1 + CX2 1 + tJ2 2 

A - _ 1.. (<II - <l2)R~ 
2 - 2· (Xl(R~ - Ri) + cx2Rj + ~2R~ , (149.15) 

(0"1 - 0"2)RiR~ 
B2 = !. 4 4 4 4· 

(Xl(Rz - R1 ) + (X2R l + ~2R2 
The stress Z~l), corresponding to this auxiliary problem, is given by 

Z~l) == 0';(X11) + y~l») == 40'; mcp'C,) = 80';A;x in Sj (j == 1,2). 

Hence, in the notation of § 146, 

Kll = f f xZ~l)dxdy = 8<11A 1 // x2dxdy +8<12A 2 / / x2 dxdy = 
S Sl S2 

== 21t0'1AIRj + 21t0"2A2(R~ - Ri) 
or, by (149.15), 

7t(0"1 - (12)2(R~ -- Ri)Ri 
Kl1 = -----------

~l(R~ - Ri) + cx2Ri + ~2R~ · (149.16) 

TIlus, the flexural rigidity is equal to 

IE + Kl1 (149.17) 

(where I E has been written instead of 111); one has for I E the formula 

( 149.18) 
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As was to be eXl ~cted, for 0'1 =P 0'2' Kl1 > 0, as it only contains the 
factor (0"1 - 0'2)2. 

§ 150. Problem of bending by a transverse force. 
The solution, presented in this section, was given by A. K. Rukhadze [3J; 

however, not all statements in that paper are correct. They will only be so, if by 
the system of axes Oxyz is understood the system which will be used below and 
not that used by A. K. Rukhadze and if one (inessential) modification is introduced 
into his reasoning. 

Let the axis Oz be the principal axis of extension and the planes Oxz, 
Oyz the principal planes of bending (§ 148). For such a system one has, 
in the notation of § 146, 

113 + K 13 == SEXO + K 13 == 0, 123 + K 23 == SEYo + K 23 == 0, 

(IS0.1) 

where xo, Yo denote the coordinates of the reduced centre of gravity 
of the ('left" end. 

It will be assumed that the bending force of magnitude W is applied 
at the point, where the axis Oz intersects the "right" ("upper") end, and 
that it is directed parallel to Ox. 

The solution for the gelleral case will be obtained by combining the 
solution of the above problem with the analogous solution, obtained by 
interchanging the roles of Ox, Oy and the solution of the torsion problem 
(§ 139). 

Guided by the forn1 of the solution, obtained in § 144 for the case of 
constant Poisson's ratio, the solution of the present problem will be 
sought in the form 

~t(O) = - TYZ + A [lO" j( I -::- z) (X2 - y2) + ilz2 - _~_Z3], 

v(O) == TXZ + Acrj(l - z)xy, (150.2) 

w(O) == -rcp(x, y) - A [X(x, y) + x(lz - iZ2) + xy2] 

in the regions 5 j ; in these formulae 't', A are constants, subject to defi
nition, cp(x, y) is the torsion function, defined as in § 139, and X(x, y) 
is some functions, continuo/us throughout 5 and subject to definition. 

The stress components, corresponding to (150.2), are gIven in the 
regions Si by the formulae . 

X(O) == y(O) === X(O) = 0 (150.3) z y y , 
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X;O) = "fl.j (~: - Y) - Bj [:~ + iO"jx2 + (1 - iO"j)Y2J 
y~O) = "fl.j ( :; + x ) - B j [~ + (2 + O";)xy J (150.4) 

Z~O) == - Kj(l - z)x, 
where 

B j == AlL;, K j == AE j • (150.5) 

The displacements (150.2) cannot satisfy the conditions of the problem, 
because u, v are not continuous for a passage through the dividing line 
of the regions 5 j , 5 k ; in fact, on these lines 

ujO) - u~O) == tA(a:j - O'k) (l - z) (x2 - y2), 
vjO) - v~O) == A (O'j - (Jk) (l - z)xy. 

(150.6) 

These discontinuities cannot be removed by finding a solution of the 
problem of plane deformation, since they depend also on z. 

However, a beginning will be made with the solution of the auxiliary 
problem of plane deformation, formulated in § 145, for the following 
discontinuities in the displacement components on the dividing lines: 

U j - Uk === g == !(crj - O"k) (X2 - y2), Vj - Vk == h == (O'i - O'k)XY; (150.7) 

this is the problem (146.1a) 
As in § 146, denote the stress and displacement components, corre

sponding to this problem, by the relevant symbols with the superscript 
(1) and assume the auxiliary problem to have been solved; consider now 
the spatial deformation, characterized by the following displacement 
components: 

u* == (l - z)u(1), v* == (l - Z)V(l), w* == o. (150.8) 

The corresponding stress components are given by 

X* == (l - Z)X(l) y* == (l - z) y(1) X* === (l - z)X(l) (1 50.9) x x' Y Y' Y Y' 

Z: == (l - Z)Z;l) == (J j(l - z) (X11) + Y11») , (150.10) 

(150.11 ) 

in the regions 5 j _ 

Finally, the deformation will be written down which is obtained by 
superposition of the deformations, corresponding to (150.2) and (150.8), 
where the last is to be multiplied by - A, i.e., the deformation, corre
sponding to the displacements 

u == u(O) - Au*, v == v(O) - Av*, w == w<O). (150.12) 
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The corresponding stress components are given by 

x == X(O) - AX* x x x' 
y == y(O) _ AY* 

11 Y Y' z == Z(O) - AZ* z z z , 
(150.13) 

Xv == X~o) - AX;. y == y(O) _ A y* z z z , Z == Z)O) - AZ* x x x' 

Substituting these values in the equilibrium equations, it is readily 
verified that they will be satisfied, provided the function X(x, y) satisfies 
the equation 

~x(x, y) == p(x, y) (150.14) 

in each of the regions 5 j , where 

( ) 
_ Aj -1- flj 6(1) 

P x, Y - , (150.15) 
flj 

it may be assumed that this function is given, since the auxiliary problem 
of plane deformation has been assumed to be solved. 

Further, supposing for definiteness that one is dealing with the basic 
case of a compound bar (§ 139, 1 0) and formulating the boundary conditions 
on the free surface and on the dividing surfaces, one easily obtains, in 
the former notation, 

( dx ) (dx ) ~o - - t-Li - === Ii on L j 
dn 0 dn i 

(f == 1, 2, ... , m + 1, tkm+l === 0), where the functions 

f i == - {!(tLoO'o - (.Li(J j)X2 + 

(150.16) 

+ [[LO (1 - ~ ) - [Lj (1 - ~ ) ] y2 - (.Lou&1l + [LjU}ll}cos (n, x) -

- {[tJ-o(2 + (Jo) - tJ-j(2 + O"j)Jxy - f.LoV~l) + !-LjVi1)} cos (n, y) (150.17) 

are known on L j • 

One has thus arrived at the familiar boundary problem (150.16), 
except that the unknown function X(x, y) does not this time satisfy 
the Laplace equation ~X = 0, but the somewhat more general Poisson 
equation (150.14). 

However, this problem is easily reduced to the case where the unknown 
function satisfies Laplace's equation. In fact, let Xo(x, y) be any particu
lar solution of (150.14); such a particular solution is always easily 
found. 
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For example, it is known that the logarithmic potential 

Xo(x, y) = _1_ ffp(~, "1)) log r d~ d1) 
2n 

s 

§ 150 

is such a particular solution, where r 2 = (x - ~)2 + (y _1))2. In practice, however, 
it is usually more convenient to find a particular solution by different elementary 
methods. 

