Перейти до головного вмісту

Блоки

Пропустити Навігація

Навігація

  • Інформаційна панель

    • Домашня сторінка

    • Сторінки сайту

      • Мої курси

      • Мітки

      • ФайлІнструкція для здобувачів освіти до вибору дисципл...

      • URL (веб-посилання)Вибір дисциплін на 2025-2026 навчальний рік

      • URL (веб-посилання)Вибір дисциплін на 2024-2025 навчальний рік

      • ФорумНовини сайту

      • URL (веб-посилання)Інструкція - основи роботи з системою Moodle

      • URL (веб-посилання)ЦИВІЛЬНИЙ ЗАХИСТ

      • ТекаНормативна база СЕЗН

      • URL (веб-посилання)Відновлення пароля

      • ФайлПам’ятка для користувача системи Moodle

      • ФайлСистема оцінки курсу

      • Зворотний зв’язокОцінка якості курсу

    • Мої курси

    • Курси

      • Факультети, кафедри

        • Біологічний факультет

        • Економічний факультет

        • Журналістики факультет

        • Інженерний навчально-науковий інститут ім. Ю.М. По...

        • Іноземної філології факультет

        • Математичний факультет

          • Кафедра загальної математики

          • Кафедра загальної та прикладної фізики

          • Кафедра комп'ютерних наук

          • Кафедра прикладної математики і механіки

          • Кафедра програмної інженерії

            • archive

            • Технології Big Data

            • Машинне навчання (Математичні основи машинного нав...

            • Проєктування та аналіз обчислювальних алгоритмів

            • C/к Сучасні СУБД (Плюта Н. В.)

            • 2 Програмне забезпечення наукових досліджень (магі...

            • Автоматизоване тестування (Кудін О.В.)

            • Автоматизоване тестування Web-додатків (Кудін О.В.)

            • Адміністрування комп'ютерних систем (Горбенко В.І.)

            • Алгебра та геометрія Дисципліна вільного вибору ст...

            • Алгоритми та структури даних (Програмна інженерія)

            • Алгоритми шифрування та захисту даних

            • Прикладні задачі машинного навчання

              • Загальне

              • Модуль 1

              • Модуль №2

              • Модуль №3

              • Модуль №4

              • Модуль №5

              • Модуль №6

              • Індивідуальне завдання

                • ЗавданняІндивідуальне завдання

              • Підсумковий контроль

          • Кафедра фундаментальної та прикладної математики

          • Практична підготовка математичного факультету

          • Інформація, Статистика Математичного факультету

        • Менеджменту факультет

        • Соціальної педагогіки та психології факультет

        • Соцiологiї та управлiння факультет

        • Факультет історії та міжнародних відносин

        • Факультет фізичного виховання, здоров'я та туризму

        • Філологічний факультет

        • Юридичний факультет

      • Аспірантура

      • Науково-технічна позашкільна освіта

      • Підготовчі курси до ЗНО

      • Адміністративний розділ

      • Центр післядипломної освіти та професійних кваліфі...

      • Школа педагогічної майстерності

  • Закрити
    Переключити введення пошуку
  • Українська ‎(uk)‎
    • Русский ‎(ru)‎
    • Українська ‎(uk)‎
    • Deutsch ‎(de_old)‎
    • English ‎(de)‎
    • English ‎(en)‎
    • Español - Internacional ‎(es)‎
    • Français ‎(fr)‎
    • Italiano ‎(it)‎
    • Polski ‎(pl)‎
  • Вхід

Прикладні задачі машинного навчання

Закрити
Переключити введення пошуку
Вибір дисциплін Згорнути Розгорнути
Вибір дисциплін Згорнути Розгорнути
Обрати дисципліни Статистика вибору дисциплін ВМУ Результати вибору дисциплін
  1. Головна
  2. Курси
  3. Факультети, кафедри
  4. Математичний факультет
  5. Кафедра програмної інженерії
  6. Прикладні задачі машинного навчання
  7. Індивідуальне завдання
  8. Індивідуальне завдання

Індивідуальне завдання

Умови завершення

1. Виконати описовий аналіз набору даних https://www.kaggle.com/datasets/aaron7sun/stocknews

2. Проаналізувати підходи до побудови гібридних моделей прогнозування ринку на основі новин.

3. Дослідити використання моделі FinBERT (https://huggingface.co/ProsusAI/finbert)

АБО

1. Ознайомитись з набором даних BirdCLEF+ 2025 (https://www.kaggle.com/competitions/birdclef-2025). Додатково ознайомитись з наборами BirdCLEF 2024,  BirdCLEF 2023, BirdCLEF 2022, BirdCLEF 2021

2. Виконати описовий аналіз даних.    

3. Виконати вилучення ознак. Порівняти різні методи. 

4. Побудувати модель класифікації. Переконатись в її точності та стабільності роботи. 

4. Вдосконалити моделі прогнозування застосувавши методи оптимізації гіперпараметрів моделі машинного навчання.  

Попередня секція
Kaggle набір даних
Наступна секція
Залік
Підсумок збереження даних
Завантажте мобільний додаток