Vai al contenuto principale

Blocchi

Salta Navigazione

Navigazione

  • Dashboard

    • Home del sito

    • Pagine del sito

      • I miei corsi

      • Tag

      • FileІнструкція для здобувачів освіти до вибору дисципл...

      • URLВибір дисциплін на 2025-2026 навчальний рік

      • URLВибір дисциплін на 2024-2025 навчальний рік

      • ForumНовини сайту

      • URLІнструкція - основи роботи з системою Moodle

      • URLЦИВІЛЬНИЙ ЗАХИСТ

      • CartellaНормативна база СЕЗН

      • URLВідновлення пароля

      • FileПам’ятка для користувача системи Moodle

      • FileСистема оцінки курсу

      • FeedbackОцінка якості курсу

    • I miei corsi

    • Corsi

      • Факультети, кафедри

        • Біологічний факультет

        • Економічний факультет

        • Журналістики факультет

        • Інженерний навчально-науковий інститут ім. Ю.М. По...

        • Іноземної філології факультет

        • Математичний факультет

          • Кафедра загальної математики

          • Кафедра загальної та прикладної фізики

          • Кафедра комп'ютерних наук

          • Кафедра прикладної математики і механіки

          • Кафедра програмної інженерії

            • archive

            • Технології Big Data

            • Машинне навчання (Математичні основи машинного нав...

            • Проєктування та аналіз обчислювальних алгоритмів

            • C/к Сучасні СУБД (Плюта Н. В.)

            • 2 Програмне забезпечення наукових досліджень (магі...

            • Автоматизоване тестування (Кудін О.В.)

            • Автоматизоване тестування Web-додатків (Кудін О.В.)

            • Адміністрування комп'ютерних систем (Горбенко В.І.)

            • Алгебра та геометрія Дисципліна вільного вибору ст...

            • Алгоритми та структури даних (Програмна інженерія)

            • Алгоритми шифрування та захисту даних

            • Основи машинного навчання

              • Introduzione

              • 1. Пояснювальний аналіз даних.

              • 2. Попередня обробка даних

              • 3. Лінійні моделі прогнозування

              • 4. Моделі інформаційного навчання

              • 5. Моделі на основі схожості та помилок

              • 6. Ансамблеві моделі

              • 7. Навчання без вчителя

                • CompitoЛабораторна робота №9

              • 8. Організація обчислювального процесу моделей маш...

              • Екзамен

          • Кафедра фундаментальної та прикладної математики

          • Практична підготовка математичного факультету

          • Інформація, Статистика Математичного факультету

        • Менеджменту факультет

        • Соціальної педагогіки та психології факультет

        • Соцiологiї та управлiння факультет

        • Факультет історії та міжнародних відносин

        • Факультет фізичного виховання, здоров'я та туризму

        • Філологічний факультет

        • Юридичний факультет

      • Аспірантура

      • Науково-технічна позашкільна освіта

      • Підготовчі курси до ЗНО

      • Адміністративний розділ

      • Центр післядипломної освіти та професійних кваліфі...

      • Школа педагогічної майстерності

  • Chiudi
    Attiva/disattiva input di ricerca
  • Italiano ‎(it)‎
    • Русский ‎(ru)‎
    • Українська ‎(uk)‎
    • Deutsch ‎(de_old)‎
    • English ‎(de)‎
    • English ‎(en)‎
    • Español - Internacional ‎(es)‎
    • Français ‎(fr)‎
    • Italiano ‎(it)‎
    • Polski ‎(pl)‎
  • Login

Основи машинного навчання

Chiudi
Attiva/disattiva input di ricerca
Вибір дисциплін Minimizza Espandi
Вибір дисциплін Minimizza Espandi
Обрати дисципліни Статистика вибору дисциплін ВМУ
  1. Home
  2. Corsi
  3. Факультети, кафедри
  4. Математичний факультет
  5. Кафедра програмної інженерії
  6. Основи машинного навчання
  7. 7. Навчання без вчителя
  8. Лабораторна робота №9

Лабораторна робота №9

Aggregazione dei criteri

Для набору даних https://www.kaggle.com/datasets/mehmettahiraslan/customer-shopping-dataset розв'язати задачу сегментації клієнтів. Виконати такі дії.

1. Провести описовий аналіз даних.

2. Виконати попередню обробку даних.

3. Застосувати методи кластеризації: K-means, DBSCAN, спектральна кластеризація.

4. Для методу K-means визначити оптимальну кількість кластерів. 

5. Проаналізувати окремо кожний сегмент клієнтів та зробити висновки.

Приклад. https://colab.research.google.com/drive/1NPJbaQI5PCoQWMCXVVidOSStCarsO7Z7?usp=sharing

Attività precedente
Лабораторна робота №8. Порівняння методів ансамблювання
Attività successiva
Лабораторна робота №10. Розгортання моделей машинного навчання
Riepilogo della conservazione dei dati
Ottieni l'app mobile