Writing 

x(x, y) = Xo(x, y) + X*(x, y), (150.18) 

where X*(x, y) is a new unknown function which obviously satisfies 
the equation f),.X* == Ol one arrives at the boundary conditions 

( 
dX* ) ( dX* ) . ~o -- -!1-j -- = Ii onLj(J == 1,2, · · ., m + 1 ; f-Lm+l == 0), (150.19) 
dn 0 dn j 

where 

* ( dXo ) ( dXo ) Ii = I; - fLo d;; 0 + fL; ;;;; ; on L;. ( 150.20) 

It is known that the condition of solubility of the problem (150.19) is 
given by 

:~: f lids = o. (150.21 ) 

L; 

This formula will be somew:hat simplified. Substituting for Ii its expres
SIon (150.20), one obtains 

m+l f m+l J'-'( dXo) m f( dXo) .~ lids - tJ..o.~ -d ds +.~ f-Lj -d ds == 0 
1=1 1=1 n 0 1=1 n j 

L; Lj L; 

or, transforming the last integrals by use of Green's formula, 

:~: fljdS - fLo J/LlxodX dy - i~l fL; f f LlXodx dy = 

Lj,so Sj 
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aT, remembering that ~Xo = p(x, y), 

:~: f Ijds - f f [Lpdx dy = O. (150.22) 

Li S 

It "rill now be verified as to whether in the present case this condition 
is satisfied. Substituting in (150.22) for Ii from (IS0.17) and transforming 
the integrals by means of Green's formula, one readily finds that (150.22) 
reduces in the present case to the following condition: 

-f f 2[L( 1 + a)x dx dy + f f [La(!) dx dy - f f [LP dx dy = 0 

S S S 
or, SInce 

2f1.( 1 + 0') = E, l-LP == (A + fl) 6(1), A8(1) === Z;1), 

to the condition 

-ffEXdX dy - f f Z~l)dx dy = 0 

S S 
or, finally, to 

SEXO + K 13 = 0; 

however, this last condition is imposed by (150.1). 
Thus, in the present case, the boundary problem (150.16) is soluble; 

its solution is determined, apart from an arbitrary constant term which 
does not influence the stress distribution. 

If one substitutes this solution for X(x, y) in (150.2), the formulae 
(150.12), (150. 13) then determine the solution of the original problem 
which satisfies all the required conditions on the side surface and on the 
dividing surfaces. 

It will now be shown that the constants A and 't' may always be chosen 
in such a manner that the forces, applied to the "right" ("upper") end, 
likewise satisfy the required conditions. For this purpose the resultant 
vector (X, Y, Z) and the resultant moment of these forces will be calcu
lated. Since for z = l: Z~O) = Z: = 0, one obviously has Z = O. Further, 

X = f f X. dx dy. (150.23) 

s 

This formula will now be transformed. By the equilibrium equation, 

azx 8Zy oZz 
-+-+-=0; ox By 8z 
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substituting for Zz = Z~O) - AZ: its value, given by (150.4), (150.5) 
and (150.10), one finds 

8Zx 8ZlI I (1) -- + -- + A(EiX + Zz ) == 0 in Si. ox By 
(150.24) 

Thus, one may write 

8(xX) 8(xY) X == ___ z + __ z_+ A(E ,x + Z(1») x in 5 '. 
z ox oy :J, Z :J 

Consequently (150.23) may be rewritten 

X = ff{ O(~:z) + O(:z)} dx dy + A {ffEX2 dx dy + ffXZ~l)dX dY}. 
s s s 

It has been shown in § 139 that the first integral vanishes. Hence, in 
the notation of § 146, 

x == A (Ill + K11). 

Further, one finds by the same method 

Y = f f Yzdxdy = A(I12 + K 12), 

s 

whence it follows, by (150.1), that Y === o. 

(150.25) 

Thus the resultant vector of the external forces, applied to the "right" 
end, is parallel to the axis Ox. 

It is also easily seen that the resultant moment of these forces about 
the point of intersection between the axis Oz and the "right" end is 
parallel to Oz and that its magnitude is given by 

If{ ox ox 
M == '"CD + A ~ [1.j y - - x - + (1 - to"j)y3 -

i ox 8y 
S; 

- (2 + iO'j)x2y }dX dy + A ~ Ilj f f(XV(l) - yu(l))dx dy, (150.26) 

8, 

where D is the torsional rigidity which is known to be always larger 
than zero. 

Consequently, all the conditions of the problem will be satisfied, 
provided the constants A and T are chosen in such a manner that X = W 
and M = 0 respectively. The first condition, taking into consideration 
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(150.25), gives 

W 
A=---

III + Kl1 

681 

(150.27) 

on the basis of (150.26) and (150.27), the second condition determines '";, 
since D =1= O. 

Thus the problem is solved. It is readily seen that also in the present 
case the Bernoulli-Euler Law remains valid and that the flexural rigidity 
is given by 

(150.28) 

as in the case of bending by a couple. 
When the dividing line and the external boundary of the region S are 

concentric circles, as in the example of the preceding section, the problem 
is readily solved in closed form. 



ApPENDIX 1 

ON THE CONCEPT OF A TENSOR 

1. Tensor calculus has rapidly achieved recognition in pure as well 
as in applied contemporary mathematics and is beginning to enter into 
technical literature, in particular, into the literature dealing with the 
theory of elasticity. For this reason it is considered necessary to give 
here at least an elementary introduction to the concept of a tensor 
which, for the sake of simplicity, will be confined exclusively to orthogonal 
coordinates. It should, however, be noted that the principal advantage 
of tensor calculus arises in its application to curvilinear coordinates of 
the general type. In order to give the subsequent definition of a tensor 
a more natural background, certain remarks will first be made with regard 
to the concept of a vector (since a vector is a particular type of a tensor, 
in fact, it is a first order tensor). 

I t will be assumed that the ordinary geometrical definition of a vector 
as a straight segment which has direction is knJwn. Further, coordinate 
axes will not be denoted by Ox, Oy, Oz, as in elementary analytical 
geometry, but by OXv Ox2, Oxa. Correspondingly, the components of 

~ 

a vector P will not be denoted by ~, 'YJ, ~, as in the main part of this 
book, but by ~v ~2' ~3. 

Only the length and direction of the vector, and not the position of 
its starting point, will be considered; thus, a vector will be considered 
completely known, if its components ~1' ~2' ~3 (i.e., its projections on 

the coordinate axes) are given. The vector P with components ~]' ~2' ~a 

will be denoted by (~1' ~2' ~3) or, still more briefly, by (~i); the index i 
takes then the values 1, 2, 3. 

Thus, a vector in space is characterized by three scalar quantities. 
Many p,l.lysical and geometrical quantities exist which for a given 

choice oj coord'£naie axes are likewise characterized by three scalars, for 
example: velocity, force (applied to a given point), etc. However, not 
every such quantity can be represented as a vector, as may, for example 
be done with a velocity or a force. In fact, let ~v ~2' ~3 be scalars character-

682 
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lZlng a given physical quantity for a given choice of coordinate axes. 
One may, of course, always construct a vector 

p == (~v ~2' ~3) 
with components ~1' ~2' ~3 and claim that it represents the given physical 
quantity for the given choice of coordinate axes. However, this relation 
between the given quantity and the vector may be disturbed, if the 
system of coordinate axes is replaced by another one. In fact, it may 
happen that the scalars ~~, ~~, ~~, characterizing the original physical 
quantity in the new coordinate system, do not coincide with the COffi-

ponents of the vector P in the new system, i.e., the vector P', having 
-+ 

in the new coordinate system the components ~~, ~~, ~;, may differ from P. 
In order that the representation of a physical quantity be independent 
of the choice of the coordinate system, it is obviously necessary that 
the scalars ~v ~2' ~3' characterizing it, transform in the transition from 
one coordinate system to another according to the same law as the 
components of a vector. It may only then be said that the given physical 
quantity is represented by a vector, or that it is a vectorial quantity. 
In future, vectorial quantities \-viII often simply be called vectors, i.e., 
they will be identified with the vectors, representing them. 

The law by which the components of vectors change during transition 
from one coordinate system to another """ill now be recalled. The notation, 
used in the main part of this book, will be somewhat modified. In fact, 
the cosines of the angles between the old and new axes will now be 
denoted by 

I 
I 

III 112 l13 Xl 
(A) 

I 

l21 l22 l23 X2 

I 

131 132 l33 X3 
! 

-)0 

The relations between the new components ;~, ~~, t:~ of a vector P and 
its old components ~v ~2' ~3 may then be written 

3 3 

~k = 2: lik~;' ~;:::::: ~ lik~k. (1.1.1) 
i=l k=l 

The following well known relations hold between the elements of 
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3 3 

~ lkilmi == 8km , 
i=l 

~ liklim == ~km' 
i=l 

{
I for k == m, 

8km = o for k =1= m. 

