Skip to main content

Blocks

Skip Navigation

Navigation

  • Dashboard

    • Site home

    • Site pages

      • My courses

      • Tags

      • FileІнструкція для здобувачів освіти до вибору дисципл...

      • URLВибір дисциплін на 2025-2026 навчальний рік

      • URLВибір дисциплін на 2024-2025 навчальний рік

      • ForumНовини сайту

      • URLІнструкція - основи роботи з системою Moodle

      • URLЦИВІЛЬНИЙ ЗАХИСТ

      • FolderНормативна база СЕЗН

      • URLВідновлення пароля

      • FileПам’ятка для користувача системи Moodle

      • FileСистема оцінки курсу

      • FeedbackОцінка якості курсу

    • My courses

    • Courses

      • Факультети, кафедри

        • Біологічний факультет

        • Економічний факультет

        • Журналістики факультет

        • Інженерний навчально-науковий інститут ім. Ю.М. По...

        • Іноземної філології факультет

        • Математичний факультет

          • Кафедра загальної математики

          • Кафедра загальної та прикладної фізики

          • Кафедра комп'ютерних наук

          • Кафедра прикладної математики і механіки

          • Кафедра програмної інженерії

            • archive

            • Технології Big Data

            • Машинне навчання (Математичні основи машинного нав...

            • Проєктування та аналіз обчислювальних алгоритмів

            • C/к Сучасні СУБД (Плюта Н. В.)

            • 2 Програмне забезпечення наукових досліджень (магі...

            • Автоматизоване тестування (Кудін О.В.)

            • Автоматизоване тестування Web-додатків (Кудін О.В.)

            • Адміністрування комп'ютерних систем (Горбенко В.І.)

            • Алгебра та геометрія Дисципліна вільного вибору ст...

            • Алгоритми та структури даних (Програмна інженерія)

            • Алгоритми шифрування та захисту даних

            • Прикладні задачі машинного навчання

              • General

              • Модуль 1

              • Модуль №2

                • URLПрезентація №2. Навчання нейронних мереж

                • URLНавчання нейронних мереж

                • AssignmentЛабораторна робота №2. Задачі виявлення шахрайства

                • URLЛекція 09/25

              • Модуль №3

              • Модуль №4

              • Модуль №5

              • Модуль №6

              • Індивідуальне завдання

              • Підсумковий контроль

          • Кафедра фундаментальної та прикладної математики

          • Практична підготовка математичного факультету

          • Інформація, Статистика Математичного факультету

        • Менеджменту факультет

        • Соціальної педагогіки та психології факультет

        • Соцiологiї та управлiння факультет

        • Факультет історії та міжнародних відносин

        • Факультет фізичного виховання, здоров'я та туризму

        • Філологічний факультет

        • Юридичний факультет

      • Аспірантура

      • Науково-технічна позашкільна освіта

      • Підготовчі курси до ЗНО

      • Адміністративний розділ

      • Центр післядипломної освіти та професійних кваліфі...

      • Школа педагогічної майстерності

  • Close
    Toggle search input
  • English ‎(en)‎
    • Русский ‎(ru)‎
    • Українська ‎(uk)‎
    • Deutsch ‎(de_old)‎
    • English ‎(de)‎
    • English ‎(en)‎
    • Español - Internacional ‎(es)‎
    • Français ‎(fr)‎
    • Italiano ‎(it)‎
    • Polski ‎(pl)‎
  • Log in

Прикладні задачі машинного навчання

Close
Toggle search input
Вибір дисциплін Collapse Expand
Вибір дисциплін Collapse Expand
Обрати дисципліни Статистика вибору дисциплін ВМУ Результати вибору дисциплін
  1. Home
  2. Courses
  3. Факультети, кафедри
  4. Математичний факультет
  5. Кафедра програмної інженерії
  6. Прикладні задачі машинного навчання
  7. Модуль №2
  8. Лабораторна робота №2. Задачі виявлення шахрайства

Лабораторна робота №2. Задачі виявлення шахрайства

Completion requirements

1. Виконати пояснювальний аналіз даних набору https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

2. Підготувати дані для моделі прогнозування

3. Побудувати модель прогнозування класифікатор (pycaret). Використати крос-валідацію та метрику F1 для оцінки точності

4. Реалізувати модель пошуку аномалій на основі кластеризації (бібліотека PyOD)

5. Реалізувати модель прогнозування на основі кластеризації (pycaret)

6. Порівняти ефективність побудованих моделей та отримані результати

Рекомендації:

Використовувати TargetEncoder (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html) для кодування категорійних ознак. 

Використовувати mutual_info_classif для оцінки важливості ознак (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_classif.html)

Використовувати метод SelectKBest для вибору ознак перед моделюванням (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html)

Оцінювати середнє значення (mean) та стандартне відхилення (std) метрик якості після крос-валідації.

Застосовувати sklearn pipeline (https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html) для створення потоків обробки даних.

Previous activity
Навчання нейронних мереж
Next activity
Лекція 09/25
Data retention summary
Get the mobile app