Перейти до головного вмісту

Блоки

Пропустити Навігація

Навігація

  • Інформаційна панель

    • Домашня сторінка

    • Сторінки сайту

      • Мої курси

      • Мітки

      • ФайлІнструкція для здобувачів освіти до вибору дисципл...

      • URL (веб-посилання)Вибір дисциплін на 2025-2026 навчальний рік

      • URL (веб-посилання)Вибір дисциплін на 2024-2025 навчальний рік

      • ФорумНовини сайту

      • URL (веб-посилання)Інструкція - основи роботи з системою Moodle

      • URL (веб-посилання)ЦИВІЛЬНИЙ ЗАХИСТ

      • ТекаНормативна база СЕЗН

      • URL (веб-посилання)Відновлення пароля

      • ФайлПам’ятка для користувача системи Moodle

      • ФайлСистема оцінки курсу

      • Зворотний зв’язокОцінка якості курсу

    • Мої курси

    • Курси

      • Факультети, кафедри

        • Біологічний факультет

        • Економічний факультет

        • Журналістики факультет

        • Інженерний навчально-науковий інститут ім. Ю.М. По...

        • Іноземної філології факультет

        • Математичний факультет

          • Кафедра загальної математики

          • Кафедра загальної та прикладної фізики

          • Кафедра комп'ютерних наук

            • archive

            • Сучасні інформаційні технології перекладу

            • Освітні вимірювання

            • Теорія інформації та кодування даних

            • Сучасні інформаційні системи і технології

            • Науково-дослідницька практика (ОНП)_4 семестр

            • Виробнича практика (ОНП 2024) 2 семестр

            • Курсова робота з дисципліни «Бази даних та інформа...

            • Сучасні мови програмування

            • Комп`ютерні мережі

            • Підготовка кваліфікаційної роботи магістра (ОНП)

            • Методи та технології розроблення цифрових двійників

            • Інтелектуальні інформаційні системи

              • Основи глибинного навчання.

                • ФайлОснови глибинного навчання

                • ФайлПрості нейромережі на мові Python

                • ЗавданняЛабораторна робота №1 (10 балів)

                • ФайлПочаток работи з нейронними мережами

                • ЗавданняЛабораторна робота №2 (10 балів)

                • ТестТест 1 (10 балів)

              • Початок роботи з нейронними мережами.

              • Обробка даних. Конструювання ознак. Навчання ознак

              • Підсумковий контроль

          • Кафедра прикладної математики і механіки

          • Кафедра програмної інженерії

          • Кафедра фундаментальної та прикладної математики

          • Практична підготовка математичного факультету

          • Інформація, Статистика Математичного факультету

        • Менеджменту факультет

        • Соціальної педагогіки та психології факультет

        • Соцiологiї та управлiння факультет

        • Факультет історії та міжнародних відносин

        • Факультет фізичного виховання, здоров'я та туризму

        • Філологічний факультет

        • Юридичний факультет

      • Аспірантура

      • Науково-технічна позашкільна освіта

      • Підготовчі курси до ЗНО

      • Адміністративний розділ

      • Центр післядипломної освіти та професійних кваліфі...

      • Школа педагогічної майстерності

  • Закрити
    Переключити введення пошуку
  • Українська ‎(uk)‎
    • Русский ‎(ru)‎
    • Українська ‎(uk)‎
    • Deutsch ‎(de_old)‎
    • English ‎(de)‎
    • English ‎(en)‎
    • Español - Internacional ‎(es)‎
    • Français ‎(fr)‎
    • Italiano ‎(it)‎
    • Polski ‎(pl)‎
  • Вхід

Інтелектуальні інформаційні системи

Закрити
Переключити введення пошуку
Вибір дисциплін Згорнути Розгорнути
Вибір дисциплін Згорнути Розгорнути
Обрати дисципліни Статистика вибору дисциплін ВМУ
  1. Головна
  2. Курси
  3. Факультети, кафедри
  4. Математичний факультет
  5. Кафедра комп'ютерних наук
  6. Інтелектуальні інформаційні системи
  7. Основи глибинного навчання.
  8. Лабораторна робота №1 (10 балів)

Лабораторна робота №1 (10 балів)

Умови завершення

Лабораторна робота 1

Основи глибинного навчання.

Завдання

1.                Знайти пояснення основних понять теми «Основи глибинного навчання».

2.                Проінтерпретувати їх письмово у звіт (ілюструвати пояснення прикладами).

3.                Розробити просту мережу на основі глибинного навчання.

4.                Оптимізувати розроблену нейронну мережу

5.                Підготувати тести для програм.

6.                Підготувати звіт про виконання роботи.

Корисні посилання

1.     Bouchard, G.Accelerating Stochastic Gradient Descent via Online Learning to Sample / Guillaume Bouchard, Theo Trouillon, Julien Perez, Adrien Gaidon // https://arxiv.org/pdf/1506.09016v1.pdf

2.     Sutskever, I. On the importance of initialization and momentum in deep learning / Ilya Sutskever, James Martens, George Dahl, Geoffrey Hinton // http://proceedings.mlr.press/v28/sutskever13.pdf

3.     Алгоритм імітації відпалу https://uk.wikipedia.org/wiki/Алгоритм_імітації_відпалу

4.     Simulated annealing https://en.wikipedia.org/wiki/ Simulated_annealing

5.   Rasdi Rere, L.M. Simulated Annealing Algorithm for Deep Learning / L.M. Rasdi Rere, Mohamad IvanFananyAniati MurniArymurthy // Procedia Computer Science Volume 72, 2015, P. 137-144 https://www.sciencedirect.com/science/article/pii/S1877050915035759

6.    Метод стохастичного градієнта https://uk.wikipedia.org/wiki/ Метод_стохастичного_градієнта

7.    Broyden–Fletcher–Goldfarb–Shanno (BFGS)Алгоритм Бройдена — Флетчера — Гольдфарба — Шанно https://uk.wikipedia.org/wiki/Алгоритм_Бройдена_—_Флетчера_—_Гольдфарба_—_Шанно

8.   Limited-memory BFGS https://en.wikipedia.org/wiki/Limited-memory_BFGS

9..  ADADELTA: An Adaptive Learning Rate Method https://arxiv.org/abs/1212.5701

10.   Adam: A Method for Stochastic Optimization https://arxiv.org/abs/1412.6980

 

Попередня секція
Прості нейромережі на мові Python
Наступна секція
Початок работи з нейронними мережами
Підсумок збереження даних
Завантажте мобільний додаток