Consider now the two vectors 

and 

p = (;1' ~2' ~3)· 

Their scalar product is given by 

By definition, 

~ ~ 3 

A.P = al~1 + a2~2 + a3~3 = ~ ai~i· 
i=l 

A.P == AP cos (A, P), 
~ ~ 

(1. 1.2) 

where A, P denote the lengths of the vectors A, P; it is thus seen that 
the scalar product does not depend on the choice of coordinate axes, 
i.e., that 

(1.1.3) 

The reader will easily verify this formula directly from (1.1.1) and (1. 1.2) 
Conversely, it will now be shown that, if av a2, aa are three scalars 

which are related to the coordinate axes in such a manner that the 
linear form 

3 

F = al~1 + a2~2 + a3~a = 2: ai~i' 
i=l 

(1.1.4) 

where ~v ~2' ~a are the components of an arbitrary vector, is invariant 
for the transition from one coordinate system to another, then the 
triad of numbers (ai' a2, aa) represents a vectorial quantity (i.e., a vector). 
In order to prove this statement, it is sufficient to verify that the quan
tities ai' a2, aa transform for the passage from one coordinate system to 
another by the same law (1.1.1) as the components of a vector. In fact, 
one has by supposition 

3 3 

z: a~~~ == 2: ak~k; 
i=l k=l 
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substituting on the right-hand side for ~k the expresslon (1.1.1), one 
obtains 

3 3 3 3 3 

~ a;~: = ~ 2: aklik~; == 1: ~; ~ likako 
i=l k=l i=l i=l i=l 

Since this equality must hold true for any values of ~~, ~~, ~~, the co
efficients of ~; must be equal; hence 

(1.1.1) 

and this formula agrees \vith the second fornlula of (1.1.1), if a is replaced 
by ~. The proposition is thus proved. Therefore: 

I j the linear jorm 

is invariant for coordinate transformation and ~i are the components of 
an arbitrary vector, then ai are likewise the components oj a vector. 

2. Generalizing the concept of a vector, based solely on the above 
stated property, one arrives by a natural process at the concept of a tensor. 
In fact, instead of the linear form (1.1.4), consider the bilinear jorm 

3 3 3 

F . ~ ~ aii~i'~j . ~ aii~{fJj == all ~l i11 + a12~1 i12 + a13~11l3 + 
t = 1 1 = 1 1.,1 = 1 + a21~2i11 + a22~£1)2 + a23~£1)3 + 

+ a31~3i11 + a32~3'Yl2 + a33~3'lJ3 
which depends linearly on the components of two vectors 

and 

Q = ('Yll' i12' YJ3)· 

(1.2.1 )) 

It will now be postulated that the coefficients au of this form vary for 
transformation of coordinates in such a way that the form F remains 
invariant. Under this condition it will be said that the set of quantities 
au, depending on the two indices i, i, represents a tensor of second order 
(since there are two indices); aij are called the components of this tensor 
(with respect to a given system of axes). This tensor will be denoted by 
the symbol (aij). 

On the basis of this definition, the transformation law of the tensor 
components is easily found. Let a~, ~;, YJ; be the components of the tensor 
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-+ ~ 

aii and of the vectors P, Q in the new coordinate system. By definition, 

3 3 

~ a;j~ "1; = ~ akm~k"1 m' 
i t 1= 1 k,m=l 

Substituting on the right-hand side the expressions 

3 3 

~k == z: lik~;' "1m = 2: ljmY;; , 
i=l 1=1 

one finds 
333 

~ a;j~; YJ; == ~ ~; YJ; ~ likljmakm, 
i,1=1 i.i=l k,m=l 

whence, comparing the coefficients of the products ~ -"I);, 
3 

a;j == ~ lilcljmaJcmo 
k,m=l 

This is the required transformation formula. 

( 1.2.2) 

A second order tensor is called sym1netric, if aij =:= aji. It is easily 
seen from (1.2.2) that this property of symmetry is retained during 
coordinate transformations. 

In the case of a symmetrical tensor, one may use for its definitioIl, 
instead of the bilinear form (1.2.1), the quadratic form 2Q(~v ~2' ~3) 
which is obtained from F by putting ~i :::::: YJi' In this way one obtains 
the definition, given in § 5 of the main part of this book. The transfor
mation formulae for the components of the stress tensor, given in § 5, 
.coincide with the formulae (1.2.2), if the last are rewritten in the notation 
of that section. 

The simplest symmetrical tensor is the tensor (ou), defined by 

{
I for i = j, 

0·· :::= 
't:J 0 for i =f. j. 

It is easily seen that (Oij) is a tensor, since 

3 

~ Oij~iY)j === ~lYJl + ~2YJ2 + ~3"'113 
i,j=l 

( 1.2.3) 

is obviously invariant (as it is the scalar product of the vectors P and Q). 
The tensor (Oij) is called the unit tensor. 

A tensor is called anti-symmetrical, if aij = - aji- Since, in particular, 
one must then have aii = - au, in an anti-symmetrical tensor 
all == a22 == a33 == o. Thus, an anti-symmetrical tensor is characterized 
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by three quantities Pv P2' Pa, such that 

It is easily seen from (1.2.2) that the property of anti-symmetry is 
retained during transformation of coordinates. 

3. Two tensors (aii) and (bii) are said to be equal, if aij = bu. The 
tensor (Cij) whose components are equal to the sums of the components 
of two given tensors 

c·· = a·· + b·· Z3 U 1,3 

is called the sum of the tensors (au) and (b i ;). It follows from 

3 3 3 

L Cij~i1lj == :s aii~i1li + ~ bii~{fJj 
i,j=l i,j=l i,j=l 

that (Cij) is a tensor. Since the terms on the right-hand side are invariant, 
the left-hand side is also invariant, and this proves the tensorial character 
of the set of quantities Cij. The difference of two tensors may be defined 
in an analogous manner. 

If (aij) is a tensor, the quantities aij == aji likewise determine some 
tensor (aij); this result follows likewise directly from the definition of 
a tensor. 

Every tensor (aii) may (in a unique manner) be decomposed into 
the sum of a symmetric tensor (eij) and of an anti-symmetric tensor 
(Pij). In fact, let au == eij + Pii. Interchanging the indices i, j and noting 
that, by supposition, eij == eii' Pji == - Pij, one finds aji == eii - Pi;" 
In combination with the preceding equation, one finds 

(1.3.1) 

It is readily verified that the tensors (eii) and (Pii) satisfy the imposed 
conditions. 

Several examples of tensors will now be presented. 
Let (ai) and (b i ) be two vectors. Write Cij = aibj . The set of the quanti

ties (C ii ) is a tensor. In fact, let (~i)' (1)i) be two arbitrary vectors. One 
has 

3 3 3 3 
1; c··'C .Y!. = :s a·b·'C .Y!. == ~ a·t· ~ b·Y!· OSl'" l 'f....:>l·O l ~1, '·0· 

i,j = 1 i,j = 1 i = 1 j = 1 

The right-hand side is invariant (as product of t\VO invariant quantities). 
Hence also the left-hand side is invariant, and this proves the assertion. 

It is known that (c~), where c~ == Cii == aibi , is likewise a tensor. 
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Hence, if one writes 

P·· = c=.': - c·· == a·b· - a·b· 1,3 ~J 't3 3 't 't 3' ( 1.3.2) 

then (Pii) is also a tensor which is obviously anti-symmetrical. 
This tensor is called the vector product of the two given vectors. In vector 

analysis, the vector product is considered as a vector, and not as a tel1sor. 
In order to elucidate this, consider the following. Let 

PI = P32 == a2ba - aab2' P2 == Pl3 == aabl - alba, 

Pa = P21 == a1b2-a2b1• ( 1.3.3) 

It will be investigated whether the set of quantities (PI' P2' Pa) is a 
vector. For this purpose the criterion, formulated earlier, will be applied, 
i.e., an arbitrary vector (~v ~2' ~3) ,viII be introduced and it will be verified 
whether 

is invariant. Obviously, one has 

~I ~2 ~3 

Pl~l + P2~2 + P3~a == al a2 a3 

bi b2 ba 

( 1.3.4) 

However, it is known from analytic g~ometry that this determinant 
represents the volume of the parallelepiped, constructed on the vectors 
(~i)' (ai), (bi); the sign of this volume depends on the orientation of the 
coordinate axes: the volume changes sign as one changes from a left
handed system of axes to a right-handed one. The sign will not vary 
otherwise. Thus, the expression (1.3.4) will be invariant, if one uses 
consistently a right-handed or a left-handed system, and in that case the 
quantities Pv P2' Pa may be considered as representing a vector which 
does not depend on the choice of coordinate axes. 

It is easily shown that for transition from right-handed to left-handed systems 
or conversely the vector (PlJ P2J P3)' defined by (1.3.2) and (1.3.3) 1 inverts its 
direction. 

