Vai al contenuto principale

Blocchi

Salta Navigazione

Navigazione

  • Dashboard

    • Home del sito

    • Pagine del sito

      • I miei corsi

      • Tag

      • FileІнструкція для здобувачів освіти до вибору дисципл...

      • URLВибір дисциплін на 2025-2026 навчальний рік

      • URLВибір дисциплін на 2024-2025 навчальний рік

      • ForumНовини сайту

      • URLІнструкція - основи роботи з системою Moodle

      • URLЦИВІЛЬНИЙ ЗАХИСТ

      • CartellaНормативна база СЕЗН

      • URLВідновлення пароля

      • FileПам’ятка для користувача системи Moodle

      • FileСистема оцінки курсу

      • FeedbackОцінка якості курсу

    • I miei corsi

    • Corsi

      • Факультети, кафедри

        • Біологічний факультет

        • Економічний факультет

        • Журналістики факультет

        • Інженерний навчально-науковий інститут ім. Ю.М. По...

        • Іноземної філології факультет

        • Математичний факультет

          • Кафедра загальної математики

          • Кафедра загальної та прикладної фізики

          • Кафедра комп'ютерних наук

          • Кафедра прикладної математики і механіки

          • Кафедра програмної інженерії

            • archive

            • Технології Big Data

            • Машинне навчання (Математичні основи машинного нав...

            • Проєктування та аналіз обчислювальних алгоритмів

            • C/к Сучасні СУБД (Плюта Н. В.)

            • 2 Програмне забезпечення наукових досліджень (магі...

            • Автоматизоване тестування (Кудін О.В.)

            • Автоматизоване тестування Web-додатків (Кудін О.В.)

            • Адміністрування комп'ютерних систем (Горбенко В.І.)

            • Алгебра та геометрія Дисципліна вільного вибору ст...

            • Алгоритми та структури даних (Програмна інженерія)

            • Алгоритми шифрування та захисту даних

            • Основи машинного навчання

              • Introduzione

              • 1. Пояснювальний аналіз даних.

              • 2. Попередня обробка даних

              • 3. Лінійні моделі прогнозування

              • 4. Моделі інформаційного навчання

              • 5. Моделі на основі схожості та помилок

                • CompitoЛабораторна робота №6. Метод опорних векторів

                • URLПриклад SVM

                • CompitoЛабораторна робота №7. Метод найближчих сусідів (KNN)

              • 6. Ансамблеві моделі

              • 7. Навчання без вчителя

              • 8. Організація обчислювального процесу моделей маш...

              • Екзамен

          • Кафедра фундаментальної та прикладної математики

          • Практична підготовка математичного факультету

          • Інформація, Статистика Математичного факультету

        • Менеджменту факультет

        • Соціальної педагогіки та психології факультет

        • Соцiологiї та управлiння факультет

        • Факультет історії та міжнародних відносин

        • Факультет фізичного виховання, здоров'я та туризму

        • Філологічний факультет

        • Юридичний факультет

      • Аспірантура

      • Науково-технічна позашкільна освіта

      • Підготовчі курси до ЗНО

      • Адміністративний розділ

      • Центр післядипломної освіти та професійних кваліфі...

      • Школа педагогічної майстерності

  • Chiudi
    Attiva/disattiva input di ricerca
  • Italiano ‎(it)‎
    • Русский ‎(ru)‎
    • Українська ‎(uk)‎
    • Deutsch ‎(de_old)‎
    • English ‎(de)‎
    • English ‎(en)‎
    • Español - Internacional ‎(es)‎
    • Français ‎(fr)‎
    • Italiano ‎(it)‎
    • Polski ‎(pl)‎
  • Login

Основи машинного навчання

Chiudi
Attiva/disattiva input di ricerca
Вибір дисциплін Minimizza Espandi
Вибір дисциплін Minimizza Espandi
Обрати дисципліни Статистика вибору дисциплін ВМУ
  1. Home
  2. Corsi
  3. Факультети, кафедри
  4. Математичний факультет
  5. Кафедра програмної інженерії
  6. Основи машинного навчання
  7. 5. Моделі на основі схожості та помилок
  8. Лабораторна робота №7. Метод найближчих сусідів (KNN)

Лабораторна робота №7. Метод найближчих сусідів (KNN)

Aggregazione dei criteri

Задача прогнозування відтоку клієнтів (Churn prediction) полягає у визначенні, які клієнти компанії можуть припинити користуватися її послугами або продуктами протягом певного часу.

Факт відтоку зазвичай кодується міткою (0 або 1) та позначає клієнтів, які припинять користуватися продуктом або послугою протягом певного періоду часу. Клієнти відмовляються від користування послугами з різних причин, таких як погане обслуговування, незадоволення продуктом, чутливість до ціни, кращі альтернативи та зміни обставин, наприклад переїзд. Аналітики даних знаходять ознаки, що можуть впливати на відтік, та будуть відповідні прогнозні моделі машинного навчання.

Для набору даних https://www.kaggle.com/datasets/fridrichmrtn/user-churn-dataset 

1. Виконати описовий аналіз даних.

2. На основі описового аналізу даних зробити висновки про необхідні процедури обробки даних та виконати попередню обробку даних.

3. Побудувати моделі класифікації: KNN, Random Forest, SVM, Gradient Boosting.

4. Оцінити якість побудованих моделей за допомогою кросвалідації із використанням метрики https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.matthews_corrcoef.html

Attività precedente
Приклад SVM
Attività successiva
Презентація. Випадкові ліси
Riepilogo della conservazione dei dati
Ottieni l'app mobile