Finally, it will be shown that, when the above-mentioned restriction 
of the choice of coordinate axes is imposed, every anti-symmetrical 
second order tensor may be represented as a vector (having all the time 
in mind three-dimensional space, since otherwise this assertion is not 
true). In fact, let (Pi;) be any anti-symmetric second order tensor a 
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Construct the sum 
3 

~ Pij~iYJj == - (Pl~l + P2~2 + P3~3)' 
i,j=1 

where (~i)' (YJi) are two arbitrary vectors and where 

PI = Pa2 = - P2a, P2 == PI3 == - Psv Pa == P21 == - P12' 

689 

(a) 

~1 == ;21'13 - ~3~2' ~2 == ~3~1 - ~1~3' ~a == ~1~2 - ;2"'1)1· (1.3.5) 

However, by the statements above, (~1' ~2' ~a) is a vector. On the other 
hand, the left-hand side of (a) is invariant. Hence, also the right-hand 
side is invariant and (~v t:2, ~3) is an arbitrary vector. This means that 
(Pv P2' Pa) is a vector, and the proposition is proved. 

4. The concept of a tensor of any order n may be introduced in an 
analogous manner. For this purpose it is sufficient to consider, instead of 
a bi-linear form, an n-linear form depending linearly on the components 
of n arbitrary vectors. 

For example, the set of coefficients aijk of the tri-linear form 
333 

F = L ~ L aijk;i~j~k' 
i=l i=1 k=l 

where ~it 1'}" ~k are the components of three arbitrary vectors, determines 
the third order tensor (aiik) with components aUk. In the same manner one 
may define a tensor of order n. From this point of view, a vector must be 
interpreted as a first order tensor, defined by the help of the linear form 

3 

2; ai~i' 
i=l 

s. Consider again the second order tensor (aij). Let (~i) be some vector 
and construct the expressIon 

3 

~i === ~ aij~j' 
i=1 

(1.5.1) 

It is easily shown that (~*) === (~~\ ~~, ~~) is a vector. In fact, let (~j) 
be an arbitrary vector. Then . 

3 3 

L ~i~i = ~ aij~i~j 
i=1 i,i=l 

is invariant, because the right-hand side is invariant on the basis of the 
definition of a tensor. 

It is obvious that also conversely, if ~i, ~:, ~:, defined by (1.5.1), 
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where ~v ~2' ~3 are the components of an arbitrary vector, are the com
ponents of a vector, then au are the components of a tensor. 

Thus the relation (1.5. 1) relates to every vector (~i) a completely 
defined vector (;{). For this reason the vector (;{) is called the linear 
vector function of the vector (~i)' determined by the tensor (aij). 

An example of such a vector function has been encountered in the 
main part of this book. In fact, the relations (3.2) show that the stress 
vector (X n, Y n, Z n), acting on the plane with normal n, is a linear vector 

~ -)p 

function of the vector n, determined by the stress tensor. In this case, n 
denotes a vector of unit length which has the direction of the normal n. 

The case where the tensor (ai i ) is symmetrical, i.e., where aij ::::::: aji , 
is of particular interest. It will now be studied in detail. For this purpose 
introduce the quadratic form 

3 

2Q(~I' ~2' ~3) == ~ aij~i~j === 
i,j=l 

= al1~i + a22~~ + a33~; + 2a23~2~3 + 2a31~3~1 + 2a12~1~2' (1.5.2) 

In this case one may rewrite (1.5.1) 

( 1.5.3) 

The following important proposition will now be proved: By a suitable 
choice of new coordinate axes (i.e., rectilinear, orthogonal) Ox~, Ox~, Ox~, 
every quadratic form 2Q may be reduced to its canonical form 

r\ '2 '2 '2 2~.!. === Al~l + A2~2 + A3~3 ' ( 1.5.4) 

where AI' }.2' A3 are real constants (where it has been ass~tmed that aii are 
real). This proposition is equivalent to the following one. By a suitable 
choice of coordinate axes, it may be ensured that the new components 
a;j of any symmetrical tensor (aij), having different indices, vanish, i.e., that 

, , , 
a28 == a31 :::::: a12 = 0 

(while the remaining, i.e., the "diagonal", components 

will, in general, be different from zero). 
If the form 2Q has the stated canonical form, the relations (1.5.3) in 

the new coordinate system will reduce to the following: 

~'* ~' ~/* I ~/* ' ~1 = A1S1 , S2 = A2~2' ~3 == A3~3' ( 1.5.5) 
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These relations show that, if the vector (~;) is directed along one of the 
new coordinate axes, the corresponding vector (~;*) will be parallel to it. 
For example, the vector (~:), parallel to the axis Ox~, has the components 
~~, 0, 0 for ~~ =F 0. Its corresponding vector (~;*) has the components 
AI~~' 0, O. 

Hence, in order to reduce the form 2Q to the required type, one has 
first of all to find the directions with the above stated property. Thus 
there arises the following problem concerning the relations (1.5.1): To 
what direction of the finite vector (~i) corresponds a vector (~i) with 
the same direction? In order that the vectors (~i) and (~i) will be parallel, 
it is known to be necessary and sufficient that 

where A is some parameter. Introducing here the expressIons (1.5.1) 
for ~i, one obtains the system of equations 

(all - A)~l + a 12;2 + a13~3 = 0, 

a21~1 + (a 22 - A)~2 + a23~3 = 0, 

a31~1 + a32~2 + (a33 - A)~3 = 0. 

(1.5.6) 

This systen1 of linear homogeneous equations in ~v ~2' ~3 admits 
non-zero solutions if, and only if, its determinant is equal to zero, i.e., 

== o. (1.5.7) 

This equation is a third order polynomial in A. It \vill be shown below 
that all its roots are real. At the moment it will only be noted that this 
equation has at least one real root, since it is a polynomial of odd degree. 
This root will be denoted by A3' 

If one substitutes in (1.5.6) for A the value A3' this system \vill give 
a solution for which not all ~i are simultaneously zero. Let ~~, ~~, ~~ be 
one such solution. The vector (~?) determines such a direction that for 
any vector (~), parallel to it, its corresponding vector (~7) will likewise 
be in the same direction. 

Every such direction is called a principal direction, corresponding to the 
tensor (aij). 
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The new system of axes Ox~, Ox;, Ox; will now be chosen such that the 
axis Ox; has the principal direction, found above. The two other axes 
(perpendicular to this direction and between themselves) remain for 
the time being arbitrary. 

The components of tensors and vectors in the new system will be 
denoted by the same symbols as before, but with two accents. In the new 
system the equations (1.5.6), which may be written 

;7 == A~i' 

take then the form 

where 
3 

~'I * - """ /I ~'I • . -~a··· t tJ' 
j=I 

thus, written explicitly, one finds 

(a~l - A)~~ + a~2~; + a~3;; = 0, 
/I e" ( " )?;" " i;:" a21~I + a22 - A '-:,2 + a23 f..:,3 == 0, 
" 1;" + " i;:/I ( II ) e" 0 a3IS I a32S 2 ~ a33 -- A ~3 == · 

When A == A3 , these equations must have the solution (0, 0, ~;) for 
;; =j::. 0. Hence 

so that the quadratic form 20 becomes in the new system 

2(') - "t:"2 + 2 " t:'''t:''' + "e"2 + 1 t: '12 ~l. - all ~l a 12S 1 ~2 a22 S 2 1\3~3 • ( 1.5.8) 

In order to reduce 2Q to the required type, it is sufficient to rotate 
the axes Ox;, Ox; in their plane, leaving Ox; unchanged, so that the 
term with the product ~~~; in (1.5.8) vanishes. This may always be 
done. In fact, let the new axes be Ox~, Ox~, Ox~ and let Ox~ make an 
angle (X with Ox~. Then 

~~ == ~~ cos (X - ;~ sin ex, ~; == ~~ sin ex + ~~ cos oc, ~; = ~~. 
Substituting these expressions in (1.5.8.), one obtains 

20 == a~I~~2 + 2a;2~~~~ + a;2~~2 + A3~~2, (1.5.9) 

where, in particular, 

I (" ")" 11 (2 "2) a12 = - all - a22 SIn oc cos ex + a12 cos OC - SIn ex == 
II ").. " == - l(al1 - a22 SIn 2cx + a 12 cos 2cx:. 
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Hence a~2 = 0 for 

(1.5.10) 

If C'£o is an angle which satisfies this condition, then 

7t 
I 

~OT 2 
as well as all angles 

will satisfy it, where k is an integer. Thus, two mutually perpendicular 
directions have been found which satisfy the required conditions (both 
of these being perpendicular to Ox~, which coincides with Ox;); only 
for a;2 = 0 and a;l == a;2 will there be an infinite number of such direc
tions, in which case ~~2 == 0 for all values of C'£. Choosing one of the axes 
for Ox~ (and its perpendicular for Ox~), the form 2Q is reduced to the 
required type (1.5.4), where A1, A2, A3 are real numbers. One has thus not 
only proved the possibility of the stated reduction, but also deduced an 
effective method for its execution and for the determination of the 
directions of the corresponding new axes. 

It is known that A3 is one of the roots of (1.5.7). It will now be shown 
that AV A2 are the two other roots of the same equation. For this purpose 
it will first be noted that the determinant 

all a12 a l3 

Do = a21 a22 a23 (1.5.11) 

is invariant, i.e., that it does not change for transformation of coordinates 
(this determinant is called the discriminant of the quadratic form 2Q). 
In fact, for transition to new axes Ox~, Ox~, Ox~, this determinant becomes 

, , , 
all a12 a l3 

D~= 
, I , 

a21 a22 a23 
, , , 

a31 a32 a33 

where, by (1.2.2), 



694 

with 

APPENDIX 1 

... 

.) 

bkj == 2; ljmakmo 
rn=l 

On the basis of tIle well kno\vn theorem on mUltiplication of deter
minants, one has 

bll b12 bl3 III 112 113 

D~ == Ll. b21 b22 b23 , where Ll == 121 122 123 . 

b31 b32 b33 131 132 133 

On the basis of the same theorem 

bl1 b12 h13 all a12 al3 

b21 b22 b23 -- ~ - . a21 a22 a23 =::: Ll. Do. 

b31 b32 ba3 a3I aa2 a33 

Hence D~ === D".2Do. Ho\vever, on the basis of well known properties of 
the direction cosines lii' Ll == ± 1, \vhence it follows that D~ == Do~ 
as was to be proved. 

Next consider the tensor with the components Aik == aik - AOik, 
where A is an arbitrary number and (Oik) the unit tensor. The deter
minant of the cOlnponents of the tensor (Aik) 

will, on the basis of the earlier statements, not depend on the choice 
of coordinates, i.e., DA is invariant. 

Now choose new axes Ox~, Ox~, Ox~ in such a way that the new com
ponents a;k of the tensor (a ik), which have different indices, are equal 
to zero, so that the quadratic fornl 2Q is of the type 

'2 '2 '2 AI~l + A2~2 + )\3~3 . 

The determinant D)., for this new system of axes VvTill be 

Al - A 0 0 

o 1.2 - A 0 = (AI - A) (1.2 - A) (1.3 - )~). 

o 0 A3 -A 
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Hence one has the identity 

and it is seen that the real numbers AI' A2, Aa are the roots of the equation 

D').. == 0. 

Thus, in passing, the important theorem of algebra has been proved 
by which all the roots of (1.5.7), which is called the characteristic equation, 
are real (under the essential supposition that a'ii are real and, in addition, 
aid = a di)· 

Now the linear vector function, defined by (1.5.1), will be considered, 
retaining the supposition aij == a ji - It has been seen tllat one may always 
find at least one triad of mutually perpendicular principal directions and 
that, if the coordinate axes are given these directions, the forn1 20. be-
comes 

AI~i + A2~~ + A3~~' 
while the relations (1.5.1) have the form 

~i == Al~I' ~t =:: A2~2' ~i == A3~3 

(where now the accents have been omitted). 

(1.5.12) 

Next, the question will be discussed vvhether there are any principal 
directions other than the three, found above. If (~1' ;2' ~3) is a vector, 
parallel to any principal direction, then, by definition, the vector (~i) 

must be parallel to the vector (~i)' i.e., 

~i = A~V ~~ = A~2' ~i == A~3' 

Substituting from (1.5.12), one finds 

(Al - A)~l === 0, (A2 - A)~2 === 0, (A3 - A)~3 === 0, (1.5.13) 

whence it follows that A can only have one of the three values AI' A2, A3 
(otherwise one \vould have to have ~l === ~2 === ~3 === 0). 

First suppose that AV }.2' A3 are all different. Substituting A === Al in 
(1 .5. 13), it is seen that these equations are only satisfied by the following 
values: ~I == an arbitrary quantity, ~2 == ~3 = O. Thus the vector, 
corresponding to A === AV is parallel to the axis OxI ; this gives one of the 
possible principal directions (which is already known). In an analogous 
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manner it is verified that the values A == }.2' A == As correspond to the 
directions of the axes Ox2, Oxa• 

Thus, if the three roots of (1.5.7) are different, there are only three 
principal directions which are mutually perpendicular. 

Now let A1 == A2 * A3• In that case one obtains again for A == "-3 
only one direction, namely the direction of Oxa• However, for A == Al = A2, 

the solution of (1.5.13) will be: ;1 arbitrary, ~2 arbitrary, ~s === o. Thus 
all directions perpendicular to the axis OX3 (and only these directions) 
will be principal directions, corresponding to this value of A. One may 
always select among these directions an infinite number of pairs of 
mutually perpendicular directions (which will also be perpendicular to 
the axis OXa). 

Finally, it is obvious that, if A1 == A2 ::::::: A3 , then the equations (1.5.13) 
will be satisfied for A === A1 == A2 === Aa by any values of ;v ~2' ~a. In 
other words, in this case any direction is a principal direction. 
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ON THE DETERMINATION OF FUNCTIONS FROM THEIR 
PERFECT DIFFERENTIALS IN'MULTIPLY CONNECTED 

REGIONS 

1. The case of two dimensions will be considered first. Let S denote 
some region of the Oxy plane. Only such connected regions which are 
bounded by one or several simple contours will be studied. Such regions 
may also be infinite (infinite plane with holes), but, for the present, 
consideration will be restricted to finite regions. 

A region is called connected, if any two points in it may be joined by a simple 
line which does not leave the region. A contour is called simple, if it does not 
intersect itself. 

A region S is said to be simply connected, if any cut joining any two 
points of its boundary disturbs its connectivity, i.e., divides it into separate 
regIons. 

A region is said to be 
multiply connected, if cuts 
linking points of the bounda
ry may be introduced with
out dividing it into indi
vidual parts. 

It is readily seen that a 
region, bounded by one 
simple contour, is simply 
connected. In contrast, a 
region, bounded by several 
simple contours, is multiply 
connected. In fact, let the 
boundary of a region con
sist of the contours L 1, L 2 , ••• 

b, 

Fig. 64. 

L m , L m+1, the last of which contains all the others inside it (Fig. 64). If 
the region is cut along any line albl , connecting a point a l of Ll with a point 
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bl of the outer contour L m+l , such a cut does not affect the connectivity of 
the region. 

If, in addition to albl , sinlilar cuts a2b2, ••• , amb m are introduced, 
which do not intersect one another, the connectivity is still not disturbed; 
however, as is easily seen, any further cut will affect the connectivity of 
the region. Thus, the m cuts alb l , ... , amb m make the region under 
consideration simply connected. 

If m cuts are required to convert a given region into a simply connected 
one, it will be said that the region is (m + 1 )-ply connected or that its 
connectivity is equal to (m + 1). 

It is seen that in this "vay the connectivity of a region is equal to 
the number of contours bounding it. For example, the region between 
t-vvo concentric circles is doubly connected. 

A simply connected region differs from a doubly connected one in that 
it has the following property. If one draws inside the simply connected 
region a simple contour, the region inside this contour belongs entirely 
to 5; this contour may be shrunk into a point by means of continuous 
deformations during which it remains always in S. 

In the case of multiply connected regions, there exist contours \vhich 
do not have this property. For example, in Fig. 64, L~ is one such contour; 
it is impossible to contract it into one point without cutting it or without 
the contour leaving S. 

2. Let there be given the differential 

P(x, y)dx + Q(x, y)dy, (2.2.1 ) 

where P(x, y) and Q(x, y) are single-valued and continuous functions 
with continuous first order derivatives in some region S. The following 
question will be asked: What conditions must be satisfied by the functions 
P, Q, in order that (2.2.1) should be a perfect differential of some single
valued function F(x, y), i.e., in order that there should exist a function 
F(x, y) such that 

dF == Pdx + Qdy (2.2.2) 

Of, what amounts to the same thing, that 

aF of 
--;- == P(x, y), -8- == Q(x, y)? 

uX y 
(2.2.2') 

Although this problem is studied in all, even elementary textbooks 
on calculus, it has nevertheless been considered necessary to dwell on 
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it here, in order to draw the reader's attention to certain circumstances 
which are very essential for the purpose of this book. 

First, suppose that the region 5 is simply connected. Inside 5 select 
some fixed point Mo(xo, Yo) and connect it with the variable point M(x, y) 
by an arbitrary line MoM which does not leave S. If the function F(x, y), 
satisfying (2.2.2), exists, one obtains by integrating both sides along 
MOM! 

F(x, y) = j (Pdx + Qdy) + C, (2.2.3) 

MO.i.ll 

where C == F(xo, Yo) is a constant. 
By supposition, F(x, y) is a single-valued function of x, y; hence its 

value at the point M(x, y) must only depend on the position of M and not 
on the path of integration MoM. Thus, if F(x, y) exists, the line integral 

j(PdX + Qdy) 

.Zl.foM 

cannot depend on the path of integration (which lies, of course, in the region 
S). This condition may be formulated as follows: The integral 

j(PdX + Qdy) 
L 

taken along any contour L (entirely inside 5) must be equal to zero. In 
fact, by linking any two points A and B of some M 
contour L with the points Mo and M respect
ively (Fig. 65), one has, by supposition, 

j - j -0· - , 

. ..11oADB2lf M 0..4 D' BJJi 

however, since the integrals along MoA and BM 
in both terms are equal, one must have 

o=j j=.f 
ADB AD'B L 

as was to be proved. Fig. 65. 
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On the basis of Green's formula, 

j(PdX + Qdy) = j j( :; - ~)dXdY, (2.2.4) 

L a 

where (j denotes the region, bounded by the contour L. If follows from the 
above that the integral on the right-hand side must vanish for every part 
(J of the region S. Thus the integrand must be zero at each point of S, i.e., 
one must have 

oQ 8P 
(2.2.5) ox By 

throughout S. As has just been seen, (2.2.5) is the necessary condition for 
the existence of the function F(x, y). It may also be proved that it is 
SUfficient. 

In fact, if this condition is satisfied, the line integral 

j(PdX + Qdy) 
does not depend on the path of integration, but only on the starting and 
end points of this path. This follows directly from the above: If A and B 
are any points of S, and ADB, AD'B are any t\VO paths connecting these 
two points, then 

j = j, 
.ADB AD'B 

because (Fig. 65). 

j j = j, 
.A.DB AD'B L 

and the last integral is zero by (2.2.4) and (2.2.5). For this purpose it 
has been assumed that the lines ADB and AD' B do not intersect each 
other, so that they form a simple contour. However, it is readily verified 
that this condition is not essential; if these lines intersect at one or several 
points, the difference of the integrals along these paths may be reduced 
to the sum of integrals along two or several contours. 

In particular, the integral on the right-hand side of (2.2.3) represents, 
for a fixed point Mo(xo, Yo), a single-valued function of x and y, and hence 
(2.2.3) determines the single-valued function F(x, y), provided C is 
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given an arbitrary (constant) value. Further, it is readily v-erified that 
(2.2.2') actually holds true. 

In fact, extending the path of integration in (2.2.3) by the straight 
segment MM', parallel to Ox, to the point .ll1'(x + LlX, y), one obviously 
finds 

x+~x 
".. 

F(x + ~x, y) = F(x, y) + I P(x, y)dx, 
.... 

x 

whence 
x+~x 

of F(x + ~x) - F(x) 1 J - == lim == lin1 -- P(x, y)dx = P(x, y), 
ox D.x~O ~x ax~o Llx 

x 

i.e., one obtains the first relation (2.2.2'); the second relation may 
be proved in the same manner. 

It has thus been seen that the condition (2.2.5) is necessary and suf
ficient for the existence of the single-valued function F(x, y), satisfying 
the conditions (2.2.2) or (2.2.2'). If these conditions are satisfied, the 
function F(x, y) will be determined by (2.2.3), apart from the constant C 
which is quite arbitrary. 

Hitherto, it has been assumed that the region 5 is simply connected. 
Next consider what supplementary conditions are required in the case of 
multiply connected regions. 

The condition (2.2.5) is also in this case necessary; its deduction differs 
in no way from that for the case of a simply connected region. One has 
only to select for the application of (2.2.4) such a contour L that the region 
c;, bounded by it, lies entirely in S (this condition \vill be automatically 
satisfied in the case of a simply connected region). The question of the 
sufficiency of this condition will now be investigated. It will be proved 
that in the present case this condition secures the existence of the function 
F(x, y), defined by (2.2.3), but that this function ,viII, in general, be 
multi-valued. 

A beginning will be made with the following remark. Let the regioll 5 
be cut along 

as indicated in the preceding section; one thus obtains a simply connected 
region which will be denoted by 5*. 

It should be understood that two edges of the cut region adjoin to 
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each line akbk , so that every point of this line must be considered as 
two points belonging to the one or the other of the corresponding edges. 
Hence a distinction must be made between the two edges at each cut which 
will be denoted by (+) and (-). 

Since the region 5* is simply connected, the function F(x, y), defined 
by (2.2.3) where the path of integration must not go outside S*, i.e., 
must not intersect a cut, ,viII be single-valued in 5* on the basis of the 
earlier results. 

However, this does not mean that at points, lying on different edges 
of the same cut, the values of the function F will be identical (because 
these points must be conceived as different points of 5*). For example, 
select any point A of the cut albl and denote by F+, F- the values of 
F at the points A +, A - of the edges (+) and (-) which coincide at the 
geometrical point A. By (2.2.3), 

F- = /(PdX + Qdy) + C, F+ = j(PdX + Qdy) + C, 
MoA- .!.11oA+ 

where the first integral is taken along any line 111 oA -, lying in 5* and 
going from M 0 to the point A, approaching it from the side (-); the 
second integral is taken along a path M oA +, likewise beginning from M 0' 

but approaching A from the positive side (+) [Fig. 64, where the point 
Mo and the paths of integration are not shown]. As path of integration 
for the second integral one may take the path of integration MoA
of the first integral supplementing it by the line L~ which surrounds 
the contour Ll once and leads from the edge (-) to the edge (+) without 
leaving the cut region 5*. Thus 

F+ = f + f + C = F- + 11> 

where 

11= I(PdX + Qdy) 
Ll' 

and L~ is a simple contour, going in 5*. from the edge (-) to the edge 
(+) of the cut al b1 without intersecting another cut (Fig. 64). This 
contour intersects the cut a l bl , crossing from the side (+) to the side (-). 
It is readily seen that Jl does not depend on the choice of the contour 
L~ which is to surround the contour Ll only once, going in 5* from the 
edge (-) to the edge (+) of albl . 
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In fact, let L; be another such contour which intersects alb! at some 
point B. Consider the contour which does not leave 5* and which consists 
of the segment AB of the positive edge of the cut, of the path L~ taken 
in the negative direction [i.e., in 5* from the edge (+) to the edge (-)], 
of the segment BA of the negative side of the cut and, finally, of the 
contour L;. On has 

I (Pdx + Qdy) = 0, 

vvhere the integral is taken along the above-stated closed path in 5*. 
Further, since the integrals along AB and BA cancel each other, one has 

- I(PdX + Qdy) + I(PdX + Qdy) = 0, 

and this proves the assertion (the first integral has here been given a 
minus sign, assuming L~ to denote the path in the positive direction). 

Similarly, one obtains for any cut akb7c that 

F+ = F- + lk' 
\vhere 

lk = ((Pdz + Qdy) (2.2.6) 
./ 

and L~ is any contour, surrounding Lk and only intersecting the one cut 
akblc in the direction from the side (+) to the side (-). 

The integral (2.2.6) may, in particular, be taken along the boundary 
Lk itself, provided the functions P, Q are continuous up to the boundaries. 

The nature of the function F(x, y), defined by (2.2.3), is easily seen, if one 
considers it as defined in the uncut region, i.e., if one allows the path of 
integration to intersect the cuts. 

Let Fo(x, y) denote the value given by (2.2.3) in the cut region, i.e., 
,vhen the path of integration does not intersect a cut. Consider the 
arbitrary path of integration MoM (Fig. 66); let it intersect the cuts 
in, say, n points. Follow the path of integration from the point Mo to 
the first intersection with one of the cuts akbk • On the subsequent part of 
the path MoM, which lies between the first and second encounter with 
a cut, select two consecutive points A and B and replace the segment 
AB by the line AMoB which goes from A to Mo and returns to B without 
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intersecting a cut. This procedure does not, of course, alter the value 
of the integral (because the new segments belong to the cut region). The 
original path from Mota M is thus replaced by the contour M oAM 0' \vhich 

Fig. 66. 

surrounds the contour L k once, and the 
path lvIoBM, which nov v intersects the 
cuts in only n - 1, and not n points. 

The integral taken along the contour 
M oAM 0 is, by (2.2.6), equal to + J k 

or - J k' depending on whether its path 
of integration intersects the cut akbk 

from the edge (+) to the edge (-) or 
in the opposite direction. Thus, one 
may omit from the (modified) path of 
integration the closed part M oAM 0 

under the condition that a term ± J k 

be added to the final result. 
Proceeding in the same manner, one may reduce the path of integration 

to one which does not intersect any cuts. The integral, taken along this 
path, must then be combined with the quantities ± 1 k; each of these 
terms must be added according to the number of times which the original 
path of integration intersects the corresponding cut; the sign (+) will 
apply, if the cut is crossed from the side (+) to the side (-), while the 
sign (-) must be taken in the opposite" case. 

Since the path of integration which does not intersect cuts gives the 
value Fo(x, y), the final result may be written in the following form: 

F(x, y) = Fo(x, y) + nl l 1 + n2l2 + ... + nml m, (2.2.7) 

where n1, ••• , nm are integers which are positive or negative and which 
are easily calculated, on the basis of the above results, as the number of 
intersections of the path MoM with the cuts (where account must be 
taken of the directions of intersection). For example, in the case of 
Fig. 66., 

F(x, y) = Fo(x, y) + lk + J~. 
In order that the function F(x, y) will be single-valued, it is necessary 

and sufficient that together with (2.2.5) the following condition be 
satisfied: 

11 = 12 = ... == J m = o. 
The above results will likewise apply to the case, where the contour 
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Lm+l is entirely at infinity, so that the region 5 becomes the infinite 
plane with holes. 

3. Quite analogous results will apply in the case of three dimensions. 
In this case a distinction must also be made between simply and multiply 
connected three-dimensional regions (bodies). A region will be said to be 
simply connected, if it has the property that every closed line inside it 
may be shrunk into one point by means of continuous deformation 
during which it does not leave the region (e.g. sphere, cube). Otherwise a 
region will be multiply connected. As examples of multiply connected 
regions, one may quote the torus (i.e., the body, obtained by rotating a 
circle about an axis in its plane, but not intersecting it) or a cube with 
one or more holes, drilled through it, etc. 

The torus is doubly connected, because it may be made simply con
nected by the help of a single cut; however, in contrast to the case of 
t\VO dimensions, the cut will now not be a line, but a surface. 

In general, a body will be (rn + 1 )-ply connected, if it may be made 
simply connected by the help of m cuts. Attention is drawn to the fact 
that a body, bounded by one closed surface, is not necessarily simply 
connected (e.g.: torus); in contrast, a body may be bounded by sev·eral 
closed surfaces and it may still be simply connected (e.g. the region 
betvveen two concentric spheres). 

Let there be given the differential expression 

P(x, y, z)dx + Q(x, jl, z)dy + R(x, y, z)dz, (2.3.1 ) 

where P, Q, R are single-valued and continuous functions which have 
continuous first order derivatives in some simply connected region V. 

As in the case of two dimensions, it may be shown that for the existence 
of a single-valued function F(x, y, z), satisfying the condition 

dF == Pdx + Qdy + Rdz, (2.3.2) 

it is neccesary and sufficient that 

j(PdX + Qdy + Rdz) = 0, (2.3.3) 

L 

where L is any contour in the region V. Under this condition, the function 
F(x, jl, z) will be determined by the formula 

F(x, y, z) = j(PdX + Qdy + Rdz) +C, (2.3.4) 

MoM 
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where C is an arbitrary constant and th~ integral is taken along any 
path (in V) which links the fixed point Mo with the variable point 
M(x, y, z). 

The condition (2.3.3) will now be transformed. For this purpose the 
well known Stokes formula will be recalled 

!(PdX+Qdy+RdZ) = ff{(:: - :;)cos(n,x) + 
L a 

+ (oP _ OR) cos (n, y)+ (!.Q _ OP) cos (n, Z)} d(J, (2.3.5) 
OZ ox ox oy 

where (J is any (open) surface (inside V) with the boundary Land n is 
the normal to (j in a definite direction. Applying (2.3.5) to (2.3.3), one 
finds 

ff{( oR - ~Q) cos (n, x) + (oP -!!!.-) cos (n, y) + 
8y 8z OZ ox 

(J 

+ (:~ - :) cos (n, Z)}dG = 0; (2.3.6) 

this condition must be fulfilled for any surface (J (in V). Selecting for G 

any plane, normal to the axis Ox, one obtains, in particular, 

r ( (OR - !.Q ) dy dz = 0, 
~ ~' By OZ 

whence (in view of the arbitrariness of the plane 0') one arrives at the 
first of the following formulae: 

oR oQ oP oR eQ oP 
oy 8z ' 

--==-, 
8z ox ox oy 

(2.3.7) 

(the remaining two being obtained by cyclic interchange of symbols). 
Conversely, the conditions (2.3.7) are obviously sufficient for the 

truth of (2.3.3) and, henc.e, for the existence of the single-valued function 
F(x, y, z), determined by (2.3.4). 

In the case of multiply connected regions, if (2.3.7) is satisfied, the 
function F(x, y, z) determined by (2.3.4) may be multi-valued. In fact, 
reasoning as in the case of two dimensions, one may establish the fol
lowing result. If one has introduced m cuts (partitions) which convert 
the given (m + 1 )-ply connected region into a simply connected one and 
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if F o(x, y, x) denotes the function, defined by (2.3.4) under the condition 
that the path of integration does not intersect these partitions, then one 
will have for an arbitrary path of integration 

F(x, y, z) == Fo(x, y, z) + nIl1 + n212 + ... + nm1 m, (2.3.8) 

where nl' ... , nm are integers and II' J2' · · ., I m are constants, cor
responding to integrals taken along closed paths. In fact, 

Sk = f (Pdx + Qdy + Rdz), (2.3.9) 

Lk 

where LTc is the simple contour which intersects only the cut k from its 
side (+) to the side (-). The numbers nk are defined in the same way 
as in the case of two dimensions. 

In order that the function F will be single-valued, it is necessary and 
sufficient that, in addition to (2.3.7), the following conditions be sa
tisfied: 

Jl == 12 == ... == J m == O. (2.3.10) 
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DETERMINATION OF A FUNCTION OF A COMPLEX VARIABLE 
FROM ITS REAL PART. INDEFINITE INTEGRALS OF 

HOLO~iORPHIC FUNCTIONS 

1. Let 
P(x, y) + iq(x, y) = t(z) (3. 1.1) 

be a function of the complex variable z = x + iy which is holomorphic 
in some region 5 of the z plane. Under these circumstances, the real 
and imaginary parts p and q are known to be related by the Cauchy
Riemann conditions 

op oq 
ox = oy' 

op oq 
(3.1.2) -=--

oy ox 

Conversely, it is known from complex function theory that, if two 
single-valued real functions p and q which have continuous first order 
derivatives are related by the equations (3. 1.2), then p + iq is a holo
morphic function of the variable z in a given region. 

It is known that holomorphic functions have derivatives of any order (and, 
further, may be developed into Taylor series in the neighbourhood of any point). 
Hence the functions p, q also possess this property. 

The function q, related to a given function p by the equations (3.1.2), 
is said to be conjugate to p. 

Not every real function p can be the real part of a holomorphic function 
of a complex variable. In fact, differentiating the equations (3.1.2) with 
respect to x and y respectively and adding, one obtains 

02p 02p 
-+--=~p=O' ox2 oy2 ' 

(3.1.3) 

hence the function p must be harmonic. In the same manner it may 
be shown that the function q must be harmonic~ In what follows, a 
function will be understood to be harmonic, if it satisfies (in a given 
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region S) the equation (3.1.3) and if it has continuous second order 
derivatives. In addition, it will be assumed that the function p is single
valued. 

It is easily shown that one may determine for any harmonic function 
p a function q, conjugate to it. In fact, by (3.1.2), one has for the de
termination of q 

dq = _!k dx + op dy. 
oy ox 

The condition for the existence of the function q in the present case 
reduces to the following (cf. Appendix 2): 

fj2p 02p 

which is satisfied thanks to (3.1.3). Hence the function q ,vill 
termined, apart from an arbitrary constant, by the formula 

f( op oP) q(x,y) == --dx+-dy + C, 
oy ox 

...11 0 1t1 

be de-

(3.1.4) 

where MoM is an arbitrary path which connects some (arbitrarily) fixed 
point Mo with the variable point M(x, y) and which does not leave the 
given region S. 

The formula (3.1.4) may be written in a somewhat simpler form. 
Let t denote the tangent to the path of integration (in the direction Mo 
to M) and n the normal towards the right of t (see Fig. 13, § 32), then 

dx == ds. cos (t, x) == - ds. cos (n, y), d y = ds. cos (t, y) == ds. cos (11, x), 

where ds is the arc element of the path of integration; hence 

op op { op op } dP 
- - dx + -dy = -cos (n, y) + -cos (n, x) ds == d- ds 

oy ox oy ox n 

and (3.1.4) may be rewritten 

q(x, y) = f dp ds + c. 
dn 

MoM 

(3.1.4') 

This formula could have been written down straight away by noting that ahvays 

dq dp 
---
ds dn 

This relation follows directly from the Cauchy-Riemann conditions. 
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When S is simply connected, the function q determined by (3.1.4) 
or (3.1.4') will be single-valued and, on the basis of the above statements, 
the function 

j(z) == p + iq 

will be holomorphic in 5; it will be determined for a given p apart from a 
purely imaginary arbitrary constant Ci. 

In the case of a multiply connected region, the function j(z) = p + £q, 
where q is determined by (3.1.4) or (3.1.4'), will be holomorphic in 
every simply connected subregion of 5 (and, in particular, in the cut 
region S*; see Appendix 2). However, if the only restriction on the path 
of integration is that it must remain in 5, the function j(z) may turn 
out to be multi-valued. In fact, for a circuit along a contour surrounding 
one of the contours Lk (using the same notation as in Appendix 2), the 
function q will increase by some constant B k' and hence t(z) undergoes 
the purely imaginary increase iB k. 

The constants Bk are determined by the formulae 

Bk == /.-. (_!t. dx + op dY) == f- dp ds (k = 1, 000, m); (3.1.5) 
~ 8y ¥ ox dn 

the integrals may be taken along the actual lines L k , provided the partial 
derivatives of p are continuous up to the boundary. 

In order that the function f(z) will be single-valued in the multiply 
connected region S, it is necessary and sufficient that all the constant~ 
B k are equal to zero. 

2. In connection with the above, one remark will be made regarding 
the indefinite integral of a function, holomorphic in some region S. By 
the indefinite integral 

.. 
r j(z)dz 

will be understood the function 
z 

F(z) = f j(z)dz + const., (3.2.1 ) 

Zo 

where the integral is taken along an arbitrary path which does not 
leave S and connects the arbitrarily fixed point Zo with the variable point 
z and "const." is an arbitrary (in general, complex) constant. 
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If S is a simply connected region, F(z) will be a single-valued function. 
This follows from the fact that, by Cauchy's theorem, the integral 

ft(Z)dZ, 

if taken around a contour, is equal to zero, so that 
z 

f t(z)dz 
Zo 

does not depend on the path of integration (cf. the analogous reasoning 
in Appendix 2). 

However, if the region 5 is multiply connected (assuming that it 
has the form indicated at the beginning of Appendix 2), the function 
F(z) may turn out to be multivalued; in fact, for a circuit around a 
contour L~ which surrounds Lk once (see Appendix 2), it undergoes 
an Increase 

IXk + i(3k = f t(z)dz. (3.2.2) 

L'k 

In general, the integral on the right-hand side of (3.2.2) will be different 
from zero, because the region contained inside L~ does not entirely 
belong to S. The quantity OCk + i~k does not depend on the choice of 
the contour L~, except that it is to surround Lk once, that it may not 
intersect any other cut beside akbk and that it must be described in a 
definite direction. This may be proved by the same method as the 
analogous result for the function F(x, y), proved in Appendix 2. Reasoning 
as in Appendix 2, it is easily established that the function F(z}, defined 
by (3.2.1), may be represented in the form 

F(z) = Fo(z) + n1(cx1 + i~l) + ... + nm(cxm + i~m)' (3.2.3) 

where F 0 is a single-valued function, defined in the cut region 5*, and 
nv n2, • •• , nm are integers, defined as in Appendix 2. 
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Elastic constants 61 
Ellipse 257, 598, 607 
Elliptic, hole 347 

ring 188 
Energy, kinetic 82 

potential 69, 83 
Epitrochoids 186 
Equilibrium, dynamic 78 

static 61 
Existence theorems 323 
Extension, of bars 583-681 

simple, homogeneous 36 

F 

Force, body 5 
centrifugal 1 0 1 
concentrated 162, 215, 338, 396 
external 10 
gravity 101 
resultant 116 
surface 5 

Fourier series 199-203 
Fredholm equation 317 
Function, analytic 109, 115 

biharmonic 110 
boundary value of 132, 268, 299 
continuous from left (right) 132, 268 
continuous on boundary 268 
continuous up to 132 
holomorphic 109, 284, 298-313 

holomorphic at infinity 127, 284 
of bounded variation 200 
principal part of 283 
sectionally holomorphic 447, 449 
stress 105 

Functional equation 31 7 
Fundamental, law 52 

G 

problems 66, 78, 141, 147, 204-264, 
316, 588 

General, formulae of plane elasticity 
89-195 

representation of solutions 441 
Generalized Hooke's law 52 
Green's function 415,417 

H 

Half-plane 391,471-524 
Harnack's theorem 301 
Heat flow 172 
Hertz problem 510 
Hilbert problem, 447-578 

homogeneous 449, 460 
.non-homogeneous 449, 462 

Holder (H) condition 268 
at a point 269 
at infinity 293 

Holomorphic function 298-313, 
708-711 

Hooke's Law 52 
Hydrostatic pressure 64 
H ypotrochoids 187 

I 

Inversion 291 

L 

Lemniscate 190, 604, 605 
Linear rela tionshi p I problem of 447-

578 
Line 267 

end of 267 
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left (right) neighbourhood of 267 
of discontinuity 447 
positive direction of 267 
simple, smooth. 267 

Liouville theorem 450 

M 

Modulus, bulk 65 
of compression 65 
of elasticity 63 

Moment, resultant 116 
Multiply connected regions 121, 416, 

697 

N 

Natural state 134 
Neumann, problem 308, 589, 597, 615 

series 426 
Normal, 7 

direction of 7 

o 

O(x), o(x) 269 
0(1), 0(1) 270 

p 

Pascal's limac;on 185, 255 
Plane, strain 89 

stress 23 
with circulair cuts 538 

Plate, middle surface of 92 
supported 385 
with circular hole 208, 211, 222, 380, 

530, 571 
with clamped edges 145, 333, 385 
with elliptic hole 351, 363, 558, 574 
with free edges 333, 385 
with holes 452 
with straight cuts 515 

Plemelj formulae 276 
Poisson's, ratio 63, 65 

coefficient 66 
formula 311 

Polar coordinates 140 
Potential energy 69 
Power series solutions 199-264 
Principal, axes 22, 38 

stress 1 7, 22 
value of Cauchy integral 271 

R 

Reci procal theorem of Betti 657 
Reduced, centre of gravity 642 

principal axes 642 
Reflection in a circle 181 
Regions, infinite 126 

multiply connected 50, 100, 121, 157, 
416 

semi-infinite 397 
simply connected 48, 50, 164, 250 

Regular solution 158 
Relative twist 590 
Representation of functions I 11, 441 
Resultant, force 1 16 

moment 116 
Riemann problem 445 
Ring, circular 230-249 

elliptic 188 
rotating 236 

Rotation, at infinity 129 
components of 34 
of axes 139 
positive direction of 24 

s 

Saint-Venant' principle 76 
Schwarz, formula 3 10 

algorithm 389, 416 
Sectionally holomorphic 447, 449 
Shear modulus, 64, 622 
Solution, regular 158 
Square 188 
Stamp 486-504, 537 
Strain, analysis of 28-31 

components of 44 
plane 89 
principal axes of 38 
surface 38 
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Stress, 6 
analysis of 5-27 
components of 7 
function 105 
generalized plane 96 
plane 23 
principal 17, 22 
surface 17 
tensor 14 
thermal 170, 246 

Strip with elliptic hole 358 

T 

Temperature distribution 247 
Tensor 682-696 
Thermal stress 170, 246 
Torsion of bars 583-681 
Torus 50 
Traction 6 
Transformation, of coordinates 14, 38, 

137 

affine 29 
conformal 399 
formulae 176--195 
infinitesimal 31 
polynomial 366 
rational 374, 411, 546-578 

Torsion, function 594, 596, 622 
problem 597 

Tube 235 

u 

Uniqueness, of solutions 66, 141, 560 
assumptions 71 
of functions 118 

Uniform tension 156 

y 

Young's modulus 64 




